xref: /linux/mm/mmap.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 				      struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397 	struct file *file = vma->vm_file;
398 	struct address_space *mapping;
399 
400 	if (file) {
401 		mapping = file->f_mapping;
402 		i_mmap_lock_write(mapping);
403 		__vma_link_file(vma, mapping);
404 		i_mmap_unlock_write(mapping);
405 	}
406 }
407 
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410 	VMA_ITERATOR(vmi, mm, 0);
411 
412 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413 	if (vma_iter_prealloc(&vmi, vma))
414 		return -ENOMEM;
415 
416 	vma_start_write(vma);
417 	vma_iter_store(&vmi, vma);
418 	vma_link_file(vma);
419 	mm->map_count++;
420 	validate_mm(mm);
421 	return 0;
422 }
423 
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433 		struct vm_area_struct *vma, struct vm_area_struct *next,
434 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436 	memset(vp, 0, sizeof(struct vma_prepare));
437 	vp->vma = vma;
438 	vp->anon_vma = vma->anon_vma;
439 	vp->remove = remove;
440 	vp->remove2 = remove2;
441 	vp->adj_next = next;
442 	if (!vp->anon_vma && next)
443 		vp->anon_vma = next->anon_vma;
444 
445 	vp->file = vma->vm_file;
446 	if (vp->file)
447 		vp->mapping = vma->vm_file->f_mapping;
448 
449 }
450 
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457 				 struct vm_area_struct *vma)
458 {
459 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461 
462 
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469 	if (vp->file) {
470 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471 
472 		if (vp->adj_next)
473 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474 				      vp->adj_next->vm_end);
475 
476 		i_mmap_lock_write(vp->mapping);
477 		if (vp->insert && vp->insert->vm_file) {
478 			/*
479 			 * Put into interval tree now, so instantiated pages
480 			 * are visible to arm/parisc __flush_dcache_page
481 			 * throughout; but we cannot insert into address
482 			 * space until vma start or end is updated.
483 			 */
484 			__vma_link_file(vp->insert,
485 					vp->insert->vm_file->f_mapping);
486 		}
487 	}
488 
489 	if (vp->anon_vma) {
490 		anon_vma_lock_write(vp->anon_vma);
491 		anon_vma_interval_tree_pre_update_vma(vp->vma);
492 		if (vp->adj_next)
493 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494 	}
495 
496 	if (vp->file) {
497 		flush_dcache_mmap_lock(vp->mapping);
498 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499 		if (vp->adj_next)
500 			vma_interval_tree_remove(vp->adj_next,
501 						 &vp->mapping->i_mmap);
502 	}
503 
504 }
505 
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515 				struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517 	if (vp->file) {
518 		if (vp->adj_next)
519 			vma_interval_tree_insert(vp->adj_next,
520 						 &vp->mapping->i_mmap);
521 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522 		flush_dcache_mmap_unlock(vp->mapping);
523 	}
524 
525 	if (vp->remove && vp->file) {
526 		__remove_shared_vm_struct(vp->remove, vp->mapping);
527 		if (vp->remove2)
528 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
529 	} else if (vp->insert) {
530 		/*
531 		 * split_vma has split insert from vma, and needs
532 		 * us to insert it before dropping the locks
533 		 * (it may either follow vma or precede it).
534 		 */
535 		vma_iter_store(vmi, vp->insert);
536 		mm->map_count++;
537 	}
538 
539 	if (vp->anon_vma) {
540 		anon_vma_interval_tree_post_update_vma(vp->vma);
541 		if (vp->adj_next)
542 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
543 		anon_vma_unlock_write(vp->anon_vma);
544 	}
545 
546 	if (vp->file) {
547 		i_mmap_unlock_write(vp->mapping);
548 		uprobe_mmap(vp->vma);
549 
550 		if (vp->adj_next)
551 			uprobe_mmap(vp->adj_next);
552 	}
553 
554 	if (vp->remove) {
555 again:
556 		vma_mark_detached(vp->remove, true);
557 		if (vp->file) {
558 			uprobe_munmap(vp->remove, vp->remove->vm_start,
559 				      vp->remove->vm_end);
560 			fput(vp->file);
561 		}
562 		if (vp->remove->anon_vma)
563 			anon_vma_merge(vp->vma, vp->remove);
564 		mm->map_count--;
565 		mpol_put(vma_policy(vp->remove));
566 		if (!vp->remove2)
567 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568 		vm_area_free(vp->remove);
569 
570 		/*
571 		 * In mprotect's case 6 (see comments on vma_merge),
572 		 * we are removing both mid and next vmas
573 		 */
574 		if (vp->remove2) {
575 			vp->remove = vp->remove2;
576 			vp->remove2 = NULL;
577 			goto again;
578 		}
579 	}
580 	if (vp->insert && vp->file)
581 		uprobe_mmap(vp->insert);
582 	validate_mm(mm);
583 }
584 
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594 		struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596 	/*
597 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
598 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599 	 * anon pages imported.
600 	 */
601 	if (src->anon_vma && !dst->anon_vma) {
602 		int ret;
603 
604 		vma_assert_write_locked(dst);
605 		dst->anon_vma = src->anon_vma;
606 		ret = anon_vma_clone(dst, src);
607 		if (ret)
608 			return ret;
609 
610 		*dup = dst;
611 	}
612 
613 	return 0;
614 }
615 
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634 	       unsigned long start, unsigned long end, pgoff_t pgoff,
635 	       struct vm_area_struct *next)
636 {
637 	struct vm_area_struct *anon_dup = NULL;
638 	bool remove_next = false;
639 	struct vma_prepare vp;
640 
641 	vma_start_write(vma);
642 	if (next && (vma != next) && (end == next->vm_end)) {
643 		int ret;
644 
645 		remove_next = true;
646 		vma_start_write(next);
647 		ret = dup_anon_vma(vma, next, &anon_dup);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653 	/* Not merging but overwriting any part of next is not handled. */
654 	VM_WARN_ON(next && !vp.remove &&
655 		  next != vma && end > next->vm_start);
656 	/* Only handles expanding */
657 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658 
659 	/* Note: vma iterator must be pointing to 'start' */
660 	vma_iter_config(vmi, start, end);
661 	if (vma_iter_prealloc(vmi, vma))
662 		goto nomem;
663 
664 	vma_prepare(&vp);
665 	vma_adjust_trans_huge(vma, start, end, 0);
666 	vma_set_range(vma, start, end, pgoff);
667 	vma_iter_store(vmi, vma);
668 
669 	vma_complete(&vp, vmi, vma->vm_mm);
670 	return 0;
671 
672 nomem:
673 	if (anon_dup)
674 		unlink_anon_vmas(anon_dup);
675 	return -ENOMEM;
676 }
677 
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688 	       unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690 	struct vma_prepare vp;
691 
692 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693 
694 	if (vma->vm_start < start)
695 		vma_iter_config(vmi, vma->vm_start, start);
696 	else
697 		vma_iter_config(vmi, end, vma->vm_end);
698 
699 	if (vma_iter_prealloc(vmi, NULL))
700 		return -ENOMEM;
701 
702 	vma_start_write(vma);
703 
704 	init_vma_prep(&vp, vma);
705 	vma_prepare(&vp);
706 	vma_adjust_trans_huge(vma, start, end, 0);
707 
708 	vma_iter_clear(vmi);
709 	vma_set_range(vma, start, end, pgoff);
710 	vma_complete(&vp, vmi, vma->vm_mm);
711 	return 0;
712 }
713 
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720 		struct file *file, unsigned long vm_flags,
721 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722 		struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724 	/*
725 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726 	 * match the flags but dirty bit -- the caller should mark
727 	 * merged VMA as dirty. If dirty bit won't be excluded from
728 	 * comparison, we increase pressure on the memory system forcing
729 	 * the kernel to generate new VMAs when old one could be
730 	 * extended instead.
731 	 */
732 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733 		return false;
734 	if (vma->vm_file != file)
735 		return false;
736 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737 		return false;
738 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739 		return false;
740 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741 		return false;
742 	return true;
743 }
744 
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748 	/*
749 	 * The list_is_singular() test is to avoid merging VMA cloned from
750 	 * parents. This can improve scalability caused by anon_vma lock.
751 	 */
752 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
753 		list_is_singular(&vma->anon_vma_chain)))
754 		return true;
755 	return anon_vma1 == anon_vma2;
756 }
757 
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773 		struct anon_vma *anon_vma, struct file *file,
774 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775 		struct anon_vma_name *anon_name)
776 {
777 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779 		if (vma->vm_pgoff == vm_pgoff)
780 			return true;
781 	}
782 	return false;
783 }
784 
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796 		struct anon_vma *anon_vma, struct file *file,
797 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798 		struct anon_vma_name *anon_name)
799 {
800 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802 		pgoff_t vm_pglen;
803 		vm_pglen = vma_pages(vma);
804 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805 			return true;
806 	}
807 	return false;
808 }
809 
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
865 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867 	   struct anon_vma_name *anon_name)
868 {
869 	struct mm_struct *mm = src->vm_mm;
870 	struct anon_vma *anon_vma = src->anon_vma;
871 	struct file *file = src->vm_file;
872 	struct vm_area_struct *curr, *next, *res;
873 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
874 	struct vm_area_struct *anon_dup = NULL;
875 	struct vma_prepare vp;
876 	pgoff_t vma_pgoff;
877 	int err = 0;
878 	bool merge_prev = false;
879 	bool merge_next = false;
880 	bool vma_expanded = false;
881 	unsigned long vma_start = addr;
882 	unsigned long vma_end = end;
883 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884 	long adj_start = 0;
885 
886 	/*
887 	 * We later require that vma->vm_flags == vm_flags,
888 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
889 	 */
890 	if (vm_flags & VM_SPECIAL)
891 		return NULL;
892 
893 	/* Does the input range span an existing VMA? (cases 5 - 8) */
894 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895 
896 	if (!curr ||			/* cases 1 - 4 */
897 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
898 		next = vma_lookup(mm, end);
899 	else
900 		next = NULL;		/* case 5 */
901 
902 	if (prev) {
903 		vma_start = prev->vm_start;
904 		vma_pgoff = prev->vm_pgoff;
905 
906 		/* Can we merge the predecessor? */
907 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
910 			merge_prev = true;
911 			vma_prev(vmi);
912 		}
913 	}
914 
915 	/* Can we merge the successor? */
916 	if (next && mpol_equal(policy, vma_policy(next)) &&
917 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918 				 vm_userfaultfd_ctx, anon_name)) {
919 		merge_next = true;
920 	}
921 
922 	/* Verify some invariant that must be enforced by the caller. */
923 	VM_WARN_ON(prev && addr <= prev->vm_start);
924 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925 	VM_WARN_ON(addr >= end);
926 
927 	if (!merge_prev && !merge_next)
928 		return NULL; /* Not mergeable. */
929 
930 	if (merge_prev)
931 		vma_start_write(prev);
932 
933 	res = vma = prev;
934 	remove = remove2 = adjust = NULL;
935 
936 	/* Can we merge both the predecessor and the successor? */
937 	if (merge_prev && merge_next &&
938 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939 		vma_start_write(next);
940 		remove = next;				/* case 1 */
941 		vma_end = next->vm_end;
942 		err = dup_anon_vma(prev, next, &anon_dup);
943 		if (curr) {				/* case 6 */
944 			vma_start_write(curr);
945 			remove = curr;
946 			remove2 = next;
947 			/*
948 			 * Note that the dup_anon_vma below cannot overwrite err
949 			 * since the first caller would do nothing unless next
950 			 * has an anon_vma.
951 			 */
952 			if (!next->anon_vma)
953 				err = dup_anon_vma(prev, curr, &anon_dup);
954 		}
955 	} else if (merge_prev) {			/* case 2 */
956 		if (curr) {
957 			vma_start_write(curr);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				/*
960 				 * can_vma_merge_after() assumed we would not be
961 				 * removing prev vma, so it skipped the check
962 				 * for vm_ops->close, but we are removing curr
963 				 */
964 				if (curr->vm_ops && curr->vm_ops->close)
965 					err = -EINVAL;
966 				remove = curr;
967 			} else {			/* case 5 */
968 				adjust = curr;
969 				adj_start = (end - curr->vm_start);
970 			}
971 			if (!err)
972 				err = dup_anon_vma(prev, curr, &anon_dup);
973 		}
974 	} else { /* merge_next */
975 		vma_start_write(next);
976 		res = next;
977 		if (prev && addr < prev->vm_end) {	/* case 4 */
978 			vma_start_write(prev);
979 			vma_end = addr;
980 			adjust = next;
981 			adj_start = -(prev->vm_end - addr);
982 			err = dup_anon_vma(next, prev, &anon_dup);
983 		} else {
984 			/*
985 			 * Note that cases 3 and 8 are the ONLY ones where prev
986 			 * is permitted to be (but is not necessarily) NULL.
