1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 80 void vma_set_page_prot(struct vm_area_struct *vma) 81 { 82 unsigned long vm_flags = vma->vm_flags; 83 pgprot_t vm_page_prot; 84 85 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 86 if (vma_wants_writenotify(vma, vm_page_prot)) { 87 vm_flags &= ~VM_SHARED; 88 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 89 } 90 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 91 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 92 } 93 94 /* 95 * check_brk_limits() - Use platform specific check of range & verify mlock 96 * limits. 97 * @addr: The address to check 98 * @len: The size of increase. 99 * 100 * Return: 0 on success. 101 */ 102 static int check_brk_limits(unsigned long addr, unsigned long len) 103 { 104 unsigned long mapped_addr; 105 106 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 107 if (IS_ERR_VALUE(mapped_addr)) 108 return mapped_addr; 109 110 return mlock_future_ok(current->mm, current->mm->def_flags, len) 111 ? 0 : -EAGAIN; 112 } 113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 114 unsigned long addr, unsigned long request, unsigned long flags); 115 SYSCALL_DEFINE1(brk, unsigned long, brk) 116 { 117 unsigned long newbrk, oldbrk, origbrk; 118 struct mm_struct *mm = current->mm; 119 struct vm_area_struct *brkvma, *next = NULL; 120 unsigned long min_brk; 121 bool populate = false; 122 LIST_HEAD(uf); 123 struct vma_iterator vmi; 124 125 if (mmap_write_lock_killable(mm)) 126 return -EINTR; 127 128 origbrk = mm->brk; 129 130 #ifdef CONFIG_COMPAT_BRK 131 /* 132 * CONFIG_COMPAT_BRK can still be overridden by setting 133 * randomize_va_space to 2, which will still cause mm->start_brk 134 * to be arbitrarily shifted 135 */ 136 if (current->brk_randomized) 137 min_brk = mm->start_brk; 138 else 139 min_brk = mm->end_data; 140 #else 141 min_brk = mm->start_brk; 142 #endif 143 if (brk < min_brk) 144 goto out; 145 146 /* 147 * Check against rlimit here. If this check is done later after the test 148 * of oldbrk with newbrk then it can escape the test and let the data 149 * segment grow beyond its set limit the in case where the limit is 150 * not page aligned -Ram Gupta 151 */ 152 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 153 mm->end_data, mm->start_data)) 154 goto out; 155 156 newbrk = PAGE_ALIGN(brk); 157 oldbrk = PAGE_ALIGN(mm->brk); 158 if (oldbrk == newbrk) { 159 mm->brk = brk; 160 goto success; 161 } 162 163 /* Always allow shrinking brk. */ 164 if (brk <= mm->brk) { 165 /* Search one past newbrk */ 166 vma_iter_init(&vmi, mm, newbrk); 167 brkvma = vma_find(&vmi, oldbrk); 168 if (!brkvma || brkvma->vm_start >= oldbrk) 169 goto out; /* mapping intersects with an existing non-brk vma. */ 170 /* 171 * mm->brk must be protected by write mmap_lock. 172 * do_vmi_align_munmap() will drop the lock on success, so 173 * update it before calling do_vma_munmap(). 174 */ 175 mm->brk = brk; 176 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf, 177 /* unlock = */ true)) 178 goto out; 179 180 goto success_unlocked; 181 } 182 183 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 184 goto out; 185 186 /* 187 * Only check if the next VMA is within the stack_guard_gap of the 188 * expansion area 189 */ 190 vma_iter_init(&vmi, mm, oldbrk); 191 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 192 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 193 goto out; 194 195 brkvma = vma_prev_limit(&vmi, mm->start_brk); 196 /* Ok, looks good - let it rip. */ 197 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 198 goto out; 199 200 mm->brk = brk; 201 if (mm->def_flags & VM_LOCKED) 202 populate = true; 203 204 success: 205 mmap_write_unlock(mm); 206 success_unlocked: 207 userfaultfd_unmap_complete(mm, &uf); 208 if (populate) 209 mm_populate(oldbrk, newbrk - oldbrk); 210 return brk; 211 212 out: 213 mm->brk = origbrk; 214 mmap_write_unlock(mm); 215 return origbrk; 216 } 217 218 /* 219 * If a hint addr is less than mmap_min_addr change hint to be as 220 * low as possible but still greater than mmap_min_addr 221 */ 222 static inline unsigned long round_hint_to_min(unsigned long hint) 223 { 224 hint &= PAGE_MASK; 225 if (((void *)hint != NULL) && 226 (hint < mmap_min_addr)) 227 return PAGE_ALIGN(mmap_min_addr); 228 return hint; 229 } 230 231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 232 unsigned long bytes) 233 { 234 unsigned long locked_pages, limit_pages; 235 236 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 237 return true; 238 239 locked_pages = bytes >> PAGE_SHIFT; 240 locked_pages += mm->locked_vm; 241 242 limit_pages = rlimit(RLIMIT_MEMLOCK); 243 limit_pages >>= PAGE_SHIFT; 244 245 return locked_pages <= limit_pages; 246 } 247 248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 249 { 250 if (S_ISREG(inode->i_mode)) 251 return MAX_LFS_FILESIZE; 252 253 if (S_ISBLK(inode->i_mode)) 254 return MAX_LFS_FILESIZE; 255 256 if (S_ISSOCK(inode->i_mode)) 257 return MAX_LFS_FILESIZE; 258 259 /* Special "we do even unsigned file positions" case */ 260 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET) 261 return 0; 262 263 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 264 return ULONG_MAX; 265 } 266 267 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 268 unsigned long pgoff, unsigned long len) 269 { 270 u64 maxsize = file_mmap_size_max(file, inode); 271 272 if (maxsize && len > maxsize) 273 return false; 274 maxsize -= len; 275 if (pgoff > maxsize >> PAGE_SHIFT) 276 return false; 277 return true; 278 } 279 280 /* 281 * The caller must write-lock current->mm->mmap_lock. 282 */ 283 unsigned long do_mmap(struct file *file, unsigned long addr, 284 unsigned long len, unsigned long prot, 285 unsigned long flags, vm_flags_t vm_flags, 286 unsigned long pgoff, unsigned long *populate, 287 struct list_head *uf) 288 { 289 struct mm_struct *mm = current->mm; 290 int pkey = 0; 291 292 *populate = 0; 293 294 if (!len) 295 return -EINVAL; 296 297 /* 298 * Does the application expect PROT_READ to imply PROT_EXEC? 299 * 300 * (the exception is when the underlying filesystem is noexec 301 * mounted, in which case we don't add PROT_EXEC.) 302 */ 303 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 304 if (!(file && path_noexec(&file->f_path))) 305 prot |= PROT_EXEC; 306 307 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 308 if (flags & MAP_FIXED_NOREPLACE) 309 flags |= MAP_FIXED; 310 311 if (!(flags & MAP_FIXED)) 312 addr = round_hint_to_min(addr); 313 314 /* Careful about overflows.. */ 315 len = PAGE_ALIGN(len); 316 if (!len) 317 return -ENOMEM; 318 319 /* offset overflow? */ 320 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 321 return -EOVERFLOW; 322 323 /* Too many mappings? */ 324 if (mm->map_count > sysctl_max_map_count) 325 return -ENOMEM; 326 327 /* 328 * addr is returned from get_unmapped_area, 329 * There are two cases: 330 * 1> MAP_FIXED == false 331 * unallocated memory, no need to check sealing. 332 * 1> MAP_FIXED == true 333 * sealing is checked inside mmap_region when 334 * do_vmi_munmap is called. 