xref: /linux/mm/mmap.c (revision 79f3d123caedbac30a6fd75f9597b2a60a89d513)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
80 void vma_set_page_prot(struct vm_area_struct *vma)
81 {
82 	unsigned long vm_flags = vma->vm_flags;
83 	pgprot_t vm_page_prot;
84 
85 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
86 	if (vma_wants_writenotify(vma, vm_page_prot)) {
87 		vm_flags &= ~VM_SHARED;
88 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
89 	}
90 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
91 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
92 }
93 
94 /*
95  * check_brk_limits() - Use platform specific check of range & verify mlock
96  * limits.
97  * @addr: The address to check
98  * @len: The size of increase.
99  *
100  * Return: 0 on success.
101  */
102 static int check_brk_limits(unsigned long addr, unsigned long len)
103 {
104 	unsigned long mapped_addr;
105 
106 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
107 	if (IS_ERR_VALUE(mapped_addr))
108 		return mapped_addr;
109 
110 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
111 		? 0 : -EAGAIN;
112 }
113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
114 		unsigned long addr, unsigned long request, unsigned long flags);
115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117 	unsigned long newbrk, oldbrk, origbrk;
118 	struct mm_struct *mm = current->mm;
119 	struct vm_area_struct *brkvma, *next = NULL;
120 	unsigned long min_brk;
121 	bool populate = false;
122 	LIST_HEAD(uf);
123 	struct vma_iterator vmi;
124 
125 	if (mmap_write_lock_killable(mm))
126 		return -EINTR;
127 
128 	origbrk = mm->brk;
129 
130 #ifdef CONFIG_COMPAT_BRK
131 	/*
132 	 * CONFIG_COMPAT_BRK can still be overridden by setting
133 	 * randomize_va_space to 2, which will still cause mm->start_brk
134 	 * to be arbitrarily shifted
135 	 */
136 	if (current->brk_randomized)
137 		min_brk = mm->start_brk;
138 	else
139 		min_brk = mm->end_data;
140 #else
141 	min_brk = mm->start_brk;
142 #endif
143 	if (brk < min_brk)
144 		goto out;
145 
146 	/*
147 	 * Check against rlimit here. If this check is done later after the test
148 	 * of oldbrk with newbrk then it can escape the test and let the data
149 	 * segment grow beyond its set limit the in case where the limit is
150 	 * not page aligned -Ram Gupta
151 	 */
152 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
153 			      mm->end_data, mm->start_data))
154 		goto out;
155 
156 	newbrk = PAGE_ALIGN(brk);
157 	oldbrk = PAGE_ALIGN(mm->brk);
158 	if (oldbrk == newbrk) {
159 		mm->brk = brk;
160 		goto success;
161 	}
162 
163 	/* Always allow shrinking brk. */
164 	if (brk <= mm->brk) {
165 		/* Search one past newbrk */
166 		vma_iter_init(&vmi, mm, newbrk);
167 		brkvma = vma_find(&vmi, oldbrk);
168 		if (!brkvma || brkvma->vm_start >= oldbrk)
169 			goto out; /* mapping intersects with an existing non-brk vma. */
170 		/*
171 		 * mm->brk must be protected by write mmap_lock.
172 		 * do_vmi_align_munmap() will drop the lock on success,  so
173 		 * update it before calling do_vma_munmap().
174 		 */
175 		mm->brk = brk;
176 		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
177 					/* unlock = */ true))
178 			goto out;
179 
180 		goto success_unlocked;
181 	}
182 
183 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
184 		goto out;
185 
186 	/*
187 	 * Only check if the next VMA is within the stack_guard_gap of the
188 	 * expansion area
189 	 */
190 	vma_iter_init(&vmi, mm, oldbrk);
191 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
192 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
193 		goto out;
194 
195 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
196 	/* Ok, looks good - let it rip. */
197 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
198 		goto out;
199 
200 	mm->brk = brk;
201 	if (mm->def_flags & VM_LOCKED)
202 		populate = true;
203 
204 success:
205 	mmap_write_unlock(mm);
206 success_unlocked:
207 	userfaultfd_unmap_complete(mm, &uf);
208 	if (populate)
209 		mm_populate(oldbrk, newbrk - oldbrk);
210 	return brk;
211 
212 out:
213 	mm->brk = origbrk;
214 	mmap_write_unlock(mm);
215 	return origbrk;
216 }
217 
218 /*
219  * If a hint addr is less than mmap_min_addr change hint to be as
220  * low as possible but still greater than mmap_min_addr
221  */
222 static inline unsigned long round_hint_to_min(unsigned long hint)
223 {
224 	hint &= PAGE_MASK;
225 	if (((void *)hint != NULL) &&
226 	    (hint < mmap_min_addr))
227 		return PAGE_ALIGN(mmap_min_addr);
228 	return hint;
229 }
230 
231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
232 			unsigned long bytes)
233 {
234 	unsigned long locked_pages, limit_pages;
235 
236 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
237 		return true;
238 
239 	locked_pages = bytes >> PAGE_SHIFT;
240 	locked_pages += mm->locked_vm;
241 
242 	limit_pages = rlimit(RLIMIT_MEMLOCK);
243 	limit_pages >>= PAGE_SHIFT;
244 
245 	return locked_pages <= limit_pages;
246 }
247 
248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
249 {
250 	if (S_ISREG(inode->i_mode))
251 		return MAX_LFS_FILESIZE;
252 
253 	if (S_ISBLK(inode->i_mode))
254 		return MAX_LFS_FILESIZE;
255 
256 	if (S_ISSOCK(inode->i_mode))
257 		return MAX_LFS_FILESIZE;
258 
259 	/* Special "we do even unsigned file positions" case */
260 	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
261 		return 0;
262 
263 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
264 	return ULONG_MAX;
265 }
266 
267 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268 				unsigned long pgoff, unsigned long len)
269 {
270 	u64 maxsize = file_mmap_size_max(file, inode);
271 
272 	if (maxsize && len > maxsize)
273 		return false;
274 	maxsize -= len;
275 	if (pgoff > maxsize >> PAGE_SHIFT)
276 		return false;
277 	return true;
278 }
279 
280 /*
281  * The caller must write-lock current->mm->mmap_lock.