987 			 */
988 			vma = next;			/* case 3 */
989 			vma_start = addr;
990 			vma_end = next->vm_end;
991 			vma_pgoff = next->vm_pgoff - pglen;
992 			if (curr) {			/* case 8 */
993 				vma_pgoff = curr->vm_pgoff;
994 				vma_start_write(curr);
995 				remove = curr;
996 				err = dup_anon_vma(next, curr, &anon_dup);
997 			}
998 		}
999 	}
1000 
1001 	/* Error in anon_vma clone. */
1002 	if (err)
1003 		goto anon_vma_fail;
1004 
1005 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006 		vma_expanded = true;
1007 
1008 	if (vma_expanded) {
1009 		vma_iter_config(vmi, vma_start, vma_end);
1010 	} else {
1011 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012 				adjust->vm_end);
1013 	}
1014 
1015 	if (vma_iter_prealloc(vmi, vma))
1016 		goto prealloc_fail;
1017 
1018 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020 		   vp.anon_vma != adjust->anon_vma);
1021 
1022 	vma_prepare(&vp);
1023 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025 
1026 	if (vma_expanded)
1027 		vma_iter_store(vmi, vma);
1028 
1029 	if (adj_start) {
1030 		adjust->vm_start += adj_start;
1031 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032 		if (adj_start < 0) {
1033 			WARN_ON(vma_expanded);
1034 			vma_iter_store(vmi, next);
1035 		}
1036 	}
1037 
1038 	vma_complete(&vp, vmi, mm);
1039 	khugepaged_enter_vma(res, vm_flags);
1040 	return res;
1041 
1042 prealloc_fail:
1043 	if (anon_dup)
1044 		unlink_anon_vmas(anon_dup);
1045 
1046 anon_vma_fail:
1047 	vma_iter_set(vmi, addr);
1048 	vma_iter_load(vmi);
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067 	return a->vm_end == b->vm_start &&
1068 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069 		a->vm_file == b->vm_file &&
1070 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073 
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098 	if (anon_vma_compatible(a, b)) {
1099 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100 
1101 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102 			return anon_vma;
1103 	}
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117 	struct anon_vma *anon_vma = NULL;
1118 	struct vm_area_struct *prev, *next;
1119 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120 
1121 	/* Try next first. */
1122 	next = vma_iter_load(&vmi);
1123 	if (next) {
1124 		anon_vma = reusable_anon_vma(next, vma, next);
1125 		if (anon_vma)
1126 			return anon_vma;
1127 	}
1128 
1129 	prev = vma_prev(&vmi);
1130 	VM_BUG_ON_VMA(prev != vma, vma);
1131 	prev = vma_prev(&vmi);
1132 	/* Try prev next. */
1133 	if (prev)
1134 		anon_vma = reusable_anon_vma(prev, prev, vma);
1135 
1136 	/*
1137 	 * We might reach here with anon_vma == NULL if we can't find
1138 	 * any reusable anon_vma.
1139 	 * There's no absolute need to look only at touching neighbours:
1140 	 * we could search further afield for "compatible" anon_vmas.
1141 	 * But it would probably just be a waste of time searching,
1142 	 * or lead to too many vmas hanging off the same anon_vma.
1143 	 * We're trying to allow mprotect remerging later on,
1144 	 * not trying to minimize memory used for anon_vmas.
1145 	 */
1146 	return anon_vma;
1147 }
1148 
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155 	hint &= PAGE_MASK;
1156 	if (((void *)hint != NULL) &&
1157 	    (hint < mmap_min_addr))
1158 		return PAGE_ALIGN(mmap_min_addr);
1159 	return hint;
1160 }
1161 
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163 			unsigned long bytes)
1164 {
1165 	unsigned long locked_pages, limit_pages;
1166 
1167 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168 		return true;
1169 
1170 	locked_pages = bytes >> PAGE_SHIFT;
1171 	locked_pages += mm->locked_vm;
1172 
1173 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174 	limit_pages >>= PAGE_SHIFT;
1175 
1176 	return locked_pages <= limit_pages;
1177 }
1178 
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181 	if (S_ISREG(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	if (S_ISBLK(inode->i_mode))
1185 		return MAX_LFS_FILESIZE;
1186 
1187 	if (S_ISSOCK(inode->i_mode))
1188 		return MAX_LFS_FILESIZE;
1189 
1190 	/* Special "we do even unsigned file positions" case */
1191 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192 		return 0;
1193 
1194 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195 	return ULONG_MAX;
1196 }
1197 
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199 				unsigned long pgoff, unsigned long len)
1200 {
1201 	u64 maxsize = file_mmap_size_max(file, inode);
1202 
1203 	if (maxsize && len > maxsize)
1204 		return false;
1205 	maxsize -= len;
1206 	if (pgoff > maxsize >> PAGE_SHIFT)
1207 		return false;
1208 	return true;
1209 }
1210 
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215 			unsigned long len, unsigned long prot,
1216 			unsigned long flags, vm_flags_t vm_flags,
1217 			unsigned long pgoff, unsigned long *populate,
1218 			struct list_head *uf)
1219 {
1220 	struct mm_struct *mm = current->mm;
1221 	int pkey = 0;
1222 
1223 	*populate = 0;
1224 
1225 	if (!len)
1226 		return -EINVAL;
1227 
1228 	/*
1229 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230 	 *
1231 	 * (the exception is when the underlying filesystem is noexec
1232 	 *  mounted, in which case we don't add PROT_EXEC.)
1233 	 */
1234 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235 		if (!(file && path_noexec(&file->f_path)))
1236 			prot |= PROT_EXEC;
1237 
1238 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239 	if (flags & MAP_FIXED_NOREPLACE)
1240 		flags |= MAP_FIXED;
1241 
1242 	if (!(flags & MAP_FIXED))
1243 		addr = round_hint_to_min(addr);
1244 
1245 	/* Careful about overflows.. */
1246 	len = PAGE_ALIGN(len);
1247 	if (!len)
1248 		return -ENOMEM;
1249 
1250 	/* offset overflow? */
1251 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252 		return -EOVERFLOW;
1253 
1254 	/* Too many mappings? */
1255 	if (mm->map_count > sysctl_max_map_count)
1256 		return -ENOMEM;
1257 
1258 	if (prot == PROT_EXEC) {
1259 		pkey = execute_only_pkey(mm);
1260 		if (pkey < 0)
1261 			pkey = 0;
1262 	}
1263 
1264 	/* Do simple checking here so the lower-level routines won't have
1265 	 * to. we assume access permissions have been handled by the open
1266 	 * of the memory object, so we don't do any here.
1267 	 */
1268 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1270 
1271 	/* Obtain the address to map to. we verify (or select) it and ensure
1272 	 * that it represents a valid section of the address space.
1273 	 */
1274 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1275 	if (IS_ERR_VALUE(addr))
1276 		return addr;
1277 
1278 	if (flags & MAP_FIXED_NOREPLACE) {
1279 		if (find_vma_intersection(mm, addr, addr + len))
1280 			return -EEXIST;
1281 	}
1282 
1283 	if (flags & MAP_LOCKED)
1284 		if (!can_do_mlock())
1285 			return -EPERM;
1286 
1287 	if (!mlock_future_ok(mm, vm_flags, len))
1288 		return -EAGAIN;
1289 
1290 	if (file) {
1291 		struct inode *inode = file_inode(file);
1292 		unsigned long flags_mask;
1293 
1294 		if (!file_mmap_ok(file, inode, pgoff, len))
1295 			return -EOVERFLOW;
1296 
1297 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1298 
1299 		switch (flags & MAP_TYPE) {
1300 		case MAP_SHARED:
1301 			/*
1302 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1303 			 * flags. E.g. MAP_SYNC is dangerous to use with
1304 			 * MAP_SHARED as you don't know which consistency model
1305 			 * you will get. We silently ignore unsupported flags
1306 			 * with MAP_SHARED to preserve backward compatibility.
1307 			 */
1308 			flags &= LEGACY_MAP_MASK;
1309 			fallthrough;
1310 		case MAP_SHARED_VALIDATE:
1311 			if (flags & ~flags_mask)
1312 				return -EOPNOTSUPP;
1313 			if (prot & PROT_WRITE) {
1314 				if (!(file->f_mode & FMODE_WRITE))
1315 					return -EACCES;
1316 				if (IS_SWAPFILE(file->f_mapping->host))
1317 					return -ETXTBSY;
1318 			}
1319 
1320 			/*
1321 			 * Make sure we don't allow writing to an append-only
1322 			 * file..
1323 			 */
1324 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1325 				return -EACCES;
1326 
1327 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1328 			if (!(file->f_mode & FMODE_WRITE))
1329 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1330 			fallthrough;
1331 		case MAP_PRIVATE:
1332 			if (!(file->f_mode & FMODE_READ))
1333 				return -EACCES;
1334 			if (path_noexec(&file->f_path)) {
1335 				if (vm_flags & VM_EXEC)
1336 					return -EPERM;
1337 				vm_flags &= ~VM_MAYEXEC;
1338 			}
1339 
1340 			if (!file->f_op->mmap)
1341 				return -ENODEV;
1342 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1343 				return -EINVAL;
1344 			break;
1345 
1346 		default:
1347 			return -EINVAL;
1348 		}
1349 	} else {
1350 		switch (flags & MAP_TYPE) {
1351 		case MAP_SHARED:
1352 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353 				return -EINVAL;
1354 			/*
1355 			 * Ignore pgoff.
1356 			 */
1357 			pgoff = 0;
1358 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1359 			break;
1360 		case MAP_PRIVATE:
1361 			/*
1362 			 * Set pgoff according to addr for anon_vma.
1363 			 */
1364 			pgoff = addr >> PAGE_SHIFT;
1365 			break;
1366 		default:
1367 			return -EINVAL;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Set 'VM_NORESERVE' if we should not account for the
1373 	 * memory use of this mapping.
1374 	 */
1375 	if (flags & MAP_NORESERVE) {
1376 		/* We honor MAP_NORESERVE if allowed to overcommit */
1377 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1378 			vm_flags |= VM_NORESERVE;
1379 
1380 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1381 		if (file && is_file_hugepages(file))
1382 			vm_flags |= VM_NORESERVE;
1383 	}
1384 
1385 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1386 	if (!IS_ERR_VALUE(addr) &&
1387 	    ((vm_flags & VM_LOCKED) ||
1388 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1389 		*populate = len;
1390 	return addr;
1391 }
1392 
1393 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1394 			      unsigned long prot, unsigned long flags,
1395 			      unsigned long fd, unsigned long pgoff)
1396 {
1397 	struct file *file = NULL;
1398 	unsigned long retval;
1399 
1400 	if (!(flags & MAP_ANONYMOUS)) {
1401 		audit_mmap_fd(fd, flags);
1402 		file = fget(fd);
1403 		if (!file)
1404 			return -EBADF;
1405 		if (is_file_hugepages(file)) {
1406 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1407 		} else if (unlikely(flags & MAP_HUGETLB)) {
1408 			retval = -EINVAL;
1409 			goto out_fput;
1410 		}
1411 	} else if (flags & MAP_HUGETLB) {
1412 		struct hstate *hs;
1413 
1414 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415 		if (!hs)
1416 			return -EINVAL;
1417 
1418 		len = ALIGN(len, huge_page_size(hs));
1419 		/*
1420 		 * VM_NORESERVE is used because the reservations will be
1421 		 * taken when vm_ops->mmap() is called
1422 		 */
1423 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1424 				VM_NORESERVE,
1425 				HUGETLB_ANONHUGE_INODE,
1426 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427 		if (IS_ERR(file))
1428 			return PTR_ERR(file);
1429 	}
1430 
1431 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1432 out_fput:
1433 	if (file)
1434 		fput(file);
1435 	return retval;
1436 }
1437 
1438 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1439 		unsigned long, prot, unsigned long, flags,
1440 		unsigned long, fd, unsigned long, pgoff)
1441 {
1442 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1443 }
1444 
1445 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1446 struct mmap_arg_struct {
1447 	unsigned long addr;
1448 	unsigned long len;
1449 	unsigned long prot;
1450 	unsigned long flags;
1451 	unsigned long fd;
1452 	unsigned long offset;
1453 };
1454 
1455 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1456 {
1457 	struct mmap_arg_struct a;
1458 
1459 	if (copy_from_user(&a, arg, sizeof(a)))
1460 		return -EFAULT;
1461 	if (offset_in_page(a.offset))
1462 		return -EINVAL;
1463 
1464 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1465 			       a.offset >> PAGE_SHIFT);
1466 }
1467 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1468 
1469 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1470 {
1471 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1472 }
1473 
1474 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1475 {
1476 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1477 		(VM_WRITE | VM_SHARED);
1478 }
1479 
1480 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1481 {
1482 	/* No managed pages to writeback. */
1483 	if (vma->vm_flags & VM_PFNMAP)
1484 		return false;
1485 
1486 	return vma->vm_file && vma->vm_file->f_mapping &&
1487 		mapping_can_writeback(vma->vm_file->f_mapping);
1488 }
1489 
1490 /*
1491  * Does this VMA require the underlying folios to have their dirty state
1492  * tracked?
1493  */
1494 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1495 {
1496 	/* Only shared, writable VMAs require dirty tracking. */
1497 	if (!vma_is_shared_writable(vma))
1498 		return false;
1499 
1500 	/* Does the filesystem need to be notified? */
1501 	if (vm_ops_needs_writenotify(vma->vm_ops))
1502 		return true;
1503 
1504 	/*
1505 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1506 	 * can writeback, dirty tracking is still required.
