xref: /linux/mm/mmap.c (revision 94e48d6aafef23143f92eadd010c505c49487576)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *								r: (no) no
100  *								w: (no) no
101  *								x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107 
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 	return prot;
112 }
113 #endif
114 
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
120 
121 	return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124 
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129 
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 	unsigned long vm_flags = vma->vm_flags;
134 	pgprot_t vm_page_prot;
135 
136 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 	if (vma_wants_writenotify(vma, vm_page_prot)) {
138 		vm_flags &= ~VM_SHARED;
139 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 	}
141 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144 
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 		struct file *file, struct address_space *mapping)
150 {
151 	if (vma->vm_flags & VM_DENYWRITE)
152 		allow_write_access(file);
153 	if (vma->vm_flags & VM_SHARED)
154 		mapping_unmap_writable(mapping);
155 
156 	flush_dcache_mmap_lock(mapping);
157 	vma_interval_tree_remove(vma, &mapping->i_mmap);
158 	flush_dcache_mmap_unlock(mapping);
159 }
160 
161 /*
162  * Unlink a file-based vm structure from its interval tree, to hide
163  * vma from rmap and vmtruncate before freeing its page tables.
164  */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167 	struct file *file = vma->vm_file;
168 
169 	if (file) {
170 		struct address_space *mapping = file->f_mapping;
171 		i_mmap_lock_write(mapping);
172 		__remove_shared_vm_struct(vma, file, mapping);
173 		i_mmap_unlock_write(mapping);
174 	}
175 }
176 
177 /*
178  * Close a vm structure and free it, returning the next.
179  */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182 	struct vm_area_struct *next = vma->vm_next;
183 
184 	might_sleep();
185 	if (vma->vm_ops && vma->vm_ops->close)
186 		vma->vm_ops->close(vma);
187 	if (vma->vm_file)
188 		fput(vma->vm_file);
189 	mpol_put(vma_policy(vma));
190 	vm_area_free(vma);
191 	return next;
192 }
193 
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 		struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198 	unsigned long newbrk, oldbrk, origbrk;
199 	struct mm_struct *mm = current->mm;
200 	struct vm_area_struct *next;
201 	unsigned long min_brk;
202 	bool populate;
203 	bool downgraded = false;
204 	LIST_HEAD(uf);
205 
206 	if (mmap_write_lock_killable(mm))
207 		return -EINTR;
208 
209 	origbrk = mm->brk;
210 
211 #ifdef CONFIG_COMPAT_BRK
212 	/*
213 	 * CONFIG_COMPAT_BRK can still be overridden by setting
214 	 * randomize_va_space to 2, which will still cause mm->start_brk
215 	 * to be arbitrarily shifted
216 	 */
217 	if (current->brk_randomized)
218 		min_brk = mm->start_brk;
219 	else
220 		min_brk = mm->end_data;
221 #else
222 	min_brk = mm->start_brk;
223 #endif
224 	if (brk < min_brk)
225 		goto out;
226 
227 	/*
228 	 * Check against rlimit here. If this check is done later after the test
229 	 * of oldbrk with newbrk then it can escape the test and let the data
230 	 * segment grow beyond its set limit the in case where the limit is
231 	 * not page aligned -Ram Gupta
232 	 */
233 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 			      mm->end_data, mm->start_data))
235 		goto out;
236 
237 	newbrk = PAGE_ALIGN(brk);
238 	oldbrk = PAGE_ALIGN(mm->brk);
239 	if (oldbrk == newbrk) {
240 		mm->brk = brk;
241 		goto success;
242 	}
243 
244 	/*
245 	 * Always allow shrinking brk.
246 	 * __do_munmap() may downgrade mmap_lock to read.
247 	 */
248 	if (brk <= mm->brk) {
249 		int ret;
250 
251 		/*
252 		 * mm->brk must to be protected by write mmap_lock so update it
253 		 * before downgrading mmap_lock. When __do_munmap() fails,
254 		 * mm->brk will be restored from origbrk.
255 		 */
256 		mm->brk = brk;
257 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 		if (ret < 0) {
259 			mm->brk = origbrk;
260 			goto out;
261 		} else if (ret == 1) {
262 			downgraded = true;
263 		}
264 		goto success;
265 	}
266 
267 	/* Check against existing mmap mappings. */
268 	next = find_vma(mm, oldbrk);
269 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 		goto out;
271 
272 	/* Ok, looks good - let it rip. */
273 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 		goto out;
275 	mm->brk = brk;
276 
277 success:
278 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 	if (downgraded)
280 		mmap_read_unlock(mm);
281 	else
282 		mmap_write_unlock(mm);
283 	userfaultfd_unmap_complete(mm, &uf);
284 	if (populate)
285 		mm_populate(oldbrk, newbrk - oldbrk);
286 	return brk;
287 
288 out:
289 	mmap_write_unlock(mm);
290 	return origbrk;
291 }
292 
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 	unsigned long gap, prev_end;
296 
297 	/*
298 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 	 * allow two stack_guard_gaps between them here, and when choosing
300 	 * an unmapped area; whereas when expanding we only require one.
301 	 * That's a little inconsistent, but keeps the code here simpler.
302 	 */
303 	gap = vm_start_gap(vma);
304 	if (vma->vm_prev) {
305 		prev_end = vm_end_gap(vma->vm_prev);
306 		if (gap > prev_end)
307 			gap -= prev_end;
308 		else
309 			gap = 0;
310 	}
311 	return gap;
312 }
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 	unsigned long max = vma_compute_gap(vma), subtree_gap;
318 	if (vma->vm_rb.rb_left) {
319 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 		if (subtree_gap > max)
322 			max = subtree_gap;
323 	}
324 	if (vma->vm_rb.rb_right) {
325 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 		if (subtree_gap > max)
328 			max = subtree_gap;
329 	}
330 	return max;
331 }
332 
333 static int browse_rb(struct mm_struct *mm)
334 {
335 	struct rb_root *root = &mm->mm_rb;
336 	int i = 0, j, bug = 0;
337 	struct rb_node *nd, *pn = NULL;
338 	unsigned long prev = 0, pend = 0;
339 
340 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 		struct vm_area_struct *vma;
342 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 		if (vma->vm_start < prev) {
344 			pr_emerg("vm_start %lx < prev %lx\n",
345 				  vma->vm_start, prev);
346 			bug = 1;
347 		}
348 		if (vma->vm_start < pend) {
349 			pr_emerg("vm_start %lx < pend %lx\n",
350 				  vma->vm_start, pend);
351 			bug = 1;
352 		}
353 		if (vma->vm_start > vma->vm_end) {
354 			pr_emerg("vm_start %lx > vm_end %lx\n",
355 				  vma->vm_start, vma->vm_end);
356 			bug = 1;
357 		}
358 		spin_lock(&mm->page_table_lock);
359 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 			pr_emerg("free gap %lx, correct %lx\n",
361 			       vma->rb_subtree_gap,
362 			       vma_compute_subtree_gap(vma));
363 			bug = 1;
364 		}
365 		spin_unlock(&mm->page_table_lock);
366 		i++;
367 		pn = nd;
368 		prev = vma->vm_start;
369 		pend = vma->vm_end;
370 	}
371 	j = 0;
372 	for (nd = pn; nd; nd = rb_prev(nd))
373 		j++;
374 	if (i != j) {
375 		pr_emerg("backwards %d, forwards %d\n", j, i);
376 		bug = 1;
377 	}
378 	return bug ? -1 : i;
379 }
380 
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 	struct rb_node *nd;
384 
385 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 		struct vm_area_struct *vma;
387 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 		VM_BUG_ON_VMA(vma != ignore &&
389 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 			vma);
391 	}
392 }
393 
394 static void validate_mm(struct mm_struct *mm)
395 {
396 	int bug = 0;
397 	int i = 0;
398 	unsigned long highest_address = 0;
399 	struct vm_area_struct *vma = mm->mmap;
400 
401 	while (vma) {
402 		struct anon_vma *anon_vma = vma->anon_vma;
403 		struct anon_vma_chain *avc;
404 
405 		if (anon_vma) {
406 			anon_vma_lock_read(anon_vma);
407 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 				anon_vma_interval_tree_verify(avc);
409 			anon_vma_unlock_read(anon_vma);
410 		}
411 
412 		highest_address = vm_end_gap(vma);
413 		vma = vma->vm_next;
414 		i++;
415 	}
416 	if (i != mm->map_count) {
417 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 		bug = 1;
419 	}
420 	if (highest_address != mm->highest_vm_end) {
421 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 			  mm->highest_vm_end, highest_address);
423 		bug = 1;
424 	}
425 	i = browse_rb(mm);
426 	if (i != mm->map_count) {
427 		if (i != -1)
428 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 		bug = 1;
430 	}
431 	VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437 
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 			 struct vm_area_struct, vm_rb,
440 			 unsigned long, rb_subtree_gap, vma_compute_gap)
441 
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 	/*
450 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 	 * a callback function that does exactly what we want.
452 	 */
453 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455 
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 				 struct rb_root *root)
458 {
459 	/* All rb_subtree_gap values must be consistent prior to insertion */
460 	validate_mm_rb(root, NULL);
461 
462 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464 
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 	/*
468 	 * Note rb_erase_augmented is a fairly large inline function,
469 	 * so make sure we instantiate it only once with our desired
470 	 * augmented rbtree callbacks.
471 	 */
472 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474 
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 						struct rb_root *root,
477 						struct vm_area_struct *ignore)
478 {
479 	/*
480 	 * All rb_subtree_gap values must be consistent prior to erase,
481 	 * with the possible exception of
482 	 *
483 	 * a. the "next" vma being erased if next->vm_start was reduced in
484 	 *    __vma_adjust() -> __vma_unlink()
485 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 	 *    vma_rb_erase()
487 	 */
488 	validate_mm_rb(root, ignore);
489 
490 	__vma_rb_erase(vma, root);
491 }
492 
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 					 struct rb_root *root)
495 {
496 	vma_rb_erase_ignore(vma, root, vma);
497 }
498 
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 	struct anon_vma_chain *avc;
517 
518 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521 
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 	struct anon_vma_chain *avc;
526 
527 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530 
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 		unsigned long end, struct vm_area_struct **pprev,
533 		struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536 
537 	__rb_link = &mm->mm_rb.rb_node;
538 	rb_prev = __rb_parent = NULL;
539 
540 	while (*__rb_link) {
541 		struct vm_area_struct *vma_tmp;
542 
543 		__rb_parent = *__rb_link;
544 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545 
546 		if (vma_tmp->vm_end > addr) {
547 			/* Fail if an existing vma overlaps the area */
548 			if (vma_tmp->vm_start < end)
549 				return -ENOMEM;
550 			__rb_link = &__rb_parent->rb_left;
551 		} else {
552 			rb_prev = __rb_parent;
553 			__rb_link = &__rb_parent->rb_right;
554 		}
555 	}
556 
557 	*pprev = NULL;
558 	if (rb_prev)
559 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 	*rb_link = __rb_link;
561 	*rb_parent = __rb_parent;
562 	return 0;
563 }
564 
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 					 struct vm_area_struct *vma)
576 {
577 	if (!vma)
578 		return mm->mmap;
579 
580 	return vma->vm_next;
581 }
582 
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 		 struct vm_area_struct **pprev, struct rb_node ***link,
600 		 struct rb_node **parent, struct list_head *uf)
601 {
602 
603 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 		if (do_munmap(mm, start, len, uf))
605 			return -ENOMEM;
606 
607 	return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 		unsigned long addr, unsigned long end)
611 {
612 	unsigned long nr_pages = 0;
613 	struct vm_area_struct *vma;
614 
615 	/* Find first overlapping mapping */
616 	vma = find_vma_intersection(mm, addr, end);
617 	if (!vma)
618 		return 0;
619 
620 	nr_pages = (min(end, vma->vm_end) -
621 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
622 
623 	/* Iterate over the rest of the overlaps */
624 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 		unsigned long overlap_len;
626 
627 		if (vma->vm_start > end)
628 			break;
629 
630 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 		nr_pages += overlap_len >> PAGE_SHIFT;
632 	}
633 
634 	return nr_pages;
635 }
636 
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 		struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 	/* Update tracking information for the gap following the new vma. */
641 	if (vma->vm_next)
642 		vma_gap_update(vma->vm_next);
643 	else
644 		mm->highest_vm_end = vm_end_gap(vma);
645 
646 	/*
647 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 	 * correct insertion point for that vma. As a result, we could not
649 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 	 * So, we first insert the vma with a zero rb_subtree_gap value
651 	 * (to be consistent with what we did on the way down), and then
652 	 * immediately update the gap to the correct value. Finally we
653 	 * rebalance the rbtree after all augmented values have been set.
654 	 */
655 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 	vma->rb_subtree_gap = 0;
657 	vma_gap_update(vma);
658 	vma_rb_insert(vma, &mm->mm_rb);
659 }
660 
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 	struct file *file;
664 
665 	file = vma->vm_file;
666 	if (file) {
667 		struct address_space *mapping = file->f_mapping;
668 
669 		if (vma->vm_flags & VM_DENYWRITE)
670 			put_write_access(file_inode(file));
671 		if (vma->vm_flags & VM_SHARED)
672 			mapping_allow_writable(mapping);
673 
674 		flush_dcache_mmap_lock(mapping);
675 		vma_interval_tree_insert(vma, &mapping->i_mmap);
676 		flush_dcache_mmap_unlock(mapping);
677 	}
678 }
679 
680 static void
681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 	struct vm_area_struct *prev, struct rb_node **rb_link,
683 	struct rb_node *rb_parent)
684 {
685 	__vma_link_list(mm, vma, prev);
686 	__vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688 
689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 			struct vm_area_struct *prev, struct rb_node **rb_link,
691 			struct rb_node *rb_parent)
692 {
693 	struct address_space *mapping = NULL;
694 
695 	if (vma->vm_file) {
696 		mapping = vma->vm_file->f_mapping;
697 		i_mmap_lock_write(mapping);
698 	}
699 
700 	__vma_link(mm, vma, prev, rb_link, rb_parent);
701 	__vma_link_file(vma);
702 
703 	if (mapping)
704 		i_mmap_unlock_write(mapping);
705 
706 	mm->map_count++;
707 	validate_mm(mm);
708 }
709 
710 /*
711  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712  * mm's list and rbtree.  It has already been inserted into the interval tree.
