1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 * 97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 98 * MAP_PRIVATE (with Enhanced PAN supported): 99 * r: (no) no 100 * w: (no) no 101 * x: (yes) yes 102 */ 103 pgprot_t protection_map[16] __ro_after_init = { 104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 106 }; 107 108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 110 { 111 return prot; 112 } 113 #endif 114 115 pgprot_t vm_get_page_prot(unsigned long vm_flags) 116 { 117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 119 pgprot_val(arch_vm_get_page_prot(vm_flags))); 120 121 return arch_filter_pgprot(ret); 122 } 123 EXPORT_SYMBOL(vm_get_page_prot); 124 125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 126 { 127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 128 } 129 130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 131 void vma_set_page_prot(struct vm_area_struct *vma) 132 { 133 unsigned long vm_flags = vma->vm_flags; 134 pgprot_t vm_page_prot; 135 136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 137 if (vma_wants_writenotify(vma, vm_page_prot)) { 138 vm_flags &= ~VM_SHARED; 139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 140 } 141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 143 } 144 145 /* 146 * Requires inode->i_mapping->i_mmap_rwsem 147 */ 148 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 149 struct file *file, struct address_space *mapping) 150 { 151 if (vma->vm_flags & VM_DENYWRITE) 152 allow_write_access(file); 153 if (vma->vm_flags & VM_SHARED) 154 mapping_unmap_writable(mapping); 155 156 flush_dcache_mmap_lock(mapping); 157 vma_interval_tree_remove(vma, &mapping->i_mmap); 158 flush_dcache_mmap_unlock(mapping); 159 } 160 161 /* 162 * Unlink a file-based vm structure from its interval tree, to hide 163 * vma from rmap and vmtruncate before freeing its page tables. 164 */ 165 void unlink_file_vma(struct vm_area_struct *vma) 166 { 167 struct file *file = vma->vm_file; 168 169 if (file) { 170 struct address_space *mapping = file->f_mapping; 171 i_mmap_lock_write(mapping); 172 __remove_shared_vm_struct(vma, file, mapping); 173 i_mmap_unlock_write(mapping); 174 } 175 } 176 177 /* 178 * Close a vm structure and free it, returning the next. 179 */ 180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 181 { 182 struct vm_area_struct *next = vma->vm_next; 183 184 might_sleep(); 185 if (vma->vm_ops && vma->vm_ops->close) 186 vma->vm_ops->close(vma); 187 if (vma->vm_file) 188 fput(vma->vm_file); 189 mpol_put(vma_policy(vma)); 190 vm_area_free(vma); 191 return next; 192 } 193 194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 195 struct list_head *uf); 196 SYSCALL_DEFINE1(brk, unsigned long, brk) 197 { 198 unsigned long newbrk, oldbrk, origbrk; 199 struct mm_struct *mm = current->mm; 200 struct vm_area_struct *next; 201 unsigned long min_brk; 202 bool populate; 203 bool downgraded = false; 204 LIST_HEAD(uf); 205 206 if (mmap_write_lock_killable(mm)) 207 return -EINTR; 208 209 origbrk = mm->brk; 210 211 #ifdef CONFIG_COMPAT_BRK 212 /* 213 * CONFIG_COMPAT_BRK can still be overridden by setting 214 * randomize_va_space to 2, which will still cause mm->start_brk 215 * to be arbitrarily shifted 216 */ 217 if (current->brk_randomized) 218 min_brk = mm->start_brk; 219 else 220 min_brk = mm->end_data; 221 #else 222 min_brk = mm->start_brk; 223 #endif 224 if (brk < min_brk) 225 goto out; 226 227 /* 228 * Check against rlimit here. If this check is done later after the test 229 * of oldbrk with newbrk then it can escape the test and let the data 230 * segment grow beyond its set limit the in case where the limit is 231 * not page aligned -Ram Gupta 232 */ 233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 234 mm->end_data, mm->start_data)) 235 goto out; 236 237 newbrk = PAGE_ALIGN(brk); 238 oldbrk = PAGE_ALIGN(mm->brk); 239 if (oldbrk == newbrk) { 240 mm->brk = brk; 241 goto success; 242 } 243 244 /* 245 * Always allow shrinking brk. 246 * __do_munmap() may downgrade mmap_lock to read. 247 */ 248 if (brk <= mm->brk) { 249 int ret; 250 251 /* 252 * mm->brk must to be protected by write mmap_lock so update it 253 * before downgrading mmap_lock. When __do_munmap() fails, 254 * mm->brk will be restored from origbrk. 255 */ 256 mm->brk = brk; 257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 258 if (ret < 0) { 259 mm->brk = origbrk; 260 goto out; 261 } else if (ret == 1) { 262 downgraded = true; 263 } 264 goto success; 265 } 266 267 /* Check against existing mmap mappings. */ 268 next = find_vma(mm, oldbrk); 269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 270 goto out; 271 272 /* Ok, looks good - let it rip. */ 273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 274 goto out; 275 mm->brk = brk; 276 277 success: 278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 279 if (downgraded) 280 mmap_read_unlock(mm); 281 else 282 mmap_write_unlock(mm); 283 userfaultfd_unmap_complete(mm, &uf); 284 if (populate) 285 mm_populate(oldbrk, newbrk - oldbrk); 286 return brk; 287 288 out: 289 mmap_write_unlock(mm); 290 return origbrk; 291 } 292 293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 294 { 295 unsigned long gap, prev_end; 296 297 /* 298 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 299 * allow two stack_guard_gaps between them here, and when choosing 300 * an unmapped area; whereas when expanding we only require one. 301 * That's a little inconsistent, but keeps the code here simpler. 302 */ 303 gap = vm_start_gap(vma); 304 if (vma->vm_prev) { 305 prev_end = vm_end_gap(vma->vm_prev); 306 if (gap > prev_end) 307 gap -= prev_end; 308 else 309 gap = 0; 310 } 311 return gap; 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 316 { 317 unsigned long max = vma_compute_gap(vma), subtree_gap; 318 if (vma->vm_rb.rb_left) { 319 subtree_gap = rb_entry(vma->vm_rb.rb_left, 320 struct vm_area_struct, vm_rb)->rb_subtree_gap; 321 if (subtree_gap > max) 322 max = subtree_gap; 323 } 324 if (vma->vm_rb.rb_right) { 325 subtree_gap = rb_entry(vma->vm_rb.rb_right, 326 struct vm_area_struct, vm_rb)->rb_subtree_gap; 327 if (subtree_gap > max) 328 max = subtree_gap; 329 } 330 return max; 331 } 332 333 static int browse_rb(struct mm_struct *mm) 334 { 335 struct rb_root *root = &mm->mm_rb; 336 int i = 0, j, bug = 0; 337 struct rb_node *nd, *pn = NULL; 338 unsigned long prev = 0, pend = 0; 339 340 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 341 struct vm_area_struct *vma; 342 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 343 if (vma->vm_start < prev) { 344 pr_emerg("vm_start %lx < prev %lx\n", 345 vma->vm_start, prev); 346 bug = 1; 347 } 348 if (vma->vm_start < pend) { 349 pr_emerg("vm_start %lx < pend %lx\n", 350 vma->vm_start, pend); 351 bug = 1; 352 } 353 if (vma->vm_start > vma->vm_end) { 354 pr_emerg("vm_start %lx > vm_end %lx\n", 355 vma->vm_start, vma->vm_end); 356 bug = 1; 357 } 358 spin_lock(&mm->page_table_lock); 359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 360 pr_emerg("free gap %lx, correct %lx\n", 361 vma->rb_subtree_gap, 362 vma_compute_subtree_gap(vma)); 363 bug = 1; 364 } 365 spin_unlock(&mm->page_table_lock); 366 i++; 367 pn = nd; 368 prev = vma->vm_start; 369 pend = vma->vm_end; 370 } 371 j = 0; 372 for (nd = pn; nd; nd = rb_prev(nd)) 373 j++; 374 if (i != j) { 375 pr_emerg("backwards %d, forwards %d\n", j, i); 376 bug = 1; 377 } 378 return bug ? -1 : i; 379 } 380 381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 382 { 383 struct rb_node *nd; 384 385 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 386 struct vm_area_struct *vma; 387 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 388 VM_BUG_ON_VMA(vma != ignore && 389 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 390 vma); 391 } 392 } 393 394 static void validate_mm(struct mm_struct *mm) 395 { 396 int bug = 0; 397 int i = 0; 398 unsigned long highest_address = 0; 399 struct vm_area_struct *vma = mm->mmap; 400 401 while (vma) { 402 struct anon_vma *anon_vma = vma->anon_vma; 403 struct anon_vma_chain *avc; 404 405 if (anon_vma) { 406 anon_vma_lock_read(anon_vma); 407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 408 anon_vma_interval_tree_verify(avc); 409 anon_vma_unlock_read(anon_vma); 410 } 411 412 highest_address = vm_end_gap(vma); 413 vma = vma->vm_next; 414 i++; 415 } 416 if (i != mm->map_count) { 417 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 418 bug = 1; 419 } 420 if (highest_address != mm->highest_vm_end) { 421 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 422 mm->highest_vm_end, highest_address); 423 bug = 1; 424 } 425 i = browse_rb(mm); 426 if (i != mm->map_count) { 427 if (i != -1) 428 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 429 bug = 1; 430 } 431 VM_BUG_ON_MM(bug, mm); 432 } 433 #else 434 #define validate_mm_rb(root, ignore) do { } while (0) 435 #define validate_mm(mm) do { } while (0) 436 #endif 437 438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 439 struct vm_area_struct, vm_rb, 440 unsigned long, rb_subtree_gap, vma_compute_gap) 441 442 /* 443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 444 * vma->vm_prev->vm_end values changed, without modifying the vma's position 445 * in the rbtree. 446 */ 447 static void vma_gap_update(struct vm_area_struct *vma) 448 { 449 /* 450 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 451 * a callback function that does exactly what we want. 452 */ 453 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 454 } 455 456 static inline void vma_rb_insert(struct vm_area_struct *vma, 457 struct rb_root *root) 458 { 459 /* All rb_subtree_gap values must be consistent prior to insertion */ 460 validate_mm_rb(root, NULL); 461 462 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 463 } 464 465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 466 { 467 /* 468 * Note rb_erase_augmented is a fairly large inline function, 469 * so make sure we instantiate it only once with our desired 470 * augmented rbtree callbacks. 471 */ 472 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 473 } 474 475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 476 struct rb_root *root, 477 struct vm_area_struct *ignore) 478 { 479 /* 480 * All rb_subtree_gap values must be consistent prior to erase, 481 * with the possible exception of 482 * 483 * a. the "next" vma being erased if next->vm_start was reduced in 484 * __vma_adjust() -> __vma_unlink() 485 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 486 * vma_rb_erase() 487 */ 488 validate_mm_rb(root, ignore); 489 490 __vma_rb_erase(vma, root); 491 } 492 493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 494 struct rb_root *root) 495 { 496 vma_rb_erase_ignore(vma, root, vma); 497 } 498 499 /* 500 * vma has some anon_vma assigned, and is already inserted on that 501 * anon_vma's interval trees. 502 * 503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 504 * vma must be removed from the anon_vma's interval trees using 505 * anon_vma_interval_tree_pre_update_vma(). 506 * 507 * After the update, the vma will be reinserted using 508 * anon_vma_interval_tree_post_update_vma(). 509 * 510 * The entire update must be protected by exclusive mmap_lock and by 511 * the root anon_vma's mutex. 512 */ 513 static inline void 514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 515 { 516 struct anon_vma_chain *avc; 517 518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 519 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 520 } 521 522 static inline void 523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 524 { 525 struct anon_vma_chain *avc; 526 527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 528 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 529 } 530 531 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 532 unsigned long end, struct vm_area_struct **pprev, 533 struct rb_node ***rb_link, struct rb_node **rb_parent) 534 { 535 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 536 537 __rb_link = &mm->mm_rb.rb_node; 538 rb_prev = __rb_parent = NULL; 539 540 while (*__rb_link) { 541 struct vm_area_struct *vma_tmp; 542 543 __rb_parent = *__rb_link; 544 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 545 546 if (vma_tmp->vm_end > addr) { 547 /* Fail if an existing vma overlaps the area */ 548 if (vma_tmp->vm_start < end) 549 return -ENOMEM; 550 __rb_link = &__rb_parent->rb_left; 551 } else { 552 rb_prev = __rb_parent; 553 __rb_link = &__rb_parent->rb_right; 554 } 555 } 556 557 *pprev = NULL; 558 if (rb_prev) 559 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 560 *rb_link = __rb_link; 561 *rb_parent = __rb_parent; 562 return 0; 563 } 564 565 /* 566 * vma_next() - Get the next VMA. 567 * @mm: The mm_struct. 568 * @vma: The current vma. 569 * 570 * If @vma is NULL, return the first vma in the mm. 571 * 572 * Returns: The next VMA after @vma. 573 */ 574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 575 struct vm_area_struct *vma) 576 { 577 if (!vma) 578 return mm->mmap; 579 580 return vma->vm_next; 581 } 582 583 /* 584 * munmap_vma_range() - munmap VMAs that overlap a range. 585 * @mm: The mm struct 586 * @start: The start of the range. 587 * @len: The length of the range. 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 589 * @rb_link: the rb_node 590 * @rb_parent: the parent rb_node 591 * 592 * Find all the vm_area_struct that overlap from @start to 593 * @end and munmap them. Set @pprev to the previous vm_area_struct. 594 * 595 * Returns: -ENOMEM on munmap failure or 0 on success. 