282  */
283 unsigned long do_mmap(struct file *file, unsigned long addr,
284 			unsigned long len, unsigned long prot,
285 			unsigned long flags, vm_flags_t vm_flags,
286 			unsigned long pgoff, unsigned long *populate,
287 			struct list_head *uf)
288 {
289 	struct mm_struct *mm = current->mm;
290 	int pkey = 0;
291 
292 	*populate = 0;
293 
294 	if (!len)
295 		return -EINVAL;
296 
297 	/*
298 	 * Does the application expect PROT_READ to imply PROT_EXEC?
299 	 *
300 	 * (the exception is when the underlying filesystem is noexec
301 	 *  mounted, in which case we don't add PROT_EXEC.)
302 	 */
303 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
304 		if (!(file && path_noexec(&file->f_path)))
305 			prot |= PROT_EXEC;
306 
307 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
308 	if (flags & MAP_FIXED_NOREPLACE)
309 		flags |= MAP_FIXED;
310 
311 	if (!(flags & MAP_FIXED))
312 		addr = round_hint_to_min(addr);
313 
314 	/* Careful about overflows.. */
315 	len = PAGE_ALIGN(len);
316 	if (!len)
317 		return -ENOMEM;
318 
319 	/* offset overflow? */
320 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
321 		return -EOVERFLOW;
322 
323 	/* Too many mappings? */
324 	if (mm->map_count > sysctl_max_map_count)
325 		return -ENOMEM;
326 
327 	/*
328 	 * addr is returned from get_unmapped_area,
329 	 * There are two cases:
330 	 * 1> MAP_FIXED == false
331 	 *	unallocated memory, no need to check sealing.
332 	 * 1> MAP_FIXED == true
333 	 *	sealing is checked inside mmap_region when
334 	 *	do_vmi_munmap is called.
335 	 */
336 
337 	if (prot == PROT_EXEC) {
338 		pkey = execute_only_pkey(mm);
339 		if (pkey < 0)
340 			pkey = 0;
341 	}
342 
343 	/* Do simple checking here so the lower-level routines won't have
344 	 * to. we assume access permissions have been handled by the open
345 	 * of the memory object, so we don't do any here.
346 	 */
347 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
348 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
349 
350 	/* Obtain the address to map to. we verify (or select) it and ensure
351 	 * that it represents a valid section of the address space.
352 	 */
353 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
354 	if (IS_ERR_VALUE(addr))
355 		return addr;
356 
357 	if (flags & MAP_FIXED_NOREPLACE) {
358 		if (find_vma_intersection(mm, addr, addr + len))
359 			return -EEXIST;
360 	}
361 
362 	if (flags & MAP_LOCKED)
363 		if (!can_do_mlock())
364 			return -EPERM;
365 
366 	if (!mlock_future_ok(mm, vm_flags, len))
367 		return -EAGAIN;
368 
369 	if (file) {
370 		struct inode *inode = file_inode(file);
371 		unsigned long flags_mask;
372 
373 		if (!file_mmap_ok(file, inode, pgoff, len))
374 			return -EOVERFLOW;
375 
376 		flags_mask = LEGACY_MAP_MASK;
377 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
378 			flags_mask |= MAP_SYNC;
379 
380 		switch (flags & MAP_TYPE) {
381 		case MAP_SHARED:
382 			/*
383 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
384 			 * flags. E.g. MAP_SYNC is dangerous to use with
385 			 * MAP_SHARED as you don't know which consistency model
386 			 * you will get. We silently ignore unsupported flags
387 			 * with MAP_SHARED to preserve backward compatibility.
388 			 */
389 			flags &= LEGACY_MAP_MASK;
390 			fallthrough;
391 		case MAP_SHARED_VALIDATE:
392 			if (flags & ~flags_mask)
393 				return -EOPNOTSUPP;
394 			if (prot & PROT_WRITE) {
395 				if (!(file->f_mode & FMODE_WRITE))
396 					return -EACCES;
397 				if (IS_SWAPFILE(file->f_mapping->host))
398 					return -ETXTBSY;
399 			}
400 
401 			/*
402 			 * Make sure we don't allow writing to an append-only
403 			 * file..