1507 	 */
1508 	return vma_fs_can_writeback(vma);
1509 }
1510 
1511 /*
1512  * Some shared mappings will want the pages marked read-only
1513  * to track write events. If so, we'll downgrade vm_page_prot
1514  * to the private version (using protection_map[] without the
1515  * VM_SHARED bit).
1516  */
1517 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1518 {
1519 	/* If it was private or non-writable, the write bit is already clear */
1520 	if (!vma_is_shared_writable(vma))
1521 		return false;
1522 
1523 	/* The backer wishes to know when pages are first written to? */
1524 	if (vm_ops_needs_writenotify(vma->vm_ops))
1525 		return true;
1526 
1527 	/* The open routine did something to the protections that pgprot_modify
1528 	 * won't preserve? */
1529 	if (pgprot_val(vm_page_prot) !=
1530 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1531 		return false;
1532 
1533 	/*
1534 	 * Do we need to track softdirty? hugetlb does not support softdirty
1535 	 * tracking yet.
1536 	 */
1537 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1538 		return true;
1539 
1540 	/* Do we need write faults for uffd-wp tracking? */
1541 	if (userfaultfd_wp(vma))
1542 		return true;
1543 
1544 	/* Can the mapping track the dirty pages? */
1545 	return vma_fs_can_writeback(vma);
1546 }
1547 
1548 /*
1549  * We account for memory if it's a private writeable mapping,
1550  * not hugepages and VM_NORESERVE wasn't set.
1551  */
1552 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553 {
1554 	/*
1555 	 * hugetlb has its own accounting separate from the core VM
1556 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1557 	 */
1558 	if (file && is_file_hugepages(file))
1559 		return false;
1560 
1561 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562 }
1563 
1564 /**
1565  * unmapped_area() - Find an area between the low_limit and the high_limit with
1566  * the correct alignment and offset, all from @info. Note: current->mm is used
1567  * for the search.
1568  *
1569  * @info: The unmapped area information including the range [low_limit -
1570  * high_limit), the alignment offset and mask.
1571  *
1572  * Return: A memory address or -ENOMEM.
1573  */
1574 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1575 {
1576 	unsigned long length, gap;
1577 	unsigned long low_limit, high_limit;
1578 	struct vm_area_struct *tmp;
1579 	VMA_ITERATOR(vmi, current->mm, 0);
1580 
1581 	/* Adjust search length to account for worst case alignment overhead */
1582 	length = info->length + info->align_mask + info->start_gap;
1583 	if (length < info->length)
1584 		return -ENOMEM;
1585 
1586 	low_limit = info->low_limit;
1587 	if (low_limit < mmap_min_addr)
1588 		low_limit = mmap_min_addr;
1589 	high_limit = info->high_limit;
1590 retry:
1591 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1592 		return -ENOMEM;
1593 
1594 	/*
1595 	 * Adjust for the gap first so it doesn't interfere with the
1596 	 * later alignment. The first step is the minimum needed to
1597 	 * fulill the start gap, the next steps is the minimum to align
1598 	 * that. It is the minimum needed to fulill both.
1599 	 */
1600 	gap = vma_iter_addr(&vmi) + info->start_gap;
1601 	gap += (info->align_offset - gap) & info->align_mask;
1602 	tmp = vma_next(&vmi);
1603 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1604 		if (vm_start_gap(tmp) < gap + length - 1) {
1605 			low_limit = tmp->vm_end;
1606 			vma_iter_reset(&vmi);
1607 			goto retry;
1608 		}
1609 	} else {
1610 		tmp = vma_prev(&vmi);
1611 		if (tmp && vm_end_gap(tmp) > gap) {
1612 			low_limit = vm_end_gap(tmp);
1613 			vma_iter_reset(&vmi);
1614 			goto retry;
1615 		}
1616 	}
1617 
1618 	return gap;
1619 }
1620 
1621 /**
1622  * unmapped_area_topdown() - Find an area between the low_limit and the
1623  * high_limit with the correct alignment and offset at the highest available
1624  * address, all from @info. Note: current->mm is used for the search.
1625  *
1626  * @info: The unmapped area information including the range [low_limit -
1627  * high_limit), the alignment offset and mask.
1628  *
1629  * Return: A memory address or -ENOMEM.
1630  */
1631 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1632 {
1633 	unsigned long length, gap, gap_end;
1634 	unsigned long low_limit, high_limit;
1635 	struct vm_area_struct *tmp;
1636 	VMA_ITERATOR(vmi, current->mm, 0);
1637 
1638 	/* Adjust search length to account for worst case alignment overhead */
1639 	length = info->length + info->align_mask + info->start_gap;
1640 	if (length < info->length)
1641 		return -ENOMEM;
1642 
1643 	low_limit = info->low_limit;
1644 	if (low_limit < mmap_min_addr)
1645 		low_limit = mmap_min_addr;
1646 	high_limit = info->high_limit;
1647 retry:
1648 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1649 		return -ENOMEM;
1650 
1651 	gap = vma_iter_end(&vmi) - info->length;
1652 	gap -= (gap - info->align_offset) & info->align_mask;
1653 	gap_end = vma_iter_end(&vmi);
1654 	tmp = vma_next(&vmi);
1655 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1656 		if (vm_start_gap(tmp) < gap_end) {
1657 			high_limit = vm_start_gap(tmp);
1658 			vma_iter_reset(&vmi);
1659 			goto retry;
1660 		}
1661 	} else {
1662 		tmp = vma_prev(&vmi);
1663 		if (tmp && vm_end_gap(tmp) > gap) {
1664 			high_limit = tmp->vm_start;
1665 			vma_iter_reset(&vmi);
1666 			goto retry;
1667 		}
1668 	}
1669 
1670 	return gap;
1671 }
1672 
1673 /*
1674  * Search for an unmapped address range.
1675  *
1676  * We are looking for a range that:
1677  * - does not intersect with any VMA;
1678  * - is contained within the [low_limit, high_limit) interval;
1679  * - is at least the desired size.
1680  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1681  */
1682 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1683 {
1684 	unsigned long addr;
1685 
1686 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1687 		addr = unmapped_area_topdown(info);
1688 	else
1689 		addr = unmapped_area(info);
1690 
1691 	trace_vm_unmapped_area(addr, info);
1692 	return addr;
1693 }
1694 
1695 /* Get an address range which is currently unmapped.
1696  * For shmat() with addr=0.
1697  *
1698  * Ugly calling convention alert:
1699  * Return value with the low bits set means error value,
1700  * ie
1701  *	if (ret & ~PAGE_MASK)
1702  *		error = ret;
1703  *
1704  * This function "knows" that -ENOMEM has the bits set.
1705  */
1706 unsigned long
1707 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1708 			  unsigned long len, unsigned long pgoff,
1709 			  unsigned long flags)
1710 {
1711 	struct mm_struct *mm = current->mm;
1712 	struct vm_area_struct *vma, *prev;
1713 	struct vm_unmapped_area_info info = {};
1714 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1715 
1716 	if (len > mmap_end - mmap_min_addr)
1717 		return -ENOMEM;
1718 
1719 	if (flags & MAP_FIXED)
1720 		return addr;
1721 
1722 	if (addr) {
1723 		addr = PAGE_ALIGN(addr);
1724 		vma = find_vma_prev(mm, addr, &prev);
1725 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1726 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1727 		    (!prev || addr >= vm_end_gap(prev)))
1728 			return addr;
1729 	}
1730 
1731 	info.length = len;
1732 	info.low_limit = mm->mmap_base;
1733 	info.high_limit = mmap_end;
1734 	return vm_unmapped_area(&info);
1735 }
1736 
1737 #ifndef HAVE_ARCH_UNMAPPED_AREA
1738 unsigned long
1739 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740 		       unsigned long len, unsigned long pgoff,
1741 		       unsigned long flags)
1742 {
1743 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744 }
1745 #endif
1746 
1747 /*
1748  * This mmap-allocator allocates new areas top-down from below the
1749  * stack's low limit (the base):
1750  */
1751 unsigned long
1752 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753 				  unsigned long len, unsigned long pgoff,
1754 				  unsigned long flags)
1755 {
1756 	struct vm_area_struct *vma, *prev;
1757 	struct mm_struct *mm = current->mm;
1758 	struct vm_unmapped_area_info info = {};
1759 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760 
1761 	/* requested length too big for entire address space */
1762 	if (len > mmap_end - mmap_min_addr)
1763 		return -ENOMEM;
1764 
1765 	if (flags & MAP_FIXED)
1766 		return addr;
1767 
1768 	/* requesting a specific address */
1769 	if (addr) {
1770 		addr = PAGE_ALIGN(addr);
1771 		vma = find_vma_prev(mm, addr, &prev);
1772 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773 				(!vma || addr + len <= vm_start_gap(vma)) &&
1774 				(!prev || addr >= vm_end_gap(prev)))
1775 			return addr;
1776 	}
1777 
1778 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779 	info.length = len;
1780 	info.low_limit = PAGE_SIZE;
1781 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782 	addr = vm_unmapped_area(&info);
1783 
1784 	/*
1785 	 * A failed mmap() very likely causes application failure,
1786 	 * so fall back to the bottom-up function here. This scenario
1787 	 * can happen with large stack limits and large mmap()
1788 	 * allocations.
1789 	 */
1790 	if (offset_in_page(addr)) {
1791 		VM_BUG_ON(addr != -ENOMEM);
1792 		info.flags = 0;
1793 		info.low_limit = TASK_UNMAPPED_BASE;
1794 		info.high_limit = mmap_end;
1795 		addr = vm_unmapped_area(&info);
1796 	}
1797 
1798 	return addr;
1799 }
1800 
1801 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1802 unsigned long
1803 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1804 			       unsigned long len, unsigned long pgoff,
1805 			       unsigned long flags)
1806 {
1807 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1808 }
1809 #endif
1810 
1811 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1812 unsigned long
1813 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1814 			       unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1815 {
1816 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1817 }
1818 
1819 unsigned long
1820 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1821 				       unsigned long len, unsigned long pgoff,
1822 				       unsigned long flags, vm_flags_t vm_flags)
1823 {
1824 	return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1825 }
1826 #endif
1827 
1828 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1829 					   unsigned long addr, unsigned long len,
1830 					   unsigned long pgoff, unsigned long flags,
1831 					   vm_flags_t vm_flags)
1832 {
1833 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1834 		return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1835 							      flags, vm_flags);
1836 	return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1837 }
1838 
1839 unsigned long
1840 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1841 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1842 {
1843 	unsigned long (*get_area)(struct file *, unsigned long,
1844 				  unsigned long, unsigned long, unsigned long)
1845 				  = NULL;
1846 
1847 	unsigned long error = arch_mmap_check(addr, len, flags);
1848 	if (error)
1849 		return error;
1850 
1851 	/* Careful about overflows.. */
1852 	if (len > TASK_SIZE)
1853 		return -ENOMEM;
1854 
1855 	if (file) {
1856 		if (file->f_op->get_unmapped_area)
1857 			get_area = file->f_op->get_unmapped_area;
1858 	} else if (flags & MAP_SHARED) {
1859 		/*
1860 		 * mmap_region() will call shmem_zero_setup() to create a file,
1861 		 * so use shmem's get_unmapped_area in case it can be huge.
1862 		 */
1863 		get_area = shmem_get_unmapped_area;
1864 	}
1865 
1866 	/* Always treat pgoff as zero for anonymous memory. */
1867 	if (!file)
1868 		pgoff = 0;
1869 
1870 	if (get_area) {
1871 		addr = get_area(file, addr, len, pgoff, flags);
1872 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1873 		/* Ensures that larger anonymous mappings are THP aligned. */
1874 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
1875 						     pgoff, flags, vm_flags);
1876 	} else {
1877 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1878 						    pgoff, flags, vm_flags);
1879 	}
1880 	if (IS_ERR_VALUE(addr))
1881 		return addr;
1882 
1883 	if (addr > TASK_SIZE - len)
1884 		return -ENOMEM;
1885 	if (offset_in_page(addr))
1886 		return -EINVAL;
1887 
1888 	error = security_mmap_addr(addr);
1889 	return error ? error : addr;
1890 }
1891 
1892 unsigned long
1893 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1894 		     unsigned long addr, unsigned long len,
1895 		     unsigned long pgoff, unsigned long flags)
1896 {
1897 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1898 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1899 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1900 }
1901 EXPORT_SYMBOL(mm_get_unmapped_area);
1902 
1903 /**
1904  * find_vma_intersection() - Look up the first VMA which intersects the interval
1905  * @mm: The process address space.
1906  * @start_addr: The inclusive start user address.
1907  * @end_addr: The exclusive end user address.
1908  *
1909  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1910  * start_addr < end_addr.
1911  */
1912 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1913 					     unsigned long start_addr,
1914 					     unsigned long end_addr)
1915 {
1916 	unsigned long index = start_addr;
1917 
1918 	mmap_assert_locked(mm);
1919 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1920 }
1921 EXPORT_SYMBOL(find_vma_intersection);
1922 
1923 /**
1924  * find_vma() - Find the VMA for a given address, or the next VMA.
1925  * @mm: The mm_struct to check
1926  * @addr: The address
1927  *
1928  * Returns: The VMA associated with addr, or the next VMA.
1929  * May return %NULL in the case of no VMA at addr or above.