596 */ 597 static inline int 598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 599 struct vm_area_struct **pprev, struct rb_node ***link, 600 struct rb_node **parent, struct list_head *uf) 601 { 602 603 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 604 if (do_munmap(mm, start, len, uf)) 605 return -ENOMEM; 606 607 return 0; 608 } 609 static unsigned long count_vma_pages_range(struct mm_struct *mm, 610 unsigned long addr, unsigned long end) 611 { 612 unsigned long nr_pages = 0; 613 struct vm_area_struct *vma; 614 615 /* Find first overlapping mapping */ 616 vma = find_vma_intersection(mm, addr, end); 617 if (!vma) 618 return 0; 619 620 nr_pages = (min(end, vma->vm_end) - 621 max(addr, vma->vm_start)) >> PAGE_SHIFT; 622 623 /* Iterate over the rest of the overlaps */ 624 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 625 unsigned long overlap_len; 626 627 if (vma->vm_start > end) 628 break; 629 630 overlap_len = min(end, vma->vm_end) - vma->vm_start; 631 nr_pages += overlap_len >> PAGE_SHIFT; 632 } 633 634 return nr_pages; 635 } 636 637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct rb_node **rb_link, struct rb_node *rb_parent) 639 { 640 /* Update tracking information for the gap following the new vma. */ 641 if (vma->vm_next) 642 vma_gap_update(vma->vm_next); 643 else 644 mm->highest_vm_end = vm_end_gap(vma); 645 646 /* 647 * vma->vm_prev wasn't known when we followed the rbtree to find the 648 * correct insertion point for that vma. As a result, we could not 649 * update the vma vm_rb parents rb_subtree_gap values on the way down. 650 * So, we first insert the vma with a zero rb_subtree_gap value 651 * (to be consistent with what we did on the way down), and then 652 * immediately update the gap to the correct value. Finally we 653 * rebalance the rbtree after all augmented values have been set. 654 */ 655 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 656 vma->rb_subtree_gap = 0; 657 vma_gap_update(vma); 658 vma_rb_insert(vma, &mm->mm_rb); 659 } 660 661 static void __vma_link_file(struct vm_area_struct *vma) 662 { 663 struct file *file; 664 665 file = vma->vm_file; 666 if (file) { 667 struct address_space *mapping = file->f_mapping; 668 669 if (vma->vm_flags & VM_DENYWRITE) 670 put_write_access(file_inode(file)); 671 if (vma->vm_flags & VM_SHARED) 672 mapping_allow_writable(mapping); 673 674 flush_dcache_mmap_lock(mapping); 675 vma_interval_tree_insert(vma, &mapping->i_mmap); 676 flush_dcache_mmap_unlock(mapping); 677 } 678 } 679 680 static void 681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 682 struct vm_area_struct *prev, struct rb_node **rb_link, 683 struct rb_node *rb_parent) 684 { 685 __vma_link_list(mm, vma, prev); 686 __vma_link_rb(mm, vma, rb_link, rb_parent); 687 } 688 689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 690 struct vm_area_struct *prev, struct rb_node **rb_link, 691 struct rb_node *rb_parent) 692 { 693 struct address_space *mapping = NULL; 694 695 if (vma->vm_file) { 696 mapping = vma->vm_file->f_mapping; 697 i_mmap_lock_write(mapping); 698 } 699 700 __vma_link(mm, vma, prev, rb_link, rb_parent); 701 __vma_link_file(vma); 702 703 if (mapping) 704 i_mmap_unlock_write(mapping); 705 706 mm->map_count++; 707 validate_mm(mm); 708 } 709 710 /* 711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 712 * mm's list and rbtree. It has already been inserted into the interval tree. 713 */ 714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 715 { 716 struct vm_area_struct *prev; 717 struct rb_node **rb_link, *rb_parent; 718 719 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 720 &prev, &rb_link, &rb_parent)) 721 BUG(); 722 __vma_link(mm, vma, prev, rb_link, rb_parent); 723 mm->map_count++; 724 } 725 726 static __always_inline void __vma_unlink(struct mm_struct *mm, 727 struct vm_area_struct *vma, 728 struct vm_area_struct *ignore) 729 { 730 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 731 __vma_unlink_list(mm, vma); 732 /* Kill the cache */ 733 vmacache_invalidate(mm); 734 } 735 736 /* 737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 738 * is already present in an i_mmap tree without adjusting the tree. 739 * The following helper function should be used when such adjustments 740 * are necessary. The "insert" vma (if any) is to be inserted 741 * before we drop the necessary locks. 742 */ 743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 744 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 745 struct vm_area_struct *expand) 746 { 747 struct mm_struct *mm = vma->vm_mm; 748 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 749 struct address_space *mapping = NULL; 750 struct rb_root_cached *root = NULL; 751 struct anon_vma *anon_vma = NULL; 752 struct file *file = vma->vm_file; 753 bool start_changed = false, end_changed = false; 754 long adjust_next = 0; 755 int remove_next = 0; 756 757 if (next && !insert) { 758 struct vm_area_struct *exporter = NULL, *importer = NULL; 759 760 if (end >= next->vm_end) { 761 /* 762 * vma expands, overlapping all the next, and 763 * perhaps the one after too (mprotect case 6). 764 * The only other cases that gets here are 765 * case 1, case 7 and case 8. 766 */ 767 if (next == expand) { 768 /* 769 * The only case where we don't expand "vma" 770 * and we expand "next" instead is case 8. 771 */ 772 VM_WARN_ON(end != next->vm_end); 773 /* 774 * remove_next == 3 means we're 775 * removing "vma" and that to do so we 776 * swapped "vma" and "next". 777 */ 778 remove_next = 3; 779 VM_WARN_ON(file != next->vm_file); 780 swap(vma, next); 781 } else { 782 VM_WARN_ON(expand != vma); 783 /* 784 * case 1, 6, 7, remove_next == 2 is case 6, 785 * remove_next == 1 is case 1 or 7. 786 */ 787 remove_next = 1 + (end > next->vm_end); 788 VM_WARN_ON(remove_next == 2 && 789 end != next->vm_next->vm_end); 790 /* trim end to next, for case 6 first pass */ 791 end = next->vm_end; 792 } 793 794 exporter = next; 795 importer = vma; 796 797 /* 798 * If next doesn't have anon_vma, import from vma after 799 * next, if the vma overlaps with it. 800 */ 801 if (remove_next == 2 && !next->anon_vma) 802 exporter = next->vm_next; 803 804 } else if (end > next->vm_start) { 805 /* 806 * vma expands, overlapping part of the next: 807 * mprotect case 5 shifting the boundary up. 808 */ 809 adjust_next = (end - next->vm_start); 810 exporter = next; 811 importer = vma; 812 VM_WARN_ON(expand != importer); 813 } else if (end < vma->vm_end) { 814 /* 815 * vma shrinks, and !insert tells it's not 816 * split_vma inserting another: so it must be 817 * mprotect case 4 shifting the boundary down. 818 */ 819 adjust_next = -(vma->vm_end - end); 820 exporter = vma; 821 importer = next; 822 VM_WARN_ON(expand != importer); 823 } 824 825 /* 826 * Easily overlooked: when mprotect shifts the boundary, 827 * make sure the expanding vma has anon_vma set if the 828 * shrinking vma had, to cover any anon pages imported. 829 */ 830 if (exporter && exporter->anon_vma && !importer->anon_vma) { 831 int error; 832 833 importer->anon_vma = exporter->anon_vma; 834 error = anon_vma_clone(importer, exporter); 835 if (error) 836 return error; 837 } 838 } 839 again: 840 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 841 842 if (file) { 843 mapping = file->f_mapping; 844 root = &mapping->i_mmap; 845 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 846 847 if (adjust_next) 848 uprobe_munmap(next, next->vm_start, next->vm_end); 849 850 i_mmap_lock_write(mapping); 851 if (insert) { 852 /* 853 * Put into interval tree now, so instantiated pages 854 * are visible to arm/parisc __flush_dcache_page 855 * throughout; but we cannot insert into address 856 * space until vma start or end is updated. 857 */ 858 __vma_link_file(insert); 859 } 860 } 861 862 anon_vma = vma->anon_vma; 863 if (!anon_vma && adjust_next) 864 anon_vma = next->anon_vma; 865 if (anon_vma) { 866 VM_WARN_ON(adjust_next && next->anon_vma && 867 anon_vma != next->anon_vma); 868 anon_vma_lock_write(anon_vma); 869 anon_vma_interval_tree_pre_update_vma(vma); 870 if (adjust_next) 871 anon_vma_interval_tree_pre_update_vma(next); 872 } 873 874 if (file) { 875 flush_dcache_mmap_lock(mapping); 876 vma_interval_tree_remove(vma, root); 877 if (adjust_next) 878 vma_interval_tree_remove(next, root); 879 } 880 881 if (start != vma->vm_start) { 882 vma->vm_start = start; 883 start_changed = true; 884 } 885 if (end != vma->vm_end) { 886 vma->vm_end = end; 887 end_changed = true; 888 } 889 vma->vm_pgoff = pgoff; 890 if (adjust_next) { 891 next->vm_start += adjust_next; 892 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 893 } 894 895 if (file) { 896 if (adjust_next) 897 vma_interval_tree_insert(next, root); 898 vma_interval_tree_insert(vma, root); 899 flush_dcache_mmap_unlock(mapping); 900 } 901 902 if (remove_next) { 903 /* 904 * vma_merge has merged next into vma, and needs 905 * us to remove next before dropping the locks. 906 */ 907 if (remove_next != 3) 908 __vma_unlink(mm, next, next); 909 else 910 /* 911 * vma is not before next if they've been 912 * swapped. 913 * 914 * pre-swap() next->vm_start was reduced so 915 * tell validate_mm_rb to ignore pre-swap() 916 * "next" (which is stored in post-swap() 917 * "vma"). 918 */ 919 __vma_unlink(mm, next, vma); 920 if (file) 921 __remove_shared_vm_struct(next, file, mapping); 922 } else if (insert) { 923 /* 924 * split_vma has split insert from vma, and needs 925 * us to insert it before dropping the locks 926 * (it may either follow vma or precede it). 927 */ 928 __insert_vm_struct(mm, insert); 929 } else { 930 if (start_changed) 931 vma_gap_update(vma); 932 if (end_changed) { 933 if (!next) 934 mm->highest_vm_end = vm_end_gap(vma); 935 else if (!adjust_next) 936 vma_gap_update(next); 937 } 938 } 939 940 if (anon_vma) { 941 anon_vma_interval_tree_post_update_vma(vma); 942 if (adjust_next) 943 anon_vma_interval_tree_post_update_vma(next); 944 anon_vma_unlock_write(anon_vma); 945 } 946 947 if (file) { 948 i_mmap_unlock_write(mapping); 949 uprobe_mmap(vma); 950 951 if (adjust_next) 952 uprobe_mmap(next); 953 } 954 955 if (remove_next) { 956 if (file) { 957 uprobe_munmap(next, next->vm_start, next->vm_end); 958 fput(file); 959 } 960 if (next->anon_vma) 961 anon_vma_merge(vma, next); 962 mm->map_count--; 963 mpol_put(vma_policy(next)); 964 vm_area_free(next); 965 /* 966 * In mprotect's case 6 (see comments on vma_merge), 967 * we must remove another next too. It would clutter 968 * up the code too much to do both in one go. 969 */ 970 if (remove_next != 3) { 971 /* 972 * If "next" was removed and vma->vm_end was 973 * expanded (up) over it, in turn 974 * "next->vm_prev->vm_end" changed and the 975 * "vma->vm_next" gap must be updated. 976 */ 977 next = vma->vm_next; 978 } else { 979 /* 980 * For the scope of the comment "next" and 981 * "vma" considered pre-swap(): if "vma" was 982 * removed, next->vm_start was expanded (down) 983 * over it and the "next" gap must be updated. 984 * Because of the swap() the post-swap() "vma" 985 * actually points to pre-swap() "next" 986 * (post-swap() "next" as opposed is now a 987 * dangling pointer). 988 */ 989 next = vma; 990 } 991 if (remove_next == 2) { 992 remove_next = 1; 993 end = next->vm_end; 994 goto again; 995 } 996 else if (next) 997 vma_gap_update(next); 998 else { 999 /* 1000 * If remove_next == 2 we obviously can't 1001 * reach this path. 1002 * 1003 * If remove_next == 3 we can't reach this 1004 * path because pre-swap() next is always not 1005 * NULL. pre-swap() "next" is not being 1006 * removed and its next->vm_end is not altered 1007 * (and furthermore "end" already matches 1008 * next->vm_end in remove_next == 3). 1009 * 1010 * We reach this only in the remove_next == 1 1011 * case if the "next" vma that was removed was 1012 * the highest vma of the mm. However in such 1013 * case next->vm_end == "end" and the extended 1014 * "vma" has vma->vm_end == next->vm_end so 1015 * mm->highest_vm_end doesn't need any update 1016 * in remove_next == 1 case. 1017 */ 1018 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1019 } 1020 } 1021 if (insert && file) 1022 uprobe_mmap(insert); 1023 1024 validate_mm(mm); 1025 1026 return 0; 1027 } 1028 1029 /* 1030 * If the vma has a ->close operation then the driver probably needs to release 1031 * per-vma resources, so we don't attempt to merge those. 1032 */ 1033 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1034 struct file *file, unsigned long vm_flags, 1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1036 { 1037 /* 1038 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1039 * match the flags but dirty bit -- the caller should mark 1040 * merged VMA as dirty. If dirty bit won't be excluded from 1041 * comparison, we increase pressure on the memory system forcing 1042 * the kernel to generate new VMAs when old one could be 1043 * extended instead. 