xref: /linux/mm/mmap.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 
30 #include <asm/uaccess.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlb.h>
33 #include <asm/mmu_context.h>
34 
35 #ifndef arch_mmap_check
36 #define arch_mmap_check(addr, len, flags)	(0)
37 #endif
38 
39 static void unmap_region(struct mm_struct *mm,
40 		struct vm_area_struct *vma, struct vm_area_struct *prev,
41 		unsigned long start, unsigned long end);
42 
43 /*
44  * WARNING: the debugging will use recursive algorithms so never enable this
45  * unless you know what you are doing.
46  */
47 #undef DEBUG_MM_RB
48 
49 /* description of effects of mapping type and prot in current implementation.
50  * this is due to the limited x86 page protection hardware.  The expected
51  * behavior is in parens:
52  *
53  * map_type	prot
54  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
55  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
56  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
57  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
58  *
59  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
60  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
61  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
62  *
63  */
64 pgprot_t protection_map[16] = {
65 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
66 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
67 };
68 
69 pgprot_t vm_get_page_prot(unsigned long vm_flags)
70 {
71 	return protection_map[vm_flags &
72 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
73 }
74 EXPORT_SYMBOL(vm_get_page_prot);
75 
76 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
77 int sysctl_overcommit_ratio = 50;	/* default is 50% */
78 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
79 atomic_t vm_committed_space = ATOMIC_INIT(0);
80 
81 /*
82  * Check that a process has enough memory to allocate a new virtual
83  * mapping. 0 means there is enough memory for the allocation to
84  * succeed and -ENOMEM implies there is not.
85  *
86  * We currently support three overcommit policies, which are set via the
87  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
88  *
89  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
90  * Additional code 2002 Jul 20 by Robert Love.
91  *
92  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
93  *
94  * Note this is a helper function intended to be used by LSMs which
95  * wish to use this logic.
96  */
97 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
98 {
99 	unsigned long free, allowed;
100 
101 	vm_acct_memory(pages);
102 
103 	/*
104 	 * Sometimes we want to use more memory than we have
105 	 */
106 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
107 		return 0;
108 
109 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
110 		unsigned long n;
111 
112 		free = global_page_state(NR_FILE_PAGES);
113 		free += nr_swap_pages;
114 
115 		/*
116 		 * Any slabs which are created with the
117 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
118 		 * which are reclaimable, under pressure.  The dentry
119 		 * cache and most inode caches should fall into this
120 		 */
121 		free += global_page_state(NR_SLAB_RECLAIMABLE);
122 
123 		/*
124 		 * Leave the last 3% for root
125 		 */
126 		if (!cap_sys_admin)
127 			free -= free / 32;
128 
129 		if (free > pages)
130 			return 0;
131 
132 		/*
133 		 * nr_free_pages() is very expensive on large systems,
134 		 * only call if we're about to fail.
135 		 */
136 		n = nr_free_pages();
137 
138 		/*
139 		 * Leave reserved pages. The pages are not for anonymous pages.
140 		 */
141 		if (n <= totalreserve_pages)
142 			goto error;
143 		else
144 			n -= totalreserve_pages;
145 
146 		/*
147 		 * Leave the last 3% for root
148 		 */
149 		if (!cap_sys_admin)
150 			n -= n / 32;
151 		free += n;
152 
153 		if (free > pages)
154 			return 0;
155 
156 		goto error;
157 	}
158 
159 	allowed = (totalram_pages - hugetlb_total_pages())
160 	       	* sysctl_overcommit_ratio / 100;
161 	/*
162 	 * Leave the last 3% for root
163 	 */
164 	if (!cap_sys_admin)
165 		allowed -= allowed / 32;
166 	allowed += total_swap_pages;
167 
168 	/* Don't let a single process grow too big:
169 	   leave 3% of the size of this process for other processes */
170 	allowed -= mm->total_vm / 32;
171 
172 	/*
173 	 * cast `allowed' as a signed long because vm_committed_space
174 	 * sometimes has a negative value
175 	 */
176 	if (atomic_read(&vm_committed_space) < (long)allowed)
177 		return 0;
178 error:
179 	vm_unacct_memory(pages);
180 
181 	return -ENOMEM;
182 }
183 
184 /*
185  * Requires inode->i_mapping->i_mmap_lock
186  */
187 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
188 		struct file *file, struct address_space *mapping)
189 {
190 	if (vma->vm_flags & VM_DENYWRITE)
191 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
192 	if (vma->vm_flags & VM_SHARED)
193 		mapping->i_mmap_writable--;
194 
195 	flush_dcache_mmap_lock(mapping);
196 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
197 		list_del_init(&vma->shared.vm_set.list);
198 	else
199 		vma_prio_tree_remove(vma, &mapping->i_mmap);
200 	flush_dcache_mmap_unlock(mapping);
201 }
202 
203 /*
204  * Unlink a file-based vm structure from its prio_tree, to hide
205  * vma from rmap and vmtruncate before freeing its page tables.
206  */
207 void unlink_file_vma(struct vm_area_struct *vma)
208 {
209 	struct file *file = vma->vm_file;
210 
211 	if (file) {
212 		struct address_space *mapping = file->f_mapping;
213 		spin_lock(&mapping->i_mmap_lock);
214 		__remove_shared_vm_struct(vma, file, mapping);
215 		spin_unlock(&mapping->i_mmap_lock);
216 	}
217 }
218 
219 /*
220  * Close a vm structure and free it, returning the next.
221  */
222 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
223 {
224 	struct vm_area_struct *next = vma->vm_next;
225 
226 	might_sleep();
227 	if (vma->vm_ops && vma->vm_ops->close)
228 		vma->vm_ops->close(vma);
229 	if (vma->vm_file)
230 		fput(vma->vm_file);
231 	mpol_free(vma_policy(vma));
232 	kmem_cache_free(vm_area_cachep, vma);
233 	return next;
234 }
235 
236 asmlinkage unsigned long sys_brk(unsigned long brk)
237 {
238 	unsigned long rlim, retval;
239 	unsigned long newbrk, oldbrk;
240 	struct mm_struct *mm = current->mm;
241 
242 	down_write(&mm->mmap_sem);
243 
244 	if (brk < mm->end_code)
245 		goto out;
246 
247 	/*
248 	 * Check against rlimit here. If this check is done later after the test
249 	 * of oldbrk with newbrk then it can escape the test and let the data
250 	 * segment grow beyond its set limit the in case where the limit is
251 	 * not page aligned -Ram Gupta
252 	 */
253 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
254 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
255 		goto out;
256 
257 	newbrk = PAGE_ALIGN(brk);
258 	oldbrk = PAGE_ALIGN(mm->brk);
259 	if (oldbrk == newbrk)
260 		goto set_brk;
261 
262 	/* Always allow shrinking brk. */
263 	if (brk <= mm->brk) {
264 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
265 			goto set_brk;
266 		goto out;
267 	}
268 
269 	/* Check against existing mmap mappings. */
270 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
271 		goto out;
272 
273 	/* Ok, looks good - let it rip. */
274 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
275 		goto out;
276 set_brk:
277 	mm->brk = brk;
278 out:
279 	retval = mm->brk;
280 	up_write(&mm->mmap_sem);
281 	return retval;
282 }
283 
284 #ifdef DEBUG_MM_RB
285 static int browse_rb(struct rb_root *root)
286 {
287 	int i = 0, j;
288 	struct rb_node *nd, *pn = NULL;
289 	unsigned long prev = 0, pend = 0;
290 
291 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
292 		struct vm_area_struct *vma;
293 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
294 		if (vma->vm_start < prev)
295 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
296 		if (vma->vm_start < pend)
297 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
298 		if (vma->vm_start > vma->vm_end)
299 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
300 		i++;
301 		pn = nd;
302 		prev = vma->vm_start;
303 		pend = vma->vm_end;
304 	}
305 	j = 0;
306 	for (nd = pn; nd; nd = rb_prev(nd)) {
307 		j++;
308 	}
309 	if (i != j)
310 		printk("backwards %d, forwards %d\n", j, i), i = 0;
311 	return i;
312 }
313 
314 void validate_mm(struct mm_struct *mm)
315 {
316 	int bug = 0;
317 	int i = 0;
318 	struct vm_area_struct *tmp = mm->mmap;
319 	while (tmp) {
