xref: /linux/mm/mmap.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32 #include <asm/mmu_context.h>
33 
34 #ifndef arch_mmap_check
35 #define arch_mmap_check(addr, len, flags)	(0)
36 #endif
37 
38 static void unmap_region(struct mm_struct *mm,
39 		struct vm_area_struct *vma, struct vm_area_struct *prev,
40 		unsigned long start, unsigned long end);
41 
42 /*
43  * WARNING: the debugging will use recursive algorithms so never enable this
44  * unless you know what you are doing.
45  */
46 #undef DEBUG_MM_RB
47 
48 /* description of effects of mapping type and prot in current implementation.
49  * this is due to the limited x86 page protection hardware.  The expected
50  * behavior is in parens:
51  *
52  * map_type	prot
53  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
54  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
55  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
56  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
57  *
58  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
59  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
60  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
61  *
62  */
63 pgprot_t protection_map[16] = {
64 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
65 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
66 };
67 
68 pgprot_t vm_get_page_prot(unsigned long vm_flags)
69 {
70 	return protection_map[vm_flags &
71 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
72 }
73 EXPORT_SYMBOL(vm_get_page_prot);
74 
75 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
76 int sysctl_overcommit_ratio = 50;	/* default is 50% */
77 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
78 atomic_t vm_committed_space = ATOMIC_INIT(0);
79 
80 /*
81  * Check that a process has enough memory to allocate a new virtual
82  * mapping. 0 means there is enough memory for the allocation to
83  * succeed and -ENOMEM implies there is not.
84  *
85  * We currently support three overcommit policies, which are set via the
86  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
87  *
88  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
89  * Additional code 2002 Jul 20 by Robert Love.
90  *
91  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
92  *
93  * Note this is a helper function intended to be used by LSMs which
94  * wish to use this logic.
95  */
96 int __vm_enough_memory(long pages, int cap_sys_admin)
97 {
98 	unsigned long free, allowed;
99 
100 	vm_acct_memory(pages);
101 
102 	/*
103 	 * Sometimes we want to use more memory than we have
104 	 */
105 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
106 		return 0;
107 
108 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
109 		unsigned long n;
110 
111 		free = global_page_state(NR_FILE_PAGES);
112 		free += nr_swap_pages;
113 
114 		/*
115 		 * Any slabs which are created with the
116 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
117 		 * which are reclaimable, under pressure.  The dentry
118 		 * cache and most inode caches should fall into this
119 		 */
120 		free += global_page_state(NR_SLAB_RECLAIMABLE);
121 
122 		/*
123 		 * Leave the last 3% for root
124 		 */
125 		if (!cap_sys_admin)
126 			free -= free / 32;
127 
128 		if (free > pages)
129 			return 0;
130 
131 		/*
132 		 * nr_free_pages() is very expensive on large systems,
133 		 * only call if we're about to fail.
134 		 */
135 		n = nr_free_pages();
136 
137 		/*
138 		 * Leave reserved pages. The pages are not for anonymous pages.
139 		 */
140 		if (n <= totalreserve_pages)
141 			goto error;
142 		else
143 			n -= totalreserve_pages;
144 
145 		/*
146 		 * Leave the last 3% for root
147 		 */
148 		if (!cap_sys_admin)
149 			n -= n / 32;
150 		free += n;
151 
152 		if (free > pages)
153 			return 0;
154 
155 		goto error;
156 	}
157 
158 	allowed = (totalram_pages - hugetlb_total_pages())
159 	       	* sysctl_overcommit_ratio / 100;
160 	/*
161 	 * Leave the last 3% for root
162 	 */
163 	if (!cap_sys_admin)
164 		allowed -= allowed / 32;
165 	allowed += total_swap_pages;
166 
167 	/* Don't let a single process grow too big:
168 	   leave 3% of the size of this process for other processes */
169 	allowed -= current->mm->total_vm / 32;
170 
171 	/*
172 	 * cast `allowed' as a signed long because vm_committed_space
173 	 * sometimes has a negative value
174 	 */
175 	if (atomic_read(&vm_committed_space) < (long)allowed)
176 		return 0;
177 error:
178 	vm_unacct_memory(pages);
179 
180 	return -ENOMEM;
181 }
182 
183 EXPORT_SYMBOL(__vm_enough_memory);
184 
185 /*
186  * Requires inode->i_mapping->i_mmap_lock
187  */
188 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
189 		struct file *file, struct address_space *mapping)
190 {
191 	if (vma->vm_flags & VM_DENYWRITE)
192 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
193 	if (vma->vm_flags & VM_SHARED)
194 		mapping->i_mmap_writable--;
195 
196 	flush_dcache_mmap_lock(mapping);
197 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
198 		list_del_init(&vma->shared.vm_set.list);
199 	else
200 		vma_prio_tree_remove(vma, &mapping->i_mmap);
201 	flush_dcache_mmap_unlock(mapping);
202 }
203 
204 /*
205  * Unlink a file-based vm structure from its prio_tree, to hide
206  * vma from rmap and vmtruncate before freeing its page tables.
207  */
208 void unlink_file_vma(struct vm_area_struct *vma)
209 {
210 	struct file *file = vma->vm_file;
211 
212 	if (file) {
213 		struct address_space *mapping = file->f_mapping;
214 		spin_lock(&mapping->i_mmap_lock);
215 		__remove_shared_vm_struct(vma, file, mapping);
216 		spin_unlock(&mapping->i_mmap_lock);
217 	}
218 }
219 
220 /*
221  * Close a vm structure and free it, returning the next.
222  */
223 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
224 {
225 	struct vm_area_struct *next = vma->vm_next;
226 
227 	might_sleep();
228 	if (vma->vm_ops && vma->vm_ops->close)
229 		vma->vm_ops->close(vma);
230 	if (vma->vm_file)
231 		fput(vma->vm_file);
232 	mpol_free(vma_policy(vma));
233 	kmem_cache_free(vm_area_cachep, vma);
234 	return next;
235 }
236 
237 asmlinkage unsigned long sys_brk(unsigned long brk)
238 {
239 	unsigned long rlim, retval;
240 	unsigned long newbrk, oldbrk;
241 	struct mm_struct *mm = current->mm;
242 
243 	down_write(&mm->mmap_sem);
244 
245 	if (brk < mm->end_code)
246 		goto out;
247 
248 	/*
249 	 * Check against rlimit here. If this check is done later after the test
250 	 * of oldbrk with newbrk then it can escape the test and let the data
251 	 * segment grow beyond its set limit the in case where the limit is
252 	 * not page aligned -Ram Gupta
253 	 */
254 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
255 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
256 		goto out;
257 
258 	newbrk = PAGE_ALIGN(brk);
259 	oldbrk = PAGE_ALIGN(mm->brk);
260 	if (oldbrk == newbrk)
261 		goto set_brk;
262 
263 	/* Always allow shrinking brk. */
264 	if (brk <= mm->brk) {
265 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
266 			goto set_brk;
267 		goto out;
268 	}
269 
270 	/* Check against existing mmap mappings. */
271 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
272 		goto out;
273 
274 	/* Ok, looks good - let it rip. */
275 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
276 		goto out;
277 set_brk:
278 	mm->brk = brk;
279 out:
280 	retval = mm->brk;
281 	up_write(&mm->mmap_sem);
282 	return retval;
283 }
284 
285 #ifdef DEBUG_MM_RB
286 static int browse_rb(struct rb_root *root)
287 {
288 	int i = 0, j;
289 	struct rb_node *nd, *pn = NULL;
290 	unsigned long prev = 0, pend = 0;
291 
292 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
293 		struct vm_area_struct *vma;
294 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
295 		if (vma->vm_start < prev)
296 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
297 		if (vma->vm_start < pend)
298 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
299 		if (vma->vm_start > vma->vm_end)
300 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
301 		i++;
302 		pn = nd;
303 		prev = vma->vm_start;
304 		pend = vma->vm_end;
305 	}
306 	j = 0;
307 	for (nd = pn; nd; nd = rb_prev(nd)) {
308 		j++;
309 	}
310 	if (i != j)
311 		printk("backwards %d, forwards %d\n", j, i), i = 0;
312 	return i;
313 }
314 
315 void validate_mm(struct mm_struct *mm)
316 {
