xref: /linux/mm/mmap.c (revision 9651fcedf7b92d3f7f1ab179e8ab55b85ee10fc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 				      struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397 	struct file *file = vma->vm_file;
398 	struct address_space *mapping;
399 
400 	if (file) {
401 		mapping = file->f_mapping;
402 		i_mmap_lock_write(mapping);
403 		__vma_link_file(vma, mapping);
404 		i_mmap_unlock_write(mapping);
405 	}
406 }
407 
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410 	VMA_ITERATOR(vmi, mm, 0);
411 
412 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413 	if (vma_iter_prealloc(&vmi, vma))
414 		return -ENOMEM;
415 
416 	vma_start_write(vma);
417 	vma_iter_store(&vmi, vma);
418 	vma_link_file(vma);
419 	mm->map_count++;
420 	validate_mm(mm);
421 	return 0;
422 }
423 
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433 		struct vm_area_struct *vma, struct vm_area_struct *next,
434 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436 	memset(vp, 0, sizeof(struct vma_prepare));
437 	vp->vma = vma;
438 	vp->anon_vma = vma->anon_vma;
439 	vp->remove = remove;
440 	vp->remove2 = remove2;
441 	vp->adj_next = next;
442 	if (!vp->anon_vma && next)
443 		vp->anon_vma = next->anon_vma;
444 
445 	vp->file = vma->vm_file;
446 	if (vp->file)
447 		vp->mapping = vma->vm_file->f_mapping;
448 
449 }
450 
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457 				 struct vm_area_struct *vma)
458 {
459 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461 
462 
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469 	if (vp->file) {
470 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471 
472 		if (vp->adj_next)
473 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474 				      vp->adj_next->vm_end);
475 
476 		i_mmap_lock_write(vp->mapping);
477 		if (vp->insert && vp->insert->vm_file) {
478 			/*
479 			 * Put into interval tree now, so instantiated pages
480 			 * are visible to arm/parisc __flush_dcache_page
481 			 * throughout; but we cannot insert into address
482 			 * space until vma start or end is updated.
483 			 */
484 			__vma_link_file(vp->insert,
485 					vp->insert->vm_file->f_mapping);
486 		}
487 	}
488 
489 	if (vp->anon_vma) {
490 		anon_vma_lock_write(vp->anon_vma);
491 		anon_vma_interval_tree_pre_update_vma(vp->vma);
492 		if (vp->adj_next)
493 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494 	}
495 
496 	if (vp->file) {
497 		flush_dcache_mmap_lock(vp->mapping);
498 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499 		if (vp->adj_next)
500 			vma_interval_tree_remove(vp->adj_next,
501 						 &vp->mapping->i_mmap);
502 	}
503 
504 }
505 
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515 				struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517 	if (vp->file) {
518 		if (vp->adj_next)
519 			vma_interval_tree_insert(vp->adj_next,
520 						 &vp->mapping->i_mmap);
521 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522 		flush_dcache_mmap_unlock(vp->mapping);
523 	}
524 
525 	if (vp->remove && vp->file) {
526 		__remove_shared_vm_struct(vp->remove, vp->mapping);
527 		if (vp->remove2)
528 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
529 	} else if (vp->insert) {
530 		/*
531 		 * split_vma has split insert from vma, and needs
532 		 * us to insert it before dropping the locks
533 		 * (it may either follow vma or precede it).
534 		 */
535 		vma_iter_store(vmi, vp->insert);
536 		mm->map_count++;
537 	}
538 
539 	if (vp->anon_vma) {
540 		anon_vma_interval_tree_post_update_vma(vp->vma);
541 		if (vp->adj_next)
542 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
543 		anon_vma_unlock_write(vp->anon_vma);
544 	}
545 
546 	if (vp->file) {
547 		i_mmap_unlock_write(vp->mapping);
548 		uprobe_mmap(vp->vma);
549 
550 		if (vp->adj_next)
551 			uprobe_mmap(vp->adj_next);
552 	}
553 
554 	if (vp->remove) {
555 again:
556 		vma_mark_detached(vp->remove, true);
557 		if (vp->file) {
558 			uprobe_munmap(vp->remove, vp->remove->vm_start,
559 				      vp->remove->vm_end);
560 			fput(vp->file);
561 		}
562 		if (vp->remove->anon_vma)
563 			anon_vma_merge(vp->vma, vp->remove);
564 		mm->map_count--;
565 		mpol_put(vma_policy(vp->remove));
566 		if (!vp->remove2)
567 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568 		vm_area_free(vp->remove);
569 
570 		/*
571 		 * In mprotect's case 6 (see comments on vma_merge),
572 		 * we are removing both mid and next vmas
573 		 */
574 		if (vp->remove2) {
575 			vp->remove = vp->remove2;
576 			vp->remove2 = NULL;
577 			goto again;
578 		}
579 	}
580 	if (vp->insert && vp->file)
581 		uprobe_mmap(vp->insert);
582 	validate_mm(mm);
583 }
584 
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594 		struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596 	/*
597 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
598 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599 	 * anon pages imported.
600 	 */
601 	if (src->anon_vma && !dst->anon_vma) {
602 		int ret;
603 
604 		vma_assert_write_locked(dst);
605 		dst->anon_vma = src->anon_vma;
606 		ret = anon_vma_clone(dst, src);
607 		if (ret)
608 			return ret;
609 
610 		*dup = dst;
611 	}
612 
613 	return 0;
614 }
615 
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634 	       unsigned long start, unsigned long end, pgoff_t pgoff,
635 	       struct vm_area_struct *next)
636 {
637 	struct vm_area_struct *anon_dup = NULL;
638 	bool remove_next = false;
639 	struct vma_prepare vp;
640 
641 	vma_start_write(vma);
642 	if (next && (vma != next) && (end == next->vm_end)) {
643 		int ret;
644 
645 		remove_next = true;
646 		vma_start_write(next);
647 		ret = dup_anon_vma(vma, next, &anon_dup);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653 	/* Not merging but overwriting any part of next is not handled. */
654 	VM_WARN_ON(next && !vp.remove &&
655 		  next != vma && end > next->vm_start);
656 	/* Only handles expanding */
657 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658 
659 	/* Note: vma iterator must be pointing to 'start' */
660 	vma_iter_config(vmi, start, end);
661 	if (vma_iter_prealloc(vmi, vma))
662 		goto nomem;
663 
664 	vma_prepare(&vp);
665 	vma_adjust_trans_huge(vma, start, end, 0);
666 	vma_set_range(vma, start, end, pgoff);
667 	vma_iter_store(vmi, vma);
668 
669 	vma_complete(&vp, vmi, vma->vm_mm);
670 	return 0;
671 
672 nomem:
673 	if (anon_dup)
674 		unlink_anon_vmas(anon_dup);
675 	return -ENOMEM;
676 }
677 
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688 	       unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690 	struct vma_prepare vp;
691 
692 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693 
694 	if (vma->vm_start < start)
695 		vma_iter_config(vmi, vma->vm_start, start);
696 	else
697 		vma_iter_config(vmi, end, vma->vm_end);
698 
699 	if (vma_iter_prealloc(vmi, NULL))
700 		return -ENOMEM;
701 
702 	vma_start_write(vma);
703 
704 	init_vma_prep(&vp, vma);
705 	vma_prepare(&vp);
706 	vma_adjust_trans_huge(vma, start, end, 0);
707 
708 	vma_iter_clear(vmi);
709 	vma_set_range(vma, start, end, pgoff);
710 	vma_complete(&vp, vmi, vma->vm_mm);
711 	return 0;
712 }
713 
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720 		struct file *file, unsigned long vm_flags,
721 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722 		struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724 	/*
725 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726 	 * match the flags but dirty bit -- the caller should mark
727 	 * merged VMA as dirty. If dirty bit won't be excluded from
728 	 * comparison, we increase pressure on the memory system forcing
729 	 * the kernel to generate new VMAs when old one could be
730 	 * extended instead.
731 	 */
732 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733 		return false;
734 	if (vma->vm_file != file)
735 		return false;
736 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737 		return false;
738 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739 		return false;
740 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741 		return false;
742 	return true;
743 }
744 
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748 	/*
749 	 * The list_is_singular() test is to avoid merging VMA cloned from
750 	 * parents. This can improve scalability caused by anon_vma lock.
751 	 */
752 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
753 		list_is_singular(&vma->anon_vma_chain)))
754 		return true;
755 	return anon_vma1 == anon_vma2;
756 }
757 
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773 		struct anon_vma *anon_vma, struct file *file,
774 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775 		struct anon_vma_name *anon_name)
776 {
777 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779 		if (vma->vm_pgoff == vm_pgoff)
780 			return true;
781 	}
782 	return false;
783 }
784 
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796 		struct anon_vma *anon_vma, struct file *file,
797 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798 		struct anon_vma_name *anon_name)
799 {
800 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802 		pgoff_t vm_pglen;
803 		vm_pglen = vma_pages(vma);
804 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805 			return true;
806 	}
807 	return false;
808 }
809 
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
865 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867 	   struct anon_vma_name *anon_name)
868 {
869 	struct mm_struct *mm = src->vm_mm;
870 	struct anon_vma *anon_vma = src->anon_vma;
871 	struct file *file = src->vm_file;
872 	struct vm_area_struct *curr, *next, *res;
873 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
874 	struct vm_area_struct *anon_dup = NULL;
875 	struct vma_prepare vp;
876 	pgoff_t vma_pgoff;
877 	int err = 0;
878 	bool merge_prev = false;
879 	bool merge_next = false;
880 	bool vma_expanded = false;
881 	unsigned long vma_start = addr;
882 	unsigned long vma_end = end;
883 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884 	long adj_start = 0;
885 
886 	/*
887 	 * We later require that vma->vm_flags == vm_flags,
888 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
889 	 */
890 	if (vm_flags & VM_SPECIAL)
891 		return NULL;
892 
893 	/* Does the input range span an existing VMA? (cases 5 - 8) */
894 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895 
896 	if (!curr ||			/* cases 1 - 4 */
897 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
898 		next = vma_lookup(mm, end);
899 	else
900 		next = NULL;		/* case 5 */
901 
902 	if (prev) {
903 		vma_start = prev->vm_start;
904 		vma_pgoff = prev->vm_pgoff;
905 
906 		/* Can we merge the predecessor? */
907 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
910 			merge_prev = true;
911 			vma_prev(vmi);
912 		}
913 	}
914 
915 	/* Can we merge the successor? */
916 	if (next && mpol_equal(policy, vma_policy(next)) &&
917 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918 				 vm_userfaultfd_ctx, anon_name)) {
919 		merge_next = true;
920 	}
921 
922 	/* Verify some invariant that must be enforced by the caller. */
923 	VM_WARN_ON(prev && addr <= prev->vm_start);
924 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925 	VM_WARN_ON(addr >= end);
926 
927 	if (!merge_prev && !merge_next)
928 		return NULL; /* Not mergeable. */
929 
930 	if (merge_prev)
931 		vma_start_write(prev);
932 
933 	res = vma = prev;
934 	remove = remove2 = adjust = NULL;
935 
936 	/* Can we merge both the predecessor and the successor? */
937 	if (merge_prev && merge_next &&
938 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939 		vma_start_write(next);
940 		remove = next;				/* case 1 */
941 		vma_end = next->vm_end;
942 		err = dup_anon_vma(prev, next, &anon_dup);
943 		if (curr) {				/* case 6 */
944 			vma_start_write(curr);
945 			remove = curr;
946 			remove2 = next;
947 			/*
948 			 * Note that the dup_anon_vma below cannot overwrite err
949 			 * since the first caller would do nothing unless next
950 			 * has an anon_vma.
951 			 */
952 			if (!next->anon_vma)
953 				err = dup_anon_vma(prev, curr, &anon_dup);
954 		}
955 	} else if (merge_prev) {			/* case 2 */
956 		if (curr) {
957 			vma_start_write(curr);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				/*
960 				 * can_vma_merge_after() assumed we would not be
961 				 * removing prev vma, so it skipped the check
962 				 * for vm_ops->close, but we are removing curr
963 				 */
964 				if (curr->vm_ops && curr->vm_ops->close)
965 					err = -EINVAL;
966 				remove = curr;
967 			} else {			/* case 5 */
968 				adjust = curr;
969 				adj_start = (end - curr->vm_start);
970 			}
971 			if (!err)
972 				err = dup_anon_vma(prev, curr, &anon_dup);
973 		}
974 	} else { /* merge_next */
975 		vma_start_write(next);
976 		res = next;
977 		if (prev && addr < prev->vm_end) {	/* case 4 */
978 			vma_start_write(prev);
979 			vma_end = addr;
980 			adjust = next;
981 			adj_start = -(prev->vm_end - addr);
982 			err = dup_anon_vma(next, prev, &anon_dup);
983 		} else {
984 			/*
985 			 * Note that cases 3 and 8 are the ONLY ones where prev
986 			 * is permitted to be (but is not necessarily) NULL.