713  */
714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 	struct vm_area_struct *prev;
717 	struct rb_node **rb_link, *rb_parent;
718 
719 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 			   &prev, &rb_link, &rb_parent))
721 		BUG();
722 	__vma_link(mm, vma, prev, rb_link, rb_parent);
723 	mm->map_count++;
724 }
725 
726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 						struct vm_area_struct *vma,
728 						struct vm_area_struct *ignore)
729 {
730 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 	__vma_unlink_list(mm, vma);
732 	/* Kill the cache */
733 	vmacache_invalidate(mm);
734 }
735 
736 /*
737  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738  * is already present in an i_mmap tree without adjusting the tree.
739  * The following helper function should be used when such adjustments
740  * are necessary.  The "insert" vma (if any) is to be inserted
741  * before we drop the necessary locks.
742  */
743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 	struct vm_area_struct *expand)
746 {
747 	struct mm_struct *mm = vma->vm_mm;
748 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 	struct address_space *mapping = NULL;
750 	struct rb_root_cached *root = NULL;
751 	struct anon_vma *anon_vma = NULL;
752 	struct file *file = vma->vm_file;
753 	bool start_changed = false, end_changed = false;
754 	long adjust_next = 0;
755 	int remove_next = 0;
756 
757 	if (next && !insert) {
758 		struct vm_area_struct *exporter = NULL, *importer = NULL;
759 
760 		if (end >= next->vm_end) {
761 			/*
762 			 * vma expands, overlapping all the next, and
763 			 * perhaps the one after too (mprotect case 6).
764 			 * The only other cases that gets here are
765 			 * case 1, case 7 and case 8.
766 			 */
767 			if (next == expand) {
768 				/*
769 				 * The only case where we don't expand "vma"
770 				 * and we expand "next" instead is case 8.
771 				 */
772 				VM_WARN_ON(end != next->vm_end);
773 				/*
774 				 * remove_next == 3 means we're
775 				 * removing "vma" and that to do so we
776 				 * swapped "vma" and "next".
777 				 */
778 				remove_next = 3;
779 				VM_WARN_ON(file != next->vm_file);
780 				swap(vma, next);
781 			} else {
782 				VM_WARN_ON(expand != vma);
783 				/*
784 				 * case 1, 6, 7, remove_next == 2 is case 6,
785 				 * remove_next == 1 is case 1 or 7.
786 				 */
787 				remove_next = 1 + (end > next->vm_end);
788 				VM_WARN_ON(remove_next == 2 &&
789 					   end != next->vm_next->vm_end);
790 				/* trim end to next, for case 6 first pass */
791 				end = next->vm_end;
792 			}
793 
794 			exporter = next;
795 			importer = vma;
796 
797 			/*
798 			 * If next doesn't have anon_vma, import from vma after
799 			 * next, if the vma overlaps with it.
800 			 */
801 			if (remove_next == 2 && !next->anon_vma)
802 				exporter = next->vm_next;
803 
804 		} else if (end > next->vm_start) {
805 			/*
806 			 * vma expands, overlapping part of the next:
807 			 * mprotect case 5 shifting the boundary up.
808 			 */
809 			adjust_next = (end - next->vm_start);
810 			exporter = next;
811 			importer = vma;
812 			VM_WARN_ON(expand != importer);
813 		} else if (end < vma->vm_end) {
814 			/*
815 			 * vma shrinks, and !insert tells it's not
816 			 * split_vma inserting another: so it must be
817 			 * mprotect case 4 shifting the boundary down.
818 			 */
819 			adjust_next = -(vma->vm_end - end);
820 			exporter = vma;
821 			importer = next;
822 			VM_WARN_ON(expand != importer);
823 		}
824 
825 		/*
826 		 * Easily overlooked: when mprotect shifts the boundary,
827 		 * make sure the expanding vma has anon_vma set if the
828 		 * shrinking vma had, to cover any anon pages imported.
829 		 */
830 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 			int error;
832 
833 			importer->anon_vma = exporter->anon_vma;
834 			error = anon_vma_clone(importer, exporter);
835 			if (error)
836 				return error;
837 		}
838 	}
839 again:
840 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841 
842 	if (file) {
843 		mapping = file->f_mapping;
844 		root = &mapping->i_mmap;
845 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846 
847 		if (adjust_next)
848 			uprobe_munmap(next, next->vm_start, next->vm_end);
849 
850 		i_mmap_lock_write(mapping);
851 		if (insert) {
852 			/*
853 			 * Put into interval tree now, so instantiated pages
854 			 * are visible to arm/parisc __flush_dcache_page
855 			 * throughout; but we cannot insert into address
856 			 * space until vma start or end is updated.
857 			 */
858 			__vma_link_file(insert);
859 		}
860 	}
861 
862 	anon_vma = vma->anon_vma;
863 	if (!anon_vma && adjust_next)
864 		anon_vma = next->anon_vma;
865 	if (anon_vma) {
866 		VM_WARN_ON(adjust_next && next->anon_vma &&
867 			   anon_vma != next->anon_vma);
868 		anon_vma_lock_write(anon_vma);
869 		anon_vma_interval_tree_pre_update_vma(vma);
870 		if (adjust_next)
871 			anon_vma_interval_tree_pre_update_vma(next);
872 	}
873 
874 	if (file) {
875 		flush_dcache_mmap_lock(mapping);
876 		vma_interval_tree_remove(vma, root);
877 		if (adjust_next)
878 			vma_interval_tree_remove(next, root);
879 	}
880 
881 	if (start != vma->vm_start) {
882 		vma->vm_start = start;
883 		start_changed = true;
884 	}
885 	if (end != vma->vm_end) {
886 		vma->vm_end = end;
887 		end_changed = true;
888 	}
889 	vma->vm_pgoff = pgoff;
890 	if (adjust_next) {
891 		next->vm_start += adjust_next;
892 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 	}
894 
895 	if (file) {
896 		if (adjust_next)
897 			vma_interval_tree_insert(next, root);
898 		vma_interval_tree_insert(vma, root);
899 		flush_dcache_mmap_unlock(mapping);
900 	}
901 
902 	if (remove_next) {
903 		/*
904 		 * vma_merge has merged next into vma, and needs
905 		 * us to remove next before dropping the locks.
906 		 */
907 		if (remove_next != 3)
908 			__vma_unlink(mm, next, next);
909 		else
910 			/*
911 			 * vma is not before next if they've been
912 			 * swapped.
913 			 *
914 			 * pre-swap() next->vm_start was reduced so
915 			 * tell validate_mm_rb to ignore pre-swap()
916 			 * "next" (which is stored in post-swap()
917 			 * "vma").
918 			 */
919 			__vma_unlink(mm, next, vma);
920 		if (file)
921 			__remove_shared_vm_struct(next, file, mapping);
922 	} else if (insert) {
923 		/*
924 		 * split_vma has split insert from vma, and needs
925 		 * us to insert it before dropping the locks
926 		 * (it may either follow vma or precede it).
927 		 */
928 		__insert_vm_struct(mm, insert);
929 	} else {
930 		if (start_changed)
931 			vma_gap_update(vma);
932 		if (end_changed) {
933 			if (!next)
934 				mm->highest_vm_end = vm_end_gap(vma);
935 			else if (!adjust_next)
936 				vma_gap_update(next);
937 		}
938 	}
939 
940 	if (anon_vma) {
941 		anon_vma_interval_tree_post_update_vma(vma);
942 		if (adjust_next)
943 			anon_vma_interval_tree_post_update_vma(next);
944 		anon_vma_unlock_write(anon_vma);
945 	}
946 
947 	if (file) {
948 		i_mmap_unlock_write(mapping);
949 		uprobe_mmap(vma);
950 
951 		if (adjust_next)
952 			uprobe_mmap(next);
953 	}
954 
955 	if (remove_next) {
956 		if (file) {
957 			uprobe_munmap(next, next->vm_start, next->vm_end);
958 			fput(file);
959 		}
960 		if (next->anon_vma)
961 			anon_vma_merge(vma, next);
962 		mm->map_count--;
963 		mpol_put(vma_policy(next));
964 		vm_area_free(next);
965 		/*
966 		 * In mprotect's case 6 (see comments on vma_merge),
967 		 * we must remove another next too. It would clutter
968 		 * up the code too much to do both in one go.
969 		 */
970 		if (remove_next != 3) {
971 			/*
972 			 * If "next" was removed and vma->vm_end was
973 			 * expanded (up) over it, in turn
974 			 * "next->vm_prev->vm_end" changed and the
975 			 * "vma->vm_next" gap must be updated.
976 			 */
977 			next = vma->vm_next;
978 		} else {
979 			/*
980 			 * For the scope of the comment "next" and
981 			 * "vma" considered pre-swap(): if "vma" was
982 			 * removed, next->vm_start was expanded (down)
983 			 * over it and the "next" gap must be updated.
984 			 * Because of the swap() the post-swap() "vma"
985 			 * actually points to pre-swap() "next"
986 			 * (post-swap() "next" as opposed is now a
987 			 * dangling pointer).
988 			 */
989 			next = vma;
990 		}
991 		if (remove_next == 2) {
992 			remove_next = 1;
993 			end = next->vm_end;
994 			goto again;
995 		}
996 		else if (next)
997 			vma_gap_update(next);
998 		else {
999 			/*
1000 			 * If remove_next == 2 we obviously can't
1001 			 * reach this path.
1002 			 *
1003 			 * If remove_next == 3 we can't reach this
1004 			 * path because pre-swap() next is always not
1005 			 * NULL. pre-swap() "next" is not being
1006 			 * removed and its next->vm_end is not altered
1007 			 * (and furthermore "end" already matches
1008 			 * next->vm_end in remove_next == 3).
1009 			 *
1010 			 * We reach this only in the remove_next == 1
1011 			 * case if the "next" vma that was removed was
1012 			 * the highest vma of the mm. However in such
1013 			 * case next->vm_end == "end" and the extended
1014 			 * "vma" has vma->vm_end == next->vm_end so
1015 			 * mm->highest_vm_end doesn't need any update
1016 			 * in remove_next == 1 case.
1017 			 */
1018 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 		}
1020 	}
1021 	if (insert && file)
1022 		uprobe_mmap(insert);
1023 
1024 	validate_mm(mm);
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 				struct file *file, unsigned long vm_flags,
1035 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 	/*
1038 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039 	 * match the flags but dirty bit -- the caller should mark
1040 	 * merged VMA as dirty. If dirty bit won't be excluded from
1041 	 * comparison, we increase pressure on the memory system forcing
1042 	 * the kernel to generate new VMAs when old one could be
1043 	 * extended instead.
1044 	 */
1045 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046 		return 0;
1047 	if (vma->vm_file != file)
1048 		return 0;
1049 	if (vma->vm_ops && vma->vm_ops->close)
1050 		return 0;
1051 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052 		return 0;
1053 	return 1;
1054 }
1055 
1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057 					struct anon_vma *anon_vma2,
1058 					struct vm_area_struct *vma)
1059 {
1060 	/*
1061 	 * The list_is_singular() test is to avoid merging VMA cloned from
1062 	 * parents. This can improve scalability caused by anon_vma lock.
1063 	 */
1064 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065 		list_is_singular(&vma->anon_vma_chain)))
1066 		return 1;
1067 	return anon_vma1 == anon_vma2;
1068 }
1069 
1070 /*
1071  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072  * in front of (at a lower virtual address and file offset than) the vma.
1073  *
1074  * We cannot merge two vmas if they have differently assigned (non-NULL)
1075  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076  *
1077  * We don't check here for the merged mmap wrapping around the end of pagecache
1078  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079  * wrap, nor mmaps which cover the final page at index -1UL.
1080  */
1081 static int
1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083 		     struct anon_vma *anon_vma, struct file *file,
1084 		     pgoff_t vm_pgoff,
1085 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086 {
1087 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089 		if (vma->vm_pgoff == vm_pgoff)
1090 			return 1;
1091 	}
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097  * beyond (at a higher virtual address and file offset than) the vma.
1098  *
1099  * We cannot merge two vmas if they have differently assigned (non-NULL)
1100  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101  */
1102 static int
1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104 		    struct anon_vma *anon_vma, struct file *file,
1105 		    pgoff_t vm_pgoff,
1106 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 {
1108 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110 		pgoff_t vm_pglen;
1111 		vm_pglen = vma_pages(vma);
1112 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113 			return 1;
1114 	}
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120  * whether that can be merged with its predecessor or its successor.
1121  * Or both (it neatly fills a hole).
1122  *
1123  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124  * certain not to be mapped by the time vma_merge is called; but when
1125  * called for mprotect, it is certain to be already mapped (either at
1126  * an offset within prev, or at the start of next), and the flags of
1127  * this area are about to be changed to vm_flags - and the no-change
1128  * case has already been eliminated.
1129  *
1130  * The following mprotect cases have to be considered, where AAAA is
1131  * the area passed down from mprotect_fixup, never extending beyond one
1132  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133  *
1134  *     AAAA             AAAA                   AAAA
1135  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136  *    cannot merge    might become       might become
1137  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138  *    mmap, brk or    case 4 below       case 5 below
1139  *    mremap move:
1140  *                        AAAA               AAAA
1141  *                    PPPP    NNNN       PPPPNNNNXXXX
1142  *                    might become       might become
1143  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146  *
1147  * It is important for case 8 that the vma NNNN overlapping the
1148  * region AAAA is never going to extended over XXXX. Instead XXXX must
1149  * be extended in region AAAA and NNNN must be removed. This way in
1150  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151  * rmap_locks, the properties of the merged vma will be already
1152  * correct for the whole merged range. Some of those properties like
1153  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154  * be correct for the whole merged range immediately after the
1155  * rmap_locks are released. Otherwise if XXXX would be removed and
1156  * NNNN would be extended over the XXXX range, remove_migration_ptes
1157  * or other rmap walkers (if working on addresses beyond the "end"
1158  * parameter) may establish ptes with the wrong permissions of NNNN
1159  * instead of the right permissions of XXXX.