317 	int bug = 0;
318 	int i = 0;
319 	struct vm_area_struct *tmp = mm->mmap;
320 	while (tmp) {
321 		tmp = tmp->vm_next;
322 		i++;
323 	}
324 	if (i != mm->map_count)
325 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
326 	i = browse_rb(&mm->mm_rb);
327 	if (i != mm->map_count)
328 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
329 	BUG_ON(bug);
330 }
331 #else
332 #define validate_mm(mm) do { } while (0)
333 #endif
334 
335 static struct vm_area_struct *
336 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
337 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
338 		struct rb_node ** rb_parent)
339 {
340 	struct vm_area_struct * vma;
341 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
342 
343 	__rb_link = &mm->mm_rb.rb_node;
344 	rb_prev = __rb_parent = NULL;
345 	vma = NULL;
346 
347 	while (*__rb_link) {
348 		struct vm_area_struct *vma_tmp;
349 
350 		__rb_parent = *__rb_link;
351 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
352 
353 		if (vma_tmp->vm_end > addr) {
354 			vma = vma_tmp;
355 			if (vma_tmp->vm_start <= addr)
356 				return vma;
357 			__rb_link = &__rb_parent->rb_left;
358 		} else {
359 			rb_prev = __rb_parent;
360 			__rb_link = &__rb_parent->rb_right;
361 		}
362 	}
363 
364 	*pprev = NULL;
365 	if (rb_prev)
366 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
367 	*rb_link = __rb_link;
368 	*rb_parent = __rb_parent;
369 	return vma;
370 }
371 
372 static inline void
373 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
374 		struct vm_area_struct *prev, struct rb_node *rb_parent)
375 {
376 	if (prev) {
377 		vma->vm_next = prev->vm_next;
378 		prev->vm_next = vma;
379 	} else {
380 		mm->mmap = vma;
381 		if (rb_parent)
382 			vma->vm_next = rb_entry(rb_parent,
383 					struct vm_area_struct, vm_rb);
384 		else
385 			vma->vm_next = NULL;
386 	}
387 }
388 
389 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
390 		struct rb_node **rb_link, struct rb_node *rb_parent)
391 {
392 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
393 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
394 }
395 
396 static inline void __vma_link_file(struct vm_area_struct *vma)
397 {
398 	struct file * file;
399 
400 	file = vma->vm_file;
401 	if (file) {
402 		struct address_space *mapping = file->f_mapping;
403 
404 		if (vma->vm_flags & VM_DENYWRITE)
405 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
406 		if (vma->vm_flags & VM_SHARED)
407 			mapping->i_mmap_writable++;
408 
409 		flush_dcache_mmap_lock(mapping);
410 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
411 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
412 		else
413 			vma_prio_tree_insert(vma, &mapping->i_mmap);
414 		flush_dcache_mmap_unlock(mapping);
415 	}
416 }
417 
418 static void
419 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
420 	struct vm_area_struct *prev, struct rb_node **rb_link,
421 	struct rb_node *rb_parent)
422 {
423 	__vma_link_list(mm, vma, prev, rb_parent);
424 	__vma_link_rb(mm, vma, rb_link, rb_parent);
425 	__anon_vma_link(vma);
426 }
427 
428 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
429 			struct vm_area_struct *prev, struct rb_node **rb_link,
430 			struct rb_node *rb_parent)
431 {
432 	struct address_space *mapping = NULL;
433 
434 	if (vma->vm_file)
435 		mapping = vma->vm_file->f_mapping;
436 
437 	if (mapping) {
438 		spin_lock(&mapping->i_mmap_lock);
439 		vma->vm_truncate_count = mapping->truncate_count;
440 	}
441 	anon_vma_lock(vma);
442 
443 	__vma_link(mm, vma, prev, rb_link, rb_parent);
444 	__vma_link_file(vma);
445 
446 	anon_vma_unlock(vma);
447 	if (mapping)
448 		spin_unlock(&mapping->i_mmap_lock);
449 
450 	mm->map_count++;
451 	validate_mm(mm);
452 }
453 
454 /*
455  * Helper for vma_adjust in the split_vma insert case:
456  * insert vm structure into list and rbtree and anon_vma,
457  * but it has already been inserted into prio_tree earlier.
458  */
459 static void
460 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
461 {
462 	struct vm_area_struct * __vma, * prev;
463 	struct rb_node ** rb_link, * rb_parent;
464 
465 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467 	__vma_link(mm, vma, prev, rb_link, rb_parent);
468 	mm->map_count++;
469 }
470 
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473 		struct vm_area_struct *prev)
474 {
475 	prev->vm_next = vma->vm_next;
476 	rb_erase(&vma->vm_rb, &mm->mm_rb);
477 	if (mm->mmap_cache == vma)
478 		mm->mmap_cache = prev;
479 }
480 
481 /*
482  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
483  * is already present in an i_mmap tree without adjusting the tree.
484  * The following helper function should be used when such adjustments
485  * are necessary.  The "insert" vma (if any) is to be inserted
486  * before we drop the necessary locks.
487  */
488 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
489 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
490 {
491 	struct mm_struct *mm = vma->vm_mm;
492 	struct vm_area_struct *next = vma->vm_next;
493 	struct vm_area_struct *importer = NULL;
494 	struct address_space *mapping = NULL;
495 	struct prio_tree_root *root = NULL;
496 	struct file *file = vma->vm_file;
497 	struct anon_vma *anon_vma = NULL;
498 	long adjust_next = 0;
499 	int remove_next = 0;
500 
501 	if (next && !insert) {
502 		if (end >= next->vm_end) {
503 			/*
504 			 * vma expands, overlapping all the next, and
505 			 * perhaps the one after too (mprotect case 6).
506 			 */
507 again:			remove_next = 1 + (end > next->vm_end);
508 			end = next->vm_end;
509 			anon_vma = next->anon_vma;
510 			importer = vma;
511 		} else if (end > next->vm_start) {
512 			/*
513 			 * vma expands, overlapping part of the next:
514 			 * mprotect case 5 shifting the boundary up.
515 			 */
516 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
517 			anon_vma = next->anon_vma;
518 			importer = vma;
519 		} else if (end < vma->vm_end) {
520 			/*
521 			 * vma shrinks, and !insert tells it's not
522 			 * split_vma inserting another: so it must be
523 			 * mprotect case 4 shifting the boundary down.
524 			 */
525 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
526 			anon_vma = next->anon_vma;
527 			importer = next;
528 		}
529 	}
530 
531 	if (file) {
532 		mapping = file->f_mapping;
533 		if (!(vma->vm_flags & VM_NONLINEAR))
534 			root = &mapping->i_mmap;
535 		spin_lock(&mapping->i_mmap_lock);
536 		if (importer &&
537 		    vma->vm_truncate_count != next->vm_truncate_count) {
538 			/*
539 			 * unmap_mapping_range might be in progress:
540 			 * ensure that the expanding vma is rescanned.
541 			 */
542 			importer->vm_truncate_count = 0;
543 		}
544 		if (insert) {
545 			insert->vm_truncate_count = vma->vm_truncate_count;
546 			/*
547 			 * Put into prio_tree now, so instantiated pages
548 			 * are visible to arm/parisc __flush_dcache_page
549 			 * throughout; but we cannot insert into address
550 			 * space until vma start or end is updated.
551 			 */
552 			__vma_link_file(insert);
553 		}
554 	}
555 
556 	/*
557 	 * When changing only vma->vm_end, we don't really need
558 	 * anon_vma lock: but is that case worth optimizing out?
559 	 */
560 	if (vma->anon_vma)
561 		anon_vma = vma->anon_vma;
562 	if (anon_vma) {
563 		spin_lock(&anon_vma->lock);
564 		/*
565 		 * Easily overlooked: when mprotect shifts the boundary,
566 		 * make sure the expanding vma has anon_vma set if the
567 		 * shrinking vma had, to cover any anon pages imported.
568 		 */
569 		if (importer && !importer->anon_vma) {
570 			importer->anon_vma = anon_vma;
571 			__anon_vma_link(importer);
572 		}
573 	}
574 
575 	if (root) {
576 		flush_dcache_mmap_lock(mapping);
577 		vma_prio_tree_remove(vma, root);
578 		if (adjust_next)
579 			vma_prio_tree_remove(next, root);
580 	}
581 
582 	vma->vm_start = start;
583 	vma->vm_end = end;
584 	vma->vm_pgoff = pgoff;
585 	if (adjust_next) {
586 		next->vm_start += adjust_next << PAGE_SHIFT;
587 		next->vm_pgoff += adjust_next;
588 	}
589 
590 	if (root) {
591 		if (adjust_next)
592 			vma_prio_tree_insert(next, root);
593 		vma_prio_tree_insert(vma, root);
594 		flush_dcache_mmap_unlock(mapping);
595 	}
596 
597 	if (remove_next) {
598 		/*
599 		 * vma_merge has merged next into vma, and needs
600 		 * us to remove next before dropping the locks.