987 			 */
988 			vma = next;			/* case 3 */
989 			vma_start = addr;
990 			vma_end = next->vm_end;
991 			vma_pgoff = next->vm_pgoff - pglen;
992 			if (curr) {			/* case 8 */
993 				vma_pgoff = curr->vm_pgoff;
994 				vma_start_write(curr);
995 				remove = curr;
996 				err = dup_anon_vma(next, curr, &anon_dup);
997 			}
998 		}
999 	}
1000 
1001 	/* Error in anon_vma clone. */
1002 	if (err)
1003 		goto anon_vma_fail;
1004 
1005 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006 		vma_expanded = true;
1007 
1008 	if (vma_expanded) {
1009 		vma_iter_config(vmi, vma_start, vma_end);
1010 	} else {
1011 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012 				adjust->vm_end);
1013 	}
1014 
1015 	if (vma_iter_prealloc(vmi, vma))
1016 		goto prealloc_fail;
1017 
1018 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020 		   vp.anon_vma != adjust->anon_vma);
1021 
1022 	vma_prepare(&vp);
1023 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025 
1026 	if (vma_expanded)
1027 		vma_iter_store(vmi, vma);
1028 
1029 	if (adj_start) {
1030 		adjust->vm_start += adj_start;
1031 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032 		if (adj_start < 0) {
1033 			WARN_ON(vma_expanded);
1034 			vma_iter_store(vmi, next);
1035 		}
1036 	}
1037 
1038 	vma_complete(&vp, vmi, mm);
1039 	khugepaged_enter_vma(res, vm_flags);
1040 	return res;
1041 
1042 prealloc_fail:
1043 	if (anon_dup)
1044 		unlink_anon_vmas(anon_dup);
1045 
1046 anon_vma_fail:
1047 	vma_iter_set(vmi, addr);
1048 	vma_iter_load(vmi);
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067 	return a->vm_end == b->vm_start &&
1068 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069 		a->vm_file == b->vm_file &&
1070 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073 
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098 	if (anon_vma_compatible(a, b)) {
1099 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100 
1101 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102 			return anon_vma;
1103 	}
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117 	struct anon_vma *anon_vma = NULL;
1118 	struct vm_area_struct *prev, *next;
1119 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120 
1121 	/* Try next first. */
1122 	next = vma_iter_load(&vmi);
1123 	if (next) {
1124 		anon_vma = reusable_anon_vma(next, vma, next);
1125 		if (anon_vma)
1126 			return anon_vma;
1127 	}
1128 
1129 	prev = vma_prev(&vmi);
1130 	VM_BUG_ON_VMA(prev != vma, vma);
1131 	prev = vma_prev(&vmi);
1132 	/* Try prev next. */
1133 	if (prev)
1134 		anon_vma = reusable_anon_vma(prev, prev, vma);
1135 
1136 	/*
1137 	 * We might reach here with anon_vma == NULL if we can't find
1138 	 * any reusable anon_vma.
1139 	 * There's no absolute need to look only at touching neighbours:
1140 	 * we could search further afield for "compatible" anon_vmas.
1141 	 * But it would probably just be a waste of time searching,
1142 	 * or lead to too many vmas hanging off the same anon_vma.
1143 	 * We're trying to allow mprotect remerging later on,
1144 	 * not trying to minimize memory used for anon_vmas.
1145 	 */
1146 	return anon_vma;
1147 }
1148 
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155 	hint &= PAGE_MASK;
1156 	if (((void *)hint != NULL) &&
1157 	    (hint < mmap_min_addr))
1158 		return PAGE_ALIGN(mmap_min_addr);
1159 	return hint;
1160 }
1161 
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163 			unsigned long bytes)
1164 {
1165 	unsigned long locked_pages, limit_pages;
1166 
1167 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168 		return true;
1169 
1170 	locked_pages = bytes >> PAGE_SHIFT;
1171 	locked_pages += mm->locked_vm;
1172 
1173 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174 	limit_pages >>= PAGE_SHIFT;
1175 
1176 	return locked_pages <= limit_pages;
1177 }
1178 
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181 	if (S_ISREG(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	if (S_ISBLK(inode->i_mode))
1185 		return MAX_LFS_FILESIZE;
1186 
1187 	if (S_ISSOCK(inode->i_mode))
1188 		return MAX_LFS_FILESIZE;
1189 
1190 	/* Special "we do even unsigned file positions" case */
1191 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192 		return 0;
1193 
1194 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195 	return ULONG_MAX;
1196 }
1197 
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199 				unsigned long pgoff, unsigned long len)
1200 {
1201 	u64 maxsize = file_mmap_size_max(file, inode);
1202 
1203 	if (maxsize && len > maxsize)
1204 		return false;
1205 	maxsize -= len;
1206 	if (pgoff > maxsize >> PAGE_SHIFT)
1207 		return false;
1208 	return true;
1209 }
1210 
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215 			unsigned long len, unsigned long prot,
1216 			unsigned long flags, vm_flags_t vm_flags,
1217 			unsigned long pgoff, unsigned long *populate,
1218 			struct list_head *uf)
1219 {
1220 	struct mm_struct *mm = current->mm;
1221 	int pkey = 0;
1222 
1223 	*populate = 0;
1224 
1225 	if (!len)
1226 		return -EINVAL;
1227 
1228 	/*
1229 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230 	 *
1231 	 * (the exception is when the underlying filesystem is noexec
1232 	 *  mounted, in which case we don't add PROT_EXEC.)
1233 	 */
1234 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235 		if (!(file && path_noexec(&file->f_path)))
1236 			prot |= PROT_EXEC;
1237 
1238 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239 	if (flags & MAP_FIXED_NOREPLACE)
1240 		flags |= MAP_FIXED;
1241 
1242 	if (!(flags & MAP_FIXED))
1243 		addr = round_hint_to_min(addr);
1244 
1245 	/* Careful about overflows.. */
1246 	len = PAGE_ALIGN(len);
1247 	if (!len)
1248 		return -ENOMEM;
1249 
1250 	/* offset overflow? */
1251 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252 		return -EOVERFLOW;
1253 
1254 	/* Too many mappings? */
1255 	if (mm->map_count > sysctl_max_map_count)
1256 		return -ENOMEM;
1257 
1258 	/*
1259 	 * addr is returned from get_unmapped_area,
1260 	 * There are two cases:
1261 	 * 1> MAP_FIXED == false
1262 	 *	unallocated memory, no need to check sealing.
1263 	 * 1> MAP_FIXED == true
1264 	 *	sealing is checked inside mmap_region when
1265 	 *	do_vmi_munmap is called.
1266 	 */
1267 
1268 	if (prot == PROT_EXEC) {
1269 		pkey = execute_only_pkey(mm);
1270 		if (pkey < 0)
1271 			pkey = 0;
1272 	}
1273 
1274 	/* Do simple checking here so the lower-level routines won't have
1275 	 * to. we assume access permissions have been handled by the open
1276 	 * of the memory object, so we don't do any here.
1277 	 */
1278 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1279 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280 
1281 	/* Obtain the address to map to. we verify (or select) it and ensure
1282 	 * that it represents a valid section of the address space.
1283 	 */
1284 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1285 	if (IS_ERR_VALUE(addr))
1286 		return addr;
1287 
1288 	if (flags & MAP_FIXED_NOREPLACE) {
1289 		if (find_vma_intersection(mm, addr, addr + len))
1290 			return -EEXIST;
1291 	}
1292 
1293 	if (flags & MAP_LOCKED)
1294 		if (!can_do_mlock())
1295 			return -EPERM;
1296 
1297 	if (!mlock_future_ok(mm, vm_flags, len))
1298 		return -EAGAIN;
1299 
1300 	if (file) {
1301 		struct inode *inode = file_inode(file);
1302 		unsigned long flags_mask;
1303 
1304 		if (!file_mmap_ok(file, inode, pgoff, len))
1305 			return -EOVERFLOW;
1306 
1307 		flags_mask = LEGACY_MAP_MASK;
1308 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1309 			flags_mask |= MAP_SYNC;
1310 
1311 		switch (flags & MAP_TYPE) {
1312 		case MAP_SHARED:
1313 			/*
1314 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1315 			 * flags. E.g. MAP_SYNC is dangerous to use with
1316 			 * MAP_SHARED as you don't know which consistency model
1317 			 * you will get. We silently ignore unsupported flags
1318 			 * with MAP_SHARED to preserve backward compatibility.
1319 			 */
1320 			flags &= LEGACY_MAP_MASK;
1321 			fallthrough;
1322 		case MAP_SHARED_VALIDATE:
1323 			if (flags & ~flags_mask)
1324 				return -EOPNOTSUPP;
1325 			if (prot & PROT_WRITE) {
1326 				if (!(file->f_mode & FMODE_WRITE))
1327 					return -EACCES;
1328 				if (IS_SWAPFILE(file->f_mapping->host))
1329 					return -ETXTBSY;
1330 			}
1331 
1332 			/*
1333 			 * Make sure we don't allow writing to an append-only
1334 			 * file..
1335 			 */
1336 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337 				return -EACCES;
1338 
1339 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340 			if (!(file->f_mode & FMODE_WRITE))
1341 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1342 			fallthrough;
1343 		case MAP_PRIVATE:
1344 			if (!(file->f_mode & FMODE_READ))
1345 				return -EACCES;
1346 			if (path_noexec(&file->f_path)) {
1347 				if (vm_flags & VM_EXEC)
1348 					return -EPERM;
1349 				vm_flags &= ~VM_MAYEXEC;
1350 			}
1351 
1352 			if (!file->f_op->mmap)
1353 				return -ENODEV;
1354 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 				return -EINVAL;
1356 			break;
1357 
1358 		default:
1359 			return -EINVAL;
1360 		}
1361 	} else {
1362 		switch (flags & MAP_TYPE) {
1363 		case MAP_SHARED:
1364 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365 				return -EINVAL;
1366 			/*
1367 			 * Ignore pgoff.
1368 			 */
1369 			pgoff = 0;
1370 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1371 			break;
1372 		case MAP_DROPPABLE:
1373 			if (VM_DROPPABLE == VM_NONE)
1374 				return -ENOTSUPP;
1375 			/*
1376 			 * A locked or stack area makes no sense to be droppable.
1377 			 *
1378 			 * Also, since droppable pages can just go away at any time
1379 			 * it makes no sense to copy them on fork or dump them.
1380 			 *
1381 			 * And don't attempt to combine with hugetlb for now.
1382 			 */
1383 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
1384 			        return -EINVAL;
1385 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
1386 			        return -EINVAL;
1387 
1388 			vm_flags |= VM_DROPPABLE;
1389 
1390 			/*
1391 			 * If the pages can be dropped, then it doesn't make
1392 			 * sense to reserve them.
1393 			 */
1394 			vm_flags |= VM_NORESERVE;
1395 
1396 			/*
1397 			 * Likewise, they're volatile enough that they
1398 			 * shouldn't survive forks or coredumps.
1399 			 */
1400 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
1401 			fallthrough;
1402 		case MAP_PRIVATE:
1403 			/*
1404 			 * Set pgoff according to addr for anon_vma.
1405 			 */
1406 			pgoff = addr >> PAGE_SHIFT;
1407 			break;
1408 		default:
1409 			return -EINVAL;
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * Set 'VM_NORESERVE' if we should not account for the
1415 	 * memory use of this mapping.
1416 	 */
1417 	if (flags & MAP_NORESERVE) {
1418 		/* We honor MAP_NORESERVE if allowed to overcommit */
1419 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1420 			vm_flags |= VM_NORESERVE;
1421 
1422 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1423 		if (file && is_file_hugepages(file))
1424 			vm_flags |= VM_NORESERVE;
1425 	}
1426 
1427 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1428 	if (!IS_ERR_VALUE(addr) &&
1429 	    ((vm_flags & VM_LOCKED) ||
1430 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1431 		*populate = len;
1432 	return addr;
1433 }
1434 
1435 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1436 			      unsigned long prot, unsigned long flags,
1437 			      unsigned long fd, unsigned long pgoff)
1438 {
1439 	struct file *file = NULL;
1440 	unsigned long retval;
1441 
1442 	if (!(flags & MAP_ANONYMOUS)) {
1443 		audit_mmap_fd(fd, flags);
1444 		file = fget(fd);
1445 		if (!file)
1446 			return -EBADF;
1447 		if (is_file_hugepages(file)) {
1448 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1449 		} else if (unlikely(flags & MAP_HUGETLB)) {
1450 			retval = -EINVAL;
1451 			goto out_fput;
1452 		}
1453 	} else if (flags & MAP_HUGETLB) {
1454 		struct hstate *hs;
1455 
1456 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1457 		if (!hs)
1458 			return -EINVAL;
1459 
1460 		len = ALIGN(len, huge_page_size(hs));
1461 		/*
1462 		 * VM_NORESERVE is used because the reservations will be
1463 		 * taken when vm_ops->mmap() is called
1464 		 */
1465 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1466 				VM_NORESERVE,
1467 				HUGETLB_ANONHUGE_INODE,
1468 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1469 		if (IS_ERR(file))
1470 			return PTR_ERR(file);
1471 	}
1472 
1473 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1474 out_fput:
1475 	if (file)
1476 		fput(file);
1477 	return retval;
1478 }
1479 
1480 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1481 		unsigned long, prot, unsigned long, flags,
1482 		unsigned long, fd, unsigned long, pgoff)
1483 {
1484 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1485 }
1486 
1487 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1488 struct mmap_arg_struct {
1489 	unsigned long addr;
1490 	unsigned long len;
1491 	unsigned long prot;
1492 	unsigned long flags;
1493 	unsigned long fd;
1494 	unsigned long offset;
1495 };
1496 
1497 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1498 {
1499 	struct mmap_arg_struct a;
1500 
1501 	if (copy_from_user(&a, arg, sizeof(a)))
1502 		return -EFAULT;
1503 	if (offset_in_page(a.offset))
1504 		return -EINVAL;
1505 
1506 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1507 			       a.offset >> PAGE_SHIFT);
1508 }
1509 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1510 
1511 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1512 {
1513 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1514 }
1515 
1516 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1517 {
1518 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1519 		(VM_WRITE | VM_SHARED);
1520 }
1521 
1522 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1523 {
1524 	/* No managed pages to writeback. */
1525 	if (vma->vm_flags & VM_PFNMAP)
1526 		return false;
1527 
1528 	return vma->vm_file && vma->vm_file->f_mapping &&
1529 		mapping_can_writeback(vma->vm_file->f_mapping);
1530 }
1531 
1532 /*
1533  * Does this VMA require the underlying folios to have their dirty state
1534  * tracked?