335 */ 336 337 if (prot == PROT_EXEC) { 338 pkey = execute_only_pkey(mm); 339 if (pkey < 0) 340 pkey = 0; 341 } 342 343 /* Do simple checking here so the lower-level routines won't have 344 * to. we assume access permissions have been handled by the open 345 * of the memory object, so we don't do any here. 346 */ 347 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) | 348 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 349 350 /* Obtain the address to map to. we verify (or select) it and ensure 351 * that it represents a valid section of the address space. 352 */ 353 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 354 if (IS_ERR_VALUE(addr)) 355 return addr; 356 357 if (flags & MAP_FIXED_NOREPLACE) { 358 if (find_vma_intersection(mm, addr, addr + len)) 359 return -EEXIST; 360 } 361 362 if (flags & MAP_LOCKED) 363 if (!can_do_mlock()) 364 return -EPERM; 365 366 if (!mlock_future_ok(mm, vm_flags, len)) 367 return -EAGAIN; 368 369 if (file) { 370 struct inode *inode = file_inode(file); 371 unsigned long flags_mask; 372 373 if (!file_mmap_ok(file, inode, pgoff, len)) 374 return -EOVERFLOW; 375 376 flags_mask = LEGACY_MAP_MASK; 377 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 378 flags_mask |= MAP_SYNC; 379 380 switch (flags & MAP_TYPE) { 381 case MAP_SHARED: 382 /* 383 * Force use of MAP_SHARED_VALIDATE with non-legacy 384 * flags. E.g. MAP_SYNC is dangerous to use with 385 * MAP_SHARED as you don't know which consistency model 386 * you will get. We silently ignore unsupported flags 387 * with MAP_SHARED to preserve backward compatibility. 388 */ 389 flags &= LEGACY_MAP_MASK; 390 fallthrough; 391 case MAP_SHARED_VALIDATE: 392 if (flags & ~flags_mask) 393 return -EOPNOTSUPP; 394 if (prot & PROT_WRITE) { 395 if (!(file->f_mode & FMODE_WRITE)) 396 return -EACCES; 397 if (IS_SWAPFILE(file->f_mapping->host)) 398 return -ETXTBSY; 399 } 400 401 /* 402 * Make sure we don't allow writing to an append-only 403 * file.. 404 */ 405 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 406 return -EACCES; 407 408 vm_flags |= VM_SHARED | VM_MAYSHARE; 409 if (!(file->f_mode & FMODE_WRITE)) 410 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 411 fallthrough; 412 case MAP_PRIVATE: 413 if (!(file->f_mode & FMODE_READ)) 414 return -EACCES; 415 if (path_noexec(&file->f_path)) { 416 if (vm_flags & VM_EXEC) 417 return -EPERM; 418 vm_flags &= ~VM_MAYEXEC; 419 } 420 421 if (!file->f_op->mmap) 422 return -ENODEV; 423 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 424 return -EINVAL; 425 break; 426 427 default: 428 return -EINVAL; 429 } 430 } else { 431 switch (flags & MAP_TYPE) { 432 case MAP_SHARED: 433 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 434 return -EINVAL; 435 /* 436 * Ignore pgoff. 437 */ 438 pgoff = 0; 439 vm_flags |= VM_SHARED | VM_MAYSHARE; 440 break; 441 case MAP_DROPPABLE: 442 if (VM_DROPPABLE == VM_NONE) 443 return -ENOTSUPP; 444 /* 445 * A locked or stack area makes no sense to be droppable. 446 * 447 * Also, since droppable pages can just go away at any time 448 * it makes no sense to copy them on fork or dump them. 449 * 450 * And don't attempt to combine with hugetlb for now. 451 */ 452 if (flags & (MAP_LOCKED | MAP_HUGETLB)) 453 return -EINVAL; 454 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP)) 455 return -EINVAL; 456 457 vm_flags |= VM_DROPPABLE; 458 459 /* 460 * If the pages can be dropped, then it doesn't make 461 * sense to reserve them. 462 */ 463 vm_flags |= VM_NORESERVE; 464 465 /* 466 * Likewise, they're volatile enough that they 467 * shouldn't survive forks or coredumps. 468 */ 469 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP; 470 fallthrough; 471 case MAP_PRIVATE: 472 /* 473 * Set pgoff according to addr for anon_vma. 474 */ 475 pgoff = addr >> PAGE_SHIFT; 476 break; 477 default: 478 return -EINVAL; 479 } 480 } 481 482 /* 483 * Set 'VM_NORESERVE' if we should not account for the 484 * memory use of this mapping. 485 */ 486 if (flags & MAP_NORESERVE) { 487 /* We honor MAP_NORESERVE if allowed to overcommit */ 488 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 489 vm_flags |= VM_NORESERVE; 490 491 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 492 if (file && is_file_hugepages(file)) 493 vm_flags |= VM_NORESERVE; 494 } 495 496 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 497 if (!IS_ERR_VALUE(addr) && 498 ((vm_flags & VM_LOCKED) || 499 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 500 *populate = len; 501 return addr; 502 } 503 504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 505 unsigned long prot, unsigned long flags, 506 unsigned long fd, unsigned long pgoff) 507 { 508 struct file *file = NULL; 509 unsigned long retval; 510 511 if (!(flags & MAP_ANONYMOUS)) { 512 audit_mmap_fd(fd, flags); 513 file = fget(fd); 514 if (!file) 515 return -EBADF; 516 if (is_file_hugepages(file)) { 517 len = ALIGN(len, huge_page_size(hstate_file(file))); 518 } else if (unlikely(flags & MAP_HUGETLB)) { 519 retval = -EINVAL; 520 goto out_fput; 521 } 522 } else if (flags & MAP_HUGETLB) { 523 struct hstate *hs; 524 525 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 526 if (!hs) 527 return -EINVAL; 528 529 len = ALIGN(len, huge_page_size(hs)); 530 /* 531 * VM_NORESERVE is used because the reservations will be 532 * taken when vm_ops->mmap() is called 533 */ 534 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 535 VM_NORESERVE, 536 HUGETLB_ANONHUGE_INODE, 537 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 538 if (IS_ERR(file)) 539 return PTR_ERR(file); 540 } 541 542 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 543 out_fput: 544 if (file) 545 fput(file); 546 return retval; 547 } 548 549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 550 unsigned long, prot, unsigned long, flags, 551 unsigned long, fd, unsigned long, pgoff) 552 { 553 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 554 } 555 556 #ifdef __ARCH_WANT_SYS_OLD_MMAP 557 struct mmap_arg_struct { 558 unsigned long addr; 559 unsigned long len; 560 unsigned long prot; 561 unsigned long flags; 562 unsigned long fd; 563 unsigned long offset; 564 }; 565 566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 567 { 568 struct mmap_arg_struct a; 569 570 if (copy_from_user(&a, arg, sizeof(a))) 571 return -EFAULT; 572 if (offset_in_page(a.offset)) 573 return -EINVAL; 574 575 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 576 a.offset >> PAGE_SHIFT); 577 } 578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 579 580 /** 581 * unmapped_area() - Find an area between the low_limit and the high_limit with 582 * the correct alignment and offset, all from @info. Note: current->mm is used 583 * for the search. 584 * 585 * @info: The unmapped area information including the range [low_limit - 586 * high_limit), the alignment offset and mask. 587 * 588 * Return: A memory address or -ENOMEM. 