404 			 */
405 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
406 				return -EACCES;
407 
408 			vm_flags |= VM_SHARED | VM_MAYSHARE;
409 			if (!(file->f_mode & FMODE_WRITE))
410 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
411 			fallthrough;
412 		case MAP_PRIVATE:
413 			if (!(file->f_mode & FMODE_READ))
414 				return -EACCES;
415 			if (path_noexec(&file->f_path)) {
416 				if (vm_flags & VM_EXEC)
417 					return -EPERM;
418 				vm_flags &= ~VM_MAYEXEC;
419 			}
420 
421 			if (!file->f_op->mmap)
422 				return -ENODEV;
423 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
424 				return -EINVAL;
425 			break;
426 
427 		default:
428 			return -EINVAL;
429 		}
430 	} else {
431 		switch (flags & MAP_TYPE) {
432 		case MAP_SHARED:
433 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
434 				return -EINVAL;
435 			/*
436 			 * Ignore pgoff.
437 			 */
438 			pgoff = 0;
439 			vm_flags |= VM_SHARED | VM_MAYSHARE;
440 			break;
441 		case MAP_DROPPABLE:
442 			if (VM_DROPPABLE == VM_NONE)
443 				return -ENOTSUPP;
444 			/*
445 			 * A locked or stack area makes no sense to be droppable.
446 			 *
447 			 * Also, since droppable pages can just go away at any time
448 			 * it makes no sense to copy them on fork or dump them.
449 			 *
450 			 * And don't attempt to combine with hugetlb for now.
451 			 */
452 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
453 			        return -EINVAL;
454 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
455 			        return -EINVAL;
456 
457 			vm_flags |= VM_DROPPABLE;
458 
459 			/*
460 			 * If the pages can be dropped, then it doesn't make
461 			 * sense to reserve them.
462 			 */
463 			vm_flags |= VM_NORESERVE;
464 
465 			/*
466 			 * Likewise, they're volatile enough that they
467 			 * shouldn't survive forks or coredumps.
468 			 */
469 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
470 			fallthrough;
471 		case MAP_PRIVATE:
472 			/*
473 			 * Set pgoff according to addr for anon_vma.
474 			 */
475 			pgoff = addr >> PAGE_SHIFT;
476 			break;
477 		default:
478 			return -EINVAL;
479 		}
480 	}
481 
482 	/*
483 	 * Set 'VM_NORESERVE' if we should not account for the
484 	 * memory use of this mapping.
485 	 */
486 	if (flags & MAP_NORESERVE) {
487 		/* We honor MAP_NORESERVE if allowed to overcommit */
488 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
489 			vm_flags |= VM_NORESERVE;
490 
491 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
492 		if (file && is_file_hugepages(file))
493 			vm_flags |= VM_NORESERVE;
494 	}
495 
496 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
497 	if (!IS_ERR_VALUE(addr) &&
498 	    ((vm_flags & VM_LOCKED) ||
499 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
500 		*populate = len;
501 	return addr;
502 }
503 
504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
505 			      unsigned long prot, unsigned long flags,
506 			      unsigned long fd, unsigned long pgoff)
507 {
508 	struct file *file = NULL;
509 	unsigned long retval;
510 
511 	if (!(flags & MAP_ANONYMOUS)) {
512 		audit_mmap_fd(fd, flags);
513 		file = fget(fd);
514 		if (!file)
515 			return -EBADF;
516 		if (is_file_hugepages(file)) {
517 			len = ALIGN(len, huge_page_size(hstate_file(file)));
518 		} else if (unlikely(flags & MAP_HUGETLB)) {
519 			retval = -EINVAL;
520 			goto out_fput;
521 		}
522 	} else if (flags & MAP_HUGETLB) {
523 		struct hstate *hs;
524 
525 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
526 		if (!hs)
527 			return -EINVAL;
528 
529 		len = ALIGN(len, huge_page_size(hs));
530 		/*
531 		 * VM_NORESERVE is used because the reservations will be
532 		 * taken when vm_ops->mmap() is called
533 		 */
534 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
535 				VM_NORESERVE,
536 				HUGETLB_ANONHUGE_INODE,
537 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
538 		if (IS_ERR(file))
539 			return PTR_ERR(file);
540 	}
541 
542 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
543 out_fput:
544 	if (file)
545 		fput(file);
546 	return retval;
547 }
548 
549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
550 		unsigned long, prot, unsigned long, flags,
551 		unsigned long, fd, unsigned long, pgoff)
552 {
553 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
554 }
555 
556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
557 struct mmap_arg_struct {
558 	unsigned long addr;
559 	unsigned long len;
560 	unsigned long prot;
561 	unsigned long flags;
562 	unsigned long fd;
563 	unsigned long offset;
564 };
565 
566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
567 {
568 	struct mmap_arg_struct a;
569 
570 	if (copy_from_user(&a, arg, sizeof(a)))
571 		return -EFAULT;
572 	if (offset_in_page(a.offset))
573 		return -EINVAL;
574 
575 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
576 			       a.offset >> PAGE_SHIFT);
577 }
578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
579 
580 /*
581  * We account for memory if it's a private writeable mapping,
582  * not hugepages and VM_NORESERVE wasn't set.