320 		tmp = tmp->vm_next;
321 		i++;
322 	}
323 	if (i != mm->map_count)
324 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
325 	i = browse_rb(&mm->mm_rb);
326 	if (i != mm->map_count)
327 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
328 	BUG_ON(bug);
329 }
330 #else
331 #define validate_mm(mm) do { } while (0)
332 #endif
333 
334 static struct vm_area_struct *
335 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
336 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
337 		struct rb_node ** rb_parent)
338 {
339 	struct vm_area_struct * vma;
340 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
341 
342 	__rb_link = &mm->mm_rb.rb_node;
343 	rb_prev = __rb_parent = NULL;
344 	vma = NULL;
345 
346 	while (*__rb_link) {
347 		struct vm_area_struct *vma_tmp;
348 
349 		__rb_parent = *__rb_link;
350 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
351 
352 		if (vma_tmp->vm_end > addr) {
353 			vma = vma_tmp;
354 			if (vma_tmp->vm_start <= addr)
355 				return vma;
356 			__rb_link = &__rb_parent->rb_left;
357 		} else {
358 			rb_prev = __rb_parent;
359 			__rb_link = &__rb_parent->rb_right;
360 		}
361 	}
362 
363 	*pprev = NULL;
364 	if (rb_prev)
365 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
366 	*rb_link = __rb_link;
367 	*rb_parent = __rb_parent;
368 	return vma;
369 }
370 
371 static inline void
372 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
373 		struct vm_area_struct *prev, struct rb_node *rb_parent)
374 {
375 	if (prev) {
376 		vma->vm_next = prev->vm_next;
377 		prev->vm_next = vma;
378 	} else {
379 		mm->mmap = vma;
380 		if (rb_parent)
381 			vma->vm_next = rb_entry(rb_parent,
382 					struct vm_area_struct, vm_rb);
383 		else
384 			vma->vm_next = NULL;
385 	}
386 }
387 
388 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct rb_node **rb_link, struct rb_node *rb_parent)
390 {
391 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
392 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
393 }
394 
395 static inline void __vma_link_file(struct vm_area_struct *vma)
396 {
397 	struct file * file;
398 
399 	file = vma->vm_file;
400 	if (file) {
401 		struct address_space *mapping = file->f_mapping;
402 
403 		if (vma->vm_flags & VM_DENYWRITE)
404 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
405 		if (vma->vm_flags & VM_SHARED)
406 			mapping->i_mmap_writable++;
407 
408 		flush_dcache_mmap_lock(mapping);
409 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
410 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
411 		else
412 			vma_prio_tree_insert(vma, &mapping->i_mmap);
413 		flush_dcache_mmap_unlock(mapping);
414 	}
415 }
416 
417 static void
418 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
419 	struct vm_area_struct *prev, struct rb_node **rb_link,
420 	struct rb_node *rb_parent)
421 {
422 	__vma_link_list(mm, vma, prev, rb_parent);
423 	__vma_link_rb(mm, vma, rb_link, rb_parent);
424 	__anon_vma_link(vma);
425 }
426 
427 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
428 			struct vm_area_struct *prev, struct rb_node **rb_link,
429 			struct rb_node *rb_parent)
430 {
431 	struct address_space *mapping = NULL;
432 
433 	if (vma->vm_file)
434 		mapping = vma->vm_file->f_mapping;
435 
436 	if (mapping) {
437 		spin_lock(&mapping->i_mmap_lock);
438 		vma->vm_truncate_count = mapping->truncate_count;
439 	}
440 	anon_vma_lock(vma);
441 
442 	__vma_link(mm, vma, prev, rb_link, rb_parent);
443 	__vma_link_file(vma);
444 
445 	anon_vma_unlock(vma);
446 	if (mapping)
447 		spin_unlock(&mapping->i_mmap_lock);
448 
449 	mm->map_count++;
450 	validate_mm(mm);
451 }
452 
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
458 static void
459 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
460 {
461 	struct vm_area_struct * __vma, * prev;
462 	struct rb_node ** rb_link, * rb_parent;
463 
464 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466 	__vma_link(mm, vma, prev, rb_link, rb_parent);
467 	mm->map_count++;
468 }
469 
470 static inline void
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472 		struct vm_area_struct *prev)
473 {
474 	prev->vm_next = vma->vm_next;
475 	rb_erase(&vma->vm_rb, &mm->mm_rb);
476 	if (mm->mmap_cache == vma)
477 		mm->mmap_cache = prev;
478 }
479 
480 /*
481  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
482  * is already present in an i_mmap tree without adjusting the tree.
483  * The following helper function should be used when such adjustments
484  * are necessary.  The "insert" vma (if any) is to be inserted
485  * before we drop the necessary locks.
486  */
487 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
488 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
489 {
490 	struct mm_struct *mm = vma->vm_mm;
491 	struct vm_area_struct *next = vma->vm_next;
492 	struct vm_area_struct *importer = NULL;
493 	struct address_space *mapping = NULL;
494 	struct prio_tree_root *root = NULL;
495 	struct file *file = vma->vm_file;
496 	struct anon_vma *anon_vma = NULL;
497 	long adjust_next = 0;
498 	int remove_next = 0;
499 
500 	if (next && !insert) {
501 		if (end >= next->vm_end) {
502 			/*
503 			 * vma expands, overlapping all the next, and
504 			 * perhaps the one after too (mprotect case 6).
505 			 */
506 again:			remove_next = 1 + (end > next->vm_end);
507 			end = next->vm_end;
508 			anon_vma = next->anon_vma;
509 			importer = vma;
510 		} else if (end > next->vm_start) {
511 			/*
512 			 * vma expands, overlapping part of the next:
513 			 * mprotect case 5 shifting the boundary up.
514 			 */
515 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
516 			anon_vma = next->anon_vma;
517 			importer = vma;
518 		} else if (end < vma->vm_end) {
519 			/*
520 			 * vma shrinks, and !insert tells it's not
521 			 * split_vma inserting another: so it must be
522 			 * mprotect case 4 shifting the boundary down.
523 			 */
524 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
525 			anon_vma = next->anon_vma;
526 			importer = next;
527 		}
528 	}
529 
530 	if (file) {
531 		mapping = file->f_mapping;
532 		if (!(vma->vm_flags & VM_NONLINEAR))
533 			root = &mapping->i_mmap;
534 		spin_lock(&mapping->i_mmap_lock);
535 		if (importer &&
536 		    vma->vm_truncate_count != next->vm_truncate_count) {
537 			/*
538 			 * unmap_mapping_range might be in progress:
539 			 * ensure that the expanding vma is rescanned.
540 			 */
541 			importer->vm_truncate_count = 0;
542 		}
543 		if (insert) {
544 			insert->vm_truncate_count = vma->vm_truncate_count;
545 			/*
546 			 * Put into prio_tree now, so instantiated pages
547 			 * are visible to arm/parisc __flush_dcache_page
548 			 * throughout; but we cannot insert into address
549 			 * space until vma start or end is updated.
550 			 */
551 			__vma_link_file(insert);
552 		}
553 	}
554 
555 	/*
556 	 * When changing only vma->vm_end, we don't really need
557 	 * anon_vma lock: but is that case worth optimizing out?
558 	 */
559 	if (vma->anon_vma)
560 		anon_vma = vma->anon_vma;
561 	if (anon_vma) {
562 		spin_lock(&anon_vma->lock);
563 		/*
564 		 * Easily overlooked: when mprotect shifts the boundary,
565 		 * make sure the expanding vma has anon_vma set if the
566 		 * shrinking vma had, to cover any anon pages imported.
567 		 */
568 		if (importer && !importer->anon_vma) {
569 			importer->anon_vma = anon_vma;
570 			__anon_vma_link(importer);
571 		}
572 	}
573 
574 	if (root) {
575 		flush_dcache_mmap_lock(mapping);
576 		vma_prio_tree_remove(vma, root);
577 		if (adjust_next)
578 			vma_prio_tree_remove(next, root);
579 	}
580 
581 	vma->vm_start = start;
582 	vma->vm_end = end;
583 	vma->vm_pgoff = pgoff;
584 	if (adjust_next) {
585 		next->vm_start += adjust_next << PAGE_SHIFT;
586 		next->vm_pgoff += adjust_next;
587 	}
588 
589 	if (root) {
590 		if (adjust_next)
591 			vma_prio_tree_insert(next, root);
592 		vma_prio_tree_insert(vma, root);
593 		flush_dcache_mmap_unlock(mapping);
594 	}
595 
596 	if (remove_next) {
597 		/*
598 		 * vma_merge has merged next into vma, and needs
599 		 * us to remove next before dropping the locks.
600 		 */
601 		__vma_unlink(mm, next, vma);
602 		if (file)
603 			__remove_shared_vm_struct(next, file, mapping);
604 		if (next->anon_vma)
605 			__anon_vma_merge(vma, next);
606 	} else if (insert) {
607 		/*
608 		 * split_vma has split insert from vma, and needs
609 		 * us to insert it before dropping the locks
610 		 * (it may either follow vma or precede it).