589 */ 590 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 591 { 592 unsigned long length, gap; 593 unsigned long low_limit, high_limit; 594 struct vm_area_struct *tmp; 595 VMA_ITERATOR(vmi, current->mm, 0); 596 597 /* Adjust search length to account for worst case alignment overhead */ 598 length = info->length + info->align_mask + info->start_gap; 599 if (length < info->length) 600 return -ENOMEM; 601 602 low_limit = info->low_limit; 603 if (low_limit < mmap_min_addr) 604 low_limit = mmap_min_addr; 605 high_limit = info->high_limit; 606 retry: 607 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 608 return -ENOMEM; 609 610 /* 611 * Adjust for the gap first so it doesn't interfere with the 612 * later alignment. The first step is the minimum needed to 613 * fulill the start gap, the next steps is the minimum to align 614 * that. It is the minimum needed to fulill both. 615 */ 616 gap = vma_iter_addr(&vmi) + info->start_gap; 617 gap += (info->align_offset - gap) & info->align_mask; 618 tmp = vma_next(&vmi); 619 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 620 if (vm_start_gap(tmp) < gap + length - 1) { 621 low_limit = tmp->vm_end; 622 vma_iter_reset(&vmi); 623 goto retry; 624 } 625 } else { 626 tmp = vma_prev(&vmi); 627 if (tmp && vm_end_gap(tmp) > gap) { 628 low_limit = vm_end_gap(tmp); 629 vma_iter_reset(&vmi); 630 goto retry; 631 } 632 } 633 634 return gap; 635 } 636 637 /** 638 * unmapped_area_topdown() - Find an area between the low_limit and the 639 * high_limit with the correct alignment and offset at the highest available 640 * address, all from @info. Note: current->mm is used for the search. 641 * 642 * @info: The unmapped area information including the range [low_limit - 643 * high_limit), the alignment offset and mask. 644 * 645 * Return: A memory address or -ENOMEM. 646 */ 647 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 648 { 649 unsigned long length, gap, gap_end; 650 unsigned long low_limit, high_limit; 651 struct vm_area_struct *tmp; 652 VMA_ITERATOR(vmi, current->mm, 0); 653 654 /* Adjust search length to account for worst case alignment overhead */ 655 length = info->length + info->align_mask + info->start_gap; 656 if (length < info->length) 657 return -ENOMEM; 658 659 low_limit = info->low_limit; 660 if (low_limit < mmap_min_addr) 661 low_limit = mmap_min_addr; 662 high_limit = info->high_limit; 663 retry: 664 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 665 return -ENOMEM; 666 667 gap = vma_iter_end(&vmi) - info->length; 668 gap -= (gap - info->align_offset) & info->align_mask; 669 gap_end = vma_iter_end(&vmi); 670 tmp = vma_next(&vmi); 671 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 672 if (vm_start_gap(tmp) < gap_end) { 673 high_limit = vm_start_gap(tmp); 674 vma_iter_reset(&vmi); 675 goto retry; 676 } 677 } else { 678 tmp = vma_prev(&vmi); 679 if (tmp && vm_end_gap(tmp) > gap) { 680 high_limit = tmp->vm_start; 681 vma_iter_reset(&vmi); 682 goto retry; 683 } 684 } 685 686 return gap; 687 } 688 689 /* 690 * Determine if the allocation needs to ensure that there is no 691 * existing mapping within it's guard gaps, for use as start_gap. 692 */ 693 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags) 694 { 695 if (vm_flags & VM_SHADOW_STACK) 696 return PAGE_SIZE; 697 698 return 0; 699 } 700 701 /* 702 * Search for an unmapped address range. 703 * 704 * We are looking for a range that: 705 * - does not intersect with any VMA; 706 * - is contained within the [low_limit, high_limit) interval; 707 * - is at least the desired size. 708 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 709 */ 710 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 711 { 712 unsigned long addr; 713 714 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 715 addr = unmapped_area_topdown(info); 716 else 717 addr = unmapped_area(info); 718 719 trace_vm_unmapped_area(addr, info); 720 return addr; 721 } 722 723 /* Get an address range which is currently unmapped. 724 * For shmat() with addr=0. 725 * 726 * Ugly calling convention alert: 727 * Return value with the low bits set means error value, 728 * ie 729 * if (ret & ~PAGE_MASK) 730 * error = ret; 731 * 732 * This function "knows" that -ENOMEM has the bits set. 733 */ 734 unsigned long 735 generic_get_unmapped_area(struct file *filp, unsigned long addr, 736 unsigned long len, unsigned long pgoff, 737 unsigned long flags, vm_flags_t vm_flags) 738 { 739 struct mm_struct *mm = current->mm; 740 struct vm_area_struct *vma, *prev; 741 struct vm_unmapped_area_info info = {}; 742 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 743 744 if (len > mmap_end - mmap_min_addr) 745 return -ENOMEM; 746 747 if (flags & MAP_FIXED) 748 return addr; 749 750 if (addr) { 751 addr = PAGE_ALIGN(addr); 752 vma = find_vma_prev(mm, addr, &prev); 753 if (mmap_end - len >= addr && addr >= mmap_min_addr && 754 (!vma || addr + len <= vm_start_gap(vma)) && 755 (!prev || addr >= vm_end_gap(prev))) 756 return addr; 757 } 758 759 info.length = len; 760 info.low_limit = mm->mmap_base; 761 info.high_limit = mmap_end; 762 info.start_gap = stack_guard_placement(vm_flags); 763 if (filp && is_file_hugepages(filp)) 764 info.align_mask = huge_page_mask_align(filp); 765 return vm_unmapped_area(&info); 766 } 767 768 #ifndef HAVE_ARCH_UNMAPPED_AREA 769 unsigned long 770 arch_get_unmapped_area(struct file *filp, unsigned long addr, 771 unsigned long len, unsigned long pgoff, 772 unsigned long flags, vm_flags_t vm_flags) 773 { 774 return generic_get_unmapped_area(filp, addr, len, pgoff, flags, 775 vm_flags); 776 } 777 #endif 778 779 /* 780 * This mmap-allocator allocates new areas top-down from below the 781 * stack's low limit (the base): 782 */ 783 unsigned long 784 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 785 unsigned long len, unsigned long pgoff, 786 unsigned long flags, vm_flags_t vm_flags) 787 { 788 struct vm_area_struct *vma, *prev; 789 struct mm_struct *mm = current->mm; 790 struct vm_unmapped_area_info info = {}; 791 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 792 793 /* requested length too big for entire address space */ 794 if (len > mmap_end - mmap_min_addr) 795 return -ENOMEM; 796 797 if (flags & MAP_FIXED) 798 return addr; 799 800 /* requesting a specific address */ 801 if (addr) { 802 addr = PAGE_ALIGN(addr); 803 vma = find_vma_prev(mm, addr, &prev); 804 if (mmap_end - len >= addr && addr >= mmap_min_addr && 805 (!vma || addr + len <= vm_start_gap(vma)) && 806 (!prev || addr >= vm_end_gap(prev))) 807 return addr; 808 } 809 810 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 811 info.length = len; 812 info.low_limit = PAGE_SIZE; 813 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 814 info.start_gap = stack_guard_placement(vm_flags); 815 if (filp && is_file_hugepages(filp)) 816 info.align_mask = huge_page_mask_align(filp); 817 addr = vm_unmapped_area(&info); 818 819 /* 820 * A failed mmap() very likely causes application failure, 821 * so fall back to the bottom-up function here. This scenario 822 * can happen with large stack limits and large mmap() 823 * allocations. 