583  */
584 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
585 {
586 	/*
587 	 * hugetlb has its own accounting separate from the core VM
588 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
589 	 */
590 	if (file && is_file_hugepages(file))
591 		return false;
592 
593 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
594 }
595 
596 /**
597  * unmapped_area() - Find an area between the low_limit and the high_limit with
598  * the correct alignment and offset, all from @info. Note: current->mm is used
599  * for the search.
600  *
601  * @info: The unmapped area information including the range [low_limit -
602  * high_limit), the alignment offset and mask.
603  *
604  * Return: A memory address or -ENOMEM.
605  */
606 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
607 {
608 	unsigned long length, gap;
609 	unsigned long low_limit, high_limit;
610 	struct vm_area_struct *tmp;
611 	VMA_ITERATOR(vmi, current->mm, 0);
612 
613 	/* Adjust search length to account for worst case alignment overhead */
614 	length = info->length + info->align_mask + info->start_gap;
615 	if (length < info->length)
616 		return -ENOMEM;
617 
618 	low_limit = info->low_limit;
619 	if (low_limit < mmap_min_addr)
620 		low_limit = mmap_min_addr;
621 	high_limit = info->high_limit;
622 retry:
623 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
624 		return -ENOMEM;
625 
626 	/*
627 	 * Adjust for the gap first so it doesn't interfere with the
628 	 * later alignment. The first step is the minimum needed to
629 	 * fulill the start gap, the next steps is the minimum to align
630 	 * that. It is the minimum needed to fulill both.
631 	 */
632 	gap = vma_iter_addr(&vmi) + info->start_gap;
633 	gap += (info->align_offset - gap) & info->align_mask;
634 	tmp = vma_next(&vmi);
635 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
636 		if (vm_start_gap(tmp) < gap + length - 1) {
637 			low_limit = tmp->vm_end;
638 			vma_iter_reset(&vmi);
639 			goto retry;
640 		}
641 	} else {
642 		tmp = vma_prev(&vmi);
643 		if (tmp && vm_end_gap(tmp) > gap) {
644 			low_limit = vm_end_gap(tmp);
645 			vma_iter_reset(&vmi);
646 			goto retry;
647 		}
648 	}
649 
650 	return gap;
651 }
652 
653 /**
654  * unmapped_area_topdown() - Find an area between the low_limit and the
655  * high_limit with the correct alignment and offset at the highest available
656  * address, all from @info. Note: current->mm is used for the search.
657  *
658  * @info: The unmapped area information including the range [low_limit -
659  * high_limit), the alignment offset and mask.
660  *
661  * Return: A memory address or -ENOMEM.
662  */
663 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
664 {
665 	unsigned long length, gap, gap_end;
666 	unsigned long low_limit, high_limit;
667 	struct vm_area_struct *tmp;
668 	VMA_ITERATOR(vmi, current->mm, 0);
669 
670 	/* Adjust search length to account for worst case alignment overhead */
671 	length = info->length + info->align_mask + info->start_gap;
672 	if (length < info->length)
673 		return -ENOMEM;
674 
675 	low_limit = info->low_limit;
676 	if (low_limit < mmap_min_addr)
677 		low_limit = mmap_min_addr;
678 	high_limit = info->high_limit;
679 retry:
680 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
681 		return -ENOMEM;
682 
683 	gap = vma_iter_end(&vmi) - info->length;
684 	gap -= (gap - info->align_offset) & info->align_mask;
685 	gap_end = vma_iter_end(&vmi);
686 	tmp = vma_next(&vmi);
687 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
688 		if (vm_start_gap(tmp) < gap_end) {
689 			high_limit = vm_start_gap(tmp);
690 			vma_iter_reset(&vmi);
691 			goto retry;
692 		}
693 	} else {
694 		tmp = vma_prev(&vmi);
695 		if (tmp && vm_end_gap(tmp) > gap) {
696 			high_limit = tmp->vm_start;
697 			vma_iter_reset(&vmi);
698 			goto retry;
699 		}
700 	}
701 
702 	return gap;
703 }
704 
705 /*
706  * Determine if the allocation needs to ensure that there is no
707  * existing mapping within it's guard gaps, for use as start_gap.
708  */
709 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
710 {
711 	if (vm_flags & VM_SHADOW_STACK)
712 		return PAGE_SIZE;
713 
714 	return 0;
715 }
716 
717 /*
718  * Search for an unmapped address range.
719  *
720  * We are looking for a range that:
721  * - does not intersect with any VMA;
722  * - is contained within the [low_limit, high_limit) interval;
723  * - is at least the desired size.
724  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
725  */
726 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
727 {
728 	unsigned long addr;
729 
730 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
731 		addr = unmapped_area_topdown(info);
732 	else
733 		addr = unmapped_area(info);
734 
735 	trace_vm_unmapped_area(addr, info);
736 	return addr;
737 }
738 
739 /* Get an address range which is currently unmapped.