1044 */ 1045 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1046 return 0; 1047 if (vma->vm_file != file) 1048 return 0; 1049 if (vma->vm_ops && vma->vm_ops->close) 1050 return 0; 1051 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1052 return 0; 1053 return 1; 1054 } 1055 1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1057 struct anon_vma *anon_vma2, 1058 struct vm_area_struct *vma) 1059 { 1060 /* 1061 * The list_is_singular() test is to avoid merging VMA cloned from 1062 * parents. This can improve scalability caused by anon_vma lock. 1063 */ 1064 if ((!anon_vma1 || !anon_vma2) && (!vma || 1065 list_is_singular(&vma->anon_vma_chain))) 1066 return 1; 1067 return anon_vma1 == anon_vma2; 1068 } 1069 1070 /* 1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1072 * in front of (at a lower virtual address and file offset than) the vma. 1073 * 1074 * We cannot merge two vmas if they have differently assigned (non-NULL) 1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1076 * 1077 * We don't check here for the merged mmap wrapping around the end of pagecache 1078 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1079 * wrap, nor mmaps which cover the final page at index -1UL. 1080 */ 1081 static int 1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1083 struct anon_vma *anon_vma, struct file *file, 1084 pgoff_t vm_pgoff, 1085 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1086 { 1087 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1088 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1089 if (vma->vm_pgoff == vm_pgoff) 1090 return 1; 1091 } 1092 return 0; 1093 } 1094 1095 /* 1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1097 * beyond (at a higher virtual address and file offset than) the vma. 1098 * 1099 * We cannot merge two vmas if they have differently assigned (non-NULL) 1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1101 */ 1102 static int 1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1104 struct anon_vma *anon_vma, struct file *file, 1105 pgoff_t vm_pgoff, 1106 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1107 { 1108 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1109 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1110 pgoff_t vm_pglen; 1111 vm_pglen = vma_pages(vma); 1112 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1113 return 1; 1114 } 1115 return 0; 1116 } 1117 1118 /* 1119 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1120 * whether that can be merged with its predecessor or its successor. 1121 * Or both (it neatly fills a hole). 1122 * 1123 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1124 * certain not to be mapped by the time vma_merge is called; but when 1125 * called for mprotect, it is certain to be already mapped (either at 1126 * an offset within prev, or at the start of next), and the flags of 1127 * this area are about to be changed to vm_flags - and the no-change 1128 * case has already been eliminated. 1129 * 1130 * The following mprotect cases have to be considered, where AAAA is 1131 * the area passed down from mprotect_fixup, never extending beyond one 1132 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1133 * 1134 * AAAA AAAA AAAA 1135 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1136 * cannot merge might become might become 1137 * PPNNNNNNNNNN PPPPPPPPPPNN 1138 * mmap, brk or case 4 below case 5 below 1139 * mremap move: 1140 * AAAA AAAA 1141 * PPPP NNNN PPPPNNNNXXXX 1142 * might become might become 1143 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1144 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1145 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1146 * 1147 * It is important for case 8 that the vma NNNN overlapping the 1148 * region AAAA is never going to extended over XXXX. Instead XXXX must 1149 * be extended in region AAAA and NNNN must be removed. This way in 1150 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1151 * rmap_locks, the properties of the merged vma will be already 1152 * correct for the whole merged range. Some of those properties like 1153 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1154 * be correct for the whole merged range immediately after the 1155 * rmap_locks are released. Otherwise if XXXX would be removed and 1156 * NNNN would be extended over the XXXX range, remove_migration_ptes 1157 * or other rmap walkers (if working on addresses beyond the "end" 1158 * parameter) may establish ptes with the wrong permissions of NNNN 1159 * instead of the right permissions of XXXX. 1160 */ 1161 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1162 struct vm_area_struct *prev, unsigned long addr, 1163 unsigned long end, unsigned long vm_flags, 1164 struct anon_vma *anon_vma, struct file *file, 1165 pgoff_t pgoff, struct mempolicy *policy, 1166 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1167 { 1168 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1169 struct vm_area_struct *area, *next; 1170 int err; 1171 1172 /* 1173 * We later require that vma->vm_flags == vm_flags, 1174 * so this tests vma->vm_flags & VM_SPECIAL, too. 1175 */ 1176 if (vm_flags & VM_SPECIAL) 1177 return NULL; 1178 1179 next = vma_next(mm, prev); 1180 area = next; 1181 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1182 next = next->vm_next; 1183 1184 /* verify some invariant that must be enforced by the caller */ 1185 VM_WARN_ON(prev && addr <= prev->vm_start); 1186 VM_WARN_ON(area && end > area->vm_end); 1187 VM_WARN_ON(addr >= end); 1188 1189 /* 1190 * Can it merge with the predecessor? 1191 */ 1192 if (prev && prev->vm_end == addr && 1193 mpol_equal(vma_policy(prev), policy) && 1194 can_vma_merge_after(prev, vm_flags, 1195 anon_vma, file, pgoff, 1196 vm_userfaultfd_ctx)) { 1197 /* 1198 * OK, it can. Can we now merge in the successor as well? 1199 */ 1200 if (next && end == next->vm_start && 1201 mpol_equal(policy, vma_policy(next)) && 1202 can_vma_merge_before(next, vm_flags, 1203 anon_vma, file, 1204 pgoff+pglen, 1205 vm_userfaultfd_ctx) && 1206 is_mergeable_anon_vma(prev->anon_vma, 1207 next->anon_vma, NULL)) { 1208 /* cases 1, 6 */ 1209 err = __vma_adjust(prev, prev->vm_start, 1210 next->vm_end, prev->vm_pgoff, NULL, 1211 prev); 1212 } else /* cases 2, 5, 7 */ 1213 err = __vma_adjust(prev, prev->vm_start, 1214 end, prev->vm_pgoff, NULL, prev); 1215 if (err) 1216 return NULL; 1217 khugepaged_enter_vma_merge(prev, vm_flags); 1218 return prev; 1219 } 1220 1221 /* 1222 * Can this new request be merged in front of next? 1223 */ 1224 if (next && end == next->vm_start && 1225 mpol_equal(policy, vma_policy(next)) && 1226 can_vma_merge_before(next, vm_flags, 1227 anon_vma, file, pgoff+pglen, 1228 vm_userfaultfd_ctx)) { 1229 if (prev && addr < prev->vm_end) /* case 4 */ 1230 err = __vma_adjust(prev, prev->vm_start, 1231 addr, prev->vm_pgoff, NULL, next); 1232 else { /* cases 3, 8 */ 1233 err = __vma_adjust(area, addr, next->vm_end, 1234 next->vm_pgoff - pglen, NULL, next); 1235 /* 1236 * In case 3 area is already equal to next and 1237 * this is a noop, but in case 8 "area" has 1238 * been removed and next was expanded over it. 1239 */ 1240 area = next; 1241 } 1242 if (err) 1243 return NULL; 1244 khugepaged_enter_vma_merge(area, vm_flags); 1245 return area; 1246 } 1247 1248 return NULL; 1249 } 1250 1251 /* 1252 * Rough compatibility check to quickly see if it's even worth looking 1253 * at sharing an anon_vma. 1254 * 1255 * They need to have the same vm_file, and the flags can only differ 1256 * in things that mprotect may change. 1257 * 1258 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1259 * we can merge the two vma's. For example, we refuse to merge a vma if 1260 * there is a vm_ops->close() function, because that indicates that the 1261 * driver is doing some kind of reference counting. But that doesn't 1262 * really matter for the anon_vma sharing case. 1263 */ 1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1265 { 1266 return a->vm_end == b->vm_start && 1267 mpol_equal(vma_policy(a), vma_policy(b)) && 1268 a->vm_file == b->vm_file && 1269 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1270 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1271 } 1272 1273 /* 1274 * Do some basic sanity checking to see if we can re-use the anon_vma 1275 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1276 * the same as 'old', the other will be the new one that is trying 1277 * to share the anon_vma. 1278 * 1279 * NOTE! This runs with mm_sem held for reading, so it is possible that 1280 * the anon_vma of 'old' is concurrently in the process of being set up 1281 * by another page fault trying to merge _that_. But that's ok: if it 1282 * is being set up, that automatically means that it will be a singleton 1283 * acceptable for merging, so we can do all of this optimistically. But 1284 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1285 * 1286 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1287 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1288 * is to return an anon_vma that is "complex" due to having gone through 1289 * a fork). 1290 * 1291 * We also make sure that the two vma's are compatible (adjacent, 1292 * and with the same memory policies). That's all stable, even with just 1293 * a read lock on the mm_sem. 1294 */ 1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1296 { 1297 if (anon_vma_compatible(a, b)) { 1298 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1299 1300 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1301 return anon_vma; 1302 } 1303 return NULL; 1304 } 1305 1306 /* 1307 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1308 * neighbouring vmas for a suitable anon_vma, before it goes off 1309 * to allocate a new anon_vma. It checks because a repetitive 1310 * sequence of mprotects and faults may otherwise lead to distinct 1311 * anon_vmas being allocated, preventing vma merge in subsequent 1312 * mprotect. 1313 */ 1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1315 { 1316 struct anon_vma *anon_vma = NULL; 1317 1318 /* Try next first. */ 1319 if (vma->vm_next) { 1320 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1321 if (anon_vma) 1322 return anon_vma; 1323 } 1324 1325 /* Try prev next. */ 1326 if (vma->vm_prev) 1327 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1328 1329 /* 1330 * We might reach here with anon_vma == NULL if we can't find 1331 * any reusable anon_vma. 1332 * There's no absolute need to look only at touching neighbours: 1333 * we could search further afield for "compatible" anon_vmas. 1334 * But it would probably just be a waste of time searching, 1335 * or lead to too many vmas hanging off the same anon_vma. 1336 * We're trying to allow mprotect remerging later on, 1337 * not trying to minimize memory used for anon_vmas. 1338 */ 1339 return anon_vma; 1340 } 1341 1342 /* 1343 * If a hint addr is less than mmap_min_addr change hint to be as 1344 * low as possible but still greater than mmap_min_addr 1345 */ 1346 static inline unsigned long round_hint_to_min(unsigned long hint) 1347 { 1348 hint &= PAGE_MASK; 1349 if (((void *)hint != NULL) && 1350 (hint < mmap_min_addr)) 1351 return PAGE_ALIGN(mmap_min_addr); 1352 return hint; 1353 } 1354 1355 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1356 unsigned long len) 1357 { 1358 unsigned long locked, lock_limit; 1359 1360 /* mlock MCL_FUTURE? */ 1361 if (flags & VM_LOCKED) { 1362 locked = len >> PAGE_SHIFT; 1363 locked += mm->locked_vm; 1364 lock_limit = rlimit(RLIMIT_MEMLOCK); 1365 lock_limit >>= PAGE_SHIFT; 1366 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1367 return -EAGAIN; 1368 } 1369 return 0; 1370 } 1371 1372 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1373 { 1374 if (S_ISREG(inode->i_mode)) 1375 return MAX_LFS_FILESIZE; 1376 1377 if (S_ISBLK(inode->i_mode)) 1378 return MAX_LFS_FILESIZE; 1379 1380 if (S_ISSOCK(inode->i_mode)) 1381 return MAX_LFS_FILESIZE; 1382 1383 /* Special "we do even unsigned file positions" case */ 1384 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1385 return 0; 1386 1387 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1388 return ULONG_MAX; 1389 } 1390 1391 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1392 unsigned long pgoff, unsigned long len) 1393 { 1394 u64 maxsize = file_mmap_size_max(file, inode); 1395 1396 if (maxsize && len > maxsize) 1397 return false; 1398 maxsize -= len; 1399 if (pgoff > maxsize >> PAGE_SHIFT) 1400 return false; 1401 return true; 1402 } 1403 1404 /* 1405 * The caller must write-lock current->mm->mmap_lock. 1406 */ 1407 unsigned long do_mmap(struct file *file, unsigned long addr, 1408 unsigned long len, unsigned long prot, 1409 unsigned long flags, unsigned long pgoff, 1410 unsigned long *populate, struct list_head *uf) 1411 { 1412 struct mm_struct *mm = current->mm; 1413 vm_flags_t vm_flags; 1414 int pkey = 0; 1415 1416 *populate = 0; 1417 1418 if (!len) 1419 return -EINVAL; 1420 1421 /* 1422 * Does the application expect PROT_READ to imply PROT_EXEC? 1423 * 1424 * (the exception is when the underlying filesystem is noexec 1425 * mounted, in which case we dont add PROT_EXEC.) 1426 */ 1427 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1428 if (!(file && path_noexec(&file->f_path))) 1429 prot |= PROT_EXEC; 1430 1431 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1432 if (flags & MAP_FIXED_NOREPLACE) 1433 flags |= MAP_FIXED; 1434 1435 if (!(flags & MAP_FIXED)) 1436 addr = round_hint_to_min(addr); 1437 1438 /* Careful about overflows.. */ 1439 len = PAGE_ALIGN(len); 1440 if (!len) 1441 return -ENOMEM; 1442 1443 /* offset overflow? */ 1444 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1445 return -EOVERFLOW; 1446 1447 /* Too many mappings? */ 1448 if (mm->map_count > sysctl_max_map_count) 1449 return -ENOMEM; 1450 1451 /* Obtain the address to map to. we verify (or select) it and ensure 1452 * that it represents a valid section of the address space. 1453 */ 1454 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1455 if (IS_ERR_VALUE(addr)) 1456 return addr; 1457 1458 if (flags & MAP_FIXED_NOREPLACE) { 1459 if (find_vma_intersection(mm, addr, addr + len)) 1460 return -EEXIST; 1461 } 1462 1463 if (prot == PROT_EXEC) { 1464 pkey = execute_only_pkey(mm); 1465 if (pkey < 0) 1466 pkey = 0; 1467 } 1468 1469 /* Do simple checking here so the lower-level routines won't have 1470 * to. we assume access permissions have been handled by the open 1471 * of the memory object, so we don't do any here. 1472 */ 1473 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1474 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1475 1476 if (flags & MAP_LOCKED) 1477 if (!can_do_mlock()) 1478 return -EPERM; 1479 1480 if (mlock_future_check(mm, vm_flags, len)) 1481 return -EAGAIN; 1482 1483 if (file) { 1484 struct inode *inode = file_inode(file); 1485 unsigned long flags_mask; 1486 1487 if (!file_mmap_ok(file, inode, pgoff, len)) 1488 return -EOVERFLOW; 1489 1490 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1491 1492 switch (flags & MAP_TYPE) { 1493 case MAP_SHARED: 1494 /* 1495 * Force use of MAP_SHARED_VALIDATE with non-legacy 1496 * flags. E.g. MAP_SYNC is dangerous to use with 1497 * MAP_SHARED as you don't know which consistency model 1498 * you will get. We silently ignore unsupported flags 1499 * with MAP_SHARED to preserve backward compatibility. 