824 */ 825 if (offset_in_page(addr)) { 826 VM_BUG_ON(addr != -ENOMEM); 827 info.flags = 0; 828 info.low_limit = TASK_UNMAPPED_BASE; 829 info.high_limit = mmap_end; 830 addr = vm_unmapped_area(&info); 831 } 832 833 return addr; 834 } 835 836 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 837 unsigned long 838 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 839 unsigned long len, unsigned long pgoff, 840 unsigned long flags, vm_flags_t vm_flags) 841 { 842 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags, 843 vm_flags); 844 } 845 #endif 846 847 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 848 unsigned long addr, unsigned long len, 849 unsigned long pgoff, unsigned long flags, 850 vm_flags_t vm_flags) 851 { 852 if (test_bit(MMF_TOPDOWN, &mm->flags)) 853 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, 854 flags, vm_flags); 855 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags); 856 } 857 858 unsigned long 859 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 860 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 861 { 862 unsigned long (*get_area)(struct file *, unsigned long, 863 unsigned long, unsigned long, unsigned long) 864 = NULL; 865 866 unsigned long error = arch_mmap_check(addr, len, flags); 867 if (error) 868 return error; 869 870 /* Careful about overflows.. */ 871 if (len > TASK_SIZE) 872 return -ENOMEM; 873 874 if (file) { 875 if (file->f_op->get_unmapped_area) 876 get_area = file->f_op->get_unmapped_area; 877 } else if (flags & MAP_SHARED) { 878 /* 879 * mmap_region() will call shmem_zero_setup() to create a file, 880 * so use shmem's get_unmapped_area in case it can be huge. 881 */ 882 get_area = shmem_get_unmapped_area; 883 } 884 885 /* Always treat pgoff as zero for anonymous memory. */ 886 if (!file) 887 pgoff = 0; 888 889 if (get_area) { 890 addr = get_area(file, addr, len, pgoff, flags); 891 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) 892 && IS_ALIGNED(len, PMD_SIZE)) { 893 /* Ensures that larger anonymous mappings are THP aligned. */ 894 addr = thp_get_unmapped_area_vmflags(file, addr, len, 895 pgoff, flags, vm_flags); 896 } else { 897 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 898 pgoff, flags, vm_flags); 899 } 900 if (IS_ERR_VALUE(addr)) 901 return addr; 902 903 if (addr > TASK_SIZE - len) 904 return -ENOMEM; 905 if (offset_in_page(addr)) 906 return -EINVAL; 907 908 error = security_mmap_addr(addr); 909 return error ? error : addr; 910 } 911 912 unsigned long 913 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 914 unsigned long addr, unsigned long len, 915 unsigned long pgoff, unsigned long flags) 916 { 917 if (test_bit(MMF_TOPDOWN, &mm->flags)) 918 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0); 919 return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0); 920 } 921 EXPORT_SYMBOL(mm_get_unmapped_area); 922 923 /** 924 * find_vma_intersection() - Look up the first VMA which intersects the interval 925 * @mm: The process address space. 926 * @start_addr: The inclusive start user address. 927 * @end_addr: The exclusive end user address. 928 * 929 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 930 * start_addr < end_addr. 931 */ 932 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 933 unsigned long start_addr, 934 unsigned long end_addr) 935 { 936 unsigned long index = start_addr; 937 938 mmap_assert_locked(mm); 939 return mt_find(&mm->mm_mt, &index, end_addr - 1); 940 } 941 EXPORT_SYMBOL(find_vma_intersection); 942 943 /** 944 * find_vma() - Find the VMA for a given address, or the next VMA. 945 * @mm: The mm_struct to check 946 * @addr: The address 947 * 948 * Returns: The VMA associated with addr, or the next VMA. 949 * May return %NULL in the case of no VMA at addr or above. 950 */ 951 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 952 { 953 unsigned long index = addr; 954 955 mmap_assert_locked(mm); 956 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 957 } 958 EXPORT_SYMBOL(find_vma); 959 960 /** 961 * find_vma_prev() - Find the VMA for a given address, or the next vma and 962 * set %pprev to the previous VMA, if any. 963 * @mm: The mm_struct to check 964 * @addr: The address 965 * @pprev: The pointer to set to the previous VMA 966 * 967 * Note that RCU lock is missing here since the external mmap_lock() is used 968 * instead. 969 * 970 * Returns: The VMA associated with @addr, or the next vma. 971 * May return %NULL in the case of no vma at addr or above. 972 */ 973 struct vm_area_struct * 974 find_vma_prev(struct mm_struct *mm, unsigned long addr, 975 struct vm_area_struct **pprev) 976 { 977 struct vm_area_struct *vma; 978 VMA_ITERATOR(vmi, mm, addr); 979 980 vma = vma_iter_load(&vmi); 981 *pprev = vma_prev(&vmi); 982 if (!vma) 983 vma = vma_next(&vmi); 984 return vma; 985 } 986 987 /* 988 * Verify that the stack growth is acceptable and 989 * update accounting. This is shared with both the 990 * grow-up and grow-down cases. 991 */ 992 static int acct_stack_growth(struct vm_area_struct *vma, 993 unsigned long size, unsigned long grow) 994 { 995 struct mm_struct *mm = vma->vm_mm; 996 unsigned long new_start; 997 998 /* address space limit tests */ 999 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1000 return -ENOMEM; 1001 1002 /* Stack limit test */ 1003 if (size > rlimit(RLIMIT_STACK)) 1004 return -ENOMEM; 1005 1006 /* mlock limit tests */ 1007 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1008 return -ENOMEM; 1009 1010 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1011 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1012 vma->vm_end - size; 1013 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1014 return -EFAULT; 1015 1016 /* 1017 * Overcommit.. This must be the final test, as it will 1018 * update security statistics. 1019 */ 1020 if (security_vm_enough_memory_mm(mm, grow)) 1021 return -ENOMEM; 1022 1023 return 0; 1024 } 1025 1026 #if defined(CONFIG_STACK_GROWSUP) 1027 /* 1028 * PA-RISC uses this for its stack. 1029 * vma is the last one with address > vma->vm_end. Have to extend vma. 1030 */ 1031 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1032 { 1033 struct mm_struct *mm = vma->vm_mm; 1034 struct vm_area_struct *next; 1035 unsigned long gap_addr; 1036 int error = 0; 1037 VMA_ITERATOR(vmi, mm, vma->vm_start); 1038 1039 if (!(vma->vm_flags & VM_GROWSUP)) 1040 return -EFAULT; 1041 1042 mmap_assert_write_locked(mm); 1043 1044 /* Guard against exceeding limits of the address space. */ 1045 address &= PAGE_MASK; 1046 if (address >= (TASK_SIZE & PAGE_MASK)) 1047 return -ENOMEM; 1048 address += PAGE_SIZE; 1049 1050 /* Enforce stack_guard_gap */ 1051 gap_addr = address + stack_guard_gap; 1052 1053 /* Guard against overflow */ 1054 if (gap_addr < address || gap_addr > TASK_SIZE) 1055 gap_addr = TASK_SIZE; 1056 1057 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1058 if (next && vma_is_accessible(next)) { 1059 if (!(next->vm_flags & VM_GROWSUP)) 1060 return -ENOMEM; 1061 /* Check that both stack segments have the same anon_vma? */ 1062 } 1063 1064 if (next) 1065 vma_iter_prev_range_limit(&vmi, address); 1066 1067 vma_iter_config(&vmi, vma->vm_start, address); 1068 if (vma_iter_prealloc(&vmi, vma)) 1069 return -ENOMEM; 1070 1071 /* We must make sure the anon_vma is allocated. */ 1072 if (unlikely(anon_vma_prepare(vma))) { 1073 vma_iter_free(&vmi); 1074 return -ENOMEM; 1075 } 1076 1077 /* Lock the VMA before expanding to prevent concurrent page faults */ 1078 vma_start_write(vma); 1079 /* We update the anon VMA tree. */ 1080 anon_vma_lock_write(vma->anon_vma); 1081 1082 /* Somebody else might have raced and expanded it already */ 1083 if (address > vma->vm_end) { 1084 unsigned long size, grow; 1085 1086 size = address - vma->vm_start; 1087 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1088 1089 error = -ENOMEM; 1090 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1091 error = acct_stack_growth(vma, size, grow); 1092 if (!error) { 1093 if (vma->vm_flags & VM_LOCKED) 1094 mm->locked_vm += grow; 1095 vm_stat_account(mm, vma->vm_flags, grow); 1096 anon_vma_interval_tree_pre_update_vma(vma); 1097 vma->vm_end = address; 1098 /* Overwrite old entry in mtree. */ 1099 vma_iter_store(&vmi, vma); 1100 anon_vma_interval_tree_post_update_vma(vma); 1101 1102 perf_event_mmap(vma); 1103 } 1104 } 1105 } 1106 anon_vma_unlock_write(vma->anon_vma); 1107 vma_iter_free(&vmi); 1108 validate_mm(mm); 1109 return error; 1110 } 1111 #endif /* CONFIG_STACK_GROWSUP */ 1112 1113 /* 1114 * vma is the first one with address < vma->vm_start. Have to extend vma. 1115 * mmap_lock held for writing. 