740  * For shmat() with addr=0.
741  *
742  * Ugly calling convention alert:
743  * Return value with the low bits set means error value,
744  * ie
745  *	if (ret & ~PAGE_MASK)
746  *		error = ret;
747  *
748  * This function "knows" that -ENOMEM has the bits set.
749  */
750 unsigned long
751 generic_get_unmapped_area(struct file *filp, unsigned long addr,
752 			  unsigned long len, unsigned long pgoff,
753 			  unsigned long flags, vm_flags_t vm_flags)
754 {
755 	struct mm_struct *mm = current->mm;
756 	struct vm_area_struct *vma, *prev;
757 	struct vm_unmapped_area_info info = {};
758 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
759 
760 	if (len > mmap_end - mmap_min_addr)
761 		return -ENOMEM;
762 
763 	if (flags & MAP_FIXED)
764 		return addr;
765 
766 	if (addr) {
767 		addr = PAGE_ALIGN(addr);
768 		vma = find_vma_prev(mm, addr, &prev);
769 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
770 		    (!vma || addr + len <= vm_start_gap(vma)) &&
771 		    (!prev || addr >= vm_end_gap(prev)))
772 			return addr;
773 	}
774 
775 	info.length = len;
776 	info.low_limit = mm->mmap_base;
777 	info.high_limit = mmap_end;
778 	info.start_gap = stack_guard_placement(vm_flags);
779 	return vm_unmapped_area(&info);
780 }
781 
782 #ifndef HAVE_ARCH_UNMAPPED_AREA
783 unsigned long
784 arch_get_unmapped_area(struct file *filp, unsigned long addr,
785 		       unsigned long len, unsigned long pgoff,
786 		       unsigned long flags, vm_flags_t vm_flags)
787 {
788 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
789 					 vm_flags);
790 }
791 #endif
792 
793 /*
794  * This mmap-allocator allocates new areas top-down from below the
795  * stack's low limit (the base):
796  */
797 unsigned long
798 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
799 				  unsigned long len, unsigned long pgoff,
800 				  unsigned long flags, vm_flags_t vm_flags)
801 {
802 	struct vm_area_struct *vma, *prev;
803 	struct mm_struct *mm = current->mm;
804 	struct vm_unmapped_area_info info = {};
805 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
806 
807 	/* requested length too big for entire address space */
808 	if (len > mmap_end - mmap_min_addr)
809 		return -ENOMEM;
810 
811 	if (flags & MAP_FIXED)
812 		return addr;
813 
814 	/* requesting a specific address */
815 	if (addr) {
816 		addr = PAGE_ALIGN(addr);
817 		vma = find_vma_prev(mm, addr, &prev);
818 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
819 				(!vma || addr + len <= vm_start_gap(vma)) &&
820 				(!prev || addr >= vm_end_gap(prev)))
821 			return addr;
822 	}
823 
824 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
825 	info.length = len;
826 	info.low_limit = PAGE_SIZE;
827 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
828 	info.start_gap = stack_guard_placement(vm_flags);
829 	addr = vm_unmapped_area(&info);
830 
831 	/*
832 	 * A failed mmap() very likely causes application failure,
833 	 * so fall back to the bottom-up function here. This scenario
834 	 * can happen with large stack limits and large mmap()
835 	 * allocations.
836 	 */
837 	if (offset_in_page(addr)) {
838 		VM_BUG_ON(addr != -ENOMEM);
839 		info.flags = 0;
840 		info.low_limit = TASK_UNMAPPED_BASE;
841 		info.high_limit = mmap_end;
842 		addr = vm_unmapped_area(&info);
843 	}
844 
845 	return addr;
846 }
847 
848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
849 unsigned long
850 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
851 			       unsigned long len, unsigned long pgoff,
852 			       unsigned long flags, vm_flags_t vm_flags)
853 {
854 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
855 						 vm_flags);
856 }
857 #endif
858 
859 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
860 					   unsigned long addr, unsigned long len,
861 					   unsigned long pgoff, unsigned long flags,
862 					   vm_flags_t vm_flags)
863 {
864 	if (test_bit(MMF_TOPDOWN, &mm->flags))
865 		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
866 						      flags, vm_flags);
867 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
868 }
869 
870 unsigned long
871 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
872 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
873 {
874 	unsigned long (*get_area)(struct file *, unsigned long,
875 				  unsigned long, unsigned long, unsigned long)
876 				  = NULL;
877 
878 	unsigned long error = arch_mmap_check(addr, len, flags);
879 	if (error)
880 		return error;
881 
882 	/* Careful about overflows.. */
883 	if (len > TASK_SIZE)
884 		return -ENOMEM;
885 
886 	if (file) {
887 		if (file->f_op->get_unmapped_area)
888 			get_area = file->f_op->get_unmapped_area;
889 	} else if (flags & MAP_SHARED) {
890 		/*
891 		 * mmap_region() will call shmem_zero_setup() to create a file,
892 		 * so use shmem's get_unmapped_area in case it can be huge.