1500 */ 1501 flags &= LEGACY_MAP_MASK; 1502 fallthrough; 1503 case MAP_SHARED_VALIDATE: 1504 if (flags & ~flags_mask) 1505 return -EOPNOTSUPP; 1506 if (prot & PROT_WRITE) { 1507 if (!(file->f_mode & FMODE_WRITE)) 1508 return -EACCES; 1509 if (IS_SWAPFILE(file->f_mapping->host)) 1510 return -ETXTBSY; 1511 } 1512 1513 /* 1514 * Make sure we don't allow writing to an append-only 1515 * file.. 1516 */ 1517 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1518 return -EACCES; 1519 1520 /* 1521 * Make sure there are no mandatory locks on the file. 1522 */ 1523 if (locks_verify_locked(file)) 1524 return -EAGAIN; 1525 1526 vm_flags |= VM_SHARED | VM_MAYSHARE; 1527 if (!(file->f_mode & FMODE_WRITE)) 1528 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1529 fallthrough; 1530 case MAP_PRIVATE: 1531 if (!(file->f_mode & FMODE_READ)) 1532 return -EACCES; 1533 if (path_noexec(&file->f_path)) { 1534 if (vm_flags & VM_EXEC) 1535 return -EPERM; 1536 vm_flags &= ~VM_MAYEXEC; 1537 } 1538 1539 if (!file->f_op->mmap) 1540 return -ENODEV; 1541 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1542 return -EINVAL; 1543 break; 1544 1545 default: 1546 return -EINVAL; 1547 } 1548 } else { 1549 switch (flags & MAP_TYPE) { 1550 case MAP_SHARED: 1551 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1552 return -EINVAL; 1553 /* 1554 * Ignore pgoff. 1555 */ 1556 pgoff = 0; 1557 vm_flags |= VM_SHARED | VM_MAYSHARE; 1558 break; 1559 case MAP_PRIVATE: 1560 /* 1561 * Set pgoff according to addr for anon_vma. 1562 */ 1563 pgoff = addr >> PAGE_SHIFT; 1564 break; 1565 default: 1566 return -EINVAL; 1567 } 1568 } 1569 1570 /* 1571 * Set 'VM_NORESERVE' if we should not account for the 1572 * memory use of this mapping. 1573 */ 1574 if (flags & MAP_NORESERVE) { 1575 /* We honor MAP_NORESERVE if allowed to overcommit */ 1576 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1577 vm_flags |= VM_NORESERVE; 1578 1579 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1580 if (file && is_file_hugepages(file)) 1581 vm_flags |= VM_NORESERVE; 1582 } 1583 1584 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1585 if (!IS_ERR_VALUE(addr) && 1586 ((vm_flags & VM_LOCKED) || 1587 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1588 *populate = len; 1589 return addr; 1590 } 1591 1592 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1593 unsigned long prot, unsigned long flags, 1594 unsigned long fd, unsigned long pgoff) 1595 { 1596 struct file *file = NULL; 1597 unsigned long retval; 1598 1599 if (!(flags & MAP_ANONYMOUS)) { 1600 audit_mmap_fd(fd, flags); 1601 file = fget(fd); 1602 if (!file) 1603 return -EBADF; 1604 if (is_file_hugepages(file)) { 1605 len = ALIGN(len, huge_page_size(hstate_file(file))); 1606 } else if (unlikely(flags & MAP_HUGETLB)) { 1607 retval = -EINVAL; 1608 goto out_fput; 1609 } 1610 } else if (flags & MAP_HUGETLB) { 1611 struct ucounts *ucounts = NULL; 1612 struct hstate *hs; 1613 1614 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1615 if (!hs) 1616 return -EINVAL; 1617 1618 len = ALIGN(len, huge_page_size(hs)); 1619 /* 1620 * VM_NORESERVE is used because the reservations will be 1621 * taken when vm_ops->mmap() is called 1622 * A dummy user value is used because we are not locking 1623 * memory so no accounting is necessary 1624 */ 1625 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1626 VM_NORESERVE, 1627 &ucounts, HUGETLB_ANONHUGE_INODE, 1628 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1629 if (IS_ERR(file)) 1630 return PTR_ERR(file); 1631 } 1632 1633 flags &= ~MAP_DENYWRITE; 1634 1635 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1636 out_fput: 1637 if (file) 1638 fput(file); 1639 return retval; 1640 } 1641 1642 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1643 unsigned long, prot, unsigned long, flags, 1644 unsigned long, fd, unsigned long, pgoff) 1645 { 1646 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1647 } 1648 1649 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1650 struct mmap_arg_struct { 1651 unsigned long addr; 1652 unsigned long len; 1653 unsigned long prot; 1654 unsigned long flags; 1655 unsigned long fd; 1656 unsigned long offset; 1657 }; 1658 1659 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1660 { 1661 struct mmap_arg_struct a; 1662 1663 if (copy_from_user(&a, arg, sizeof(a))) 1664 return -EFAULT; 1665 if (offset_in_page(a.offset)) 1666 return -EINVAL; 1667 1668 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1669 a.offset >> PAGE_SHIFT); 1670 } 1671 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1672 1673 /* 1674 * Some shared mappings will want the pages marked read-only 1675 * to track write events. If so, we'll downgrade vm_page_prot 1676 * to the private version (using protection_map[] without the 1677 * VM_SHARED bit). 1678 */ 1679 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1680 { 1681 vm_flags_t vm_flags = vma->vm_flags; 1682 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1683 1684 /* If it was private or non-writable, the write bit is already clear */ 1685 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1686 return 0; 1687 1688 /* The backer wishes to know when pages are first written to? */ 1689 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1690 return 1; 1691 1692 /* The open routine did something to the protections that pgprot_modify 1693 * won't preserve? */ 1694 if (pgprot_val(vm_page_prot) != 1695 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1696 return 0; 1697 1698 /* Do we need to track softdirty? */ 1699 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1700 return 1; 1701 1702 /* Specialty mapping? */ 1703 if (vm_flags & VM_PFNMAP) 1704 return 0; 1705 1706 /* Can the mapping track the dirty pages? */ 1707 return vma->vm_file && vma->vm_file->f_mapping && 1708 mapping_can_writeback(vma->vm_file->f_mapping); 1709 } 1710 1711 /* 1712 * We account for memory if it's a private writeable mapping, 1713 * not hugepages and VM_NORESERVE wasn't set. 1714 */ 1715 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1716 { 1717 /* 1718 * hugetlb has its own accounting separate from the core VM 1719 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1720 */ 1721 if (file && is_file_hugepages(file)) 1722 return 0; 1723 1724 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1725 } 1726 1727 unsigned long mmap_region(struct file *file, unsigned long addr, 1728 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1729 struct list_head *uf) 1730 { 1731 struct mm_struct *mm = current->mm; 1732 struct vm_area_struct *vma, *prev, *merge; 1733 int error; 1734 struct rb_node **rb_link, *rb_parent; 1735 unsigned long charged = 0; 1736 1737 /* Check against address space limit. */ 1738 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1739 unsigned long nr_pages; 1740 1741 /* 1742 * MAP_FIXED may remove pages of mappings that intersects with 1743 * requested mapping. Account for the pages it would unmap. 1744 */ 1745 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1746 1747 if (!may_expand_vm(mm, vm_flags, 1748 (len >> PAGE_SHIFT) - nr_pages)) 1749 return -ENOMEM; 1750 } 1751 1752 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1753 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1754 return -ENOMEM; 1755 /* 1756 * Private writable mapping: check memory availability 1757 */ 1758 if (accountable_mapping(file, vm_flags)) { 1759 charged = len >> PAGE_SHIFT; 1760 if (security_vm_enough_memory_mm(mm, charged)) 1761 return -ENOMEM; 1762 vm_flags |= VM_ACCOUNT; 1763 } 1764 1765 /* 1766 * Can we just expand an old mapping? 1767 */ 1768 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1769 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1770 if (vma) 1771 goto out; 1772 1773 /* 1774 * Determine the object being mapped and call the appropriate 1775 * specific mapper. the address has already been validated, but 1776 * not unmapped, but the maps are removed from the list. 1777 */ 1778 vma = vm_area_alloc(mm); 1779 if (!vma) { 1780 error = -ENOMEM; 1781 goto unacct_error; 1782 } 1783 1784 vma->vm_start = addr; 1785 vma->vm_end = addr + len; 1786 vma->vm_flags = vm_flags; 1787 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1788 vma->vm_pgoff = pgoff; 1789 1790 if (file) { 1791 if (vm_flags & VM_DENYWRITE) { 1792 error = deny_write_access(file); 1793 if (error) 1794 goto free_vma; 1795 } 1796 if (vm_flags & VM_SHARED) { 1797 error = mapping_map_writable(file->f_mapping); 1798 if (error) 1799 goto allow_write_and_free_vma; 1800 } 1801 1802 /* ->mmap() can change vma->vm_file, but must guarantee that 1803 * vma_link() below can deny write-access if VM_DENYWRITE is set 1804 * and map writably if VM_SHARED is set. This usually means the 1805 * new file must not have been exposed to user-space, yet. 1806 */ 1807 vma->vm_file = get_file(file); 1808 error = call_mmap(file, vma); 1809 if (error) 1810 goto unmap_and_free_vma; 1811 1812 /* Can addr have changed?? 1813 * 1814 * Answer: Yes, several device drivers can do it in their 1815 * f_op->mmap method. -DaveM 1816 * Bug: If addr is changed, prev, rb_link, rb_parent should 1817 * be updated for vma_link() 1818 */ 1819 WARN_ON_ONCE(addr != vma->vm_start); 1820 1821 addr = vma->vm_start; 1822 1823 /* If vm_flags changed after call_mmap(), we should try merge vma again 1824 * as we may succeed this time. 1825 */ 1826 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1827 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1828 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1829 if (merge) { 1830 /* ->mmap() can change vma->vm_file and fput the original file. So 1831 * fput the vma->vm_file here or we would add an extra fput for file 1832 * and cause general protection fault ultimately. 1833 */ 1834 fput(vma->vm_file); 1835 vm_area_free(vma); 1836 vma = merge; 1837 /* Update vm_flags to pick up the change. */ 1838 vm_flags = vma->vm_flags; 1839 goto unmap_writable; 1840 } 1841 } 1842 1843 vm_flags = vma->vm_flags; 1844 } else if (vm_flags & VM_SHARED) { 1845 error = shmem_zero_setup(vma); 1846 if (error) 1847 goto free_vma; 1848 } else { 1849 vma_set_anonymous(vma); 1850 } 1851 1852 /* Allow architectures to sanity-check the vm_flags */ 1853 if (!arch_validate_flags(vma->vm_flags)) { 1854 error = -EINVAL; 1855 if (file) 1856 goto unmap_and_free_vma; 1857 else 1858 goto free_vma; 1859 } 1860 1861 vma_link(mm, vma, prev, rb_link, rb_parent); 1862 /* Once vma denies write, undo our temporary denial count */ 1863 if (file) { 1864 unmap_writable: 1865 if (vm_flags & VM_SHARED) 1866 mapping_unmap_writable(file->f_mapping); 1867 if (vm_flags & VM_DENYWRITE) 1868 allow_write_access(file); 1869 } 1870 file = vma->vm_file; 1871 out: 1872 perf_event_mmap(vma); 1873 1874 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1875 if (vm_flags & VM_LOCKED) { 1876 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1877 is_vm_hugetlb_page(vma) || 1878 vma == get_gate_vma(current->mm)) 1879 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1880 else 1881 mm->locked_vm += (len >> PAGE_SHIFT); 1882 } 1883 1884 if (file) 1885 uprobe_mmap(vma); 1886 1887 /* 1888 * New (or expanded) vma always get soft dirty status. 1889 * Otherwise user-space soft-dirty page tracker won't 1890 * be able to distinguish situation when vma area unmapped, 1891 * then new mapped in-place (which must be aimed as 1892 * a completely new data area). 