1116 */ 1117 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 1118 { 1119 struct mm_struct *mm = vma->vm_mm; 1120 struct vm_area_struct *prev; 1121 int error = 0; 1122 VMA_ITERATOR(vmi, mm, vma->vm_start); 1123 1124 if (!(vma->vm_flags & VM_GROWSDOWN)) 1125 return -EFAULT; 1126 1127 mmap_assert_write_locked(mm); 1128 1129 address &= PAGE_MASK; 1130 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 1131 return -EPERM; 1132 1133 /* Enforce stack_guard_gap */ 1134 prev = vma_prev(&vmi); 1135 /* Check that both stack segments have the same anon_vma? */ 1136 if (prev) { 1137 if (!(prev->vm_flags & VM_GROWSDOWN) && 1138 vma_is_accessible(prev) && 1139 (address - prev->vm_end < stack_guard_gap)) 1140 return -ENOMEM; 1141 } 1142 1143 if (prev) 1144 vma_iter_next_range_limit(&vmi, vma->vm_start); 1145 1146 vma_iter_config(&vmi, address, vma->vm_end); 1147 if (vma_iter_prealloc(&vmi, vma)) 1148 return -ENOMEM; 1149 1150 /* We must make sure the anon_vma is allocated. */ 1151 if (unlikely(anon_vma_prepare(vma))) { 1152 vma_iter_free(&vmi); 1153 return -ENOMEM; 1154 } 1155 1156 /* Lock the VMA before expanding to prevent concurrent page faults */ 1157 vma_start_write(vma); 1158 /* We update the anon VMA tree. */ 1159 anon_vma_lock_write(vma->anon_vma); 1160 1161 /* Somebody else might have raced and expanded it already */ 1162 if (address < vma->vm_start) { 1163 unsigned long size, grow; 1164 1165 size = vma->vm_end - address; 1166 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1167 1168 error = -ENOMEM; 1169 if (grow <= vma->vm_pgoff) { 1170 error = acct_stack_growth(vma, size, grow); 1171 if (!error) { 1172 if (vma->vm_flags & VM_LOCKED) 1173 mm->locked_vm += grow; 1174 vm_stat_account(mm, vma->vm_flags, grow); 1175 anon_vma_interval_tree_pre_update_vma(vma); 1176 vma->vm_start = address; 1177 vma->vm_pgoff -= grow; 1178 /* Overwrite old entry in mtree. */ 1179 vma_iter_store(&vmi, vma); 1180 anon_vma_interval_tree_post_update_vma(vma); 1181 1182 perf_event_mmap(vma); 1183 } 1184 } 1185 } 1186 anon_vma_unlock_write(vma->anon_vma); 1187 vma_iter_free(&vmi); 1188 validate_mm(mm); 1189 return error; 1190 } 1191 1192 /* enforced gap between the expanding stack and other mappings. */ 1193 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 1194 1195 static int __init cmdline_parse_stack_guard_gap(char *p) 1196 { 1197 unsigned long val; 1198 char *endptr; 1199 1200 val = simple_strtoul(p, &endptr, 10); 1201 if (!*endptr) 1202 stack_guard_gap = val << PAGE_SHIFT; 1203 1204 return 1; 1205 } 1206 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 1207 1208 #ifdef CONFIG_STACK_GROWSUP 1209 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 1210 { 1211 return expand_upwards(vma, address); 1212 } 1213 1214 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 1215 { 1216 struct vm_area_struct *vma, *prev; 1217 1218 addr &= PAGE_MASK; 1219 vma = find_vma_prev(mm, addr, &prev); 1220 if (vma && (vma->vm_start <= addr)) 1221 return vma; 1222 if (!prev) 1223 return NULL; 1224 if (expand_stack_locked(prev, addr)) 1225 return NULL; 1226 if (prev->vm_flags & VM_LOCKED) 1227 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 1228 return prev; 1229 } 1230 #else 1231 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 1232 { 1233 return expand_downwards(vma, address); 1234 } 1235 1236 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 1237 { 1238 struct vm_area_struct *vma; 1239 unsigned long start; 1240 1241 addr &= PAGE_MASK; 1242 vma = find_vma(mm, addr); 1243 if (!vma) 1244 return NULL; 1245 if (vma->vm_start <= addr) 1246 return vma; 1247 start = vma->vm_start; 1248 if (expand_stack_locked(vma, addr)) 1249 return NULL; 1250 if (vma->vm_flags & VM_LOCKED) 1251 populate_vma_page_range(vma, addr, start, NULL); 1252 return vma; 1253 } 1254 #endif 1255 1256 #if defined(CONFIG_STACK_GROWSUP) 1257 1258 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 1259 #define vma_expand_down(vma, addr) (-EFAULT) 1260 1261 #else 1262 1263 #define vma_expand_up(vma,addr) (-EFAULT) 1264 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 1265 1266 #endif 1267 1268 /* 1269 * expand_stack(): legacy interface for page faulting. Don't use unless 1270 * you have to. 1271 * 1272 * This is called with the mm locked for reading, drops the lock, takes 1273 * the lock for writing, tries to look up a vma again, expands it if 1274 * necessary, and downgrades the lock to reading again. 1275 * 1276 * If no vma is found or it can't be expanded, it returns NULL and has 1277 * dropped the lock. 1278 */ 1279 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 1280 { 1281 struct vm_area_struct *vma, *prev; 1282 1283 mmap_read_unlock(mm); 1284 if (mmap_write_lock_killable(mm)) 1285 return NULL; 1286 1287 vma = find_vma_prev(mm, addr, &prev); 1288 if (vma && vma->vm_start <= addr) 1289 goto success; 1290 1291 if (prev && !vma_expand_up(prev, addr)) { 1292 vma = prev; 1293 goto success; 1294 } 1295 1296 if (vma && !vma_expand_down(vma, addr)) 1297 goto success; 1298 1299 mmap_write_unlock(mm); 1300 return NULL; 1301 1302 success: 1303 mmap_write_downgrade(mm); 1304 return vma; 1305 } 1306 1307 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 1308 * @mm: The mm_struct 1309 * @start: The start address to munmap 1310 * @len: The length to be munmapped. 1311 * @uf: The userfaultfd list_head 1312 * 1313 * Return: 0 on success, error otherwise. 1314 */ 1315 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 1316 struct list_head *uf) 1317 { 1318 VMA_ITERATOR(vmi, mm, start); 1319 1320 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 1321 } 1322 1323 unsigned long mmap_region(struct file *file, unsigned long addr, 1324 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1325 struct list_head *uf) 1326 { 1327 unsigned long ret; 1328 bool writable_file_mapping = false; 1329 1330 /* Check to see if MDWE is applicable. */ 1331 if (map_deny_write_exec(vm_flags, vm_flags)) 1332 return -EACCES; 1333 1334 /* Allow architectures to sanity-check the vm_flags. */ 1335 if (!arch_validate_flags(vm_flags)) 1336 return -EINVAL; 1337 1338 /* Map writable and ensure this isn't a sealed memfd. */ 1339 if (file && is_shared_maywrite(vm_flags)) { 1340 int error = mapping_map_writable(file->f_mapping); 1341 1342 if (error) 1343 return error; 1344 writable_file_mapping = true; 1345 } 1346 1347 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 1348 1349 /* Clear our write mapping regardless of error. */ 1350 if (writable_file_mapping) 1351 mapping_unmap_writable(file->f_mapping); 1352 1353 validate_mm(current->mm); 1354 return ret; 1355 } 1356 1357 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 1358 { 1359 int ret; 1360 struct mm_struct *mm = current->mm; 1361 LIST_HEAD(uf); 1362 VMA_ITERATOR(vmi, mm, start); 1363 1364 if (mmap_write_lock_killable(mm)) 1365 return -EINTR; 1366 1367 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 1368 if (ret || !unlock) 1369 mmap_write_unlock(mm); 1370 1371 userfaultfd_unmap_complete(mm, &uf); 1372 return ret; 1373 } 1374 1375 int vm_munmap(unsigned long start, size_t len) 1376 { 1377 return __vm_munmap(start, len, false); 1378 } 1379 EXPORT_SYMBOL(vm_munmap); 1380 1381 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1382 { 1383 addr = untagged_addr(addr); 1384 return __vm_munmap(addr, len, true); 1385 } 1386 1387 1388 /* 1389 * Emulation of deprecated remap_file_pages() syscall. 