xref: /linux/mm/mmap.c (revision 8efc52743ecb5c69d2e4faba965a3e14418c2494)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57 
58 #include "internal.h"
59 
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags)	(0)
62 #endif
63 
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74 
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77 
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 		struct vm_area_struct *vma, struct vm_area_struct *prev,
80 		struct vm_area_struct *next, unsigned long start,
81 		unsigned long end, bool mm_wr_locked);
82 
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87 
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91 	unsigned long vm_flags = vma->vm_flags;
92 	pgprot_t vm_page_prot;
93 
94 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 	if (vma_wants_writenotify(vma, vm_page_prot)) {
96 		vm_flags &= ~VM_SHARED;
97 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98 	}
99 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102 
103 /*
104  * Requires inode->i_mapping->i_mmap_rwsem
105  */
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 		struct file *file, struct address_space *mapping)
108 {
109 	if (vma->vm_flags & VM_SHARED)
110 		mapping_unmap_writable(mapping);
111 
112 	flush_dcache_mmap_lock(mapping);
113 	vma_interval_tree_remove(vma, &mapping->i_mmap);
114 	flush_dcache_mmap_unlock(mapping);
115 }
116 
117 /*
118  * Unlink a file-based vm structure from its interval tree, to hide
119  * vma from rmap and vmtruncate before freeing its page tables.
120  */
121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123 	struct file *file = vma->vm_file;
124 
125 	if (file) {
126 		struct address_space *mapping = file->f_mapping;
127 		i_mmap_lock_write(mapping);
128 		__remove_shared_vm_struct(vma, file, mapping);
129 		i_mmap_unlock_write(mapping);
130 	}
131 }
132 
133 /*
134  * Close a vm structure and free it.
135  */
136 static void remove_vma(struct vm_area_struct *vma)
137 {
138 	might_sleep();
139 	if (vma->vm_ops && vma->vm_ops->close)
140 		vma->vm_ops->close(vma);
141 	if (vma->vm_file)
142 		fput(vma->vm_file);
143 	mpol_put(vma_policy(vma));
144 	vm_area_free(vma);
145 }
146 
147 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
148 						    unsigned long min)
149 {
150 	return mas_prev(&vmi->mas, min);
151 }
152 
153 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
154 			unsigned long start, unsigned long end, gfp_t gfp)
155 {
156 	vmi->mas.index = start;
157 	vmi->mas.last = end - 1;
158 	mas_store_gfp(&vmi->mas, NULL, gfp);
159 	if (unlikely(mas_is_err(&vmi->mas)))
160 		return -ENOMEM;
161 
162 	return 0;
163 }
164 
165 /*
166  * check_brk_limits() - Use platform specific check of range & verify mlock
167  * limits.
168  * @addr: The address to check
169  * @len: The size of increase.
170  *
171  * Return: 0 on success.
172  */
173 static int check_brk_limits(unsigned long addr, unsigned long len)
174 {
175 	unsigned long mapped_addr;
176 
177 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
178 	if (IS_ERR_VALUE(mapped_addr))
179 		return mapped_addr;
180 
181 	return mlock_future_check(current->mm, current->mm->def_flags, len);
182 }
183 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
184 		unsigned long addr, unsigned long request, unsigned long flags);
185 SYSCALL_DEFINE1(brk, unsigned long, brk)
186 {
187 	unsigned long newbrk, oldbrk, origbrk;
188 	struct mm_struct *mm = current->mm;
189 	struct vm_area_struct *brkvma, *next = NULL;
190 	unsigned long min_brk;
191 	bool populate;
192 	bool downgraded = false;
193 	LIST_HEAD(uf);
194 	struct vma_iterator vmi;
195 
196 	if (mmap_write_lock_killable(mm))
197 		return -EINTR;
198 
199 	origbrk = mm->brk;
200 
201 #ifdef CONFIG_COMPAT_BRK
202 	/*
203 	 * CONFIG_COMPAT_BRK can still be overridden by setting
204 	 * randomize_va_space to 2, which will still cause mm->start_brk
205 	 * to be arbitrarily shifted
206 	 */
207 	if (current->brk_randomized)
208 		min_brk = mm->start_brk;
209 	else
210 		min_brk = mm->end_data;
211 #else
212 	min_brk = mm->start_brk;
213 #endif
214 	if (brk < min_brk)
215 		goto out;
216 
217 	/*
218 	 * Check against rlimit here. If this check is done later after the test
219 	 * of oldbrk with newbrk then it can escape the test and let the data
220 	 * segment grow beyond its set limit the in case where the limit is
221 	 * not page aligned -Ram Gupta
222 	 */
223 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
224 			      mm->end_data, mm->start_data))
225 		goto out;
226 
227 	newbrk = PAGE_ALIGN(brk);
228 	oldbrk = PAGE_ALIGN(mm->brk);
229 	if (oldbrk == newbrk) {
230 		mm->brk = brk;
231 		goto success;
232 	}
233 
234 	/*
235 	 * Always allow shrinking brk.
236 	 * do_vma_munmap() may downgrade mmap_lock to read.
237 	 */
238 	if (brk <= mm->brk) {
239 		int ret;
240 
241 		/* Search one past newbrk */
242 		vma_iter_init(&vmi, mm, newbrk);
243 		brkvma = vma_find(&vmi, oldbrk);
244 		if (!brkvma || brkvma->vm_start >= oldbrk)
245 			goto out; /* mapping intersects with an existing non-brk vma. */
246 		/*
247 		 * mm->brk must be protected by write mmap_lock.
248 		 * do_vma_munmap() may downgrade the lock,  so update it
249 		 * before calling do_vma_munmap().
250 		 */
251 		mm->brk = brk;
252 		ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
253 		if (ret == 1)  {
254 			downgraded = true;
255 			goto success;
256 		} else if (!ret)
257 			goto success;
258 
259 		mm->brk = origbrk;
260 		goto out;
261 	}
262 
263 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
264 		goto out;
265 
266 	/*
267 	 * Only check if the next VMA is within the stack_guard_gap of the
268 	 * expansion area
269 	 */
270 	vma_iter_init(&vmi, mm, oldbrk);
271 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
272 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
273 		goto out;
274 
275 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
276 	/* Ok, looks good - let it rip. */
277 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
278 		goto out;
279 
280 	mm->brk = brk;
281 
282 success:
283 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
284 	if (downgraded)
285 		mmap_read_unlock(mm);
286 	else
287 		mmap_write_unlock(mm);
288 	userfaultfd_unmap_complete(mm, &uf);
289 	if (populate)
290 		mm_populate(oldbrk, newbrk - oldbrk);
291 	return brk;
292 
293 out:
294 	mmap_write_unlock(mm);
295 	return origbrk;
296 }
297 
298 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
299 extern void mt_validate(struct maple_tree *mt);
300 extern void mt_dump(const struct maple_tree *mt);
301 
302 /* Validate the maple tree */
303 static void validate_mm_mt(struct mm_struct *mm)
304 {
305 	struct maple_tree *mt = &mm->mm_mt;
306 	struct vm_area_struct *vma_mt;
307 
308 	MA_STATE(mas, mt, 0, 0);
309 
310 	mt_validate(&mm->mm_mt);
311 	mas_for_each(&mas, vma_mt, ULONG_MAX) {
312 		if ((vma_mt->vm_start != mas.index) ||
313 		    (vma_mt->vm_end - 1 != mas.last)) {
314 			pr_emerg("issue in %s\n", current->comm);
315 			dump_stack();
316 			dump_vma(vma_mt);
317 			pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
318 				 mas.index, mas.last);
319 			pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
320 				 vma_mt->vm_start, vma_mt->vm_end);
321 
322 			mt_dump(mas.tree);
323 			if (vma_mt->vm_end != mas.last + 1) {
324 				pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
325 						mm, vma_mt->vm_start, vma_mt->vm_end,
326 						mas.index, mas.last);
327 				mt_dump(mas.tree);
328 			}
329 			VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
330 			if (vma_mt->vm_start != mas.index) {
331 				pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
332 						mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
333 				mt_dump(mas.tree);
334 			}
335 			VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
336 		}
337 	}
338 }
339 
340 static void validate_mm(struct mm_struct *mm)
341 {
342 	int bug = 0;
343 	int i = 0;
344 	struct vm_area_struct *vma;
345 	MA_STATE(mas, &mm->mm_mt, 0, 0);
346 
347 	validate_mm_mt(mm);
348 
349 	mas_for_each(&mas, vma, ULONG_MAX) {
350 #ifdef CONFIG_DEBUG_VM_RB
351 		struct anon_vma *anon_vma = vma->anon_vma;
352 		struct anon_vma_chain *avc;
353 
354 		if (anon_vma) {
355 			anon_vma_lock_read(anon_vma);
356 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
357 				anon_vma_interval_tree_verify(avc);
358 			anon_vma_unlock_read(anon_vma);
359 		}
360 #endif
361 		i++;
362 	}
363 	if (i != mm->map_count) {
364 		pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
365 		bug = 1;
366 	}
367 	VM_BUG_ON_MM(bug, mm);
368 }
369 
370 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
371 #define validate_mm_mt(root) do { } while (0)
372 #define validate_mm(mm) do { } while (0)
373 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
374 
375 /*
376  * vma has some anon_vma assigned, and is already inserted on that
377  * anon_vma's interval trees.
378  *
379  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
380  * vma must be removed from the anon_vma's interval trees using
381  * anon_vma_interval_tree_pre_update_vma().
382  *
383  * After the update, the vma will be reinserted using
384  * anon_vma_interval_tree_post_update_vma().
385  *
386  * The entire update must be protected by exclusive mmap_lock and by
387  * the root anon_vma's mutex.
388  */
389 static inline void
390 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
391 {
392 	struct anon_vma_chain *avc;
393 
394 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
395 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
396 }
397 
398 static inline void
399 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
400 {
401 	struct anon_vma_chain *avc;
402 
403 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
405 }
406 
407 static unsigned long count_vma_pages_range(struct mm_struct *mm,
408 		unsigned long addr, unsigned long end)
409 {
410 	VMA_ITERATOR(vmi, mm, addr);
411 	struct vm_area_struct *vma;
412 	unsigned long nr_pages = 0;
413 
414 	for_each_vma_range(vmi, vma, end) {
415 		unsigned long vm_start = max(addr, vma->vm_start);
416 		unsigned long vm_end = min(end, vma->vm_end);
417 
418 		nr_pages += PHYS_PFN(vm_end - vm_start);
419 	}
420 
421 	return nr_pages;
422 }
423 
424 static void __vma_link_file(struct vm_area_struct *vma,
425 			    struct address_space *mapping)
426 {
427 	if (vma->vm_flags & VM_SHARED)
428 		mapping_allow_writable(mapping);
429 
430 	flush_dcache_mmap_lock(mapping);
431 	vma_interval_tree_insert(vma, &mapping->i_mmap);
432 	flush_dcache_mmap_unlock(mapping);
433 }
434 
435 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
436 {
437 	VMA_ITERATOR(vmi, mm, 0);
438 	struct address_space *mapping = NULL;
439 
440 	if (vma_iter_prealloc(&vmi))
441 		return -ENOMEM;
442 
443 	if (vma->vm_file) {
444 		mapping = vma->vm_file->f_mapping;
445 		i_mmap_lock_write(mapping);
446 	}
447 
448 	vma_iter_store(&vmi, vma);
449 
450 	if (mapping) {
451 		__vma_link_file(vma, mapping);
452 		i_mmap_unlock_write(mapping);
453 	}
454 
455 	mm->map_count++;
456 	validate_mm(mm);
457 	return 0;
458 }
459 
460 /*
461  * init_multi_vma_prep() - Initializer for struct vma_prepare
462  * @vp: The vma_prepare struct
463  * @vma: The vma that will be altered once locked
464  * @next: The next vma if it is to be adjusted
465  * @remove: The first vma to be removed
466  * @remove2: The second vma to be removed
467  */
468 static inline void init_multi_vma_prep(struct vma_prepare *vp,
469 		struct vm_area_struct *vma, struct vm_area_struct *next,
470 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
471 {
472 	memset(vp, 0, sizeof(struct vma_prepare));
473 	vp->vma = vma;
474 	vp->anon_vma = vma->anon_vma;
475 	vp->remove = remove;
476 	vp->remove2 = remove2;
477 	vp->adj_next = next;
478 	if (!vp->anon_vma && next)
479 		vp->anon_vma = next->anon_vma;
480 
481 	vp->file = vma->vm_file;
482 	if (vp->file)
483 		vp->mapping = vma->vm_file->f_mapping;
484 
485 }
486 
487 /*
488  * init_vma_prep() - Initializer wrapper for vma_prepare struct
489  * @vp: The vma_prepare struct
490  * @vma: The vma that will be altered once locked
491  */
492 static inline void init_vma_prep(struct vma_prepare *vp,
493 				 struct vm_area_struct *vma)
494 {
495 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
496 }
497 
498 
499 /*
500  * vma_prepare() - Helper function for handling locking VMAs prior to altering
501  * @vp: The initialized vma_prepare struct
502  */
503 static inline void vma_prepare(struct vma_prepare *vp)
504 {
505 	if (vp->file) {
506 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
507 
508 		if (vp->adj_next)
509 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
510 				      vp->adj_next->vm_end);
511 
512 		i_mmap_lock_write(vp->mapping);
513 		if (vp->insert && vp->insert->vm_file) {
514 			/*
515 			 * Put into interval tree now, so instantiated pages
516 			 * are visible to arm/parisc __flush_dcache_page
517 			 * throughout; but we cannot insert into address
518 			 * space until vma start or end is updated.
519 			 */
520 			__vma_link_file(vp->insert,
521 					vp->insert->vm_file->f_mapping);
522 		}
523 	}
524 
525 	if (vp->anon_vma) {
526 		anon_vma_lock_write(vp->anon_vma);
527 		anon_vma_interval_tree_pre_update_vma(vp->vma);
528 		if (vp->adj_next)
529 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
530 	}
531 
532 	if (vp->file) {
533 		flush_dcache_mmap_lock(vp->mapping);
534 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
535 		if (vp->adj_next)
536 			vma_interval_tree_remove(vp->adj_next,
537 						 &vp->mapping->i_mmap);
538 	}
539 
540 }
541 
542 /*
543  * vma_complete- Helper function for handling the unlocking after altering VMAs,
544  * or for inserting a VMA.