1893 */ 1894 vma->vm_flags |= VM_SOFTDIRTY; 1895 1896 vma_set_page_prot(vma); 1897 1898 return addr; 1899 1900 unmap_and_free_vma: 1901 fput(vma->vm_file); 1902 vma->vm_file = NULL; 1903 1904 /* Undo any partial mapping done by a device driver. */ 1905 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1906 charged = 0; 1907 if (vm_flags & VM_SHARED) 1908 mapping_unmap_writable(file->f_mapping); 1909 allow_write_and_free_vma: 1910 if (vm_flags & VM_DENYWRITE) 1911 allow_write_access(file); 1912 free_vma: 1913 vm_area_free(vma); 1914 unacct_error: 1915 if (charged) 1916 vm_unacct_memory(charged); 1917 return error; 1918 } 1919 1920 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1921 { 1922 /* 1923 * We implement the search by looking for an rbtree node that 1924 * immediately follows a suitable gap. That is, 1925 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1926 * - gap_end = vma->vm_start >= info->low_limit + length; 1927 * - gap_end - gap_start >= length 1928 */ 1929 1930 struct mm_struct *mm = current->mm; 1931 struct vm_area_struct *vma; 1932 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1933 1934 /* Adjust search length to account for worst case alignment overhead */ 1935 length = info->length + info->align_mask; 1936 if (length < info->length) 1937 return -ENOMEM; 1938 1939 /* Adjust search limits by the desired length */ 1940 if (info->high_limit < length) 1941 return -ENOMEM; 1942 high_limit = info->high_limit - length; 1943 1944 if (info->low_limit > high_limit) 1945 return -ENOMEM; 1946 low_limit = info->low_limit + length; 1947 1948 /* Check if rbtree root looks promising */ 1949 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1950 goto check_highest; 1951 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1952 if (vma->rb_subtree_gap < length) 1953 goto check_highest; 1954 1955 while (true) { 1956 /* Visit left subtree if it looks promising */ 1957 gap_end = vm_start_gap(vma); 1958 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1959 struct vm_area_struct *left = 1960 rb_entry(vma->vm_rb.rb_left, 1961 struct vm_area_struct, vm_rb); 1962 if (left->rb_subtree_gap >= length) { 1963 vma = left; 1964 continue; 1965 } 1966 } 1967 1968 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1969 check_current: 1970 /* Check if current node has a suitable gap */ 1971 if (gap_start > high_limit) 1972 return -ENOMEM; 1973 if (gap_end >= low_limit && 1974 gap_end > gap_start && gap_end - gap_start >= length) 1975 goto found; 1976 1977 /* Visit right subtree if it looks promising */ 1978 if (vma->vm_rb.rb_right) { 1979 struct vm_area_struct *right = 1980 rb_entry(vma->vm_rb.rb_right, 1981 struct vm_area_struct, vm_rb); 1982 if (right->rb_subtree_gap >= length) { 1983 vma = right; 1984 continue; 1985 } 1986 } 1987 1988 /* Go back up the rbtree to find next candidate node */ 1989 while (true) { 1990 struct rb_node *prev = &vma->vm_rb; 1991 if (!rb_parent(prev)) 1992 goto check_highest; 1993 vma = rb_entry(rb_parent(prev), 1994 struct vm_area_struct, vm_rb); 1995 if (prev == vma->vm_rb.rb_left) { 1996 gap_start = vm_end_gap(vma->vm_prev); 1997 gap_end = vm_start_gap(vma); 1998 goto check_current; 1999 } 2000 } 2001 } 2002 2003 check_highest: 2004 /* Check highest gap, which does not precede any rbtree node */ 2005 gap_start = mm->highest_vm_end; 2006 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 2007 if (gap_start > high_limit) 2008 return -ENOMEM; 2009 2010 found: 2011 /* We found a suitable gap. Clip it with the original low_limit. */ 2012 if (gap_start < info->low_limit) 2013 gap_start = info->low_limit; 2014 2015 /* Adjust gap address to the desired alignment */ 2016 gap_start += (info->align_offset - gap_start) & info->align_mask; 2017 2018 VM_BUG_ON(gap_start + info->length > info->high_limit); 2019 VM_BUG_ON(gap_start + info->length > gap_end); 2020 return gap_start; 2021 } 2022 2023 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2024 { 2025 struct mm_struct *mm = current->mm; 2026 struct vm_area_struct *vma; 2027 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2028 2029 /* Adjust search length to account for worst case alignment overhead */ 2030 length = info->length + info->align_mask; 2031 if (length < info->length) 2032 return -ENOMEM; 2033 2034 /* 2035 * Adjust search limits by the desired length. 2036 * See implementation comment at top of unmapped_area(). 2037 */ 2038 gap_end = info->high_limit; 2039 if (gap_end < length) 2040 return -ENOMEM; 2041 high_limit = gap_end - length; 2042 2043 if (info->low_limit > high_limit) 2044 return -ENOMEM; 2045 low_limit = info->low_limit + length; 2046 2047 /* Check highest gap, which does not precede any rbtree node */ 2048 gap_start = mm->highest_vm_end; 2049 if (gap_start <= high_limit) 2050 goto found_highest; 2051 2052 /* Check if rbtree root looks promising */ 2053 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2054 return -ENOMEM; 2055 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2056 if (vma->rb_subtree_gap < length) 2057 return -ENOMEM; 2058 2059 while (true) { 2060 /* Visit right subtree if it looks promising */ 2061 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2062 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2063 struct vm_area_struct *right = 2064 rb_entry(vma->vm_rb.rb_right, 2065 struct vm_area_struct, vm_rb); 2066 if (right->rb_subtree_gap >= length) { 2067 vma = right; 2068 continue; 2069 } 2070 } 2071 2072 check_current: 2073 /* Check if current node has a suitable gap */ 2074 gap_end = vm_start_gap(vma); 2075 if (gap_end < low_limit) 2076 return -ENOMEM; 2077 if (gap_start <= high_limit && 2078 gap_end > gap_start && gap_end - gap_start >= length) 2079 goto found; 2080 2081 /* Visit left subtree if it looks promising */ 2082 if (vma->vm_rb.rb_left) { 2083 struct vm_area_struct *left = 2084 rb_entry(vma->vm_rb.rb_left, 2085 struct vm_area_struct, vm_rb); 2086 if (left->rb_subtree_gap >= length) { 2087 vma = left; 2088 continue; 2089 } 2090 } 2091 2092 /* Go back up the rbtree to find next candidate node */ 2093 while (true) { 2094 struct rb_node *prev = &vma->vm_rb; 2095 if (!rb_parent(prev)) 2096 return -ENOMEM; 2097 vma = rb_entry(rb_parent(prev), 2098 struct vm_area_struct, vm_rb); 2099 if (prev == vma->vm_rb.rb_right) { 2100 gap_start = vma->vm_prev ? 2101 vm_end_gap(vma->vm_prev) : 0; 2102 goto check_current; 2103 } 2104 } 2105 } 2106 2107 found: 2108 /* We found a suitable gap. Clip it with the original high_limit. */ 2109 if (gap_end > info->high_limit) 2110 gap_end = info->high_limit; 2111 2112 found_highest: 2113 /* Compute highest gap address at the desired alignment */ 2114 gap_end -= info->length; 2115 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2116 2117 VM_BUG_ON(gap_end < info->low_limit); 2118 VM_BUG_ON(gap_end < gap_start); 2119 return gap_end; 2120 } 2121 2122 /* 2123 * Search for an unmapped address range. 2124 * 2125 * We are looking for a range that: 2126 * - does not intersect with any VMA; 2127 * - is contained within the [low_limit, high_limit) interval; 2128 * - is at least the desired size. 2129 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2130 */ 2131 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2132 { 2133 unsigned long addr; 2134 2135 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2136 addr = unmapped_area_topdown(info); 2137 else 2138 addr = unmapped_area(info); 2139 2140 trace_vm_unmapped_area(addr, info); 2141 return addr; 2142 } 2143 2144 #ifndef arch_get_mmap_end 2145 #define arch_get_mmap_end(addr) (TASK_SIZE) 2146 #endif 2147 2148 #ifndef arch_get_mmap_base 2149 #define arch_get_mmap_base(addr, base) (base) 2150 #endif 2151 2152 /* Get an address range which is currently unmapped. 2153 * For shmat() with addr=0. 2154 * 2155 * Ugly calling convention alert: 2156 * Return value with the low bits set means error value, 2157 * ie 2158 * if (ret & ~PAGE_MASK) 2159 * error = ret; 2160 * 2161 * This function "knows" that -ENOMEM has the bits set. 2162 */ 2163 #ifndef HAVE_ARCH_UNMAPPED_AREA 2164 unsigned long 2165 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2166 unsigned long len, unsigned long pgoff, unsigned long flags) 2167 { 2168 struct mm_struct *mm = current->mm; 2169 struct vm_area_struct *vma, *prev; 2170 struct vm_unmapped_area_info info; 2171 const unsigned long mmap_end = arch_get_mmap_end(addr); 2172 2173 if (len > mmap_end - mmap_min_addr) 2174 return -ENOMEM; 2175 2176 if (flags & MAP_FIXED) 2177 return addr; 2178 2179 if (addr) { 2180 addr = PAGE_ALIGN(addr); 2181 vma = find_vma_prev(mm, addr, &prev); 2182 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2183 (!vma || addr + len <= vm_start_gap(vma)) && 2184 (!prev || addr >= vm_end_gap(prev))) 2185 return addr; 2186 } 2187 2188 info.flags = 0; 2189 info.length = len; 2190 info.low_limit = mm->mmap_base; 2191 info.high_limit = mmap_end; 2192 info.align_mask = 0; 2193 info.align_offset = 0; 2194 return vm_unmapped_area(&info); 2195 } 2196 #endif 2197 2198 /* 2199 * This mmap-allocator allocates new areas top-down from below the 2200 * stack's low limit (the base): 2201 */ 2202 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2203 unsigned long 2204 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2205 unsigned long len, unsigned long pgoff, 2206 unsigned long flags) 2207 { 2208 struct vm_area_struct *vma, *prev; 2209 struct mm_struct *mm = current->mm; 2210 struct vm_unmapped_area_info info; 2211 const unsigned long mmap_end = arch_get_mmap_end(addr); 2212 2213 /* requested length too big for entire address space */ 2214 if (len > mmap_end - mmap_min_addr) 2215 return -ENOMEM; 2216 2217 if (flags & MAP_FIXED) 2218 return addr; 2219 2220 /* requesting a specific address */ 2221 if (addr) { 2222 addr = PAGE_ALIGN(addr); 2223 vma = find_vma_prev(mm, addr, &prev); 2224 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2225 (!vma || addr + len <= vm_start_gap(vma)) && 2226 (!prev || addr >= vm_end_gap(prev))) 2227 return addr; 2228 } 2229 2230 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2231 info.length = len; 2232 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2233 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2234 info.align_mask = 0; 2235 info.align_offset = 0; 2236 addr = vm_unmapped_area(&info); 2237 2238 /* 2239 * A failed mmap() very likely causes application failure, 2240 * so fall back to the bottom-up function here. This scenario 2241 * can happen with large stack limits and large mmap() 2242 * allocations. 2243 */ 2244 if (offset_in_page(addr)) { 2245 VM_BUG_ON(addr != -ENOMEM); 2246 info.flags = 0; 2247 info.low_limit = TASK_UNMAPPED_BASE; 2248 info.high_limit = mmap_end; 2249 addr = vm_unmapped_area(&info); 2250 } 2251 2252 return addr; 2253 } 2254 #endif 2255 2256 unsigned long 2257 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2258 unsigned long pgoff, unsigned long flags) 2259 { 2260 unsigned long (*get_area)(struct file *, unsigned long, 2261 unsigned long, unsigned long, unsigned long); 2262 2263 unsigned long error = arch_mmap_check(addr, len, flags); 2264 if (error) 2265 return error; 2266 2267 /* Careful about overflows.. */ 2268 if (len > TASK_SIZE) 2269 return -ENOMEM; 2270 2271 get_area = current->mm->get_unmapped_area; 2272 if (file) { 2273 if (file->f_op->get_unmapped_area) 2274 get_area = file->f_op->get_unmapped_area; 2275 } else if (flags & MAP_SHARED) { 2276 /* 2277 * mmap_region() will call shmem_zero_setup() to create a file, 2278 * so use shmem's get_unmapped_area in case it can be huge. 2279 * do_mmap() will clear pgoff, so match alignment. 2280 */ 2281 pgoff = 0; 2282 get_area = shmem_get_unmapped_area; 2283 } 2284 2285 addr = get_area(file, addr, len, pgoff, flags); 2286 if (IS_ERR_VALUE(addr)) 2287 return addr; 2288 2289 if (addr > TASK_SIZE - len) 2290 return -ENOMEM; 2291 if (offset_in_page(addr)) 2292 return -EINVAL; 2293 2294 error = security_mmap_addr(addr); 2295 return error ? error : addr; 2296 } 2297 2298 EXPORT_SYMBOL(get_unmapped_area); 2299 2300 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2301 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2302 { 2303 struct rb_node *rb_node; 2304 struct vm_area_struct *vma; 2305 2306 /* Check the cache first. */ 2307 vma = vmacache_find(mm, addr); 2308 if (likely(vma)) 2309 return vma; 2310 2311 rb_node = mm->mm_rb.rb_node; 2312 2313 while (rb_node) { 2314 struct vm_area_struct *tmp; 2315 2316 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2317 2318 if (tmp->vm_end > addr) { 2319 vma = tmp; 2320 if (tmp->vm_start <= addr) 2321 break; 2322 rb_node = rb_node->rb_left; 2323 } else 2324 rb_node = rb_node->rb_right; 2325 } 2326 2327 if (vma) 2328 vmacache_update(addr, vma); 2329 return vma; 2330 } 2331 2332 EXPORT_SYMBOL(find_vma); 2333 2334 /* 2335 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2336 */ 2337 struct vm_area_struct * 2338 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2339 struct vm_area_struct **pprev) 2340 { 2341 struct vm_area_struct *vma; 2342 2343 vma = find_vma(mm, addr); 2344 if (vma) { 2345 *pprev = vma->vm_prev; 2346 } else { 2347 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2348 2349 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2350 } 2351 return vma; 2352 } 2353 2354 /* 2355 * Verify that the stack growth is acceptable and 2356 * update accounting. This is shared with both the 2357 * grow-up and grow-down cases. 2358 */ 2359 static int acct_stack_growth(struct vm_area_struct *vma, 2360 unsigned long size, unsigned long grow) 2361 { 2362 struct mm_struct *mm = vma->vm_mm; 2363 unsigned long new_start; 2364 2365 /* address space limit tests */ 2366 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2367 return -ENOMEM; 2368 2369 /* Stack limit test */ 2370 if (size > rlimit(RLIMIT_STACK)) 2371 return -ENOMEM; 2372 2373 /* mlock limit tests */ 2374 if (vma->vm_flags & VM_LOCKED) { 2375 unsigned long locked; 2376 unsigned long limit; 2377 locked = mm->locked_vm + grow; 2378 limit = rlimit(RLIMIT_MEMLOCK); 2379 limit >>= PAGE_SHIFT; 2380 if (locked > limit && !capable(CAP_IPC_LOCK)) 2381 return -ENOMEM; 2382 } 2383 2384 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2385 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2386 vma->vm_end - size; 2387 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2388 return -EFAULT; 2389 2390 /* 2391 * Overcommit.. This must be the final test, as it will 2392 * update security statistics. 2393 */ 2394 if (security_vm_enough_memory_mm(mm, grow)) 2395 return -ENOMEM; 2396 2397 return 0; 2398 } 2399 2400 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2401 /* 2402 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2403 * vma is the last one with address > vma->vm_end. Have to extend vma. 2404 */ 2405 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2406 { 2407 struct mm_struct *mm = vma->vm_mm; 2408 struct vm_area_struct *next; 2409 unsigned long gap_addr; 2410 int error = 0; 2411 2412 if (!(vma->vm_flags & VM_GROWSUP)) 2413 return -EFAULT; 2414 2415 /* Guard against exceeding limits of the address space. */ 2416 address &= PAGE_MASK; 2417 if (address >= (TASK_SIZE & PAGE_MASK)) 2418 return -ENOMEM; 2419 address += PAGE_SIZE; 2420 2421 /* Enforce stack_guard_gap */ 2422 gap_addr = address + stack_guard_gap; 2423 2424 /* Guard against overflow */ 2425 if (gap_addr < address || gap_addr > TASK_SIZE) 2426 gap_addr = TASK_SIZE; 2427 2428 next = vma->vm_next; 2429 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2430 if (!(next->vm_flags & VM_GROWSUP)) 2431 return -ENOMEM; 2432 /* Check that both stack segments have the same anon_vma? */ 2433 } 2434 2435 /* We must make sure the anon_vma is allocated. */ 2436 if (unlikely(anon_vma_prepare(vma))) 2437 return -ENOMEM; 2438 2439 /* 2440 * vma->vm_start/vm_end cannot change under us because the caller 2441 * is required to hold the mmap_lock in read mode. We need the 2442 * anon_vma lock to serialize against concurrent expand_stacks. 