1535  */
1536 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1537 {
1538 	/* Only shared, writable VMAs require dirty tracking. */
1539 	if (!vma_is_shared_writable(vma))
1540 		return false;
1541 
1542 	/* Does the filesystem need to be notified? */
1543 	if (vm_ops_needs_writenotify(vma->vm_ops))
1544 		return true;
1545 
1546 	/*
1547 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1548 	 * can writeback, dirty tracking is still required.
1549 	 */
1550 	return vma_fs_can_writeback(vma);
1551 }
1552 
1553 /*
1554  * Some shared mappings will want the pages marked read-only
1555  * to track write events. If so, we'll downgrade vm_page_prot
1556  * to the private version (using protection_map[] without the
1557  * VM_SHARED bit).
1558  */
1559 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1560 {
1561 	/* If it was private or non-writable, the write bit is already clear */
1562 	if (!vma_is_shared_writable(vma))
1563 		return false;
1564 
1565 	/* The backer wishes to know when pages are first written to? */
1566 	if (vm_ops_needs_writenotify(vma->vm_ops))
1567 		return true;
1568 
1569 	/* The open routine did something to the protections that pgprot_modify
1570 	 * won't preserve? */
1571 	if (pgprot_val(vm_page_prot) !=
1572 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1573 		return false;
1574 
1575 	/*
1576 	 * Do we need to track softdirty? hugetlb does not support softdirty
1577 	 * tracking yet.
1578 	 */
1579 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1580 		return true;
1581 
1582 	/* Do we need write faults for uffd-wp tracking? */
1583 	if (userfaultfd_wp(vma))
1584 		return true;
1585 
1586 	/* Can the mapping track the dirty pages? */
1587 	return vma_fs_can_writeback(vma);
1588 }
1589 
1590 /*
1591  * We account for memory if it's a private writeable mapping,
1592  * not hugepages and VM_NORESERVE wasn't set.
1593  */
1594 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1595 {
1596 	/*
1597 	 * hugetlb has its own accounting separate from the core VM
1598 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1599 	 */
1600 	if (file && is_file_hugepages(file))
1601 		return false;
1602 
1603 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1604 }
1605 
1606 /**
1607  * unmapped_area() - Find an area between the low_limit and the high_limit with
1608  * the correct alignment and offset, all from @info. Note: current->mm is used
1609  * for the search.
1610  *
1611  * @info: The unmapped area information including the range [low_limit -
1612  * high_limit), the alignment offset and mask.
1613  *
1614  * Return: A memory address or -ENOMEM.
1615  */
1616 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1617 {
1618 	unsigned long length, gap;
1619 	unsigned long low_limit, high_limit;
1620 	struct vm_area_struct *tmp;
1621 	VMA_ITERATOR(vmi, current->mm, 0);
1622 
1623 	/* Adjust search length to account for worst case alignment overhead */
1624 	length = info->length + info->align_mask + info->start_gap;
1625 	if (length < info->length)
1626 		return -ENOMEM;
1627 
1628 	low_limit = info->low_limit;
1629 	if (low_limit < mmap_min_addr)
1630 		low_limit = mmap_min_addr;
1631 	high_limit = info->high_limit;
1632 retry:
1633 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1634 		return -ENOMEM;
1635 
1636 	/*
1637 	 * Adjust for the gap first so it doesn't interfere with the
1638 	 * later alignment. The first step is the minimum needed to
1639 	 * fulill the start gap, the next steps is the minimum to align
1640 	 * that. It is the minimum needed to fulill both.
1641 	 */
1642 	gap = vma_iter_addr(&vmi) + info->start_gap;
1643 	gap += (info->align_offset - gap) & info->align_mask;
1644 	tmp = vma_next(&vmi);
1645 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1646 		if (vm_start_gap(tmp) < gap + length - 1) {
1647 			low_limit = tmp->vm_end;
1648 			vma_iter_reset(&vmi);
1649 			goto retry;
1650 		}
1651 	} else {
1652 		tmp = vma_prev(&vmi);
1653 		if (tmp && vm_end_gap(tmp) > gap) {
1654 			low_limit = vm_end_gap(tmp);
1655 			vma_iter_reset(&vmi);
1656 			goto retry;
1657 		}
1658 	}
1659 
1660 	return gap;
1661 }
1662 
1663 /**
1664  * unmapped_area_topdown() - Find an area between the low_limit and the
1665  * high_limit with the correct alignment and offset at the highest available
1666  * address, all from @info. Note: current->mm is used for the search.
1667  *
1668  * @info: The unmapped area information including the range [low_limit -
1669  * high_limit), the alignment offset and mask.
1670  *
1671  * Return: A memory address or -ENOMEM.
1672  */
1673 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1674 {
1675 	unsigned long length, gap, gap_end;
1676 	unsigned long low_limit, high_limit;
1677 	struct vm_area_struct *tmp;
1678 	VMA_ITERATOR(vmi, current->mm, 0);
1679 
1680 	/* Adjust search length to account for worst case alignment overhead */
1681 	length = info->length + info->align_mask + info->start_gap;
1682 	if (length < info->length)
1683 		return -ENOMEM;
1684 
1685 	low_limit = info->low_limit;
1686 	if (low_limit < mmap_min_addr)
1687 		low_limit = mmap_min_addr;
1688 	high_limit = info->high_limit;
1689 retry:
1690 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1691 		return -ENOMEM;
1692 
1693 	gap = vma_iter_end(&vmi) - info->length;
1694 	gap -= (gap - info->align_offset) & info->align_mask;
1695 	gap_end = vma_iter_end(&vmi);
1696 	tmp = vma_next(&vmi);
1697 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1698 		if (vm_start_gap(tmp) < gap_end) {
1699 			high_limit = vm_start_gap(tmp);
1700 			vma_iter_reset(&vmi);
1701 			goto retry;
1702 		}
1703 	} else {
1704 		tmp = vma_prev(&vmi);
1705 		if (tmp && vm_end_gap(tmp) > gap) {
1706 			high_limit = tmp->vm_start;
1707 			vma_iter_reset(&vmi);
1708 			goto retry;
1709 		}
1710 	}
1711 
1712 	return gap;
1713 }
1714 
1715 /*
1716  * Search for an unmapped address range.
1717  *
1718  * We are looking for a range that:
1719  * - does not intersect with any VMA;
1720  * - is contained within the [low_limit, high_limit) interval;
1721  * - is at least the desired size.
1722  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1723  */
1724 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1725 {
1726 	unsigned long addr;
1727 
1728 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1729 		addr = unmapped_area_topdown(info);
1730 	else
1731 		addr = unmapped_area(info);
1732 
1733 	trace_vm_unmapped_area(addr, info);
1734 	return addr;
1735 }
1736 
1737 /* Get an address range which is currently unmapped.
1738  * For shmat() with addr=0.
1739  *
1740  * Ugly calling convention alert:
1741  * Return value with the low bits set means error value,
1742  * ie
1743  *	if (ret & ~PAGE_MASK)
1744  *		error = ret;
1745  *
1746  * This function "knows" that -ENOMEM has the bits set.
1747  */
1748 unsigned long
1749 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1750 			  unsigned long len, unsigned long pgoff,
1751 			  unsigned long flags)
1752 {
1753 	struct mm_struct *mm = current->mm;
1754 	struct vm_area_struct *vma, *prev;
1755 	struct vm_unmapped_area_info info = {};
1756 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1757 
1758 	if (len > mmap_end - mmap_min_addr)
1759 		return -ENOMEM;
1760 
1761 	if (flags & MAP_FIXED)
1762 		return addr;
1763 
1764 	if (addr) {
1765 		addr = PAGE_ALIGN(addr);
1766 		vma = find_vma_prev(mm, addr, &prev);
1767 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1768 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1769 		    (!prev || addr >= vm_end_gap(prev)))
1770 			return addr;
1771 	}
1772 
1773 	info.length = len;
1774 	info.low_limit = mm->mmap_base;
1775 	info.high_limit = mmap_end;
1776 	return vm_unmapped_area(&info);
1777 }
1778 
1779 #ifndef HAVE_ARCH_UNMAPPED_AREA
1780 unsigned long
1781 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1782 		       unsigned long len, unsigned long pgoff,
1783 		       unsigned long flags)
1784 {
1785 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1786 }
1787 #endif
1788 
1789 /*
1790  * This mmap-allocator allocates new areas top-down from below the
1791  * stack's low limit (the base):
1792  */
1793 unsigned long
1794 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1795 				  unsigned long len, unsigned long pgoff,
1796 				  unsigned long flags)
1797 {
1798 	struct vm_area_struct *vma, *prev;
1799 	struct mm_struct *mm = current->mm;
1800 	struct vm_unmapped_area_info info = {};
1801 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1802 
1803 	/* requested length too big for entire address space */
1804 	if (len > mmap_end - mmap_min_addr)
1805 		return -ENOMEM;
1806 
1807 	if (flags & MAP_FIXED)
1808 		return addr;
1809 
1810 	/* requesting a specific address */
1811 	if (addr) {
1812 		addr = PAGE_ALIGN(addr);
1813 		vma = find_vma_prev(mm, addr, &prev);
1814 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1815 				(!vma || addr + len <= vm_start_gap(vma)) &&
1816 				(!prev || addr >= vm_end_gap(prev)))
1817 			return addr;
1818 	}
1819 
1820 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1821 	info.length = len;
1822 	info.low_limit = PAGE_SIZE;
1823 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1824 	addr = vm_unmapped_area(&info);
1825 
1826 	/*
1827 	 * A failed mmap() very likely causes application failure,
1828 	 * so fall back to the bottom-up function here. This scenario
1829 	 * can happen with large stack limits and large mmap()
1830 	 * allocations.
1831 	 */
1832 	if (offset_in_page(addr)) {
1833 		VM_BUG_ON(addr != -ENOMEM);
1834 		info.flags = 0;
1835 		info.low_limit = TASK_UNMAPPED_BASE;
1836 		info.high_limit = mmap_end;
1837 		addr = vm_unmapped_area(&info);
1838 	}
1839 
1840 	return addr;
1841 }
1842 
1843 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1844 unsigned long
1845 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1846 			       unsigned long len, unsigned long pgoff,
1847 			       unsigned long flags)
1848 {
1849 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1850 }
1851 #endif
1852 
1853 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1854 unsigned long
1855 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1856 			       unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1857 {
1858 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1859 }
1860 
1861 unsigned long
1862 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1863 				       unsigned long len, unsigned long pgoff,
1864 				       unsigned long flags, vm_flags_t vm_flags)
1865 {
1866 	return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1867 }
1868 #endif
1869 
1870 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1871 					   unsigned long addr, unsigned long len,
1872 					   unsigned long pgoff, unsigned long flags,
1873 					   vm_flags_t vm_flags)
1874 {
1875 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1876 		return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1877 							      flags, vm_flags);
1878 	return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1879 }
1880 
1881 unsigned long
1882 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1883 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1884 {
1885 	unsigned long (*get_area)(struct file *, unsigned long,
1886 				  unsigned long, unsigned long, unsigned long)
1887 				  = NULL;
1888 
1889 	unsigned long error = arch_mmap_check(addr, len, flags);
1890 	if (error)
1891 		return error;
1892 
1893 	/* Careful about overflows.. */
1894 	if (len > TASK_SIZE)
1895 		return -ENOMEM;
1896 
1897 	if (file) {
1898 		if (file->f_op->get_unmapped_area)
1899 			get_area = file->f_op->get_unmapped_area;
1900 	} else if (flags & MAP_SHARED) {
1901 		/*
1902 		 * mmap_region() will call shmem_zero_setup() to create a file,
1903 		 * so use shmem's get_unmapped_area in case it can be huge.
1904 		 */
1905 		get_area = shmem_get_unmapped_area;
1906 	}
1907 
1908 	/* Always treat pgoff as zero for anonymous memory. */
1909 	if (!file)
1910 		pgoff = 0;
1911 
1912 	if (get_area) {
1913 		addr = get_area(file, addr, len, pgoff, flags);
1914 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1915 		/* Ensures that larger anonymous mappings are THP aligned. */
1916 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
1917 						     pgoff, flags, vm_flags);
1918 	} else {
1919 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1920 						    pgoff, flags, vm_flags);
1921 	}
1922 	if (IS_ERR_VALUE(addr))
1923 		return addr;
1924 
1925 	if (addr > TASK_SIZE - len)
1926 		return -ENOMEM;
1927 	if (offset_in_page(addr))
1928 		return -EINVAL;
1929 
1930 	error = security_mmap_addr(addr);
1931 	return error ? error : addr;
1932 }
1933 
1934 unsigned long
1935 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1936 		     unsigned long addr, unsigned long len,
1937 		     unsigned long pgoff, unsigned long flags)
1938 {
1939 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1940 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1941 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1942 }
1943 EXPORT_SYMBOL(mm_get_unmapped_area);
1944 
1945 /**
1946  * find_vma_intersection() - Look up the first VMA which intersects the interval
1947  * @mm: The process address space.
1948  * @start_addr: The inclusive start user address.
1949  * @end_addr: The exclusive end user address.