545  *
546  * @vp: The vma_prepare struct
547  * @vmi: The vma iterator
548  * @mm: The mm_struct
549  */
550 static inline void vma_complete(struct vma_prepare *vp,
551 				struct vma_iterator *vmi, struct mm_struct *mm)
552 {
553 	if (vp->file) {
554 		if (vp->adj_next)
555 			vma_interval_tree_insert(vp->adj_next,
556 						 &vp->mapping->i_mmap);
557 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
558 		flush_dcache_mmap_unlock(vp->mapping);
559 	}
560 
561 	if (vp->remove && vp->file) {
562 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
563 		if (vp->remove2)
564 			__remove_shared_vm_struct(vp->remove2, vp->file,
565 						  vp->mapping);
566 	} else if (vp->insert) {
567 		/*
568 		 * split_vma has split insert from vma, and needs
569 		 * us to insert it before dropping the locks
570 		 * (it may either follow vma or precede it).
571 		 */
572 		vma_iter_store(vmi, vp->insert);
573 		mm->map_count++;
574 	}
575 
576 	if (vp->anon_vma) {
577 		anon_vma_interval_tree_post_update_vma(vp->vma);
578 		if (vp->adj_next)
579 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
580 		anon_vma_unlock_write(vp->anon_vma);
581 	}
582 
583 	if (vp->file) {
584 		i_mmap_unlock_write(vp->mapping);
585 		uprobe_mmap(vp->vma);
586 
587 		if (vp->adj_next)
588 			uprobe_mmap(vp->adj_next);
589 	}
590 
591 	if (vp->remove) {
592 again:
593 		if (vp->file) {
594 			uprobe_munmap(vp->remove, vp->remove->vm_start,
595 				      vp->remove->vm_end);
596 			fput(vp->file);
597 		}
598 		if (vp->remove->anon_vma)
599 			anon_vma_merge(vp->vma, vp->remove);
600 		mm->map_count--;
601 		mpol_put(vma_policy(vp->remove));
602 		if (!vp->remove2)
603 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
604 		vm_area_free(vp->remove);
605 
606 		/*
607 		 * In mprotect's case 6 (see comments on vma_merge),
608 		 * we must remove the one after next as well.
609 		 */
610 		if (vp->remove2) {
611 			vp->remove = vp->remove2;
612 			vp->remove2 = NULL;
613 			goto again;
614 		}
615 	}
616 	if (vp->insert && vp->file)
617 		uprobe_mmap(vp->insert);
618 }
619 
620 /*
621  * dup_anon_vma() - Helper function to duplicate anon_vma
622  * @dst: The destination VMA
623  * @src: The source VMA
624  *
625  * Returns: 0 on success.
626  */
627 static inline int dup_anon_vma(struct vm_area_struct *dst,
628 			       struct vm_area_struct *src)
629 {
630 	/*
631 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
632 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
633 	 * anon pages imported.
634 	 */
635 	if (src->anon_vma && !dst->anon_vma) {
636 		dst->anon_vma = src->anon_vma;
637 		return anon_vma_clone(dst, src);
638 	}
639 
640 	return 0;
641 }
642 
643 /*
644  * vma_expand - Expand an existing VMA
645  *
646  * @vmi: The vma iterator
647  * @vma: The vma to expand
648  * @start: The start of the vma
649  * @end: The exclusive end of the vma
650  * @pgoff: The page offset of vma
651  * @next: The current of next vma.
652  *
653  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
654  * expand over @next if it's different from @vma and @end == @next->vm_end.
655  * Checking if the @vma can expand and merge with @next needs to be handled by
656  * the caller.
657  *
658  * Returns: 0 on success
659  */
660 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
661 	       unsigned long start, unsigned long end, pgoff_t pgoff,
662 	       struct vm_area_struct *next)
663 {
664 	bool remove_next = false;
665 	struct vma_prepare vp;
666 
667 	if (next && (vma != next) && (end == next->vm_end)) {
668 		int ret;
669 
670 		remove_next = true;
671 		ret = dup_anon_vma(vma, next);
672 		if (ret)
673 			return ret;
674 	}
675 
676 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
677 	/* Not merging but overwriting any part of next is not handled. */
678 	VM_WARN_ON(next && !vp.remove &&
679 		  next != vma && end > next->vm_start);
680 	/* Only handles expanding */
681 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
682 
683 	if (vma_iter_prealloc(vmi))
684 		goto nomem;
685 
686 	vma_adjust_trans_huge(vma, start, end, 0);
687 	/* VMA iterator points to previous, so set to start if necessary */
688 	if (vma_iter_addr(vmi) != start)
689 		vma_iter_set(vmi, start);
690 
691 	vma_prepare(&vp);
692 	vma->vm_start = start;
693 	vma->vm_end = end;
694 	vma->vm_pgoff = pgoff;
695 	/* Note: mas must be pointing to the expanding VMA */
696 	vma_iter_store(vmi, vma);
697 
698 	vma_complete(&vp, vmi, vma->vm_mm);
699 	validate_mm(vma->vm_mm);
700 	return 0;
701 
702 nomem:
703 	return -ENOMEM;
704 }
705 
706 /*
707  * vma_shrink() - Reduce an existing VMAs memory area
708  * @vmi: The vma iterator
709  * @vma: The VMA to modify
710  * @start: The new start
711  * @end: The new end
712  *
713  * Returns: 0 on success, -ENOMEM otherwise
714  */
715 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
716 	       unsigned long start, unsigned long end, pgoff_t pgoff)
717 {
718 	struct vma_prepare vp;
719 
720 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
721 
722 	if (vma_iter_prealloc(vmi))
723 		return -ENOMEM;
724 
725 	init_vma_prep(&vp, vma);
726 	vma_adjust_trans_huge(vma, start, end, 0);
727 	vma_prepare(&vp);
728 
729 	if (vma->vm_start < start)
730 		vma_iter_clear(vmi, vma->vm_start, start);
731 
732 	if (vma->vm_end > end)
733 		vma_iter_clear(vmi, end, vma->vm_end);
734 
735 	vma->vm_start = start;
736 	vma->vm_end = end;
737 	vma->vm_pgoff = pgoff;
738 	vma_complete(&vp, vmi, vma->vm_mm);
739 	validate_mm(vma->vm_mm);
740 	return 0;
741 }
742 
743 /*
744  * If the vma has a ->close operation then the driver probably needs to release
745  * per-vma resources, so we don't attempt to merge those.
746  */
747 static inline int is_mergeable_vma(struct vm_area_struct *vma,
748 				   struct file *file, unsigned long vm_flags,
749 				   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
750 				   struct anon_vma_name *anon_name)
751 {
752 	/*
753 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
754 	 * match the flags but dirty bit -- the caller should mark
755 	 * merged VMA as dirty. If dirty bit won't be excluded from
756 	 * comparison, we increase pressure on the memory system forcing
757 	 * the kernel to generate new VMAs when old one could be
758 	 * extended instead.
759 	 */
760 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
761 		return 0;
762 	if (vma->vm_file != file)
763 		return 0;
764 	if (vma->vm_ops && vma->vm_ops->close)
765 		return 0;
766 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
767 		return 0;
768 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
769 		return 0;
770 	return 1;
771 }
772 
773 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
774 					struct anon_vma *anon_vma2,
775 					struct vm_area_struct *vma)
776 {
777 	/*
778 	 * The list_is_singular() test is to avoid merging VMA cloned from
779 	 * parents. This can improve scalability caused by anon_vma lock.
780 	 */
781 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
782 		list_is_singular(&vma->anon_vma_chain)))
783 		return 1;
784 	return anon_vma1 == anon_vma2;
785 }
786 
787 /*
788  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
789  * in front of (at a lower virtual address and file offset than) the vma.
790  *
791  * We cannot merge two vmas if they have differently assigned (non-NULL)
792  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
793  *
794  * We don't check here for the merged mmap wrapping around the end of pagecache
795  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
796  * wrap, nor mmaps which cover the final page at index -1UL.
797  */
798 static int
799 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
800 		     struct anon_vma *anon_vma, struct file *file,
801 		     pgoff_t vm_pgoff,
802 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
803 		     struct anon_vma_name *anon_name)
804 {
805 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
806 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
807 		if (vma->vm_pgoff == vm_pgoff)
808 			return 1;
809 	}
810 	return 0;
811 }
812 
813 /*
814  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
815  * beyond (at a higher virtual address and file offset than) the vma.
816  *
817  * We cannot merge two vmas if they have differently assigned (non-NULL)
818  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
819  */
820 static int
821 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
822 		    struct anon_vma *anon_vma, struct file *file,
823 		    pgoff_t vm_pgoff,
824 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
825 		    struct anon_vma_name *anon_name)
826 {
827 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
828 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
829 		pgoff_t vm_pglen;
830 		vm_pglen = vma_pages(vma);
831 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
832 			return 1;
833 	}
834 	return 0;
835 }
836 
837 /*
838  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
839  * figure out whether that can be merged with its predecessor or its
840  * successor.  Or both (it neatly fills a hole).
841  *
842  * In most cases - when called for mmap, brk or mremap - [addr,end) is
843  * certain not to be mapped by the time vma_merge is called; but when
844  * called for mprotect, it is certain to be already mapped (either at
845  * an offset within prev, or at the start of next), and the flags of
846  * this area are about to be changed to vm_flags - and the no-change
847  * case has already been eliminated.
848  *
849  * The following mprotect cases have to be considered, where AAAA is
850  * the area passed down from mprotect_fixup, never extending beyond one
851  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
852  *
853  *     AAAA             AAAA                   AAAA
854  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
855  *    cannot merge    might become       might become
856  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
857  *    mmap, brk or    case 4 below       case 5 below
858  *    mremap move:
859  *                        AAAA               AAAA
860  *                    PPPP    NNNN       PPPPNNNNXXXX
861  *                    might become       might become
862  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
863  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
864  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
865  *
866  * It is important for case 8 that the vma NNNN overlapping the
867  * region AAAA is never going to extended over XXXX. Instead XXXX must
868  * be extended in region AAAA and NNNN must be removed. This way in
869  * all cases where vma_merge succeeds, the moment vma_merge drops the
870  * rmap_locks, the properties of the merged vma will be already
871  * correct for the whole merged range. Some of those properties like
872  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
873  * be correct for the whole merged range immediately after the
874  * rmap_locks are released. Otherwise if XXXX would be removed and
875  * NNNN would be extended over the XXXX range, remove_migration_ptes
876  * or other rmap walkers (if working on addresses beyond the "end"
877  * parameter) may establish ptes with the wrong permissions of NNNN
878  * instead of the right permissions of XXXX.
879  *
880  * In the code below:
881  * PPPP is represented by *prev
882  * NNNN is represented by *mid (and possibly equal to *next)
883  * XXXX is represented by *next or not represented at all.
884  * AAAA is not represented - it will be merged or the function will return NULL
885  */
886 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
887 			struct vm_area_struct *prev, unsigned long addr,
888 			unsigned long end, unsigned long vm_flags,
889 			struct anon_vma *anon_vma, struct file *file,
890 			pgoff_t pgoff, struct mempolicy *policy,
891 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
892 			struct anon_vma_name *anon_name)
893 {
894 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
895 	pgoff_t vma_pgoff;
896 	struct vm_area_struct *mid, *next, *res = NULL;
897 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
898 	int err = -1;
899 	bool merge_prev = false;
900 	bool merge_next = false;
901 	bool vma_expanded = false;
902 	struct vma_prepare vp;
903 	unsigned long vma_end = end;
904 	long adj_next = 0;
905 	unsigned long vma_start = addr;
906 
907 	validate_mm(mm);
908 	/*
909 	 * We later require that vma->vm_flags == vm_flags,
910 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
911 	 */
912 	if (vm_flags & VM_SPECIAL)
913 		return NULL;
914 
915 	next = find_vma(mm, prev ? prev->vm_end : 0);
916 	mid = next;
917 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
918 		next = find_vma(mm, next->vm_end);
919 
920 	/* verify some invariant that must be enforced by the caller */
921 	VM_WARN_ON(prev && addr <= prev->vm_start);
922 	VM_WARN_ON(mid && end > mid->vm_end);
923 	VM_WARN_ON(addr >= end);
924 
925 	if (prev) {
926 		res = prev;
927 		vma = prev;
928 		vma_start = prev->vm_start;
929 		vma_pgoff = prev->vm_pgoff;
930 		/* Can we merge the predecessor? */
931 		if (prev->vm_end == addr && mpol_equal(vma_policy(prev), policy)
932 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
933 				   pgoff, vm_userfaultfd_ctx, anon_name)) {
934 			merge_prev = true;
935 			vma_prev(vmi);
936 		}
937 	}
938 	/* Can we merge the successor? */
939 	if (next && end == next->vm_start &&
940 			mpol_equal(policy, vma_policy(next)) &&
941 			can_vma_merge_before(next, vm_flags,
942 					     anon_vma, file, pgoff+pglen,
943 					     vm_userfaultfd_ctx, anon_name)) {
944 		merge_next = true;
945 	}
946 
947 	remove = remove2 = adjust = NULL;
948 	/* Can we merge both the predecessor and the successor? */
949 	if (merge_prev && merge_next &&
950 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
951 		remove = mid;				/* case 1 */
952 		vma_end = next->vm_end;
953 		err = dup_anon_vma(res, remove);
954 		if (mid != next) {			/* case 6 */
955 			remove2 = next;
956 			if (!remove->anon_vma)
957 				err = dup_anon_vma(res, remove2);
958 		}
959 	} else if (merge_prev) {
960 		err = 0;				/* case 2 */
961 		if (mid && end > mid->vm_start) {
962 			err = dup_anon_vma(res, mid);
963 			if (end == mid->vm_end) {	/* case 7 */
964 				remove = mid;
965 			} else {			/* case 5 */
966 				adjust = mid;
967 				adj_next = (end - mid->vm_start);
968 			}
969 		}
970 	} else if (merge_next) {
971 		res = next;
972 		if (prev && addr < prev->vm_end) {	/* case 4 */
973 			vma_end = addr;
974 			adjust = mid;
975 			adj_next = -(vma->vm_end - addr);
976 			err = dup_anon_vma(adjust, prev);
977 		} else {
978 			vma = next;			/* case 3 */
979 			vma_start = addr;
980 			vma_end = next->vm_end;
981 			vma_pgoff = mid->vm_pgoff;
982 			err = 0;
983 			if (mid != next) {		/* case 8 */
984 				remove = mid;
985 				err = dup_anon_vma(res, remove);
986 			}
987 		}
988 	}
989 
990 	/* Cannot merge or error in anon_vma clone */
991 	if (err)
992 		return NULL;
993 
994 	if (vma_iter_prealloc(vmi))
995 		return NULL;
996 
997 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_next);
998 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
999 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1000 		   vp.anon_vma != adjust->anon_vma);
1001 
1002 	vma_prepare(&vp);
1003 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1004 		vma_expanded = true;
1005 
1006 	vma->vm_start = vma_start;
1007 	vma->vm_end = vma_end;
1008 	vma->vm_pgoff = vma_pgoff;
1009 
1010 	if (vma_expanded)
1011 		vma_iter_store(vmi, vma);
1012 
1013 	if (adj_next) {
1014 		adjust->vm_start += adj_next;
1015 		adjust->vm_pgoff += adj_next >> PAGE_SHIFT;
1016 		if (adj_next < 0) {
1017 			WARN_ON(vma_expanded);
1018 			vma_iter_store(vmi, next);
1019 		}
1020 	}
1021 
1022 	vma_complete(&vp, vmi, mm);
1023 	vma_iter_free(vmi);
1024 	validate_mm(mm);
1025 	khugepaged_enter_vma(res, vm_flags);
1026 
1027 	return res;
1028 }
1029 
1030 /*
1031  * Rough compatibility check to quickly see if it's even worth looking
1032  * at sharing an anon_vma.