1930  */
1931 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1932 {
1933 	unsigned long index = addr;
1934 
1935 	mmap_assert_locked(mm);
1936 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1937 }
1938 EXPORT_SYMBOL(find_vma);
1939 
1940 /**
1941  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1942  * set %pprev to the previous VMA, if any.
1943  * @mm: The mm_struct to check
1944  * @addr: The address
1945  * @pprev: The pointer to set to the previous VMA
1946  *
1947  * Note that RCU lock is missing here since the external mmap_lock() is used
1948  * instead.
1949  *
1950  * Returns: The VMA associated with @addr, or the next vma.
1951  * May return %NULL in the case of no vma at addr or above.
1952  */
1953 struct vm_area_struct *
1954 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1955 			struct vm_area_struct **pprev)
1956 {
1957 	struct vm_area_struct *vma;
1958 	VMA_ITERATOR(vmi, mm, addr);
1959 
1960 	vma = vma_iter_load(&vmi);
1961 	*pprev = vma_prev(&vmi);
1962 	if (!vma)
1963 		vma = vma_next(&vmi);
1964 	return vma;
1965 }
1966 
1967 /*
1968  * Verify that the stack growth is acceptable and
1969  * update accounting. This is shared with both the
1970  * grow-up and grow-down cases.
1971  */
1972 static int acct_stack_growth(struct vm_area_struct *vma,
1973 			     unsigned long size, unsigned long grow)
1974 {
1975 	struct mm_struct *mm = vma->vm_mm;
1976 	unsigned long new_start;
1977 
1978 	/* address space limit tests */
1979 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1980 		return -ENOMEM;
1981 
1982 	/* Stack limit test */
1983 	if (size > rlimit(RLIMIT_STACK))
1984 		return -ENOMEM;
1985 
1986 	/* mlock limit tests */
1987 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1988 		return -ENOMEM;
1989 
1990 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1991 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1992 			vma->vm_end - size;
1993 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1994 		return -EFAULT;
1995 
1996 	/*
1997 	 * Overcommit..  This must be the final test, as it will
1998 	 * update security statistics.
1999 	 */
2000 	if (security_vm_enough_memory_mm(mm, grow))
2001 		return -ENOMEM;
2002 
2003 	return 0;
2004 }
2005 
2006 #if defined(CONFIG_STACK_GROWSUP)
2007 /*
2008  * PA-RISC uses this for its stack.
2009  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2010  */
2011 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2012 {
2013 	struct mm_struct *mm = vma->vm_mm;
2014 	struct vm_area_struct *next;
2015 	unsigned long gap_addr;
2016 	int error = 0;
2017 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2018 
2019 	if (!(vma->vm_flags & VM_GROWSUP))
2020 		return -EFAULT;
2021 
2022 	/* Guard against exceeding limits of the address space. */
2023 	address &= PAGE_MASK;
2024 	if (address >= (TASK_SIZE & PAGE_MASK))
2025 		return -ENOMEM;
2026 	address += PAGE_SIZE;
2027 
2028 	/* Enforce stack_guard_gap */
2029 	gap_addr = address + stack_guard_gap;
2030 
2031 	/* Guard against overflow */
2032 	if (gap_addr < address || gap_addr > TASK_SIZE)
2033 		gap_addr = TASK_SIZE;
2034 
2035 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2036 	if (next && vma_is_accessible(next)) {
2037 		if (!(next->vm_flags & VM_GROWSUP))
2038 			return -ENOMEM;
2039 		/* Check that both stack segments have the same anon_vma? */
2040 	}
2041 
2042 	if (next)
2043 		vma_iter_prev_range_limit(&vmi, address);
2044 
2045 	vma_iter_config(&vmi, vma->vm_start, address);
2046 	if (vma_iter_prealloc(&vmi, vma))
2047 		return -ENOMEM;
2048 
2049 	/* We must make sure the anon_vma is allocated. */
2050 	if (unlikely(anon_vma_prepare(vma))) {
2051 		vma_iter_free(&vmi);
2052 		return -ENOMEM;
2053 	}
2054 
2055 	/* Lock the VMA before expanding to prevent concurrent page faults */
2056 	vma_start_write(vma);
2057 	/*
2058 	 * vma->vm_start/vm_end cannot change under us because the caller
2059 	 * is required to hold the mmap_lock in read mode.  We need the
2060 	 * anon_vma lock to serialize against concurrent expand_stacks.
2061 	 */
2062 	anon_vma_lock_write(vma->anon_vma);
2063 
2064 	/* Somebody else might have raced and expanded it already */
2065 	if (address > vma->vm_end) {
2066 		unsigned long size, grow;
2067 
2068 		size = address - vma->vm_start;
2069 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2070 
2071 		error = -ENOMEM;
2072 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2073 			error = acct_stack_growth(vma, size, grow);
2074 			if (!error) {
2075 				/*
2076 				 * We only hold a shared mmap_lock lock here, so
2077 				 * we need to protect against concurrent vma
2078 				 * expansions.  anon_vma_lock_write() doesn't
2079 				 * help here, as we don't guarantee that all
2080 				 * growable vmas in a mm share the same root
2081 				 * anon vma.  So, we reuse mm->page_table_lock
2082 				 * to guard against concurrent vma expansions.
2083 				 */
2084 				spin_lock(&mm->page_table_lock);
2085 				if (vma->vm_flags & VM_LOCKED)
2086 					mm->locked_vm += grow;
2087 				vm_stat_account(mm, vma->vm_flags, grow);
2088 				anon_vma_interval_tree_pre_update_vma(vma);
2089 				vma->vm_end = address;
2090 				/* Overwrite old entry in mtree. */
2091 				vma_iter_store(&vmi, vma);
2092 				anon_vma_interval_tree_post_update_vma(vma);
2093 				spin_unlock(&mm->page_table_lock);
2094 
2095 				perf_event_mmap(vma);
2096 			}
2097 		}
2098 	}
2099 	anon_vma_unlock_write(vma->anon_vma);
2100 	vma_iter_free(&vmi);
2101 	validate_mm(mm);
2102 	return error;
2103 }
2104 #endif /* CONFIG_STACK_GROWSUP */
2105 
2106 /*
2107  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2108  * mmap_lock held for writing.
2109  */
2110 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2111 {
2112 	struct mm_struct *mm = vma->vm_mm;
2113 	struct vm_area_struct *prev;
2114 	int error = 0;
2115 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2116 
2117 	if (!(vma->vm_flags & VM_GROWSDOWN))
2118 		return -EFAULT;
2119 
2120 	address &= PAGE_MASK;
2121 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2122 		return -EPERM;
2123 
2124 	/* Enforce stack_guard_gap */
2125 	prev = vma_prev(&vmi);
2126 	/* Check that both stack segments have the same anon_vma? */
2127 	if (prev) {
2128 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2129 		    vma_is_accessible(prev) &&
2130 		    (address - prev->vm_end < stack_guard_gap))
2131 			return -ENOMEM;
2132 	}
2133 
2134 	if (prev)
2135 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2136 
2137 	vma_iter_config(&vmi, address, vma->vm_end);
2138 	if (vma_iter_prealloc(&vmi, vma))
2139 		return -ENOMEM;
2140 
2141 	/* We must make sure the anon_vma is allocated. */
2142 	if (unlikely(anon_vma_prepare(vma))) {
2143 		vma_iter_free(&vmi);
2144 		return -ENOMEM;
2145 	}
2146 
2147 	/* Lock the VMA before expanding to prevent concurrent page faults */
2148 	vma_start_write(vma);
2149 	/*
2150 	 * vma->vm_start/vm_end cannot change under us because the caller
2151 	 * is required to hold the mmap_lock in read mode.  We need the
2152 	 * anon_vma lock to serialize against concurrent expand_stacks.
2153 	 */
2154 	anon_vma_lock_write(vma->anon_vma);
2155 
2156 	/* Somebody else might have raced and expanded it already */
2157 	if (address < vma->vm_start) {
2158 		unsigned long size, grow;
2159 
2160 		size = vma->vm_end - address;
2161 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2162 
2163 		error = -ENOMEM;
2164 		if (grow <= vma->vm_pgoff) {
2165 			error = acct_stack_growth(vma, size, grow);
2166 			if (!error) {
2167 				/*
2168 				 * We only hold a shared mmap_lock lock here, so
2169 				 * we need to protect against concurrent vma
2170 				 * expansions.  anon_vma_lock_write() doesn't
2171 				 * help here, as we don't guarantee that all
2172 				 * growable vmas in a mm share the same root
2173 				 * anon vma.  So, we reuse mm->page_table_lock
2174 				 * to guard against concurrent vma expansions.
2175 				 */
2176 				spin_lock(&mm->page_table_lock);
2177 				if (vma->vm_flags & VM_LOCKED)
2178 					mm->locked_vm += grow;
2179 				vm_stat_account(mm, vma->vm_flags, grow);
2180 				anon_vma_interval_tree_pre_update_vma(vma);
2181 				vma->vm_start = address;
2182 				vma->vm_pgoff -= grow;
2183 				/* Overwrite old entry in mtree. */
2184 				vma_iter_store(&vmi, vma);
2185 				anon_vma_interval_tree_post_update_vma(vma);
2186 				spin_unlock(&mm->page_table_lock);
2187 
2188 				perf_event_mmap(vma);
2189 			}
2190 		}
2191 	}
2192 	anon_vma_unlock_write(vma->anon_vma);
2193 	vma_iter_free(&vmi);
2194 	validate_mm(mm);
2195 	return error;
2196 }
2197 
2198 /* enforced gap between the expanding stack and other mappings. */
2199 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2200 
2201 static int __init cmdline_parse_stack_guard_gap(char *p)
2202 {
2203 	unsigned long val;
2204 	char *endptr;
2205 
2206 	val = simple_strtoul(p, &endptr, 10);
2207 	if (!*endptr)
2208 		stack_guard_gap = val << PAGE_SHIFT;
2209 
2210 	return 1;
2211 }
2212 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2213 
2214 #ifdef CONFIG_STACK_GROWSUP
2215 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2216 {
2217 	return expand_upwards(vma, address);
2218 }
2219 
2220 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2221 {
2222 	struct vm_area_struct *vma, *prev;
2223 
2224 	addr &= PAGE_MASK;
2225 	vma = find_vma_prev(mm, addr, &prev);
2226 	if (vma && (vma->vm_start <= addr))
2227 		return vma;
2228 	if (!prev)
2229 		return NULL;
2230 	if (expand_stack_locked(prev, addr))
2231 		return NULL;
2232 	if (prev->vm_flags & VM_LOCKED)
2233 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2234 	return prev;
2235 }
2236 #else
2237 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2238 {
2239 	return expand_downwards(vma, address);
2240 }
2241 
2242 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2243 {
2244 	struct vm_area_struct *vma;
2245 	unsigned long start;
2246 
2247 	addr &= PAGE_MASK;
2248 	vma = find_vma(mm, addr);
2249 	if (!vma)
2250 		return NULL;
2251 	if (vma->vm_start <= addr)
2252 		return vma;
2253 	start = vma->vm_start;
2254 	if (expand_stack_locked(vma, addr))
2255 		return NULL;
2256 	if (vma->vm_flags & VM_LOCKED)
2257 		populate_vma_page_range(vma, addr, start, NULL);
2258 	return vma;
2259 }
2260 #endif
2261 
2262 #if defined(CONFIG_STACK_GROWSUP)
2263 
2264 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2265 #define vma_expand_down(vma, addr) (-EFAULT)
2266 
2267 #else
2268 
2269 #define vma_expand_up(vma,addr) (-EFAULT)
2270 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2271 
2272 #endif
2273 
2274 /*
2275  * expand_stack(): legacy interface for page faulting. Don't use unless
2276  * you have to.
2277  *
2278  * This is called with the mm locked for reading, drops the lock, takes
2279  * the lock for writing, tries to look up a vma again, expands it if
2280  * necessary, and downgrades the lock to reading again.
2281  *
2282  * If no vma is found or it can't be expanded, it returns NULL and has
2283  * dropped the lock.
2284  */
2285 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2286 {
2287 	struct vm_area_struct *vma, *prev;
2288 
2289 	mmap_read_unlock(mm);
2290 	if (mmap_write_lock_killable(mm))
2291 		return NULL;
2292 
2293 	vma = find_vma_prev(mm, addr, &prev);
2294 	if (vma && vma->vm_start <= addr)
2295 		goto success;
2296 
2297 	if (prev && !vma_expand_up(prev, addr)) {
2298 		vma = prev;
2299 		goto success;
2300 	}
2301 
2302 	if (vma && !vma_expand_down(vma, addr))
2303 		goto success;
2304 
2305 	mmap_write_unlock(mm);
2306 	return NULL;
2307 
2308 success:
2309 	mmap_write_downgrade(mm);
2310 	return vma;
2311 }
2312 
2313 /*
2314  * Ok - we have the memory areas we should free on a maple tree so release them,
2315  * and do the vma updates.
2316  *
2317  * Called with the mm semaphore held.