1950  *
1951  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1952  * start_addr < end_addr.
1953  */
1954 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1955 					     unsigned long start_addr,
1956 					     unsigned long end_addr)
1957 {
1958 	unsigned long index = start_addr;
1959 
1960 	mmap_assert_locked(mm);
1961 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1962 }
1963 EXPORT_SYMBOL(find_vma_intersection);
1964 
1965 /**
1966  * find_vma() - Find the VMA for a given address, or the next VMA.
1967  * @mm: The mm_struct to check
1968  * @addr: The address
1969  *
1970  * Returns: The VMA associated with addr, or the next VMA.
1971  * May return %NULL in the case of no VMA at addr or above.
1972  */
1973 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1974 {
1975 	unsigned long index = addr;
1976 
1977 	mmap_assert_locked(mm);
1978 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1979 }
1980 EXPORT_SYMBOL(find_vma);
1981 
1982 /**
1983  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1984  * set %pprev to the previous VMA, if any.
1985  * @mm: The mm_struct to check
1986  * @addr: The address
1987  * @pprev: The pointer to set to the previous VMA
1988  *
1989  * Note that RCU lock is missing here since the external mmap_lock() is used
1990  * instead.
1991  *
1992  * Returns: The VMA associated with @addr, or the next vma.
1993  * May return %NULL in the case of no vma at addr or above.
1994  */
1995 struct vm_area_struct *
1996 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1997 			struct vm_area_struct **pprev)
1998 {
1999 	struct vm_area_struct *vma;
2000 	VMA_ITERATOR(vmi, mm, addr);
2001 
2002 	vma = vma_iter_load(&vmi);
2003 	*pprev = vma_prev(&vmi);
2004 	if (!vma)
2005 		vma = vma_next(&vmi);
2006 	return vma;
2007 }
2008 
2009 /*
2010  * Verify that the stack growth is acceptable and
2011  * update accounting. This is shared with both the
2012  * grow-up and grow-down cases.
2013  */
2014 static int acct_stack_growth(struct vm_area_struct *vma,
2015 			     unsigned long size, unsigned long grow)
2016 {
2017 	struct mm_struct *mm = vma->vm_mm;
2018 	unsigned long new_start;
2019 
2020 	/* address space limit tests */
2021 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2022 		return -ENOMEM;
2023 
2024 	/* Stack limit test */
2025 	if (size > rlimit(RLIMIT_STACK))
2026 		return -ENOMEM;
2027 
2028 	/* mlock limit tests */
2029 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2030 		return -ENOMEM;
2031 
2032 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2033 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2034 			vma->vm_end - size;
2035 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2036 		return -EFAULT;
2037 
2038 	/*
2039 	 * Overcommit..  This must be the final test, as it will
2040 	 * update security statistics.
2041 	 */
2042 	if (security_vm_enough_memory_mm(mm, grow))
2043 		return -ENOMEM;
2044 
2045 	return 0;
2046 }
2047 
2048 #if defined(CONFIG_STACK_GROWSUP)
2049 /*
2050  * PA-RISC uses this for its stack.
2051  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2052  */
2053 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2054 {
2055 	struct mm_struct *mm = vma->vm_mm;
2056 	struct vm_area_struct *next;
2057 	unsigned long gap_addr;
2058 	int error = 0;
2059 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2060 
2061 	if (!(vma->vm_flags & VM_GROWSUP))
2062 		return -EFAULT;
2063 
2064 	/* Guard against exceeding limits of the address space. */
2065 	address &= PAGE_MASK;
2066 	if (address >= (TASK_SIZE & PAGE_MASK))
2067 		return -ENOMEM;
2068 	address += PAGE_SIZE;
2069 
2070 	/* Enforce stack_guard_gap */
2071 	gap_addr = address + stack_guard_gap;
2072 
2073 	/* Guard against overflow */
2074 	if (gap_addr < address || gap_addr > TASK_SIZE)
2075 		gap_addr = TASK_SIZE;
2076 
2077 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2078 	if (next && vma_is_accessible(next)) {
2079 		if (!(next->vm_flags & VM_GROWSUP))
2080 			return -ENOMEM;
2081 		/* Check that both stack segments have the same anon_vma? */
2082 	}
2083 
2084 	if (next)
2085 		vma_iter_prev_range_limit(&vmi, address);
2086 
2087 	vma_iter_config(&vmi, vma->vm_start, address);
2088 	if (vma_iter_prealloc(&vmi, vma))
2089 		return -ENOMEM;
2090 
2091 	/* We must make sure the anon_vma is allocated. */
2092 	if (unlikely(anon_vma_prepare(vma))) {
2093 		vma_iter_free(&vmi);
2094 		return -ENOMEM;
2095 	}
2096 
2097 	/* Lock the VMA before expanding to prevent concurrent page faults */
2098 	vma_start_write(vma);
2099 	/*
2100 	 * vma->vm_start/vm_end cannot change under us because the caller
2101 	 * is required to hold the mmap_lock in read mode.  We need the
2102 	 * anon_vma lock to serialize against concurrent expand_stacks.
2103 	 */
2104 	anon_vma_lock_write(vma->anon_vma);
2105 
2106 	/* Somebody else might have raced and expanded it already */
2107 	if (address > vma->vm_end) {
2108 		unsigned long size, grow;
2109 
2110 		size = address - vma->vm_start;
2111 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2112 
2113 		error = -ENOMEM;
2114 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2115 			error = acct_stack_growth(vma, size, grow);
2116 			if (!error) {
2117 				/*
2118 				 * We only hold a shared mmap_lock lock here, so
2119 				 * we need to protect against concurrent vma
2120 				 * expansions.  anon_vma_lock_write() doesn't
2121 				 * help here, as we don't guarantee that all
2122 				 * growable vmas in a mm share the same root
2123 				 * anon vma.  So, we reuse mm->page_table_lock
2124 				 * to guard against concurrent vma expansions.
2125 				 */
2126 				spin_lock(&mm->page_table_lock);
2127 				if (vma->vm_flags & VM_LOCKED)
2128 					mm->locked_vm += grow;
2129 				vm_stat_account(mm, vma->vm_flags, grow);
2130 				anon_vma_interval_tree_pre_update_vma(vma);
2131 				vma->vm_end = address;
2132 				/* Overwrite old entry in mtree. */
2133 				vma_iter_store(&vmi, vma);
2134 				anon_vma_interval_tree_post_update_vma(vma);
2135 				spin_unlock(&mm->page_table_lock);
2136 
2137 				perf_event_mmap(vma);
2138 			}
2139 		}
2140 	}
2141 	anon_vma_unlock_write(vma->anon_vma);
2142 	vma_iter_free(&vmi);
2143 	validate_mm(mm);
2144 	return error;
2145 }
2146 #endif /* CONFIG_STACK_GROWSUP */
2147 
2148 /*
2149  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2150  * mmap_lock held for writing.
2151  */
2152 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2153 {
2154 	struct mm_struct *mm = vma->vm_mm;
2155 	struct vm_area_struct *prev;
2156 	int error = 0;
2157 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2158 
2159 	if (!(vma->vm_flags & VM_GROWSDOWN))
2160 		return -EFAULT;
2161 
2162 	address &= PAGE_MASK;
2163 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2164 		return -EPERM;
2165 
2166 	/* Enforce stack_guard_gap */
2167 	prev = vma_prev(&vmi);
2168 	/* Check that both stack segments have the same anon_vma? */
2169 	if (prev) {
2170 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2171 		    vma_is_accessible(prev) &&
2172 		    (address - prev->vm_end < stack_guard_gap))
2173 			return -ENOMEM;
2174 	}
2175 
2176 	if (prev)
2177 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2178 
2179 	vma_iter_config(&vmi, address, vma->vm_end);
2180 	if (vma_iter_prealloc(&vmi, vma))
2181 		return -ENOMEM;
2182 
2183 	/* We must make sure the anon_vma is allocated. */
2184 	if (unlikely(anon_vma_prepare(vma))) {
2185 		vma_iter_free(&vmi);
2186 		return -ENOMEM;
2187 	}
2188 
2189 	/* Lock the VMA before expanding to prevent concurrent page faults */
2190 	vma_start_write(vma);
2191 	/*
2192 	 * vma->vm_start/vm_end cannot change under us because the caller
2193 	 * is required to hold the mmap_lock in read mode.  We need the
2194 	 * anon_vma lock to serialize against concurrent expand_stacks.
2195 	 */
2196 	anon_vma_lock_write(vma->anon_vma);
2197 
2198 	/* Somebody else might have raced and expanded it already */
2199 	if (address < vma->vm_start) {
2200 		unsigned long size, grow;
2201 
2202 		size = vma->vm_end - address;
2203 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2204 
2205 		error = -ENOMEM;
2206 		if (grow <= vma->vm_pgoff) {
2207 			error = acct_stack_growth(vma, size, grow);
2208 			if (!error) {
2209 				/*
2210 				 * We only hold a shared mmap_lock lock here, so
2211 				 * we need to protect against concurrent vma
2212 				 * expansions.  anon_vma_lock_write() doesn't
2213 				 * help here, as we don't guarantee that all
2214 				 * growable vmas in a mm share the same root
2215 				 * anon vma.  So, we reuse mm->page_table_lock
2216 				 * to guard against concurrent vma expansions.
2217 				 */
2218 				spin_lock(&mm->page_table_lock);
2219 				if (vma->vm_flags & VM_LOCKED)
2220 					mm->locked_vm += grow;
2221 				vm_stat_account(mm, vma->vm_flags, grow);
2222 				anon_vma_interval_tree_pre_update_vma(vma);
2223 				vma->vm_start = address;
2224 				vma->vm_pgoff -= grow;
2225 				/* Overwrite old entry in mtree. */
2226 				vma_iter_store(&vmi, vma);
2227 				anon_vma_interval_tree_post_update_vma(vma);
2228 				spin_unlock(&mm->page_table_lock);
2229 
2230 				perf_event_mmap(vma);
2231 			}
2232 		}
2233 	}
2234 	anon_vma_unlock_write(vma->anon_vma);
2235 	vma_iter_free(&vmi);
2236 	validate_mm(mm);
2237 	return error;
2238 }
2239 
2240 /* enforced gap between the expanding stack and other mappings. */
2241 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2242 
2243 static int __init cmdline_parse_stack_guard_gap(char *p)
2244 {
2245 	unsigned long val;
2246 	char *endptr;
2247 
2248 	val = simple_strtoul(p, &endptr, 10);
2249 	if (!*endptr)
2250 		stack_guard_gap = val << PAGE_SHIFT;
2251 
2252 	return 1;
2253 }
2254 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2255 
2256 #ifdef CONFIG_STACK_GROWSUP
2257 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2258 {
2259 	return expand_upwards(vma, address);
2260 }
2261 
2262 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2263 {
2264 	struct vm_area_struct *vma, *prev;
2265 
2266 	addr &= PAGE_MASK;
2267 	vma = find_vma_prev(mm, addr, &prev);
2268 	if (vma && (vma->vm_start <= addr))
2269 		return vma;
2270 	if (!prev)
2271 		return NULL;
2272 	if (expand_stack_locked(prev, addr))
2273 		return NULL;
2274 	if (prev->vm_flags & VM_LOCKED)
2275 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2276 	return prev;
2277 }
2278 #else
2279 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2280 {
2281 	return expand_downwards(vma, address);
2282 }
2283 
2284 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2285 {
2286 	struct vm_area_struct *vma;
2287 	unsigned long start;
2288 
2289 	addr &= PAGE_MASK;
2290 	vma = find_vma(mm, addr);
2291 	if (!vma)
2292 		return NULL;
2293 	if (vma->vm_start <= addr)
2294 		return vma;
2295 	start = vma->vm_start;
2296 	if (expand_stack_locked(vma, addr))
2297 		return NULL;
2298 	if (vma->vm_flags & VM_LOCKED)
2299 		populate_vma_page_range(vma, addr, start, NULL);
2300 	return vma;
2301 }
2302 #endif
2303 
2304 #if defined(CONFIG_STACK_GROWSUP)
2305 
2306 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2307 #define vma_expand_down(vma, addr) (-EFAULT)
2308 
2309 #else
2310 
2311 #define vma_expand_up(vma,addr) (-EFAULT)
2312 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2313 
2314 #endif
2315 
2316 /*
2317  * expand_stack(): legacy interface for page faulting. Don't use unless
2318  * you have to.
2319  *
2320  * This is called with the mm locked for reading, drops the lock, takes
2321  * the lock for writing, tries to look up a vma again, expands it if
2322  * necessary, and downgrades the lock to reading again.
2323  *
2324  * If no vma is found or it can't be expanded, it returns NULL and has
2325  * dropped the lock.
2326  */
2327 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2328 {
2329 	struct vm_area_struct *vma, *prev;
2330 
2331 	mmap_read_unlock(mm);
2332 	if (mmap_write_lock_killable(mm))
2333 		return NULL;
2334 
2335 	vma = find_vma_prev(mm, addr, &prev);
2336 	if (vma && vma->vm_start <= addr)
2337 		goto success;
2338 
2339 	if (prev && !vma_expand_up(prev, addr)) {
2340 		vma = prev;
2341 		goto success;
2342 	}
2343 
2344 	if (vma && !vma_expand_down(vma, addr))
2345 		goto success;
2346 
2347 	mmap_write_unlock(mm);
2348 	return NULL;
2349 
2350 success:
2351 	mmap_write_downgrade(mm);
2352 	return vma;
2353 }
2354 
2355 /*
2356  * Ok - we have the memory areas we should free on a maple tree so release them,
2357  * and do the vma updates.