1033  *
1034  * They need to have the same vm_file, and the flags can only differ
1035  * in things that mprotect may change.
1036  *
1037  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1038  * we can merge the two vma's. For example, we refuse to merge a vma if
1039  * there is a vm_ops->close() function, because that indicates that the
1040  * driver is doing some kind of reference counting. But that doesn't
1041  * really matter for the anon_vma sharing case.
1042  */
1043 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1044 {
1045 	return a->vm_end == b->vm_start &&
1046 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1047 		a->vm_file == b->vm_file &&
1048 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1049 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1050 }
1051 
1052 /*
1053  * Do some basic sanity checking to see if we can re-use the anon_vma
1054  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1055  * the same as 'old', the other will be the new one that is trying
1056  * to share the anon_vma.
1057  *
1058  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1059  * the anon_vma of 'old' is concurrently in the process of being set up
1060  * by another page fault trying to merge _that_. But that's ok: if it
1061  * is being set up, that automatically means that it will be a singleton
1062  * acceptable for merging, so we can do all of this optimistically. But
1063  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1064  *
1065  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1066  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1067  * is to return an anon_vma that is "complex" due to having gone through
1068  * a fork).
1069  *
1070  * We also make sure that the two vma's are compatible (adjacent,
1071  * and with the same memory policies). That's all stable, even with just
1072  * a read lock on the mmap_lock.
1073  */
1074 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1075 {
1076 	if (anon_vma_compatible(a, b)) {
1077 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1078 
1079 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1080 			return anon_vma;
1081 	}
1082 	return NULL;
1083 }
1084 
1085 /*
1086  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1087  * neighbouring vmas for a suitable anon_vma, before it goes off
1088  * to allocate a new anon_vma.  It checks because a repetitive
1089  * sequence of mprotects and faults may otherwise lead to distinct
1090  * anon_vmas being allocated, preventing vma merge in subsequent
1091  * mprotect.
1092  */
1093 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1094 {
1095 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1096 	struct anon_vma *anon_vma = NULL;
1097 	struct vm_area_struct *prev, *next;
1098 
1099 	/* Try next first. */
1100 	next = mas_walk(&mas);
1101 	if (next) {
1102 		anon_vma = reusable_anon_vma(next, vma, next);
1103 		if (anon_vma)
1104 			return anon_vma;
1105 	}
1106 
1107 	prev = mas_prev(&mas, 0);
1108 	VM_BUG_ON_VMA(prev != vma, vma);
1109 	prev = mas_prev(&mas, 0);
1110 	/* Try prev next. */
1111 	if (prev)
1112 		anon_vma = reusable_anon_vma(prev, prev, vma);
1113 
1114 	/*
1115 	 * We might reach here with anon_vma == NULL if we can't find
1116 	 * any reusable anon_vma.
1117 	 * There's no absolute need to look only at touching neighbours:
1118 	 * we could search further afield for "compatible" anon_vmas.
1119 	 * But it would probably just be a waste of time searching,
1120 	 * or lead to too many vmas hanging off the same anon_vma.
1121 	 * We're trying to allow mprotect remerging later on,
1122 	 * not trying to minimize memory used for anon_vmas.
1123 	 */
1124 	return anon_vma;
1125 }
1126 
1127 /*
1128  * If a hint addr is less than mmap_min_addr change hint to be as
1129  * low as possible but still greater than mmap_min_addr
1130  */
1131 static inline unsigned long round_hint_to_min(unsigned long hint)
1132 {
1133 	hint &= PAGE_MASK;
1134 	if (((void *)hint != NULL) &&
1135 	    (hint < mmap_min_addr))
1136 		return PAGE_ALIGN(mmap_min_addr);
1137 	return hint;
1138 }
1139 
1140 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1141 		       unsigned long len)
1142 {
1143 	unsigned long locked, lock_limit;
1144 
1145 	/*  mlock MCL_FUTURE? */
1146 	if (flags & VM_LOCKED) {
1147 		locked = len >> PAGE_SHIFT;
1148 		locked += mm->locked_vm;
1149 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1150 		lock_limit >>= PAGE_SHIFT;
1151 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1152 			return -EAGAIN;
1153 	}
1154 	return 0;
1155 }
1156 
1157 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1158 {
1159 	if (S_ISREG(inode->i_mode))
1160 		return MAX_LFS_FILESIZE;
1161 
1162 	if (S_ISBLK(inode->i_mode))
1163 		return MAX_LFS_FILESIZE;
1164 
1165 	if (S_ISSOCK(inode->i_mode))
1166 		return MAX_LFS_FILESIZE;
1167 
1168 	/* Special "we do even unsigned file positions" case */
1169 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1170 		return 0;
1171 
1172 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1173 	return ULONG_MAX;
1174 }
1175 
1176 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1177 				unsigned long pgoff, unsigned long len)
1178 {
1179 	u64 maxsize = file_mmap_size_max(file, inode);
1180 
1181 	if (maxsize && len > maxsize)
1182 		return false;
1183 	maxsize -= len;
1184 	if (pgoff > maxsize >> PAGE_SHIFT)
1185 		return false;
1186 	return true;
1187 }
1188 
1189 /*
1190  * The caller must write-lock current->mm->mmap_lock.
1191  */
1192 unsigned long do_mmap(struct file *file, unsigned long addr,
1193 			unsigned long len, unsigned long prot,
1194 			unsigned long flags, unsigned long pgoff,
1195 			unsigned long *populate, struct list_head *uf)
1196 {
1197 	struct mm_struct *mm = current->mm;
1198 	vm_flags_t vm_flags;
1199 	int pkey = 0;
1200 
1201 	validate_mm(mm);
1202 	*populate = 0;
1203 
1204 	if (!len)
1205 		return -EINVAL;
1206 
1207 	/*
1208 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1209 	 *
1210 	 * (the exception is when the underlying filesystem is noexec
1211 	 *  mounted, in which case we dont add PROT_EXEC.)
1212 	 */
1213 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1214 		if (!(file && path_noexec(&file->f_path)))
1215 			prot |= PROT_EXEC;
1216 
1217 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1218 	if (flags & MAP_FIXED_NOREPLACE)
1219 		flags |= MAP_FIXED;
1220 
1221 	if (!(flags & MAP_FIXED))
1222 		addr = round_hint_to_min(addr);
1223 
1224 	/* Careful about overflows.. */
1225 	len = PAGE_ALIGN(len);
1226 	if (!len)
1227 		return -ENOMEM;
1228 
1229 	/* offset overflow? */
1230 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1231 		return -EOVERFLOW;
1232 
1233 	/* Too many mappings? */
1234 	if (mm->map_count > sysctl_max_map_count)
1235 		return -ENOMEM;
1236 
1237 	/* Obtain the address to map to. we verify (or select) it and ensure
1238 	 * that it represents a valid section of the address space.
1239 	 */
1240 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1241 	if (IS_ERR_VALUE(addr))
1242 		return addr;
1243 
1244 	if (flags & MAP_FIXED_NOREPLACE) {
1245 		if (find_vma_intersection(mm, addr, addr + len))
1246 			return -EEXIST;
1247 	}
1248 
1249 	if (prot == PROT_EXEC) {
1250 		pkey = execute_only_pkey(mm);
1251 		if (pkey < 0)
1252 			pkey = 0;
1253 	}
1254 
1255 	/* Do simple checking here so the lower-level routines won't have
1256 	 * to. we assume access permissions have been handled by the open
1257 	 * of the memory object, so we don't do any here.
1258 	 */
1259 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1260 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1261 
1262 	if (flags & MAP_LOCKED)
1263 		if (!can_do_mlock())
1264 			return -EPERM;
1265 
1266 	if (mlock_future_check(mm, vm_flags, len))
1267 		return -EAGAIN;
1268 
1269 	if (file) {
1270 		struct inode *inode = file_inode(file);
1271 		unsigned long flags_mask;
1272 
1273 		if (!file_mmap_ok(file, inode, pgoff, len))
1274 			return -EOVERFLOW;
1275 
1276 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1277 
1278 		switch (flags & MAP_TYPE) {
1279 		case MAP_SHARED:
1280 			/*
1281 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1282 			 * flags. E.g. MAP_SYNC is dangerous to use with
1283 			 * MAP_SHARED as you don't know which consistency model
1284 			 * you will get. We silently ignore unsupported flags
1285 			 * with MAP_SHARED to preserve backward compatibility.
1286 			 */
1287 			flags &= LEGACY_MAP_MASK;
1288 			fallthrough;
1289 		case MAP_SHARED_VALIDATE:
1290 			if (flags & ~flags_mask)
1291 				return -EOPNOTSUPP;
1292 			if (prot & PROT_WRITE) {
1293 				if (!(file->f_mode & FMODE_WRITE))
1294 					return -EACCES;
1295 				if (IS_SWAPFILE(file->f_mapping->host))
1296 					return -ETXTBSY;
1297 			}
1298 
1299 			/*
1300 			 * Make sure we don't allow writing to an append-only
1301 			 * file..
1302 			 */
1303 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1304 				return -EACCES;
1305 
1306 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1307 			if (!(file->f_mode & FMODE_WRITE))
1308 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1309 			fallthrough;
1310 		case MAP_PRIVATE:
1311 			if (!(file->f_mode & FMODE_READ))
1312 				return -EACCES;
1313 			if (path_noexec(&file->f_path)) {
1314 				if (vm_flags & VM_EXEC)
1315 					return -EPERM;
1316 				vm_flags &= ~VM_MAYEXEC;
1317 			}
1318 
1319 			if (!file->f_op->mmap)
1320 				return -ENODEV;
1321 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322 				return -EINVAL;
1323 			break;
1324 
1325 		default:
1326 			return -EINVAL;
1327 		}
1328 	} else {
1329 		switch (flags & MAP_TYPE) {
1330 		case MAP_SHARED:
1331 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1332 				return -EINVAL;
1333 			/*
1334 			 * Ignore pgoff.
1335 			 */
1336 			pgoff = 0;
1337 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1338 			break;
1339 		case MAP_PRIVATE:
1340 			/*
1341 			 * Set pgoff according to addr for anon_vma.
1342 			 */
1343 			pgoff = addr >> PAGE_SHIFT;
1344 			break;
1345 		default:
1346 			return -EINVAL;
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * Set 'VM_NORESERVE' if we should not account for the
1352 	 * memory use of this mapping.
1353 	 */
1354 	if (flags & MAP_NORESERVE) {
1355 		/* We honor MAP_NORESERVE if allowed to overcommit */
1356 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357 			vm_flags |= VM_NORESERVE;
1358 
1359 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360 		if (file && is_file_hugepages(file))
1361 			vm_flags |= VM_NORESERVE;
1362 	}
1363 
1364 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1365 	if (!IS_ERR_VALUE(addr) &&
1366 	    ((vm_flags & VM_LOCKED) ||
1367 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1368 		*populate = len;
1369 	return addr;
1370 }
1371 
1372 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1373 			      unsigned long prot, unsigned long flags,
1374 			      unsigned long fd, unsigned long pgoff)
1375 {
1376 	struct file *file = NULL;
1377 	unsigned long retval;
1378 
1379 	if (!(flags & MAP_ANONYMOUS)) {
1380 		audit_mmap_fd(fd, flags);
1381 		file = fget(fd);
1382 		if (!file)
1383 			return -EBADF;
1384 		if (is_file_hugepages(file)) {
1385 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1386 		} else if (unlikely(flags & MAP_HUGETLB)) {
1387 			retval = -EINVAL;
1388 			goto out_fput;
1389 		}
1390 	} else if (flags & MAP_HUGETLB) {
1391 		struct hstate *hs;
1392 
1393 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1394 		if (!hs)
1395 			return -EINVAL;
1396 
1397 		len = ALIGN(len, huge_page_size(hs));
1398 		/*
1399 		 * VM_NORESERVE is used because the reservations will be
1400 		 * taken when vm_ops->mmap() is called
1401 		 */
1402 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1403 				VM_NORESERVE,
1404 				HUGETLB_ANONHUGE_INODE,
1405 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1406 		if (IS_ERR(file))
1407 			return PTR_ERR(file);
1408 	}
1409 
1410 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411 out_fput:
1412 	if (file)
1413 		fput(file);
1414 	return retval;
1415 }
1416 
1417 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1418 		unsigned long, prot, unsigned long, flags,
1419 		unsigned long, fd, unsigned long, pgoff)
1420 {
1421 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1422 }
1423 
1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1425 struct mmap_arg_struct {
1426 	unsigned long addr;
1427 	unsigned long len;
1428 	unsigned long prot;
1429 	unsigned long flags;
1430 	unsigned long fd;
1431 	unsigned long offset;
1432 };
1433 
1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 {
1436 	struct mmap_arg_struct a;
1437 
1438 	if (copy_from_user(&a, arg, sizeof(a)))
1439 		return -EFAULT;
1440 	if (offset_in_page(a.offset))
1441 		return -EINVAL;
1442 
1443 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444 			       a.offset >> PAGE_SHIFT);
1445 }
1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447 
1448 /*
1449  * Some shared mappings will want the pages marked read-only
1450  * to track write events. If so, we'll downgrade vm_page_prot
1451  * to the private version (using protection_map[] without the
1452  * VM_SHARED bit).