601 		 */
602 		__vma_unlink(mm, next, vma);
603 		if (file)
604 			__remove_shared_vm_struct(next, file, mapping);
605 		if (next->anon_vma)
606 			__anon_vma_merge(vma, next);
607 	} else if (insert) {
608 		/*
609 		 * split_vma has split insert from vma, and needs
610 		 * us to insert it before dropping the locks
611 		 * (it may either follow vma or precede it).
612 		 */
613 		__insert_vm_struct(mm, insert);
614 	}
615 
616 	if (anon_vma)
617 		spin_unlock(&anon_vma->lock);
618 	if (mapping)
619 		spin_unlock(&mapping->i_mmap_lock);
620 
621 	if (remove_next) {
622 		if (file)
623 			fput(file);
624 		mm->map_count--;
625 		mpol_free(vma_policy(next));
626 		kmem_cache_free(vm_area_cachep, next);
627 		/*
628 		 * In mprotect's case 6 (see comments on vma_merge),
629 		 * we must remove another next too. It would clutter
630 		 * up the code too much to do both in one go.
631 		 */
632 		if (remove_next == 2) {
633 			next = vma->vm_next;
634 			goto again;
635 		}
636 	}
637 
638 	validate_mm(mm);
639 }
640 
641 /*
642  * If the vma has a ->close operation then the driver probably needs to release
643  * per-vma resources, so we don't attempt to merge those.
644  */
645 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
646 
647 static inline int is_mergeable_vma(struct vm_area_struct *vma,
648 			struct file *file, unsigned long vm_flags)
649 {
650 	if (vma->vm_flags != vm_flags)
651 		return 0;
652 	if (vma->vm_file != file)
653 		return 0;
654 	if (vma->vm_ops && vma->vm_ops->close)
655 		return 0;
656 	return 1;
657 }
658 
659 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
660 					struct anon_vma *anon_vma2)
661 {
662 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
663 }
664 
665 /*
666  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
667  * in front of (at a lower virtual address and file offset than) the vma.
668  *
669  * We cannot merge two vmas if they have differently assigned (non-NULL)
670  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
671  *
672  * We don't check here for the merged mmap wrapping around the end of pagecache
673  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
674  * wrap, nor mmaps which cover the final page at index -1UL.
675  */
676 static int
677 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
678 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
679 {
680 	if (is_mergeable_vma(vma, file, vm_flags) &&
681 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
682 		if (vma->vm_pgoff == vm_pgoff)
683 			return 1;
684 	}
685 	return 0;
686 }
687 
688 /*
689  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
690  * beyond (at a higher virtual address and file offset than) the vma.
691  *
692  * We cannot merge two vmas if they have differently assigned (non-NULL)
693  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
694  */
695 static int
696 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
697 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
698 {
699 	if (is_mergeable_vma(vma, file, vm_flags) &&
700 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
701 		pgoff_t vm_pglen;
702 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
704 			return 1;
705 	}
706 	return 0;
707 }
708 
709 /*
710  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
711  * whether that can be merged with its predecessor or its successor.
712  * Or both (it neatly fills a hole).
713  *
714  * In most cases - when called for mmap, brk or mremap - [addr,end) is
715  * certain not to be mapped by the time vma_merge is called; but when
716  * called for mprotect, it is certain to be already mapped (either at
717  * an offset within prev, or at the start of next), and the flags of
718  * this area are about to be changed to vm_flags - and the no-change
719  * case has already been eliminated.
720  *
721  * The following mprotect cases have to be considered, where AAAA is
722  * the area passed down from mprotect_fixup, never extending beyond one
723  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
724  *
725  *     AAAA             AAAA                AAAA          AAAA
726  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
727  *    cannot merge    might become    might become    might become
728  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
729  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
730  *    mremap move:                                    PPPPNNNNNNNN 8
731  *        AAAA
732  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
733  *    might become    case 1 below    case 2 below    case 3 below
734  *
735  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
736  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
737  */
738 struct vm_area_struct *vma_merge(struct mm_struct *mm,
739 			struct vm_area_struct *prev, unsigned long addr,
740 			unsigned long end, unsigned long vm_flags,
741 		     	struct anon_vma *anon_vma, struct file *file,
742 			pgoff_t pgoff, struct mempolicy *policy)
743 {
744 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
745 	struct vm_area_struct *area, *next;
746 
747 	/*
748 	 * We later require that vma->vm_flags == vm_flags,
749 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
750 	 */
751 	if (vm_flags & VM_SPECIAL)
752 		return NULL;
753 
754 	if (prev)
755 		next = prev->vm_next;
756 	else
757 		next = mm->mmap;
758 	area = next;
759 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
760 		next = next->vm_next;
761 
762 	/*
763 	 * Can it merge with the predecessor?
764 	 */
765 	if (prev && prev->vm_end == addr &&
766   			mpol_equal(vma_policy(prev), policy) &&
767 			can_vma_merge_after(prev, vm_flags,
768 						anon_vma, file, pgoff)) {
769 		/*
770 		 * OK, it can.  Can we now merge in the successor as well?
771 		 */
772 		if (next && end == next->vm_start &&
773 				mpol_equal(policy, vma_policy(next)) &&
774 				can_vma_merge_before(next, vm_flags,
775 					anon_vma, file, pgoff+pglen) &&
776 				is_mergeable_anon_vma(prev->anon_vma,
777 						      next->anon_vma)) {
778 							/* cases 1, 6 */
779 			vma_adjust(prev, prev->vm_start,
780 				next->vm_end, prev->vm_pgoff, NULL);
781 		} else					/* cases 2, 5, 7 */
782 			vma_adjust(prev, prev->vm_start,
783 				end, prev->vm_pgoff, NULL);
784 		return prev;
785 	}
786 
787 	/*
788 	 * Can this new request be merged in front of next?
789 	 */
790 	if (next && end == next->vm_start &&
791  			mpol_equal(policy, vma_policy(next)) &&
792 			can_vma_merge_before(next, vm_flags,
793 					anon_vma, file, pgoff+pglen)) {
794 		if (prev && addr < prev->vm_end)	/* case 4 */
795 			vma_adjust(prev, prev->vm_start,
796 				addr, prev->vm_pgoff, NULL);
797 		else					/* cases 3, 8 */
798 			vma_adjust(area, addr, next->vm_end,
799 				next->vm_pgoff - pglen, NULL);
800 		return area;
801 	}
802 
803 	return NULL;
804 }
805 
806 /*
807  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
808  * neighbouring vmas for a suitable anon_vma, before it goes off
809  * to allocate a new anon_vma.  It checks because a repetitive
810  * sequence of mprotects and faults may otherwise lead to distinct
811  * anon_vmas being allocated, preventing vma merge in subsequent
812  * mprotect.
813  */
814 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
815 {
816 	struct vm_area_struct *near;
817 	unsigned long vm_flags;
818 
819 	near = vma->vm_next;
820 	if (!near)
821 		goto try_prev;
822 
823 	/*
824 	 * Since only mprotect tries to remerge vmas, match flags
825 	 * which might be mprotected into each other later on.
826 	 * Neither mlock nor madvise tries to remerge at present,
827 	 * so leave their flags as obstructing a merge.
828 	 */
829 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
830 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
831 
832 	if (near->anon_vma && vma->vm_end == near->vm_start &&
833  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
834 			can_vma_merge_before(near, vm_flags,
835 				NULL, vma->vm_file, vma->vm_pgoff +
836 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
837 		return near->anon_vma;
838 try_prev:
839 	/*
840 	 * It is potentially slow to have to call find_vma_prev here.
841 	 * But it's only on the first write fault on the vma, not
842 	 * every time, and we could devise a way to avoid it later
843 	 * (e.g. stash info in next's anon_vma_node when assigning
844 	 * an anon_vma, or when trying vma_merge).  Another time.
845 	 */
846 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
847 	if (!near)
848 		goto none;
849 
850 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
852 
853 	if (near->anon_vma && near->vm_end == vma->vm_start &&
854   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
855 			can_vma_merge_after(near, vm_flags,
856 				NULL, vma->vm_file, vma->vm_pgoff))
857 		return near->anon_vma;
858 none:
859 	/*
860 	 * There's no absolute need to look only at touching neighbours:
861 	 * we could search further afield for "compatible" anon_vmas.