893 		 */
894 		get_area = shmem_get_unmapped_area;
895 	}
896 
897 	/* Always treat pgoff as zero for anonymous memory. */
898 	if (!file)
899 		pgoff = 0;
900 
901 	if (get_area) {
902 		addr = get_area(file, addr, len, pgoff, flags);
903 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
904 		/* Ensures that larger anonymous mappings are THP aligned. */
905 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
906 						     pgoff, flags, vm_flags);
907 	} else {
908 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
909 						    pgoff, flags, vm_flags);
910 	}
911 	if (IS_ERR_VALUE(addr))
912 		return addr;
913 
914 	if (addr > TASK_SIZE - len)
915 		return -ENOMEM;
916 	if (offset_in_page(addr))
917 		return -EINVAL;
918 
919 	error = security_mmap_addr(addr);
920 	return error ? error : addr;
921 }
922 
923 unsigned long
924 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
925 		     unsigned long addr, unsigned long len,
926 		     unsigned long pgoff, unsigned long flags)
927 {
928 	if (test_bit(MMF_TOPDOWN, &mm->flags))
929 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
930 	return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
931 }
932 EXPORT_SYMBOL(mm_get_unmapped_area);
933 
934 /**
935  * find_vma_intersection() - Look up the first VMA which intersects the interval
936  * @mm: The process address space.
937  * @start_addr: The inclusive start user address.
938  * @end_addr: The exclusive end user address.
939  *
940  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
941  * start_addr < end_addr.
942  */
943 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
944 					     unsigned long start_addr,
945 					     unsigned long end_addr)
946 {
947 	unsigned long index = start_addr;
948 
949 	mmap_assert_locked(mm);
950 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
951 }
952 EXPORT_SYMBOL(find_vma_intersection);
953 
954 /**
955  * find_vma() - Find the VMA for a given address, or the next VMA.
956  * @mm: The mm_struct to check
957  * @addr: The address
958  *
959  * Returns: The VMA associated with addr, or the next VMA.
960  * May return %NULL in the case of no VMA at addr or above.
961  */
962 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
963 {
964 	unsigned long index = addr;
965 
966 	mmap_assert_locked(mm);
967 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
968 }
969 EXPORT_SYMBOL(find_vma);
970 
971 /**
972  * find_vma_prev() - Find the VMA for a given address, or the next vma and
973  * set %pprev to the previous VMA, if any.
974  * @mm: The mm_struct to check
975  * @addr: The address
976  * @pprev: The pointer to set to the previous VMA
977  *
978  * Note that RCU lock is missing here since the external mmap_lock() is used
979  * instead.
980  *
981  * Returns: The VMA associated with @addr, or the next vma.
982  * May return %NULL in the case of no vma at addr or above.
983  */
984 struct vm_area_struct *
985 find_vma_prev(struct mm_struct *mm, unsigned long addr,
986 			struct vm_area_struct **pprev)
987 {
988 	struct vm_area_struct *vma;
989 	VMA_ITERATOR(vmi, mm, addr);
990 
991 	vma = vma_iter_load(&vmi);
992 	*pprev = vma_prev(&vmi);
993 	if (!vma)
994 		vma = vma_next(&vmi);
995 	return vma;
996 }
997 
998 /*
999  * Verify that the stack growth is acceptable and
1000  * update accounting. This is shared with both the
1001  * grow-up and grow-down cases.
1002  */
1003 static int acct_stack_growth(struct vm_area_struct *vma,
1004 			     unsigned long size, unsigned long grow)
1005 {
1006 	struct mm_struct *mm = vma->vm_mm;
1007 	unsigned long new_start;
1008 
1009 	/* address space limit tests */
1010 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1011 		return -ENOMEM;
1012 
1013 	/* Stack limit test */
1014 	if (size > rlimit(RLIMIT_STACK))
1015 		return -ENOMEM;
1016 
1017 	/* mlock limit tests */
1018 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1019 		return -ENOMEM;
1020 
1021 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1022 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1023 			vma->vm_end - size;
1024 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1025 		return -EFAULT;
1026 
1027 	/*
1028 	 * Overcommit..  This must be the final test, as it will
1029 	 * update security statistics.
1030 	 */
1031 	if (security_vm_enough_memory_mm(mm, grow))
1032 		return -ENOMEM;
1033 
1034 	return 0;
1035 }
1036 
1037 #if defined(CONFIG_STACK_GROWSUP)
1038 /*
1039  * PA-RISC uses this for its stack.