2318  */
2319 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2320 {
2321 	unsigned long nr_accounted = 0;
2322 	struct vm_area_struct *vma;
2323 
2324 	/* Update high watermark before we lower total_vm */
2325 	update_hiwater_vm(mm);
2326 	mas_for_each(mas, vma, ULONG_MAX) {
2327 		long nrpages = vma_pages(vma);
2328 
2329 		if (vma->vm_flags & VM_ACCOUNT)
2330 			nr_accounted += nrpages;
2331 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2332 		remove_vma(vma, false);
2333 	}
2334 	vm_unacct_memory(nr_accounted);
2335 }
2336 
2337 /*
2338  * Get rid of page table information in the indicated region.
2339  *
2340  * Called with the mm semaphore held.
2341  */
2342 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2343 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2344 		struct vm_area_struct *next, unsigned long start,
2345 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2346 {
2347 	struct mmu_gather tlb;
2348 	unsigned long mt_start = mas->index;
2349 
2350 	lru_add_drain();
2351 	tlb_gather_mmu(&tlb, mm);
2352 	update_hiwater_rss(mm);
2353 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2354 	mas_set(mas, mt_start);
2355 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2356 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2357 				 mm_wr_locked);
2358 	tlb_finish_mmu(&tlb);
2359 }
2360 
2361 /*
2362  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2363  * has already been checked or doesn't make sense to fail.
2364  * VMA Iterator will point to the end VMA.
2365  */
2366 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2367 		       unsigned long addr, int new_below)
2368 {
2369 	struct vma_prepare vp;
2370 	struct vm_area_struct *new;
2371 	int err;
2372 
2373 	WARN_ON(vma->vm_start >= addr);
2374 	WARN_ON(vma->vm_end <= addr);
2375 
2376 	if (vma->vm_ops && vma->vm_ops->may_split) {
2377 		err = vma->vm_ops->may_split(vma, addr);
2378 		if (err)
2379 			return err;
2380 	}
2381 
2382 	new = vm_area_dup(vma);
2383 	if (!new)
2384 		return -ENOMEM;
2385 
2386 	if (new_below) {
2387 		new->vm_end = addr;
2388 	} else {
2389 		new->vm_start = addr;
2390 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2391 	}
2392 
2393 	err = -ENOMEM;
2394 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2395 	if (vma_iter_prealloc(vmi, new))
2396 		goto out_free_vma;
2397 
2398 	err = vma_dup_policy(vma, new);
2399 	if (err)
2400 		goto out_free_vmi;
2401 
2402 	err = anon_vma_clone(new, vma);
2403 	if (err)
2404 		goto out_free_mpol;
2405 
2406 	if (new->vm_file)
2407 		get_file(new->vm_file);
2408 
2409 	if (new->vm_ops && new->vm_ops->open)
2410 		new->vm_ops->open(new);
2411 
2412 	vma_start_write(vma);
2413 	vma_start_write(new);
2414 
2415 	init_vma_prep(&vp, vma);
2416 	vp.insert = new;
2417 	vma_prepare(&vp);
2418 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2419 
2420 	if (new_below) {
2421 		vma->vm_start = addr;
2422 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2423 	} else {
2424 		vma->vm_end = addr;
2425 	}
2426 
2427 	/* vma_complete stores the new vma */
2428 	vma_complete(&vp, vmi, vma->vm_mm);
2429 
2430 	/* Success. */
2431 	if (new_below)
2432 		vma_next(vmi);
2433 	return 0;
2434 
2435 out_free_mpol:
2436 	mpol_put(vma_policy(new));
2437 out_free_vmi:
2438 	vma_iter_free(vmi);
2439 out_free_vma:
2440 	vm_area_free(new);
2441 	return err;
2442 }
2443 
2444 /*
2445  * Split a vma into two pieces at address 'addr', a new vma is allocated
2446  * either for the first part or the tail.
2447  */
2448 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2449 		     unsigned long addr, int new_below)
2450 {
2451 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2452 		return -ENOMEM;
2453 
2454 	return __split_vma(vmi, vma, addr, new_below);
2455 }
2456 
2457 /*
2458  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2459  * context and anonymous VMA name within the range [start, end).
2460  *
2461  * As a result, we might be able to merge the newly modified VMA range with an
2462  * adjacent VMA with identical properties.
2463  *
2464  * If no merge is possible and the range does not span the entirety of the VMA,
2465  * we then need to split the VMA to accommodate the change.
2466  *
2467  * The function returns either the merged VMA, the original VMA if a split was
2468  * required instead, or an error if the split failed.
2469  */
2470 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2471 				  struct vm_area_struct *prev,
2472 				  struct vm_area_struct *vma,
2473 				  unsigned long start, unsigned long end,
2474 				  unsigned long vm_flags,
2475 				  struct mempolicy *policy,
2476 				  struct vm_userfaultfd_ctx uffd_ctx,
2477 				  struct anon_vma_name *anon_name)
2478 {
2479 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2480 	struct vm_area_struct *merged;
2481 
2482 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2483 			   pgoff, policy, uffd_ctx, anon_name);
2484 	if (merged)
2485 		return merged;
2486 
2487 	if (vma->vm_start < start) {
2488 		int err = split_vma(vmi, vma, start, 1);
2489 
2490 		if (err)
2491 			return ERR_PTR(err);
2492 	}
2493 
2494 	if (vma->vm_end > end) {
2495 		int err = split_vma(vmi, vma, end, 0);
2496 
2497 		if (err)
2498 			return ERR_PTR(err);
2499 	}
2500 
2501 	return vma;
2502 }
2503 
2504 /*
2505  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2506  * must ensure that [start, end) does not overlap any existing VMA.
2507  */
2508 static struct vm_area_struct
2509 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2510 		   struct vm_area_struct *vma, unsigned long start,
2511 		   unsigned long end, pgoff_t pgoff)
2512 {
2513 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2514 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2515 }
2516 
2517 /*
2518  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2519  * VMA with identical properties.
2520  */
2521 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2522 					struct vm_area_struct *vma,
2523 					unsigned long delta)
2524 {
2525 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2526 
2527 	/* vma is specified as prev, so case 1 or 2 will apply. */
2528 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2529 			 vma->vm_flags, pgoff, vma_policy(vma),
2530 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2531 }
2532 
2533 /*
2534  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2535  * @vmi: The vma iterator
2536  * @vma: The starting vm_area_struct
2537  * @mm: The mm_struct
2538  * @start: The aligned start address to munmap.
2539  * @end: The aligned end address to munmap.
2540  * @uf: The userfaultfd list_head
2541  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2542  * success.
2543  *
2544  * Return: 0 on success and drops the lock if so directed, error and leaves the
2545  * lock held otherwise.
2546  */
2547 static int
2548 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2549 		    struct mm_struct *mm, unsigned long start,
2550 		    unsigned long end, struct list_head *uf, bool unlock)
2551 {
2552 	struct vm_area_struct *prev, *next = NULL;
2553 	struct maple_tree mt_detach;
2554 	int count = 0;
2555 	int error = -ENOMEM;
2556 	unsigned long locked_vm = 0;
2557 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2558 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2559 	mt_on_stack(mt_detach);
2560 
2561 	/*
2562 	 * If we need to split any vma, do it now to save pain later.
2563 	 *
2564 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2565 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2566 	 * places tmp vma above, and higher split_vma places tmp vma below.
2567 	 */
2568 
2569 	/* Does it split the first one? */
2570 	if (start > vma->vm_start) {
2571 
2572 		/*
2573 		 * Make sure that map_count on return from munmap() will
2574 		 * not exceed its limit; but let map_count go just above
2575 		 * its limit temporarily, to help free resources as expected.
2576 		 */
2577 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2578 			goto map_count_exceeded;
2579 
2580 		error = __split_vma(vmi, vma, start, 1);
2581 		if (error)
2582 			goto start_split_failed;
2583 	}
2584 
2585 	/*
2586 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2587 	 * it is always overwritten.
2588 	 */
2589 	next = vma;
2590 	do {
2591 		/* Does it split the end? */
2592 		if (next->vm_end > end) {
2593 			error = __split_vma(vmi, next, end, 0);
2594 			if (error)
2595 				goto end_split_failed;
2596 		}
2597 		vma_start_write(next);
2598 		mas_set(&mas_detach, count);
2599 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2600 		if (error)
2601 			goto munmap_gather_failed;
2602 		vma_mark_detached(next, true);
2603 		if (next->vm_flags & VM_LOCKED)
2604 			locked_vm += vma_pages(next);
2605 
2606 		count++;
2607 		if (unlikely(uf)) {
2608 			/*
2609 			 * If userfaultfd_unmap_prep returns an error the vmas
2610 			 * will remain split, but userland will get a
2611 			 * highly unexpected error anyway. This is no
2612 			 * different than the case where the first of the two
2613 			 * __split_vma fails, but we don't undo the first
2614 			 * split, despite we could. This is unlikely enough
2615 			 * failure that it's not worth optimizing it for.
2616 			 */
2617 			error = userfaultfd_unmap_prep(next, start, end, uf);
2618 
2619 			if (error)
2620 				goto userfaultfd_error;
2621 		}
2622 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2623 		BUG_ON(next->vm_start < start);
2624 		BUG_ON(next->vm_start > end);
2625 #endif
2626 	} for_each_vma_range(*vmi, next, end);
2627 
2628 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2629 	/* Make sure no VMAs are about to be lost. */
2630 	{
2631 		MA_STATE(test, &mt_detach, 0, 0);
2632 		struct vm_area_struct *vma_mas, *vma_test;
2633 		int test_count = 0;
2634 
2635 		vma_iter_set(vmi, start);
2636 		rcu_read_lock();
2637 		vma_test = mas_find(&test, count - 1);
2638 		for_each_vma_range(*vmi, vma_mas, end) {
2639 			BUG_ON(vma_mas != vma_test);
2640 			test_count++;
2641 			vma_test = mas_next(&test, count - 1);
2642 		}
2643 		rcu_read_unlock();
2644 		BUG_ON(count != test_count);
2645 	}
2646 #endif
2647 
2648 	while (vma_iter_addr(vmi) > start)
2649 		vma_iter_prev_range(vmi);
2650 
2651 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2652 	if (error)
2653 		goto clear_tree_failed;
2654 
2655 	/* Point of no return */
2656 	mm->locked_vm -= locked_vm;
2657 	mm->map_count -= count;
2658 	if (unlock)
2659 		mmap_write_downgrade(mm);
2660 
2661 	prev = vma_iter_prev_range(vmi);
2662 	next = vma_next(vmi);
2663 	if (next)
2664 		vma_iter_prev_range(vmi);
2665 
2666 	/*
2667 	 * We can free page tables without write-locking mmap_lock because VMAs
2668 	 * were isolated before we downgraded mmap_lock.
2669 	 */
2670 	mas_set(&mas_detach, 1);
2671 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2672 		     !unlock);
2673 	/* Statistics and freeing VMAs */
2674 	mas_set(&mas_detach, 0);
2675 	remove_mt(mm, &mas_detach);
2676 	validate_mm(mm);
2677 	if (unlock)
2678 		mmap_read_unlock(mm);
2679 
2680 	__mt_destroy(&mt_detach);
2681 	return 0;
2682 
2683 clear_tree_failed:
2684 userfaultfd_error:
2685 munmap_gather_failed:
2686 end_split_failed:
2687 	mas_set(&mas_detach, 0);
2688 	mas_for_each(&mas_detach, next, end)
2689 		vma_mark_detached(next, false);
2690 
2691 	__mt_destroy(&mt_detach);
2692 start_split_failed:
2693 map_count_exceeded:
2694 	validate_mm(mm);
2695 	return error;
2696 }
2697 
2698 /*
2699  * do_vmi_munmap() - munmap a given range.
2700  * @vmi: The vma iterator
2701  * @mm: The mm_struct
2702  * @start: The start address to munmap
2703  * @len: The length of the range to munmap
2704  * @uf: The userfaultfd list_head
2705  * @unlock: set to true if the user wants to drop the mmap_lock on success
2706  *
2707  * This function takes a @mas that is either pointing to the previous VMA or set
2708  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2709  * aligned and any arch_unmap work will be preformed.
2710  *
2711  * Return: 0 on success and drops the lock if so directed, error and leaves the
2712  * lock held otherwise.
2713  */
2714 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2715 		  unsigned long start, size_t len, struct list_head *uf,
2716 		  bool unlock)
2717 {
2718 	unsigned long end;
2719 	struct vm_area_struct *vma;
2720 
2721 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2722 		return -EINVAL;
2723 
2724 	end = start + PAGE_ALIGN(len);
2725 	if (end == start)
2726 		return -EINVAL;
2727 
2728 	 /* arch_unmap() might do unmaps itself.  */
2729 	arch_unmap(mm, start, end);
2730 
2731 	/* Find the first overlapping VMA */
2732 	vma = vma_find(vmi, end);
2733 	if (!vma) {
2734 		if (unlock)
2735 			mmap_write_unlock(mm);
2736 		return 0;
2737 	}
2738 
2739 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2740 }
2741 
2742 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2743  * @mm: The mm_struct
2744  * @start: The start address to munmap
2745  * @len: The length to be munmapped.
2746  * @uf: The userfaultfd list_head
2747  *
2748  * Return: 0 on success, error otherwise.