862 	 * But it would probably just be a waste of time searching,
863 	 * or lead to too many vmas hanging off the same anon_vma.
864 	 * We're trying to allow mprotect remerging later on,
865 	 * not trying to minimize memory used for anon_vmas.
866 	 */
867 	return NULL;
868 }
869 
870 #ifdef CONFIG_PROC_FS
871 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
872 						struct file *file, long pages)
873 {
874 	const unsigned long stack_flags
875 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
876 
877 	if (file) {
878 		mm->shared_vm += pages;
879 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
880 			mm->exec_vm += pages;
881 	} else if (flags & stack_flags)
882 		mm->stack_vm += pages;
883 	if (flags & (VM_RESERVED|VM_IO))
884 		mm->reserved_vm += pages;
885 }
886 #endif /* CONFIG_PROC_FS */
887 
888 /*
889  * The caller must hold down_write(current->mm->mmap_sem).
890  */
891 
892 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
893 			unsigned long len, unsigned long prot,
894 			unsigned long flags, unsigned long pgoff)
895 {
896 	struct mm_struct * mm = current->mm;
897 	struct inode *inode;
898 	unsigned int vm_flags;
899 	int error;
900 	int accountable = 1;
901 	unsigned long reqprot = prot;
902 
903 	/*
904 	 * Does the application expect PROT_READ to imply PROT_EXEC?
905 	 *
906 	 * (the exception is when the underlying filesystem is noexec
907 	 *  mounted, in which case we dont add PROT_EXEC.)
908 	 */
909 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
910 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
911 			prot |= PROT_EXEC;
912 
913 	if (!len)
914 		return -EINVAL;
915 
916 	error = arch_mmap_check(addr, len, flags);
917 	if (error)
918 		return error;
919 
920 	/* Careful about overflows.. */
921 	len = PAGE_ALIGN(len);
922 	if (!len || len > TASK_SIZE)
923 		return -ENOMEM;
924 
925 	/* offset overflow? */
926 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
927                return -EOVERFLOW;
928 
929 	/* Too many mappings? */
930 	if (mm->map_count > sysctl_max_map_count)
931 		return -ENOMEM;
932 
933 	/* Obtain the address to map to. we verify (or select) it and ensure
934 	 * that it represents a valid section of the address space.
935 	 */
936 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
937 	if (addr & ~PAGE_MASK)
938 		return addr;
939 
940 	/* Do simple checking here so the lower-level routines won't have
941 	 * to. we assume access permissions have been handled by the open
942 	 * of the memory object, so we don't do any here.
943 	 */
944 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
945 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
946 
947 	if (flags & MAP_LOCKED) {
948 		if (!can_do_mlock())
949 			return -EPERM;
950 		vm_flags |= VM_LOCKED;
951 	}
952 	/* mlock MCL_FUTURE? */
953 	if (vm_flags & VM_LOCKED) {
954 		unsigned long locked, lock_limit;
955 		locked = len >> PAGE_SHIFT;
956 		locked += mm->locked_vm;
957 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
958 		lock_limit >>= PAGE_SHIFT;
959 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
960 			return -EAGAIN;
961 	}
962 
963 	inode = file ? file->f_path.dentry->d_inode : NULL;
964 
965 	if (file) {
966 		switch (flags & MAP_TYPE) {
967 		case MAP_SHARED:
968 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
969 				return -EACCES;
970 
971 			/*
972 			 * Make sure we don't allow writing to an append-only
973 			 * file..
974 			 */
975 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
976 				return -EACCES;
977 
978 			/*
979 			 * Make sure there are no mandatory locks on the file.
980 			 */
981 			if (locks_verify_locked(inode))
982 				return -EAGAIN;
983 
984 			vm_flags |= VM_SHARED | VM_MAYSHARE;
985 			if (!(file->f_mode & FMODE_WRITE))
986 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
987 
988 			/* fall through */
989 		case MAP_PRIVATE:
990 			if (!(file->f_mode & FMODE_READ))
991 				return -EACCES;
992 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
993 				if (vm_flags & VM_EXEC)
994 					return -EPERM;
995 				vm_flags &= ~VM_MAYEXEC;
996 			}
997 			if (is_file_hugepages(file))
998 				accountable = 0;
999 
1000 			if (!file->f_op || !file->f_op->mmap)
1001 				return -ENODEV;
1002 			break;
1003 
1004 		default:
1005 			return -EINVAL;
1006 		}
1007 	} else {
1008 		switch (flags & MAP_TYPE) {
1009 		case MAP_SHARED:
1010 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1011 			break;
1012 		case MAP_PRIVATE:
1013 			/*
1014 			 * Set pgoff according to addr for anon_vma.
1015 			 */
1016 			pgoff = addr >> PAGE_SHIFT;
1017 			break;
1018 		default:
1019 			return -EINVAL;
1020 		}
1021 	}
1022 
1023 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1024 	if (error)
1025 		return error;
1026 
1027 	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1028 			   accountable);
1029 }
1030 EXPORT_SYMBOL(do_mmap_pgoff);
1031 
1032 unsigned long mmap_region(struct file *file, unsigned long addr,
1033 			  unsigned long len, unsigned long flags,
1034 			  unsigned int vm_flags, unsigned long pgoff,
1035 			  int accountable)
1036 {
1037 	struct mm_struct *mm = current->mm;
1038 	struct vm_area_struct *vma, *prev;
1039 	int correct_wcount = 0;
1040 	int error;
1041 	struct rb_node **rb_link, *rb_parent;
1042 	unsigned long charged = 0;
1043 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1044 
1045 	/* Clear old maps */
1046 	error = -ENOMEM;
1047 munmap_back:
1048 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1049 	if (vma && vma->vm_start < addr + len) {
1050 		if (do_munmap(mm, addr, len))
1051 			return -ENOMEM;
1052 		goto munmap_back;
1053 	}
1054 
1055 	/* Check against address space limit. */
1056 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1057 		return -ENOMEM;
1058 
1059 	if (accountable && (!(flags & MAP_NORESERVE) ||
1060 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1061 		if (vm_flags & VM_SHARED) {
1062 			/* Check memory availability in shmem_file_setup? */
1063 			vm_flags |= VM_ACCOUNT;
1064 		} else if (vm_flags & VM_WRITE) {
1065 			/*
1066 			 * Private writable mapping: check memory availability
1067 			 */
1068 			charged = len >> PAGE_SHIFT;
1069 			if (security_vm_enough_memory(charged))
1070 				return -ENOMEM;
1071 			vm_flags |= VM_ACCOUNT;
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * Can we just expand an old private anonymous mapping?
1077 	 * The VM_SHARED test is necessary because shmem_zero_setup
1078 	 * will create the file object for a shared anonymous map below.
1079 	 */
1080 	if (!file && !(vm_flags & VM_SHARED) &&
1081 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1082 					NULL, NULL, pgoff, NULL))
1083 		goto out;
1084 
1085 	/*
1086 	 * Determine the object being mapped and call the appropriate
1087 	 * specific mapper. the address has already been validated, but
1088 	 * not unmapped, but the maps are removed from the list.
1089 	 */
1090 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1091 	if (!vma) {
1092 		error = -ENOMEM;
1093 		goto unacct_error;
1094 	}
1095 
1096 	vma->vm_mm = mm;
1097 	vma->vm_start = addr;
1098 	vma->vm_end = addr + len;
1099 	vma->vm_flags = vm_flags;
1100 	vma->vm_page_prot = protection_map[vm_flags &
1101 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1102 	vma->vm_pgoff = pgoff;
1103 
1104 	if (file) {
1105 		error = -EINVAL;
1106 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1107 			goto free_vma;
1108 		if (vm_flags & VM_DENYWRITE) {
1109 			error = deny_write_access(file);
1110 			if (error)
1111 				goto free_vma;
1112 			correct_wcount = 1;
1113 		}
1114 		vma->vm_file = file;
1115 		get_file(file);
1116 		error = file->f_op->mmap(file, vma);
1117 		if (error)
1118 			goto unmap_and_free_vma;
1119 	} else if (vm_flags & VM_SHARED) {
1120 		error = shmem_zero_setup(vma);
1121 		if (error)
1122 			goto free_vma;
1123 	}
1124 
1125 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1126 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1127 	 * that memory reservation must be checked; but that reservation
1128 	 * belongs to shared memory object, not to vma: so now clear it.
1129 	 */
1130 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1131 		vma->vm_flags &= ~VM_ACCOUNT;
1132 
1133 	/* Can addr have changed??