2358  *
2359  * Called with the mm semaphore held.
2360  */
2361 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2362 {
2363 	unsigned long nr_accounted = 0;
2364 	struct vm_area_struct *vma;
2365 
2366 	/* Update high watermark before we lower total_vm */
2367 	update_hiwater_vm(mm);
2368 	mas_for_each(mas, vma, ULONG_MAX) {
2369 		long nrpages = vma_pages(vma);
2370 
2371 		if (vma->vm_flags & VM_ACCOUNT)
2372 			nr_accounted += nrpages;
2373 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2374 		remove_vma(vma, false);
2375 	}
2376 	vm_unacct_memory(nr_accounted);
2377 }
2378 
2379 /*
2380  * Get rid of page table information in the indicated region.
2381  *
2382  * Called with the mm semaphore held.
2383  */
2384 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2385 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2386 		struct vm_area_struct *next, unsigned long start,
2387 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2388 {
2389 	struct mmu_gather tlb;
2390 	unsigned long mt_start = mas->index;
2391 
2392 	lru_add_drain();
2393 	tlb_gather_mmu(&tlb, mm);
2394 	update_hiwater_rss(mm);
2395 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2396 	mas_set(mas, mt_start);
2397 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2398 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2399 				 mm_wr_locked);
2400 	tlb_finish_mmu(&tlb);
2401 }
2402 
2403 /*
2404  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2405  * has already been checked or doesn't make sense to fail.
2406  * VMA Iterator will point to the end VMA.
2407  */
2408 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409 		       unsigned long addr, int new_below)
2410 {
2411 	struct vma_prepare vp;
2412 	struct vm_area_struct *new;
2413 	int err;
2414 
2415 	WARN_ON(vma->vm_start >= addr);
2416 	WARN_ON(vma->vm_end <= addr);
2417 
2418 	if (vma->vm_ops && vma->vm_ops->may_split) {
2419 		err = vma->vm_ops->may_split(vma, addr);
2420 		if (err)
2421 			return err;
2422 	}
2423 
2424 	new = vm_area_dup(vma);
2425 	if (!new)
2426 		return -ENOMEM;
2427 
2428 	if (new_below) {
2429 		new->vm_end = addr;
2430 	} else {
2431 		new->vm_start = addr;
2432 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2433 	}
2434 
2435 	err = -ENOMEM;
2436 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2437 	if (vma_iter_prealloc(vmi, new))
2438 		goto out_free_vma;
2439 
2440 	err = vma_dup_policy(vma, new);
2441 	if (err)
2442 		goto out_free_vmi;
2443 
2444 	err = anon_vma_clone(new, vma);
2445 	if (err)
2446 		goto out_free_mpol;
2447 
2448 	if (new->vm_file)
2449 		get_file(new->vm_file);
2450 
2451 	if (new->vm_ops && new->vm_ops->open)
2452 		new->vm_ops->open(new);
2453 
2454 	vma_start_write(vma);
2455 	vma_start_write(new);
2456 
2457 	init_vma_prep(&vp, vma);
2458 	vp.insert = new;
2459 	vma_prepare(&vp);
2460 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2461 
2462 	if (new_below) {
2463 		vma->vm_start = addr;
2464 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2465 	} else {
2466 		vma->vm_end = addr;
2467 	}
2468 
2469 	/* vma_complete stores the new vma */
2470 	vma_complete(&vp, vmi, vma->vm_mm);
2471 
2472 	/* Success. */
2473 	if (new_below)
2474 		vma_next(vmi);
2475 	return 0;
2476 
2477 out_free_mpol:
2478 	mpol_put(vma_policy(new));
2479 out_free_vmi:
2480 	vma_iter_free(vmi);
2481 out_free_vma:
2482 	vm_area_free(new);
2483 	return err;
2484 }
2485 
2486 /*
2487  * Split a vma into two pieces at address 'addr', a new vma is allocated
2488  * either for the first part or the tail.
2489  */
2490 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2491 		     unsigned long addr, int new_below)
2492 {
2493 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2494 		return -ENOMEM;
2495 
2496 	return __split_vma(vmi, vma, addr, new_below);
2497 }
2498 
2499 /*
2500  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2501  * context and anonymous VMA name within the range [start, end).
2502  *
2503  * As a result, we might be able to merge the newly modified VMA range with an
2504  * adjacent VMA with identical properties.
2505  *
2506  * If no merge is possible and the range does not span the entirety of the VMA,
2507  * we then need to split the VMA to accommodate the change.
2508  *
2509  * The function returns either the merged VMA, the original VMA if a split was
2510  * required instead, or an error if the split failed.
2511  */
2512 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2513 				  struct vm_area_struct *prev,
2514 				  struct vm_area_struct *vma,
2515 				  unsigned long start, unsigned long end,
2516 				  unsigned long vm_flags,
2517 				  struct mempolicy *policy,
2518 				  struct vm_userfaultfd_ctx uffd_ctx,
2519 				  struct anon_vma_name *anon_name)
2520 {
2521 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2522 	struct vm_area_struct *merged;
2523 
2524 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2525 			   pgoff, policy, uffd_ctx, anon_name);
2526 	if (merged)
2527 		return merged;
2528 
2529 	if (vma->vm_start < start) {
2530 		int err = split_vma(vmi, vma, start, 1);
2531 
2532 		if (err)
2533 			return ERR_PTR(err);
2534 	}
2535 
2536 	if (vma->vm_end > end) {
2537 		int err = split_vma(vmi, vma, end, 0);
2538 
2539 		if (err)
2540 			return ERR_PTR(err);
2541 	}
2542 
2543 	return vma;
2544 }
2545 
2546 /*
2547  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2548  * must ensure that [start, end) does not overlap any existing VMA.
2549  */
2550 static struct vm_area_struct
2551 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2552 		   struct vm_area_struct *vma, unsigned long start,
2553 		   unsigned long end, pgoff_t pgoff)
2554 {
2555 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2556 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2557 }
2558 
2559 /*
2560  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2561  * VMA with identical properties.
2562  */
2563 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2564 					struct vm_area_struct *vma,
2565 					unsigned long delta)
2566 {
2567 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2568 
2569 	/* vma is specified as prev, so case 1 or 2 will apply. */
2570 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2571 			 vma->vm_flags, pgoff, vma_policy(vma),
2572 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2573 }
2574 
2575 /*
2576  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2577  * @vmi: The vma iterator
2578  * @vma: The starting vm_area_struct
2579  * @mm: The mm_struct
2580  * @start: The aligned start address to munmap.
2581  * @end: The aligned end address to munmap.
2582  * @uf: The userfaultfd list_head
2583  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2584  * success.
2585  *
2586  * Return: 0 on success and drops the lock if so directed, error and leaves the
2587  * lock held otherwise.
2588  */
2589 static int
2590 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2591 		    struct mm_struct *mm, unsigned long start,
2592 		    unsigned long end, struct list_head *uf, bool unlock)
2593 {
2594 	struct vm_area_struct *prev, *next = NULL;
2595 	struct maple_tree mt_detach;
2596 	int count = 0;
2597 	int error = -ENOMEM;
2598 	unsigned long locked_vm = 0;
2599 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2600 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2601 	mt_on_stack(mt_detach);
2602 
2603 	/*
2604 	 * If we need to split any vma, do it now to save pain later.
2605 	 *
2606 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2607 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2608 	 * places tmp vma above, and higher split_vma places tmp vma below.
2609 	 */
2610 
2611 	/* Does it split the first one? */
2612 	if (start > vma->vm_start) {
2613 
2614 		/*
2615 		 * Make sure that map_count on return from munmap() will
2616 		 * not exceed its limit; but let map_count go just above
2617 		 * its limit temporarily, to help free resources as expected.
2618 		 */
2619 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2620 			goto map_count_exceeded;
2621 
2622 		error = __split_vma(vmi, vma, start, 1);
2623 		if (error)
2624 			goto start_split_failed;
2625 	}
2626 
2627 	/*
2628 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2629 	 * it is always overwritten.
2630 	 */
2631 	next = vma;
2632 	do {
2633 		/* Does it split the end? */
2634 		if (next->vm_end > end) {
2635 			error = __split_vma(vmi, next, end, 0);
2636 			if (error)
2637 				goto end_split_failed;
2638 		}
2639 		vma_start_write(next);
2640 		mas_set(&mas_detach, count);
2641 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2642 		if (error)
2643 			goto munmap_gather_failed;
2644 		vma_mark_detached(next, true);
2645 		if (next->vm_flags & VM_LOCKED)
2646 			locked_vm += vma_pages(next);
2647 
2648 		count++;
2649 		if (unlikely(uf)) {
2650 			/*
2651 			 * If userfaultfd_unmap_prep returns an error the vmas
2652 			 * will remain split, but userland will get a
2653 			 * highly unexpected error anyway. This is no
2654 			 * different than the case where the first of the two
2655 			 * __split_vma fails, but we don't undo the first
2656 			 * split, despite we could. This is unlikely enough
2657 			 * failure that it's not worth optimizing it for.
2658 			 */
2659 			error = userfaultfd_unmap_prep(next, start, end, uf);
2660 
2661 			if (error)
2662 				goto userfaultfd_error;
2663 		}
2664 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2665 		BUG_ON(next->vm_start < start);
2666 		BUG_ON(next->vm_start > end);
2667 #endif
2668 	} for_each_vma_range(*vmi, next, end);
2669 
2670 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2671 	/* Make sure no VMAs are about to be lost. */
2672 	{
2673 		MA_STATE(test, &mt_detach, 0, 0);
2674 		struct vm_area_struct *vma_mas, *vma_test;
2675 		int test_count = 0;
2676 
2677 		vma_iter_set(vmi, start);
2678 		rcu_read_lock();
2679 		vma_test = mas_find(&test, count - 1);
2680 		for_each_vma_range(*vmi, vma_mas, end) {
2681 			BUG_ON(vma_mas != vma_test);
2682 			test_count++;
2683 			vma_test = mas_next(&test, count - 1);
2684 		}
2685 		rcu_read_unlock();
2686 		BUG_ON(count != test_count);
2687 	}
2688 #endif
2689 
2690 	while (vma_iter_addr(vmi) > start)
2691 		vma_iter_prev_range(vmi);
2692 
2693 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2694 	if (error)
2695 		goto clear_tree_failed;
2696 
2697 	/* Point of no return */
2698 	mm->locked_vm -= locked_vm;
2699 	mm->map_count -= count;
2700 	if (unlock)
2701 		mmap_write_downgrade(mm);
2702 
2703 	prev = vma_iter_prev_range(vmi);
2704 	next = vma_next(vmi);
2705 	if (next)
2706 		vma_iter_prev_range(vmi);
2707 
2708 	/*
2709 	 * We can free page tables without write-locking mmap_lock because VMAs
2710 	 * were isolated before we downgraded mmap_lock.
2711 	 */
2712 	mas_set(&mas_detach, 1);
2713 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2714 		     !unlock);
2715 	/* Statistics and freeing VMAs */
2716 	mas_set(&mas_detach, 0);
2717 	remove_mt(mm, &mas_detach);
2718 	validate_mm(mm);
2719 	if (unlock)
2720 		mmap_read_unlock(mm);
2721 
2722 	__mt_destroy(&mt_detach);
2723 	return 0;
2724 
2725 clear_tree_failed:
2726 userfaultfd_error:
2727 munmap_gather_failed:
2728 end_split_failed:
2729 	mas_set(&mas_detach, 0);
2730 	mas_for_each(&mas_detach, next, end)
2731 		vma_mark_detached(next, false);
2732 
2733 	__mt_destroy(&mt_detach);
2734 start_split_failed:
2735 map_count_exceeded:
2736 	validate_mm(mm);
2737 	return error;
2738 }
2739 
2740 /*
2741  * do_vmi_munmap() - munmap a given range.
2742  * @vmi: The vma iterator
2743  * @mm: The mm_struct
2744  * @start: The start address to munmap
2745  * @len: The length of the range to munmap
2746  * @uf: The userfaultfd list_head
2747  * @unlock: set to true if the user wants to drop the mmap_lock on success
2748  *
2749  * This function takes a @mas that is either pointing to the previous VMA or set
2750  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2751  * aligned and any arch_unmap work will be preformed.
2752  *
2753  * Return: 0 on success and drops the lock if so directed, error and leaves the
2754  * lock held otherwise.
2755  */
2756 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2757 		  unsigned long start, size_t len, struct list_head *uf,
2758 		  bool unlock)
2759 {
2760 	unsigned long end;
2761 	struct vm_area_struct *vma;
2762 
2763 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2764 		return -EINVAL;
2765 
2766 	end = start + PAGE_ALIGN(len);
2767 	if (end == start)
2768 		return -EINVAL;
2769 
2770 	/*
2771 	 * Check if memory is sealed before arch_unmap.
2772 	 * Prevent unmapping a sealed VMA.
2773 	 * can_modify_mm assumes we have acquired the lock on MM.
2774 	 */
2775 	if (unlikely(!can_modify_mm(mm, start, end)))
2776 		return -EPERM;
2777 
2778 	 /* arch_unmap() might do unmaps itself.  */
2779 	arch_unmap(mm, start, end);
2780 
2781 	/* Find the first overlapping VMA */
2782 	vma = vma_find(vmi, end);
2783 	if (!vma) {
2784 		if (unlock)
2785 			mmap_write_unlock(mm);
2786 		return 0;
2787 	}
2788 
2789 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2790 }
2791 
2792 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2793  * @mm: The mm_struct
2794  * @start: The start address to munmap
2795  * @len: The length to be munmapped.