1160  */
1161 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162 			struct vm_area_struct *prev, unsigned long addr,
1163 			unsigned long end, unsigned long vm_flags,
1164 			struct anon_vma *anon_vma, struct file *file,
1165 			pgoff_t pgoff, struct mempolicy *policy,
1166 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167 {
1168 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169 	struct vm_area_struct *area, *next;
1170 	int err;
1171 
1172 	/*
1173 	 * We later require that vma->vm_flags == vm_flags,
1174 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1175 	 */
1176 	if (vm_flags & VM_SPECIAL)
1177 		return NULL;
1178 
1179 	next = vma_next(mm, prev);
1180 	area = next;
1181 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1182 		next = next->vm_next;
1183 
1184 	/* verify some invariant that must be enforced by the caller */
1185 	VM_WARN_ON(prev && addr <= prev->vm_start);
1186 	VM_WARN_ON(area && end > area->vm_end);
1187 	VM_WARN_ON(addr >= end);
1188 
1189 	/*
1190 	 * Can it merge with the predecessor?
1191 	 */
1192 	if (prev && prev->vm_end == addr &&
1193 			mpol_equal(vma_policy(prev), policy) &&
1194 			can_vma_merge_after(prev, vm_flags,
1195 					    anon_vma, file, pgoff,
1196 					    vm_userfaultfd_ctx)) {
1197 		/*
1198 		 * OK, it can.  Can we now merge in the successor as well?
1199 		 */
1200 		if (next && end == next->vm_start &&
1201 				mpol_equal(policy, vma_policy(next)) &&
1202 				can_vma_merge_before(next, vm_flags,
1203 						     anon_vma, file,
1204 						     pgoff+pglen,
1205 						     vm_userfaultfd_ctx) &&
1206 				is_mergeable_anon_vma(prev->anon_vma,
1207 						      next->anon_vma, NULL)) {
1208 							/* cases 1, 6 */
1209 			err = __vma_adjust(prev, prev->vm_start,
1210 					 next->vm_end, prev->vm_pgoff, NULL,
1211 					 prev);
1212 		} else					/* cases 2, 5, 7 */
1213 			err = __vma_adjust(prev, prev->vm_start,
1214 					 end, prev->vm_pgoff, NULL, prev);
1215 		if (err)
1216 			return NULL;
1217 		khugepaged_enter_vma_merge(prev, vm_flags);
1218 		return prev;
1219 	}
1220 
1221 	/*
1222 	 * Can this new request be merged in front of next?
1223 	 */
1224 	if (next && end == next->vm_start &&
1225 			mpol_equal(policy, vma_policy(next)) &&
1226 			can_vma_merge_before(next, vm_flags,
1227 					     anon_vma, file, pgoff+pglen,
1228 					     vm_userfaultfd_ctx)) {
1229 		if (prev && addr < prev->vm_end)	/* case 4 */
1230 			err = __vma_adjust(prev, prev->vm_start,
1231 					 addr, prev->vm_pgoff, NULL, next);
1232 		else {					/* cases 3, 8 */
1233 			err = __vma_adjust(area, addr, next->vm_end,
1234 					 next->vm_pgoff - pglen, NULL, next);
1235 			/*
1236 			 * In case 3 area is already equal to next and
1237 			 * this is a noop, but in case 8 "area" has
1238 			 * been removed and next was expanded over it.
1239 			 */
1240 			area = next;
1241 		}
1242 		if (err)
1243 			return NULL;
1244 		khugepaged_enter_vma_merge(area, vm_flags);
1245 		return area;
1246 	}
1247 
1248 	return NULL;
1249 }
1250 
1251 /*
1252  * Rough compatibility check to quickly see if it's even worth looking
1253  * at sharing an anon_vma.
1254  *
1255  * They need to have the same vm_file, and the flags can only differ
1256  * in things that mprotect may change.
1257  *
1258  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259  * we can merge the two vma's. For example, we refuse to merge a vma if
1260  * there is a vm_ops->close() function, because that indicates that the
1261  * driver is doing some kind of reference counting. But that doesn't
1262  * really matter for the anon_vma sharing case.
1263  */
1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265 {
1266 	return a->vm_end == b->vm_start &&
1267 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1268 		a->vm_file == b->vm_file &&
1269 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271 }
1272 
1273 /*
1274  * Do some basic sanity checking to see if we can re-use the anon_vma
1275  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276  * the same as 'old', the other will be the new one that is trying
1277  * to share the anon_vma.
1278  *
1279  * NOTE! This runs with mm_sem held for reading, so it is possible that
1280  * the anon_vma of 'old' is concurrently in the process of being set up
1281  * by another page fault trying to merge _that_. But that's ok: if it
1282  * is being set up, that automatically means that it will be a singleton
1283  * acceptable for merging, so we can do all of this optimistically. But
1284  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285  *
1286  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288  * is to return an anon_vma that is "complex" due to having gone through
1289  * a fork).
1290  *
1291  * We also make sure that the two vma's are compatible (adjacent,
1292  * and with the same memory policies). That's all stable, even with just
1293  * a read lock on the mm_sem.
1294  */
1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296 {
1297 	if (anon_vma_compatible(a, b)) {
1298 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299 
1300 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301 			return anon_vma;
1302 	}
1303 	return NULL;
1304 }
1305 
1306 /*
1307  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308  * neighbouring vmas for a suitable anon_vma, before it goes off
1309  * to allocate a new anon_vma.  It checks because a repetitive
1310  * sequence of mprotects and faults may otherwise lead to distinct
1311  * anon_vmas being allocated, preventing vma merge in subsequent
1312  * mprotect.
1313  */
1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316 	struct anon_vma *anon_vma = NULL;
1317 
1318 	/* Try next first. */
1319 	if (vma->vm_next) {
1320 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321 		if (anon_vma)
1322 			return anon_vma;
1323 	}
1324 
1325 	/* Try prev next. */
1326 	if (vma->vm_prev)
1327 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328 
1329 	/*
1330 	 * We might reach here with anon_vma == NULL if we can't find
1331 	 * any reusable anon_vma.
1332 	 * There's no absolute need to look only at touching neighbours:
1333 	 * we could search further afield for "compatible" anon_vmas.
1334 	 * But it would probably just be a waste of time searching,
1335 	 * or lead to too many vmas hanging off the same anon_vma.
1336 	 * We're trying to allow mprotect remerging later on,
1337 	 * not trying to minimize memory used for anon_vmas.
1338 	 */
1339 	return anon_vma;
1340 }
1341 
1342 /*
1343  * If a hint addr is less than mmap_min_addr change hint to be as
1344  * low as possible but still greater than mmap_min_addr
1345  */
1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348 	hint &= PAGE_MASK;
1349 	if (((void *)hint != NULL) &&
1350 	    (hint < mmap_min_addr))
1351 		return PAGE_ALIGN(mmap_min_addr);
1352 	return hint;
1353 }
1354 
1355 static inline int mlock_future_check(struct mm_struct *mm,
1356 				     unsigned long flags,
1357 				     unsigned long len)
1358 {
1359 	unsigned long locked, lock_limit;
1360 
1361 	/*  mlock MCL_FUTURE? */
1362 	if (flags & VM_LOCKED) {
1363 		locked = len >> PAGE_SHIFT;
1364 		locked += mm->locked_vm;
1365 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1366 		lock_limit >>= PAGE_SHIFT;
1367 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1368 			return -EAGAIN;
1369 	}
1370 	return 0;
1371 }
1372 
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1374 {
1375 	if (S_ISREG(inode->i_mode))
1376 		return MAX_LFS_FILESIZE;
1377 
1378 	if (S_ISBLK(inode->i_mode))
1379 		return MAX_LFS_FILESIZE;
1380 
1381 	if (S_ISSOCK(inode->i_mode))
1382 		return MAX_LFS_FILESIZE;
1383 
1384 	/* Special "we do even unsigned file positions" case */
1385 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1386 		return 0;
1387 
1388 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1389 	return ULONG_MAX;
1390 }
1391 
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393 				unsigned long pgoff, unsigned long len)
1394 {
1395 	u64 maxsize = file_mmap_size_max(file, inode);
1396 
1397 	if (maxsize && len > maxsize)
1398 		return false;
1399 	maxsize -= len;
1400 	if (pgoff > maxsize >> PAGE_SHIFT)
1401 		return false;
1402 	return true;
1403 }
1404 
1405 /*
1406  * The caller must write-lock current->mm->mmap_lock.
1407  */
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409 			unsigned long len, unsigned long prot,
1410 			unsigned long flags, unsigned long pgoff,
1411 			unsigned long *populate, struct list_head *uf)
1412 {
1413 	struct mm_struct *mm = current->mm;
1414 	vm_flags_t vm_flags;
1415 	int pkey = 0;
1416 
1417 	*populate = 0;
1418 
1419 	if (!len)
1420 		return -EINVAL;
1421 
1422 	/*
1423 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1424 	 *
1425 	 * (the exception is when the underlying filesystem is noexec
1426 	 *  mounted, in which case we dont add PROT_EXEC.)
1427 	 */
1428 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429 		if (!(file && path_noexec(&file->f_path)))
1430 			prot |= PROT_EXEC;
1431 
1432 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1433 	if (flags & MAP_FIXED_NOREPLACE)
1434 		flags |= MAP_FIXED;
1435 
1436 	if (!(flags & MAP_FIXED))
1437 		addr = round_hint_to_min(addr);
1438 
1439 	/* Careful about overflows.. */
1440 	len = PAGE_ALIGN(len);
1441 	if (!len)
1442 		return -ENOMEM;
1443 
1444 	/* offset overflow? */
1445 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446 		return -EOVERFLOW;
1447 
1448 	/* Too many mappings? */
1449 	if (mm->map_count > sysctl_max_map_count)
1450 		return -ENOMEM;
1451 
1452 	/* Obtain the address to map to. we verify (or select) it and ensure
1453 	 * that it represents a valid section of the address space.
1454 	 */
1455 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456 	if (IS_ERR_VALUE(addr))
1457 		return addr;
1458 
1459 	if (flags & MAP_FIXED_NOREPLACE) {
1460 		if (find_vma_intersection(mm, addr, addr + len))
1461 			return -EEXIST;
1462 	}
1463 
1464 	if (prot == PROT_EXEC) {
1465 		pkey = execute_only_pkey(mm);
1466 		if (pkey < 0)
1467 			pkey = 0;
1468 	}
1469 
1470 	/* Do simple checking here so the lower-level routines won't have
1471 	 * to. we assume access permissions have been handled by the open
1472 	 * of the memory object, so we don't do any here.
1473 	 */
1474 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1475 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1476 
1477 	if (flags & MAP_LOCKED)
1478 		if (!can_do_mlock())
1479 			return -EPERM;
1480 
1481 	if (mlock_future_check(mm, vm_flags, len))
1482 		return -EAGAIN;
1483 
1484 	if (file) {
1485 		struct inode *inode = file_inode(file);
1486 		unsigned long flags_mask;
1487 
1488 		if (!file_mmap_ok(file, inode, pgoff, len))
1489 			return -EOVERFLOW;
1490 
1491 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1492 
1493 		switch (flags & MAP_TYPE) {
1494 		case MAP_SHARED:
1495 			/*
1496 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1497 			 * flags. E.g. MAP_SYNC is dangerous to use with
1498 			 * MAP_SHARED as you don't know which consistency model
1499 			 * you will get. We silently ignore unsupported flags
1500 			 * with MAP_SHARED to preserve backward compatibility.
1501 			 */
1502 			flags &= LEGACY_MAP_MASK;
1503 			fallthrough;
1504 		case MAP_SHARED_VALIDATE:
1505 			if (flags & ~flags_mask)
1506 				return -EOPNOTSUPP;
1507 			if (prot & PROT_WRITE) {
1508 				if (!(file->f_mode & FMODE_WRITE))
1509 					return -EACCES;
1510 				if (IS_SWAPFILE(file->f_mapping->host))
1511 					return -ETXTBSY;
1512 			}
1513 
1514 			/*
1515 			 * Make sure we don't allow writing to an append-only
1516 			 * file..
1517 			 */
1518 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1519 				return -EACCES;
1520 
1521 			/*
1522 			 * Make sure there are no mandatory locks on the file.
1523 			 */
1524 			if (locks_verify_locked(file))
1525 				return -EAGAIN;
1526 
1527 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1528 			if (!(file->f_mode & FMODE_WRITE))
1529 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1530 			fallthrough;
1531 		case MAP_PRIVATE:
1532 			if (!(file->f_mode & FMODE_READ))
1533 				return -EACCES;
1534 			if (path_noexec(&file->f_path)) {
1535 				if (vm_flags & VM_EXEC)
1536 					return -EPERM;
1537 				vm_flags &= ~VM_MAYEXEC;
1538 			}
1539 
1540 			if (!file->f_op->mmap)
1541 				return -ENODEV;
1542 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543 				return -EINVAL;
1544 			break;
1545 
1546 		default:
1547 			return -EINVAL;
1548 		}
1549 	} else {
1550 		switch (flags & MAP_TYPE) {
1551 		case MAP_SHARED:
1552 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1553 				return -EINVAL;
1554 			/*
1555 			 * Ignore pgoff.
1556 			 */
1557 			pgoff = 0;
1558 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1559 			break;
1560 		case MAP_PRIVATE:
1561 			/*
1562 			 * Set pgoff according to addr for anon_vma.
1563 			 */
1564 			pgoff = addr >> PAGE_SHIFT;
1565 			break;
1566 		default:
1567 			return -EINVAL;
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * Set 'VM_NORESERVE' if we should not account for the
1573 	 * memory use of this mapping.