2443 */ 2444 anon_vma_lock_write(vma->anon_vma); 2445 2446 /* Somebody else might have raced and expanded it already */ 2447 if (address > vma->vm_end) { 2448 unsigned long size, grow; 2449 2450 size = address - vma->vm_start; 2451 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2452 2453 error = -ENOMEM; 2454 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2455 error = acct_stack_growth(vma, size, grow); 2456 if (!error) { 2457 /* 2458 * vma_gap_update() doesn't support concurrent 2459 * updates, but we only hold a shared mmap_lock 2460 * lock here, so we need to protect against 2461 * concurrent vma expansions. 2462 * anon_vma_lock_write() doesn't help here, as 2463 * we don't guarantee that all growable vmas 2464 * in a mm share the same root anon vma. 2465 * So, we reuse mm->page_table_lock to guard 2466 * against concurrent vma expansions. 2467 */ 2468 spin_lock(&mm->page_table_lock); 2469 if (vma->vm_flags & VM_LOCKED) 2470 mm->locked_vm += grow; 2471 vm_stat_account(mm, vma->vm_flags, grow); 2472 anon_vma_interval_tree_pre_update_vma(vma); 2473 vma->vm_end = address; 2474 anon_vma_interval_tree_post_update_vma(vma); 2475 if (vma->vm_next) 2476 vma_gap_update(vma->vm_next); 2477 else 2478 mm->highest_vm_end = vm_end_gap(vma); 2479 spin_unlock(&mm->page_table_lock); 2480 2481 perf_event_mmap(vma); 2482 } 2483 } 2484 } 2485 anon_vma_unlock_write(vma->anon_vma); 2486 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2487 validate_mm(mm); 2488 return error; 2489 } 2490 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2491 2492 /* 2493 * vma is the first one with address < vma->vm_start. Have to extend vma. 2494 */ 2495 int expand_downwards(struct vm_area_struct *vma, 2496 unsigned long address) 2497 { 2498 struct mm_struct *mm = vma->vm_mm; 2499 struct vm_area_struct *prev; 2500 int error = 0; 2501 2502 address &= PAGE_MASK; 2503 if (address < mmap_min_addr) 2504 return -EPERM; 2505 2506 /* Enforce stack_guard_gap */ 2507 prev = vma->vm_prev; 2508 /* Check that both stack segments have the same anon_vma? */ 2509 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2510 vma_is_accessible(prev)) { 2511 if (address - prev->vm_end < stack_guard_gap) 2512 return -ENOMEM; 2513 } 2514 2515 /* We must make sure the anon_vma is allocated. */ 2516 if (unlikely(anon_vma_prepare(vma))) 2517 return -ENOMEM; 2518 2519 /* 2520 * vma->vm_start/vm_end cannot change under us because the caller 2521 * is required to hold the mmap_lock in read mode. We need the 2522 * anon_vma lock to serialize against concurrent expand_stacks. 2523 */ 2524 anon_vma_lock_write(vma->anon_vma); 2525 2526 /* Somebody else might have raced and expanded it already */ 2527 if (address < vma->vm_start) { 2528 unsigned long size, grow; 2529 2530 size = vma->vm_end - address; 2531 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2532 2533 error = -ENOMEM; 2534 if (grow <= vma->vm_pgoff) { 2535 error = acct_stack_growth(vma, size, grow); 2536 if (!error) { 2537 /* 2538 * vma_gap_update() doesn't support concurrent 2539 * updates, but we only hold a shared mmap_lock 2540 * lock here, so we need to protect against 2541 * concurrent vma expansions. 2542 * anon_vma_lock_write() doesn't help here, as 2543 * we don't guarantee that all growable vmas 2544 * in a mm share the same root anon vma. 2545 * So, we reuse mm->page_table_lock to guard 2546 * against concurrent vma expansions. 2547 */ 2548 spin_lock(&mm->page_table_lock); 2549 if (vma->vm_flags & VM_LOCKED) 2550 mm->locked_vm += grow; 2551 vm_stat_account(mm, vma->vm_flags, grow); 2552 anon_vma_interval_tree_pre_update_vma(vma); 2553 vma->vm_start = address; 2554 vma->vm_pgoff -= grow; 2555 anon_vma_interval_tree_post_update_vma(vma); 2556 vma_gap_update(vma); 2557 spin_unlock(&mm->page_table_lock); 2558 2559 perf_event_mmap(vma); 2560 } 2561 } 2562 } 2563 anon_vma_unlock_write(vma->anon_vma); 2564 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2565 validate_mm(mm); 2566 return error; 2567 } 2568 2569 /* enforced gap between the expanding stack and other mappings. */ 2570 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2571 2572 static int __init cmdline_parse_stack_guard_gap(char *p) 2573 { 2574 unsigned long val; 2575 char *endptr; 2576 2577 val = simple_strtoul(p, &endptr, 10); 2578 if (!*endptr) 2579 stack_guard_gap = val << PAGE_SHIFT; 2580 2581 return 0; 2582 } 2583 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2584 2585 #ifdef CONFIG_STACK_GROWSUP 2586 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2587 { 2588 return expand_upwards(vma, address); 2589 } 2590 2591 struct vm_area_struct * 2592 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2593 { 2594 struct vm_area_struct *vma, *prev; 2595 2596 addr &= PAGE_MASK; 2597 vma = find_vma_prev(mm, addr, &prev); 2598 if (vma && (vma->vm_start <= addr)) 2599 return vma; 2600 /* don't alter vm_end if the coredump is running */ 2601 if (!prev || expand_stack(prev, addr)) 2602 return NULL; 2603 if (prev->vm_flags & VM_LOCKED) 2604 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2605 return prev; 2606 } 2607 #else 2608 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2609 { 2610 return expand_downwards(vma, address); 2611 } 2612 2613 struct vm_area_struct * 2614 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2615 { 2616 struct vm_area_struct *vma; 2617 unsigned long start; 2618 2619 addr &= PAGE_MASK; 2620 vma = find_vma(mm, addr); 2621 if (!vma) 2622 return NULL; 2623 if (vma->vm_start <= addr) 2624 return vma; 2625 if (!(vma->vm_flags & VM_GROWSDOWN)) 2626 return NULL; 2627 start = vma->vm_start; 2628 if (expand_stack(vma, addr)) 2629 return NULL; 2630 if (vma->vm_flags & VM_LOCKED) 2631 populate_vma_page_range(vma, addr, start, NULL); 2632 return vma; 2633 } 2634 #endif 2635 2636 EXPORT_SYMBOL_GPL(find_extend_vma); 2637 2638 /* 2639 * Ok - we have the memory areas we should free on the vma list, 2640 * so release them, and do the vma updates. 2641 * 2642 * Called with the mm semaphore held. 2643 */ 2644 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2645 { 2646 unsigned long nr_accounted = 0; 2647 2648 /* Update high watermark before we lower total_vm */ 2649 update_hiwater_vm(mm); 2650 do { 2651 long nrpages = vma_pages(vma); 2652 2653 if (vma->vm_flags & VM_ACCOUNT) 2654 nr_accounted += nrpages; 2655 vm_stat_account(mm, vma->vm_flags, -nrpages); 2656 vma = remove_vma(vma); 2657 } while (vma); 2658 vm_unacct_memory(nr_accounted); 2659 validate_mm(mm); 2660 } 2661 2662 /* 2663 * Get rid of page table information in the indicated region. 2664 * 2665 * Called with the mm semaphore held. 2666 */ 2667 static void unmap_region(struct mm_struct *mm, 2668 struct vm_area_struct *vma, struct vm_area_struct *prev, 2669 unsigned long start, unsigned long end) 2670 { 2671 struct vm_area_struct *next = vma_next(mm, prev); 2672 struct mmu_gather tlb; 2673 2674 lru_add_drain(); 2675 tlb_gather_mmu(&tlb, mm); 2676 update_hiwater_rss(mm); 2677 unmap_vmas(&tlb, vma, start, end); 2678 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2679 next ? next->vm_start : USER_PGTABLES_CEILING); 2680 tlb_finish_mmu(&tlb); 2681 } 2682 2683 /* 2684 * Create a list of vma's touched by the unmap, removing them from the mm's 2685 * vma list as we go.. 2686 */ 2687 static bool 2688 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2689 struct vm_area_struct *prev, unsigned long end) 2690 { 2691 struct vm_area_struct **insertion_point; 2692 struct vm_area_struct *tail_vma = NULL; 2693 2694 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2695 vma->vm_prev = NULL; 2696 do { 2697 vma_rb_erase(vma, &mm->mm_rb); 2698 mm->map_count--; 2699 tail_vma = vma; 2700 vma = vma->vm_next; 2701 } while (vma && vma->vm_start < end); 2702 *insertion_point = vma; 2703 if (vma) { 2704 vma->vm_prev = prev; 2705 vma_gap_update(vma); 2706 } else 2707 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2708 tail_vma->vm_next = NULL; 2709 2710 /* Kill the cache */ 2711 vmacache_invalidate(mm); 2712 2713 /* 2714 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2715 * VM_GROWSUP VMA. Such VMAs can change their size under 2716 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2717 */ 2718 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2719 return false; 2720 if (prev && (prev->vm_flags & VM_GROWSUP)) 2721 return false; 2722 return true; 2723 } 2724 2725 /* 2726 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2727 * has already been checked or doesn't make sense to fail. 2728 */ 2729 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2730 unsigned long addr, int new_below) 2731 { 2732 struct vm_area_struct *new; 2733 int err; 2734 2735 if (vma->vm_ops && vma->vm_ops->may_split) { 2736 err = vma->vm_ops->may_split(vma, addr); 2737 if (err) 2738 return err; 2739 } 2740 2741 new = vm_area_dup(vma); 2742 if (!new) 2743 return -ENOMEM; 2744 2745 if (new_below) 2746 new->vm_end = addr; 2747 else { 2748 new->vm_start = addr; 2749 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2750 } 2751 2752 err = vma_dup_policy(vma, new); 2753 if (err) 2754 goto out_free_vma; 2755 2756 err = anon_vma_clone(new, vma); 2757 if (err) 2758 goto out_free_mpol; 2759 2760 if (new->vm_file) 2761 get_file(new->vm_file); 2762 2763 if (new->vm_ops && new->vm_ops->open) 2764 new->vm_ops->open(new); 2765 2766 if (new_below) 2767 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2768 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2769 else 2770 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2771 2772 /* Success. */ 2773 if (!err) 2774 return 0; 2775 2776 /* Clean everything up if vma_adjust failed. */ 2777 if (new->vm_ops && new->vm_ops->close) 2778 new->vm_ops->close(new); 2779 if (new->vm_file) 2780 fput(new->vm_file); 2781 unlink_anon_vmas(new); 2782 out_free_mpol: 2783 mpol_put(vma_policy(new)); 2784 out_free_vma: 2785 vm_area_free(new); 2786 return err; 2787 } 2788 2789 /* 2790 * Split a vma into two pieces at address 'addr', a new vma is allocated 2791 * either for the first part or the tail. 2792 */ 2793 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2794 unsigned long addr, int new_below) 2795 { 2796 if (mm->map_count >= sysctl_max_map_count) 2797 return -ENOMEM; 2798 2799 return __split_vma(mm, vma, addr, new_below); 2800 } 2801 2802 static inline void 2803 unlock_range(struct vm_area_struct *start, unsigned long limit) 2804 { 2805 struct mm_struct *mm = start->vm_mm; 2806 struct vm_area_struct *tmp = start; 2807 2808 while (tmp && tmp->vm_start < limit) { 2809 if (tmp->vm_flags & VM_LOCKED) { 2810 mm->locked_vm -= vma_pages(tmp); 2811 munlock_vma_pages_all(tmp); 2812 } 2813 2814 tmp = tmp->vm_next; 2815 } 2816 } 2817 2818 /* Munmap is split into 2 main parts -- this part which finds 2819 * what needs doing, and the areas themselves, which do the 2820 * work. This now handles partial unmappings. 2821 * Jeremy Fitzhardinge <jeremy@goop.org> 2822 */ 2823 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2824 struct list_head *uf, bool downgrade) 2825 { 2826 unsigned long end; 2827 struct vm_area_struct *vma, *prev, *last; 2828 2829 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2830 return -EINVAL; 2831 2832 len = PAGE_ALIGN(len); 2833 end = start + len; 2834 if (len == 0) 2835 return -EINVAL; 2836 2837 /* 2838 * arch_unmap() might do unmaps itself. It must be called 2839 * and finish any rbtree manipulation before this code 2840 * runs and also starts to manipulate the rbtree. 2841 */ 2842 arch_unmap(mm, start, end); 2843 2844 /* Find the first overlapping VMA where start < vma->vm_end */ 2845 vma = find_vma_intersection(mm, start, end); 2846 if (!vma) 2847 return 0; 2848 prev = vma->vm_prev; 2849 2850 /* 2851 * If we need to split any vma, do it now to save pain later. 2852 * 2853 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2854 * unmapped vm_area_struct will remain in use: so lower split_vma 2855 * places tmp vma above, and higher split_vma places tmp vma below. 2856 */ 2857 if (start > vma->vm_start) { 2858 int error; 2859 2860 /* 2861 * Make sure that map_count on return from munmap() will 2862 * not exceed its limit; but let map_count go just above 2863 * its limit temporarily, to help free resources as expected. 2864 */ 2865 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2866 return -ENOMEM; 2867 2868 error = __split_vma(mm, vma, start, 0); 2869 if (error) 2870 return error; 2871 prev = vma; 2872 } 2873 2874 /* Does it split the last one? */ 2875 last = find_vma(mm, end); 2876 if (last && end > last->vm_start) { 2877 int error = __split_vma(mm, last, end, 1); 2878 if (error) 2879 return error; 2880 } 2881 vma = vma_next(mm, prev); 2882 2883 if (unlikely(uf)) { 2884 /* 2885 * If userfaultfd_unmap_prep returns an error the vmas 2886 * will remain split, but userland will get a 2887 * highly unexpected error anyway. This is no 2888 * different than the case where the first of the two 2889 * __split_vma fails, but we don't undo the first 2890 * split, despite we could. This is unlikely enough 2891 * failure that it's not worth optimizing it for. 2892 */ 2893 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2894 if (error) 2895 return error; 2896 } 2897 2898 /* 2899 * unlock any mlock()ed ranges before detaching vmas 2900 */ 2901 if (mm->locked_vm) 2902 unlock_range(vma, end); 2903 2904 /* Detach vmas from rbtree */ 2905 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2906 downgrade = false; 2907 2908 if (downgrade) 2909 mmap_write_downgrade(mm); 2910 2911 unmap_region(mm, vma, prev, start, end); 2912 2913 /* Fix up all other VM information */ 2914 remove_vma_list(mm, vma); 2915 2916 return downgrade ? 