1453  */
1454 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1455 {
1456 	vm_flags_t vm_flags = vma->vm_flags;
1457 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1458 
1459 	/* If it was private or non-writable, the write bit is already clear */
1460 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1461 		return 0;
1462 
1463 	/* The backer wishes to know when pages are first written to? */
1464 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1465 		return 1;
1466 
1467 	/* The open routine did something to the protections that pgprot_modify
1468 	 * won't preserve? */
1469 	if (pgprot_val(vm_page_prot) !=
1470 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1471 		return 0;
1472 
1473 	/*
1474 	 * Do we need to track softdirty? hugetlb does not support softdirty
1475 	 * tracking yet.
1476 	 */
1477 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1478 		return 1;
1479 
1480 	/* Do we need write faults for uffd-wp tracking? */
1481 	if (userfaultfd_wp(vma))
1482 		return 1;
1483 
1484 	/* Specialty mapping? */
1485 	if (vm_flags & VM_PFNMAP)
1486 		return 0;
1487 
1488 	/* Can the mapping track the dirty pages? */
1489 	return vma->vm_file && vma->vm_file->f_mapping &&
1490 		mapping_can_writeback(vma->vm_file->f_mapping);
1491 }
1492 
1493 /*
1494  * We account for memory if it's a private writeable mapping,
1495  * not hugepages and VM_NORESERVE wasn't set.
1496  */
1497 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1498 {
1499 	/*
1500 	 * hugetlb has its own accounting separate from the core VM
1501 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1502 	 */
1503 	if (file && is_file_hugepages(file))
1504 		return 0;
1505 
1506 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1507 }
1508 
1509 /**
1510  * unmapped_area() - Find an area between the low_limit and the high_limit with
1511  * the correct alignment and offset, all from @info. Note: current->mm is used
1512  * for the search.
1513  *
1514  * @info: The unmapped area information including the range [low_limit -
1515  * high_limit), the alignment offset and mask.
1516  *
1517  * Return: A memory address or -ENOMEM.
1518  */
1519 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1520 {
1521 	unsigned long length, gap;
1522 
1523 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1524 
1525 	/* Adjust search length to account for worst case alignment overhead */
1526 	length = info->length + info->align_mask;
1527 	if (length < info->length)
1528 		return -ENOMEM;
1529 
1530 	if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1531 				  length))
1532 		return -ENOMEM;
1533 
1534 	gap = mas.index;
1535 	gap += (info->align_offset - gap) & info->align_mask;
1536 	return gap;
1537 }
1538 
1539 /**
1540  * unmapped_area_topdown() - Find an area between the low_limit and the
1541  * high_limit with the correct alignment and offset at the highest available
1542  * address, all from @info. Note: current->mm is used for the search.
1543  *
1544  * @info: The unmapped area information including the range [low_limit -
1545  * high_limit), the alignment offset and mask.
1546  *
1547  * Return: A memory address or -ENOMEM.
1548  */
1549 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1550 {
1551 	unsigned long length, gap;
1552 
1553 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1554 	/* Adjust search length to account for worst case alignment overhead */
1555 	length = info->length + info->align_mask;
1556 	if (length < info->length)
1557 		return -ENOMEM;
1558 
1559 	if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1560 				length))
1561 		return -ENOMEM;
1562 
1563 	gap = mas.last + 1 - info->length;
1564 	gap -= (gap - info->align_offset) & info->align_mask;
1565 	return gap;
1566 }
1567 
1568 /*
1569  * Search for an unmapped address range.
1570  *
1571  * We are looking for a range that:
1572  * - does not intersect with any VMA;
1573  * - is contained within the [low_limit, high_limit) interval;
1574  * - is at least the desired size.
1575  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1576  */
1577 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1578 {
1579 	unsigned long addr;
1580 
1581 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1582 		addr = unmapped_area_topdown(info);
1583 	else
1584 		addr = unmapped_area(info);
1585 
1586 	trace_vm_unmapped_area(addr, info);
1587 	return addr;
1588 }
1589 
1590 /* Get an address range which is currently unmapped.
1591  * For shmat() with addr=0.
1592  *
1593  * Ugly calling convention alert:
1594  * Return value with the low bits set means error value,
1595  * ie
1596  *	if (ret & ~PAGE_MASK)
1597  *		error = ret;
1598  *
1599  * This function "knows" that -ENOMEM has the bits set.
1600  */
1601 unsigned long
1602 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1603 			  unsigned long len, unsigned long pgoff,
1604 			  unsigned long flags)
1605 {
1606 	struct mm_struct *mm = current->mm;
1607 	struct vm_area_struct *vma, *prev;
1608 	struct vm_unmapped_area_info info;
1609 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1610 
1611 	if (len > mmap_end - mmap_min_addr)
1612 		return -ENOMEM;
1613 
1614 	if (flags & MAP_FIXED)
1615 		return addr;
1616 
1617 	if (addr) {
1618 		addr = PAGE_ALIGN(addr);
1619 		vma = find_vma_prev(mm, addr, &prev);
1620 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1621 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1622 		    (!prev || addr >= vm_end_gap(prev)))
1623 			return addr;
1624 	}
1625 
1626 	info.flags = 0;
1627 	info.length = len;
1628 	info.low_limit = mm->mmap_base;
1629 	info.high_limit = mmap_end;
1630 	info.align_mask = 0;
1631 	info.align_offset = 0;
1632 	return vm_unmapped_area(&info);
1633 }
1634 
1635 #ifndef HAVE_ARCH_UNMAPPED_AREA
1636 unsigned long
1637 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1638 		       unsigned long len, unsigned long pgoff,
1639 		       unsigned long flags)
1640 {
1641 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1642 }
1643 #endif
1644 
1645 /*
1646  * This mmap-allocator allocates new areas top-down from below the
1647  * stack's low limit (the base):
1648  */
1649 unsigned long
1650 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1651 				  unsigned long len, unsigned long pgoff,
1652 				  unsigned long flags)
1653 {
1654 	struct vm_area_struct *vma, *prev;
1655 	struct mm_struct *mm = current->mm;
1656 	struct vm_unmapped_area_info info;
1657 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1658 
1659 	/* requested length too big for entire address space */
1660 	if (len > mmap_end - mmap_min_addr)
1661 		return -ENOMEM;
1662 
1663 	if (flags & MAP_FIXED)
1664 		return addr;
1665 
1666 	/* requesting a specific address */
1667 	if (addr) {
1668 		addr = PAGE_ALIGN(addr);
1669 		vma = find_vma_prev(mm, addr, &prev);
1670 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1671 				(!vma || addr + len <= vm_start_gap(vma)) &&
1672 				(!prev || addr >= vm_end_gap(prev)))
1673 			return addr;
1674 	}
1675 
1676 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1677 	info.length = len;
1678 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1679 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1680 	info.align_mask = 0;
1681 	info.align_offset = 0;
1682 	addr = vm_unmapped_area(&info);
1683 
1684 	/*
1685 	 * A failed mmap() very likely causes application failure,
1686 	 * so fall back to the bottom-up function here. This scenario
1687 	 * can happen with large stack limits and large mmap()
1688 	 * allocations.
1689 	 */
1690 	if (offset_in_page(addr)) {
1691 		VM_BUG_ON(addr != -ENOMEM);
1692 		info.flags = 0;
1693 		info.low_limit = TASK_UNMAPPED_BASE;
1694 		info.high_limit = mmap_end;
1695 		addr = vm_unmapped_area(&info);
1696 	}
1697 
1698 	return addr;
1699 }
1700 
1701 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1702 unsigned long
1703 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1704 			       unsigned long len, unsigned long pgoff,
1705 			       unsigned long flags)
1706 {
1707 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1708 }
1709 #endif
1710 
1711 unsigned long
1712 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1713 		unsigned long pgoff, unsigned long flags)
1714 {
1715 	unsigned long (*get_area)(struct file *, unsigned long,
1716 				  unsigned long, unsigned long, unsigned long);
1717 
1718 	unsigned long error = arch_mmap_check(addr, len, flags);
1719 	if (error)
1720 		return error;
1721 
1722 	/* Careful about overflows.. */
1723 	if (len > TASK_SIZE)
1724 		return -ENOMEM;
1725 
1726 	get_area = current->mm->get_unmapped_area;
1727 	if (file) {
1728 		if (file->f_op->get_unmapped_area)
1729 			get_area = file->f_op->get_unmapped_area;
1730 	} else if (flags & MAP_SHARED) {
1731 		/*
1732 		 * mmap_region() will call shmem_zero_setup() to create a file,
1733 		 * so use shmem's get_unmapped_area in case it can be huge.
1734 		 * do_mmap() will clear pgoff, so match alignment.
1735 		 */
1736 		pgoff = 0;
1737 		get_area = shmem_get_unmapped_area;
1738 	}
1739 
1740 	addr = get_area(file, addr, len, pgoff, flags);
1741 	if (IS_ERR_VALUE(addr))
1742 		return addr;
1743 
1744 	if (addr > TASK_SIZE - len)
1745 		return -ENOMEM;
1746 	if (offset_in_page(addr))
1747 		return -EINVAL;
1748 
1749 	error = security_mmap_addr(addr);
1750 	return error ? error : addr;
1751 }
1752 
1753 EXPORT_SYMBOL(get_unmapped_area);
1754 
1755 /**
1756  * find_vma_intersection() - Look up the first VMA which intersects the interval
1757  * @mm: The process address space.
1758  * @start_addr: The inclusive start user address.
1759  * @end_addr: The exclusive end user address.
1760  *
1761  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1762  * start_addr < end_addr.
1763  */
1764 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1765 					     unsigned long start_addr,
1766 					     unsigned long end_addr)
1767 {
1768 	unsigned long index = start_addr;
1769 
1770 	mmap_assert_locked(mm);
1771 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1772 }
1773 EXPORT_SYMBOL(find_vma_intersection);
1774 
1775 /**
1776  * find_vma() - Find the VMA for a given address, or the next VMA.
1777  * @mm: The mm_struct to check
1778  * @addr: The address
1779  *
1780  * Returns: The VMA associated with addr, or the next VMA.
1781  * May return %NULL in the case of no VMA at addr or above.
1782  */
1783 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1784 {
1785 	unsigned long index = addr;
1786 
1787 	mmap_assert_locked(mm);
1788 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1789 }
1790 EXPORT_SYMBOL(find_vma);
1791 
1792 /**
1793  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1794  * set %pprev to the previous VMA, if any.
1795  * @mm: The mm_struct to check
1796  * @addr: The address
1797  * @pprev: The pointer to set to the previous VMA
1798  *
1799  * Note that RCU lock is missing here since the external mmap_lock() is used
1800  * instead.
1801  *
1802  * Returns: The VMA associated with @addr, or the next vma.
1803  * May return %NULL in the case of no vma at addr or above.
1804  */
1805 struct vm_area_struct *
1806 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1807 			struct vm_area_struct **pprev)
1808 {
1809 	struct vm_area_struct *vma;
1810 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1811 
1812 	vma = mas_walk(&mas);
1813 	*pprev = mas_prev(&mas, 0);
1814 	if (!vma)
1815 		vma = mas_next(&mas, ULONG_MAX);
1816 	return vma;
1817 }
1818 
1819 /*
1820  * Verify that the stack growth is acceptable and
1821  * update accounting. This is shared with both the
1822  * grow-up and grow-down cases.
1823  */
1824 static int acct_stack_growth(struct vm_area_struct *vma,
1825 			     unsigned long size, unsigned long grow)
1826 {
1827 	struct mm_struct *mm = vma->vm_mm;
1828 	unsigned long new_start;
1829 
1830 	/* address space limit tests */
1831 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1832 		return -ENOMEM;
1833 
1834 	/* Stack limit test */
1835 	if (size > rlimit(RLIMIT_STACK))
1836 		return -ENOMEM;
1837 
1838 	/* mlock limit tests */
1839 	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1840 		return -ENOMEM;
1841 
1842 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1843 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1844 			vma->vm_end - size;
1845 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1846 		return -EFAULT;
1847 
1848 	/*
1849 	 * Overcommit..  This must be the final test, as it will
1850 	 * update security statistics.
1851 	 */
1852 	if (security_vm_enough_memory_mm(mm, grow))
1853 		return -ENOMEM;
1854 
1855 	return 0;
1856 }
1857 
1858 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1859 /*
1860  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1861  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1862  */
1863 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1864 {
1865 	struct mm_struct *mm = vma->vm_mm;
1866 	struct vm_area_struct *next;
1867 	unsigned long gap_addr;
1868 	int error = 0;
1869 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1870 
1871 	if (!(vma->vm_flags & VM_GROWSUP))
1872 		return -EFAULT;
1873 
1874 	/* Guard against exceeding limits of the address space. */
1875 	address &= PAGE_MASK;
1876 	if (address >= (TASK_SIZE & PAGE_MASK))
1877 		return -ENOMEM;
1878 	address += PAGE_SIZE;
1879 
1880 	/* Enforce stack_guard_gap */
1881 	gap_addr = address + stack_guard_gap;
1882 
1883 	/* Guard against overflow */
1884 	if (gap_addr < address || gap_addr > TASK_SIZE)
1885 		gap_addr = TASK_SIZE;
1886 
1887 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1888 	if (next && vma_is_accessible(next)) {
1889 		if (!(next->vm_flags & VM_GROWSUP))
1890 			return -ENOMEM;
1891 		/* Check that both stack segments have the same anon_vma? */
1892 	}
1893 
1894 	if (mas_preallocate(&mas, GFP_KERNEL))
1895 		return -ENOMEM;
1896 
1897 	/* We must make sure the anon_vma is allocated. */
1898 	if (unlikely(anon_vma_prepare(vma))) {
1899 		mas_destroy(&mas);
1900 		return -ENOMEM;
1901 	}
1902 
1903 	/*
1904 	 * vma->vm_start/vm_end cannot change under us because the caller
1905 	 * is required to hold the mmap_lock in read mode.  We need the
1906 	 * anon_vma lock to serialize against concurrent expand_stacks.