611 		 */
612 		__insert_vm_struct(mm, insert);
613 	}
614 
615 	if (anon_vma)
616 		spin_unlock(&anon_vma->lock);
617 	if (mapping)
618 		spin_unlock(&mapping->i_mmap_lock);
619 
620 	if (remove_next) {
621 		if (file)
622 			fput(file);
623 		mm->map_count--;
624 		mpol_free(vma_policy(next));
625 		kmem_cache_free(vm_area_cachep, next);
626 		/*
627 		 * In mprotect's case 6 (see comments on vma_merge),
628 		 * we must remove another next too. It would clutter
629 		 * up the code too much to do both in one go.
630 		 */
631 		if (remove_next == 2) {
632 			next = vma->vm_next;
633 			goto again;
634 		}
635 	}
636 
637 	validate_mm(mm);
638 }
639 
640 /*
641  * If the vma has a ->close operation then the driver probably needs to release
642  * per-vma resources, so we don't attempt to merge those.
643  */
644 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
645 
646 static inline int is_mergeable_vma(struct vm_area_struct *vma,
647 			struct file *file, unsigned long vm_flags)
648 {
649 	if (vma->vm_flags != vm_flags)
650 		return 0;
651 	if (vma->vm_file != file)
652 		return 0;
653 	if (vma->vm_ops && vma->vm_ops->close)
654 		return 0;
655 	return 1;
656 }
657 
658 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
659 					struct anon_vma *anon_vma2)
660 {
661 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
662 }
663 
664 /*
665  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
666  * in front of (at a lower virtual address and file offset than) the vma.
667  *
668  * We cannot merge two vmas if they have differently assigned (non-NULL)
669  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
670  *
671  * We don't check here for the merged mmap wrapping around the end of pagecache
672  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
673  * wrap, nor mmaps which cover the final page at index -1UL.
674  */
675 static int
676 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
677 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
678 {
679 	if (is_mergeable_vma(vma, file, vm_flags) &&
680 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
681 		if (vma->vm_pgoff == vm_pgoff)
682 			return 1;
683 	}
684 	return 0;
685 }
686 
687 /*
688  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689  * beyond (at a higher virtual address and file offset than) the vma.
690  *
691  * We cannot merge two vmas if they have differently assigned (non-NULL)
692  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693  */
694 static int
695 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
696 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 {
698 	if (is_mergeable_vma(vma, file, vm_flags) &&
699 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700 		pgoff_t vm_pglen;
701 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
702 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
703 			return 1;
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
710  * whether that can be merged with its predecessor or its successor.
711  * Or both (it neatly fills a hole).
712  *
713  * In most cases - when called for mmap, brk or mremap - [addr,end) is
714  * certain not to be mapped by the time vma_merge is called; but when
715  * called for mprotect, it is certain to be already mapped (either at
716  * an offset within prev, or at the start of next), and the flags of
717  * this area are about to be changed to vm_flags - and the no-change
718  * case has already been eliminated.
719  *
720  * The following mprotect cases have to be considered, where AAAA is
721  * the area passed down from mprotect_fixup, never extending beyond one
722  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
723  *
724  *     AAAA             AAAA                AAAA          AAAA
725  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
726  *    cannot merge    might become    might become    might become
727  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
728  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
729  *    mremap move:                                    PPPPNNNNNNNN 8
730  *        AAAA
731  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
732  *    might become    case 1 below    case 2 below    case 3 below
733  *
734  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
735  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
736  */
737 struct vm_area_struct *vma_merge(struct mm_struct *mm,
738 			struct vm_area_struct *prev, unsigned long addr,
739 			unsigned long end, unsigned long vm_flags,
740 		     	struct anon_vma *anon_vma, struct file *file,
741 			pgoff_t pgoff, struct mempolicy *policy)
742 {
743 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
744 	struct vm_area_struct *area, *next;
745 
746 	/*
747 	 * We later require that vma->vm_flags == vm_flags,
748 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
749 	 */
750 	if (vm_flags & VM_SPECIAL)
751 		return NULL;
752 
753 	if (prev)
754 		next = prev->vm_next;
755 	else
756 		next = mm->mmap;
757 	area = next;
758 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
759 		next = next->vm_next;
760 
761 	/*
762 	 * Can it merge with the predecessor?
763 	 */
764 	if (prev && prev->vm_end == addr &&
765   			mpol_equal(vma_policy(prev), policy) &&
766 			can_vma_merge_after(prev, vm_flags,
767 						anon_vma, file, pgoff)) {
768 		/*
769 		 * OK, it can.  Can we now merge in the successor as well?
770 		 */
771 		if (next && end == next->vm_start &&
772 				mpol_equal(policy, vma_policy(next)) &&
773 				can_vma_merge_before(next, vm_flags,
774 					anon_vma, file, pgoff+pglen) &&
775 				is_mergeable_anon_vma(prev->anon_vma,
776 						      next->anon_vma)) {
777 							/* cases 1, 6 */
778 			vma_adjust(prev, prev->vm_start,
779 				next->vm_end, prev->vm_pgoff, NULL);
780 		} else					/* cases 2, 5, 7 */
781 			vma_adjust(prev, prev->vm_start,
782 				end, prev->vm_pgoff, NULL);
783 		return prev;
784 	}
785 
786 	/*
787 	 * Can this new request be merged in front of next?
788 	 */
789 	if (next && end == next->vm_start &&
790  			mpol_equal(policy, vma_policy(next)) &&
791 			can_vma_merge_before(next, vm_flags,
792 					anon_vma, file, pgoff+pglen)) {
793 		if (prev && addr < prev->vm_end)	/* case 4 */
794 			vma_adjust(prev, prev->vm_start,
795 				addr, prev->vm_pgoff, NULL);
796 		else					/* cases 3, 8 */
797 			vma_adjust(area, addr, next->vm_end,
798 				next->vm_pgoff - pglen, NULL);
799 		return area;
800 	}
801 
802 	return NULL;
803 }
804 
805 /*
806  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
807  * neighbouring vmas for a suitable anon_vma, before it goes off
808  * to allocate a new anon_vma.  It checks because a repetitive
809  * sequence of mprotects and faults may otherwise lead to distinct
810  * anon_vmas being allocated, preventing vma merge in subsequent
811  * mprotect.
812  */
813 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
814 {
815 	struct vm_area_struct *near;
816 	unsigned long vm_flags;
817 
818 	near = vma->vm_next;
819 	if (!near)
820 		goto try_prev;
821 
822 	/*
823 	 * Since only mprotect tries to remerge vmas, match flags
824 	 * which might be mprotected into each other later on.
825 	 * Neither mlock nor madvise tries to remerge at present,
826 	 * so leave their flags as obstructing a merge.
827 	 */
828 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
829 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
830 
831 	if (near->anon_vma && vma->vm_end == near->vm_start &&
832  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
833 			can_vma_merge_before(near, vm_flags,
834 				NULL, vma->vm_file, vma->vm_pgoff +
835 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
836 		return near->anon_vma;
837 try_prev:
838 	/*
839 	 * It is potentially slow to have to call find_vma_prev here.
840 	 * But it's only on the first write fault on the vma, not
841 	 * every time, and we could devise a way to avoid it later
842 	 * (e.g. stash info in next's anon_vma_node when assigning
843 	 * an anon_vma, or when trying vma_merge).  Another time.
844 	 */
845 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
846 	if (!near)
847 		goto none;
848 
849 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
850 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
851 
852 	if (near->anon_vma && near->vm_end == vma->vm_start &&
853   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
854 			can_vma_merge_after(near, vm_flags,
855 				NULL, vma->vm_file, vma->vm_pgoff))
856 		return near->anon_vma;
857 none:
858 	/*
859 	 * There's no absolute need to look only at touching neighbours:
860 	 * we could search further afield for "compatible" anon_vmas.
861 	 * But it would probably just be a waste of time searching,
862 	 * or lead to too many vmas hanging off the same anon_vma.
863 	 * We're trying to allow mprotect remerging later on,
864 	 * not trying to minimize memory used for anon_vmas.
865 	 */
866 	return NULL;
867 }
868 
869 #ifdef CONFIG_PROC_FS
870 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
871 						struct file *file, long pages)
872 {
873 	const unsigned long stack_flags
874 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
875 
876 	if (file) {
877 		mm->shared_vm += pages;
878 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
879 			mm->exec_vm += pages;
880 	} else if (flags & stack_flags)
881 		mm->stack_vm += pages;
882 	if (flags & (VM_RESERVED|VM_IO))
883 		mm->reserved_vm += pages;
884 }
885 #endif /* CONFIG_PROC_FS */
886 
887 /*
888  * The caller must hold down_write(current->mm->mmap_sem).