1040  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1041  */
1042 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1043 {
1044 	struct mm_struct *mm = vma->vm_mm;
1045 	struct vm_area_struct *next;
1046 	unsigned long gap_addr;
1047 	int error = 0;
1048 	VMA_ITERATOR(vmi, mm, vma->vm_start);
1049 
1050 	if (!(vma->vm_flags & VM_GROWSUP))
1051 		return -EFAULT;
1052 
1053 	/* Guard against exceeding limits of the address space. */
1054 	address &= PAGE_MASK;
1055 	if (address >= (TASK_SIZE & PAGE_MASK))
1056 		return -ENOMEM;
1057 	address += PAGE_SIZE;
1058 
1059 	/* Enforce stack_guard_gap */
1060 	gap_addr = address + stack_guard_gap;
1061 
1062 	/* Guard against overflow */
1063 	if (gap_addr < address || gap_addr > TASK_SIZE)
1064 		gap_addr = TASK_SIZE;
1065 
1066 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1067 	if (next && vma_is_accessible(next)) {
1068 		if (!(next->vm_flags & VM_GROWSUP))
1069 			return -ENOMEM;
1070 		/* Check that both stack segments have the same anon_vma? */
1071 	}
1072 
1073 	if (next)
1074 		vma_iter_prev_range_limit(&vmi, address);
1075 
1076 	vma_iter_config(&vmi, vma->vm_start, address);
1077 	if (vma_iter_prealloc(&vmi, vma))
1078 		return -ENOMEM;
1079 
1080 	/* We must make sure the anon_vma is allocated. */
1081 	if (unlikely(anon_vma_prepare(vma))) {
1082 		vma_iter_free(&vmi);
1083 		return -ENOMEM;
1084 	}
1085 
1086 	/* Lock the VMA before expanding to prevent concurrent page faults */
1087 	vma_start_write(vma);
1088 	/*
1089 	 * vma->vm_start/vm_end cannot change under us because the caller
1090 	 * is required to hold the mmap_lock in read mode.  We need the
1091 	 * anon_vma lock to serialize against concurrent expand_stacks.
1092 	 */
1093 	anon_vma_lock_write(vma->anon_vma);
1094 
1095 	/* Somebody else might have raced and expanded it already */
1096 	if (address > vma->vm_end) {
1097 		unsigned long size, grow;
1098 
1099 		size = address - vma->vm_start;
1100 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1101 
1102 		error = -ENOMEM;
1103 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1104 			error = acct_stack_growth(vma, size, grow);
1105 			if (!error) {
1106 				/*
1107 				 * We only hold a shared mmap_lock lock here, so
1108 				 * we need to protect against concurrent vma
1109 				 * expansions.  anon_vma_lock_write() doesn't
1110 				 * help here, as we don't guarantee that all
1111 				 * growable vmas in a mm share the same root
1112 				 * anon vma.  So, we reuse mm->page_table_lock
1113 				 * to guard against concurrent vma expansions.
1114 				 */
1115 				spin_lock(&mm->page_table_lock);
1116 				if (vma->vm_flags & VM_LOCKED)
1117 					mm->locked_vm += grow;
1118 				vm_stat_account(mm, vma->vm_flags, grow);
1119 				anon_vma_interval_tree_pre_update_vma(vma);
1120 				vma->vm_end = address;
1121 				/* Overwrite old entry in mtree. */
1122 				vma_iter_store(&vmi, vma);
1123 				anon_vma_interval_tree_post_update_vma(vma);
1124 				spin_unlock(&mm->page_table_lock);
1125 
1126 				perf_event_mmap(vma);
1127 			}
1128 		}
1129 	}
1130 	anon_vma_unlock_write(vma->anon_vma);
1131 	vma_iter_free(&vmi);
1132 	validate_mm(mm);
1133 	return error;
1134 }
1135 #endif /* CONFIG_STACK_GROWSUP */
1136 
1137 /*
1138  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1139  * mmap_lock held for writing.
1140  */
1141 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1142 {
1143 	struct mm_struct *mm = vma->vm_mm;
1144 	struct vm_area_struct *prev;
1145 	int error = 0;
1146 	VMA_ITERATOR(vmi, mm, vma->vm_start);
1147 
1148 	if (!(vma->vm_flags & VM_GROWSDOWN))
1149 		return -EFAULT;
1150 
1151 	address &= PAGE_MASK;
1152 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1153 		return -EPERM;
1154 
1155 	/* Enforce stack_guard_gap */
1156 	prev = vma_prev(&vmi);
1157 	/* Check that both stack segments have the same anon_vma? */
1158 	if (prev) {
1159 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
1160 		    vma_is_accessible(prev) &&
1161 		    (address - prev->vm_end < stack_guard_gap))
1162 			return -ENOMEM;
1163 	}
1164 
1165 	if (prev)
1166 		vma_iter_next_range_limit(&vmi, vma->vm_start);
1167 
1168 	vma_iter_config(&vmi, address, vma->vm_end);
1169 	if (vma_iter_prealloc(&vmi, vma))
1170 		return -ENOMEM;
1171 
1172 	/* We must make sure the anon_vma is allocated. */
1173 	if (unlikely(anon_vma_prepare(vma))) {
1174 		vma_iter_free(&vmi);
1175 		return -ENOMEM;
1176 	}
1177 
1178 	/* Lock the VMA before expanding to prevent concurrent page faults */
1179 	vma_start_write(vma);
1180 	/*
1181 	 * vma->vm_start/vm_end cannot change under us because the caller
1182 	 * is required to hold the mmap_lock in read mode.  We need the
1183 	 * anon_vma lock to serialize against concurrent expand_stacks.