1907 	 */
1908 	anon_vma_lock_write(vma->anon_vma);
1909 
1910 	/* Somebody else might have raced and expanded it already */
1911 	if (address > vma->vm_end) {
1912 		unsigned long size, grow;
1913 
1914 		size = address - vma->vm_start;
1915 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1916 
1917 		error = -ENOMEM;
1918 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1919 			error = acct_stack_growth(vma, size, grow);
1920 			if (!error) {
1921 				/*
1922 				 * We only hold a shared mmap_lock lock here, so
1923 				 * we need to protect against concurrent vma
1924 				 * expansions.  anon_vma_lock_write() doesn't
1925 				 * help here, as we don't guarantee that all
1926 				 * growable vmas in a mm share the same root
1927 				 * anon vma.  So, we reuse mm->page_table_lock
1928 				 * to guard against concurrent vma expansions.
1929 				 */
1930 				spin_lock(&mm->page_table_lock);
1931 				if (vma->vm_flags & VM_LOCKED)
1932 					mm->locked_vm += grow;
1933 				vm_stat_account(mm, vma->vm_flags, grow);
1934 				anon_vma_interval_tree_pre_update_vma(vma);
1935 				vma->vm_end = address;
1936 				/* Overwrite old entry in mtree. */
1937 				mas_set_range(&mas, vma->vm_start, address - 1);
1938 				mas_store_prealloc(&mas, vma);
1939 				anon_vma_interval_tree_post_update_vma(vma);
1940 				spin_unlock(&mm->page_table_lock);
1941 
1942 				perf_event_mmap(vma);
1943 			}
1944 		}
1945 	}
1946 	anon_vma_unlock_write(vma->anon_vma);
1947 	khugepaged_enter_vma(vma, vma->vm_flags);
1948 	mas_destroy(&mas);
1949 	return error;
1950 }
1951 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1952 
1953 /*
1954  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1955  */
1956 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1957 {
1958 	struct mm_struct *mm = vma->vm_mm;
1959 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
1960 	struct vm_area_struct *prev;
1961 	int error = 0;
1962 
1963 	address &= PAGE_MASK;
1964 	if (address < mmap_min_addr)
1965 		return -EPERM;
1966 
1967 	/* Enforce stack_guard_gap */
1968 	prev = mas_prev(&mas, 0);
1969 	/* Check that both stack segments have the same anon_vma? */
1970 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
1971 			vma_is_accessible(prev)) {
1972 		if (address - prev->vm_end < stack_guard_gap)
1973 			return -ENOMEM;
1974 	}
1975 
1976 	if (mas_preallocate(&mas, GFP_KERNEL))
1977 		return -ENOMEM;
1978 
1979 	/* We must make sure the anon_vma is allocated. */
1980 	if (unlikely(anon_vma_prepare(vma))) {
1981 		mas_destroy(&mas);
1982 		return -ENOMEM;
1983 	}
1984 
1985 	/*
1986 	 * vma->vm_start/vm_end cannot change under us because the caller
1987 	 * is required to hold the mmap_lock in read mode.  We need the
1988 	 * anon_vma lock to serialize against concurrent expand_stacks.
1989 	 */
1990 	anon_vma_lock_write(vma->anon_vma);
1991 
1992 	/* Somebody else might have raced and expanded it already */
1993 	if (address < vma->vm_start) {
1994 		unsigned long size, grow;
1995 
1996 		size = vma->vm_end - address;
1997 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1998 
1999 		error = -ENOMEM;
2000 		if (grow <= vma->vm_pgoff) {
2001 			error = acct_stack_growth(vma, size, grow);
2002 			if (!error) {
2003 				/*
2004 				 * We only hold a shared mmap_lock lock here, so
2005 				 * we need to protect against concurrent vma
2006 				 * expansions.  anon_vma_lock_write() doesn't
2007 				 * help here, as we don't guarantee that all
2008 				 * growable vmas in a mm share the same root
2009 				 * anon vma.  So, we reuse mm->page_table_lock
2010 				 * to guard against concurrent vma expansions.
2011 				 */
2012 				spin_lock(&mm->page_table_lock);
2013 				if (vma->vm_flags & VM_LOCKED)
2014 					mm->locked_vm += grow;
2015 				vm_stat_account(mm, vma->vm_flags, grow);
2016 				anon_vma_interval_tree_pre_update_vma(vma);
2017 				vma->vm_start = address;
2018 				vma->vm_pgoff -= grow;
2019 				/* Overwrite old entry in mtree. */
2020 				mas_set_range(&mas, address, vma->vm_end - 1);
2021 				mas_store_prealloc(&mas, vma);
2022 				anon_vma_interval_tree_post_update_vma(vma);
2023 				spin_unlock(&mm->page_table_lock);
2024 
2025 				perf_event_mmap(vma);
2026 			}
2027 		}
2028 	}
2029 	anon_vma_unlock_write(vma->anon_vma);
2030 	khugepaged_enter_vma(vma, vma->vm_flags);
2031 	mas_destroy(&mas);
2032 	return error;
2033 }
2034 
2035 /* enforced gap between the expanding stack and other mappings. */
2036 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2037 
2038 static int __init cmdline_parse_stack_guard_gap(char *p)
2039 {
2040 	unsigned long val;
2041 	char *endptr;
2042 
2043 	val = simple_strtoul(p, &endptr, 10);
2044 	if (!*endptr)
2045 		stack_guard_gap = val << PAGE_SHIFT;
2046 
2047 	return 1;
2048 }
2049 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2050 
2051 #ifdef CONFIG_STACK_GROWSUP
2052 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2053 {
2054 	return expand_upwards(vma, address);
2055 }
2056 
2057 struct vm_area_struct *
2058 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2059 {
2060 	struct vm_area_struct *vma, *prev;
2061 
2062 	addr &= PAGE_MASK;
2063 	vma = find_vma_prev(mm, addr, &prev);
2064 	if (vma && (vma->vm_start <= addr))
2065 		return vma;
2066 	if (!prev || expand_stack(prev, addr))
2067 		return NULL;
2068 	if (prev->vm_flags & VM_LOCKED)
2069 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2070 	return prev;
2071 }
2072 #else
2073 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2074 {
2075 	return expand_downwards(vma, address);
2076 }
2077 
2078 struct vm_area_struct *
2079 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2080 {
2081 	struct vm_area_struct *vma;
2082 	unsigned long start;
2083 
2084 	addr &= PAGE_MASK;
2085 	vma = find_vma(mm, addr);
2086 	if (!vma)
2087 		return NULL;
2088 	if (vma->vm_start <= addr)
2089 		return vma;
2090 	if (!(vma->vm_flags & VM_GROWSDOWN))
2091 		return NULL;
2092 	start = vma->vm_start;
2093 	if (expand_stack(vma, addr))
2094 		return NULL;
2095 	if (vma->vm_flags & VM_LOCKED)
2096 		populate_vma_page_range(vma, addr, start, NULL);
2097 	return vma;
2098 }
2099 #endif
2100 
2101 EXPORT_SYMBOL_GPL(find_extend_vma);
2102 
2103 /*
2104  * Ok - we have the memory areas we should free on a maple tree so release them,
2105  * and do the vma updates.
2106  *
2107  * Called with the mm semaphore held.
2108  */
2109 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2110 {
2111 	unsigned long nr_accounted = 0;
2112 	struct vm_area_struct *vma;
2113 
2114 	/* Update high watermark before we lower total_vm */
2115 	update_hiwater_vm(mm);
2116 	mas_for_each(mas, vma, ULONG_MAX) {
2117 		long nrpages = vma_pages(vma);
2118 
2119 		if (vma->vm_flags & VM_ACCOUNT)
2120 			nr_accounted += nrpages;
2121 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2122 		remove_vma(vma);
2123 	}
2124 	vm_unacct_memory(nr_accounted);
2125 	validate_mm(mm);
2126 }
2127 
2128 /*
2129  * Get rid of page table information in the indicated region.
2130  *
2131  * Called with the mm semaphore held.
2132  */
2133 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2134 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2135 		struct vm_area_struct *next,
2136 		unsigned long start, unsigned long end, bool mm_wr_locked)
2137 {
2138 	struct mmu_gather tlb;
2139 
2140 	lru_add_drain();
2141 	tlb_gather_mmu(&tlb, mm);
2142 	update_hiwater_rss(mm);
2143 	unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2144 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2145 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2146 	tlb_finish_mmu(&tlb);
2147 }
2148 
2149 /*
2150  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2151  * has already been checked or doesn't make sense to fail.
2152  * VMA Iterator will point to the end VMA.
2153  */
2154 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2155 		unsigned long addr, int new_below)
2156 {
2157 	struct vma_prepare vp;
2158 	struct vm_area_struct *new;
2159 	int err;
2160 
2161 	validate_mm_mt(vma->vm_mm);
2162 
2163 	WARN_ON(vma->vm_start >= addr);
2164 	WARN_ON(vma->vm_end <= addr);
2165 
2166 	if (vma->vm_ops && vma->vm_ops->may_split) {
2167 		err = vma->vm_ops->may_split(vma, addr);
2168 		if (err)
2169 			return err;
2170 	}
2171 
2172 	new = vm_area_dup(vma);
2173 	if (!new)
2174 		return -ENOMEM;
2175 
2176 	err = -ENOMEM;
2177 	if (vma_iter_prealloc(vmi))
2178 		goto out_free_vma;
2179 
2180 	if (new_below) {
2181 		new->vm_end = addr;
2182 	} else {
2183 		new->vm_start = addr;
2184 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2185 	}
2186 
2187 	err = vma_dup_policy(vma, new);
2188 	if (err)
2189 		goto out_free_vmi;
2190 
2191 	err = anon_vma_clone(new, vma);
2192 	if (err)
2193 		goto out_free_mpol;
2194 
2195 	if (new->vm_file)
2196 		get_file(new->vm_file);
2197 
2198 	if (new->vm_ops && new->vm_ops->open)
2199 		new->vm_ops->open(new);
2200 
2201 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2202 	init_vma_prep(&vp, vma);
2203 	vp.insert = new;
2204 	vma_prepare(&vp);
2205 
2206 	if (new_below) {
2207 		vma->vm_start = addr;
2208 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2209 	} else {
2210 		vma->vm_end = addr;
2211 	}
2212 
2213 	/* vma_complete stores the new vma */
2214 	vma_complete(&vp, vmi, vma->vm_mm);
2215 
2216 	/* Success. */
2217 	if (new_below)
2218 		vma_next(vmi);
2219 	validate_mm_mt(vma->vm_mm);
2220 	return 0;
2221 
2222 out_free_mpol:
2223 	mpol_put(vma_policy(new));
2224 out_free_vmi:
2225 	vma_iter_free(vmi);
2226 out_free_vma:
2227 	vm_area_free(new);
2228 	validate_mm_mt(vma->vm_mm);
2229 	return err;
2230 }
2231 
2232 /*
2233  * Split a vma into two pieces at address 'addr', a new vma is allocated
2234  * either for the first part or the tail.
2235  */
2236 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2237 	      unsigned long addr, int new_below)
2238 {
2239 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2240 		return -ENOMEM;
2241 
2242 	return __split_vma(vmi, vma, addr, new_below);
2243 }
2244 
2245 static inline int munmap_sidetree(struct vm_area_struct *vma,
2246 				   struct ma_state *mas_detach)
2247 {
2248 	mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2249 	if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2250 		return -ENOMEM;
2251 
2252 	if (vma->vm_flags & VM_LOCKED)
2253 		vma->vm_mm->locked_vm -= vma_pages(vma);
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2260  * @vmi: The vma iterator
2261  * @vma: The starting vm_area_struct
2262  * @mm: The mm_struct
2263  * @start: The aligned start address to munmap.
2264  * @end: The aligned end address to munmap.
2265  * @uf: The userfaultfd list_head
2266  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2267  *
2268  * If @downgrade is true, check return code for potential release of the lock.
2269  */
2270 static int
2271 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2272 		    struct mm_struct *mm, unsigned long start,
2273 		    unsigned long end, struct list_head *uf, bool downgrade)
2274 {
2275 	struct vm_area_struct *prev, *next = NULL;
2276 	struct maple_tree mt_detach;
2277 	int count = 0;
2278 	int error = -ENOMEM;
2279 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2280 	mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2281 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2282 
2283 	/*
2284 	 * If we need to split any vma, do it now to save pain later.
2285 	 *
2286 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2287 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2288 	 * places tmp vma above, and higher split_vma places tmp vma below.
2289 	 */
2290 
2291 	/* Does it split the first one? */
2292 	if (start > vma->vm_start) {
2293 
2294 		/*
2295 		 * Make sure that map_count on return from munmap() will
2296 		 * not exceed its limit; but let map_count go just above
2297 		 * its limit temporarily, to help free resources as expected.
2298 		 */
2299 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2300 			goto map_count_exceeded;
2301 
2302 		error = __split_vma(vmi, vma, start, 0);
2303 		if (error)
2304 			goto start_split_failed;
2305 
2306 		vma = vma_iter_load(vmi);
2307 	}
2308 
2309 	prev = vma_prev(vmi);
2310 	if (unlikely((!prev)))
2311 		vma_iter_set(vmi, start);
2312 
2313 	/*
2314 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2315 	 * it is always overwritten.
2316 	 */
2317 	for_each_vma_range(*vmi, next, end) {
2318 		/* Does it split the end? */
2319 		if (next->vm_end > end) {
2320 			error = __split_vma(vmi, next, end, 0);
2321 			if (error)
2322 				goto end_split_failed;
2323 		}
2324 		error = munmap_sidetree(next, &mas_detach);
2325 		if (error)
2326 			goto munmap_sidetree_failed;
2327 
2328 		count++;
2329 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2330 		BUG_ON(next->vm_start < start);
2331 		BUG_ON(next->vm_start > end);
2332 #endif
2333 	}
2334 
2335 	next = vma_next(vmi);
2336 	if (unlikely(uf)) {
2337 		/*
2338 		 * If userfaultfd_unmap_prep returns an error the vmas
2339 		 * will remain split, but userland will get a
2340 		 * highly unexpected error anyway. This is no
2341 		 * different than the case where the first of the two
2342 		 * __split_vma fails, but we don't undo the first
2343 		 * split, despite we could. This is unlikely enough
2344 		 * failure that it's not worth optimizing it for.