2749  */
2750 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2751 	      struct list_head *uf)
2752 {
2753 	VMA_ITERATOR(vmi, mm, start);
2754 
2755 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2756 }
2757 
2758 unsigned long mmap_region(struct file *file, unsigned long addr,
2759 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2760 		struct list_head *uf)
2761 {
2762 	struct mm_struct *mm = current->mm;
2763 	struct vm_area_struct *vma = NULL;
2764 	struct vm_area_struct *next, *prev, *merge;
2765 	pgoff_t pglen = len >> PAGE_SHIFT;
2766 	unsigned long charged = 0;
2767 	unsigned long end = addr + len;
2768 	unsigned long merge_start = addr, merge_end = end;
2769 	bool writable_file_mapping = false;
2770 	pgoff_t vm_pgoff;
2771 	int error;
2772 	VMA_ITERATOR(vmi, mm, addr);
2773 
2774 	/* Check against address space limit. */
2775 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2776 		unsigned long nr_pages;
2777 
2778 		/*
2779 		 * MAP_FIXED may remove pages of mappings that intersects with
2780 		 * requested mapping. Account for the pages it would unmap.
2781 		 */
2782 		nr_pages = count_vma_pages_range(mm, addr, end);
2783 
2784 		if (!may_expand_vm(mm, vm_flags,
2785 					(len >> PAGE_SHIFT) - nr_pages))
2786 			return -ENOMEM;
2787 	}
2788 
2789 	/* Unmap any existing mapping in the area */
2790 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2791 		return -ENOMEM;
2792 
2793 	/*
2794 	 * Private writable mapping: check memory availability
2795 	 */
2796 	if (accountable_mapping(file, vm_flags)) {
2797 		charged = len >> PAGE_SHIFT;
2798 		if (security_vm_enough_memory_mm(mm, charged))
2799 			return -ENOMEM;
2800 		vm_flags |= VM_ACCOUNT;
2801 	}
2802 
2803 	next = vma_next(&vmi);
2804 	prev = vma_prev(&vmi);
2805 	if (vm_flags & VM_SPECIAL) {
2806 		if (prev)
2807 			vma_iter_next_range(&vmi);
2808 		goto cannot_expand;
2809 	}
2810 
2811 	/* Attempt to expand an old mapping */
2812 	/* Check next */
2813 	if (next && next->vm_start == end && !vma_policy(next) &&
2814 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2815 				 NULL_VM_UFFD_CTX, NULL)) {
2816 		merge_end = next->vm_end;
2817 		vma = next;
2818 		vm_pgoff = next->vm_pgoff - pglen;
2819 	}
2820 
2821 	/* Check prev */
2822 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2823 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2824 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2825 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2826 				       NULL_VM_UFFD_CTX, NULL))) {
2827 		merge_start = prev->vm_start;
2828 		vma = prev;
2829 		vm_pgoff = prev->vm_pgoff;
2830 	} else if (prev) {
2831 		vma_iter_next_range(&vmi);
2832 	}
2833 
2834 	/* Actually expand, if possible */
2835 	if (vma &&
2836 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2837 		khugepaged_enter_vma(vma, vm_flags);
2838 		goto expanded;
2839 	}
2840 
2841 	if (vma == prev)
2842 		vma_iter_set(&vmi, addr);
2843 cannot_expand:
2844 
2845 	/*
2846 	 * Determine the object being mapped and call the appropriate
2847 	 * specific mapper. the address has already been validated, but
2848 	 * not unmapped, but the maps are removed from the list.
2849 	 */
2850 	vma = vm_area_alloc(mm);
2851 	if (!vma) {
2852 		error = -ENOMEM;
2853 		goto unacct_error;
2854 	}
2855 
2856 	vma_iter_config(&vmi, addr, end);
2857 	vma_set_range(vma, addr, end, pgoff);
2858 	vm_flags_init(vma, vm_flags);
2859 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2860 
2861 	if (file) {
2862 		vma->vm_file = get_file(file);
2863 		error = call_mmap(file, vma);
2864 		if (error)
2865 			goto unmap_and_free_vma;
2866 
2867 		if (vma_is_shared_maywrite(vma)) {
2868 			error = mapping_map_writable(file->f_mapping);
2869 			if (error)
2870 				goto close_and_free_vma;
2871 
2872 			writable_file_mapping = true;
2873 		}
2874 
2875 		/*
2876 		 * Expansion is handled above, merging is handled below.
2877 		 * Drivers should not alter the address of the VMA.
2878 		 */
2879 		error = -EINVAL;
2880 		if (WARN_ON((addr != vma->vm_start)))
2881 			goto close_and_free_vma;
2882 
2883 		vma_iter_config(&vmi, addr, end);
2884 		/*
2885 		 * If vm_flags changed after call_mmap(), we should try merge
2886 		 * vma again as we may succeed this time.
2887 		 */
2888 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2889 			merge = vma_merge_new_vma(&vmi, prev, vma,
2890 						  vma->vm_start, vma->vm_end,
2891 						  vma->vm_pgoff);
2892 			if (merge) {
2893 				/*
2894 				 * ->mmap() can change vma->vm_file and fput
2895 				 * the original file. So fput the vma->vm_file
2896 				 * here or we would add an extra fput for file
2897 				 * and cause general protection fault
2898 				 * ultimately.
2899 				 */
2900 				fput(vma->vm_file);
2901 				vm_area_free(vma);
2902 				vma = merge;
2903 				/* Update vm_flags to pick up the change. */
2904 				vm_flags = vma->vm_flags;
2905 				goto unmap_writable;
2906 			}
2907 		}
2908 
2909 		vm_flags = vma->vm_flags;
2910 	} else if (vm_flags & VM_SHARED) {
2911 		error = shmem_zero_setup(vma);
2912 		if (error)
2913 			goto free_vma;
2914 	} else {
2915 		vma_set_anonymous(vma);
2916 	}
2917 
2918 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2919 		error = -EACCES;
2920 		goto close_and_free_vma;
2921 	}
2922 
2923 	/* Allow architectures to sanity-check the vm_flags */
2924 	error = -EINVAL;
2925 	if (!arch_validate_flags(vma->vm_flags))
2926 		goto close_and_free_vma;
2927 
2928 	error = -ENOMEM;
2929 	if (vma_iter_prealloc(&vmi, vma))
2930 		goto close_and_free_vma;
2931 
2932 	/* Lock the VMA since it is modified after insertion into VMA tree */
2933 	vma_start_write(vma);
2934 	vma_iter_store(&vmi, vma);
2935 	mm->map_count++;
2936 	vma_link_file(vma);
2937 
2938 	/*
2939 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2940 	 * call covers the non-merge case.
2941 	 */
2942 	khugepaged_enter_vma(vma, vma->vm_flags);
2943 
2944 	/* Once vma denies write, undo our temporary denial count */
2945 unmap_writable:
2946 	if (writable_file_mapping)
2947 		mapping_unmap_writable(file->f_mapping);
2948 	file = vma->vm_file;
2949 	ksm_add_vma(vma);
2950 expanded:
2951 	perf_event_mmap(vma);
2952 
2953 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2954 	if (vm_flags & VM_LOCKED) {
2955 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2956 					is_vm_hugetlb_page(vma) ||
2957 					vma == get_gate_vma(current->mm))
2958 			vm_flags_clear(vma, VM_LOCKED_MASK);
2959 		else
2960 			mm->locked_vm += (len >> PAGE_SHIFT);
2961 	}
2962 
2963 	if (file)
2964 		uprobe_mmap(vma);
2965 
2966 	/*
2967 	 * New (or expanded) vma always get soft dirty status.
2968 	 * Otherwise user-space soft-dirty page tracker won't
2969 	 * be able to distinguish situation when vma area unmapped,
2970 	 * then new mapped in-place (which must be aimed as
2971 	 * a completely new data area).
2972 	 */
2973 	vm_flags_set(vma, VM_SOFTDIRTY);
2974 
2975 	vma_set_page_prot(vma);
2976 
2977 	validate_mm(mm);
2978 	return addr;
2979 
2980 close_and_free_vma:
2981 	if (file && vma->vm_ops && vma->vm_ops->close)
2982 		vma->vm_ops->close(vma);
2983 
2984 	if (file || vma->vm_file) {
2985 unmap_and_free_vma:
2986 		fput(vma->vm_file);
2987 		vma->vm_file = NULL;
2988 
2989 		vma_iter_set(&vmi, vma->vm_end);
2990 		/* Undo any partial mapping done by a device driver. */
2991 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2992 			     vma->vm_end, vma->vm_end, true);
2993 	}
2994 	if (writable_file_mapping)
2995 		mapping_unmap_writable(file->f_mapping);
2996 free_vma:
2997 	vm_area_free(vma);
2998 unacct_error:
2999 	if (charged)
3000 		vm_unacct_memory(charged);
3001 	validate_mm(mm);
3002 	return error;
3003 }
3004 
3005 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3006 {
3007 	int ret;
3008 	struct mm_struct *mm = current->mm;
3009 	LIST_HEAD(uf);
3010 	VMA_ITERATOR(vmi, mm, start);
3011 
3012 	if (mmap_write_lock_killable(mm))
3013 		return -EINTR;
3014 
3015 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3016 	if (ret || !unlock)
3017 		mmap_write_unlock(mm);
3018 
3019 	userfaultfd_unmap_complete(mm, &uf);
3020 	return ret;
3021 }
3022 
3023 int vm_munmap(unsigned long start, size_t len)
3024 {
3025 	return __vm_munmap(start, len, false);
3026 }
3027 EXPORT_SYMBOL(vm_munmap);
3028 
3029 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3030 {
3031 	addr = untagged_addr(addr);
3032 	return __vm_munmap(addr, len, true);
3033 }
3034 
3035 
3036 /*
3037  * Emulation of deprecated remap_file_pages() syscall.
3038  */
3039 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3040 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3041 {
3042 
3043 	struct mm_struct *mm = current->mm;
3044 	struct vm_area_struct *vma;
3045 	unsigned long populate = 0;
3046 	unsigned long ret = -EINVAL;
3047 	struct file *file;
3048 
3049 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3050 		     current->comm, current->pid);
3051 
3052 	if (prot)
3053 		return ret;
3054 	start = start & PAGE_MASK;
3055 	size = size & PAGE_MASK;
3056 
3057 	if (start + size <= start)
3058 		return ret;
3059 
3060 	/* Does pgoff wrap? */
3061 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3062 		return ret;
3063 
3064 	if (mmap_write_lock_killable(mm))
3065 		return -EINTR;
3066 
3067 	vma = vma_lookup(mm, start);
3068 
3069 	if (!vma || !(vma->vm_flags & VM_SHARED))
3070 		goto out;
3071 
3072 	if (start + size > vma->vm_end) {
3073 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3074 		struct vm_area_struct *next, *prev = vma;
3075 
3076 		for_each_vma_range(vmi, next, start + size) {
3077 			/* hole between vmas ? */
3078 			if (next->vm_start != prev->vm_end)
3079 				goto out;
3080 
3081 			if (next->vm_file != vma->vm_file)
3082 				goto out;
3083 
3084 			if (next->vm_flags != vma->vm_flags)
3085 				goto out;
3086 
3087 			if (start + size <= next->vm_end)
3088 				break;
3089 
3090 			prev = next;
3091 		}
3092 
3093 		if (!next)
3094 			goto out;
3095 	}
3096 
3097 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3098 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3099 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3100 
3101 	flags &= MAP_NONBLOCK;
3102 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3103 	if (vma->vm_flags & VM_LOCKED)
3104 		flags |= MAP_LOCKED;
3105 
3106 	file = get_file(vma->vm_file);
3107 	ret = do_mmap(vma->vm_file, start, size,
3108 			prot, flags, 0, pgoff, &populate, NULL);
3109 	fput(file);
3110 out:
3111 	mmap_write_unlock(mm);
3112 	if (populate)
3113 		mm_populate(ret, populate);
3114 	if (!IS_ERR_VALUE(ret))
3115 		ret = 0;
3116 	return ret;
3117 }
3118 
3119 /*
3120  * do_vma_munmap() - Unmap a full or partial vma.
3121  * @vmi: The vma iterator pointing at the vma
3122  * @vma: The first vma to be munmapped
3123  * @start: the start of the address to unmap
3124  * @end: The end of the address to unmap
3125  * @uf: The userfaultfd list_head
3126  * @unlock: Drop the lock on success
3127  *
3128  * unmaps a VMA mapping when the vma iterator is already in position.
3129  * Does not handle alignment.
3130  *
3131  * Return: 0 on success drops the lock of so directed, error on failure and will
3132  * still hold the lock.
3133  */
3134 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3135 		unsigned long start, unsigned long end, struct list_head *uf,
3136 		bool unlock)
3137 {
3138 	struct mm_struct *mm = vma->vm_mm;
3139 
3140 	arch_unmap(mm, start, end);
3141 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3142 }
3143 
3144 /*
3145  * do_brk_flags() - Increase the brk vma if the flags match.
3146  * @vmi: The vma iterator
3147  * @addr: The start address
3148  * @len: The length of the increase
3149  * @vma: The vma,
3150  * @flags: The VMA Flags
3151  *
3152  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3153  * do not match then create a new anonymous VMA.  Eventually we may be able to
3154  * do some brk-specific accounting here.