889  */
890 
891 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
892 			unsigned long len, unsigned long prot,
893 			unsigned long flags, unsigned long pgoff)
894 {
895 	struct mm_struct * mm = current->mm;
896 	struct inode *inode;
897 	unsigned int vm_flags;
898 	int error;
899 	int accountable = 1;
900 	unsigned long reqprot = prot;
901 
902 	/*
903 	 * Does the application expect PROT_READ to imply PROT_EXEC?
904 	 *
905 	 * (the exception is when the underlying filesystem is noexec
906 	 *  mounted, in which case we dont add PROT_EXEC.)
907 	 */
908 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
909 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
910 			prot |= PROT_EXEC;
911 
912 	if (!len)
913 		return -EINVAL;
914 
915 	if (!(flags & MAP_FIXED))
916 		addr = round_hint_to_min(addr);
917 
918 	error = arch_mmap_check(addr, len, flags);
919 	if (error)
920 		return error;
921 
922 	/* Careful about overflows.. */
923 	len = PAGE_ALIGN(len);
924 	if (!len || len > TASK_SIZE)
925 		return -ENOMEM;
926 
927 	/* offset overflow? */
928 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
929                return -EOVERFLOW;
930 
931 	/* Too many mappings? */
932 	if (mm->map_count > sysctl_max_map_count)
933 		return -ENOMEM;
934 
935 	/* Obtain the address to map to. we verify (or select) it and ensure
936 	 * that it represents a valid section of the address space.
937 	 */
938 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
939 	if (addr & ~PAGE_MASK)
940 		return addr;
941 
942 	/* Do simple checking here so the lower-level routines won't have
943 	 * to. we assume access permissions have been handled by the open
944 	 * of the memory object, so we don't do any here.
945 	 */
946 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
947 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
948 
949 	if (flags & MAP_LOCKED) {
950 		if (!can_do_mlock())
951 			return -EPERM;
952 		vm_flags |= VM_LOCKED;
953 	}
954 	/* mlock MCL_FUTURE? */
955 	if (vm_flags & VM_LOCKED) {
956 		unsigned long locked, lock_limit;
957 		locked = len >> PAGE_SHIFT;
958 		locked += mm->locked_vm;
959 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
960 		lock_limit >>= PAGE_SHIFT;
961 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
962 			return -EAGAIN;
963 	}
964 
965 	inode = file ? file->f_path.dentry->d_inode : NULL;
966 
967 	if (file) {
968 		switch (flags & MAP_TYPE) {
969 		case MAP_SHARED:
970 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
971 				return -EACCES;
972 
973 			/*
974 			 * Make sure we don't allow writing to an append-only
975 			 * file..
976 			 */
977 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
978 				return -EACCES;
979 
980 			/*
981 			 * Make sure there are no mandatory locks on the file.
982 			 */
983 			if (locks_verify_locked(inode))
984 				return -EAGAIN;
985 
986 			vm_flags |= VM_SHARED | VM_MAYSHARE;
987 			if (!(file->f_mode & FMODE_WRITE))
988 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
989 
990 			/* fall through */
991 		case MAP_PRIVATE:
992 			if (!(file->f_mode & FMODE_READ))
993 				return -EACCES;
994 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
995 				if (vm_flags & VM_EXEC)
996 					return -EPERM;
997 				vm_flags &= ~VM_MAYEXEC;
998 			}
999 			if (is_file_hugepages(file))
1000 				accountable = 0;
1001 
1002 			if (!file->f_op || !file->f_op->mmap)
1003 				return -ENODEV;
1004 			break;
1005 
1006 		default:
1007 			return -EINVAL;
1008 		}
1009 	} else {
1010 		switch (flags & MAP_TYPE) {
1011 		case MAP_SHARED:
1012 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1013 			break;
1014 		case MAP_PRIVATE:
1015 			/*
1016 			 * Set pgoff according to addr for anon_vma.
1017 			 */
1018 			pgoff = addr >> PAGE_SHIFT;
1019 			break;
1020 		default:
1021 			return -EINVAL;
1022 		}
1023 	}
1024 
1025 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1026 	if (error)
1027 		return error;
1028 
1029 	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1030 			   accountable);
1031 }
1032 EXPORT_SYMBOL(do_mmap_pgoff);
1033 
1034 /*
1035  * Some shared mappigns will want the pages marked read-only
1036  * to track write events. If so, we'll downgrade vm_page_prot
1037  * to the private version (using protection_map[] without the
1038  * VM_SHARED bit).
1039  */
1040 int vma_wants_writenotify(struct vm_area_struct *vma)
1041 {
1042 	unsigned int vm_flags = vma->vm_flags;
1043 
1044 	/* If it was private or non-writable, the write bit is already clear */
1045 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1046 		return 0;
1047 
1048 	/* The backer wishes to know when pages are first written to? */
1049 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1050 		return 1;
1051 
1052 	/* The open routine did something to the protections already? */
1053 	if (pgprot_val(vma->vm_page_prot) !=
1054 	    pgprot_val(vm_get_page_prot(vm_flags)))
1055 		return 0;
1056 
1057 	/* Specialty mapping? */
1058 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1059 		return 0;
1060 
1061 	/* Can the mapping track the dirty pages? */
1062 	return vma->vm_file && vma->vm_file->f_mapping &&
1063 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1064 }
1065 
1066 
1067 unsigned long mmap_region(struct file *file, unsigned long addr,
1068 			  unsigned long len, unsigned long flags,
1069 			  unsigned int vm_flags, unsigned long pgoff,
1070 			  int accountable)
1071 {
1072 	struct mm_struct *mm = current->mm;
1073 	struct vm_area_struct *vma, *prev;
1074 	int correct_wcount = 0;
1075 	int error;
1076 	struct rb_node **rb_link, *rb_parent;
1077 	unsigned long charged = 0;
1078 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1079 
1080 	/* Clear old maps */
1081 	error = -ENOMEM;
1082 munmap_back:
1083 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1084 	if (vma && vma->vm_start < addr + len) {
1085 		if (do_munmap(mm, addr, len))
1086 			return -ENOMEM;
1087 		goto munmap_back;
1088 	}
1089 
1090 	/* Check against address space limit. */
1091 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1092 		return -ENOMEM;
1093 
1094 	if (accountable && (!(flags & MAP_NORESERVE) ||
1095 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1096 		if (vm_flags & VM_SHARED) {
1097 			/* Check memory availability in shmem_file_setup? */
1098 			vm_flags |= VM_ACCOUNT;
1099 		} else if (vm_flags & VM_WRITE) {
1100 			/*
1101 			 * Private writable mapping: check memory availability
1102 			 */
1103 			charged = len >> PAGE_SHIFT;
1104 			if (security_vm_enough_memory(charged))
1105 				return -ENOMEM;
1106 			vm_flags |= VM_ACCOUNT;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Can we just expand an old private anonymous mapping?
1112 	 * The VM_SHARED test is necessary because shmem_zero_setup
1113 	 * will create the file object for a shared anonymous map below.
1114 	 */
1115 	if (!file && !(vm_flags & VM_SHARED) &&
1116 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1117 					NULL, NULL, pgoff, NULL))
1118 		goto out;
1119 
1120 	/*
1121 	 * Determine the object being mapped and call the appropriate
1122 	 * specific mapper. the address has already been validated, but
1123 	 * not unmapped, but the maps are removed from the list.
1124 	 */
1125 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1126 	if (!vma) {
1127 		error = -ENOMEM;
1128 		goto unacct_error;
1129 	}
1130 
1131 	vma->vm_mm = mm;
1132 	vma->vm_start = addr;
1133 	vma->vm_end = addr + len;
1134 	vma->vm_flags = vm_flags;
1135 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1136 	vma->vm_pgoff = pgoff;
1137 
1138 	if (file) {
1139 		error = -EINVAL;
1140 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1141 			goto free_vma;
1142 		if (vm_flags & VM_DENYWRITE) {
1143 			error = deny_write_access(file);
1144 			if (error)
1145 				goto free_vma;
1146 			correct_wcount = 1;
1147 		}
1148 		vma->vm_file = file;
1149 		get_file(file);
1150 		error = file->f_op->mmap(file, vma);
1151 		if (error)
1152 			goto unmap_and_free_vma;
1153 	} else if (vm_flags & VM_SHARED) {
1154 		error = shmem_zero_setup(vma);
1155 		if (error)
1156 			goto free_vma;
1157 	}
1158 
1159 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1160 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1161 	 * that memory reservation must be checked; but that reservation
1162 	 * belongs to shared memory object, not to vma: so now clear it.