2345 		 */
2346 		error = userfaultfd_unmap_prep(mm, start, end, uf);
2347 
2348 		if (error)
2349 			goto userfaultfd_error;
2350 	}
2351 
2352 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2353 	/* Make sure no VMAs are about to be lost. */
2354 	{
2355 		MA_STATE(test, &mt_detach, start, end - 1);
2356 		struct vm_area_struct *vma_mas, *vma_test;
2357 		int test_count = 0;
2358 
2359 		vma_iter_set(vmi, start);
2360 		rcu_read_lock();
2361 		vma_test = mas_find(&test, end - 1);
2362 		for_each_vma_range(*vmi, vma_mas, end) {
2363 			BUG_ON(vma_mas != vma_test);
2364 			test_count++;
2365 			vma_test = mas_next(&test, end - 1);
2366 		}
2367 		rcu_read_unlock();
2368 		BUG_ON(count != test_count);
2369 	}
2370 #endif
2371 	/* Point of no return */
2372 	vma_iter_set(vmi, start);
2373 	if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2374 		return -ENOMEM;
2375 
2376 	mm->map_count -= count;
2377 	/*
2378 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2379 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2380 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2381 	 */
2382 	if (downgrade) {
2383 		if (next && (next->vm_flags & VM_GROWSDOWN))
2384 			downgrade = false;
2385 		else if (prev && (prev->vm_flags & VM_GROWSUP))
2386 			downgrade = false;
2387 		else
2388 			mmap_write_downgrade(mm);
2389 	}
2390 
2391 	/*
2392 	 * We can free page tables without write-locking mmap_lock because VMAs
2393 	 * were isolated before we downgraded mmap_lock.
2394 	 */
2395 	unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2396 	/* Statistics and freeing VMAs */
2397 	mas_set(&mas_detach, start);
2398 	remove_mt(mm, &mas_detach);
2399 	__mt_destroy(&mt_detach);
2400 
2401 
2402 	validate_mm(mm);
2403 	return downgrade ? 1 : 0;
2404 
2405 userfaultfd_error:
2406 munmap_sidetree_failed:
2407 end_split_failed:
2408 	__mt_destroy(&mt_detach);
2409 start_split_failed:
2410 map_count_exceeded:
2411 	return error;
2412 }
2413 
2414 /*
2415  * do_vmi_munmap() - munmap a given range.
2416  * @vmi: The vma iterator
2417  * @mm: The mm_struct
2418  * @start: The start address to munmap
2419  * @len: The length of the range to munmap
2420  * @uf: The userfaultfd list_head
2421  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2422  * mmap_lock
2423  *
2424  * This function takes a @mas that is either pointing to the previous VMA or set
2425  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2426  * aligned and any arch_unmap work will be preformed.
2427  *
2428  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2429  */
2430 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2431 		  unsigned long start, size_t len, struct list_head *uf,
2432 		  bool downgrade)
2433 {
2434 	unsigned long end;
2435 	struct vm_area_struct *vma;
2436 
2437 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2438 		return -EINVAL;
2439 
2440 	end = start + PAGE_ALIGN(len);
2441 	if (end == start)
2442 		return -EINVAL;
2443 
2444 	 /* arch_unmap() might do unmaps itself.  */
2445 	arch_unmap(mm, start, end);
2446 
2447 	/* Find the first overlapping VMA */
2448 	vma = vma_find(vmi, end);
2449 	if (!vma)
2450 		return 0;
2451 
2452 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2453 }
2454 
2455 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2456  * @mm: The mm_struct
2457  * @start: The start address to munmap
2458  * @len: The length to be munmapped.
2459  * @uf: The userfaultfd list_head
2460  */
2461 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2462 	      struct list_head *uf)
2463 {
2464 	VMA_ITERATOR(vmi, mm, start);
2465 
2466 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2467 }
2468 
2469 unsigned long mmap_region(struct file *file, unsigned long addr,
2470 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2471 		struct list_head *uf)
2472 {
2473 	struct mm_struct *mm = current->mm;
2474 	struct vm_area_struct *vma = NULL;
2475 	struct vm_area_struct *next, *prev, *merge;
2476 	pgoff_t pglen = len >> PAGE_SHIFT;
2477 	unsigned long charged = 0;
2478 	unsigned long end = addr + len;
2479 	unsigned long merge_start = addr, merge_end = end;
2480 	pgoff_t vm_pgoff;
2481 	int error;
2482 	VMA_ITERATOR(vmi, mm, addr);
2483 
2484 	/* Check against address space limit. */
2485 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2486 		unsigned long nr_pages;
2487 
2488 		/*
2489 		 * MAP_FIXED may remove pages of mappings that intersects with
2490 		 * requested mapping. Account for the pages it would unmap.
2491 		 */
2492 		nr_pages = count_vma_pages_range(mm, addr, end);
2493 
2494 		if (!may_expand_vm(mm, vm_flags,
2495 					(len >> PAGE_SHIFT) - nr_pages))
2496 			return -ENOMEM;
2497 	}
2498 
2499 	/* Unmap any existing mapping in the area */
2500 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2501 		return -ENOMEM;
2502 
2503 	/*
2504 	 * Private writable mapping: check memory availability
2505 	 */
2506 	if (accountable_mapping(file, vm_flags)) {
2507 		charged = len >> PAGE_SHIFT;
2508 		if (security_vm_enough_memory_mm(mm, charged))
2509 			return -ENOMEM;
2510 		vm_flags |= VM_ACCOUNT;
2511 	}
2512 
2513 	next = vma_next(&vmi);
2514 	prev = vma_prev(&vmi);
2515 	if (vm_flags & VM_SPECIAL)
2516 		goto cannot_expand;
2517 
2518 	/* Attempt to expand an old mapping */
2519 	/* Check next */
2520 	if (next && next->vm_start == end && !vma_policy(next) &&
2521 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2522 				 NULL_VM_UFFD_CTX, NULL)) {
2523 		merge_end = next->vm_end;
2524 		vma = next;
2525 		vm_pgoff = next->vm_pgoff - pglen;
2526 	}
2527 
2528 	/* Check prev */
2529 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2530 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2531 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2532 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2533 				       NULL_VM_UFFD_CTX, NULL))) {
2534 		merge_start = prev->vm_start;
2535 		vma = prev;
2536 		vm_pgoff = prev->vm_pgoff;
2537 	}
2538 
2539 
2540 	/* Actually expand, if possible */
2541 	if (vma &&
2542 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2543 		khugepaged_enter_vma(vma, vm_flags);
2544 		goto expanded;
2545 	}
2546 
2547 cannot_expand:
2548 	/*
2549 	 * Determine the object being mapped and call the appropriate
2550 	 * specific mapper. the address has already been validated, but
2551 	 * not unmapped, but the maps are removed from the list.
2552 	 */
2553 	vma = vm_area_alloc(mm);
2554 	if (!vma) {
2555 		error = -ENOMEM;
2556 		goto unacct_error;
2557 	}
2558 
2559 	vma_iter_set(&vmi, addr);
2560 	vma->vm_start = addr;
2561 	vma->vm_end = end;
2562 	vm_flags_init(vma, vm_flags);
2563 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2564 	vma->vm_pgoff = pgoff;
2565 
2566 	if (file) {
2567 		if (vm_flags & VM_SHARED) {
2568 			error = mapping_map_writable(file->f_mapping);
2569 			if (error)
2570 				goto free_vma;
2571 		}
2572 
2573 		vma->vm_file = get_file(file);
2574 		error = call_mmap(file, vma);
2575 		if (error)
2576 			goto unmap_and_free_vma;
2577 
2578 		/*
2579 		 * Expansion is handled above, merging is handled below.
2580 		 * Drivers should not alter the address of the VMA.
2581 		 */
2582 		error = -EINVAL;
2583 		if (WARN_ON((addr != vma->vm_start)))
2584 			goto close_and_free_vma;
2585 
2586 		vma_iter_set(&vmi, addr);
2587 		/*
2588 		 * If vm_flags changed after call_mmap(), we should try merge
2589 		 * vma again as we may succeed this time.
2590 		 */
2591 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2592 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2593 				    vma->vm_end, vma->vm_flags, NULL,
2594 				    vma->vm_file, vma->vm_pgoff, NULL,
2595 				    NULL_VM_UFFD_CTX, NULL);
2596 			if (merge) {
2597 				/*
2598 				 * ->mmap() can change vma->vm_file and fput
2599 				 * the original file. So fput the vma->vm_file
2600 				 * here or we would add an extra fput for file
2601 				 * and cause general protection fault
2602 				 * ultimately.
2603 				 */
2604 				fput(vma->vm_file);
2605 				vm_area_free(vma);
2606 				vma = merge;
2607 				/* Update vm_flags to pick up the change. */
2608 				vm_flags = vma->vm_flags;
2609 				goto unmap_writable;
2610 			}
2611 		}
2612 
2613 		vm_flags = vma->vm_flags;
2614 	} else if (vm_flags & VM_SHARED) {
2615 		error = shmem_zero_setup(vma);
2616 		if (error)
2617 			goto free_vma;
2618 	} else {
2619 		vma_set_anonymous(vma);
2620 	}
2621 
2622 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2623 		error = -EACCES;
2624 		if (file)
2625 			goto close_and_free_vma;
2626 		else if (vma->vm_file)
2627 			goto unmap_and_free_vma;
2628 		else
2629 			goto free_vma;
2630 	}
2631 
2632 	/* Allow architectures to sanity-check the vm_flags */
2633 	error = -EINVAL;
2634 	if (!arch_validate_flags(vma->vm_flags))
2635 		goto close_and_free_vma;
2636 
2637 	error = -ENOMEM;
2638 	if (vma_iter_prealloc(&vmi))
2639 		goto close_and_free_vma;
2640 
2641 	if (vma->vm_file)
2642 		i_mmap_lock_write(vma->vm_file->f_mapping);
2643 
2644 	vma_iter_store(&vmi, vma);
2645 	mm->map_count++;
2646 	if (vma->vm_file) {
2647 		if (vma->vm_flags & VM_SHARED)
2648 			mapping_allow_writable(vma->vm_file->f_mapping);
2649 
2650 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2651 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2652 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2653 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2654 	}
2655 
2656 	/*
2657 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2658 	 * call covers the non-merge case.
2659 	 */
2660 	khugepaged_enter_vma(vma, vma->vm_flags);
2661 
2662 	/* Once vma denies write, undo our temporary denial count */
2663 unmap_writable:
2664 	if (file && vm_flags & VM_SHARED)
2665 		mapping_unmap_writable(file->f_mapping);
2666 	file = vma->vm_file;
2667 expanded:
2668 	perf_event_mmap(vma);
2669 
2670 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2671 	if (vm_flags & VM_LOCKED) {
2672 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2673 					is_vm_hugetlb_page(vma) ||
2674 					vma == get_gate_vma(current->mm))
2675 			vm_flags_clear(vma, VM_LOCKED_MASK);
2676 		else
2677 			mm->locked_vm += (len >> PAGE_SHIFT);
2678 	}
2679 
2680 	if (file)
2681 		uprobe_mmap(vma);
2682 
2683 	/*
2684 	 * New (or expanded) vma always get soft dirty status.
2685 	 * Otherwise user-space soft-dirty page tracker won't
2686 	 * be able to distinguish situation when vma area unmapped,
2687 	 * then new mapped in-place (which must be aimed as
2688 	 * a completely new data area).
2689 	 */
2690 	vm_flags_set(vma, VM_SOFTDIRTY);
2691 
2692 	vma_set_page_prot(vma);
2693 
2694 	validate_mm(mm);
2695 	return addr;
2696 
2697 close_and_free_vma:
2698 	if (file && vma->vm_ops && vma->vm_ops->close)
2699 		vma->vm_ops->close(vma);
2700 
2701 	if (file || vma->vm_file) {
2702 unmap_and_free_vma:
2703 		fput(vma->vm_file);
2704 		vma->vm_file = NULL;
2705 
2706 		/* Undo any partial mapping done by a device driver. */
2707 		unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2708 			     vma->vm_end, true);
2709 	}
2710 	if (file && (vm_flags & VM_SHARED))
2711 		mapping_unmap_writable(file->f_mapping);
2712 free_vma:
2713 	vm_area_free(vma);
2714 unacct_error:
2715 	if (charged)
2716 		vm_unacct_memory(charged);
2717 	validate_mm(mm);
2718 	return error;
2719 }
2720 
2721 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2722 {
2723 	int ret;
2724 	struct mm_struct *mm = current->mm;
2725 	LIST_HEAD(uf);
2726 	VMA_ITERATOR(vmi, mm, start);
2727 
2728 	if (mmap_write_lock_killable(mm))
2729 		return -EINTR;
2730 
2731 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2732 	/*
2733 	 * Returning 1 indicates mmap_lock is downgraded.
2734 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2735 	 * it to 0 before return.
2736 	 */
2737 	if (ret == 1) {
2738 		mmap_read_unlock(mm);
2739 		ret = 0;
2740 	} else
2741 		mmap_write_unlock(mm);
2742 
2743 	userfaultfd_unmap_complete(mm, &uf);
2744 	return ret;
2745 }
2746 
2747 int vm_munmap(unsigned long start, size_t len)
2748 {
2749 	return __vm_munmap(start, len, false);
2750 }
2751 EXPORT_SYMBOL(vm_munmap);
2752 
2753 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2754 {
2755 	addr = untagged_addr(addr);
2756 	return __vm_munmap(addr, len, true);
2757 }
2758 
2759 
2760 /*
2761  * Emulation of deprecated remap_file_pages() syscall.