2796  * @uf: The userfaultfd list_head
2797  *
2798  * Return: 0 on success, error otherwise.
2799  */
2800 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2801 	      struct list_head *uf)
2802 {
2803 	VMA_ITERATOR(vmi, mm, start);
2804 
2805 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2806 }
2807 
2808 unsigned long mmap_region(struct file *file, unsigned long addr,
2809 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2810 		struct list_head *uf)
2811 {
2812 	struct mm_struct *mm = current->mm;
2813 	struct vm_area_struct *vma = NULL;
2814 	struct vm_area_struct *next, *prev, *merge;
2815 	pgoff_t pglen = len >> PAGE_SHIFT;
2816 	unsigned long charged = 0;
2817 	unsigned long end = addr + len;
2818 	unsigned long merge_start = addr, merge_end = end;
2819 	bool writable_file_mapping = false;
2820 	pgoff_t vm_pgoff;
2821 	int error;
2822 	VMA_ITERATOR(vmi, mm, addr);
2823 
2824 	/* Check against address space limit. */
2825 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2826 		unsigned long nr_pages;
2827 
2828 		/*
2829 		 * MAP_FIXED may remove pages of mappings that intersects with
2830 		 * requested mapping. Account for the pages it would unmap.
2831 		 */
2832 		nr_pages = count_vma_pages_range(mm, addr, end);
2833 
2834 		if (!may_expand_vm(mm, vm_flags,
2835 					(len >> PAGE_SHIFT) - nr_pages))
2836 			return -ENOMEM;
2837 	}
2838 
2839 	/* Unmap any existing mapping in the area */
2840 	error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2841 	if (error == -EPERM)
2842 		return error;
2843 	else if (error)
2844 		return -ENOMEM;
2845 
2846 	/*
2847 	 * Private writable mapping: check memory availability
2848 	 */
2849 	if (accountable_mapping(file, vm_flags)) {
2850 		charged = len >> PAGE_SHIFT;
2851 		if (security_vm_enough_memory_mm(mm, charged))
2852 			return -ENOMEM;
2853 		vm_flags |= VM_ACCOUNT;
2854 	}
2855 
2856 	next = vma_next(&vmi);
2857 	prev = vma_prev(&vmi);
2858 	if (vm_flags & VM_SPECIAL) {
2859 		if (prev)
2860 			vma_iter_next_range(&vmi);
2861 		goto cannot_expand;
2862 	}
2863 
2864 	/* Attempt to expand an old mapping */
2865 	/* Check next */
2866 	if (next && next->vm_start == end && !vma_policy(next) &&
2867 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2868 				 NULL_VM_UFFD_CTX, NULL)) {
2869 		merge_end = next->vm_end;
2870 		vma = next;
2871 		vm_pgoff = next->vm_pgoff - pglen;
2872 	}
2873 
2874 	/* Check prev */
2875 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2876 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2877 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2878 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2879 				       NULL_VM_UFFD_CTX, NULL))) {
2880 		merge_start = prev->vm_start;
2881 		vma = prev;
2882 		vm_pgoff = prev->vm_pgoff;
2883 	} else if (prev) {
2884 		vma_iter_next_range(&vmi);
2885 	}
2886 
2887 	/* Actually expand, if possible */
2888 	if (vma &&
2889 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2890 		khugepaged_enter_vma(vma, vm_flags);
2891 		goto expanded;
2892 	}
2893 
2894 	if (vma == prev)
2895 		vma_iter_set(&vmi, addr);
2896 cannot_expand:
2897 
2898 	/*
2899 	 * Determine the object being mapped and call the appropriate
2900 	 * specific mapper. the address has already been validated, but
2901 	 * not unmapped, but the maps are removed from the list.
2902 	 */
2903 	vma = vm_area_alloc(mm);
2904 	if (!vma) {
2905 		error = -ENOMEM;
2906 		goto unacct_error;
2907 	}
2908 
2909 	vma_iter_config(&vmi, addr, end);
2910 	vma_set_range(vma, addr, end, pgoff);
2911 	vm_flags_init(vma, vm_flags);
2912 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2913 
2914 	if (file) {
2915 		vma->vm_file = get_file(file);
2916 		error = call_mmap(file, vma);
2917 		if (error)
2918 			goto unmap_and_free_vma;
2919 
2920 		if (vma_is_shared_maywrite(vma)) {
2921 			error = mapping_map_writable(file->f_mapping);
2922 			if (error)
2923 				goto close_and_free_vma;
2924 
2925 			writable_file_mapping = true;
2926 		}
2927 
2928 		/*
2929 		 * Expansion is handled above, merging is handled below.
2930 		 * Drivers should not alter the address of the VMA.
2931 		 */
2932 		error = -EINVAL;
2933 		if (WARN_ON((addr != vma->vm_start)))
2934 			goto close_and_free_vma;
2935 
2936 		vma_iter_config(&vmi, addr, end);
2937 		/*
2938 		 * If vm_flags changed after call_mmap(), we should try merge
2939 		 * vma again as we may succeed this time.
2940 		 */
2941 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2942 			merge = vma_merge_new_vma(&vmi, prev, vma,
2943 						  vma->vm_start, vma->vm_end,
2944 						  vma->vm_pgoff);
2945 			if (merge) {
2946 				/*
2947 				 * ->mmap() can change vma->vm_file and fput
2948 				 * the original file. So fput the vma->vm_file
2949 				 * here or we would add an extra fput for file
2950 				 * and cause general protection fault
2951 				 * ultimately.
2952 				 */
2953 				fput(vma->vm_file);
2954 				vm_area_free(vma);
2955 				vma = merge;
2956 				/* Update vm_flags to pick up the change. */
2957 				vm_flags = vma->vm_flags;
2958 				goto unmap_writable;
2959 			}
2960 		}
2961 
2962 		vm_flags = vma->vm_flags;
2963 	} else if (vm_flags & VM_SHARED) {
2964 		error = shmem_zero_setup(vma);
2965 		if (error)
2966 			goto free_vma;
2967 	} else {
2968 		vma_set_anonymous(vma);
2969 	}
2970 
2971 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2972 		error = -EACCES;
2973 		goto close_and_free_vma;
2974 	}
2975 
2976 	/* Allow architectures to sanity-check the vm_flags */
2977 	error = -EINVAL;
2978 	if (!arch_validate_flags(vma->vm_flags))
2979 		goto close_and_free_vma;
2980 
2981 	error = -ENOMEM;
2982 	if (vma_iter_prealloc(&vmi, vma))
2983 		goto close_and_free_vma;
2984 
2985 	/* Lock the VMA since it is modified after insertion into VMA tree */
2986 	vma_start_write(vma);
2987 	vma_iter_store(&vmi, vma);
2988 	mm->map_count++;
2989 	vma_link_file(vma);
2990 
2991 	/*
2992 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2993 	 * call covers the non-merge case.
2994 	 */
2995 	khugepaged_enter_vma(vma, vma->vm_flags);
2996 
2997 	/* Once vma denies write, undo our temporary denial count */
2998 unmap_writable:
2999 	if (writable_file_mapping)
3000 		mapping_unmap_writable(file->f_mapping);
3001 	file = vma->vm_file;
3002 	ksm_add_vma(vma);
3003 expanded:
3004 	perf_event_mmap(vma);
3005 
3006 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
3007 	if (vm_flags & VM_LOCKED) {
3008 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
3009 					is_vm_hugetlb_page(vma) ||
3010 					vma == get_gate_vma(current->mm))
3011 			vm_flags_clear(vma, VM_LOCKED_MASK);
3012 		else
3013 			mm->locked_vm += (len >> PAGE_SHIFT);
3014 	}
3015 
3016 	if (file)
3017 		uprobe_mmap(vma);
3018 
3019 	/*
3020 	 * New (or expanded) vma always get soft dirty status.
3021 	 * Otherwise user-space soft-dirty page tracker won't
3022 	 * be able to distinguish situation when vma area unmapped,
3023 	 * then new mapped in-place (which must be aimed as
3024 	 * a completely new data area).
3025 	 */
3026 	vm_flags_set(vma, VM_SOFTDIRTY);
3027 
3028 	vma_set_page_prot(vma);
3029 
3030 	validate_mm(mm);
3031 	return addr;
3032 
3033 close_and_free_vma:
3034 	if (file && vma->vm_ops && vma->vm_ops->close)
3035 		vma->vm_ops->close(vma);
3036 
3037 	if (file || vma->vm_file) {
3038 unmap_and_free_vma:
3039 		fput(vma->vm_file);
3040 		vma->vm_file = NULL;
3041 
3042 		vma_iter_set(&vmi, vma->vm_end);
3043 		/* Undo any partial mapping done by a device driver. */
3044 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3045 			     vma->vm_end, vma->vm_end, true);
3046 	}
3047 	if (writable_file_mapping)
3048 		mapping_unmap_writable(file->f_mapping);
3049 free_vma:
3050 	vm_area_free(vma);
3051 unacct_error:
3052 	if (charged)
3053 		vm_unacct_memory(charged);
3054 	validate_mm(mm);
3055 	return error;
3056 }
3057 
3058 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3059 {
3060 	int ret;
3061 	struct mm_struct *mm = current->mm;
3062 	LIST_HEAD(uf);
3063 	VMA_ITERATOR(vmi, mm, start);
3064 
3065 	if (mmap_write_lock_killable(mm))
3066 		return -EINTR;
3067 
3068 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3069 	if (ret || !unlock)
3070 		mmap_write_unlock(mm);
3071 
3072 	userfaultfd_unmap_complete(mm, &uf);
3073 	return ret;
3074 }
3075 
3076 int vm_munmap(unsigned long start, size_t len)
3077 {
3078 	return __vm_munmap(start, len, false);
3079 }
3080 EXPORT_SYMBOL(vm_munmap);
3081 
3082 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3083 {
3084 	addr = untagged_addr(addr);
3085 	return __vm_munmap(addr, len, true);
3086 }
3087 
3088 
3089 /*
3090  * Emulation of deprecated remap_file_pages() syscall.
3091  */
3092 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3093 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3094 {
3095 
3096 	struct mm_struct *mm = current->mm;
3097 	struct vm_area_struct *vma;
3098 	unsigned long populate = 0;
3099 	unsigned long ret = -EINVAL;
3100 	struct file *file;
3101 
3102 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3103 		     current->comm, current->pid);
3104 
3105 	if (prot)
3106 		return ret;
3107 	start = start & PAGE_MASK;
3108 	size = size & PAGE_MASK;
3109 
3110 	if (start + size <= start)
3111 		return ret;
3112 
3113 	/* Does pgoff wrap? */
3114 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3115 		return ret;
3116 
3117 	if (mmap_write_lock_killable(mm))
3118 		return -EINTR;
3119 
3120 	vma = vma_lookup(mm, start);
3121 
3122 	if (!vma || !(vma->vm_flags & VM_SHARED))
3123 		goto out;
3124 
3125 	if (start + size > vma->vm_end) {
3126 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3127 		struct vm_area_struct *next, *prev = vma;
3128 
3129 		for_each_vma_range(vmi, next, start + size) {
3130 			/* hole between vmas ? */
3131 			if (next->vm_start != prev->vm_end)
3132 				goto out;
3133 
3134 			if (next->vm_file != vma->vm_file)
3135 				goto out;
3136 
3137 			if (next->vm_flags != vma->vm_flags)
3138 				goto out;
3139 
3140 			if (start + size <= next->vm_end)
3141 				break;
3142 
3143 			prev = next;
3144 		}
3145 
3146 		if (!next)
3147 			goto out;
3148 	}
3149 
3150 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3151 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3152 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3153 
3154 	flags &= MAP_NONBLOCK;
3155 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3156 	if (vma->vm_flags & VM_LOCKED)
3157 		flags |= MAP_LOCKED;
3158 
3159 	file = get_file(vma->vm_file);
3160 	ret = do_mmap(vma->vm_file, start, size,
3161 			prot, flags, 0, pgoff, &populate, NULL);
3162 	fput(file);
3163 out:
3164 	mmap_write_unlock(mm);
3165 	if (populate)
3166 		mm_populate(ret, populate);
3167 	if (!IS_ERR_VALUE(ret))
3168 		ret = 0;
3169 	return ret;
3170 }
3171 
3172 /*
3173  * do_vma_munmap() - Unmap a full or partial vma.
3174  * @vmi: The vma iterator pointing at the vma
3175  * @vma: The first vma to be munmapped
3176  * @start: the start of the address to unmap
3177  * @end: The end of the address to unmap
3178  * @uf: The userfaultfd list_head
3179  * @unlock: Drop the lock on success
3180  *
3181  * unmaps a VMA mapping when the vma iterator is already in position.
3182  * Does not handle alignment.
3183  *
3184  * Return: 0 on success drops the lock of so directed, error on failure and will
3185  * still hold the lock.
3186  */
3187 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3188 		unsigned long start, unsigned long end, struct list_head *uf,
3189 		bool unlock)
3190 {
3191 	struct mm_struct *mm = vma->vm_mm;
3192 
3193 	/*
3194 	 * Check if memory is sealed before arch_unmap.
3195 	 * Prevent unmapping a sealed VMA.
3196 	 * can_modify_mm assumes we have acquired the lock on MM.
3197 	 */
3198 	if (unlikely(!can_modify_mm(mm, start, end)))
3199 		return -EPERM;
3200 
3201 	arch_unmap(mm, start, end);
3202 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3203 }
3204 
3205 /*
3206  * do_brk_flags() - Increase the brk vma if the flags match.