1574 	 */
1575 	if (flags & MAP_NORESERVE) {
1576 		/* We honor MAP_NORESERVE if allowed to overcommit */
1577 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1578 			vm_flags |= VM_NORESERVE;
1579 
1580 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1581 		if (file && is_file_hugepages(file))
1582 			vm_flags |= VM_NORESERVE;
1583 	}
1584 
1585 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1586 	if (!IS_ERR_VALUE(addr) &&
1587 	    ((vm_flags & VM_LOCKED) ||
1588 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1589 		*populate = len;
1590 	return addr;
1591 }
1592 
1593 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1594 			      unsigned long prot, unsigned long flags,
1595 			      unsigned long fd, unsigned long pgoff)
1596 {
1597 	struct file *file = NULL;
1598 	unsigned long retval;
1599 
1600 	if (!(flags & MAP_ANONYMOUS)) {
1601 		audit_mmap_fd(fd, flags);
1602 		file = fget(fd);
1603 		if (!file)
1604 			return -EBADF;
1605 		if (is_file_hugepages(file)) {
1606 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1607 		} else if (unlikely(flags & MAP_HUGETLB)) {
1608 			retval = -EINVAL;
1609 			goto out_fput;
1610 		}
1611 	} else if (flags & MAP_HUGETLB) {
1612 		struct ucounts *ucounts = NULL;
1613 		struct hstate *hs;
1614 
1615 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1616 		if (!hs)
1617 			return -EINVAL;
1618 
1619 		len = ALIGN(len, huge_page_size(hs));
1620 		/*
1621 		 * VM_NORESERVE is used because the reservations will be
1622 		 * taken when vm_ops->mmap() is called
1623 		 * A dummy user value is used because we are not locking
1624 		 * memory so no accounting is necessary
1625 		 */
1626 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1627 				VM_NORESERVE,
1628 				&ucounts, HUGETLB_ANONHUGE_INODE,
1629 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1630 		if (IS_ERR(file))
1631 			return PTR_ERR(file);
1632 	}
1633 
1634 	flags &= ~MAP_DENYWRITE;
1635 
1636 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1637 out_fput:
1638 	if (file)
1639 		fput(file);
1640 	return retval;
1641 }
1642 
1643 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1644 		unsigned long, prot, unsigned long, flags,
1645 		unsigned long, fd, unsigned long, pgoff)
1646 {
1647 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1648 }
1649 
1650 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1651 struct mmap_arg_struct {
1652 	unsigned long addr;
1653 	unsigned long len;
1654 	unsigned long prot;
1655 	unsigned long flags;
1656 	unsigned long fd;
1657 	unsigned long offset;
1658 };
1659 
1660 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1661 {
1662 	struct mmap_arg_struct a;
1663 
1664 	if (copy_from_user(&a, arg, sizeof(a)))
1665 		return -EFAULT;
1666 	if (offset_in_page(a.offset))
1667 		return -EINVAL;
1668 
1669 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1670 			       a.offset >> PAGE_SHIFT);
1671 }
1672 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1673 
1674 /*
1675  * Some shared mappings will want the pages marked read-only
1676  * to track write events. If so, we'll downgrade vm_page_prot
1677  * to the private version (using protection_map[] without the
1678  * VM_SHARED bit).
1679  */
1680 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1681 {
1682 	vm_flags_t vm_flags = vma->vm_flags;
1683 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1684 
1685 	/* If it was private or non-writable, the write bit is already clear */
1686 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1687 		return 0;
1688 
1689 	/* The backer wishes to know when pages are first written to? */
1690 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1691 		return 1;
1692 
1693 	/* The open routine did something to the protections that pgprot_modify
1694 	 * won't preserve? */
1695 	if (pgprot_val(vm_page_prot) !=
1696 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1697 		return 0;
1698 
1699 	/* Do we need to track softdirty? */
1700 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1701 		return 1;
1702 
1703 	/* Specialty mapping? */
1704 	if (vm_flags & VM_PFNMAP)
1705 		return 0;
1706 
1707 	/* Can the mapping track the dirty pages? */
1708 	return vma->vm_file && vma->vm_file->f_mapping &&
1709 		mapping_can_writeback(vma->vm_file->f_mapping);
1710 }
1711 
1712 /*
1713  * We account for memory if it's a private writeable mapping,
1714  * not hugepages and VM_NORESERVE wasn't set.
1715  */
1716 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1717 {
1718 	/*
1719 	 * hugetlb has its own accounting separate from the core VM
1720 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1721 	 */
1722 	if (file && is_file_hugepages(file))
1723 		return 0;
1724 
1725 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1726 }
1727 
1728 unsigned long mmap_region(struct file *file, unsigned long addr,
1729 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1730 		struct list_head *uf)
1731 {
1732 	struct mm_struct *mm = current->mm;
1733 	struct vm_area_struct *vma, *prev, *merge;
1734 	int error;
1735 	struct rb_node **rb_link, *rb_parent;
1736 	unsigned long charged = 0;
1737 
1738 	/* Check against address space limit. */
1739 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1740 		unsigned long nr_pages;
1741 
1742 		/*
1743 		 * MAP_FIXED may remove pages of mappings that intersects with
1744 		 * requested mapping. Account for the pages it would unmap.
1745 		 */
1746 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1747 
1748 		if (!may_expand_vm(mm, vm_flags,
1749 					(len >> PAGE_SHIFT) - nr_pages))
1750 			return -ENOMEM;
1751 	}
1752 
1753 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1754 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1755 		return -ENOMEM;
1756 	/*
1757 	 * Private writable mapping: check memory availability
1758 	 */
1759 	if (accountable_mapping(file, vm_flags)) {
1760 		charged = len >> PAGE_SHIFT;
1761 		if (security_vm_enough_memory_mm(mm, charged))
1762 			return -ENOMEM;
1763 		vm_flags |= VM_ACCOUNT;
1764 	}
1765 
1766 	/*
1767 	 * Can we just expand an old mapping?
1768 	 */
1769 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1770 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1771 	if (vma)
1772 		goto out;
1773 
1774 	/*
1775 	 * Determine the object being mapped and call the appropriate
1776 	 * specific mapper. the address has already been validated, but
1777 	 * not unmapped, but the maps are removed from the list.
1778 	 */
1779 	vma = vm_area_alloc(mm);
1780 	if (!vma) {
1781 		error = -ENOMEM;
1782 		goto unacct_error;
1783 	}
1784 
1785 	vma->vm_start = addr;
1786 	vma->vm_end = addr + len;
1787 	vma->vm_flags = vm_flags;
1788 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1789 	vma->vm_pgoff = pgoff;
1790 
1791 	if (file) {
1792 		if (vm_flags & VM_DENYWRITE) {
1793 			error = deny_write_access(file);
1794 			if (error)
1795 				goto free_vma;
1796 		}
1797 		if (vm_flags & VM_SHARED) {
1798 			error = mapping_map_writable(file->f_mapping);
1799 			if (error)
1800 				goto allow_write_and_free_vma;
1801 		}
1802 
1803 		/* ->mmap() can change vma->vm_file, but must guarantee that
1804 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1805 		 * and map writably if VM_SHARED is set. This usually means the
1806 		 * new file must not have been exposed to user-space, yet.
1807 		 */
1808 		vma->vm_file = get_file(file);
1809 		error = call_mmap(file, vma);
1810 		if (error)
1811 			goto unmap_and_free_vma;
1812 
1813 		/* Can addr have changed??
1814 		 *
1815 		 * Answer: Yes, several device drivers can do it in their
1816 		 *         f_op->mmap method. -DaveM
1817 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1818 		 *      be updated for vma_link()
1819 		 */
1820 		WARN_ON_ONCE(addr != vma->vm_start);
1821 
1822 		addr = vma->vm_start;
1823 
1824 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1825 		 * as we may succeed this time.
1826 		 */
1827 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1828 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1829 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1830 			if (merge) {
1831 				/* ->mmap() can change vma->vm_file and fput the original file. So
1832 				 * fput the vma->vm_file here or we would add an extra fput for file
1833 				 * and cause general protection fault ultimately.
1834 				 */
1835 				fput(vma->vm_file);
1836 				vm_area_free(vma);
1837 				vma = merge;
1838 				/* Update vm_flags to pick up the change. */
1839 				vm_flags = vma->vm_flags;
1840 				goto unmap_writable;
1841 			}
1842 		}
1843 
1844 		vm_flags = vma->vm_flags;
1845 	} else if (vm_flags & VM_SHARED) {
1846 		error = shmem_zero_setup(vma);
1847 		if (error)
1848 			goto free_vma;
1849 	} else {
1850 		vma_set_anonymous(vma);
1851 	}
1852 
1853 	/* Allow architectures to sanity-check the vm_flags */
1854 	if (!arch_validate_flags(vma->vm_flags)) {
1855 		error = -EINVAL;
1856 		if (file)
1857 			goto unmap_and_free_vma;
1858 		else
1859 			goto free_vma;
1860 	}
1861 
1862 	vma_link(mm, vma, prev, rb_link, rb_parent);
1863 	/* Once vma denies write, undo our temporary denial count */
1864 	if (file) {
1865 unmap_writable:
1866 		if (vm_flags & VM_SHARED)
1867 			mapping_unmap_writable(file->f_mapping);
1868 		if (vm_flags & VM_DENYWRITE)
1869 			allow_write_access(file);
1870 	}
1871 	file = vma->vm_file;
1872 out:
1873 	perf_event_mmap(vma);
1874 
1875 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1876 	if (vm_flags & VM_LOCKED) {
1877 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1878 					is_vm_hugetlb_page(vma) ||
1879 					vma == get_gate_vma(current->mm))
1880 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1881 		else
1882 			mm->locked_vm += (len >> PAGE_SHIFT);
1883 	}
1884 
1885 	if (file)
1886 		uprobe_mmap(vma);
1887 
1888 	/*
1889 	 * New (or expanded) vma always get soft dirty status.
1890 	 * Otherwise user-space soft-dirty page tracker won't
1891 	 * be able to distinguish situation when vma area unmapped,
1892 	 * then new mapped in-place (which must be aimed as
1893 	 * a completely new data area).
1894 	 */
1895 	vma->vm_flags |= VM_SOFTDIRTY;
1896 
1897 	vma_set_page_prot(vma);
1898 
1899 	return addr;
1900 
1901 unmap_and_free_vma:
1902 	fput(vma->vm_file);
1903 	vma->vm_file = NULL;
1904 
1905 	/* Undo any partial mapping done by a device driver. */
1906 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1907 	charged = 0;
1908 	if (vm_flags & VM_SHARED)
1909 		mapping_unmap_writable(file->f_mapping);
1910 allow_write_and_free_vma:
1911 	if (vm_flags & VM_DENYWRITE)
1912 		allow_write_access(file);
1913 free_vma:
1914 	vm_area_free(vma);
1915 unacct_error:
1916 	if (charged)
1917 		vm_unacct_memory(charged);
1918 	return error;
1919 }
1920 
1921 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1922 {
1923 	/*
1924 	 * We implement the search by looking for an rbtree node that
1925 	 * immediately follows a suitable gap. That is,
1926 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1927 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1928 	 * - gap_end - gap_start >= length
1929 	 */
1930 
1931 	struct mm_struct *mm = current->mm;
1932 	struct vm_area_struct *vma;
1933 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1934 
1935 	/* Adjust search length to account for worst case alignment overhead */
1936 	length = info->length + info->align_mask;
1937 	if (length < info->length)
1938 		return -ENOMEM;
1939 
1940 	/* Adjust search limits by the desired length */
1941 	if (info->high_limit < length)
1942 		return -ENOMEM;
1943 	high_limit = info->high_limit - length;
1944 
1945 	if (info->low_limit > high_limit)
1946 		return -ENOMEM;
1947 	low_limit = info->low_limit + length;
1948 
1949 	/* Check if rbtree root looks promising */
1950 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1951 		goto check_highest;
1952 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1953 	if (vma->rb_subtree_gap < length)
1954 		goto check_highest;
1955 
1956 	while (true) {
1957 		/* Visit left subtree if it looks promising */
1958 		gap_end = vm_start_gap(vma);
1959 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1960 			struct vm_area_struct *left =
1961 				rb_entry(vma->vm_rb.rb_left,
1962 					 struct vm_area_struct, vm_rb);
1963 			if (left->rb_subtree_gap >= length) {
1964 				vma = left;
1965 				continue;
1966 			}
1967 		}
1968 
1969 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1970 check_current:
1971 		/* Check if current node has a suitable gap */
1972 		if (gap_start > high_limit)
1973 			return -ENOMEM;
1974 		if (gap_end >= low_limit &&
1975 		    gap_end > gap_start && gap_end - gap_start >= length)
1976 			goto found;
1977 
1978 		/* Visit right subtree if it looks promising */
1979 		if (vma->vm_rb.rb_right) {
1980 			struct vm_area_struct *right =
1981 				rb_entry(vma->vm_rb.rb_right,
1982 					 struct vm_area_struct, vm_rb);
1983 			if (right->rb_subtree_gap >= length) {
1984 				vma = right;
1985 				continue;
1986 			}
1987 		}
1988 
1989 		/* Go back up the rbtree to find next candidate node */
1990 		while (true) {
1991 			struct rb_node *prev = &vma->vm_rb;
1992 			if (!rb_parent(prev))
1993 				goto check_highest;
1994 			vma = rb_entry(rb_parent(prev),
1995 				       struct vm_area_struct, vm_rb);
1996 			if (prev == vma->vm_rb.rb_left) {
1997 				gap_start = vm_end_gap(vma->vm_prev);
1998 				gap_end = vm_start_gap(vma);
1999 				goto check_current;
2000 			}
2001 		}
2002 	}
2003 
2004 check_highest:
2005 	/* Check highest gap, which does not precede any rbtree node */
2006 	gap_start = mm->highest_vm_end;
2007 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2008 	if (gap_start > high_limit)
2009 		return -ENOMEM;
2010 
2011 found:
2012 	/* We found a suitable gap. Clip it with the original low_limit. */
2013 	if (gap_start < info->low_limit)
2014 		gap_start = info->low_limit;
2015 
2016 	/* Adjust gap address to the desired alignment */
2017 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2018 
2019 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2020 	VM_BUG_ON(gap_start + info->length > gap_end);
2021 	return gap_start;
2022 }
2023 
2024 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2025 {
2026 	struct mm_struct *mm = current->mm;
2027 	struct vm_area_struct *vma;
2028 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2029 
2030 	/* Adjust search length to account for worst case alignment overhead */
2031 	length = info->length + info->align_mask;
2032 	if (length < info->length)
2033 		return -ENOMEM;
2034 
2035 	/*
2036 	 * Adjust search limits by the desired length.
2037 	 * See implementation comment at top of unmapped_area().