1390 */ 1391 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 1392 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 1393 { 1394 1395 struct mm_struct *mm = current->mm; 1396 struct vm_area_struct *vma; 1397 unsigned long populate = 0; 1398 unsigned long ret = -EINVAL; 1399 struct file *file; 1400 vm_flags_t vm_flags; 1401 1402 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 1403 current->comm, current->pid); 1404 1405 if (prot) 1406 return ret; 1407 start = start & PAGE_MASK; 1408 size = size & PAGE_MASK; 1409 1410 if (start + size <= start) 1411 return ret; 1412 1413 /* Does pgoff wrap? */ 1414 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 1415 return ret; 1416 1417 if (mmap_read_lock_killable(mm)) 1418 return -EINTR; 1419 1420 /* 1421 * Look up VMA under read lock first so we can perform the security 1422 * without holding locks (which can be problematic). We reacquire a 1423 * write lock later and check nothing changed underneath us. 1424 */ 1425 vma = vma_lookup(mm, start); 1426 1427 if (!vma || !(vma->vm_flags & VM_SHARED)) { 1428 mmap_read_unlock(mm); 1429 return -EINVAL; 1430 } 1431 1432 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 1433 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 1434 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 1435 1436 flags &= MAP_NONBLOCK; 1437 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 1438 if (vma->vm_flags & VM_LOCKED) 1439 flags |= MAP_LOCKED; 1440 1441 /* Save vm_flags used to calculate prot and flags, and recheck later. */ 1442 vm_flags = vma->vm_flags; 1443 file = get_file(vma->vm_file); 1444 1445 mmap_read_unlock(mm); 1446 1447 /* Call outside mmap_lock to be consistent with other callers. */ 1448 ret = security_mmap_file(file, prot, flags); 1449 if (ret) { 1450 fput(file); 1451 return ret; 1452 } 1453 1454 ret = -EINVAL; 1455 1456 /* OK security check passed, take write lock + let it rip. */ 1457 if (mmap_write_lock_killable(mm)) { 1458 fput(file); 1459 return -EINTR; 1460 } 1461 1462 vma = vma_lookup(mm, start); 1463 1464 if (!vma) 1465 goto out; 1466 1467 /* Make sure things didn't change under us. */ 1468 if (vma->vm_flags != vm_flags) 1469 goto out; 1470 if (vma->vm_file != file) 1471 goto out; 1472 1473 if (start + size > vma->vm_end) { 1474 VMA_ITERATOR(vmi, mm, vma->vm_end); 1475 struct vm_area_struct *next, *prev = vma; 1476 1477 for_each_vma_range(vmi, next, start + size) { 1478 /* hole between vmas ? */ 1479 if (next->vm_start != prev->vm_end) 1480 goto out; 1481 1482 if (next->vm_file != vma->vm_file) 1483 goto out; 1484 1485 if (next->vm_flags != vma->vm_flags) 1486 goto out; 1487 1488 if (start + size <= next->vm_end) 1489 break; 1490 1491 prev = next; 1492 } 1493 1494 if (!next) 1495 goto out; 1496 } 1497 1498 ret = do_mmap(vma->vm_file, start, size, 1499 prot, flags, 0, pgoff, &populate, NULL); 1500 out: 1501 mmap_write_unlock(mm); 1502 fput(file); 1503 if (populate) 1504 mm_populate(ret, populate); 1505 if (!IS_ERR_VALUE(ret)) 1506 ret = 0; 1507 return ret; 1508 } 1509 1510 /* 1511 * do_brk_flags() - Increase the brk vma if the flags match. 1512 * @vmi: The vma iterator 1513 * @addr: The start address 1514 * @len: The length of the increase 1515 * @vma: The vma, 1516 * @flags: The VMA Flags 1517 * 1518 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 1519 * do not match then create a new anonymous VMA. Eventually we may be able to 1520 * do some brk-specific accounting here. 1521 */ 1522 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 1523 unsigned long addr, unsigned long len, unsigned long flags) 1524 { 1525 struct mm_struct *mm = current->mm; 1526 1527 /* 1528 * Check against address space limits by the changed size 1529 * Note: This happens *after* clearing old mappings in some code paths. 1530 */ 1531 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1532 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 1533 return -ENOMEM; 1534 1535 if (mm->map_count > sysctl_max_map_count) 1536 return -ENOMEM; 1537 1538 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 1539 return -ENOMEM; 1540 1541 /* 1542 * Expand the existing vma if possible; Note that singular lists do not 1543 * occur after forking, so the expand will only happen on new VMAs. 1544 */ 1545 if (vma && vma->vm_end == addr) { 1546 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 1547 1548 vmg.prev = vma; 1549 /* vmi is positioned at prev, which this mode expects. */ 1550 vmg.merge_flags = VMG_FLAG_JUST_EXPAND; 1551 1552 if (vma_merge_new_range(&vmg)) 1553 goto out; 1554 else if (vmg_nomem(&vmg)) 1555 goto unacct_fail; 1556 } 1557 1558 if (vma) 1559 vma_iter_next_range(vmi); 1560 /* create a vma struct for an anonymous mapping */ 1561 vma = vm_area_alloc(mm); 1562 if (!vma) 1563 goto unacct_fail; 1564 1565 vma_set_anonymous(vma); 1566 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 1567 vm_flags_init(vma, flags); 1568 vma->vm_page_prot = vm_get_page_prot(flags); 1569 vma_start_write(vma); 1570 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 1571 goto mas_store_fail; 1572 1573 mm->map_count++; 1574 validate_mm(mm); 1575 ksm_add_vma(vma); 1576 out: 1577 perf_event_mmap(vma); 1578 mm->total_vm += len >> PAGE_SHIFT; 1579 mm->data_vm += len >> PAGE_SHIFT; 1580 if (flags & VM_LOCKED) 1581 mm->locked_vm += (len >> PAGE_SHIFT); 1582 vm_flags_set(vma, VM_SOFTDIRTY); 1583 return 0; 1584 1585 mas_store_fail: 1586 vm_area_free(vma); 1587 unacct_fail: 1588 vm_unacct_memory(len >> PAGE_SHIFT); 1589 return -ENOMEM; 1590 } 1591 1592 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 1593 { 1594 struct mm_struct *mm = current->mm; 1595 struct vm_area_struct *vma = NULL; 1596 unsigned long len; 1597 int ret; 1598 bool populate; 1599 LIST_HEAD(uf); 1600 VMA_ITERATOR(vmi, mm, addr); 1601 1602 len = PAGE_ALIGN(request); 1603 if (len < request) 1604 return -ENOMEM; 1605 if (!len) 1606 return 0; 1607 1608 /* Until we need other flags, refuse anything except VM_EXEC. */ 1609 if ((flags & (~VM_EXEC)) != 0) 1610 return -EINVAL; 1611 1612 if (mmap_write_lock_killable(mm)) 1613 return -EINTR; 1614 1615 ret = check_brk_limits(addr, len); 1616 if (ret) 1617 goto limits_failed; 1618 1619 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 1620 if (ret) 1621 goto munmap_failed; 1622 1623 vma = vma_prev(&vmi); 1624 ret = do_brk_flags(&vmi, vma, addr, len, flags); 1625 populate = ((mm->def_flags & VM_LOCKED) != 0); 1626 mmap_write_unlock(mm); 1627 userfaultfd_unmap_complete(mm, &uf); 1628 if (populate && !ret) 1629 mm_populate(addr, len); 1630 return ret; 1631 1632 munmap_failed: 1633 limits_failed: 1634 mmap_write_unlock(mm); 1635 return ret; 1636 } 1637 EXPORT_SYMBOL(vm_brk_flags); 1638 1639 /* Release all mmaps. */ 1640 void exit_mmap(struct mm_struct *mm) 1641 { 1642 struct mmu_gather tlb; 1643 struct vm_area_struct *vma; 1644 unsigned long nr_accounted = 0; 1645 VMA_ITERATOR(vmi, mm, 0); 1646 int count = 0; 1647 1648 /* mm's last user has gone, and its about to be pulled down */ 1649 mmu_notifier_release(mm); 1650 1651 mmap_read_lock(mm); 1652 arch_exit_mmap(mm); 1653 1654 vma = vma_next(&vmi); 1655 if (!vma || unlikely(xa_is_zero(vma))) { 1656 /* Can happen if dup_mmap() received an OOM */ 1657 mmap_read_unlock(mm); 1658 mmap_write_lock(mm); 1659 goto destroy; 1660 } 1661 1662 lru_add_drain(); 1663 flush_cache_mm(mm); 1664 tlb_gather_mmu_fullmm(&tlb, mm); 1665 /* update_hiwater_rss(mm) here? but nobody should be looking */ 1666 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 1667 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 1668 mmap_read_unlock(mm); 1669 1670 /* 1671 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 1672 * because the memory has been already freed. 