1163 	 */
1164 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1165 		vma->vm_flags &= ~VM_ACCOUNT;
1166 
1167 	/* Can addr have changed??
1168 	 *
1169 	 * Answer: Yes, several device drivers can do it in their
1170 	 *         f_op->mmap method. -DaveM
1171 	 */
1172 	addr = vma->vm_start;
1173 	pgoff = vma->vm_pgoff;
1174 	vm_flags = vma->vm_flags;
1175 
1176 	if (vma_wants_writenotify(vma))
1177 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1178 
1179 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1180 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1181 		file = vma->vm_file;
1182 		vma_link(mm, vma, prev, rb_link, rb_parent);
1183 		if (correct_wcount)
1184 			atomic_inc(&inode->i_writecount);
1185 	} else {
1186 		if (file) {
1187 			if (correct_wcount)
1188 				atomic_inc(&inode->i_writecount);
1189 			fput(file);
1190 		}
1191 		mpol_free(vma_policy(vma));
1192 		kmem_cache_free(vm_area_cachep, vma);
1193 	}
1194 out:
1195 	mm->total_vm += len >> PAGE_SHIFT;
1196 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1197 	if (vm_flags & VM_LOCKED) {
1198 		mm->locked_vm += len >> PAGE_SHIFT;
1199 		make_pages_present(addr, addr + len);
1200 	}
1201 	if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1202 		make_pages_present(addr, addr + len);
1203 	return addr;
1204 
1205 unmap_and_free_vma:
1206 	if (correct_wcount)
1207 		atomic_inc(&inode->i_writecount);
1208 	vma->vm_file = NULL;
1209 	fput(file);
1210 
1211 	/* Undo any partial mapping done by a device driver. */
1212 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1213 	charged = 0;
1214 free_vma:
1215 	kmem_cache_free(vm_area_cachep, vma);
1216 unacct_error:
1217 	if (charged)
1218 		vm_unacct_memory(charged);
1219 	return error;
1220 }
1221 
1222 /* Get an address range which is currently unmapped.
1223  * For shmat() with addr=0.
1224  *
1225  * Ugly calling convention alert:
1226  * Return value with the low bits set means error value,
1227  * ie
1228  *	if (ret & ~PAGE_MASK)
1229  *		error = ret;
1230  *
1231  * This function "knows" that -ENOMEM has the bits set.
1232  */
1233 #ifndef HAVE_ARCH_UNMAPPED_AREA
1234 unsigned long
1235 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1236 		unsigned long len, unsigned long pgoff, unsigned long flags)
1237 {
1238 	struct mm_struct *mm = current->mm;
1239 	struct vm_area_struct *vma;
1240 	unsigned long start_addr;
1241 
1242 	if (len > TASK_SIZE)
1243 		return -ENOMEM;
1244 
1245 	if (flags & MAP_FIXED)
1246 		return addr;
1247 
1248 	if (addr) {
1249 		addr = PAGE_ALIGN(addr);
1250 		vma = find_vma(mm, addr);
1251 		if (TASK_SIZE - len >= addr &&
1252 		    (!vma || addr + len <= vma->vm_start))
1253 			return addr;
1254 	}
1255 	if (len > mm->cached_hole_size) {
1256 	        start_addr = addr = mm->free_area_cache;
1257 	} else {
1258 	        start_addr = addr = TASK_UNMAPPED_BASE;
1259 	        mm->cached_hole_size = 0;
1260 	}
1261 
1262 full_search:
1263 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1264 		/* At this point:  (!vma || addr < vma->vm_end). */
1265 		if (TASK_SIZE - len < addr) {
1266 			/*
1267 			 * Start a new search - just in case we missed
1268 			 * some holes.
1269 			 */
1270 			if (start_addr != TASK_UNMAPPED_BASE) {
1271 				addr = TASK_UNMAPPED_BASE;
1272 			        start_addr = addr;
1273 				mm->cached_hole_size = 0;
1274 				goto full_search;
1275 			}
1276 			return -ENOMEM;
1277 		}
1278 		if (!vma || addr + len <= vma->vm_start) {
1279 			/*
1280 			 * Remember the place where we stopped the search:
1281 			 */
1282 			mm->free_area_cache = addr + len;
1283 			return addr;
1284 		}
1285 		if (addr + mm->cached_hole_size < vma->vm_start)
1286 		        mm->cached_hole_size = vma->vm_start - addr;
1287 		addr = vma->vm_end;
1288 	}
1289 }
1290 #endif
1291 
1292 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1293 {
1294 	/*
1295 	 * Is this a new hole at the lowest possible address?
1296 	 */
1297 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1298 		mm->free_area_cache = addr;
1299 		mm->cached_hole_size = ~0UL;
1300 	}
1301 }
1302 
1303 /*
1304  * This mmap-allocator allocates new areas top-down from below the
1305  * stack's low limit (the base):
1306  */
1307 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1308 unsigned long
1309 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1310 			  const unsigned long len, const unsigned long pgoff,
1311 			  const unsigned long flags)
1312 {
1313 	struct vm_area_struct *vma;
1314 	struct mm_struct *mm = current->mm;
1315 	unsigned long addr = addr0;
1316 
1317 	/* requested length too big for entire address space */
1318 	if (len > TASK_SIZE)
1319 		return -ENOMEM;
1320 
1321 	if (flags & MAP_FIXED)
1322 		return addr;
1323 
1324 	/* requesting a specific address */
1325 	if (addr) {
1326 		addr = PAGE_ALIGN(addr);
1327 		vma = find_vma(mm, addr);
1328 		if (TASK_SIZE - len >= addr &&
1329 				(!vma || addr + len <= vma->vm_start))
1330 			return addr;
1331 	}
1332 
1333 	/* check if free_area_cache is useful for us */
1334 	if (len <= mm->cached_hole_size) {
1335  	        mm->cached_hole_size = 0;
1336  		mm->free_area_cache = mm->mmap_base;
1337  	}
1338 
1339 	/* either no address requested or can't fit in requested address hole */
1340 	addr = mm->free_area_cache;
1341 
1342 	/* make sure it can fit in the remaining address space */
1343 	if (addr > len) {
1344 		vma = find_vma(mm, addr-len);
1345 		if (!vma || addr <= vma->vm_start)
1346 			/* remember the address as a hint for next time */
1347 			return (mm->free_area_cache = addr-len);
1348 	}
1349 
1350 	if (mm->mmap_base < len)
1351 		goto bottomup;
1352 
1353 	addr = mm->mmap_base-len;
1354 
1355 	do {
1356 		/*
1357 		 * Lookup failure means no vma is above this address,
1358 		 * else if new region fits below vma->vm_start,
1359 		 * return with success:
1360 		 */
1361 		vma = find_vma(mm, addr);
1362 		if (!vma || addr+len <= vma->vm_start)
1363 			/* remember the address as a hint for next time */
1364 			return (mm->free_area_cache = addr);
1365 
1366  		/* remember the largest hole we saw so far */
1367  		if (addr + mm->cached_hole_size < vma->vm_start)
1368  		        mm->cached_hole_size = vma->vm_start - addr;
1369 
1370 		/* try just below the current vma->vm_start */
1371 		addr = vma->vm_start-len;
1372 	} while (len < vma->vm_start);
1373 
1374 bottomup:
1375 	/*
1376 	 * A failed mmap() very likely causes application failure,
1377 	 * so fall back to the bottom-up function here. This scenario
1378 	 * can happen with large stack limits and large mmap()
1379 	 * allocations.
1380 	 */
1381 	mm->cached_hole_size = ~0UL;
1382   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1383 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1384 	/*
1385 	 * Restore the topdown base:
1386 	 */
1387 	mm->free_area_cache = mm->mmap_base;
1388 	mm->cached_hole_size = ~0UL;
1389 
1390 	return addr;
1391 }
1392 #endif
1393 
1394 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1395 {
1396 	/*
1397 	 * Is this a new hole at the highest possible address?