2038 	 */
2039 	gap_end = info->high_limit;
2040 	if (gap_end < length)
2041 		return -ENOMEM;
2042 	high_limit = gap_end - length;
2043 
2044 	if (info->low_limit > high_limit)
2045 		return -ENOMEM;
2046 	low_limit = info->low_limit + length;
2047 
2048 	/* Check highest gap, which does not precede any rbtree node */
2049 	gap_start = mm->highest_vm_end;
2050 	if (gap_start <= high_limit)
2051 		goto found_highest;
2052 
2053 	/* Check if rbtree root looks promising */
2054 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2055 		return -ENOMEM;
2056 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2057 	if (vma->rb_subtree_gap < length)
2058 		return -ENOMEM;
2059 
2060 	while (true) {
2061 		/* Visit right subtree if it looks promising */
2062 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2063 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2064 			struct vm_area_struct *right =
2065 				rb_entry(vma->vm_rb.rb_right,
2066 					 struct vm_area_struct, vm_rb);
2067 			if (right->rb_subtree_gap >= length) {
2068 				vma = right;
2069 				continue;
2070 			}
2071 		}
2072 
2073 check_current:
2074 		/* Check if current node has a suitable gap */
2075 		gap_end = vm_start_gap(vma);
2076 		if (gap_end < low_limit)
2077 			return -ENOMEM;
2078 		if (gap_start <= high_limit &&
2079 		    gap_end > gap_start && gap_end - gap_start >= length)
2080 			goto found;
2081 
2082 		/* Visit left subtree if it looks promising */
2083 		if (vma->vm_rb.rb_left) {
2084 			struct vm_area_struct *left =
2085 				rb_entry(vma->vm_rb.rb_left,
2086 					 struct vm_area_struct, vm_rb);
2087 			if (left->rb_subtree_gap >= length) {
2088 				vma = left;
2089 				continue;
2090 			}
2091 		}
2092 
2093 		/* Go back up the rbtree to find next candidate node */
2094 		while (true) {
2095 			struct rb_node *prev = &vma->vm_rb;
2096 			if (!rb_parent(prev))
2097 				return -ENOMEM;
2098 			vma = rb_entry(rb_parent(prev),
2099 				       struct vm_area_struct, vm_rb);
2100 			if (prev == vma->vm_rb.rb_right) {
2101 				gap_start = vma->vm_prev ?
2102 					vm_end_gap(vma->vm_prev) : 0;
2103 				goto check_current;
2104 			}
2105 		}
2106 	}
2107 
2108 found:
2109 	/* We found a suitable gap. Clip it with the original high_limit. */
2110 	if (gap_end > info->high_limit)
2111 		gap_end = info->high_limit;
2112 
2113 found_highest:
2114 	/* Compute highest gap address at the desired alignment */
2115 	gap_end -= info->length;
2116 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2117 
2118 	VM_BUG_ON(gap_end < info->low_limit);
2119 	VM_BUG_ON(gap_end < gap_start);
2120 	return gap_end;
2121 }
2122 
2123 /*
2124  * Search for an unmapped address range.
2125  *
2126  * We are looking for a range that:
2127  * - does not intersect with any VMA;
2128  * - is contained within the [low_limit, high_limit) interval;
2129  * - is at least the desired size.
2130  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2131  */
2132 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2133 {
2134 	unsigned long addr;
2135 
2136 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2137 		addr = unmapped_area_topdown(info);
2138 	else
2139 		addr = unmapped_area(info);
2140 
2141 	trace_vm_unmapped_area(addr, info);
2142 	return addr;
2143 }
2144 
2145 #ifndef arch_get_mmap_end
2146 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2147 #endif
2148 
2149 #ifndef arch_get_mmap_base
2150 #define arch_get_mmap_base(addr, base) (base)
2151 #endif
2152 
2153 /* Get an address range which is currently unmapped.
2154  * For shmat() with addr=0.
2155  *
2156  * Ugly calling convention alert:
2157  * Return value with the low bits set means error value,
2158  * ie
2159  *	if (ret & ~PAGE_MASK)
2160  *		error = ret;
2161  *
2162  * This function "knows" that -ENOMEM has the bits set.
2163  */
2164 #ifndef HAVE_ARCH_UNMAPPED_AREA
2165 unsigned long
2166 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2167 		unsigned long len, unsigned long pgoff, unsigned long flags)
2168 {
2169 	struct mm_struct *mm = current->mm;
2170 	struct vm_area_struct *vma, *prev;
2171 	struct vm_unmapped_area_info info;
2172 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2173 
2174 	if (len > mmap_end - mmap_min_addr)
2175 		return -ENOMEM;
2176 
2177 	if (flags & MAP_FIXED)
2178 		return addr;
2179 
2180 	if (addr) {
2181 		addr = PAGE_ALIGN(addr);
2182 		vma = find_vma_prev(mm, addr, &prev);
2183 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2184 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2185 		    (!prev || addr >= vm_end_gap(prev)))
2186 			return addr;
2187 	}
2188 
2189 	info.flags = 0;
2190 	info.length = len;
2191 	info.low_limit = mm->mmap_base;
2192 	info.high_limit = mmap_end;
2193 	info.align_mask = 0;
2194 	info.align_offset = 0;
2195 	return vm_unmapped_area(&info);
2196 }
2197 #endif
2198 
2199 /*
2200  * This mmap-allocator allocates new areas top-down from below the
2201  * stack's low limit (the base):
2202  */
2203 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2204 unsigned long
2205 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2206 			  unsigned long len, unsigned long pgoff,
2207 			  unsigned long flags)
2208 {
2209 	struct vm_area_struct *vma, *prev;
2210 	struct mm_struct *mm = current->mm;
2211 	struct vm_unmapped_area_info info;
2212 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2213 
2214 	/* requested length too big for entire address space */
2215 	if (len > mmap_end - mmap_min_addr)
2216 		return -ENOMEM;
2217 
2218 	if (flags & MAP_FIXED)
2219 		return addr;
2220 
2221 	/* requesting a specific address */
2222 	if (addr) {
2223 		addr = PAGE_ALIGN(addr);
2224 		vma = find_vma_prev(mm, addr, &prev);
2225 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2226 				(!vma || addr + len <= vm_start_gap(vma)) &&
2227 				(!prev || addr >= vm_end_gap(prev)))
2228 			return addr;
2229 	}
2230 
2231 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2232 	info.length = len;
2233 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2234 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2235 	info.align_mask = 0;
2236 	info.align_offset = 0;
2237 	addr = vm_unmapped_area(&info);
2238 
2239 	/*
2240 	 * A failed mmap() very likely causes application failure,
2241 	 * so fall back to the bottom-up function here. This scenario
2242 	 * can happen with large stack limits and large mmap()
2243 	 * allocations.
2244 	 */
2245 	if (offset_in_page(addr)) {
2246 		VM_BUG_ON(addr != -ENOMEM);
2247 		info.flags = 0;
2248 		info.low_limit = TASK_UNMAPPED_BASE;
2249 		info.high_limit = mmap_end;
2250 		addr = vm_unmapped_area(&info);
2251 	}
2252 
2253 	return addr;
2254 }
2255 #endif
2256 
2257 unsigned long
2258 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2259 		unsigned long pgoff, unsigned long flags)
2260 {
2261 	unsigned long (*get_area)(struct file *, unsigned long,
2262 				  unsigned long, unsigned long, unsigned long);
2263 
2264 	unsigned long error = arch_mmap_check(addr, len, flags);
2265 	if (error)
2266 		return error;
2267 
2268 	/* Careful about overflows.. */
2269 	if (len > TASK_SIZE)
2270 		return -ENOMEM;
2271 
2272 	get_area = current->mm->get_unmapped_area;
2273 	if (file) {
2274 		if (file->f_op->get_unmapped_area)
2275 			get_area = file->f_op->get_unmapped_area;
2276 	} else if (flags & MAP_SHARED) {
2277 		/*
2278 		 * mmap_region() will call shmem_zero_setup() to create a file,
2279 		 * so use shmem's get_unmapped_area in case it can be huge.
2280 		 * do_mmap() will clear pgoff, so match alignment.
2281 		 */
2282 		pgoff = 0;
2283 		get_area = shmem_get_unmapped_area;
2284 	}
2285 
2286 	addr = get_area(file, addr, len, pgoff, flags);
2287 	if (IS_ERR_VALUE(addr))
2288 		return addr;
2289 
2290 	if (addr > TASK_SIZE - len)
2291 		return -ENOMEM;
2292 	if (offset_in_page(addr))
2293 		return -EINVAL;
2294 
2295 	error = security_mmap_addr(addr);
2296 	return error ? error : addr;
2297 }
2298 
2299 EXPORT_SYMBOL(get_unmapped_area);
2300 
2301 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2302 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2303 {
2304 	struct rb_node *rb_node;
2305 	struct vm_area_struct *vma;
2306 
2307 	/* Check the cache first. */
2308 	vma = vmacache_find(mm, addr);
2309 	if (likely(vma))
2310 		return vma;
2311 
2312 	rb_node = mm->mm_rb.rb_node;
2313 
2314 	while (rb_node) {
2315 		struct vm_area_struct *tmp;
2316 
2317 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2318 
2319 		if (tmp->vm_end > addr) {
2320 			vma = tmp;
2321 			if (tmp->vm_start <= addr)
2322 				break;
2323 			rb_node = rb_node->rb_left;
2324 		} else
2325 			rb_node = rb_node->rb_right;
2326 	}
2327 
2328 	if (vma)
2329 		vmacache_update(addr, vma);
2330 	return vma;
2331 }
2332 
2333 EXPORT_SYMBOL(find_vma);
2334 
2335 /*
2336  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2337  */
2338 struct vm_area_struct *
2339 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2340 			struct vm_area_struct **pprev)
2341 {
2342 	struct vm_area_struct *vma;
2343 
2344 	vma = find_vma(mm, addr);
2345 	if (vma) {
2346 		*pprev = vma->vm_prev;
2347 	} else {
2348 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2349 
2350 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351 	}
2352 	return vma;
2353 }
2354 
2355 /*
2356  * Verify that the stack growth is acceptable and
2357  * update accounting. This is shared with both the
2358  * grow-up and grow-down cases.
2359  */
2360 static int acct_stack_growth(struct vm_area_struct *vma,
2361 			     unsigned long size, unsigned long grow)
2362 {
2363 	struct mm_struct *mm = vma->vm_mm;
2364 	unsigned long new_start;
2365 
2366 	/* address space limit tests */
2367 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2368 		return -ENOMEM;
2369 
2370 	/* Stack limit test */
2371 	if (size > rlimit(RLIMIT_STACK))
2372 		return -ENOMEM;
2373 
2374 	/* mlock limit tests */
2375 	if (vma->vm_flags & VM_LOCKED) {
2376 		unsigned long locked;
2377 		unsigned long limit;
2378 		locked = mm->locked_vm + grow;
2379 		limit = rlimit(RLIMIT_MEMLOCK);
2380 		limit >>= PAGE_SHIFT;
2381 		if (locked > limit && !capable(CAP_IPC_LOCK))
2382 			return -ENOMEM;
2383 	}
2384 
2385 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2386 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2387 			vma->vm_end - size;
2388 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2389 		return -EFAULT;
2390 
2391 	/*
2392 	 * Overcommit..  This must be the final test, as it will
2393 	 * update security statistics.
2394 	 */
2395 	if (security_vm_enough_memory_mm(mm, grow))
2396 		return -ENOMEM;
2397 
2398 	return 0;
2399 }
2400 
2401 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2402 /*
2403  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2404  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2405  */
2406 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2407 {
2408 	struct mm_struct *mm = vma->vm_mm;
2409 	struct vm_area_struct *next;
2410 	unsigned long gap_addr;
2411 	int error = 0;
2412 
2413 	if (!(vma->vm_flags & VM_GROWSUP))
2414 		return -EFAULT;
2415 
2416 	/* Guard against exceeding limits of the address space. */
2417 	address &= PAGE_MASK;
2418 	if (address >= (TASK_SIZE & PAGE_MASK))
2419 		return -ENOMEM;
2420 	address += PAGE_SIZE;
2421 
2422 	/* Enforce stack_guard_gap */
2423 	gap_addr = address + stack_guard_gap;
2424 
2425 	/* Guard against overflow */
2426 	if (gap_addr < address || gap_addr > TASK_SIZE)
2427 		gap_addr = TASK_SIZE;
2428 
2429 	next = vma->vm_next;
2430 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2431 		if (!(next->vm_flags & VM_GROWSUP))
2432 			return -ENOMEM;
2433 		/* Check that both stack segments have the same anon_vma? */
2434 	}
2435 
2436 	/* We must make sure the anon_vma is allocated. */
2437 	if (unlikely(anon_vma_prepare(vma)))
2438 		return -ENOMEM;
2439 
2440 	/*
2441 	 * vma->vm_start/vm_end cannot change under us because the caller
2442 	 * is required to hold the mmap_lock in read mode.  We need the
2443 	 * anon_vma lock to serialize against concurrent expand_stacks.
2444 	 */
2445 	anon_vma_lock_write(vma->anon_vma);
2446 
2447 	/* Somebody else might have raced and expanded it already */
2448 	if (address > vma->vm_end) {
2449 		unsigned long size, grow;
2450 
2451 		size = address - vma->vm_start;
2452 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2453 
2454 		error = -ENOMEM;
2455 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2456 			error = acct_stack_growth(vma, size, grow);
2457 			if (!error) {
2458 				/*
2459 				 * vma_gap_update() doesn't support concurrent
2460 				 * updates, but we only hold a shared mmap_lock
2461 				 * lock here, so we need to protect against
2462 				 * concurrent vma expansions.
2463 				 * anon_vma_lock_write() doesn't help here, as
2464 				 * we don't guarantee that all growable vmas
2465 				 * in a mm share the same root anon vma.
2466 				 * So, we reuse mm->page_table_lock to guard
2467 				 * against concurrent vma expansions.