1673 */ 1674 set_bit(MMF_OOM_SKIP, &mm->flags); 1675 mmap_write_lock(mm); 1676 mt_clear_in_rcu(&mm->mm_mt); 1677 vma_iter_set(&vmi, vma->vm_end); 1678 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 1679 USER_PGTABLES_CEILING, true); 1680 tlb_finish_mmu(&tlb); 1681 1682 /* 1683 * Walk the list again, actually closing and freeing it, with preemption 1684 * enabled, without holding any MM locks besides the unreachable 1685 * mmap_write_lock. 1686 */ 1687 vma_iter_set(&vmi, vma->vm_end); 1688 do { 1689 if (vma->vm_flags & VM_ACCOUNT) 1690 nr_accounted += vma_pages(vma); 1691 remove_vma(vma, /* unreachable = */ true); 1692 count++; 1693 cond_resched(); 1694 vma = vma_next(&vmi); 1695 } while (vma && likely(!xa_is_zero(vma))); 1696 1697 BUG_ON(count != mm->map_count); 1698 1699 trace_exit_mmap(mm); 1700 destroy: 1701 __mt_destroy(&mm->mm_mt); 1702 mmap_write_unlock(mm); 1703 vm_unacct_memory(nr_accounted); 1704 } 1705 1706 /* Insert vm structure into process list sorted by address 1707 * and into the inode's i_mmap tree. If vm_file is non-NULL 1708 * then i_mmap_rwsem is taken here. 1709 */ 1710 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 1711 { 1712 unsigned long charged = vma_pages(vma); 1713 1714 1715 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 1716 return -ENOMEM; 1717 1718 if ((vma->vm_flags & VM_ACCOUNT) && 1719 security_vm_enough_memory_mm(mm, charged)) 1720 return -ENOMEM; 1721 1722 /* 1723 * The vm_pgoff of a purely anonymous vma should be irrelevant 1724 * until its first write fault, when page's anon_vma and index 1725 * are set. But now set the vm_pgoff it will almost certainly 1726 * end up with (unless mremap moves it elsewhere before that 1727 * first wfault), so /proc/pid/maps tells a consistent story. 1728 * 1729 * By setting it to reflect the virtual start address of the 1730 * vma, merges and splits can happen in a seamless way, just 1731 * using the existing file pgoff checks and manipulations. 1732 * Similarly in do_mmap and in do_brk_flags. 1733 */ 1734 if (vma_is_anonymous(vma)) { 1735 BUG_ON(vma->anon_vma); 1736 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1737 } 1738 1739 if (vma_link(mm, vma)) { 1740 if (vma->vm_flags & VM_ACCOUNT) 1741 vm_unacct_memory(charged); 1742 return -ENOMEM; 1743 } 1744 1745 return 0; 1746 } 1747 1748 /* 1749 * Return true if the calling process may expand its vm space by the passed 1750 * number of pages 1751 */ 1752 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 1753 { 1754 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 1755 return false; 1756 1757 if (is_data_mapping(flags) && 1758 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 1759 /* Workaround for Valgrind */ 1760 if (rlimit(RLIMIT_DATA) == 0 && 1761 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 1762 return true; 1763 1764 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 1765 current->comm, current->pid, 1766 (mm->data_vm + npages) << PAGE_SHIFT, 1767 rlimit(RLIMIT_DATA), 1768 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 1769 1770 if (!ignore_rlimit_data) 1771 return false; 1772 } 1773 1774 return true; 1775 } 1776 1777 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 1778 { 1779 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 1780 1781 if (is_exec_mapping(flags)) 1782 mm->exec_vm += npages; 1783 else if (is_stack_mapping(flags)) 1784 mm->stack_vm += npages; 1785 else if (is_data_mapping(flags)) 1786 mm->data_vm += npages; 1787 } 1788 1789 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 1790 1791 /* 1792 * Close hook, called for unmap() and on the old vma for mremap(). 1793 * 1794 * Having a close hook prevents vma merging regardless of flags. 1795 */ 1796 static void special_mapping_close(struct vm_area_struct *vma) 1797 { 1798 const struct vm_special_mapping *sm = vma->vm_private_data; 1799 1800 if (sm->close) 1801 sm->close(sm, vma); 1802 } 1803 1804 static const char *special_mapping_name(struct vm_area_struct *vma) 1805 { 1806 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 1807 } 1808 1809 static int special_mapping_mremap(struct vm_area_struct *new_vma) 1810 { 1811 struct vm_special_mapping *sm = new_vma->vm_private_data; 1812 1813 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 1814 return -EFAULT; 1815 1816 if (sm->mremap) 1817 return sm->mremap(sm, new_vma); 1818 1819 return 0; 1820 } 1821 1822 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 1823 { 1824 /* 1825 * Forbid splitting special mappings - kernel has expectations over 1826 * the number of pages in mapping. Together with VM_DONTEXPAND 1827 * the size of vma should stay the same over the special mapping's 1828 * lifetime. 1829 */ 1830 return -EINVAL; 1831 } 1832 1833 static const struct vm_operations_struct special_mapping_vmops = { 1834 .close = special_mapping_close, 1835 .fault = special_mapping_fault, 1836 .mremap = special_mapping_mremap, 1837 .name = special_mapping_name, 1838 /* vDSO code relies that VVAR can't be accessed remotely */ 1839 .access = NULL, 1840 .may_split = special_mapping_split, 1841 }; 1842 1843 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 1844 { 1845 struct vm_area_struct *vma = vmf->vma; 1846 pgoff_t pgoff; 1847 struct page **pages; 1848 struct vm_special_mapping *sm = vma->vm_private_data; 1849 1850 if (sm->fault) 1851 return sm->fault(sm, vmf->vma, vmf); 1852 1853 pages = sm->pages; 1854 1855 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 1856 pgoff--; 1857 1858 if (*pages) { 1859 struct page *page = *pages; 1860 get_page(page); 1861 vmf->page = page; 1862 return 0; 1863 } 1864 1865 return VM_FAULT_SIGBUS; 1866 } 1867 1868 static struct vm_area_struct *__install_special_mapping( 1869 struct mm_struct *mm, 1870 unsigned long addr, unsigned long len, 1871 unsigned long vm_flags, void *priv, 1872 const struct vm_operations_struct *ops) 1873 { 1874 int ret; 1875 struct vm_area_struct *vma; 1876 1877 vma = vm_area_alloc(mm); 1878 if (unlikely(vma == NULL)) 1879 return ERR_PTR(-ENOMEM); 1880 1881 vma_set_range(vma, addr, addr + len, 0); 1882 vm_flags_init(vma, (vm_flags | mm->def_flags | 1883 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 1884 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 1885 1886 vma->vm_ops = ops; 1887 vma->vm_private_data = priv; 1888 1889 ret = insert_vm_struct(mm, vma); 1890 if (ret) 1891 goto out; 1892 1893 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 1894 1895 perf_event_mmap(vma); 1896 1897 return vma; 1898 1899 out: 1900 vm_area_free(vma); 1901 return ERR_PTR(ret); 1902 } 1903 1904 bool vma_is_special_mapping(const struct vm_area_struct *vma, 1905 const struct vm_special_mapping *sm) 1906 { 1907 return vma->vm_private_data == sm && 1908 vma->vm_ops == &special_mapping_vmops; 1909 } 1910 1911 /* 1912 * Called with mm->mmap_lock held for writing. 