1134 	 *
1135 	 * Answer: Yes, several device drivers can do it in their
1136 	 *         f_op->mmap method. -DaveM
1137 	 */
1138 	addr = vma->vm_start;
1139 	pgoff = vma->vm_pgoff;
1140 	vm_flags = vma->vm_flags;
1141 
1142 	if (vma_wants_writenotify(vma))
1143 		vma->vm_page_prot =
1144 			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1145 
1146 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1147 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1148 		file = vma->vm_file;
1149 		vma_link(mm, vma, prev, rb_link, rb_parent);
1150 		if (correct_wcount)
1151 			atomic_inc(&inode->i_writecount);
1152 	} else {
1153 		if (file) {
1154 			if (correct_wcount)
1155 				atomic_inc(&inode->i_writecount);
1156 			fput(file);
1157 		}
1158 		mpol_free(vma_policy(vma));
1159 		kmem_cache_free(vm_area_cachep, vma);
1160 	}
1161 out:
1162 	mm->total_vm += len >> PAGE_SHIFT;
1163 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1164 	if (vm_flags & VM_LOCKED) {
1165 		mm->locked_vm += len >> PAGE_SHIFT;
1166 		make_pages_present(addr, addr + len);
1167 	}
1168 	if (flags & MAP_POPULATE) {
1169 		up_write(&mm->mmap_sem);
1170 		sys_remap_file_pages(addr, len, 0,
1171 					pgoff, flags & MAP_NONBLOCK);
1172 		down_write(&mm->mmap_sem);
1173 	}
1174 	return addr;
1175 
1176 unmap_and_free_vma:
1177 	if (correct_wcount)
1178 		atomic_inc(&inode->i_writecount);
1179 	vma->vm_file = NULL;
1180 	fput(file);
1181 
1182 	/* Undo any partial mapping done by a device driver. */
1183 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1184 	charged = 0;
1185 free_vma:
1186 	kmem_cache_free(vm_area_cachep, vma);
1187 unacct_error:
1188 	if (charged)
1189 		vm_unacct_memory(charged);
1190 	return error;
1191 }
1192 
1193 /* Get an address range which is currently unmapped.
1194  * For shmat() with addr=0.
1195  *
1196  * Ugly calling convention alert:
1197  * Return value with the low bits set means error value,
1198  * ie
1199  *	if (ret & ~PAGE_MASK)
1200  *		error = ret;
1201  *
1202  * This function "knows" that -ENOMEM has the bits set.
1203  */
1204 #ifndef HAVE_ARCH_UNMAPPED_AREA
1205 unsigned long
1206 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1207 		unsigned long len, unsigned long pgoff, unsigned long flags)
1208 {
1209 	struct mm_struct *mm = current->mm;
1210 	struct vm_area_struct *vma;
1211 	unsigned long start_addr;
1212 
1213 	if (len > TASK_SIZE)
1214 		return -ENOMEM;
1215 
1216 	if (flags & MAP_FIXED)
1217 		return addr;
1218 
1219 	if (addr) {
1220 		addr = PAGE_ALIGN(addr);
1221 		vma = find_vma(mm, addr);
1222 		if (TASK_SIZE - len >= addr &&
1223 		    (!vma || addr + len <= vma->vm_start))
1224 			return addr;
1225 	}
1226 	if (len > mm->cached_hole_size) {
1227 	        start_addr = addr = mm->free_area_cache;
1228 	} else {
1229 	        start_addr = addr = TASK_UNMAPPED_BASE;
1230 	        mm->cached_hole_size = 0;
1231 	}
1232 
1233 full_search:
1234 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1235 		/* At this point:  (!vma || addr < vma->vm_end). */
1236 		if (TASK_SIZE - len < addr) {
1237 			/*
1238 			 * Start a new search - just in case we missed
1239 			 * some holes.
1240 			 */
1241 			if (start_addr != TASK_UNMAPPED_BASE) {
1242 				addr = TASK_UNMAPPED_BASE;
1243 			        start_addr = addr;
1244 				mm->cached_hole_size = 0;
1245 				goto full_search;
1246 			}
1247 			return -ENOMEM;
1248 		}
1249 		if (!vma || addr + len <= vma->vm_start) {
1250 			/*
1251 			 * Remember the place where we stopped the search:
1252 			 */
1253 			mm->free_area_cache = addr + len;
1254 			return addr;
1255 		}
1256 		if (addr + mm->cached_hole_size < vma->vm_start)
1257 		        mm->cached_hole_size = vma->vm_start - addr;
1258 		addr = vma->vm_end;
1259 	}
1260 }
1261 #endif
1262 
1263 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1264 {
1265 	/*
1266 	 * Is this a new hole at the lowest possible address?
1267 	 */
1268 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1269 		mm->free_area_cache = addr;
1270 		mm->cached_hole_size = ~0UL;
1271 	}
1272 }
1273 
1274 /*
1275  * This mmap-allocator allocates new areas top-down from below the
1276  * stack's low limit (the base):
1277  */
1278 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1279 unsigned long
1280 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1281 			  const unsigned long len, const unsigned long pgoff,
1282 			  const unsigned long flags)
1283 {
1284 	struct vm_area_struct *vma;
1285 	struct mm_struct *mm = current->mm;
1286 	unsigned long addr = addr0;
1287 
1288 	/* requested length too big for entire address space */
1289 	if (len > TASK_SIZE)
1290 		return -ENOMEM;
1291 
1292 	if (flags & MAP_FIXED)
1293 		return addr;
1294 
1295 	/* requesting a specific address */
1296 	if (addr) {
1297 		addr = PAGE_ALIGN(addr);
1298 		vma = find_vma(mm, addr);
1299 		if (TASK_SIZE - len >= addr &&
1300 				(!vma || addr + len <= vma->vm_start))
1301 			return addr;
1302 	}
1303 
1304 	/* check if free_area_cache is useful for us */
1305 	if (len <= mm->cached_hole_size) {
1306  	        mm->cached_hole_size = 0;
1307  		mm->free_area_cache = mm->mmap_base;
1308  	}
1309 
1310 	/* either no address requested or can't fit in requested address hole */
1311 	addr = mm->free_area_cache;
1312 
1313 	/* make sure it can fit in the remaining address space */
1314 	if (addr > len) {
1315 		vma = find_vma(mm, addr-len);
1316 		if (!vma || addr <= vma->vm_start)
1317 			/* remember the address as a hint for next time */
1318 			return (mm->free_area_cache = addr-len);
1319 	}
1320 
1321 	if (mm->mmap_base < len)
1322 		goto bottomup;
1323 
1324 	addr = mm->mmap_base-len;
1325 
1326 	do {
1327 		/*
1328 		 * Lookup failure means no vma is above this address,
1329 		 * else if new region fits below vma->vm_start,
1330 		 * return with success:
1331 		 */
1332 		vma = find_vma(mm, addr);
1333 		if (!vma || addr+len <= vma->vm_start)
1334 			/* remember the address as a hint for next time */
1335 			return (mm->free_area_cache = addr);
1336 
1337  		/* remember the largest hole we saw so far */
1338  		if (addr + mm->cached_hole_size < vma->vm_start)
1339  		        mm->cached_hole_size = vma->vm_start - addr;
1340 
1341 		/* try just below the current vma->vm_start */
1342 		addr = vma->vm_start-len;
1343 	} while (len < vma->vm_start);
1344 
1345 bottomup:
1346 	/*
1347 	 * A failed mmap() very likely causes application failure,
1348 	 * so fall back to the bottom-up function here. This scenario
1349 	 * can happen with large stack limits and large mmap()
1350 	 * allocations.
1351 	 */
1352 	mm->cached_hole_size = ~0UL;
1353   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1354 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1355 	/*
1356 	 * Restore the topdown base:
1357 	 */
1358 	mm->free_area_cache = mm->mmap_base;
1359 	mm->cached_hole_size = ~0UL;
1360 
1361 	return addr;
1362 }
1363 #endif
1364 
1365 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1366 {
1367 	/*
1368 	 * Is this a new hole at the highest possible address?