2468 				 */
2469 				spin_lock(&mm->page_table_lock);
2470 				if (vma->vm_flags & VM_LOCKED)
2471 					mm->locked_vm += grow;
2472 				vm_stat_account(mm, vma->vm_flags, grow);
2473 				anon_vma_interval_tree_pre_update_vma(vma);
2474 				vma->vm_end = address;
2475 				anon_vma_interval_tree_post_update_vma(vma);
2476 				if (vma->vm_next)
2477 					vma_gap_update(vma->vm_next);
2478 				else
2479 					mm->highest_vm_end = vm_end_gap(vma);
2480 				spin_unlock(&mm->page_table_lock);
2481 
2482 				perf_event_mmap(vma);
2483 			}
2484 		}
2485 	}
2486 	anon_vma_unlock_write(vma->anon_vma);
2487 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2488 	validate_mm(mm);
2489 	return error;
2490 }
2491 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2492 
2493 /*
2494  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2495  */
2496 int expand_downwards(struct vm_area_struct *vma,
2497 				   unsigned long address)
2498 {
2499 	struct mm_struct *mm = vma->vm_mm;
2500 	struct vm_area_struct *prev;
2501 	int error = 0;
2502 
2503 	address &= PAGE_MASK;
2504 	if (address < mmap_min_addr)
2505 		return -EPERM;
2506 
2507 	/* Enforce stack_guard_gap */
2508 	prev = vma->vm_prev;
2509 	/* Check that both stack segments have the same anon_vma? */
2510 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2511 			vma_is_accessible(prev)) {
2512 		if (address - prev->vm_end < stack_guard_gap)
2513 			return -ENOMEM;
2514 	}
2515 
2516 	/* We must make sure the anon_vma is allocated. */
2517 	if (unlikely(anon_vma_prepare(vma)))
2518 		return -ENOMEM;
2519 
2520 	/*
2521 	 * vma->vm_start/vm_end cannot change under us because the caller
2522 	 * is required to hold the mmap_lock in read mode.  We need the
2523 	 * anon_vma lock to serialize against concurrent expand_stacks.
2524 	 */
2525 	anon_vma_lock_write(vma->anon_vma);
2526 
2527 	/* Somebody else might have raced and expanded it already */
2528 	if (address < vma->vm_start) {
2529 		unsigned long size, grow;
2530 
2531 		size = vma->vm_end - address;
2532 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2533 
2534 		error = -ENOMEM;
2535 		if (grow <= vma->vm_pgoff) {
2536 			error = acct_stack_growth(vma, size, grow);
2537 			if (!error) {
2538 				/*
2539 				 * vma_gap_update() doesn't support concurrent
2540 				 * updates, but we only hold a shared mmap_lock
2541 				 * lock here, so we need to protect against
2542 				 * concurrent vma expansions.
2543 				 * anon_vma_lock_write() doesn't help here, as
2544 				 * we don't guarantee that all growable vmas
2545 				 * in a mm share the same root anon vma.
2546 				 * So, we reuse mm->page_table_lock to guard
2547 				 * against concurrent vma expansions.
2548 				 */
2549 				spin_lock(&mm->page_table_lock);
2550 				if (vma->vm_flags & VM_LOCKED)
2551 					mm->locked_vm += grow;
2552 				vm_stat_account(mm, vma->vm_flags, grow);
2553 				anon_vma_interval_tree_pre_update_vma(vma);
2554 				vma->vm_start = address;
2555 				vma->vm_pgoff -= grow;
2556 				anon_vma_interval_tree_post_update_vma(vma);
2557 				vma_gap_update(vma);
2558 				spin_unlock(&mm->page_table_lock);
2559 
2560 				perf_event_mmap(vma);
2561 			}
2562 		}
2563 	}
2564 	anon_vma_unlock_write(vma->anon_vma);
2565 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2566 	validate_mm(mm);
2567 	return error;
2568 }
2569 
2570 /* enforced gap between the expanding stack and other mappings. */
2571 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2572 
2573 static int __init cmdline_parse_stack_guard_gap(char *p)
2574 {
2575 	unsigned long val;
2576 	char *endptr;
2577 
2578 	val = simple_strtoul(p, &endptr, 10);
2579 	if (!*endptr)
2580 		stack_guard_gap = val << PAGE_SHIFT;
2581 
2582 	return 0;
2583 }
2584 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2585 
2586 #ifdef CONFIG_STACK_GROWSUP
2587 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2588 {
2589 	return expand_upwards(vma, address);
2590 }
2591 
2592 struct vm_area_struct *
2593 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2594 {
2595 	struct vm_area_struct *vma, *prev;
2596 
2597 	addr &= PAGE_MASK;
2598 	vma = find_vma_prev(mm, addr, &prev);
2599 	if (vma && (vma->vm_start <= addr))
2600 		return vma;
2601 	/* don't alter vm_end if the coredump is running */
2602 	if (!prev || expand_stack(prev, addr))
2603 		return NULL;
2604 	if (prev->vm_flags & VM_LOCKED)
2605 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2606 	return prev;
2607 }
2608 #else
2609 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2610 {
2611 	return expand_downwards(vma, address);
2612 }
2613 
2614 struct vm_area_struct *
2615 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2616 {
2617 	struct vm_area_struct *vma;
2618 	unsigned long start;
2619 
2620 	addr &= PAGE_MASK;
2621 	vma = find_vma(mm, addr);
2622 	if (!vma)
2623 		return NULL;
2624 	if (vma->vm_start <= addr)
2625 		return vma;
2626 	if (!(vma->vm_flags & VM_GROWSDOWN))
2627 		return NULL;
2628 	start = vma->vm_start;
2629 	if (expand_stack(vma, addr))
2630 		return NULL;
2631 	if (vma->vm_flags & VM_LOCKED)
2632 		populate_vma_page_range(vma, addr, start, NULL);
2633 	return vma;
2634 }
2635 #endif
2636 
2637 EXPORT_SYMBOL_GPL(find_extend_vma);
2638 
2639 /*
2640  * Ok - we have the memory areas we should free on the vma list,
2641  * so release them, and do the vma updates.
2642  *
2643  * Called with the mm semaphore held.
2644  */
2645 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2646 {
2647 	unsigned long nr_accounted = 0;
2648 
2649 	/* Update high watermark before we lower total_vm */
2650 	update_hiwater_vm(mm);
2651 	do {
2652 		long nrpages = vma_pages(vma);
2653 
2654 		if (vma->vm_flags & VM_ACCOUNT)
2655 			nr_accounted += nrpages;
2656 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2657 		vma = remove_vma(vma);
2658 	} while (vma);
2659 	vm_unacct_memory(nr_accounted);
2660 	validate_mm(mm);
2661 }
2662 
2663 /*
2664  * Get rid of page table information in the indicated region.
2665  *
2666  * Called with the mm semaphore held.
2667  */
2668 static void unmap_region(struct mm_struct *mm,
2669 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2670 		unsigned long start, unsigned long end)
2671 {
2672 	struct vm_area_struct *next = vma_next(mm, prev);
2673 	struct mmu_gather tlb;
2674 
2675 	lru_add_drain();
2676 	tlb_gather_mmu(&tlb, mm);
2677 	update_hiwater_rss(mm);
2678 	unmap_vmas(&tlb, vma, start, end);
2679 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2680 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2681 	tlb_finish_mmu(&tlb);
2682 }
2683 
2684 /*
2685  * Create a list of vma's touched by the unmap, removing them from the mm's
2686  * vma list as we go..
2687  */
2688 static bool
2689 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2690 	struct vm_area_struct *prev, unsigned long end)
2691 {
2692 	struct vm_area_struct **insertion_point;
2693 	struct vm_area_struct *tail_vma = NULL;
2694 
2695 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2696 	vma->vm_prev = NULL;
2697 	do {
2698 		vma_rb_erase(vma, &mm->mm_rb);
2699 		mm->map_count--;
2700 		tail_vma = vma;
2701 		vma = vma->vm_next;
2702 	} while (vma && vma->vm_start < end);
2703 	*insertion_point = vma;
2704 	if (vma) {
2705 		vma->vm_prev = prev;
2706 		vma_gap_update(vma);
2707 	} else
2708 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2709 	tail_vma->vm_next = NULL;
2710 
2711 	/* Kill the cache */
2712 	vmacache_invalidate(mm);
2713 
2714 	/*
2715 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2716 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2717 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2718 	 */
2719 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2720 		return false;
2721 	if (prev && (prev->vm_flags & VM_GROWSUP))
2722 		return false;
2723 	return true;
2724 }
2725 
2726 /*
2727  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2728  * has already been checked or doesn't make sense to fail.
2729  */
2730 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731 		unsigned long addr, int new_below)
2732 {
2733 	struct vm_area_struct *new;
2734 	int err;
2735 
2736 	if (vma->vm_ops && vma->vm_ops->may_split) {
2737 		err = vma->vm_ops->may_split(vma, addr);
2738 		if (err)
2739 			return err;
2740 	}
2741 
2742 	new = vm_area_dup(vma);
2743 	if (!new)
2744 		return -ENOMEM;
2745 
2746 	if (new_below)
2747 		new->vm_end = addr;
2748 	else {
2749 		new->vm_start = addr;
2750 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2751 	}
2752 
2753 	err = vma_dup_policy(vma, new);
2754 	if (err)
2755 		goto out_free_vma;
2756 
2757 	err = anon_vma_clone(new, vma);
2758 	if (err)
2759 		goto out_free_mpol;
2760 
2761 	if (new->vm_file)
2762 		get_file(new->vm_file);
2763 
2764 	if (new->vm_ops && new->vm_ops->open)
2765 		new->vm_ops->open(new);
2766 
2767 	if (new_below)
2768 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2769 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2770 	else
2771 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2772 
2773 	/* Success. */
2774 	if (!err)
2775 		return 0;
2776 
2777 	/* Clean everything up if vma_adjust failed. */
2778 	if (new->vm_ops && new->vm_ops->close)
2779 		new->vm_ops->close(new);
2780 	if (new->vm_file)
2781 		fput(new->vm_file);
2782 	unlink_anon_vmas(new);
2783  out_free_mpol:
2784 	mpol_put(vma_policy(new));
2785  out_free_vma:
2786 	vm_area_free(new);
2787 	return err;
2788 }
2789 
2790 /*
2791  * Split a vma into two pieces at address 'addr', a new vma is allocated
2792  * either for the first part or the tail.
2793  */
2794 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2795 	      unsigned long addr, int new_below)
2796 {
2797 	if (mm->map_count >= sysctl_max_map_count)
2798 		return -ENOMEM;
2799 
2800 	return __split_vma(mm, vma, addr, new_below);
2801 }
2802 
2803 static inline void
2804 unlock_range(struct vm_area_struct *start, unsigned long limit)
2805 {
2806 	struct mm_struct *mm = start->vm_mm;
2807 	struct vm_area_struct *tmp = start;
2808 
2809 	while (tmp && tmp->vm_start < limit) {
2810 		if (tmp->vm_flags & VM_LOCKED) {
2811 			mm->locked_vm -= vma_pages(tmp);
2812 			munlock_vma_pages_all(tmp);
2813 		}
2814 
2815 		tmp = tmp->vm_next;
2816 	}
2817 }
2818 
2819 /* Munmap is split into 2 main parts -- this part which finds
2820  * what needs doing, and the areas themselves, which do the
2821  * work.  This now handles partial unmappings.
2822  * Jeremy Fitzhardinge <jeremy@goop.org>
2823  */
2824 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2825 		struct list_head *uf, bool downgrade)
2826 {
2827 	unsigned long end;
2828 	struct vm_area_struct *vma, *prev, *last;
2829 
2830 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2831 		return -EINVAL;
2832 
2833 	len = PAGE_ALIGN(len);
2834 	end = start + len;
2835 	if (len == 0)
2836 		return -EINVAL;
2837 
2838 	/*
2839 	 * arch_unmap() might do unmaps itself.  It must be called
2840 	 * and finish any rbtree manipulation before this code
2841 	 * runs and also starts to manipulate the rbtree.
2842 	 */
2843 	arch_unmap(mm, start, end);
2844 
2845 	/* Find the first overlapping VMA where start < vma->vm_end */
2846 	vma = find_vma_intersection(mm, start, end);
2847 	if (!vma)
2848 		return 0;
2849 	prev = vma->vm_prev;
2850 
2851 	/*
2852 	 * If we need to split any vma, do it now to save pain later.
2853 	 *
2854 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2855 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2856 	 * places tmp vma above, and higher split_vma places tmp vma below.
2857 	 */
2858 	if (start > vma->vm_start) {
2859 		int error;
2860 
2861 		/*
2862 		 * Make sure that map_count on return from munmap() will
2863 		 * not exceed its limit; but let map_count go just above
2864 		 * its limit temporarily, to help free resources as expected.
2865 		 */
2866 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2867 			return -ENOMEM;
2868 
2869 		error = __split_vma(mm, vma, start, 0);
2870 		if (error)
2871 			return error;
2872 		prev = vma;
2873 	}
2874 
2875 	/* Does it split the last one? */
2876 	last = find_vma(mm, end);
2877 	if (last && end > last->vm_start) {
2878 		int error = __split_vma(mm, last, end, 1);
2879 		if (error)
2880 			return error;
2881 	}
2882 	vma = vma_next(mm, prev);
2883 
2884 	if (unlikely(uf)) {
2885 		/*
2886 		 * If userfaultfd_unmap_prep returns an error the vmas
2887 		 * will remain split, but userland will get a
2888 		 * highly unexpected error anyway. This is no
2889 		 * different than the case where the first of the two
2890 		 * __split_vma fails, but we don't undo the first
2891 		 * split, despite we could. This is unlikely enough
2892 		 * failure that it's not worth optimizing it for.
2893 		 */
2894 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2895 		if (error)
2896 			return error;
2897 	}
2898 
2899 	/*
2900 	 * unlock any mlock()ed ranges before detaching vmas
2901 	 */
2902 	if (mm->locked_vm)
2903 		unlock_range(vma, end);
2904 
2905 	/* Detach vmas from rbtree */
2906 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2907 		downgrade = false;
2908 
2909 	if (downgrade)
2910 		mmap_write_downgrade(mm);
2911 
2912 	unmap_region(mm, vma, prev, start, end);
2913 
2914 	/* Fix up all other VM information */
2915 	remove_vma_list(mm, vma);
2916 
2917 	return downgrade ? 1 : 0;
2918 }
2919 
2920 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2921 	      struct list_head *uf)
2922 {
2923 	return __do_munmap(mm, start, len, uf, false);
2924 }
2925 
2926 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2927 {
2928 	int ret;
2929 	struct mm_struct *mm = current->mm;
2930 	LIST_HEAD(uf);
2931 
2932 	if (mmap_write_lock_killable(mm))
2933 		return -EINTR;
2934 
2935 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2936 	/*
2937 	 * Returning 1 indicates mmap_lock is downgraded.