1 : 0; 2917 } 2918 2919 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2920 struct list_head *uf) 2921 { 2922 return __do_munmap(mm, start, len, uf, false); 2923 } 2924 2925 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2926 { 2927 int ret; 2928 struct mm_struct *mm = current->mm; 2929 LIST_HEAD(uf); 2930 2931 if (mmap_write_lock_killable(mm)) 2932 return -EINTR; 2933 2934 ret = __do_munmap(mm, start, len, &uf, downgrade); 2935 /* 2936 * Returning 1 indicates mmap_lock is downgraded. 2937 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2938 * it to 0 before return. 2939 */ 2940 if (ret == 1) { 2941 mmap_read_unlock(mm); 2942 ret = 0; 2943 } else 2944 mmap_write_unlock(mm); 2945 2946 userfaultfd_unmap_complete(mm, &uf); 2947 return ret; 2948 } 2949 2950 int vm_munmap(unsigned long start, size_t len) 2951 { 2952 return __vm_munmap(start, len, false); 2953 } 2954 EXPORT_SYMBOL(vm_munmap); 2955 2956 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2957 { 2958 addr = untagged_addr(addr); 2959 profile_munmap(addr); 2960 return __vm_munmap(addr, len, true); 2961 } 2962 2963 2964 /* 2965 * Emulation of deprecated remap_file_pages() syscall. 2966 */ 2967 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2968 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2969 { 2970 2971 struct mm_struct *mm = current->mm; 2972 struct vm_area_struct *vma; 2973 unsigned long populate = 0; 2974 unsigned long ret = -EINVAL; 2975 struct file *file; 2976 2977 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2978 current->comm, current->pid); 2979 2980 if (prot) 2981 return ret; 2982 start = start & PAGE_MASK; 2983 size = size & PAGE_MASK; 2984 2985 if (start + size <= start) 2986 return ret; 2987 2988 /* Does pgoff wrap? */ 2989 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2990 return ret; 2991 2992 if (mmap_write_lock_killable(mm)) 2993 return -EINTR; 2994 2995 vma = find_vma(mm, start); 2996 2997 if (!vma || !(vma->vm_flags & VM_SHARED)) 2998 goto out; 2999 3000 if (start < vma->vm_start) 3001 goto out; 3002 3003 if (start + size > vma->vm_end) { 3004 struct vm_area_struct *next; 3005 3006 for (next = vma->vm_next; next; next = next->vm_next) { 3007 /* hole between vmas ? */ 3008 if (next->vm_start != next->vm_prev->vm_end) 3009 goto out; 3010 3011 if (next->vm_file != vma->vm_file) 3012 goto out; 3013 3014 if (next->vm_flags != vma->vm_flags) 3015 goto out; 3016 3017 if (start + size <= next->vm_end) 3018 break; 3019 } 3020 3021 if (!next) 3022 goto out; 3023 } 3024 3025 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3026 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3027 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3028 3029 flags &= MAP_NONBLOCK; 3030 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3031 if (vma->vm_flags & VM_LOCKED) 3032 flags |= MAP_LOCKED; 3033 3034 file = get_file(vma->vm_file); 3035 ret = do_mmap(vma->vm_file, start, size, 3036 prot, flags, pgoff, &populate, NULL); 3037 fput(file); 3038 out: 3039 mmap_write_unlock(mm); 3040 if (populate) 3041 mm_populate(ret, populate); 3042 if (!IS_ERR_VALUE(ret)) 3043 ret = 0; 3044 return ret; 3045 } 3046 3047 /* 3048 * this is really a simplified "do_mmap". it only handles 3049 * anonymous maps. eventually we may be able to do some 3050 * brk-specific accounting here. 3051 */ 3052 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3053 { 3054 struct mm_struct *mm = current->mm; 3055 struct vm_area_struct *vma, *prev; 3056 struct rb_node **rb_link, *rb_parent; 3057 pgoff_t pgoff = addr >> PAGE_SHIFT; 3058 int error; 3059 unsigned long mapped_addr; 3060 3061 /* Until we need other flags, refuse anything except VM_EXEC. */ 3062 if ((flags & (~VM_EXEC)) != 0) 3063 return -EINVAL; 3064 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3065 3066 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3067 if (IS_ERR_VALUE(mapped_addr)) 3068 return mapped_addr; 3069 3070 error = mlock_future_check(mm, mm->def_flags, len); 3071 if (error) 3072 return error; 3073 3074 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3075 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3076 return -ENOMEM; 3077 3078 /* Check against address space limits *after* clearing old maps... */ 3079 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3080 return -ENOMEM; 3081 3082 if (mm->map_count > sysctl_max_map_count) 3083 return -ENOMEM; 3084 3085 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3086 return -ENOMEM; 3087 3088 /* Can we just expand an old private anonymous mapping? */ 3089 vma = vma_merge(mm, prev, addr, addr + len, flags, 3090 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3091 if (vma) 3092 goto out; 3093 3094 /* 3095 * create a vma struct for an anonymous mapping 3096 */ 3097 vma = vm_area_alloc(mm); 3098 if (!vma) { 3099 vm_unacct_memory(len >> PAGE_SHIFT); 3100 return -ENOMEM; 3101 } 3102 3103 vma_set_anonymous(vma); 3104 vma->vm_start = addr; 3105 vma->vm_end = addr + len; 3106 vma->vm_pgoff = pgoff; 3107 vma->vm_flags = flags; 3108 vma->vm_page_prot = vm_get_page_prot(flags); 3109 vma_link(mm, vma, prev, rb_link, rb_parent); 3110 out: 3111 perf_event_mmap(vma); 3112 mm->total_vm += len >> PAGE_SHIFT; 3113 mm->data_vm += len >> PAGE_SHIFT; 3114 if (flags & VM_LOCKED) 3115 mm->locked_vm += (len >> PAGE_SHIFT); 3116 vma->vm_flags |= VM_SOFTDIRTY; 3117 return 0; 3118 } 3119 3120 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3121 { 3122 struct mm_struct *mm = current->mm; 3123 unsigned long len; 3124 int ret; 3125 bool populate; 3126 LIST_HEAD(uf); 3127 3128 len = PAGE_ALIGN(request); 3129 if (len < request) 3130 return -ENOMEM; 3131 if (!len) 3132 return 0; 3133 3134 if (mmap_write_lock_killable(mm)) 3135 return -EINTR; 3136 3137 ret = do_brk_flags(addr, len, flags, &uf); 3138 populate = ((mm->def_flags & VM_LOCKED) != 0); 3139 mmap_write_unlock(mm); 3140 userfaultfd_unmap_complete(mm, &uf); 3141 if (populate && !ret) 3142 mm_populate(addr, len); 3143 return ret; 3144 } 3145 EXPORT_SYMBOL(vm_brk_flags); 3146 3147 int vm_brk(unsigned long addr, unsigned long len) 3148 { 3149 return vm_brk_flags(addr, len, 0); 3150 } 3151 EXPORT_SYMBOL(vm_brk); 3152 3153 /* Release all mmaps. */ 3154 void exit_mmap(struct mm_struct *mm) 3155 { 3156 struct mmu_gather tlb; 3157 struct vm_area_struct *vma; 3158 unsigned long nr_accounted = 0; 3159 3160 /* mm's last user has gone, and its about to be pulled down */ 3161 mmu_notifier_release(mm); 3162 3163 if (unlikely(mm_is_oom_victim(mm))) { 3164 /* 3165 * Manually reap the mm to free as much memory as possible. 3166 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3167 * this mm from further consideration. Taking mm->mmap_lock for 3168 * write after setting MMF_OOM_SKIP will guarantee that the oom 3169 * reaper will not run on this mm again after mmap_lock is 3170 * dropped. 3171 * 3172 * Nothing can be holding mm->mmap_lock here and the above call 3173 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3174 * __oom_reap_task_mm() will not block. 3175 * 3176 * This needs to be done before calling munlock_vma_pages_all(), 3177 * which clears VM_LOCKED, otherwise the oom reaper cannot 3178 * reliably test it. 3179 */ 3180 (void)__oom_reap_task_mm(mm); 3181 3182 set_bit(MMF_OOM_SKIP, &mm->flags); 3183 mmap_write_lock(mm); 3184 mmap_write_unlock(mm); 3185 } 3186 3187 if (mm->locked_vm) 3188 unlock_range(mm->mmap, ULONG_MAX); 3189 3190 arch_exit_mmap(mm); 3191 3192 vma = mm->mmap; 3193 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3194 return; 3195 3196 lru_add_drain(); 3197 flush_cache_mm(mm); 3198 tlb_gather_mmu_fullmm(&tlb, mm); 3199 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3200 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3201 unmap_vmas(&tlb, vma, 0, -1); 3202 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3203 tlb_finish_mmu(&tlb); 3204 3205 /* 3206 * Walk the list again, actually closing and freeing it, 3207 * with preemption enabled, without holding any MM locks. 3208 */ 3209 while (vma) { 3210 if (vma->vm_flags & VM_ACCOUNT) 3211 nr_accounted += vma_pages(vma); 3212 vma = remove_vma(vma); 3213 cond_resched(); 3214 } 3215 vm_unacct_memory(nr_accounted); 3216 } 3217 3218 /* Insert vm structure into process list sorted by address 3219 * and into the inode's i_mmap tree. If vm_file is non-NULL 3220 * then i_mmap_rwsem is taken here. 3221 */ 3222 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3223 { 3224 struct vm_area_struct *prev; 3225 struct rb_node **rb_link, *rb_parent; 3226 3227 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3228 &prev, &rb_link, &rb_parent)) 3229 return -ENOMEM; 3230 if ((vma->vm_flags & VM_ACCOUNT) && 3231 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3232 return -ENOMEM; 3233 3234 /* 3235 * The vm_pgoff of a purely anonymous vma should be irrelevant 3236 * until its first write fault, when page's anon_vma and index 3237 * are set. But now set the vm_pgoff it will almost certainly 3238 * end up with (unless mremap moves it elsewhere before that 3239 * first wfault), so /proc/pid/maps tells a consistent story. 3240 * 3241 * By setting it to reflect the virtual start address of the 3242 * vma, merges and splits can happen in a seamless way, just 3243 * using the existing file pgoff checks and manipulations. 3244 * Similarly in do_mmap and in do_brk_flags. 3245 */ 3246 if (vma_is_anonymous(vma)) { 3247 BUG_ON(vma->anon_vma); 3248 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3249 } 3250 3251 vma_link(mm, vma, prev, rb_link, rb_parent); 3252 return 0; 3253 } 3254 3255 /* 3256 * Copy the vma structure to a new location in the same mm, 3257 * prior to moving page table entries, to effect an mremap move. 3258 */ 3259 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3260 unsigned long addr, unsigned long len, pgoff_t pgoff, 3261 bool *need_rmap_locks) 3262 { 3263 struct vm_area_struct *vma = *vmap; 3264 unsigned long vma_start = vma->vm_start; 3265 struct mm_struct *mm = vma->vm_mm; 3266 struct vm_area_struct *new_vma, *prev; 3267 struct rb_node **rb_link, *rb_parent; 3268 bool faulted_in_anon_vma = true; 3269 3270 /* 3271 * If anonymous vma has not yet been faulted, update new pgoff 3272 * to match new location, to increase its chance of merging. 3273 */ 3274 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3275 pgoff = addr >> PAGE_SHIFT; 3276 faulted_in_anon_vma = false; 3277 } 3278 3279 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3280 return NULL; /* should never get here */ 3281 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3282 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3283 vma->vm_userfaultfd_ctx); 3284 if (new_vma) { 3285 /* 3286 * Source vma may have been merged into new_vma 3287 */ 3288 if (unlikely(vma_start >= new_vma->vm_start && 3289 vma_start < new_vma->vm_end)) { 3290 /* 3291 * The only way we can get a vma_merge with 3292 * self during an mremap is if the vma hasn't 3293 * been faulted in yet and we were allowed to 3294 * reset the dst vma->vm_pgoff to the 3295 * destination address of the mremap to allow 3296 * the merge to happen. mremap must change the 3297 * vm_pgoff linearity between src and dst vmas 3298 * (in turn preventing a vma_merge) to be 3299 * safe. It is only safe to keep the vm_pgoff 3300 * linear if there are no pages mapped yet. 3301 */ 3302 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3303 *vmap = vma = new_vma; 3304 } 3305 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3306 } else { 3307 new_vma = vm_area_dup(vma); 3308 if (!new_vma) 3309 goto out; 3310 new_vma->vm_start = addr; 3311 new_vma->vm_end = addr + len; 3312 new_vma->vm_pgoff = pgoff; 3313 if (vma_dup_policy(vma, new_vma)) 3314 goto out_free_vma; 3315 if (anon_vma_clone(new_vma, vma)) 3316 goto out_free_mempol; 3317 if (new_vma->vm_file) 3318 get_file(new_vma->vm_file); 3319 if (new_vma->vm_ops && new_vma->vm_ops->open) 3320 new_vma->vm_ops->open(new_vma); 3321 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3322 *need_rmap_locks = false; 3323 } 3324 return new_vma; 3325 3326 out_free_mempol: 3327 mpol_put(vma_policy(new_vma)); 3328 out_free_vma: 3329 vm_area_free(new_vma); 3330 out: 3331 return NULL; 3332 } 3333 3334 /* 3335 * Return true if the calling process may expand its vm space by the passed 3336 * number of pages 3337 */ 3338 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3339 { 3340 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3341 return false; 3342 3343 if (is_data_mapping(flags) && 3344 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3345 /* Workaround for Valgrind */ 3346 if (rlimit(RLIMIT_DATA) == 0 && 3347 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3348 return true; 3349 3350 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3351 current->comm, current->pid, 3352 (mm->data_vm + npages) << PAGE_SHIFT, 3353 rlimit(RLIMIT_DATA), 3354 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3355 3356 if (!ignore_rlimit_data) 3357 return false; 3358 } 3359 3360 return true; 3361 } 3362 3363 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3364 { 3365 mm->total_vm += npages; 3366 3367 if (is_exec_mapping(flags)) 3368 mm->exec_vm += npages; 3369 else if (is_stack_mapping(flags)) 3370 mm->stack_vm += npages; 3371 else if (is_data_mapping(flags)) 3372 mm->data_vm += npages; 3373 } 3374 3375 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3376 3377 /* 3378 * Having a close hook prevents vma merging regardless of flags. 