3207  * @vmi: The vma iterator
3208  * @addr: The start address
3209  * @len: The length of the increase
3210  * @vma: The vma,
3211  * @flags: The VMA Flags
3212  *
3213  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3214  * do not match then create a new anonymous VMA.  Eventually we may be able to
3215  * do some brk-specific accounting here.
3216  */
3217 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3218 		unsigned long addr, unsigned long len, unsigned long flags)
3219 {
3220 	struct mm_struct *mm = current->mm;
3221 	struct vma_prepare vp;
3222 
3223 	/*
3224 	 * Check against address space limits by the changed size
3225 	 * Note: This happens *after* clearing old mappings in some code paths.
3226 	 */
3227 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3228 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3229 		return -ENOMEM;
3230 
3231 	if (mm->map_count > sysctl_max_map_count)
3232 		return -ENOMEM;
3233 
3234 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3235 		return -ENOMEM;
3236 
3237 	/*
3238 	 * Expand the existing vma if possible; Note that singular lists do not
3239 	 * occur after forking, so the expand will only happen on new VMAs.
3240 	 */
3241 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3242 	    can_vma_merge_after(vma, flags, NULL, NULL,
3243 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3244 		vma_iter_config(vmi, vma->vm_start, addr + len);
3245 		if (vma_iter_prealloc(vmi, vma))
3246 			goto unacct_fail;
3247 
3248 		vma_start_write(vma);
3249 
3250 		init_vma_prep(&vp, vma);
3251 		vma_prepare(&vp);
3252 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3253 		vma->vm_end = addr + len;
3254 		vm_flags_set(vma, VM_SOFTDIRTY);
3255 		vma_iter_store(vmi, vma);
3256 
3257 		vma_complete(&vp, vmi, mm);
3258 		khugepaged_enter_vma(vma, flags);
3259 		goto out;
3260 	}
3261 
3262 	if (vma)
3263 		vma_iter_next_range(vmi);
3264 	/* create a vma struct for an anonymous mapping */
3265 	vma = vm_area_alloc(mm);
3266 	if (!vma)
3267 		goto unacct_fail;
3268 
3269 	vma_set_anonymous(vma);
3270 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3271 	vm_flags_init(vma, flags);
3272 	vma->vm_page_prot = vm_get_page_prot(flags);
3273 	vma_start_write(vma);
3274 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3275 		goto mas_store_fail;
3276 
3277 	mm->map_count++;
3278 	validate_mm(mm);
3279 	ksm_add_vma(vma);
3280 out:
3281 	perf_event_mmap(vma);
3282 	mm->total_vm += len >> PAGE_SHIFT;
3283 	mm->data_vm += len >> PAGE_SHIFT;
3284 	if (flags & VM_LOCKED)
3285 		mm->locked_vm += (len >> PAGE_SHIFT);
3286 	vm_flags_set(vma, VM_SOFTDIRTY);
3287 	return 0;
3288 
3289 mas_store_fail:
3290 	vm_area_free(vma);
3291 unacct_fail:
3292 	vm_unacct_memory(len >> PAGE_SHIFT);
3293 	return -ENOMEM;
3294 }
3295 
3296 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3297 {
3298 	struct mm_struct *mm = current->mm;
3299 	struct vm_area_struct *vma = NULL;
3300 	unsigned long len;
3301 	int ret;
3302 	bool populate;
3303 	LIST_HEAD(uf);
3304 	VMA_ITERATOR(vmi, mm, addr);
3305 
3306 	len = PAGE_ALIGN(request);
3307 	if (len < request)
3308 		return -ENOMEM;
3309 	if (!len)
3310 		return 0;
3311 
3312 	/* Until we need other flags, refuse anything except VM_EXEC. */
3313 	if ((flags & (~VM_EXEC)) != 0)
3314 		return -EINVAL;
3315 
3316 	if (mmap_write_lock_killable(mm))
3317 		return -EINTR;
3318 
3319 	ret = check_brk_limits(addr, len);
3320 	if (ret)
3321 		goto limits_failed;
3322 
3323 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3324 	if (ret)
3325 		goto munmap_failed;
3326 
3327 	vma = vma_prev(&vmi);
3328 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3329 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3330 	mmap_write_unlock(mm);
3331 	userfaultfd_unmap_complete(mm, &uf);
3332 	if (populate && !ret)
3333 		mm_populate(addr, len);
3334 	return ret;
3335 
3336 munmap_failed:
3337 limits_failed:
3338 	mmap_write_unlock(mm);
3339 	return ret;
3340 }
3341 EXPORT_SYMBOL(vm_brk_flags);
3342 
3343 /* Release all mmaps. */
3344 void exit_mmap(struct mm_struct *mm)
3345 {
3346 	struct mmu_gather tlb;
3347 	struct vm_area_struct *vma;
3348 	unsigned long nr_accounted = 0;
3349 	VMA_ITERATOR(vmi, mm, 0);
3350 	int count = 0;
3351 
3352 	/* mm's last user has gone, and its about to be pulled down */
3353 	mmu_notifier_release(mm);
3354 
3355 	mmap_read_lock(mm);
3356 	arch_exit_mmap(mm);
3357 
3358 	vma = vma_next(&vmi);
3359 	if (!vma || unlikely(xa_is_zero(vma))) {
3360 		/* Can happen if dup_mmap() received an OOM */
3361 		mmap_read_unlock(mm);
3362 		mmap_write_lock(mm);
3363 		goto destroy;
3364 	}
3365 
3366 	lru_add_drain();
3367 	flush_cache_mm(mm);
3368 	tlb_gather_mmu_fullmm(&tlb, mm);
3369 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3370 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3371 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3372 	mmap_read_unlock(mm);
3373 
3374 	/*
3375 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3376 	 * because the memory has been already freed.
3377 	 */
3378 	set_bit(MMF_OOM_SKIP, &mm->flags);
3379 	mmap_write_lock(mm);
3380 	mt_clear_in_rcu(&mm->mm_mt);
3381 	vma_iter_set(&vmi, vma->vm_end);
3382 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3383 		      USER_PGTABLES_CEILING, true);
3384 	tlb_finish_mmu(&tlb);
3385 
3386 	/*
3387 	 * Walk the list again, actually closing and freeing it, with preemption
3388 	 * enabled, without holding any MM locks besides the unreachable
3389 	 * mmap_write_lock.
3390 	 */
3391 	vma_iter_set(&vmi, vma->vm_end);
3392 	do {
3393 		if (vma->vm_flags & VM_ACCOUNT)
3394 			nr_accounted += vma_pages(vma);
3395 		remove_vma(vma, true);
3396 		count++;
3397 		cond_resched();
3398 		vma = vma_next(&vmi);
3399 	} while (vma && likely(!xa_is_zero(vma)));
3400 
3401 	BUG_ON(count != mm->map_count);
3402 
3403 	trace_exit_mmap(mm);
3404 destroy:
3405 	__mt_destroy(&mm->mm_mt);
3406 	mmap_write_unlock(mm);
3407 	vm_unacct_memory(nr_accounted);
3408 }
3409 
3410 /* Insert vm structure into process list sorted by address
3411  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3412  * then i_mmap_rwsem is taken here.
3413  */
3414 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3415 {
3416 	unsigned long charged = vma_pages(vma);
3417 
3418 
3419 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3420 		return -ENOMEM;
3421 
3422 	if ((vma->vm_flags & VM_ACCOUNT) &&
3423 	     security_vm_enough_memory_mm(mm, charged))
3424 		return -ENOMEM;
3425 
3426 	/*
3427 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3428 	 * until its first write fault, when page's anon_vma and index
3429 	 * are set.  But now set the vm_pgoff it will almost certainly
3430 	 * end up with (unless mremap moves it elsewhere before that
3431 	 * first wfault), so /proc/pid/maps tells a consistent story.
3432 	 *
3433 	 * By setting it to reflect the virtual start address of the
3434 	 * vma, merges and splits can happen in a seamless way, just
3435 	 * using the existing file pgoff checks and manipulations.
3436 	 * Similarly in do_mmap and in do_brk_flags.
3437 	 */
3438 	if (vma_is_anonymous(vma)) {
3439 		BUG_ON(vma->anon_vma);
3440 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3441 	}
3442 
3443 	if (vma_link(mm, vma)) {
3444 		if (vma->vm_flags & VM_ACCOUNT)
3445 			vm_unacct_memory(charged);
3446 		return -ENOMEM;
3447 	}
3448 
3449 	return 0;
3450 }
3451 
3452 /*
3453  * Copy the vma structure to a new location in the same mm,
3454  * prior to moving page table entries, to effect an mremap move.
3455  */
3456 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3457 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3458 	bool *need_rmap_locks)
3459 {
3460 	struct vm_area_struct *vma = *vmap;
3461 	unsigned long vma_start = vma->vm_start;
3462 	struct mm_struct *mm = vma->vm_mm;
3463 	struct vm_area_struct *new_vma, *prev;
3464 	bool faulted_in_anon_vma = true;
3465 	VMA_ITERATOR(vmi, mm, addr);
3466 
3467 	/*
3468 	 * If anonymous vma has not yet been faulted, update new pgoff
3469 	 * to match new location, to increase its chance of merging.
3470 	 */
3471 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3472 		pgoff = addr >> PAGE_SHIFT;
3473 		faulted_in_anon_vma = false;
3474 	}
3475 
3476 	new_vma = find_vma_prev(mm, addr, &prev);
3477 	if (new_vma && new_vma->vm_start < addr + len)
3478 		return NULL;	/* should never get here */
3479 
3480 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3481 	if (new_vma) {
3482 		/*
3483 		 * Source vma may have been merged into new_vma
3484 		 */
3485 		if (unlikely(vma_start >= new_vma->vm_start &&
3486 			     vma_start < new_vma->vm_end)) {
3487 			/*
3488 			 * The only way we can get a vma_merge with
3489 			 * self during an mremap is if the vma hasn't
3490 			 * been faulted in yet and we were allowed to
3491 			 * reset the dst vma->vm_pgoff to the
3492 			 * destination address of the mremap to allow
3493 			 * the merge to happen. mremap must change the
3494 			 * vm_pgoff linearity between src and dst vmas
3495 			 * (in turn preventing a vma_merge) to be
3496 			 * safe. It is only safe to keep the vm_pgoff
3497 			 * linear if there are no pages mapped yet.
3498 			 */
3499 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3500 			*vmap = vma = new_vma;
3501 		}
3502 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3503 	} else {
3504 		new_vma = vm_area_dup(vma);
3505 		if (!new_vma)
3506 			goto out;
3507 		vma_set_range(new_vma, addr, addr + len, pgoff);
3508 		if (vma_dup_policy(vma, new_vma))
3509 			goto out_free_vma;
3510 		if (anon_vma_clone(new_vma, vma))
3511 			goto out_free_mempol;
3512 		if (new_vma->vm_file)
3513 			get_file(new_vma->vm_file);
3514 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3515 			new_vma->vm_ops->open(new_vma);
3516 		if (vma_link(mm, new_vma))
3517 			goto out_vma_link;
3518 		*need_rmap_locks = false;
3519 	}
3520 	return new_vma;
3521 
3522 out_vma_link:
3523 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3524 		new_vma->vm_ops->close(new_vma);
3525 
3526 	if (new_vma->vm_file)
3527 		fput(new_vma->vm_file);
3528 
3529 	unlink_anon_vmas(new_vma);
3530 out_free_mempol:
3531 	mpol_put(vma_policy(new_vma));
3532 out_free_vma:
3533 	vm_area_free(new_vma);
3534 out:
3535 	return NULL;
3536 }
3537 
3538 /*
3539  * Return true if the calling process may expand its vm space by the passed
3540  * number of pages
3541  */
3542 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3543 {
3544 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3545 		return false;
3546 
3547 	if (is_data_mapping(flags) &&
3548 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3549 		/* Workaround for Valgrind */
3550 		if (rlimit(RLIMIT_DATA) == 0 &&
3551 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3552 			return true;
3553 
3554 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3555 			     current->comm, current->pid,
3556 			     (mm->data_vm + npages) << PAGE_SHIFT,
3557 			     rlimit(RLIMIT_DATA),
3558 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3559 
3560 		if (!ignore_rlimit_data)
3561 			return false;
3562 	}
3563 
3564 	return true;
3565 }
3566 
3567 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3568 {
3569 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3570 
3571 	if (is_exec_mapping(flags))
3572 		mm->exec_vm += npages;
3573 	else if (is_stack_mapping(flags))
3574 		mm->stack_vm += npages;
3575 	else if (is_data_mapping(flags))
3576 		mm->data_vm += npages;
3577 }
3578 
3579 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3580 
3581 /*
3582  * Having a close hook prevents vma merging regardless of flags.
3583  */
3584 static void special_mapping_close(struct vm_area_struct *vma)
3585 {
3586 }
3587 
3588 static const char *special_mapping_name(struct vm_area_struct *vma)
3589 {
3590 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3591 }
3592 
3593 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3594 {
3595 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3596 
3597 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3598 		return -EFAULT;
3599 
3600 	if (sm->mremap)
3601 		return sm->mremap(sm, new_vma);
3602 
3603 	return 0;
3604 }
3605 
3606 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3607 {
3608 	/*
3609 	 * Forbid splitting special mappings - kernel has expectations over
3610 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3611 	 * the size of vma should stay the same over the special mapping's
3612 	 * lifetime.