1913 * Insert a new vma covering the given region, with the given flags. 1914 * Its pages are supplied by the given array of struct page *. 1915 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 1916 * The region past the last page supplied will always produce SIGBUS. 1917 * The array pointer and the pages it points to are assumed to stay alive 1918 * for as long as this mapping might exist. 1919 */ 1920 struct vm_area_struct *_install_special_mapping( 1921 struct mm_struct *mm, 1922 unsigned long addr, unsigned long len, 1923 unsigned long vm_flags, const struct vm_special_mapping *spec) 1924 { 1925 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 1926 &special_mapping_vmops); 1927 } 1928 1929 /* 1930 * initialise the percpu counter for VM 1931 */ 1932 void __init mmap_init(void) 1933 { 1934 int ret; 1935 1936 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 1937 VM_BUG_ON(ret); 1938 } 1939 1940 /* 1941 * Initialise sysctl_user_reserve_kbytes. 1942 * 1943 * This is intended to prevent a user from starting a single memory hogging 1944 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1945 * mode. 1946 * 1947 * The default value is min(3% of free memory, 128MB) 1948 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1949 */ 1950 static int init_user_reserve(void) 1951 { 1952 unsigned long free_kbytes; 1953 1954 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1955 1956 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 1957 return 0; 1958 } 1959 subsys_initcall(init_user_reserve); 1960 1961 /* 1962 * Initialise sysctl_admin_reserve_kbytes. 1963 * 1964 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1965 * to log in and kill a memory hogging process. 1966 * 1967 * Systems with more than 256MB will reserve 8MB, enough to recover 1968 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1969 * only reserve 3% of free pages by default. 1970 */ 1971 static int init_admin_reserve(void) 1972 { 1973 unsigned long free_kbytes; 1974 1975 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1976 1977 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 1978 return 0; 1979 } 1980 subsys_initcall(init_admin_reserve); 1981 1982 /* 1983 * Reinititalise user and admin reserves if memory is added or removed. 1984 * 1985 * The default user reserve max is 128MB, and the default max for the 1986 * admin reserve is 8MB. These are usually, but not always, enough to 1987 * enable recovery from a memory hogging process using login/sshd, a shell, 1988 * and tools like top. It may make sense to increase or even disable the 1989 * reserve depending on the existence of swap or variations in the recovery 1990 * tools. So, the admin may have changed them. 1991 * 1992 * If memory is added and the reserves have been eliminated or increased above 1993 * the default max, then we'll trust the admin. 1994 * 1995 * If memory is removed and there isn't enough free memory, then we 1996 * need to reset the reserves. 1997 * 1998 * Otherwise keep the reserve set by the admin. 1999 */ 2000 static int reserve_mem_notifier(struct notifier_block *nb, 2001 unsigned long action, void *data) 2002 { 2003 unsigned long tmp, free_kbytes; 2004 2005 switch (action) { 2006 case MEM_ONLINE: 2007 /* Default max is 128MB. Leave alone if modified by operator. */ 2008 tmp = sysctl_user_reserve_kbytes; 2009 if (tmp > 0 && tmp < SZ_128K) 2010 init_user_reserve(); 2011 2012 /* Default max is 8MB. Leave alone if modified by operator. */ 2013 tmp = sysctl_admin_reserve_kbytes; 2014 if (tmp > 0 && tmp < SZ_8K) 2015 init_admin_reserve(); 2016 2017 break; 2018 case MEM_OFFLINE: 2019 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2020 2021 if (sysctl_user_reserve_kbytes > free_kbytes) { 2022 init_user_reserve(); 2023 pr_info("vm.user_reserve_kbytes reset to %lu\n", 2024 sysctl_user_reserve_kbytes); 2025 } 2026 2027 if (sysctl_admin_reserve_kbytes > free_kbytes) { 2028 init_admin_reserve(); 2029 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 2030 sysctl_admin_reserve_kbytes); 2031 } 2032 break; 2033 default: 2034 break; 2035 } 2036 return NOTIFY_OK; 2037 } 2038 2039 static int __meminit init_reserve_notifier(void) 2040 { 2041 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 2042 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 2043 2044 return 0; 2045 } 2046 subsys_initcall(init_reserve_notifier); 2047 2048 /* 2049 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between 2050 * this VMA and its relocated range, which will now reside at [vma->vm_start - 2051 * shift, vma->vm_end - shift). 2052 * 2053 * This function is almost certainly NOT what you want for anything other than 2054 * early executable temporary stack relocation. 2055 */ 2056 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift) 2057 { 2058 /* 2059 * The process proceeds as follows: 2060 * 2061 * 1) Use shift to calculate the new vma endpoints. 2062 * 2) Extend vma to cover both the old and new ranges. This ensures the 2063 * arguments passed to subsequent functions are consistent. 2064 * 3) Move vma's page tables to the new range. 2065 * 4) Free up any cleared pgd range. 2066 * 5) Shrink the vma to cover only the new range. 2067 */ 2068 2069 struct mm_struct *mm = vma->vm_mm; 2070 unsigned long old_start = vma->vm_start; 2071 unsigned long old_end = vma->vm_end; 2072 unsigned long length = old_end - old_start; 2073 unsigned long new_start = old_start - shift; 2074 unsigned long new_end = old_end - shift; 2075 VMA_ITERATOR(vmi, mm, new_start); 2076 VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff); 2077 struct vm_area_struct *next; 2078 struct mmu_gather tlb; 2079 2080 BUG_ON(new_start > new_end); 2081 2082 /* 2083 * ensure there are no vmas between where we want to go 2084 * and where we are 2085 */ 2086 if (vma != vma_next(&vmi)) 2087 return -EFAULT; 2088 2089 vma_iter_prev_range(&vmi); 2090 /* 2091 * cover the whole range: [new_start, old_end) 2092 */ 2093 vmg.vma = vma; 2094 if (vma_expand(&vmg)) 2095 return -ENOMEM; 2096 2097 /* 2098 * move the page tables downwards, on failure we rely on 2099 * process cleanup to remove whatever mess we made. 2100 */ 2101 if (length != move_page_tables(vma, old_start, 2102 vma, new_start, length, false, true)) 2103 return -ENOMEM; 2104 2105 lru_add_drain(); 2106 tlb_gather_mmu(&tlb, mm); 2107 next = vma_next(&vmi); 2108 if (new_end > old_start) { 2109 /* 2110 * when the old and new regions overlap clear from new_end. 2111 */ 2112 free_pgd_range(&tlb, new_end, old_end, new_end, 2113 next ? next->vm_start : USER_PGTABLES_CEILING); 2114 } else { 2115 /* 2116 * otherwise, clean from old_start; this is done to not touch 2117 * the address space in [new_end, old_start) some architectures 2118 * have constraints on va-space that make this illegal (IA64) - 2119 * for the others its just a little faster. 2120 */ 2121 free_pgd_range(&tlb, old_start, old_end, new_end, 2122 next ? next->vm_start : USER_PGTABLES_CEILING); 2123 } 2124 tlb_finish_mmu(&tlb); 2125 2126 vma_prev(&vmi); 2127 /* Shrink the vma to just the new range */ 2128 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 2129 } 2130