3379 */ 3380 static void special_mapping_close(struct vm_area_struct *vma) 3381 { 3382 } 3383 3384 static const char *special_mapping_name(struct vm_area_struct *vma) 3385 { 3386 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3387 } 3388 3389 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3390 { 3391 struct vm_special_mapping *sm = new_vma->vm_private_data; 3392 3393 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3394 return -EFAULT; 3395 3396 if (sm->mremap) 3397 return sm->mremap(sm, new_vma); 3398 3399 return 0; 3400 } 3401 3402 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3403 { 3404 /* 3405 * Forbid splitting special mappings - kernel has expectations over 3406 * the number of pages in mapping. Together with VM_DONTEXPAND 3407 * the size of vma should stay the same over the special mapping's 3408 * lifetime. 3409 */ 3410 return -EINVAL; 3411 } 3412 3413 static const struct vm_operations_struct special_mapping_vmops = { 3414 .close = special_mapping_close, 3415 .fault = special_mapping_fault, 3416 .mremap = special_mapping_mremap, 3417 .name = special_mapping_name, 3418 /* vDSO code relies that VVAR can't be accessed remotely */ 3419 .access = NULL, 3420 .may_split = special_mapping_split, 3421 }; 3422 3423 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3424 .close = special_mapping_close, 3425 .fault = special_mapping_fault, 3426 }; 3427 3428 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3429 { 3430 struct vm_area_struct *vma = vmf->vma; 3431 pgoff_t pgoff; 3432 struct page **pages; 3433 3434 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3435 pages = vma->vm_private_data; 3436 } else { 3437 struct vm_special_mapping *sm = vma->vm_private_data; 3438 3439 if (sm->fault) 3440 return sm->fault(sm, vmf->vma, vmf); 3441 3442 pages = sm->pages; 3443 } 3444 3445 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3446 pgoff--; 3447 3448 if (*pages) { 3449 struct page *page = *pages; 3450 get_page(page); 3451 vmf->page = page; 3452 return 0; 3453 } 3454 3455 return VM_FAULT_SIGBUS; 3456 } 3457 3458 static struct vm_area_struct *__install_special_mapping( 3459 struct mm_struct *mm, 3460 unsigned long addr, unsigned long len, 3461 unsigned long vm_flags, void *priv, 3462 const struct vm_operations_struct *ops) 3463 { 3464 int ret; 3465 struct vm_area_struct *vma; 3466 3467 vma = vm_area_alloc(mm); 3468 if (unlikely(vma == NULL)) 3469 return ERR_PTR(-ENOMEM); 3470 3471 vma->vm_start = addr; 3472 vma->vm_end = addr + len; 3473 3474 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3475 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3476 3477 vma->vm_ops = ops; 3478 vma->vm_private_data = priv; 3479 3480 ret = insert_vm_struct(mm, vma); 3481 if (ret) 3482 goto out; 3483 3484 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3485 3486 perf_event_mmap(vma); 3487 3488 return vma; 3489 3490 out: 3491 vm_area_free(vma); 3492 return ERR_PTR(ret); 3493 } 3494 3495 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3496 const struct vm_special_mapping *sm) 3497 { 3498 return vma->vm_private_data == sm && 3499 (vma->vm_ops == &special_mapping_vmops || 3500 vma->vm_ops == &legacy_special_mapping_vmops); 3501 } 3502 3503 /* 3504 * Called with mm->mmap_lock held for writing. 3505 * Insert a new vma covering the given region, with the given flags. 3506 * Its pages are supplied by the given array of struct page *. 3507 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3508 * The region past the last page supplied will always produce SIGBUS. 3509 * The array pointer and the pages it points to are assumed to stay alive 3510 * for as long as this mapping might exist. 3511 */ 3512 struct vm_area_struct *_install_special_mapping( 3513 struct mm_struct *mm, 3514 unsigned long addr, unsigned long len, 3515 unsigned long vm_flags, const struct vm_special_mapping *spec) 3516 { 3517 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3518 &special_mapping_vmops); 3519 } 3520 3521 int install_special_mapping(struct mm_struct *mm, 3522 unsigned long addr, unsigned long len, 3523 unsigned long vm_flags, struct page **pages) 3524 { 3525 struct vm_area_struct *vma = __install_special_mapping( 3526 mm, addr, len, vm_flags, (void *)pages, 3527 &legacy_special_mapping_vmops); 3528 3529 return PTR_ERR_OR_ZERO(vma); 3530 } 3531 3532 static DEFINE_MUTEX(mm_all_locks_mutex); 3533 3534 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3535 { 3536 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3537 /* 3538 * The LSB of head.next can't change from under us 3539 * because we hold the mm_all_locks_mutex. 3540 */ 3541 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3542 /* 3543 * We can safely modify head.next after taking the 3544 * anon_vma->root->rwsem. If some other vma in this mm shares 3545 * the same anon_vma we won't take it again. 3546 * 3547 * No need of atomic instructions here, head.next 3548 * can't change from under us thanks to the 3549 * anon_vma->root->rwsem. 3550 */ 3551 if (__test_and_set_bit(0, (unsigned long *) 3552 &anon_vma->root->rb_root.rb_root.rb_node)) 3553 BUG(); 3554 } 3555 } 3556 3557 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3558 { 3559 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3560 /* 3561 * AS_MM_ALL_LOCKS can't change from under us because 3562 * we hold the mm_all_locks_mutex. 3563 * 3564 * Operations on ->flags have to be atomic because 3565 * even if AS_MM_ALL_LOCKS is stable thanks to the 3566 * mm_all_locks_mutex, there may be other cpus 3567 * changing other bitflags in parallel to us. 3568 */ 3569 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3570 BUG(); 3571 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3572 } 3573 } 3574 3575 /* 3576 * This operation locks against the VM for all pte/vma/mm related 3577 * operations that could ever happen on a certain mm. This includes 3578 * vmtruncate, try_to_unmap, and all page faults. 3579 * 3580 * The caller must take the mmap_lock in write mode before calling 3581 * mm_take_all_locks(). The caller isn't allowed to release the 3582 * mmap_lock until mm_drop_all_locks() returns. 3583 * 3584 * mmap_lock in write mode is required in order to block all operations 3585 * that could modify pagetables and free pages without need of 3586 * altering the vma layout. It's also needed in write mode to avoid new 3587 * anon_vmas to be associated with existing vmas. 3588 * 3589 * A single task can't take more than one mm_take_all_locks() in a row 3590 * or it would deadlock. 3591 * 3592 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3593 * mapping->flags avoid to take the same lock twice, if more than one 3594 * vma in this mm is backed by the same anon_vma or address_space. 3595 * 3596 * We take locks in following order, accordingly to comment at beginning 3597 * of mm/rmap.c: 3598 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3599 * hugetlb mapping); 3600 * - all i_mmap_rwsem locks; 3601 * - all anon_vma->rwseml 3602 * 3603 * We can take all locks within these types randomly because the VM code 3604 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3605 * mm_all_locks_mutex. 3606 * 3607 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3608 * that may have to take thousand of locks. 3609 * 3610 * mm_take_all_locks() can fail if it's interrupted by signals. 3611 */ 3612 int mm_take_all_locks(struct mm_struct *mm) 3613 { 3614 struct vm_area_struct *vma; 3615 struct anon_vma_chain *avc; 3616 3617 BUG_ON(mmap_read_trylock(mm)); 3618 3619 mutex_lock(&mm_all_locks_mutex); 3620 3621 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3622 if (signal_pending(current)) 3623 goto out_unlock; 3624 if (vma->vm_file && vma->vm_file->f_mapping && 3625 is_vm_hugetlb_page(vma)) 3626 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3627 } 3628 3629 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3630 if (signal_pending(current)) 3631 goto out_unlock; 3632 if (vma->vm_file && vma->vm_file->f_mapping && 3633 !is_vm_hugetlb_page(vma)) 3634 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3635 } 3636 3637 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3638 if (signal_pending(current)) 3639 goto out_unlock; 3640 if (vma->anon_vma) 3641 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3642 vm_lock_anon_vma(mm, avc->anon_vma); 3643 } 3644 3645 return 0; 3646 3647 out_unlock: 3648 mm_drop_all_locks(mm); 3649 return -EINTR; 3650 } 3651 3652 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3653 { 3654 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3655 /* 3656 * The LSB of head.next can't change to 0 from under 3657 * us because we hold the mm_all_locks_mutex. 3658 * 3659 * We must however clear the bitflag before unlocking 3660 * the vma so the users using the anon_vma->rb_root will 3661 * never see our bitflag. 3662 * 3663 * No need of atomic instructions here, head.next 3664 * can't change from under us until we release the 3665 * anon_vma->root->rwsem. 3666 */ 3667 if (!__test_and_clear_bit(0, (unsigned long *) 3668 &anon_vma->root->rb_root.rb_root.rb_node)) 3669 BUG(); 3670 anon_vma_unlock_write(anon_vma); 3671 } 3672 } 3673 3674 static void vm_unlock_mapping(struct address_space *mapping) 3675 { 3676 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3677 /* 3678 * AS_MM_ALL_LOCKS can't change to 0 from under us 3679 * because we hold the mm_all_locks_mutex. 3680 */ 3681 i_mmap_unlock_write(mapping); 3682 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3683 &mapping->flags)) 3684 BUG(); 3685 } 3686 } 3687 3688 /* 3689 * The mmap_lock cannot be released by the caller until 3690 * mm_drop_all_locks() returns. 3691 */ 3692 void mm_drop_all_locks(struct mm_struct *mm) 3693 { 3694 struct vm_area_struct *vma; 3695 struct anon_vma_chain *avc; 3696 3697 BUG_ON(mmap_read_trylock(mm)); 3698 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3699 3700 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3701 if (vma->anon_vma) 3702 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3703 vm_unlock_anon_vma(avc->anon_vma); 3704 if (vma->vm_file && vma->vm_file->f_mapping) 3705 vm_unlock_mapping(vma->vm_file->f_mapping); 3706 } 3707 3708 mutex_unlock(&mm_all_locks_mutex); 3709 } 3710 3711 /* 3712 * initialise the percpu counter for VM 3713 */ 3714 void __init mmap_init(void) 3715 { 3716 int ret; 3717 3718 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3719 VM_BUG_ON(ret); 3720 } 3721 3722 /* 3723 * Initialise sysctl_user_reserve_kbytes. 3724 * 3725 * This is intended to prevent a user from starting a single memory hogging 3726 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3727 * mode. 3728 * 3729 * The default value is min(3% of free memory, 128MB) 3730 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3731 */ 3732 static int init_user_reserve(void) 3733 { 3734 unsigned long free_kbytes; 3735 3736 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3737 3738 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3739 return 0; 3740 } 3741 subsys_initcall(init_user_reserve); 3742 3743 /* 3744 * Initialise sysctl_admin_reserve_kbytes. 3745 * 3746 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3747 * to log in and kill a memory hogging process. 3748 * 3749 * Systems with more than 256MB will reserve 8MB, enough to recover 3750 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3751 * only reserve 3% of free pages by default. 3752 */ 3753 static int init_admin_reserve(void) 3754 { 3755 unsigned long free_kbytes; 3756 3757 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3758 3759 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3760 return 0; 3761 } 3762 subsys_initcall(init_admin_reserve); 3763 3764 /* 3765 * Reinititalise user and admin reserves if memory is added or removed. 3766 * 3767 * The default user reserve max is 128MB, and the default max for the 3768 * admin reserve is 8MB. These are usually, but not always, enough to 3769 * enable recovery from a memory hogging process using login/sshd, a shell, 3770 * and tools like top. It may make sense to increase or even disable the 3771 * reserve depending on the existence of swap or variations in the recovery 3772 * tools. So, the admin may have changed them. 3773 * 3774 * If memory is added and the reserves have been eliminated or increased above 3775 * the default max, then we'll trust the admin. 3776 * 3777 * If memory is removed and there isn't enough free memory, then we 3778 * need to reset the reserves. 3779 * 3780 * Otherwise keep the reserve set by the admin. 3781 */ 3782 static int reserve_mem_notifier(struct notifier_block *nb, 3783 unsigned long action, void *data) 3784 { 3785 unsigned long tmp, free_kbytes; 3786 3787 switch (action) { 3788 case MEM_ONLINE: 3789 /* Default max is 128MB. Leave alone if modified by operator. */ 3790 tmp = sysctl_user_reserve_kbytes; 3791 if (0 < tmp && tmp < (1UL << 17)) 3792 init_user_reserve(); 3793 3794 /* Default max is 8MB. Leave alone if modified by operator. */ 3795 tmp = sysctl_admin_reserve_kbytes; 3796 if (0 < tmp && tmp < (1UL << 13)) 3797 init_admin_reserve(); 3798 3799 break; 3800 case MEM_OFFLINE: 3801 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3802 3803 if (sysctl_user_reserve_kbytes > free_kbytes) { 3804 init_user_reserve(); 3805 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3806 sysctl_user_reserve_kbytes); 3807 } 3808 3809 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3810 init_admin_reserve(); 3811 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3812 sysctl_admin_reserve_kbytes); 3813 } 3814 break; 3815 default: 3816 break; 3817 } 3818 return NOTIFY_OK; 3819 } 3820 3821 static struct notifier_block reserve_mem_nb = { 3822 .notifier_call = reserve_mem_notifier, 3823 }; 3824 3825 static int __meminit init_reserve_notifier(void) 3826 { 3827 if (register_hotmemory_notifier(&reserve_mem_nb)) 3828 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3829 3830 return 0; 3831 } 3832 subsys_initcall(init_reserve_notifier); 3833