2938 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2939 	 * it to 0 before return.
2940 	 */
2941 	if (ret == 1) {
2942 		mmap_read_unlock(mm);
2943 		ret = 0;
2944 	} else
2945 		mmap_write_unlock(mm);
2946 
2947 	userfaultfd_unmap_complete(mm, &uf);
2948 	return ret;
2949 }
2950 
2951 int vm_munmap(unsigned long start, size_t len)
2952 {
2953 	return __vm_munmap(start, len, false);
2954 }
2955 EXPORT_SYMBOL(vm_munmap);
2956 
2957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2958 {
2959 	addr = untagged_addr(addr);
2960 	profile_munmap(addr);
2961 	return __vm_munmap(addr, len, true);
2962 }
2963 
2964 
2965 /*
2966  * Emulation of deprecated remap_file_pages() syscall.
2967  */
2968 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2969 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2970 {
2971 
2972 	struct mm_struct *mm = current->mm;
2973 	struct vm_area_struct *vma;
2974 	unsigned long populate = 0;
2975 	unsigned long ret = -EINVAL;
2976 	struct file *file;
2977 
2978 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2979 		     current->comm, current->pid);
2980 
2981 	if (prot)
2982 		return ret;
2983 	start = start & PAGE_MASK;
2984 	size = size & PAGE_MASK;
2985 
2986 	if (start + size <= start)
2987 		return ret;
2988 
2989 	/* Does pgoff wrap? */
2990 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2991 		return ret;
2992 
2993 	if (mmap_write_lock_killable(mm))
2994 		return -EINTR;
2995 
2996 	vma = find_vma(mm, start);
2997 
2998 	if (!vma || !(vma->vm_flags & VM_SHARED))
2999 		goto out;
3000 
3001 	if (start < vma->vm_start)
3002 		goto out;
3003 
3004 	if (start + size > vma->vm_end) {
3005 		struct vm_area_struct *next;
3006 
3007 		for (next = vma->vm_next; next; next = next->vm_next) {
3008 			/* hole between vmas ? */
3009 			if (next->vm_start != next->vm_prev->vm_end)
3010 				goto out;
3011 
3012 			if (next->vm_file != vma->vm_file)
3013 				goto out;
3014 
3015 			if (next->vm_flags != vma->vm_flags)
3016 				goto out;
3017 
3018 			if (start + size <= next->vm_end)
3019 				break;
3020 		}
3021 
3022 		if (!next)
3023 			goto out;
3024 	}
3025 
3026 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3027 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3028 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3029 
3030 	flags &= MAP_NONBLOCK;
3031 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3032 	if (vma->vm_flags & VM_LOCKED)
3033 		flags |= MAP_LOCKED;
3034 
3035 	file = get_file(vma->vm_file);
3036 	ret = do_mmap(vma->vm_file, start, size,
3037 			prot, flags, pgoff, &populate, NULL);
3038 	fput(file);
3039 out:
3040 	mmap_write_unlock(mm);
3041 	if (populate)
3042 		mm_populate(ret, populate);
3043 	if (!IS_ERR_VALUE(ret))
3044 		ret = 0;
3045 	return ret;
3046 }
3047 
3048 /*
3049  *  this is really a simplified "do_mmap".  it only handles
3050  *  anonymous maps.  eventually we may be able to do some
3051  *  brk-specific accounting here.
3052  */
3053 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3054 {
3055 	struct mm_struct *mm = current->mm;
3056 	struct vm_area_struct *vma, *prev;
3057 	struct rb_node **rb_link, *rb_parent;
3058 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3059 	int error;
3060 	unsigned long mapped_addr;
3061 
3062 	/* Until we need other flags, refuse anything except VM_EXEC. */
3063 	if ((flags & (~VM_EXEC)) != 0)
3064 		return -EINVAL;
3065 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3066 
3067 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3068 	if (IS_ERR_VALUE(mapped_addr))
3069 		return mapped_addr;
3070 
3071 	error = mlock_future_check(mm, mm->def_flags, len);
3072 	if (error)
3073 		return error;
3074 
3075 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3076 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3077 		return -ENOMEM;
3078 
3079 	/* Check against address space limits *after* clearing old maps... */
3080 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3081 		return -ENOMEM;
3082 
3083 	if (mm->map_count > sysctl_max_map_count)
3084 		return -ENOMEM;
3085 
3086 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087 		return -ENOMEM;
3088 
3089 	/* Can we just expand an old private anonymous mapping? */
3090 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3091 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3092 	if (vma)
3093 		goto out;
3094 
3095 	/*
3096 	 * create a vma struct for an anonymous mapping
3097 	 */
3098 	vma = vm_area_alloc(mm);
3099 	if (!vma) {
3100 		vm_unacct_memory(len >> PAGE_SHIFT);
3101 		return -ENOMEM;
3102 	}
3103 
3104 	vma_set_anonymous(vma);
3105 	vma->vm_start = addr;
3106 	vma->vm_end = addr + len;
3107 	vma->vm_pgoff = pgoff;
3108 	vma->vm_flags = flags;
3109 	vma->vm_page_prot = vm_get_page_prot(flags);
3110 	vma_link(mm, vma, prev, rb_link, rb_parent);
3111 out:
3112 	perf_event_mmap(vma);
3113 	mm->total_vm += len >> PAGE_SHIFT;
3114 	mm->data_vm += len >> PAGE_SHIFT;
3115 	if (flags & VM_LOCKED)
3116 		mm->locked_vm += (len >> PAGE_SHIFT);
3117 	vma->vm_flags |= VM_SOFTDIRTY;
3118 	return 0;
3119 }
3120 
3121 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3122 {
3123 	struct mm_struct *mm = current->mm;
3124 	unsigned long len;
3125 	int ret;
3126 	bool populate;
3127 	LIST_HEAD(uf);
3128 
3129 	len = PAGE_ALIGN(request);
3130 	if (len < request)
3131 		return -ENOMEM;
3132 	if (!len)
3133 		return 0;
3134 
3135 	if (mmap_write_lock_killable(mm))
3136 		return -EINTR;
3137 
3138 	ret = do_brk_flags(addr, len, flags, &uf);
3139 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3140 	mmap_write_unlock(mm);
3141 	userfaultfd_unmap_complete(mm, &uf);
3142 	if (populate && !ret)
3143 		mm_populate(addr, len);
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL(vm_brk_flags);
3147 
3148 int vm_brk(unsigned long addr, unsigned long len)
3149 {
3150 	return vm_brk_flags(addr, len, 0);
3151 }
3152 EXPORT_SYMBOL(vm_brk);
3153 
3154 /* Release all mmaps. */
3155 void exit_mmap(struct mm_struct *mm)
3156 {
3157 	struct mmu_gather tlb;
3158 	struct vm_area_struct *vma;
3159 	unsigned long nr_accounted = 0;
3160 
3161 	/* mm's last user has gone, and its about to be pulled down */
3162 	mmu_notifier_release(mm);
3163 
3164 	if (unlikely(mm_is_oom_victim(mm))) {
3165 		/*
3166 		 * Manually reap the mm to free as much memory as possible.
3167 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3168 		 * this mm from further consideration.  Taking mm->mmap_lock for
3169 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3170 		 * reaper will not run on this mm again after mmap_lock is
3171 		 * dropped.
3172 		 *
3173 		 * Nothing can be holding mm->mmap_lock here and the above call
3174 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3175 		 * __oom_reap_task_mm() will not block.
3176 		 *
3177 		 * This needs to be done before calling munlock_vma_pages_all(),
3178 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3179 		 * reliably test it.
3180 		 */
3181 		(void)__oom_reap_task_mm(mm);
3182 
3183 		set_bit(MMF_OOM_SKIP, &mm->flags);
3184 		mmap_write_lock(mm);
3185 		mmap_write_unlock(mm);
3186 	}
3187 
3188 	if (mm->locked_vm)
3189 		unlock_range(mm->mmap, ULONG_MAX);
3190 
3191 	arch_exit_mmap(mm);
3192 
3193 	vma = mm->mmap;
3194 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3195 		return;
3196 
3197 	lru_add_drain();
3198 	flush_cache_mm(mm);
3199 	tlb_gather_mmu_fullmm(&tlb, mm);
3200 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3201 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3202 	unmap_vmas(&tlb, vma, 0, -1);
3203 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3204 	tlb_finish_mmu(&tlb);
3205 
3206 	/*
3207 	 * Walk the list again, actually closing and freeing it,
3208 	 * with preemption enabled, without holding any MM locks.
3209 	 */
3210 	while (vma) {
3211 		if (vma->vm_flags & VM_ACCOUNT)
3212 			nr_accounted += vma_pages(vma);
3213 		vma = remove_vma(vma);
3214 		cond_resched();
3215 	}
3216 	vm_unacct_memory(nr_accounted);
3217 }
3218 
3219 /* Insert vm structure into process list sorted by address
3220  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3221  * then i_mmap_rwsem is taken here.
3222  */
3223 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3224 {
3225 	struct vm_area_struct *prev;
3226 	struct rb_node **rb_link, *rb_parent;
3227 
3228 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3229 			   &prev, &rb_link, &rb_parent))
3230 		return -ENOMEM;
3231 	if ((vma->vm_flags & VM_ACCOUNT) &&
3232 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3233 		return -ENOMEM;
3234 
3235 	/*
3236 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3237 	 * until its first write fault, when page's anon_vma and index
3238 	 * are set.  But now set the vm_pgoff it will almost certainly
3239 	 * end up with (unless mremap moves it elsewhere before that
3240 	 * first wfault), so /proc/pid/maps tells a consistent story.
3241 	 *
3242 	 * By setting it to reflect the virtual start address of the
3243 	 * vma, merges and splits can happen in a seamless way, just
3244 	 * using the existing file pgoff checks and manipulations.
3245 	 * Similarly in do_mmap and in do_brk_flags.
3246 	 */
3247 	if (vma_is_anonymous(vma)) {
3248 		BUG_ON(vma->anon_vma);
3249 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3250 	}
3251 
3252 	vma_link(mm, vma, prev, rb_link, rb_parent);
3253 	return 0;
3254 }
3255 
3256 /*
3257  * Copy the vma structure to a new location in the same mm,
3258  * prior to moving page table entries, to effect an mremap move.
3259  */
3260 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3261 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3262 	bool *need_rmap_locks)
3263 {
3264 	struct vm_area_struct *vma = *vmap;
3265 	unsigned long vma_start = vma->vm_start;
3266 	struct mm_struct *mm = vma->vm_mm;
3267 	struct vm_area_struct *new_vma, *prev;
3268 	struct rb_node **rb_link, *rb_parent;
3269 	bool faulted_in_anon_vma = true;
3270 
3271 	/*
3272 	 * If anonymous vma has not yet been faulted, update new pgoff
3273 	 * to match new location, to increase its chance of merging.
3274 	 */
3275 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3276 		pgoff = addr >> PAGE_SHIFT;
3277 		faulted_in_anon_vma = false;
3278 	}
3279 
3280 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3281 		return NULL;	/* should never get here */
3282 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3283 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3284 			    vma->vm_userfaultfd_ctx);
3285 	if (new_vma) {
3286 		/*
3287 		 * Source vma may have been merged into new_vma
3288 		 */
3289 		if (unlikely(vma_start >= new_vma->vm_start &&
3290 			     vma_start < new_vma->vm_end)) {
3291 			/*
3292 			 * The only way we can get a vma_merge with
3293 			 * self during an mremap is if the vma hasn't
3294 			 * been faulted in yet and we were allowed to
3295 			 * reset the dst vma->vm_pgoff to the
3296 			 * destination address of the mremap to allow
3297 			 * the merge to happen. mremap must change the
3298 			 * vm_pgoff linearity between src and dst vmas
3299 			 * (in turn preventing a vma_merge) to be
3300 			 * safe. It is only safe to keep the vm_pgoff
3301 			 * linear if there are no pages mapped yet.
3302 			 */
3303 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3304 			*vmap = vma = new_vma;
3305 		}
3306 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3307 	} else {
3308 		new_vma = vm_area_dup(vma);
3309 		if (!new_vma)
3310 			goto out;
3311 		new_vma->vm_start = addr;
3312 		new_vma->vm_end = addr + len;
3313 		new_vma->vm_pgoff = pgoff;
3314 		if (vma_dup_policy(vma, new_vma))
3315 			goto out_free_vma;
3316 		if (anon_vma_clone(new_vma, vma))
3317 			goto out_free_mempol;
3318 		if (new_vma->vm_file)
3319 			get_file(new_vma->vm_file);
3320 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3321 			new_vma->vm_ops->open(new_vma);
3322 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3323 		*need_rmap_locks = false;
3324 	}
3325 	return new_vma;
3326 
3327 out_free_mempol:
3328 	mpol_put(vma_policy(new_vma));
3329 out_free_vma:
3330 	vm_area_free(new_vma);
3331 out:
3332 	return NULL;
3333 }
3334 
3335 /*
3336  * Return true if the calling process may expand its vm space by the passed
3337  * number of pages
3338  */
3339 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3340 {
3341 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3342 		return false;
3343 
3344 	if (is_data_mapping(flags) &&
3345 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3346 		/* Workaround for Valgrind */
3347 		if (rlimit(RLIMIT_DATA) == 0 &&
3348 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3349 			return true;
3350 
3351 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3352 			     current->comm, current->pid,
3353 			     (mm->data_vm + npages) << PAGE_SHIFT,
3354 			     rlimit(RLIMIT_DATA),
3355 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3356 
3357 		if (!ignore_rlimit_data)
3358 			return false;
3359 	}
3360 
3361 	return true;
3362 }
3363 
3364 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3365 {
3366 	mm->total_vm += npages;
3367 
3368 	if (is_exec_mapping(flags))
3369 		mm->exec_vm += npages;
3370 	else if (is_stack_mapping(flags))
3371 		mm->stack_vm += npages;
3372 	else if (is_data_mapping(flags))
3373 		mm->data_vm += npages;
3374 }
3375 
3376 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3377 
3378 /*
3379  * Having a close hook prevents vma merging regardless of flags.