2762  */
2763 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2764 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2765 {
2766 
2767 	struct mm_struct *mm = current->mm;
2768 	struct vm_area_struct *vma;
2769 	unsigned long populate = 0;
2770 	unsigned long ret = -EINVAL;
2771 	struct file *file;
2772 
2773 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2774 		     current->comm, current->pid);
2775 
2776 	if (prot)
2777 		return ret;
2778 	start = start & PAGE_MASK;
2779 	size = size & PAGE_MASK;
2780 
2781 	if (start + size <= start)
2782 		return ret;
2783 
2784 	/* Does pgoff wrap? */
2785 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2786 		return ret;
2787 
2788 	if (mmap_write_lock_killable(mm))
2789 		return -EINTR;
2790 
2791 	vma = vma_lookup(mm, start);
2792 
2793 	if (!vma || !(vma->vm_flags & VM_SHARED))
2794 		goto out;
2795 
2796 	if (start + size > vma->vm_end) {
2797 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2798 		struct vm_area_struct *next, *prev = vma;
2799 
2800 		for_each_vma_range(vmi, next, start + size) {
2801 			/* hole between vmas ? */
2802 			if (next->vm_start != prev->vm_end)
2803 				goto out;
2804 
2805 			if (next->vm_file != vma->vm_file)
2806 				goto out;
2807 
2808 			if (next->vm_flags != vma->vm_flags)
2809 				goto out;
2810 
2811 			if (start + size <= next->vm_end)
2812 				break;
2813 
2814 			prev = next;
2815 		}
2816 
2817 		if (!next)
2818 			goto out;
2819 	}
2820 
2821 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2822 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2823 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2824 
2825 	flags &= MAP_NONBLOCK;
2826 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2827 	if (vma->vm_flags & VM_LOCKED)
2828 		flags |= MAP_LOCKED;
2829 
2830 	file = get_file(vma->vm_file);
2831 	ret = do_mmap(vma->vm_file, start, size,
2832 			prot, flags, pgoff, &populate, NULL);
2833 	fput(file);
2834 out:
2835 	mmap_write_unlock(mm);
2836 	if (populate)
2837 		mm_populate(ret, populate);
2838 	if (!IS_ERR_VALUE(ret))
2839 		ret = 0;
2840 	return ret;
2841 }
2842 
2843 /*
2844  * do_vma_munmap() - Unmap a full or partial vma.
2845  * @vmi: The vma iterator pointing at the vma
2846  * @vma: The first vma to be munmapped
2847  * @start: the start of the address to unmap
2848  * @end: The end of the address to unmap
2849  * @uf: The userfaultfd list_head
2850  * @downgrade: Attempt to downgrade or not
2851  *
2852  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2853  * unmaps a VMA mapping when the vma iterator is already in position.
2854  * Does not handle alignment.
2855  */
2856 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2857 		  unsigned long start, unsigned long end,
2858 		  struct list_head *uf, bool downgrade)
2859 {
2860 	struct mm_struct *mm = vma->vm_mm;
2861 	int ret;
2862 
2863 	arch_unmap(mm, start, end);
2864 	ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2865 	validate_mm_mt(mm);
2866 	return ret;
2867 }
2868 
2869 /*
2870  * do_brk_flags() - Increase the brk vma if the flags match.
2871  * @vmi: The vma iterator
2872  * @addr: The start address
2873  * @len: The length of the increase
2874  * @vma: The vma,
2875  * @flags: The VMA Flags
2876  *
2877  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2878  * do not match then create a new anonymous VMA.  Eventually we may be able to
2879  * do some brk-specific accounting here.
2880  */
2881 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2882 		unsigned long addr, unsigned long len, unsigned long flags)
2883 {
2884 	struct mm_struct *mm = current->mm;
2885 	struct vma_prepare vp;
2886 
2887 	validate_mm_mt(mm);
2888 	/*
2889 	 * Check against address space limits by the changed size
2890 	 * Note: This happens *after* clearing old mappings in some code paths.
2891 	 */
2892 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2893 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2894 		return -ENOMEM;
2895 
2896 	if (mm->map_count > sysctl_max_map_count)
2897 		return -ENOMEM;
2898 
2899 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2900 		return -ENOMEM;
2901 
2902 	/*
2903 	 * Expand the existing vma if possible; Note that singular lists do not
2904 	 * occur after forking, so the expand will only happen on new VMAs.
2905 	 */
2906 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2907 	    can_vma_merge_after(vma, flags, NULL, NULL,
2908 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2909 		if (vma_iter_prealloc(vmi))
2910 			goto unacct_fail;
2911 
2912 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2913 		init_vma_prep(&vp, vma);
2914 		vma_prepare(&vp);
2915 		vma->vm_end = addr + len;
2916 		vm_flags_set(vma, VM_SOFTDIRTY);
2917 		vma_iter_store(vmi, vma);
2918 
2919 		vma_complete(&vp, vmi, mm);
2920 		khugepaged_enter_vma(vma, flags);
2921 		goto out;
2922 	}
2923 
2924 	/* create a vma struct for an anonymous mapping */
2925 	vma = vm_area_alloc(mm);
2926 	if (!vma)
2927 		goto unacct_fail;
2928 
2929 	vma_set_anonymous(vma);
2930 	vma->vm_start = addr;
2931 	vma->vm_end = addr + len;
2932 	vma->vm_pgoff = addr >> PAGE_SHIFT;
2933 	vm_flags_init(vma, flags);
2934 	vma->vm_page_prot = vm_get_page_prot(flags);
2935 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2936 		goto mas_store_fail;
2937 
2938 	mm->map_count++;
2939 out:
2940 	perf_event_mmap(vma);
2941 	mm->total_vm += len >> PAGE_SHIFT;
2942 	mm->data_vm += len >> PAGE_SHIFT;
2943 	if (flags & VM_LOCKED)
2944 		mm->locked_vm += (len >> PAGE_SHIFT);
2945 	vm_flags_set(vma, VM_SOFTDIRTY);
2946 	validate_mm(mm);
2947 	return 0;
2948 
2949 mas_store_fail:
2950 	vm_area_free(vma);
2951 unacct_fail:
2952 	vm_unacct_memory(len >> PAGE_SHIFT);
2953 	return -ENOMEM;
2954 }
2955 
2956 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2957 {
2958 	struct mm_struct *mm = current->mm;
2959 	struct vm_area_struct *vma = NULL;
2960 	unsigned long len;
2961 	int ret;
2962 	bool populate;
2963 	LIST_HEAD(uf);
2964 	VMA_ITERATOR(vmi, mm, addr);
2965 
2966 	len = PAGE_ALIGN(request);
2967 	if (len < request)
2968 		return -ENOMEM;
2969 	if (!len)
2970 		return 0;
2971 
2972 	if (mmap_write_lock_killable(mm))
2973 		return -EINTR;
2974 
2975 	/* Until we need other flags, refuse anything except VM_EXEC. */
2976 	if ((flags & (~VM_EXEC)) != 0)
2977 		return -EINVAL;
2978 
2979 	ret = check_brk_limits(addr, len);
2980 	if (ret)
2981 		goto limits_failed;
2982 
2983 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
2984 	if (ret)
2985 		goto munmap_failed;
2986 
2987 	vma = vma_prev(&vmi);
2988 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
2989 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2990 	mmap_write_unlock(mm);
2991 	userfaultfd_unmap_complete(mm, &uf);
2992 	if (populate && !ret)
2993 		mm_populate(addr, len);
2994 	return ret;
2995 
2996 munmap_failed:
2997 limits_failed:
2998 	mmap_write_unlock(mm);
2999 	return ret;
3000 }
3001 EXPORT_SYMBOL(vm_brk_flags);
3002 
3003 int vm_brk(unsigned long addr, unsigned long len)
3004 {
3005 	return vm_brk_flags(addr, len, 0);
3006 }
3007 EXPORT_SYMBOL(vm_brk);
3008 
3009 /* Release all mmaps. */
3010 void exit_mmap(struct mm_struct *mm)
3011 {
3012 	struct mmu_gather tlb;
3013 	struct vm_area_struct *vma;
3014 	unsigned long nr_accounted = 0;
3015 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3016 	int count = 0;
3017 
3018 	/* mm's last user has gone, and its about to be pulled down */
3019 	mmu_notifier_release(mm);
3020 
3021 	mmap_read_lock(mm);
3022 	arch_exit_mmap(mm);
3023 
3024 	vma = mas_find(&mas, ULONG_MAX);
3025 	if (!vma) {
3026 		/* Can happen if dup_mmap() received an OOM */
3027 		mmap_read_unlock(mm);
3028 		return;
3029 	}
3030 
3031 	lru_add_drain();
3032 	flush_cache_mm(mm);
3033 	tlb_gather_mmu_fullmm(&tlb, mm);
3034 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3035 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3036 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3037 	mmap_read_unlock(mm);
3038 
3039 	/*
3040 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3041 	 * because the memory has been already freed.
3042 	 */
3043 	set_bit(MMF_OOM_SKIP, &mm->flags);
3044 	mmap_write_lock(mm);
3045 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3046 		      USER_PGTABLES_CEILING);
3047 	tlb_finish_mmu(&tlb);
3048 
3049 	/*
3050 	 * Walk the list again, actually closing and freeing it, with preemption
3051 	 * enabled, without holding any MM locks besides the unreachable
3052 	 * mmap_write_lock.
3053 	 */
3054 	do {
3055 		if (vma->vm_flags & VM_ACCOUNT)
3056 			nr_accounted += vma_pages(vma);
3057 		remove_vma(vma);
3058 		count++;
3059 		cond_resched();
3060 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3061 
3062 	BUG_ON(count != mm->map_count);
3063 
3064 	trace_exit_mmap(mm);
3065 	__mt_destroy(&mm->mm_mt);
3066 	mmap_write_unlock(mm);
3067 	vm_unacct_memory(nr_accounted);
3068 }
3069 
3070 /* Insert vm structure into process list sorted by address
3071  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3072  * then i_mmap_rwsem is taken here.
3073  */
3074 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3075 {
3076 	unsigned long charged = vma_pages(vma);
3077 
3078 
3079 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3080 		return -ENOMEM;
3081 
3082 	if ((vma->vm_flags & VM_ACCOUNT) &&
3083 	     security_vm_enough_memory_mm(mm, charged))
3084 		return -ENOMEM;
3085 
3086 	/*
3087 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3088 	 * until its first write fault, when page's anon_vma and index
3089 	 * are set.  But now set the vm_pgoff it will almost certainly
3090 	 * end up with (unless mremap moves it elsewhere before that
3091 	 * first wfault), so /proc/pid/maps tells a consistent story.
3092 	 *
3093 	 * By setting it to reflect the virtual start address of the
3094 	 * vma, merges and splits can happen in a seamless way, just
3095 	 * using the existing file pgoff checks and manipulations.
3096 	 * Similarly in do_mmap and in do_brk_flags.
3097 	 */
3098 	if (vma_is_anonymous(vma)) {
3099 		BUG_ON(vma->anon_vma);
3100 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3101 	}
3102 
3103 	if (vma_link(mm, vma)) {
3104 		vm_unacct_memory(charged);
3105 		return -ENOMEM;
3106 	}
3107 
3108 	return 0;
3109 }
3110 
3111 /*
3112  * Copy the vma structure to a new location in the same mm,
3113  * prior to moving page table entries, to effect an mremap move.
3114  */
3115 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3116 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3117 	bool *need_rmap_locks)
3118 {
3119 	struct vm_area_struct *vma = *vmap;
3120 	unsigned long vma_start = vma->vm_start;
3121 	struct mm_struct *mm = vma->vm_mm;
3122 	struct vm_area_struct *new_vma, *prev;
3123 	bool faulted_in_anon_vma = true;
3124 	VMA_ITERATOR(vmi, mm, addr);
3125 
3126 	validate_mm_mt(mm);
3127 	/*
3128 	 * If anonymous vma has not yet been faulted, update new pgoff
3129 	 * to match new location, to increase its chance of merging.
3130 	 */
3131 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3132 		pgoff = addr >> PAGE_SHIFT;
3133 		faulted_in_anon_vma = false;
3134 	}
3135 
3136 	new_vma = find_vma_prev(mm, addr, &prev);
3137 	if (new_vma && new_vma->vm_start < addr + len)
3138 		return NULL;	/* should never get here */
3139 
3140 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3141 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3142 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3143 	if (new_vma) {
3144 		/*
3145 		 * Source vma may have been merged into new_vma
3146 		 */
3147 		if (unlikely(vma_start >= new_vma->vm_start &&
3148 			     vma_start < new_vma->vm_end)) {
3149 			/*
3150 			 * The only way we can get a vma_merge with
3151 			 * self during an mremap is if the vma hasn't
3152 			 * been faulted in yet and we were allowed to
3153 			 * reset the dst vma->vm_pgoff to the
3154 			 * destination address of the mremap to allow
3155 			 * the merge to happen. mremap must change the
3156 			 * vm_pgoff linearity between src and dst vmas
3157 			 * (in turn preventing a vma_merge) to be
3158 			 * safe. It is only safe to keep the vm_pgoff
3159 			 * linear if there are no pages mapped yet.
3160 			 */
3161 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3162 			*vmap = vma = new_vma;
3163 		}
3164 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3165 	} else {
3166 		new_vma = vm_area_dup(vma);
3167 		if (!new_vma)
3168 			goto out;
3169 		new_vma->vm_start = addr;
3170 		new_vma->vm_end = addr + len;
3171 		new_vma->vm_pgoff = pgoff;
3172 		if (vma_dup_policy(vma, new_vma))
3173 			goto out_free_vma;
3174 		if (anon_vma_clone(new_vma, vma))
3175 			goto out_free_mempol;
3176 		if (new_vma->vm_file)
3177 			get_file(new_vma->vm_file);
3178 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3179 			new_vma->vm_ops->open(new_vma);
3180 		if (vma_link(mm, new_vma))
3181 			goto out_vma_link;
3182 		*need_rmap_locks = false;
3183 	}
3184 	validate_mm_mt(mm);
3185 	return new_vma;
3186 
3187 out_vma_link:
3188 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3189 		new_vma->vm_ops->close(new_vma);
3190 
3191 	if (new_vma->vm_file)
3192 		fput(new_vma->vm_file);
3193 
3194 	unlink_anon_vmas(new_vma);
3195 out_free_mempol:
3196 	mpol_put(vma_policy(new_vma));
3197 out_free_vma:
3198 	vm_area_free(new_vma);
3199 out:
3200 	validate_mm_mt(mm);
3201 	return NULL;
3202 }
3203 
3204 /*
3205  * Return true if the calling process may expand its vm space by the passed
3206  * number of pages
3207  */
3208 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3209 {
3210 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3211 		return false;
3212 
3213 	if (is_data_mapping(flags) &&
3214 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3215 		/* Workaround for Valgrind */
3216 		if (rlimit(RLIMIT_DATA) == 0 &&
3217 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3218 			return true;
3219 
3220 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3221 			     current->comm, current->pid,
3222 			     (mm->data_vm + npages) << PAGE_SHIFT,
3223 			     rlimit(RLIMIT_DATA),
3224 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3225 
3226 		if (!ignore_rlimit_data)
3227 			return false;
3228 	}
3229 
3230 	return true;
3231 }
3232 
3233 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3234 {
3235 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3236 
3237 	if (is_exec_mapping(flags))
3238 		mm->exec_vm += npages;
3239 	else if (is_stack_mapping(flags))
3240 		mm->stack_vm += npages;
3241 	else if (is_data_mapping(flags))
3242 		mm->data_vm += npages;
3243 }
3244 
3245 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3246 
3247 /*
3248  * Having a close hook prevents vma merging regardless of flags.