3155  */
3156 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3157 		unsigned long addr, unsigned long len, unsigned long flags)
3158 {
3159 	struct mm_struct *mm = current->mm;
3160 	struct vma_prepare vp;
3161 
3162 	/*
3163 	 * Check against address space limits by the changed size
3164 	 * Note: This happens *after* clearing old mappings in some code paths.
3165 	 */
3166 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3167 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3168 		return -ENOMEM;
3169 
3170 	if (mm->map_count > sysctl_max_map_count)
3171 		return -ENOMEM;
3172 
3173 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3174 		return -ENOMEM;
3175 
3176 	/*
3177 	 * Expand the existing vma if possible; Note that singular lists do not
3178 	 * occur after forking, so the expand will only happen on new VMAs.
3179 	 */
3180 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3181 	    can_vma_merge_after(vma, flags, NULL, NULL,
3182 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3183 		vma_iter_config(vmi, vma->vm_start, addr + len);
3184 		if (vma_iter_prealloc(vmi, vma))
3185 			goto unacct_fail;
3186 
3187 		vma_start_write(vma);
3188 
3189 		init_vma_prep(&vp, vma);
3190 		vma_prepare(&vp);
3191 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3192 		vma->vm_end = addr + len;
3193 		vm_flags_set(vma, VM_SOFTDIRTY);
3194 		vma_iter_store(vmi, vma);
3195 
3196 		vma_complete(&vp, vmi, mm);
3197 		khugepaged_enter_vma(vma, flags);
3198 		goto out;
3199 	}
3200 
3201 	if (vma)
3202 		vma_iter_next_range(vmi);
3203 	/* create a vma struct for an anonymous mapping */
3204 	vma = vm_area_alloc(mm);
3205 	if (!vma)
3206 		goto unacct_fail;
3207 
3208 	vma_set_anonymous(vma);
3209 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3210 	vm_flags_init(vma, flags);
3211 	vma->vm_page_prot = vm_get_page_prot(flags);
3212 	vma_start_write(vma);
3213 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3214 		goto mas_store_fail;
3215 
3216 	mm->map_count++;
3217 	validate_mm(mm);
3218 	ksm_add_vma(vma);
3219 out:
3220 	perf_event_mmap(vma);
3221 	mm->total_vm += len >> PAGE_SHIFT;
3222 	mm->data_vm += len >> PAGE_SHIFT;
3223 	if (flags & VM_LOCKED)
3224 		mm->locked_vm += (len >> PAGE_SHIFT);
3225 	vm_flags_set(vma, VM_SOFTDIRTY);
3226 	return 0;
3227 
3228 mas_store_fail:
3229 	vm_area_free(vma);
3230 unacct_fail:
3231 	vm_unacct_memory(len >> PAGE_SHIFT);
3232 	return -ENOMEM;
3233 }
3234 
3235 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3236 {
3237 	struct mm_struct *mm = current->mm;
3238 	struct vm_area_struct *vma = NULL;
3239 	unsigned long len;
3240 	int ret;
3241 	bool populate;
3242 	LIST_HEAD(uf);
3243 	VMA_ITERATOR(vmi, mm, addr);
3244 
3245 	len = PAGE_ALIGN(request);
3246 	if (len < request)
3247 		return -ENOMEM;
3248 	if (!len)
3249 		return 0;
3250 
3251 	/* Until we need other flags, refuse anything except VM_EXEC. */
3252 	if ((flags & (~VM_EXEC)) != 0)
3253 		return -EINVAL;
3254 
3255 	if (mmap_write_lock_killable(mm))
3256 		return -EINTR;
3257 
3258 	ret = check_brk_limits(addr, len);
3259 	if (ret)
3260 		goto limits_failed;
3261 
3262 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3263 	if (ret)
3264 		goto munmap_failed;
3265 
3266 	vma = vma_prev(&vmi);
3267 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3268 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3269 	mmap_write_unlock(mm);
3270 	userfaultfd_unmap_complete(mm, &uf);
3271 	if (populate && !ret)
3272 		mm_populate(addr, len);
3273 	return ret;
3274 
3275 munmap_failed:
3276 limits_failed:
3277 	mmap_write_unlock(mm);
3278 	return ret;
3279 }
3280 EXPORT_SYMBOL(vm_brk_flags);
3281 
3282 /* Release all mmaps. */
3283 void exit_mmap(struct mm_struct *mm)
3284 {
3285 	struct mmu_gather tlb;
3286 	struct vm_area_struct *vma;
3287 	unsigned long nr_accounted = 0;
3288 	VMA_ITERATOR(vmi, mm, 0);
3289 	int count = 0;
3290 
3291 	/* mm's last user has gone, and its about to be pulled down */
3292 	mmu_notifier_release(mm);
3293 
3294 	mmap_read_lock(mm);
3295 	arch_exit_mmap(mm);
3296 
3297 	vma = vma_next(&vmi);
3298 	if (!vma || unlikely(xa_is_zero(vma))) {
3299 		/* Can happen if dup_mmap() received an OOM */
3300 		mmap_read_unlock(mm);
3301 		mmap_write_lock(mm);
3302 		goto destroy;
3303 	}
3304 
3305 	lru_add_drain();
3306 	flush_cache_mm(mm);
3307 	tlb_gather_mmu_fullmm(&tlb, mm);
3308 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3309 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3310 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3311 	mmap_read_unlock(mm);
3312 
3313 	/*
3314 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3315 	 * because the memory has been already freed.
3316 	 */
3317 	set_bit(MMF_OOM_SKIP, &mm->flags);
3318 	mmap_write_lock(mm);
3319 	mt_clear_in_rcu(&mm->mm_mt);
3320 	vma_iter_set(&vmi, vma->vm_end);
3321 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3322 		      USER_PGTABLES_CEILING, true);
3323 	tlb_finish_mmu(&tlb);
3324 
3325 	/*
3326 	 * Walk the list again, actually closing and freeing it, with preemption
3327 	 * enabled, without holding any MM locks besides the unreachable
3328 	 * mmap_write_lock.
3329 	 */
3330 	vma_iter_set(&vmi, vma->vm_end);
3331 	do {
3332 		if (vma->vm_flags & VM_ACCOUNT)
3333 			nr_accounted += vma_pages(vma);
3334 		remove_vma(vma, true);
3335 		count++;
3336 		cond_resched();
3337 		vma = vma_next(&vmi);
3338 	} while (vma && likely(!xa_is_zero(vma)));
3339 
3340 	BUG_ON(count != mm->map_count);
3341 
3342 	trace_exit_mmap(mm);
3343 destroy:
3344 	__mt_destroy(&mm->mm_mt);
3345 	mmap_write_unlock(mm);
3346 	vm_unacct_memory(nr_accounted);
3347 }
3348 
3349 /* Insert vm structure into process list sorted by address
3350  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3351  * then i_mmap_rwsem is taken here.
3352  */
3353 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3354 {
3355 	unsigned long charged = vma_pages(vma);
3356 
3357 
3358 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3359 		return -ENOMEM;
3360 
3361 	if ((vma->vm_flags & VM_ACCOUNT) &&
3362 	     security_vm_enough_memory_mm(mm, charged))
3363 		return -ENOMEM;
3364 
3365 	/*
3366 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3367 	 * until its first write fault, when page's anon_vma and index
3368 	 * are set.  But now set the vm_pgoff it will almost certainly
3369 	 * end up with (unless mremap moves it elsewhere before that
3370 	 * first wfault), so /proc/pid/maps tells a consistent story.
3371 	 *
3372 	 * By setting it to reflect the virtual start address of the
3373 	 * vma, merges and splits can happen in a seamless way, just
3374 	 * using the existing file pgoff checks and manipulations.
3375 	 * Similarly in do_mmap and in do_brk_flags.
3376 	 */
3377 	if (vma_is_anonymous(vma)) {
3378 		BUG_ON(vma->anon_vma);
3379 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3380 	}
3381 
3382 	if (vma_link(mm, vma)) {
3383 		if (vma->vm_flags & VM_ACCOUNT)
3384 			vm_unacct_memory(charged);
3385 		return -ENOMEM;
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 /*
3392  * Copy the vma structure to a new location in the same mm,
3393  * prior to moving page table entries, to effect an mremap move.
3394  */
3395 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3396 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3397 	bool *need_rmap_locks)
3398 {
3399 	struct vm_area_struct *vma = *vmap;
3400 	unsigned long vma_start = vma->vm_start;
3401 	struct mm_struct *mm = vma->vm_mm;
3402 	struct vm_area_struct *new_vma, *prev;
3403 	bool faulted_in_anon_vma = true;
3404 	VMA_ITERATOR(vmi, mm, addr);
3405 
3406 	/*
3407 	 * If anonymous vma has not yet been faulted, update new pgoff
3408 	 * to match new location, to increase its chance of merging.
3409 	 */
3410 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3411 		pgoff = addr >> PAGE_SHIFT;
3412 		faulted_in_anon_vma = false;
3413 	}
3414 
3415 	new_vma = find_vma_prev(mm, addr, &prev);
3416 	if (new_vma && new_vma->vm_start < addr + len)
3417 		return NULL;	/* should never get here */
3418 
3419 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3420 	if (new_vma) {
3421 		/*
3422 		 * Source vma may have been merged into new_vma
3423 		 */
3424 		if (unlikely(vma_start >= new_vma->vm_start &&
3425 			     vma_start < new_vma->vm_end)) {
3426 			/*
3427 			 * The only way we can get a vma_merge with
3428 			 * self during an mremap is if the vma hasn't
3429 			 * been faulted in yet and we were allowed to
3430 			 * reset the dst vma->vm_pgoff to the
3431 			 * destination address of the mremap to allow
3432 			 * the merge to happen. mremap must change the
3433 			 * vm_pgoff linearity between src and dst vmas
3434 			 * (in turn preventing a vma_merge) to be
3435 			 * safe. It is only safe to keep the vm_pgoff
3436 			 * linear if there are no pages mapped yet.
3437 			 */
3438 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3439 			*vmap = vma = new_vma;
3440 		}
3441 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3442 	} else {
3443 		new_vma = vm_area_dup(vma);
3444 		if (!new_vma)
3445 			goto out;
3446 		vma_set_range(new_vma, addr, addr + len, pgoff);
3447 		if (vma_dup_policy(vma, new_vma))
3448 			goto out_free_vma;
3449 		if (anon_vma_clone(new_vma, vma))
3450 			goto out_free_mempol;
3451 		if (new_vma->vm_file)
3452 			get_file(new_vma->vm_file);
3453 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3454 			new_vma->vm_ops->open(new_vma);
3455 		if (vma_link(mm, new_vma))
3456 			goto out_vma_link;
3457 		*need_rmap_locks = false;
3458 	}
3459 	return new_vma;
3460 
3461 out_vma_link:
3462 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3463 		new_vma->vm_ops->close(new_vma);
3464 
3465 	if (new_vma->vm_file)
3466 		fput(new_vma->vm_file);
3467 
3468 	unlink_anon_vmas(new_vma);
3469 out_free_mempol:
3470 	mpol_put(vma_policy(new_vma));
3471 out_free_vma:
3472 	vm_area_free(new_vma);
3473 out:
3474 	return NULL;
3475 }
3476 
3477 /*
3478  * Return true if the calling process may expand its vm space by the passed
3479  * number of pages
3480  */
3481 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3482 {
3483 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3484 		return false;
3485 
3486 	if (is_data_mapping(flags) &&
3487 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3488 		/* Workaround for Valgrind */
3489 		if (rlimit(RLIMIT_DATA) == 0 &&
3490 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3491 			return true;
3492 
3493 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3494 			     current->comm, current->pid,
3495 			     (mm->data_vm + npages) << PAGE_SHIFT,
3496 			     rlimit(RLIMIT_DATA),
3497 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3498 
3499 		if (!ignore_rlimit_data)
3500 			return false;
3501 	}
3502 
3503 	return true;
3504 }
3505 
3506 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3507 {
3508 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3509 
3510 	if (is_exec_mapping(flags))
3511 		mm->exec_vm += npages;
3512 	else if (is_stack_mapping(flags))
3513 		mm->stack_vm += npages;
3514 	else if (is_data_mapping(flags))
3515 		mm->data_vm += npages;
3516 }
3517 
3518 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3519 
3520 /*
3521  * Having a close hook prevents vma merging regardless of flags.
3522  */
3523 static void special_mapping_close(struct vm_area_struct *vma)
3524 {
3525 }
3526 
3527 static const char *special_mapping_name(struct vm_area_struct *vma)
3528 {
3529 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3530 }
3531 
3532 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3533 {
3534 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3535 
3536 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3537 		return -EFAULT;
3538 
3539 	if (sm->mremap)
3540 		return sm->mremap(sm, new_vma);
3541 
3542 	return 0;
3543 }
3544 
3545 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3546 {
3547 	/*
3548 	 * Forbid splitting special mappings - kernel has expectations over
3549 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3550 	 * the size of vma should stay the same over the special mapping's
3551 	 * lifetime.