3380  */
3381 static void special_mapping_close(struct vm_area_struct *vma)
3382 {
3383 }
3384 
3385 static const char *special_mapping_name(struct vm_area_struct *vma)
3386 {
3387 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3388 }
3389 
3390 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3391 {
3392 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3393 
3394 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3395 		return -EFAULT;
3396 
3397 	if (sm->mremap)
3398 		return sm->mremap(sm, new_vma);
3399 
3400 	return 0;
3401 }
3402 
3403 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3404 {
3405 	/*
3406 	 * Forbid splitting special mappings - kernel has expectations over
3407 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3408 	 * the size of vma should stay the same over the special mapping's
3409 	 * lifetime.
3410 	 */
3411 	return -EINVAL;
3412 }
3413 
3414 static const struct vm_operations_struct special_mapping_vmops = {
3415 	.close = special_mapping_close,
3416 	.fault = special_mapping_fault,
3417 	.mremap = special_mapping_mremap,
3418 	.name = special_mapping_name,
3419 	/* vDSO code relies that VVAR can't be accessed remotely */
3420 	.access = NULL,
3421 	.may_split = special_mapping_split,
3422 };
3423 
3424 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3425 	.close = special_mapping_close,
3426 	.fault = special_mapping_fault,
3427 };
3428 
3429 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3430 {
3431 	struct vm_area_struct *vma = vmf->vma;
3432 	pgoff_t pgoff;
3433 	struct page **pages;
3434 
3435 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3436 		pages = vma->vm_private_data;
3437 	} else {
3438 		struct vm_special_mapping *sm = vma->vm_private_data;
3439 
3440 		if (sm->fault)
3441 			return sm->fault(sm, vmf->vma, vmf);
3442 
3443 		pages = sm->pages;
3444 	}
3445 
3446 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3447 		pgoff--;
3448 
3449 	if (*pages) {
3450 		struct page *page = *pages;
3451 		get_page(page);
3452 		vmf->page = page;
3453 		return 0;
3454 	}
3455 
3456 	return VM_FAULT_SIGBUS;
3457 }
3458 
3459 static struct vm_area_struct *__install_special_mapping(
3460 	struct mm_struct *mm,
3461 	unsigned long addr, unsigned long len,
3462 	unsigned long vm_flags, void *priv,
3463 	const struct vm_operations_struct *ops)
3464 {
3465 	int ret;
3466 	struct vm_area_struct *vma;
3467 
3468 	vma = vm_area_alloc(mm);
3469 	if (unlikely(vma == NULL))
3470 		return ERR_PTR(-ENOMEM);
3471 
3472 	vma->vm_start = addr;
3473 	vma->vm_end = addr + len;
3474 
3475 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3476 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3477 
3478 	vma->vm_ops = ops;
3479 	vma->vm_private_data = priv;
3480 
3481 	ret = insert_vm_struct(mm, vma);
3482 	if (ret)
3483 		goto out;
3484 
3485 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3486 
3487 	perf_event_mmap(vma);
3488 
3489 	return vma;
3490 
3491 out:
3492 	vm_area_free(vma);
3493 	return ERR_PTR(ret);
3494 }
3495 
3496 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3497 	const struct vm_special_mapping *sm)
3498 {
3499 	return vma->vm_private_data == sm &&
3500 		(vma->vm_ops == &special_mapping_vmops ||
3501 		 vma->vm_ops == &legacy_special_mapping_vmops);
3502 }
3503 
3504 /*
3505  * Called with mm->mmap_lock held for writing.
3506  * Insert a new vma covering the given region, with the given flags.
3507  * Its pages are supplied by the given array of struct page *.
3508  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3509  * The region past the last page supplied will always produce SIGBUS.
3510  * The array pointer and the pages it points to are assumed to stay alive
3511  * for as long as this mapping might exist.
3512  */
3513 struct vm_area_struct *_install_special_mapping(
3514 	struct mm_struct *mm,
3515 	unsigned long addr, unsigned long len,
3516 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3517 {
3518 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3519 					&special_mapping_vmops);
3520 }
3521 
3522 int install_special_mapping(struct mm_struct *mm,
3523 			    unsigned long addr, unsigned long len,
3524 			    unsigned long vm_flags, struct page **pages)
3525 {
3526 	struct vm_area_struct *vma = __install_special_mapping(
3527 		mm, addr, len, vm_flags, (void *)pages,
3528 		&legacy_special_mapping_vmops);
3529 
3530 	return PTR_ERR_OR_ZERO(vma);
3531 }
3532 
3533 static DEFINE_MUTEX(mm_all_locks_mutex);
3534 
3535 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3536 {
3537 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3538 		/*
3539 		 * The LSB of head.next can't change from under us
3540 		 * because we hold the mm_all_locks_mutex.
3541 		 */
3542 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3543 		/*
3544 		 * We can safely modify head.next after taking the
3545 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3546 		 * the same anon_vma we won't take it again.
3547 		 *
3548 		 * No need of atomic instructions here, head.next
3549 		 * can't change from under us thanks to the
3550 		 * anon_vma->root->rwsem.
3551 		 */
3552 		if (__test_and_set_bit(0, (unsigned long *)
3553 				       &anon_vma->root->rb_root.rb_root.rb_node))
3554 			BUG();
3555 	}
3556 }
3557 
3558 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3559 {
3560 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3561 		/*
3562 		 * AS_MM_ALL_LOCKS can't change from under us because
3563 		 * we hold the mm_all_locks_mutex.
3564 		 *
3565 		 * Operations on ->flags have to be atomic because
3566 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3567 		 * mm_all_locks_mutex, there may be other cpus
3568 		 * changing other bitflags in parallel to us.
3569 		 */
3570 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3571 			BUG();
3572 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3573 	}
3574 }
3575 
3576 /*
3577  * This operation locks against the VM for all pte/vma/mm related
3578  * operations that could ever happen on a certain mm. This includes
3579  * vmtruncate, try_to_unmap, and all page faults.
3580  *
3581  * The caller must take the mmap_lock in write mode before calling
3582  * mm_take_all_locks(). The caller isn't allowed to release the
3583  * mmap_lock until mm_drop_all_locks() returns.
3584  *
3585  * mmap_lock in write mode is required in order to block all operations
3586  * that could modify pagetables and free pages without need of
3587  * altering the vma layout. It's also needed in write mode to avoid new
3588  * anon_vmas to be associated with existing vmas.
3589  *
3590  * A single task can't take more than one mm_take_all_locks() in a row
3591  * or it would deadlock.
3592  *
3593  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3594  * mapping->flags avoid to take the same lock twice, if more than one
3595  * vma in this mm is backed by the same anon_vma or address_space.
3596  *
3597  * We take locks in following order, accordingly to comment at beginning
3598  * of mm/rmap.c:
3599  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3600  *     hugetlb mapping);
3601  *   - all i_mmap_rwsem locks;
3602  *   - all anon_vma->rwseml
3603  *
3604  * We can take all locks within these types randomly because the VM code
3605  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3606  * mm_all_locks_mutex.
3607  *
3608  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3609  * that may have to take thousand of locks.
3610  *
3611  * mm_take_all_locks() can fail if it's interrupted by signals.
3612  */
3613 int mm_take_all_locks(struct mm_struct *mm)
3614 {
3615 	struct vm_area_struct *vma;
3616 	struct anon_vma_chain *avc;
3617 
3618 	BUG_ON(mmap_read_trylock(mm));
3619 
3620 	mutex_lock(&mm_all_locks_mutex);
3621 
3622 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623 		if (signal_pending(current))
3624 			goto out_unlock;
3625 		if (vma->vm_file && vma->vm_file->f_mapping &&
3626 				is_vm_hugetlb_page(vma))
3627 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3628 	}
3629 
3630 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631 		if (signal_pending(current))
3632 			goto out_unlock;
3633 		if (vma->vm_file && vma->vm_file->f_mapping &&
3634 				!is_vm_hugetlb_page(vma))
3635 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3636 	}
3637 
3638 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3639 		if (signal_pending(current))
3640 			goto out_unlock;
3641 		if (vma->anon_vma)
3642 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3643 				vm_lock_anon_vma(mm, avc->anon_vma);
3644 	}
3645 
3646 	return 0;
3647 
3648 out_unlock:
3649 	mm_drop_all_locks(mm);
3650 	return -EINTR;
3651 }
3652 
3653 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3654 {
3655 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3656 		/*
3657 		 * The LSB of head.next can't change to 0 from under
3658 		 * us because we hold the mm_all_locks_mutex.
3659 		 *
3660 		 * We must however clear the bitflag before unlocking
3661 		 * the vma so the users using the anon_vma->rb_root will
3662 		 * never see our bitflag.
3663 		 *
3664 		 * No need of atomic instructions here, head.next
3665 		 * can't change from under us until we release the
3666 		 * anon_vma->root->rwsem.
3667 		 */
3668 		if (!__test_and_clear_bit(0, (unsigned long *)
3669 					  &anon_vma->root->rb_root.rb_root.rb_node))
3670 			BUG();
3671 		anon_vma_unlock_write(anon_vma);
3672 	}
3673 }
3674 
3675 static void vm_unlock_mapping(struct address_space *mapping)
3676 {
3677 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3678 		/*
3679 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3680 		 * because we hold the mm_all_locks_mutex.
3681 		 */
3682 		i_mmap_unlock_write(mapping);
3683 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3684 					&mapping->flags))
3685 			BUG();
3686 	}
3687 }
3688 
3689 /*
3690  * The mmap_lock cannot be released by the caller until
3691  * mm_drop_all_locks() returns.
3692  */
3693 void mm_drop_all_locks(struct mm_struct *mm)
3694 {
3695 	struct vm_area_struct *vma;
3696 	struct anon_vma_chain *avc;
3697 
3698 	BUG_ON(mmap_read_trylock(mm));
3699 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3700 
3701 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3702 		if (vma->anon_vma)
3703 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3704 				vm_unlock_anon_vma(avc->anon_vma);
3705 		if (vma->vm_file && vma->vm_file->f_mapping)
3706 			vm_unlock_mapping(vma->vm_file->f_mapping);
3707 	}
3708 
3709 	mutex_unlock(&mm_all_locks_mutex);
3710 }
3711 
3712 /*
3713  * initialise the percpu counter for VM
3714  */
3715 void __init mmap_init(void)
3716 {
3717 	int ret;
3718 
3719 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3720 	VM_BUG_ON(ret);
3721 }
3722 
3723 /*
3724  * Initialise sysctl_user_reserve_kbytes.
3725  *
3726  * This is intended to prevent a user from starting a single memory hogging
3727  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3728  * mode.
3729  *
3730  * The default value is min(3% of free memory, 128MB)
3731  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3732  */
3733 static int init_user_reserve(void)
3734 {
3735 	unsigned long free_kbytes;
3736 
3737 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3738 
3739 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3740 	return 0;
3741 }
3742 subsys_initcall(init_user_reserve);
3743 
3744 /*
3745  * Initialise sysctl_admin_reserve_kbytes.
3746  *
3747  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3748  * to log in and kill a memory hogging process.
3749  *
3750  * Systems with more than 256MB will reserve 8MB, enough to recover
3751  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3752  * only reserve 3% of free pages by default.
3753  */
3754 static int init_admin_reserve(void)
3755 {
3756 	unsigned long free_kbytes;
3757 
3758 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3759 
3760 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3761 	return 0;
3762 }
3763 subsys_initcall(init_admin_reserve);
3764 
3765 /*
3766  * Reinititalise user and admin reserves if memory is added or removed.
3767  *
3768  * The default user reserve max is 128MB, and the default max for the
3769  * admin reserve is 8MB. These are usually, but not always, enough to
3770  * enable recovery from a memory hogging process using login/sshd, a shell,
3771  * and tools like top. It may make sense to increase or even disable the
3772  * reserve depending on the existence of swap or variations in the recovery
3773  * tools. So, the admin may have changed them.
3774  *
3775  * If memory is added and the reserves have been eliminated or increased above
3776  * the default max, then we'll trust the admin.
3777  *
3778  * If memory is removed and there isn't enough free memory, then we
3779  * need to reset the reserves.
3780  *
3781  * Otherwise keep the reserve set by the admin.
3782  */
3783 static int reserve_mem_notifier(struct notifier_block *nb,
3784 			     unsigned long action, void *data)
3785 {
3786 	unsigned long tmp, free_kbytes;
3787 
3788 	switch (action) {
3789 	case MEM_ONLINE:
3790 		/* Default max is 128MB. Leave alone if modified by operator. */
3791 		tmp = sysctl_user_reserve_kbytes;
3792 		if (0 < tmp && tmp < (1UL << 17))
3793 			init_user_reserve();
3794 
3795 		/* Default max is 8MB.  Leave alone if modified by operator. */
3796 		tmp = sysctl_admin_reserve_kbytes;
3797 		if (0 < tmp && tmp < (1UL << 13))
3798 			init_admin_reserve();
3799 
3800 		break;
3801 	case MEM_OFFLINE:
3802 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3803 
3804 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3805 			init_user_reserve();
3806 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3807 				sysctl_user_reserve_kbytes);
3808 		}
3809 
3810 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3811 			init_admin_reserve();
3812 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3813 				sysctl_admin_reserve_kbytes);
3814 		}
3815 		break;
3816 	default:
3817 		break;
3818 	}
3819 	return NOTIFY_OK;
3820 }
3821 
3822 static struct notifier_block reserve_mem_nb = {
3823 	.notifier_call = reserve_mem_notifier,
3824 };
3825 
3826 static int __meminit init_reserve_notifier(void)
3827 {
3828 	if (register_hotmemory_notifier(&reserve_mem_nb))
3829 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3830 
3831 	return 0;
3832 }
3833 subsys_initcall(init_reserve_notifier);
3834