3613 	 */
3614 	return -EINVAL;
3615 }
3616 
3617 static const struct vm_operations_struct special_mapping_vmops = {
3618 	.close = special_mapping_close,
3619 	.fault = special_mapping_fault,
3620 	.mremap = special_mapping_mremap,
3621 	.name = special_mapping_name,
3622 	/* vDSO code relies that VVAR can't be accessed remotely */
3623 	.access = NULL,
3624 	.may_split = special_mapping_split,
3625 };
3626 
3627 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3628 	.close = special_mapping_close,
3629 	.fault = special_mapping_fault,
3630 };
3631 
3632 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3633 {
3634 	struct vm_area_struct *vma = vmf->vma;
3635 	pgoff_t pgoff;
3636 	struct page **pages;
3637 
3638 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3639 		pages = vma->vm_private_data;
3640 	} else {
3641 		struct vm_special_mapping *sm = vma->vm_private_data;
3642 
3643 		if (sm->fault)
3644 			return sm->fault(sm, vmf->vma, vmf);
3645 
3646 		pages = sm->pages;
3647 	}
3648 
3649 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3650 		pgoff--;
3651 
3652 	if (*pages) {
3653 		struct page *page = *pages;
3654 		get_page(page);
3655 		vmf->page = page;
3656 		return 0;
3657 	}
3658 
3659 	return VM_FAULT_SIGBUS;
3660 }
3661 
3662 static struct vm_area_struct *__install_special_mapping(
3663 	struct mm_struct *mm,
3664 	unsigned long addr, unsigned long len,
3665 	unsigned long vm_flags, void *priv,
3666 	const struct vm_operations_struct *ops)
3667 {
3668 	int ret;
3669 	struct vm_area_struct *vma;
3670 
3671 	vma = vm_area_alloc(mm);
3672 	if (unlikely(vma == NULL))
3673 		return ERR_PTR(-ENOMEM);
3674 
3675 	vma_set_range(vma, addr, addr + len, 0);
3676 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3677 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3678 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3679 
3680 	vma->vm_ops = ops;
3681 	vma->vm_private_data = priv;
3682 
3683 	ret = insert_vm_struct(mm, vma);
3684 	if (ret)
3685 		goto out;
3686 
3687 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3688 
3689 	perf_event_mmap(vma);
3690 
3691 	return vma;
3692 
3693 out:
3694 	vm_area_free(vma);
3695 	return ERR_PTR(ret);
3696 }
3697 
3698 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3699 	const struct vm_special_mapping *sm)
3700 {
3701 	return vma->vm_private_data == sm &&
3702 		(vma->vm_ops == &special_mapping_vmops ||
3703 		 vma->vm_ops == &legacy_special_mapping_vmops);
3704 }
3705 
3706 /*
3707  * Called with mm->mmap_lock held for writing.
3708  * Insert a new vma covering the given region, with the given flags.
3709  * Its pages are supplied by the given array of struct page *.
3710  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3711  * The region past the last page supplied will always produce SIGBUS.
3712  * The array pointer and the pages it points to are assumed to stay alive
3713  * for as long as this mapping might exist.
3714  */
3715 struct vm_area_struct *_install_special_mapping(
3716 	struct mm_struct *mm,
3717 	unsigned long addr, unsigned long len,
3718 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3719 {
3720 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3721 					&special_mapping_vmops);
3722 }
3723 
3724 int install_special_mapping(struct mm_struct *mm,
3725 			    unsigned long addr, unsigned long len,
3726 			    unsigned long vm_flags, struct page **pages)
3727 {
3728 	struct vm_area_struct *vma = __install_special_mapping(
3729 		mm, addr, len, vm_flags, (void *)pages,
3730 		&legacy_special_mapping_vmops);
3731 
3732 	return PTR_ERR_OR_ZERO(vma);
3733 }
3734 
3735 static DEFINE_MUTEX(mm_all_locks_mutex);
3736 
3737 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3738 {
3739 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3740 		/*
3741 		 * The LSB of head.next can't change from under us
3742 		 * because we hold the mm_all_locks_mutex.
3743 		 */
3744 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3745 		/*
3746 		 * We can safely modify head.next after taking the
3747 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3748 		 * the same anon_vma we won't take it again.
3749 		 *
3750 		 * No need of atomic instructions here, head.next
3751 		 * can't change from under us thanks to the
3752 		 * anon_vma->root->rwsem.
3753 		 */
3754 		if (__test_and_set_bit(0, (unsigned long *)
3755 				       &anon_vma->root->rb_root.rb_root.rb_node))
3756 			BUG();
3757 	}
3758 }
3759 
3760 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3761 {
3762 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3763 		/*
3764 		 * AS_MM_ALL_LOCKS can't change from under us because
3765 		 * we hold the mm_all_locks_mutex.
3766 		 *
3767 		 * Operations on ->flags have to be atomic because
3768 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3769 		 * mm_all_locks_mutex, there may be other cpus
3770 		 * changing other bitflags in parallel to us.
3771 		 */
3772 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3773 			BUG();
3774 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3775 	}
3776 }
3777 
3778 /*
3779  * This operation locks against the VM for all pte/vma/mm related
3780  * operations that could ever happen on a certain mm. This includes
3781  * vmtruncate, try_to_unmap, and all page faults.
3782  *
3783  * The caller must take the mmap_lock in write mode before calling
3784  * mm_take_all_locks(). The caller isn't allowed to release the
3785  * mmap_lock until mm_drop_all_locks() returns.
3786  *
3787  * mmap_lock in write mode is required in order to block all operations
3788  * that could modify pagetables and free pages without need of
3789  * altering the vma layout. It's also needed in write mode to avoid new
3790  * anon_vmas to be associated with existing vmas.
3791  *
3792  * A single task can't take more than one mm_take_all_locks() in a row
3793  * or it would deadlock.
3794  *
3795  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3796  * mapping->flags avoid to take the same lock twice, if more than one
3797  * vma in this mm is backed by the same anon_vma or address_space.
3798  *
3799  * We take locks in following order, accordingly to comment at beginning
3800  * of mm/rmap.c:
3801  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3802  *     hugetlb mapping);
3803  *   - all vmas marked locked
3804  *   - all i_mmap_rwsem locks;
3805  *   - all anon_vma->rwseml
3806  *
3807  * We can take all locks within these types randomly because the VM code
3808  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3809  * mm_all_locks_mutex.
3810  *
3811  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3812  * that may have to take thousand of locks.
3813  *
3814  * mm_take_all_locks() can fail if it's interrupted by signals.
3815  */
3816 int mm_take_all_locks(struct mm_struct *mm)
3817 {
3818 	struct vm_area_struct *vma;
3819 	struct anon_vma_chain *avc;
3820 	VMA_ITERATOR(vmi, mm, 0);
3821 
3822 	mmap_assert_write_locked(mm);
3823 
3824 	mutex_lock(&mm_all_locks_mutex);
3825 
3826 	/*
3827 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3828 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3829 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3830 	 * is reached.
3831 	 */
3832 	for_each_vma(vmi, vma) {
3833 		if (signal_pending(current))
3834 			goto out_unlock;
3835 		vma_start_write(vma);
3836 	}
3837 
3838 	vma_iter_init(&vmi, mm, 0);
3839 	for_each_vma(vmi, vma) {
3840 		if (signal_pending(current))
3841 			goto out_unlock;
3842 		if (vma->vm_file && vma->vm_file->f_mapping &&
3843 				is_vm_hugetlb_page(vma))
3844 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3845 	}
3846 
3847 	vma_iter_init(&vmi, mm, 0);
3848 	for_each_vma(vmi, vma) {
3849 		if (signal_pending(current))
3850 			goto out_unlock;
3851 		if (vma->vm_file && vma->vm_file->f_mapping &&
3852 				!is_vm_hugetlb_page(vma))
3853 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3854 	}
3855 
3856 	vma_iter_init(&vmi, mm, 0);
3857 	for_each_vma(vmi, vma) {
3858 		if (signal_pending(current))
3859 			goto out_unlock;
3860 		if (vma->anon_vma)
3861 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3862 				vm_lock_anon_vma(mm, avc->anon_vma);
3863 	}
3864 
3865 	return 0;
3866 
3867 out_unlock:
3868 	mm_drop_all_locks(mm);
3869 	return -EINTR;
3870 }
3871 
3872 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3873 {
3874 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3875 		/*
3876 		 * The LSB of head.next can't change to 0 from under
3877 		 * us because we hold the mm_all_locks_mutex.
3878 		 *
3879 		 * We must however clear the bitflag before unlocking
3880 		 * the vma so the users using the anon_vma->rb_root will
3881 		 * never see our bitflag.
3882 		 *
3883 		 * No need of atomic instructions here, head.next
3884 		 * can't change from under us until we release the
3885 		 * anon_vma->root->rwsem.
3886 		 */
3887 		if (!__test_and_clear_bit(0, (unsigned long *)
3888 					  &anon_vma->root->rb_root.rb_root.rb_node))
3889 			BUG();
3890 		anon_vma_unlock_write(anon_vma);
3891 	}
3892 }
3893 
3894 static void vm_unlock_mapping(struct address_space *mapping)
3895 {
3896 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3897 		/*
3898 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3899 		 * because we hold the mm_all_locks_mutex.
3900 		 */
3901 		i_mmap_unlock_write(mapping);
3902 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3903 					&mapping->flags))
3904 			BUG();
3905 	}
3906 }
3907 
3908 /*
3909  * The mmap_lock cannot be released by the caller until
3910  * mm_drop_all_locks() returns.
3911  */
3912 void mm_drop_all_locks(struct mm_struct *mm)
3913 {
3914 	struct vm_area_struct *vma;
3915 	struct anon_vma_chain *avc;
3916 	VMA_ITERATOR(vmi, mm, 0);
3917 
3918 	mmap_assert_write_locked(mm);
3919 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3920 
3921 	for_each_vma(vmi, vma) {
3922 		if (vma->anon_vma)
3923 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3924 				vm_unlock_anon_vma(avc->anon_vma);
3925 		if (vma->vm_file && vma->vm_file->f_mapping)
3926 			vm_unlock_mapping(vma->vm_file->f_mapping);
3927 	}
3928 
3929 	mutex_unlock(&mm_all_locks_mutex);
3930 }
3931 
3932 /*
3933  * initialise the percpu counter for VM
3934  */
3935 void __init mmap_init(void)
3936 {
3937 	int ret;
3938 
3939 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3940 	VM_BUG_ON(ret);
3941 }
3942 
3943 /*
3944  * Initialise sysctl_user_reserve_kbytes.
3945  *
3946  * This is intended to prevent a user from starting a single memory hogging
3947  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3948  * mode.
3949  *
3950  * The default value is min(3% of free memory, 128MB)
3951  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3952  */
3953 static int init_user_reserve(void)
3954 {
3955 	unsigned long free_kbytes;
3956 
3957 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3958 
3959 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3960 	return 0;
3961 }
3962 subsys_initcall(init_user_reserve);
3963 
3964 /*
3965  * Initialise sysctl_admin_reserve_kbytes.
3966  *
3967  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3968  * to log in and kill a memory hogging process.
3969  *
3970  * Systems with more than 256MB will reserve 8MB, enough to recover
3971  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3972  * only reserve 3% of free pages by default.
3973  */
3974 static int init_admin_reserve(void)
3975 {
3976 	unsigned long free_kbytes;
3977 
3978 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3979 
3980 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3981 	return 0;
3982 }
3983 subsys_initcall(init_admin_reserve);
3984 
3985 /*
3986  * Reinititalise user and admin reserves if memory is added or removed.
3987  *
3988  * The default user reserve max is 128MB, and the default max for the
3989  * admin reserve is 8MB. These are usually, but not always, enough to
3990  * enable recovery from a memory hogging process using login/sshd, a shell,
3991  * and tools like top. It may make sense to increase or even disable the
3992  * reserve depending on the existence of swap or variations in the recovery
3993  * tools. So, the admin may have changed them.
3994  *
3995  * If memory is added and the reserves have been eliminated or increased above
3996  * the default max, then we'll trust the admin.
3997  *
3998  * If memory is removed and there isn't enough free memory, then we
3999  * need to reset the reserves.
4000  *
4001  * Otherwise keep the reserve set by the admin.
4002  */
4003 static int reserve_mem_notifier(struct notifier_block *nb,
4004 			     unsigned long action, void *data)
4005 {
4006 	unsigned long tmp, free_kbytes;
4007 
4008 	switch (action) {
4009 	case MEM_ONLINE:
4010 		/* Default max is 128MB. Leave alone if modified by operator. */
4011 		tmp = sysctl_user_reserve_kbytes;
4012 		if (tmp > 0 && tmp < SZ_128K)
4013 			init_user_reserve();
4014 
4015 		/* Default max is 8MB.  Leave alone if modified by operator. */
4016 		tmp = sysctl_admin_reserve_kbytes;
4017 		if (tmp > 0 && tmp < SZ_8K)
4018 			init_admin_reserve();
4019 
4020 		break;
4021 	case MEM_OFFLINE:
4022 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4023 
4024 		if (sysctl_user_reserve_kbytes > free_kbytes) {
4025 			init_user_reserve();
4026 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
4027 				sysctl_user_reserve_kbytes);
4028 		}
4029 
4030 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
4031 			init_admin_reserve();
4032 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4033 				sysctl_admin_reserve_kbytes);
4034 		}
4035 		break;
4036 	default:
4037 		break;
4038 	}
4039 	return NOTIFY_OK;
4040 }
4041 
4042 static int __meminit init_reserve_notifier(void)
4043 {
4044 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4045 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4046 
4047 	return 0;
4048 }
4049 subsys_initcall(init_reserve_notifier);
4050