3552 	 */
3553 	return -EINVAL;
3554 }
3555 
3556 static const struct vm_operations_struct special_mapping_vmops = {
3557 	.close = special_mapping_close,
3558 	.fault = special_mapping_fault,
3559 	.mremap = special_mapping_mremap,
3560 	.name = special_mapping_name,
3561 	/* vDSO code relies that VVAR can't be accessed remotely */
3562 	.access = NULL,
3563 	.may_split = special_mapping_split,
3564 };
3565 
3566 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3567 	.close = special_mapping_close,
3568 	.fault = special_mapping_fault,
3569 };
3570 
3571 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3572 {
3573 	struct vm_area_struct *vma = vmf->vma;
3574 	pgoff_t pgoff;
3575 	struct page **pages;
3576 
3577 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3578 		pages = vma->vm_private_data;
3579 	} else {
3580 		struct vm_special_mapping *sm = vma->vm_private_data;
3581 
3582 		if (sm->fault)
3583 			return sm->fault(sm, vmf->vma, vmf);
3584 
3585 		pages = sm->pages;
3586 	}
3587 
3588 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3589 		pgoff--;
3590 
3591 	if (*pages) {
3592 		struct page *page = *pages;
3593 		get_page(page);
3594 		vmf->page = page;
3595 		return 0;
3596 	}
3597 
3598 	return VM_FAULT_SIGBUS;
3599 }
3600 
3601 static struct vm_area_struct *__install_special_mapping(
3602 	struct mm_struct *mm,
3603 	unsigned long addr, unsigned long len,
3604 	unsigned long vm_flags, void *priv,
3605 	const struct vm_operations_struct *ops)
3606 {
3607 	int ret;
3608 	struct vm_area_struct *vma;
3609 
3610 	vma = vm_area_alloc(mm);
3611 	if (unlikely(vma == NULL))
3612 		return ERR_PTR(-ENOMEM);
3613 
3614 	vma_set_range(vma, addr, addr + len, 0);
3615 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3616 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3617 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3618 
3619 	vma->vm_ops = ops;
3620 	vma->vm_private_data = priv;
3621 
3622 	ret = insert_vm_struct(mm, vma);
3623 	if (ret)
3624 		goto out;
3625 
3626 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3627 
3628 	perf_event_mmap(vma);
3629 
3630 	return vma;
3631 
3632 out:
3633 	vm_area_free(vma);
3634 	return ERR_PTR(ret);
3635 }
3636 
3637 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3638 	const struct vm_special_mapping *sm)
3639 {
3640 	return vma->vm_private_data == sm &&
3641 		(vma->vm_ops == &special_mapping_vmops ||
3642 		 vma->vm_ops == &legacy_special_mapping_vmops);
3643 }
3644 
3645 /*
3646  * Called with mm->mmap_lock held for writing.
3647  * Insert a new vma covering the given region, with the given flags.
3648  * Its pages are supplied by the given array of struct page *.
3649  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3650  * The region past the last page supplied will always produce SIGBUS.
3651  * The array pointer and the pages it points to are assumed to stay alive
3652  * for as long as this mapping might exist.
3653  */
3654 struct vm_area_struct *_install_special_mapping(
3655 	struct mm_struct *mm,
3656 	unsigned long addr, unsigned long len,
3657 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3658 {
3659 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3660 					&special_mapping_vmops);
3661 }
3662 
3663 int install_special_mapping(struct mm_struct *mm,
3664 			    unsigned long addr, unsigned long len,
3665 			    unsigned long vm_flags, struct page **pages)
3666 {
3667 	struct vm_area_struct *vma = __install_special_mapping(
3668 		mm, addr, len, vm_flags, (void *)pages,
3669 		&legacy_special_mapping_vmops);
3670 
3671 	return PTR_ERR_OR_ZERO(vma);
3672 }
3673 
3674 static DEFINE_MUTEX(mm_all_locks_mutex);
3675 
3676 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3677 {
3678 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3679 		/*
3680 		 * The LSB of head.next can't change from under us
3681 		 * because we hold the mm_all_locks_mutex.
3682 		 */
3683 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3684 		/*
3685 		 * We can safely modify head.next after taking the
3686 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3687 		 * the same anon_vma we won't take it again.
3688 		 *
3689 		 * No need of atomic instructions here, head.next
3690 		 * can't change from under us thanks to the
3691 		 * anon_vma->root->rwsem.
3692 		 */
3693 		if (__test_and_set_bit(0, (unsigned long *)
3694 				       &anon_vma->root->rb_root.rb_root.rb_node))
3695 			BUG();
3696 	}
3697 }
3698 
3699 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3700 {
3701 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3702 		/*
3703 		 * AS_MM_ALL_LOCKS can't change from under us because
3704 		 * we hold the mm_all_locks_mutex.
3705 		 *
3706 		 * Operations on ->flags have to be atomic because
3707 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3708 		 * mm_all_locks_mutex, there may be other cpus
3709 		 * changing other bitflags in parallel to us.
3710 		 */
3711 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3712 			BUG();
3713 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3714 	}
3715 }
3716 
3717 /*
3718  * This operation locks against the VM for all pte/vma/mm related
3719  * operations that could ever happen on a certain mm. This includes
3720  * vmtruncate, try_to_unmap, and all page faults.
3721  *
3722  * The caller must take the mmap_lock in write mode before calling
3723  * mm_take_all_locks(). The caller isn't allowed to release the
3724  * mmap_lock until mm_drop_all_locks() returns.
3725  *
3726  * mmap_lock in write mode is required in order to block all operations
3727  * that could modify pagetables and free pages without need of
3728  * altering the vma layout. It's also needed in write mode to avoid new
3729  * anon_vmas to be associated with existing vmas.
3730  *
3731  * A single task can't take more than one mm_take_all_locks() in a row
3732  * or it would deadlock.
3733  *
3734  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3735  * mapping->flags avoid to take the same lock twice, if more than one
3736  * vma in this mm is backed by the same anon_vma or address_space.
3737  *
3738  * We take locks in following order, accordingly to comment at beginning
3739  * of mm/rmap.c:
3740  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3741  *     hugetlb mapping);
3742  *   - all vmas marked locked
3743  *   - all i_mmap_rwsem locks;
3744  *   - all anon_vma->rwseml
3745  *
3746  * We can take all locks within these types randomly because the VM code
3747  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3748  * mm_all_locks_mutex.
3749  *
3750  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3751  * that may have to take thousand of locks.
3752  *
3753  * mm_take_all_locks() can fail if it's interrupted by signals.
3754  */
3755 int mm_take_all_locks(struct mm_struct *mm)
3756 {
3757 	struct vm_area_struct *vma;
3758 	struct anon_vma_chain *avc;
3759 	VMA_ITERATOR(vmi, mm, 0);
3760 
3761 	mmap_assert_write_locked(mm);
3762 
3763 	mutex_lock(&mm_all_locks_mutex);
3764 
3765 	/*
3766 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3767 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3768 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3769 	 * is reached.
3770 	 */
3771 	for_each_vma(vmi, vma) {
3772 		if (signal_pending(current))
3773 			goto out_unlock;
3774 		vma_start_write(vma);
3775 	}
3776 
3777 	vma_iter_init(&vmi, mm, 0);
3778 	for_each_vma(vmi, vma) {
3779 		if (signal_pending(current))
3780 			goto out_unlock;
3781 		if (vma->vm_file && vma->vm_file->f_mapping &&
3782 				is_vm_hugetlb_page(vma))
3783 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3784 	}
3785 
3786 	vma_iter_init(&vmi, mm, 0);
3787 	for_each_vma(vmi, vma) {
3788 		if (signal_pending(current))
3789 			goto out_unlock;
3790 		if (vma->vm_file && vma->vm_file->f_mapping &&
3791 				!is_vm_hugetlb_page(vma))
3792 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3793 	}
3794 
3795 	vma_iter_init(&vmi, mm, 0);
3796 	for_each_vma(vmi, vma) {
3797 		if (signal_pending(current))
3798 			goto out_unlock;
3799 		if (vma->anon_vma)
3800 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3801 				vm_lock_anon_vma(mm, avc->anon_vma);
3802 	}
3803 
3804 	return 0;
3805 
3806 out_unlock:
3807 	mm_drop_all_locks(mm);
3808 	return -EINTR;
3809 }
3810 
3811 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3812 {
3813 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3814 		/*
3815 		 * The LSB of head.next can't change to 0 from under
3816 		 * us because we hold the mm_all_locks_mutex.
3817 		 *
3818 		 * We must however clear the bitflag before unlocking
3819 		 * the vma so the users using the anon_vma->rb_root will
3820 		 * never see our bitflag.
3821 		 *
3822 		 * No need of atomic instructions here, head.next
3823 		 * can't change from under us until we release the
3824 		 * anon_vma->root->rwsem.
3825 		 */
3826 		if (!__test_and_clear_bit(0, (unsigned long *)
3827 					  &anon_vma->root->rb_root.rb_root.rb_node))
3828 			BUG();
3829 		anon_vma_unlock_write(anon_vma);
3830 	}
3831 }
3832 
3833 static void vm_unlock_mapping(struct address_space *mapping)
3834 {
3835 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3836 		/*
3837 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3838 		 * because we hold the mm_all_locks_mutex.
3839 		 */
3840 		i_mmap_unlock_write(mapping);
3841 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3842 					&mapping->flags))
3843 			BUG();
3844 	}
3845 }
3846 
3847 /*
3848  * The mmap_lock cannot be released by the caller until
3849  * mm_drop_all_locks() returns.
3850  */
3851 void mm_drop_all_locks(struct mm_struct *mm)
3852 {
3853 	struct vm_area_struct *vma;
3854 	struct anon_vma_chain *avc;
3855 	VMA_ITERATOR(vmi, mm, 0);
3856 
3857 	mmap_assert_write_locked(mm);
3858 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3859 
3860 	for_each_vma(vmi, vma) {
3861 		if (vma->anon_vma)
3862 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3863 				vm_unlock_anon_vma(avc->anon_vma);
3864 		if (vma->vm_file && vma->vm_file->f_mapping)
3865 			vm_unlock_mapping(vma->vm_file->f_mapping);
3866 	}
3867 
3868 	mutex_unlock(&mm_all_locks_mutex);
3869 }
3870 
3871 /*
3872  * initialise the percpu counter for VM
3873  */
3874 void __init mmap_init(void)
3875 {
3876 	int ret;
3877 
3878 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3879 	VM_BUG_ON(ret);
3880 }
3881 
3882 /*
3883  * Initialise sysctl_user_reserve_kbytes.
3884  *
3885  * This is intended to prevent a user from starting a single memory hogging
3886  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3887  * mode.
3888  *
3889  * The default value is min(3% of free memory, 128MB)
3890  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3891  */
3892 static int init_user_reserve(void)
3893 {
3894 	unsigned long free_kbytes;
3895 
3896 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3897 
3898 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3899 	return 0;
3900 }
3901 subsys_initcall(init_user_reserve);
3902 
3903 /*
3904  * Initialise sysctl_admin_reserve_kbytes.
3905  *
3906  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3907  * to log in and kill a memory hogging process.
3908  *
3909  * Systems with more than 256MB will reserve 8MB, enough to recover
3910  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3911  * only reserve 3% of free pages by default.
3912  */
3913 static int init_admin_reserve(void)
3914 {
3915 	unsigned long free_kbytes;
3916 
3917 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3918 
3919 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3920 	return 0;
3921 }
3922 subsys_initcall(init_admin_reserve);
3923 
3924 /*
3925  * Reinititalise user and admin reserves if memory is added or removed.
3926  *
3927  * The default user reserve max is 128MB, and the default max for the
3928  * admin reserve is 8MB. These are usually, but not always, enough to
3929  * enable recovery from a memory hogging process using login/sshd, a shell,
3930  * and tools like top. It may make sense to increase or even disable the
3931  * reserve depending on the existence of swap or variations in the recovery
3932  * tools. So, the admin may have changed them.
3933  *
3934  * If memory is added and the reserves have been eliminated or increased above
3935  * the default max, then we'll trust the admin.
3936  *
3937  * If memory is removed and there isn't enough free memory, then we
3938  * need to reset the reserves.
3939  *
3940  * Otherwise keep the reserve set by the admin.
3941  */
3942 static int reserve_mem_notifier(struct notifier_block *nb,
3943 			     unsigned long action, void *data)
3944 {
3945 	unsigned long tmp, free_kbytes;
3946 
3947 	switch (action) {
3948 	case MEM_ONLINE:
3949 		/* Default max is 128MB. Leave alone if modified by operator. */
3950 		tmp = sysctl_user_reserve_kbytes;
3951 		if (tmp > 0 && tmp < SZ_128K)
3952 			init_user_reserve();
3953 
3954 		/* Default max is 8MB.  Leave alone if modified by operator. */
3955 		tmp = sysctl_admin_reserve_kbytes;
3956 		if (tmp > 0 && tmp < SZ_8K)
3957 			init_admin_reserve();
3958 
3959 		break;
3960 	case MEM_OFFLINE:
3961 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3962 
3963 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3964 			init_user_reserve();
3965 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3966 				sysctl_user_reserve_kbytes);
3967 		}
3968 
3969 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3970 			init_admin_reserve();
3971 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3972 				sysctl_admin_reserve_kbytes);
3973 		}
3974 		break;
3975 	default:
3976 		break;
3977 	}
3978 	return NOTIFY_OK;
3979 }
3980 
3981 static int __meminit init_reserve_notifier(void)
3982 {
3983 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3984 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3985 
3986 	return 0;
3987 }
3988 subsys_initcall(init_reserve_notifier);
3989