1369 	 */
1370 	if (addr > mm->free_area_cache)
1371 		mm->free_area_cache = addr;
1372 
1373 	/* dont allow allocations above current base */
1374 	if (mm->free_area_cache > mm->mmap_base)
1375 		mm->free_area_cache = mm->mmap_base;
1376 }
1377 
1378 unsigned long
1379 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1380 		unsigned long pgoff, unsigned long flags)
1381 {
1382 	unsigned long (*get_area)(struct file *, unsigned long,
1383 				  unsigned long, unsigned long, unsigned long);
1384 
1385 	get_area = current->mm->get_unmapped_area;
1386 	if (file && file->f_op && file->f_op->get_unmapped_area)
1387 		get_area = file->f_op->get_unmapped_area;
1388 	addr = get_area(file, addr, len, pgoff, flags);
1389 	if (IS_ERR_VALUE(addr))
1390 		return addr;
1391 
1392 	if (addr > TASK_SIZE - len)
1393 		return -ENOMEM;
1394 	if (addr & ~PAGE_MASK)
1395 		return -EINVAL;
1396 
1397 	return addr;
1398 }
1399 
1400 EXPORT_SYMBOL(get_unmapped_area);
1401 
1402 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1403 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1404 {
1405 	struct vm_area_struct *vma = NULL;
1406 
1407 	if (mm) {
1408 		/* Check the cache first. */
1409 		/* (Cache hit rate is typically around 35%.) */
1410 		vma = mm->mmap_cache;
1411 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1412 			struct rb_node * rb_node;
1413 
1414 			rb_node = mm->mm_rb.rb_node;
1415 			vma = NULL;
1416 
1417 			while (rb_node) {
1418 				struct vm_area_struct * vma_tmp;
1419 
1420 				vma_tmp = rb_entry(rb_node,
1421 						struct vm_area_struct, vm_rb);
1422 
1423 				if (vma_tmp->vm_end > addr) {
1424 					vma = vma_tmp;
1425 					if (vma_tmp->vm_start <= addr)
1426 						break;
1427 					rb_node = rb_node->rb_left;
1428 				} else
1429 					rb_node = rb_node->rb_right;
1430 			}
1431 			if (vma)
1432 				mm->mmap_cache = vma;
1433 		}
1434 	}
1435 	return vma;
1436 }
1437 
1438 EXPORT_SYMBOL(find_vma);
1439 
1440 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1441 struct vm_area_struct *
1442 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1443 			struct vm_area_struct **pprev)
1444 {
1445 	struct vm_area_struct *vma = NULL, *prev = NULL;
1446 	struct rb_node * rb_node;
1447 	if (!mm)
1448 		goto out;
1449 
1450 	/* Guard against addr being lower than the first VMA */
1451 	vma = mm->mmap;
1452 
1453 	/* Go through the RB tree quickly. */
1454 	rb_node = mm->mm_rb.rb_node;
1455 
1456 	while (rb_node) {
1457 		struct vm_area_struct *vma_tmp;
1458 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1459 
1460 		if (addr < vma_tmp->vm_end) {
1461 			rb_node = rb_node->rb_left;
1462 		} else {
1463 			prev = vma_tmp;
1464 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1465 				break;
1466 			rb_node = rb_node->rb_right;
1467 		}
1468 	}
1469 
1470 out:
1471 	*pprev = prev;
1472 	return prev ? prev->vm_next : vma;
1473 }
1474 
1475 /*
1476  * Verify that the stack growth is acceptable and
1477  * update accounting. This is shared with both the
1478  * grow-up and grow-down cases.
1479  */
1480 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1481 {
1482 	struct mm_struct *mm = vma->vm_mm;
1483 	struct rlimit *rlim = current->signal->rlim;
1484 	unsigned long new_start;
1485 
1486 	/* address space limit tests */
1487 	if (!may_expand_vm(mm, grow))
1488 		return -ENOMEM;
1489 
1490 	/* Stack limit test */
1491 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1492 		return -ENOMEM;
1493 
1494 	/* mlock limit tests */
1495 	if (vma->vm_flags & VM_LOCKED) {
1496 		unsigned long locked;
1497 		unsigned long limit;
1498 		locked = mm->locked_vm + grow;
1499 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1500 		if (locked > limit && !capable(CAP_IPC_LOCK))
1501 			return -ENOMEM;
1502 	}
1503 
1504 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1505 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1506 			vma->vm_end - size;
1507 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1508 		return -EFAULT;
1509 
1510 	/*
1511 	 * Overcommit..  This must be the final test, as it will
1512 	 * update security statistics.
1513 	 */
1514 	if (security_vm_enough_memory(grow))
1515 		return -ENOMEM;
1516 
1517 	/* Ok, everything looks good - let it rip */
1518 	mm->total_vm += grow;
1519 	if (vma->vm_flags & VM_LOCKED)
1520 		mm->locked_vm += grow;
1521 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1522 	return 0;
1523 }
1524 
1525 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1526 /*
1527  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1528  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1529  */
1530 #ifndef CONFIG_IA64
1531 static inline
1532 #endif
1533 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1534 {
1535 	int error;
1536 
1537 	if (!(vma->vm_flags & VM_GROWSUP))
1538 		return -EFAULT;
1539 
1540 	/*
1541 	 * We must make sure the anon_vma is allocated
1542 	 * so that the anon_vma locking is not a noop.
1543 	 */
1544 	if (unlikely(anon_vma_prepare(vma)))
1545 		return -ENOMEM;
1546 	anon_vma_lock(vma);
1547 
1548 	/*
1549 	 * vma->vm_start/vm_end cannot change under us because the caller
1550 	 * is required to hold the mmap_sem in read mode.  We need the
1551 	 * anon_vma lock to serialize against concurrent expand_stacks.
1552 	 * Also guard against wrapping around to address 0.
1553 	 */
1554 	if (address < PAGE_ALIGN(address+4))
1555 		address = PAGE_ALIGN(address+4);
1556 	else {
1557 		anon_vma_unlock(vma);
1558 		return -ENOMEM;
1559 	}
1560 	error = 0;
1561 
1562 	/* Somebody else might have raced and expanded it already */
1563 	if (address > vma->vm_end) {
1564 		unsigned long size, grow;
1565 
1566 		size = address - vma->vm_start;
1567 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1568 
1569 		error = acct_stack_growth(vma, size, grow);
1570 		if (!error)
1571 			vma->vm_end = address;
1572 	}
1573 	anon_vma_unlock(vma);
1574 	return error;
1575 }
1576 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1577 
1578 #ifdef CONFIG_STACK_GROWSUP
1579 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1580 {
1581 	return expand_upwards(vma, address);
1582 }
1583 
1584 struct vm_area_struct *
1585 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1586 {
1587 	struct vm_area_struct *vma, *prev;
1588 
1589 	addr &= PAGE_MASK;
1590 	vma = find_vma_prev(mm, addr, &prev);
1591 	if (vma && (vma->vm_start <= addr))
1592 		return vma;
1593 	if (!prev || expand_stack(prev, addr))
1594 		return NULL;
1595 	if (prev->vm_flags & VM_LOCKED) {
1596 		make_pages_present(addr, prev->vm_end);
1597 	}
1598 	return prev;
1599 }
1600 #else
1601 /*
1602  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1603  */
1604 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1605 {
1606 	int error;
1607 
1608 	/*
1609 	 * We must make sure the anon_vma is allocated
1610 	 * so that the anon_vma locking is not a noop.
1611 	 */
1612 	if (unlikely(anon_vma_prepare(vma)))
1613 		return -ENOMEM;
1614 	anon_vma_lock(vma);
1615 
1616 	/*
1617 	 * vma->vm_start/vm_end cannot change under us because the caller
1618 	 * is required to hold the mmap_sem in read mode.  We need the
1619 	 * anon_vma lock to serialize against concurrent expand_stacks.
1620 	 */
1621 	address &= PAGE_MASK;
1622 	error = 0;
1623 
1624 	/* Somebody else might have raced and expanded it already */
1625 	if (address < vma->vm_start) {
1626 		unsigned long size, grow;
1627 
1628 		size = vma->vm_end - address;
1629 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1630 
1631 		error = acct_stack_growth(vma, size, grow);
1632 		if (!error) {
1633 			vma->vm_start = address;
1634 			vma->vm_pgoff -= grow;
1635 		}
1636 	}
1637 	anon_vma_unlock(vma);
1638 	return error;
1639 }
1640 
1641 struct vm_area_struct *
1642 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1643 {
1644 	struct vm_area_struct * vma;
1645 	unsigned long start;
1646 
1647 	addr &= PAGE_MASK;
1648 	vma = find_vma(mm,addr);
1649 	if (!vma)
1650 		return NULL;
1651 	if (vma->vm_start <= addr)
1652 		return vma;
1653 	if (!(vma->vm_flags & VM_GROWSDOWN))
1654 		return NULL;
1655 	start = vma->vm_start;
1656 	if (expand_stack(vma, addr))
1657 		return NULL;
1658 	if (vma->vm_flags & VM_LOCKED) {
1659 		make_pages_present(addr, start);
1660 	}
1661 	return vma;
1662 }
1663 #endif
1664 
1665 /*
1666  * Ok - we have the memory areas we should free on the vma list,
1667  * so release them, and do the vma updates.