3249  */
3250 static void special_mapping_close(struct vm_area_struct *vma)
3251 {
3252 }
3253 
3254 static const char *special_mapping_name(struct vm_area_struct *vma)
3255 {
3256 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3257 }
3258 
3259 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3260 {
3261 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3262 
3263 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3264 		return -EFAULT;
3265 
3266 	if (sm->mremap)
3267 		return sm->mremap(sm, new_vma);
3268 
3269 	return 0;
3270 }
3271 
3272 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3273 {
3274 	/*
3275 	 * Forbid splitting special mappings - kernel has expectations over
3276 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3277 	 * the size of vma should stay the same over the special mapping's
3278 	 * lifetime.
3279 	 */
3280 	return -EINVAL;
3281 }
3282 
3283 static const struct vm_operations_struct special_mapping_vmops = {
3284 	.close = special_mapping_close,
3285 	.fault = special_mapping_fault,
3286 	.mremap = special_mapping_mremap,
3287 	.name = special_mapping_name,
3288 	/* vDSO code relies that VVAR can't be accessed remotely */
3289 	.access = NULL,
3290 	.may_split = special_mapping_split,
3291 };
3292 
3293 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3294 	.close = special_mapping_close,
3295 	.fault = special_mapping_fault,
3296 };
3297 
3298 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3299 {
3300 	struct vm_area_struct *vma = vmf->vma;
3301 	pgoff_t pgoff;
3302 	struct page **pages;
3303 
3304 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3305 		pages = vma->vm_private_data;
3306 	} else {
3307 		struct vm_special_mapping *sm = vma->vm_private_data;
3308 
3309 		if (sm->fault)
3310 			return sm->fault(sm, vmf->vma, vmf);
3311 
3312 		pages = sm->pages;
3313 	}
3314 
3315 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3316 		pgoff--;
3317 
3318 	if (*pages) {
3319 		struct page *page = *pages;
3320 		get_page(page);
3321 		vmf->page = page;
3322 		return 0;
3323 	}
3324 
3325 	return VM_FAULT_SIGBUS;
3326 }
3327 
3328 static struct vm_area_struct *__install_special_mapping(
3329 	struct mm_struct *mm,
3330 	unsigned long addr, unsigned long len,
3331 	unsigned long vm_flags, void *priv,
3332 	const struct vm_operations_struct *ops)
3333 {
3334 	int ret;
3335 	struct vm_area_struct *vma;
3336 
3337 	validate_mm_mt(mm);
3338 	vma = vm_area_alloc(mm);
3339 	if (unlikely(vma == NULL))
3340 		return ERR_PTR(-ENOMEM);
3341 
3342 	vma->vm_start = addr;
3343 	vma->vm_end = addr + len;
3344 
3345 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3346 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3347 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3348 
3349 	vma->vm_ops = ops;
3350 	vma->vm_private_data = priv;
3351 
3352 	ret = insert_vm_struct(mm, vma);
3353 	if (ret)
3354 		goto out;
3355 
3356 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3357 
3358 	perf_event_mmap(vma);
3359 
3360 	validate_mm_mt(mm);
3361 	return vma;
3362 
3363 out:
3364 	vm_area_free(vma);
3365 	validate_mm_mt(mm);
3366 	return ERR_PTR(ret);
3367 }
3368 
3369 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3370 	const struct vm_special_mapping *sm)
3371 {
3372 	return vma->vm_private_data == sm &&
3373 		(vma->vm_ops == &special_mapping_vmops ||
3374 		 vma->vm_ops == &legacy_special_mapping_vmops);
3375 }
3376 
3377 /*
3378  * Called with mm->mmap_lock held for writing.
3379  * Insert a new vma covering the given region, with the given flags.
3380  * Its pages are supplied by the given array of struct page *.
3381  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3382  * The region past the last page supplied will always produce SIGBUS.
3383  * The array pointer and the pages it points to are assumed to stay alive
3384  * for as long as this mapping might exist.
3385  */
3386 struct vm_area_struct *_install_special_mapping(
3387 	struct mm_struct *mm,
3388 	unsigned long addr, unsigned long len,
3389 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3390 {
3391 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3392 					&special_mapping_vmops);
3393 }
3394 
3395 int install_special_mapping(struct mm_struct *mm,
3396 			    unsigned long addr, unsigned long len,
3397 			    unsigned long vm_flags, struct page **pages)
3398 {
3399 	struct vm_area_struct *vma = __install_special_mapping(
3400 		mm, addr, len, vm_flags, (void *)pages,
3401 		&legacy_special_mapping_vmops);
3402 
3403 	return PTR_ERR_OR_ZERO(vma);
3404 }
3405 
3406 static DEFINE_MUTEX(mm_all_locks_mutex);
3407 
3408 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3409 {
3410 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3411 		/*
3412 		 * The LSB of head.next can't change from under us
3413 		 * because we hold the mm_all_locks_mutex.
3414 		 */
3415 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3416 		/*
3417 		 * We can safely modify head.next after taking the
3418 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3419 		 * the same anon_vma we won't take it again.
3420 		 *
3421 		 * No need of atomic instructions here, head.next
3422 		 * can't change from under us thanks to the
3423 		 * anon_vma->root->rwsem.
3424 		 */
3425 		if (__test_and_set_bit(0, (unsigned long *)
3426 				       &anon_vma->root->rb_root.rb_root.rb_node))
3427 			BUG();
3428 	}
3429 }
3430 
3431 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3432 {
3433 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3434 		/*
3435 		 * AS_MM_ALL_LOCKS can't change from under us because
3436 		 * we hold the mm_all_locks_mutex.
3437 		 *
3438 		 * Operations on ->flags have to be atomic because
3439 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3440 		 * mm_all_locks_mutex, there may be other cpus
3441 		 * changing other bitflags in parallel to us.
3442 		 */
3443 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3444 			BUG();
3445 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3446 	}
3447 }
3448 
3449 /*
3450  * This operation locks against the VM for all pte/vma/mm related
3451  * operations that could ever happen on a certain mm. This includes
3452  * vmtruncate, try_to_unmap, and all page faults.
3453  *
3454  * The caller must take the mmap_lock in write mode before calling
3455  * mm_take_all_locks(). The caller isn't allowed to release the
3456  * mmap_lock until mm_drop_all_locks() returns.
3457  *
3458  * mmap_lock in write mode is required in order to block all operations
3459  * that could modify pagetables and free pages without need of
3460  * altering the vma layout. It's also needed in write mode to avoid new
3461  * anon_vmas to be associated with existing vmas.
3462  *
3463  * A single task can't take more than one mm_take_all_locks() in a row
3464  * or it would deadlock.
3465  *
3466  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3467  * mapping->flags avoid to take the same lock twice, if more than one
3468  * vma in this mm is backed by the same anon_vma or address_space.
3469  *
3470  * We take locks in following order, accordingly to comment at beginning
3471  * of mm/rmap.c:
3472  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3473  *     hugetlb mapping);
3474  *   - all i_mmap_rwsem locks;
3475  *   - all anon_vma->rwseml
3476  *
3477  * We can take all locks within these types randomly because the VM code
3478  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3479  * mm_all_locks_mutex.
3480  *
3481  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3482  * that may have to take thousand of locks.
3483  *
3484  * mm_take_all_locks() can fail if it's interrupted by signals.
3485  */
3486 int mm_take_all_locks(struct mm_struct *mm)
3487 {
3488 	struct vm_area_struct *vma;
3489 	struct anon_vma_chain *avc;
3490 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3491 
3492 	mmap_assert_write_locked(mm);
3493 
3494 	mutex_lock(&mm_all_locks_mutex);
3495 
3496 	mas_for_each(&mas, vma, ULONG_MAX) {
3497 		if (signal_pending(current))
3498 			goto out_unlock;
3499 		if (vma->vm_file && vma->vm_file->f_mapping &&
3500 				is_vm_hugetlb_page(vma))
3501 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3502 	}
3503 
3504 	mas_set(&mas, 0);
3505 	mas_for_each(&mas, vma, ULONG_MAX) {
3506 		if (signal_pending(current))
3507 			goto out_unlock;
3508 		if (vma->vm_file && vma->vm_file->f_mapping &&
3509 				!is_vm_hugetlb_page(vma))
3510 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3511 	}
3512 
3513 	mas_set(&mas, 0);
3514 	mas_for_each(&mas, vma, ULONG_MAX) {
3515 		if (signal_pending(current))
3516 			goto out_unlock;
3517 		if (vma->anon_vma)
3518 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3519 				vm_lock_anon_vma(mm, avc->anon_vma);
3520 	}
3521 
3522 	return 0;
3523 
3524 out_unlock:
3525 	mm_drop_all_locks(mm);
3526 	return -EINTR;
3527 }
3528 
3529 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3530 {
3531 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3532 		/*
3533 		 * The LSB of head.next can't change to 0 from under
3534 		 * us because we hold the mm_all_locks_mutex.
3535 		 *
3536 		 * We must however clear the bitflag before unlocking
3537 		 * the vma so the users using the anon_vma->rb_root will
3538 		 * never see our bitflag.
3539 		 *
3540 		 * No need of atomic instructions here, head.next
3541 		 * can't change from under us until we release the
3542 		 * anon_vma->root->rwsem.
3543 		 */
3544 		if (!__test_and_clear_bit(0, (unsigned long *)
3545 					  &anon_vma->root->rb_root.rb_root.rb_node))
3546 			BUG();
3547 		anon_vma_unlock_write(anon_vma);
3548 	}
3549 }
3550 
3551 static void vm_unlock_mapping(struct address_space *mapping)
3552 {
3553 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3554 		/*
3555 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3556 		 * because we hold the mm_all_locks_mutex.
3557 		 */
3558 		i_mmap_unlock_write(mapping);
3559 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3560 					&mapping->flags))
3561 			BUG();
3562 	}
3563 }
3564 
3565 /*
3566  * The mmap_lock cannot be released by the caller until
3567  * mm_drop_all_locks() returns.
3568  */
3569 void mm_drop_all_locks(struct mm_struct *mm)
3570 {
3571 	struct vm_area_struct *vma;
3572 	struct anon_vma_chain *avc;
3573 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3574 
3575 	mmap_assert_write_locked(mm);
3576 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3577 
3578 	mas_for_each(&mas, vma, ULONG_MAX) {
3579 		if (vma->anon_vma)
3580 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581 				vm_unlock_anon_vma(avc->anon_vma);
3582 		if (vma->vm_file && vma->vm_file->f_mapping)
3583 			vm_unlock_mapping(vma->vm_file->f_mapping);
3584 	}
3585 
3586 	mutex_unlock(&mm_all_locks_mutex);
3587 }
3588 
3589 /*
3590  * initialise the percpu counter for VM
3591  */
3592 void __init mmap_init(void)
3593 {
3594 	int ret;
3595 
3596 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3597 	VM_BUG_ON(ret);
3598 }
3599 
3600 /*
3601  * Initialise sysctl_user_reserve_kbytes.
3602  *
3603  * This is intended to prevent a user from starting a single memory hogging
3604  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3605  * mode.
3606  *
3607  * The default value is min(3% of free memory, 128MB)
3608  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3609  */
3610 static int init_user_reserve(void)
3611 {
3612 	unsigned long free_kbytes;
3613 
3614 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3615 
3616 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3617 	return 0;
3618 }
3619 subsys_initcall(init_user_reserve);
3620 
3621 /*
3622  * Initialise sysctl_admin_reserve_kbytes.
3623  *
3624  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3625  * to log in and kill a memory hogging process.
3626  *
3627  * Systems with more than 256MB will reserve 8MB, enough to recover
3628  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3629  * only reserve 3% of free pages by default.
3630  */
3631 static int init_admin_reserve(void)
3632 {
3633 	unsigned long free_kbytes;
3634 
3635 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3636 
3637 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3638 	return 0;
3639 }
3640 subsys_initcall(init_admin_reserve);
3641 
3642 /*
3643  * Reinititalise user and admin reserves if memory is added or removed.
3644  *
3645  * The default user reserve max is 128MB, and the default max for the
3646  * admin reserve is 8MB. These are usually, but not always, enough to
3647  * enable recovery from a memory hogging process using login/sshd, a shell,
3648  * and tools like top. It may make sense to increase or even disable the
3649  * reserve depending on the existence of swap or variations in the recovery
3650  * tools. So, the admin may have changed them.
3651  *
3652  * If memory is added and the reserves have been eliminated or increased above
3653  * the default max, then we'll trust the admin.
3654  *
3655  * If memory is removed and there isn't enough free memory, then we
3656  * need to reset the reserves.
3657  *
3658  * Otherwise keep the reserve set by the admin.
3659  */
3660 static int reserve_mem_notifier(struct notifier_block *nb,
3661 			     unsigned long action, void *data)
3662 {
3663 	unsigned long tmp, free_kbytes;
3664 
3665 	switch (action) {
3666 	case MEM_ONLINE:
3667 		/* Default max is 128MB. Leave alone if modified by operator. */
3668 		tmp = sysctl_user_reserve_kbytes;
3669 		if (0 < tmp && tmp < (1UL << 17))
3670 			init_user_reserve();
3671 
3672 		/* Default max is 8MB.  Leave alone if modified by operator. */
3673 		tmp = sysctl_admin_reserve_kbytes;
3674 		if (0 < tmp && tmp < (1UL << 13))
3675 			init_admin_reserve();
3676 
3677 		break;
3678 	case MEM_OFFLINE:
3679 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680 
3681 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3682 			init_user_reserve();
3683 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3684 				sysctl_user_reserve_kbytes);
3685 		}
3686 
3687 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3688 			init_admin_reserve();
3689 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3690 				sysctl_admin_reserve_kbytes);
3691 		}
3692 		break;
3693 	default:
3694 		break;
3695 	}
3696 	return NOTIFY_OK;
3697 }
3698 
3699 static int __meminit init_reserve_notifier(void)
3700 {
3701 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3702 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3703 
3704 	return 0;
3705 }
3706 subsys_initcall(init_reserve_notifier);
3707