1398 	 */
1399 	if (addr > mm->free_area_cache)
1400 		mm->free_area_cache = addr;
1401 
1402 	/* dont allow allocations above current base */
1403 	if (mm->free_area_cache > mm->mmap_base)
1404 		mm->free_area_cache = mm->mmap_base;
1405 }
1406 
1407 unsigned long
1408 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1409 		unsigned long pgoff, unsigned long flags)
1410 {
1411 	unsigned long (*get_area)(struct file *, unsigned long,
1412 				  unsigned long, unsigned long, unsigned long);
1413 
1414 	get_area = current->mm->get_unmapped_area;
1415 	if (file && file->f_op && file->f_op->get_unmapped_area)
1416 		get_area = file->f_op->get_unmapped_area;
1417 	addr = get_area(file, addr, len, pgoff, flags);
1418 	if (IS_ERR_VALUE(addr))
1419 		return addr;
1420 
1421 	if (addr > TASK_SIZE - len)
1422 		return -ENOMEM;
1423 	if (addr & ~PAGE_MASK)
1424 		return -EINVAL;
1425 
1426 	return addr;
1427 }
1428 
1429 EXPORT_SYMBOL(get_unmapped_area);
1430 
1431 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1432 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1433 {
1434 	struct vm_area_struct *vma = NULL;
1435 
1436 	if (mm) {
1437 		/* Check the cache first. */
1438 		/* (Cache hit rate is typically around 35%.) */
1439 		vma = mm->mmap_cache;
1440 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1441 			struct rb_node * rb_node;
1442 
1443 			rb_node = mm->mm_rb.rb_node;
1444 			vma = NULL;
1445 
1446 			while (rb_node) {
1447 				struct vm_area_struct * vma_tmp;
1448 
1449 				vma_tmp = rb_entry(rb_node,
1450 						struct vm_area_struct, vm_rb);
1451 
1452 				if (vma_tmp->vm_end > addr) {
1453 					vma = vma_tmp;
1454 					if (vma_tmp->vm_start <= addr)
1455 						break;
1456 					rb_node = rb_node->rb_left;
1457 				} else
1458 					rb_node = rb_node->rb_right;
1459 			}
1460 			if (vma)
1461 				mm->mmap_cache = vma;
1462 		}
1463 	}
1464 	return vma;
1465 }
1466 
1467 EXPORT_SYMBOL(find_vma);
1468 
1469 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1470 struct vm_area_struct *
1471 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1472 			struct vm_area_struct **pprev)
1473 {
1474 	struct vm_area_struct *vma = NULL, *prev = NULL;
1475 	struct rb_node * rb_node;
1476 	if (!mm)
1477 		goto out;
1478 
1479 	/* Guard against addr being lower than the first VMA */
1480 	vma = mm->mmap;
1481 
1482 	/* Go through the RB tree quickly. */
1483 	rb_node = mm->mm_rb.rb_node;
1484 
1485 	while (rb_node) {
1486 		struct vm_area_struct *vma_tmp;
1487 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1488 
1489 		if (addr < vma_tmp->vm_end) {
1490 			rb_node = rb_node->rb_left;
1491 		} else {
1492 			prev = vma_tmp;
1493 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1494 				break;
1495 			rb_node = rb_node->rb_right;
1496 		}
1497 	}
1498 
1499 out:
1500 	*pprev = prev;
1501 	return prev ? prev->vm_next : vma;
1502 }
1503 
1504 /*
1505  * Verify that the stack growth is acceptable and
1506  * update accounting. This is shared with both the
1507  * grow-up and grow-down cases.
1508  */
1509 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1510 {
1511 	struct mm_struct *mm = vma->vm_mm;
1512 	struct rlimit *rlim = current->signal->rlim;
1513 	unsigned long new_start;
1514 
1515 	/* address space limit tests */
1516 	if (!may_expand_vm(mm, grow))
1517 		return -ENOMEM;
1518 
1519 	/* Stack limit test */
1520 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1521 		return -ENOMEM;
1522 
1523 	/* mlock limit tests */
1524 	if (vma->vm_flags & VM_LOCKED) {
1525 		unsigned long locked;
1526 		unsigned long limit;
1527 		locked = mm->locked_vm + grow;
1528 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1529 		if (locked > limit && !capable(CAP_IPC_LOCK))
1530 			return -ENOMEM;
1531 	}
1532 
1533 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1534 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1535 			vma->vm_end - size;
1536 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1537 		return -EFAULT;
1538 
1539 	/*
1540 	 * Overcommit..  This must be the final test, as it will
1541 	 * update security statistics.
1542 	 */
1543 	if (security_vm_enough_memory(grow))
1544 		return -ENOMEM;
1545 
1546 	/* Ok, everything looks good - let it rip */
1547 	mm->total_vm += grow;
1548 	if (vma->vm_flags & VM_LOCKED)
1549 		mm->locked_vm += grow;
1550 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1551 	return 0;
1552 }
1553 
1554 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1555 /*
1556  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1557  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1558  */
1559 #ifndef CONFIG_IA64
1560 static inline
1561 #endif
1562 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1563 {
1564 	int error;
1565 
1566 	if (!(vma->vm_flags & VM_GROWSUP))
1567 		return -EFAULT;
1568 
1569 	/*
1570 	 * We must make sure the anon_vma is allocated
1571 	 * so that the anon_vma locking is not a noop.
1572 	 */
1573 	if (unlikely(anon_vma_prepare(vma)))
1574 		return -ENOMEM;
1575 	anon_vma_lock(vma);
1576 
1577 	/*
1578 	 * vma->vm_start/vm_end cannot change under us because the caller
1579 	 * is required to hold the mmap_sem in read mode.  We need the
1580 	 * anon_vma lock to serialize against concurrent expand_stacks.
1581 	 * Also guard against wrapping around to address 0.
1582 	 */
1583 	if (address < PAGE_ALIGN(address+4))
1584 		address = PAGE_ALIGN(address+4);
1585 	else {
1586 		anon_vma_unlock(vma);
1587 		return -ENOMEM;
1588 	}
1589 	error = 0;
1590 
1591 	/* Somebody else might have raced and expanded it already */
1592 	if (address > vma->vm_end) {
1593 		unsigned long size, grow;
1594 
1595 		size = address - vma->vm_start;
1596 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1597 
1598 		error = acct_stack_growth(vma, size, grow);
1599 		if (!error)
1600 			vma->vm_end = address;
1601 	}
1602 	anon_vma_unlock(vma);
1603 	return error;
1604 }
1605 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1606 
1607 /*
1608  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1609  */
1610 static inline int expand_downwards(struct vm_area_struct *vma,
1611 				   unsigned long address)
1612 {
1613 	int error;
1614 
1615 	/*
1616 	 * We must make sure the anon_vma is allocated
1617 	 * so that the anon_vma locking is not a noop.
1618 	 */
1619 	if (unlikely(anon_vma_prepare(vma)))
1620 		return -ENOMEM;
1621 
1622 	address &= PAGE_MASK;
1623 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1624 	if (error)
1625 		return error;
1626 
1627 	anon_vma_lock(vma);
1628 
1629 	/*
1630 	 * vma->vm_start/vm_end cannot change under us because the caller
1631 	 * is required to hold the mmap_sem in read mode.  We need the
1632 	 * anon_vma lock to serialize against concurrent expand_stacks.
1633 	 */
1634 
1635 	/* Somebody else might have raced and expanded it already */
1636 	if (address < vma->vm_start) {
1637 		unsigned long size, grow;
1638 
1639 		size = vma->vm_end - address;
1640 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1641 
1642 		error = acct_stack_growth(vma, size, grow);
1643 		if (!error) {
1644 			vma->vm_start = address;
1645 			vma->vm_pgoff -= grow;
1646 		}
1647 	}
1648 	anon_vma_unlock(vma);
1649 	return error;
1650 }
1651 
1652 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1653 {
1654 	return expand_downwards(vma, address);
1655 }
1656 
1657 #ifdef CONFIG_STACK_GROWSUP
1658 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1659 {
1660 	return expand_upwards(vma, address);
1661 }
1662 
1663 struct vm_area_struct *
1664 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1665 {
1666 	struct vm_area_struct *vma, *prev;
1667 
1668 	addr &= PAGE_MASK;
1669 	vma = find_vma_prev(mm, addr, &prev);
1670 	if (vma && (vma->vm_start <= addr))
1671 		return vma;
1672 	if (!prev || expand_stack(prev, addr))
1673 		return NULL;
1674 	if (prev->vm_flags & VM_LOCKED)
1675 		make_pages_present(addr, prev->vm_end);
1676 	return prev;
1677 }
1678 #else
1679 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1680 {
1681 	return expand_downwards(vma, address);
1682 }
1683 
1684 struct vm_area_struct *
1685 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1686 {
1687 	struct vm_area_struct * vma;
1688 	unsigned long start;
1689 
1690 	addr &= PAGE_MASK;
1691 	vma = find_vma(mm,addr);
1692 	if (!vma)
1693 		return NULL;
1694 	if (vma->vm_start <= addr)
1695 		return vma;
1696 	if (!(vma->vm_flags & VM_GROWSDOWN))
1697 		return NULL;
1698 	start = vma->vm_start;
1699 	if (expand_stack(vma, addr))
1700 		return NULL;
1701 	if (vma->vm_flags & VM_LOCKED)
1702 		make_pages_present(addr, start);
1703 	return vma;
1704 }
1705 #endif
1706 
1707 /*
1708  * Ok - we have the memory areas we should free on the vma list,
1709  * so release them, and do the vma updates.