1668  *
1669  * Called with the mm semaphore held.
1670  */
1671 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1672 {
1673 	/* Update high watermark before we lower total_vm */
1674 	update_hiwater_vm(mm);
1675 	do {
1676 		long nrpages = vma_pages(vma);
1677 
1678 		mm->total_vm -= nrpages;
1679 		if (vma->vm_flags & VM_LOCKED)
1680 			mm->locked_vm -= nrpages;
1681 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1682 		vma = remove_vma(vma);
1683 	} while (vma);
1684 	validate_mm(mm);
1685 }
1686 
1687 /*
1688  * Get rid of page table information in the indicated region.
1689  *
1690  * Called with the mm semaphore held.
1691  */
1692 static void unmap_region(struct mm_struct *mm,
1693 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1694 		unsigned long start, unsigned long end)
1695 {
1696 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1697 	struct mmu_gather *tlb;
1698 	unsigned long nr_accounted = 0;
1699 
1700 	lru_add_drain();
1701 	tlb = tlb_gather_mmu(mm, 0);
1702 	update_hiwater_rss(mm);
1703 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1704 	vm_unacct_memory(nr_accounted);
1705 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1706 				 next? next->vm_start: 0);
1707 	tlb_finish_mmu(tlb, start, end);
1708 }
1709 
1710 /*
1711  * Create a list of vma's touched by the unmap, removing them from the mm's
1712  * vma list as we go..
1713  */
1714 static void
1715 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1716 	struct vm_area_struct *prev, unsigned long end)
1717 {
1718 	struct vm_area_struct **insertion_point;
1719 	struct vm_area_struct *tail_vma = NULL;
1720 	unsigned long addr;
1721 
1722 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1723 	do {
1724 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1725 		mm->map_count--;
1726 		tail_vma = vma;
1727 		vma = vma->vm_next;
1728 	} while (vma && vma->vm_start < end);
1729 	*insertion_point = vma;
1730 	tail_vma->vm_next = NULL;
1731 	if (mm->unmap_area == arch_unmap_area)
1732 		addr = prev ? prev->vm_end : mm->mmap_base;
1733 	else
1734 		addr = vma ?  vma->vm_start : mm->mmap_base;
1735 	mm->unmap_area(mm, addr);
1736 	mm->mmap_cache = NULL;		/* Kill the cache. */
1737 }
1738 
1739 /*
1740  * Split a vma into two pieces at address 'addr', a new vma is allocated
1741  * either for the first part or the tail.
1742  */
1743 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1744 	      unsigned long addr, int new_below)
1745 {
1746 	struct mempolicy *pol;
1747 	struct vm_area_struct *new;
1748 
1749 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1750 		return -EINVAL;
1751 
1752 	if (mm->map_count >= sysctl_max_map_count)
1753 		return -ENOMEM;
1754 
1755 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1756 	if (!new)
1757 		return -ENOMEM;
1758 
1759 	/* most fields are the same, copy all, and then fixup */
1760 	*new = *vma;
1761 
1762 	if (new_below)
1763 		new->vm_end = addr;
1764 	else {
1765 		new->vm_start = addr;
1766 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1767 	}
1768 
1769 	pol = mpol_copy(vma_policy(vma));
1770 	if (IS_ERR(pol)) {
1771 		kmem_cache_free(vm_area_cachep, new);
1772 		return PTR_ERR(pol);
1773 	}
1774 	vma_set_policy(new, pol);
1775 
1776 	if (new->vm_file)
1777 		get_file(new->vm_file);
1778 
1779 	if (new->vm_ops && new->vm_ops->open)
1780 		new->vm_ops->open(new);
1781 
1782 	if (new_below)
1783 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1784 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1785 	else
1786 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1787 
1788 	return 0;
1789 }
1790 
1791 /* Munmap is split into 2 main parts -- this part which finds
1792  * what needs doing, and the areas themselves, which do the
1793  * work.  This now handles partial unmappings.
1794  * Jeremy Fitzhardinge <jeremy@goop.org>
1795  */
1796 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1797 {
1798 	unsigned long end;
1799 	struct vm_area_struct *vma, *prev, *last;
1800 
1801 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1802 		return -EINVAL;
1803 
1804 	if ((len = PAGE_ALIGN(len)) == 0)
1805 		return -EINVAL;
1806 
1807 	/* Find the first overlapping VMA */
1808 	vma = find_vma_prev(mm, start, &prev);
1809 	if (!vma)
1810 		return 0;
1811 	/* we have  start < vma->vm_end  */
1812 
1813 	/* if it doesn't overlap, we have nothing.. */
1814 	end = start + len;
1815 	if (vma->vm_start >= end)
1816 		return 0;
1817 
1818 	/*
1819 	 * If we need to split any vma, do it now to save pain later.
1820 	 *
1821 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1822 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1823 	 * places tmp vma above, and higher split_vma places tmp vma below.
1824 	 */
1825 	if (start > vma->vm_start) {
1826 		int error = split_vma(mm, vma, start, 0);
1827 		if (error)
1828 			return error;
1829 		prev = vma;
1830 	}
1831 
1832 	/* Does it split the last one? */
1833 	last = find_vma(mm, end);
1834 	if (last && end > last->vm_start) {
1835 		int error = split_vma(mm, last, end, 1);
1836 		if (error)
1837 			return error;
1838 	}
1839 	vma = prev? prev->vm_next: mm->mmap;
1840 
1841 	/*
1842 	 * Remove the vma's, and unmap the actual pages
1843 	 */
1844 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1845 	unmap_region(mm, vma, prev, start, end);
1846 
1847 	/* Fix up all other VM information */
1848 	remove_vma_list(mm, vma);
1849 
1850 	return 0;
1851 }
1852 
1853 EXPORT_SYMBOL(do_munmap);
1854 
1855 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1856 {
1857 	int ret;
1858 	struct mm_struct *mm = current->mm;
1859 
1860 	profile_munmap(addr);
1861 
1862 	down_write(&mm->mmap_sem);
1863 	ret = do_munmap(mm, addr, len);
1864 	up_write(&mm->mmap_sem);
1865 	return ret;
1866 }
1867 
1868 static inline void verify_mm_writelocked(struct mm_struct *mm)
1869 {
1870 #ifdef CONFIG_DEBUG_VM
1871 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1872 		WARN_ON(1);
1873 		up_read(&mm->mmap_sem);
1874 	}
1875 #endif
1876 }
1877 
1878 /*
1879  *  this is really a simplified "do_mmap".  it only handles
1880  *  anonymous maps.  eventually we may be able to do some
1881  *  brk-specific accounting here.
1882  */
1883 unsigned long do_brk(unsigned long addr, unsigned long len)
1884 {
1885 	struct mm_struct * mm = current->mm;
1886 	struct vm_area_struct * vma, * prev;
1887 	unsigned long flags;
1888 	struct rb_node ** rb_link, * rb_parent;
1889 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1890 	int error;
1891 
1892 	len = PAGE_ALIGN(len);
1893 	if (!len)
1894 		return addr;
1895 
1896 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1897 		return -EINVAL;
1898 
1899 	if (is_hugepage_only_range(mm, addr, len))
1900 		return -EINVAL;
1901 
1902 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1903 
1904 	error = arch_mmap_check(addr, len, flags);
1905 	if (error)
1906 		return error;
1907 
1908 	/*
1909 	 * mlock MCL_FUTURE?
1910 	 */
1911 	if (mm->def_flags & VM_LOCKED) {
1912 		unsigned long locked, lock_limit;
1913 		locked = len >> PAGE_SHIFT;
1914 		locked += mm->locked_vm;
1915 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1916 		lock_limit >>= PAGE_SHIFT;
1917 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1918 			return -EAGAIN;
1919 	}
1920 
1921 	/*
1922 	 * mm->mmap_sem is required to protect against another thread
1923 	 * changing the mappings in case we sleep.
1924 	 */
1925 	verify_mm_writelocked(mm);
1926 
1927 	/*
1928 	 * Clear old maps.  this also does some error checking for us
1929 	 */
1930  munmap_back:
1931 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1932 	if (vma && vma->vm_start < addr + len) {
1933 		if (do_munmap(mm, addr, len))
1934 			return -ENOMEM;
1935 		goto munmap_back;
1936 	}
1937 
1938 	/* Check against address space limits *after* clearing old maps... */
1939 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1940 		return -ENOMEM;
1941 
1942 	if (mm->map_count > sysctl_max_map_count)
1943 		return -ENOMEM;
1944 
1945 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1946 		return -ENOMEM;
1947 
1948 	/* Can we just expand an old private anonymous mapping? */
1949 	if (vma_merge(mm, prev, addr, addr + len, flags,
1950 					NULL, NULL, pgoff, NULL))
1951 		goto out;
1952 
1953 	/*
1954 	 * create a vma struct for an anonymous mapping
1955 	 */
1956 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1957 	if (!vma) {
1958 		vm_unacct_memory(len >> PAGE_SHIFT);
1959 		return -ENOMEM;
1960 	}
1961 
1962 	vma->vm_mm = mm;
1963 	vma->vm_start = addr;
1964 	vma->vm_end = addr + len;
1965 	vma->vm_pgoff = pgoff;
1966 	vma->vm_flags = flags;
1967 	vma->vm_page_prot = protection_map[flags &
1968 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1969 	vma_link(mm, vma, prev, rb_link, rb_parent);
1970 out:
1971 	mm->total_vm += len >> PAGE_SHIFT;
1972 	if (flags & VM_LOCKED) {
1973 		mm->locked_vm += len >> PAGE_SHIFT;
1974 		make_pages_present(addr, addr + len);
1975 	}
1976 	return addr;
1977 }
1978 
1979 EXPORT_SYMBOL(do_brk);
1980 
1981 /* Release all mmaps. */
1982 void exit_mmap(struct mm_struct *mm)
1983 {
1984 	struct mmu_gather *tlb;
1985 	struct vm_area_struct *vma = mm->mmap;
1986 	unsigned long nr_accounted = 0;
1987 	unsigned long end;
1988 
1989 	/* mm's last user has gone, and its about to be pulled down */
1990 	arch_exit_mmap(mm);
1991 
1992 	lru_add_drain();
1993 	flush_cache_mm(mm);
1994 	tlb = tlb_gather_mmu(mm, 1);
1995 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
1996 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1997 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1998 	vm_unacct_memory(nr_accounted);
1999 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2000 	tlb_finish_mmu(tlb, 0, end);
2001 
2002 	/*
2003 	 * Walk the list again, actually closing and freeing it,
2004 	 * with preemption enabled, without holding any MM locks.
2005 	 */
2006 	while (vma)
2007 		vma = remove_vma(vma);
2008 
2009 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2010 }
2011 
2012 /* Insert vm structure into process list sorted by address
2013  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2014  * then i_mmap_lock is taken here.
2015  */
2016 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2017 {
2018 	struct vm_area_struct * __vma, * prev;
2019 	struct rb_node ** rb_link, * rb_parent;
2020 
2021 	/*
2022 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2023 	 * until its first write fault, when page's anon_vma and index
2024 	 * are set.  But now set the vm_pgoff it will almost certainly
2025 	 * end up with (unless mremap moves it elsewhere before that
2026 	 * first wfault), so /proc/pid/maps tells a consistent story.
2027 	 *
2028 	 * By setting it to reflect the virtual start address of the
2029 	 * vma, merges and splits can happen in a seamless way, just
2030 	 * using the existing file pgoff checks and manipulations.
2031 	 * Similarly in do_mmap_pgoff and in do_brk.
2032 	 */
2033 	if (!vma->vm_file) {
2034 		BUG_ON(vma->anon_vma);
2035 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2036 	}
2037 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2038 	if (__vma && __vma->vm_start < vma->vm_end)
2039 		return -ENOMEM;
2040 	if ((vma->vm_flags & VM_ACCOUNT) &&
2041 	     security_vm_enough_memory(vma_pages(vma)))
2042 		return -ENOMEM;
2043 	vma_link(mm, vma, prev, rb_link, rb_parent);
2044 	return 0;
2045 }
2046 
2047 /*
2048  * Copy the vma structure to a new location in the same mm,
2049  * prior to moving page table entries, to effect an mremap move.
2050  */
2051 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2052 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2053 {
2054 	struct vm_area_struct *vma = *vmap;
2055 	unsigned long vma_start = vma->vm_start;
2056 	struct mm_struct *mm = vma->vm_mm;
2057 	struct vm_area_struct *new_vma, *prev;
2058 	struct rb_node **rb_link, *rb_parent;
2059 	struct mempolicy *pol;
2060 
2061 	/*
2062 	 * If anonymous vma has not yet been faulted, update new pgoff
2063 	 * to match new location, to increase its chance of merging.
2064 	 */
2065 	if (!vma->vm_file && !vma->anon_vma)
2066 		pgoff = addr >> PAGE_SHIFT;
2067 
2068 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2069 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2070 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2071 	if (new_vma) {
2072 		/*
2073 		 * Source vma may have been merged into new_vma
2074 		 */
2075 		if (vma_start >= new_vma->vm_start &&
2076 		    vma_start < new_vma->vm_end)
2077 			*vmap = new_vma;
2078 	} else {
2079 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2080 		if (new_vma) {
2081 			*new_vma = *vma;
2082 			pol = mpol_copy(vma_policy(vma));
2083 			if (IS_ERR(pol)) {
2084 				kmem_cache_free(vm_area_cachep, new_vma);
2085 				return NULL;
2086 			}
2087 			vma_set_policy(new_vma, pol);
2088 			new_vma->vm_start = addr;
2089 			new_vma->vm_end = addr + len;
2090 			new_vma->vm_pgoff = pgoff;
2091 			if (new_vma->vm_file)
2092 				get_file(new_vma->vm_file);
2093 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2094 				new_vma->vm_ops->open(new_vma);
2095 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2096 		}
2097 	}
2098 	return new_vma;
2099 }
2100 
2101 /*
2102  * Return true if the calling process may expand its vm space by the passed
2103  * number of pages
2104  */
2105 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2106 {
2107 	unsigned long cur = mm->total_vm;	/* pages */
2108 	unsigned long lim;
2109 
2110 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2111 
2112 	if (cur + npages > lim)
2113 		return 0;
2114 	return 1;
2115 }
2116 
2117 
2118 static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2119 					   unsigned long address, int *type)
2120 {
2121 	struct page **pages;
2122 
2123 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2124 
2125 	address -= vma->vm_start;
2126 	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2127 		address -= PAGE_SIZE;
2128 
2129 	if (*pages) {
2130 		struct page *page = *pages;
2131 		get_page(page);
2132 		return page;
2133 	}
2134 
2135 	return NOPAGE_SIGBUS;
2136 }
2137 
2138 /*
2139  * Having a close hook prevents vma merging regardless of flags.
2140  */
2141 static void special_mapping_close(struct vm_area_struct *vma)
2142 {
2143 }
2144 
2145 static struct vm_operations_struct special_mapping_vmops = {
2146 	.close = special_mapping_close,
2147 	.nopage	= special_mapping_nopage,
2148 };
2149 
2150 /*
2151  * Called with mm->mmap_sem held for writing.
2152  * Insert a new vma covering the given region, with the given flags.
2153  * Its pages are supplied by the given array of struct page *.
2154  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2155  * The region past the last page supplied will always produce SIGBUS.
2156  * The array pointer and the pages it points to are assumed to stay alive
2157  * for as long as this mapping might exist.
2158  */
2159 int install_special_mapping(struct mm_struct *mm,
2160 			    unsigned long addr, unsigned long len,
2161 			    unsigned long vm_flags, struct page **pages)
2162 {
2163 	struct vm_area_struct *vma;
2164 
2165 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2166 	if (unlikely(vma == NULL))
2167 		return -ENOMEM;
2168 
2169 	vma->vm_mm = mm;
2170 	vma->vm_start = addr;
2171 	vma->vm_end = addr + len;
2172 
2173 	vma->vm_flags = vm_flags | mm->def_flags;
2174 	vma->vm_page_prot = protection_map[vma->vm_flags & 7];
2175 
2176 	vma->vm_ops = &special_mapping_vmops;
2177 	vma->vm_private_data = pages;
2178 
2179 	if (unlikely(insert_vm_struct(mm, vma))) {
2180 		kmem_cache_free(vm_area_cachep, vma);
2181 		return -ENOMEM;
2182 	}
2183 
2184 	mm->total_vm += len >> PAGE_SHIFT;
2185 
2186 	return 0;
2187 }
2188