1710  *
1711  * Called with the mm semaphore held.
1712  */
1713 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1714 {
1715 	/* Update high watermark before we lower total_vm */
1716 	update_hiwater_vm(mm);
1717 	do {
1718 		long nrpages = vma_pages(vma);
1719 
1720 		mm->total_vm -= nrpages;
1721 		if (vma->vm_flags & VM_LOCKED)
1722 			mm->locked_vm -= nrpages;
1723 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1724 		vma = remove_vma(vma);
1725 	} while (vma);
1726 	validate_mm(mm);
1727 }
1728 
1729 /*
1730  * Get rid of page table information in the indicated region.
1731  *
1732  * Called with the mm semaphore held.
1733  */
1734 static void unmap_region(struct mm_struct *mm,
1735 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1736 		unsigned long start, unsigned long end)
1737 {
1738 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1739 	struct mmu_gather *tlb;
1740 	unsigned long nr_accounted = 0;
1741 
1742 	lru_add_drain();
1743 	tlb = tlb_gather_mmu(mm, 0);
1744 	update_hiwater_rss(mm);
1745 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1746 	vm_unacct_memory(nr_accounted);
1747 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1748 				 next? next->vm_start: 0);
1749 	tlb_finish_mmu(tlb, start, end);
1750 }
1751 
1752 /*
1753  * Create a list of vma's touched by the unmap, removing them from the mm's
1754  * vma list as we go..
1755  */
1756 static void
1757 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1758 	struct vm_area_struct *prev, unsigned long end)
1759 {
1760 	struct vm_area_struct **insertion_point;
1761 	struct vm_area_struct *tail_vma = NULL;
1762 	unsigned long addr;
1763 
1764 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1765 	do {
1766 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1767 		mm->map_count--;
1768 		tail_vma = vma;
1769 		vma = vma->vm_next;
1770 	} while (vma && vma->vm_start < end);
1771 	*insertion_point = vma;
1772 	tail_vma->vm_next = NULL;
1773 	if (mm->unmap_area == arch_unmap_area)
1774 		addr = prev ? prev->vm_end : mm->mmap_base;
1775 	else
1776 		addr = vma ?  vma->vm_start : mm->mmap_base;
1777 	mm->unmap_area(mm, addr);
1778 	mm->mmap_cache = NULL;		/* Kill the cache. */
1779 }
1780 
1781 /*
1782  * Split a vma into two pieces at address 'addr', a new vma is allocated
1783  * either for the first part or the tail.
1784  */
1785 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1786 	      unsigned long addr, int new_below)
1787 {
1788 	struct mempolicy *pol;
1789 	struct vm_area_struct *new;
1790 
1791 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1792 		return -EINVAL;
1793 
1794 	if (mm->map_count >= sysctl_max_map_count)
1795 		return -ENOMEM;
1796 
1797 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1798 	if (!new)
1799 		return -ENOMEM;
1800 
1801 	/* most fields are the same, copy all, and then fixup */
1802 	*new = *vma;
1803 
1804 	if (new_below)
1805 		new->vm_end = addr;
1806 	else {
1807 		new->vm_start = addr;
1808 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1809 	}
1810 
1811 	pol = mpol_copy(vma_policy(vma));
1812 	if (IS_ERR(pol)) {
1813 		kmem_cache_free(vm_area_cachep, new);
1814 		return PTR_ERR(pol);
1815 	}
1816 	vma_set_policy(new, pol);
1817 
1818 	if (new->vm_file)
1819 		get_file(new->vm_file);
1820 
1821 	if (new->vm_ops && new->vm_ops->open)
1822 		new->vm_ops->open(new);
1823 
1824 	if (new_below)
1825 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1826 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1827 	else
1828 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1829 
1830 	return 0;
1831 }
1832 
1833 /* Munmap is split into 2 main parts -- this part which finds
1834  * what needs doing, and the areas themselves, which do the
1835  * work.  This now handles partial unmappings.
1836  * Jeremy Fitzhardinge <jeremy@goop.org>
1837  */
1838 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1839 {
1840 	unsigned long end;
1841 	struct vm_area_struct *vma, *prev, *last;
1842 
1843 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1844 		return -EINVAL;
1845 
1846 	if ((len = PAGE_ALIGN(len)) == 0)
1847 		return -EINVAL;
1848 
1849 	/* Find the first overlapping VMA */
1850 	vma = find_vma_prev(mm, start, &prev);
1851 	if (!vma)
1852 		return 0;
1853 	/* we have  start < vma->vm_end  */
1854 
1855 	/* if it doesn't overlap, we have nothing.. */
1856 	end = start + len;
1857 	if (vma->vm_start >= end)
1858 		return 0;
1859 
1860 	/*
1861 	 * If we need to split any vma, do it now to save pain later.
1862 	 *
1863 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1864 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1865 	 * places tmp vma above, and higher split_vma places tmp vma below.
1866 	 */
1867 	if (start > vma->vm_start) {
1868 		int error = split_vma(mm, vma, start, 0);
1869 		if (error)
1870 			return error;
1871 		prev = vma;
1872 	}
1873 
1874 	/* Does it split the last one? */
1875 	last = find_vma(mm, end);
1876 	if (last && end > last->vm_start) {
1877 		int error = split_vma(mm, last, end, 1);
1878 		if (error)
1879 			return error;
1880 	}
1881 	vma = prev? prev->vm_next: mm->mmap;
1882 
1883 	/*
1884 	 * Remove the vma's, and unmap the actual pages
1885 	 */
1886 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1887 	unmap_region(mm, vma, prev, start, end);
1888 
1889 	/* Fix up all other VM information */
1890 	remove_vma_list(mm, vma);
1891 
1892 	return 0;
1893 }
1894 
1895 EXPORT_SYMBOL(do_munmap);
1896 
1897 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1898 {
1899 	int ret;
1900 	struct mm_struct *mm = current->mm;
1901 
1902 	profile_munmap(addr);
1903 
1904 	down_write(&mm->mmap_sem);
1905 	ret = do_munmap(mm, addr, len);
1906 	up_write(&mm->mmap_sem);
1907 	return ret;
1908 }
1909 
1910 static inline void verify_mm_writelocked(struct mm_struct *mm)
1911 {
1912 #ifdef CONFIG_DEBUG_VM
1913 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1914 		WARN_ON(1);
1915 		up_read(&mm->mmap_sem);
1916 	}
1917 #endif
1918 }
1919 
1920 /*
1921  *  this is really a simplified "do_mmap".  it only handles
1922  *  anonymous maps.  eventually we may be able to do some
1923  *  brk-specific accounting here.
1924  */
1925 unsigned long do_brk(unsigned long addr, unsigned long len)
1926 {
1927 	struct mm_struct * mm = current->mm;
1928 	struct vm_area_struct * vma, * prev;
1929 	unsigned long flags;
1930 	struct rb_node ** rb_link, * rb_parent;
1931 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1932 	int error;
1933 
1934 	len = PAGE_ALIGN(len);
1935 	if (!len)
1936 		return addr;
1937 
1938 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1939 		return -EINVAL;
1940 
1941 	if (is_hugepage_only_range(mm, addr, len))
1942 		return -EINVAL;
1943 
1944 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1945 	if (error)
1946 		return error;
1947 
1948 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1949 
1950 	error = arch_mmap_check(addr, len, flags);
1951 	if (error)
1952 		return error;
1953 
1954 	/*
1955 	 * mlock MCL_FUTURE?
1956 	 */
1957 	if (mm->def_flags & VM_LOCKED) {
1958 		unsigned long locked, lock_limit;
1959 		locked = len >> PAGE_SHIFT;
1960 		locked += mm->locked_vm;
1961 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1962 		lock_limit >>= PAGE_SHIFT;
1963 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1964 			return -EAGAIN;
1965 	}
1966 
1967 	/*
1968 	 * mm->mmap_sem is required to protect against another thread
1969 	 * changing the mappings in case we sleep.
1970 	 */
1971 	verify_mm_writelocked(mm);
1972 
1973 	/*
1974 	 * Clear old maps.  this also does some error checking for us
1975 	 */
1976  munmap_back:
1977 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1978 	if (vma && vma->vm_start < addr + len) {
1979 		if (do_munmap(mm, addr, len))
1980 			return -ENOMEM;
1981 		goto munmap_back;
1982 	}
1983 
1984 	/* Check against address space limits *after* clearing old maps... */
1985 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1986 		return -ENOMEM;
1987 
1988 	if (mm->map_count > sysctl_max_map_count)
1989 		return -ENOMEM;
1990 
1991 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1992 		return -ENOMEM;
1993 
1994 	/* Can we just expand an old private anonymous mapping? */
1995 	if (vma_merge(mm, prev, addr, addr + len, flags,
1996 					NULL, NULL, pgoff, NULL))
1997 		goto out;
1998 
1999 	/*
2000 	 * create a vma struct for an anonymous mapping
2001 	 */
2002 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2003 	if (!vma) {
2004 		vm_unacct_memory(len >> PAGE_SHIFT);
2005 		return -ENOMEM;
2006 	}
2007 
2008 	vma->vm_mm = mm;
2009 	vma->vm_start = addr;
2010 	vma->vm_end = addr + len;
2011 	vma->vm_pgoff = pgoff;
2012 	vma->vm_flags = flags;
2013 	vma->vm_page_prot = vm_get_page_prot(flags);
2014 	vma_link(mm, vma, prev, rb_link, rb_parent);
2015 out:
2016 	mm->total_vm += len >> PAGE_SHIFT;
2017 	if (flags & VM_LOCKED) {
2018 		mm->locked_vm += len >> PAGE_SHIFT;
2019 		make_pages_present(addr, addr + len);
2020 	}
2021 	return addr;
2022 }
2023 
2024 EXPORT_SYMBOL(do_brk);
2025 
2026 /* Release all mmaps. */
2027 void exit_mmap(struct mm_struct *mm)
2028 {
2029 	struct mmu_gather *tlb;
2030 	struct vm_area_struct *vma = mm->mmap;
2031 	unsigned long nr_accounted = 0;
2032 	unsigned long end;
2033 
2034 	/* mm's last user has gone, and its about to be pulled down */
2035 	arch_exit_mmap(mm);
2036 
2037 	lru_add_drain();
2038 	flush_cache_mm(mm);
2039 	tlb = tlb_gather_mmu(mm, 1);
2040 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
2041 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2042 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2043 	vm_unacct_memory(nr_accounted);
2044 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2045 	tlb_finish_mmu(tlb, 0, end);
2046 
2047 	/*
2048 	 * Walk the list again, actually closing and freeing it,
2049 	 * with preemption enabled, without holding any MM locks.
2050 	 */
2051 	while (vma)
2052 		vma = remove_vma(vma);
2053 
2054 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2055 }
2056 
2057 /* Insert vm structure into process list sorted by address
2058  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2059  * then i_mmap_lock is taken here.
2060  */
2061 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2062 {
2063 	struct vm_area_struct * __vma, * prev;
2064 	struct rb_node ** rb_link, * rb_parent;
2065 
2066 	/*
2067 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2068 	 * until its first write fault, when page's anon_vma and index
2069 	 * are set.  But now set the vm_pgoff it will almost certainly
2070 	 * end up with (unless mremap moves it elsewhere before that
2071 	 * first wfault), so /proc/pid/maps tells a consistent story.
2072 	 *
2073 	 * By setting it to reflect the virtual start address of the
2074 	 * vma, merges and splits can happen in a seamless way, just
2075 	 * using the existing file pgoff checks and manipulations.
2076 	 * Similarly in do_mmap_pgoff and in do_brk.
2077 	 */
2078 	if (!vma->vm_file) {
2079 		BUG_ON(vma->anon_vma);
2080 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2081 	}
2082 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2083 	if (__vma && __vma->vm_start < vma->vm_end)
2084 		return -ENOMEM;
2085 	if ((vma->vm_flags & VM_ACCOUNT) &&
2086 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2087 		return -ENOMEM;
2088 	vma_link(mm, vma, prev, rb_link, rb_parent);
2089 	return 0;
2090 }
2091 
2092 /*
2093  * Copy the vma structure to a new location in the same mm,
2094  * prior to moving page table entries, to effect an mremap move.
2095  */
2096 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2097 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2098 {
2099 	struct vm_area_struct *vma = *vmap;
2100 	unsigned long vma_start = vma->vm_start;
2101 	struct mm_struct *mm = vma->vm_mm;
2102 	struct vm_area_struct *new_vma, *prev;
2103 	struct rb_node **rb_link, *rb_parent;
2104 	struct mempolicy *pol;
2105 
2106 	/*
2107 	 * If anonymous vma has not yet been faulted, update new pgoff
2108 	 * to match new location, to increase its chance of merging.
2109 	 */
2110 	if (!vma->vm_file && !vma->anon_vma)
2111 		pgoff = addr >> PAGE_SHIFT;
2112 
2113 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2114 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2115 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2116 	if (new_vma) {
2117 		/*
2118 		 * Source vma may have been merged into new_vma
2119 		 */
2120 		if (vma_start >= new_vma->vm_start &&
2121 		    vma_start < new_vma->vm_end)
2122 			*vmap = new_vma;
2123 	} else {
2124 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2125 		if (new_vma) {
2126 			*new_vma = *vma;
2127 			pol = mpol_copy(vma_policy(vma));
2128 			if (IS_ERR(pol)) {
2129 				kmem_cache_free(vm_area_cachep, new_vma);
2130 				return NULL;
2131 			}
2132 			vma_set_policy(new_vma, pol);
2133 			new_vma->vm_start = addr;
2134 			new_vma->vm_end = addr + len;
2135 			new_vma->vm_pgoff = pgoff;
2136 			if (new_vma->vm_file)
2137 				get_file(new_vma->vm_file);
2138 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2139 				new_vma->vm_ops->open(new_vma);
2140 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2141 		}
2142 	}
2143 	return new_vma;
2144 }
2145 
2146 /*
2147  * Return true if the calling process may expand its vm space by the passed
2148  * number of pages
2149  */
2150 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2151 {
2152 	unsigned long cur = mm->total_vm;	/* pages */
2153 	unsigned long lim;
2154 
2155 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2156 
2157 	if (cur + npages > lim)
2158 		return 0;
2159 	return 1;
2160 }
2161 
2162 
2163 static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2164 					   unsigned long address, int *type)
2165 {
2166 	struct page **pages;
2167 
2168 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2169 
2170 	address -= vma->vm_start;
2171 	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2172 		address -= PAGE_SIZE;
2173 
2174 	if (*pages) {
2175 		struct page *page = *pages;
2176 		get_page(page);
2177 		return page;
2178 	}
2179 
2180 	return NOPAGE_SIGBUS;
2181 }
2182 
2183 /*
2184  * Having a close hook prevents vma merging regardless of flags.
2185  */
2186 static void special_mapping_close(struct vm_area_struct *vma)
2187 {
2188 }
2189 
2190 static struct vm_operations_struct special_mapping_vmops = {
2191 	.close = special_mapping_close,
2192 	.nopage	= special_mapping_nopage,
2193 };
2194 
2195 /*
2196  * Called with mm->mmap_sem held for writing.
2197  * Insert a new vma covering the given region, with the given flags.
2198  * Its pages are supplied by the given array of struct page *.
2199  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2200  * The region past the last page supplied will always produce SIGBUS.
2201  * The array pointer and the pages it points to are assumed to stay alive
2202  * for as long as this mapping might exist.
2203  */
2204 int install_special_mapping(struct mm_struct *mm,
2205 			    unsigned long addr, unsigned long len,
2206 			    unsigned long vm_flags, struct page **pages)
2207 {
2208 	struct vm_area_struct *vma;
2209 
2210 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2211 	if (unlikely(vma == NULL))
2212 		return -ENOMEM;
2213 
2214 	vma->vm_mm = mm;
2215 	vma->vm_start = addr;
2216 	vma->vm_end = addr + len;
2217 
2218 	vma->vm_flags = vm_flags | mm->def_flags;
2219 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2220 
2221 	vma->vm_ops = &special_mapping_vmops;
2222 	vma->vm_private_data = pages;
2223 
2224 	if (unlikely(insert_vm_struct(mm, vma))) {
2225 		kmem_cache_free(vm_area_cachep, vma);
2226 		return -ENOMEM;
2227 	}
2228 
2229 	mm->total_vm += len >> PAGE_SHIFT;
2230 
2231 	return 0;
2232 }
2233