1184 	 */
1185 	anon_vma_lock_write(vma->anon_vma);
1186 
1187 	/* Somebody else might have raced and expanded it already */
1188 	if (address < vma->vm_start) {
1189 		unsigned long size, grow;
1190 
1191 		size = vma->vm_end - address;
1192 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1193 
1194 		error = -ENOMEM;
1195 		if (grow <= vma->vm_pgoff) {
1196 			error = acct_stack_growth(vma, size, grow);
1197 			if (!error) {
1198 				/*
1199 				 * We only hold a shared mmap_lock lock here, so
1200 				 * we need to protect against concurrent vma
1201 				 * expansions.  anon_vma_lock_write() doesn't
1202 				 * help here, as we don't guarantee that all
1203 				 * growable vmas in a mm share the same root
1204 				 * anon vma.  So, we reuse mm->page_table_lock
1205 				 * to guard against concurrent vma expansions.
1206 				 */
1207 				spin_lock(&mm->page_table_lock);
1208 				if (vma->vm_flags & VM_LOCKED)
1209 					mm->locked_vm += grow;
1210 				vm_stat_account(mm, vma->vm_flags, grow);
1211 				anon_vma_interval_tree_pre_update_vma(vma);
1212 				vma->vm_start = address;
1213 				vma->vm_pgoff -= grow;
1214 				/* Overwrite old entry in mtree. */
1215 				vma_iter_store(&vmi, vma);
1216 				anon_vma_interval_tree_post_update_vma(vma);
1217 				spin_unlock(&mm->page_table_lock);
1218 
1219 				perf_event_mmap(vma);
1220 			}
1221 		}
1222 	}
1223 	anon_vma_unlock_write(vma->anon_vma);
1224 	vma_iter_free(&vmi);
1225 	validate_mm(mm);
1226 	return error;
1227 }
1228 
1229 /* enforced gap between the expanding stack and other mappings. */
1230 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1231 
1232 static int __init cmdline_parse_stack_guard_gap(char *p)
1233 {
1234 	unsigned long val;
1235 	char *endptr;
1236 
1237 	val = simple_strtoul(p, &endptr, 10);
1238 	if (!*endptr)
1239 		stack_guard_gap = val << PAGE_SHIFT;
1240 
1241 	return 1;
1242 }
1243 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1244 
1245 #ifdef CONFIG_STACK_GROWSUP
1246 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1247 {
1248 	return expand_upwards(vma, address);
1249 }
1250 
1251 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1252 {
1253 	struct vm_area_struct *vma, *prev;
1254 
1255 	addr &= PAGE_MASK;
1256 	vma = find_vma_prev(mm, addr, &prev);
1257 	if (vma && (vma->vm_start <= addr))
1258 		return vma;
1259 	if (!prev)
1260 		return NULL;
1261 	if (expand_stack_locked(prev, addr))
1262 		return NULL;
1263 	if (prev->vm_flags & VM_LOCKED)
1264 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1265 	return prev;
1266 }
1267 #else
1268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1269 {
1270 	return expand_downwards(vma, address);
1271 }
1272 
1273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1274 {
1275 	struct vm_area_struct *vma;
1276 	unsigned long start;
1277 
1278 	addr &= PAGE_MASK;
1279 	vma = find_vma(mm, addr);
1280 	if (!vma)
1281 		return NULL;
1282 	if (vma->vm_start <= addr)
1283 		return vma;
1284 	start = vma->vm_start;
1285 	if (expand_stack_locked(vma, addr))
1286 		return NULL;
1287 	if (vma->vm_flags & VM_LOCKED)
1288 		populate_vma_page_range(vma, addr, start, NULL);
1289 	return vma;
1290 }
1291 #endif
1292 
1293 #if defined(CONFIG_STACK_GROWSUP)
1294 
1295 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1296 #define vma_expand_down(vma, addr) (-EFAULT)
1297 
1298 #else
1299 
1300 #define vma_expand_up(vma,addr) (-EFAULT)
1301 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1302 
1303 #endif
1304 
1305 /*
1306  * expand_stack(): legacy interface for page faulting. Don't use unless
1307  * you have to.
1308  *
1309  * This is called with the mm locked for reading, drops the lock, takes
1310  * the lock for writing, tries to look up a vma again, expands it if
1311  * necessary, and downgrades the lock to reading again.
1312  *
1313  * If no vma is found or it can't be expanded, it returns NULL and has
1314  * dropped the lock.
1315  */
1316 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1317 {
1318 	struct vm_area_struct *vma, *prev;
1319 
1320 	mmap_read_unlock(mm);
1321 	if (mmap_write_lock_killable(mm))
1322 		return NULL;
1323 
1324 	vma = find_vma_prev(mm, addr, &prev);
1325 	if (vma && vma->vm_start <= addr)
1326 		goto success;
1327 
1328 	if (prev && !vma_expand_up(prev, addr)) {
1329 		vma = prev;
1330 		goto success;
1331 	}
1332 
1333 	if (vma && !vma_expand_down(vma, addr))
1334 		goto success;
1335 
1336 	mmap_write_unlock(mm);
1337 	return NULL;
1338 
1339 success:
1340 	mmap_write_downgrade(mm);
1341 	return vma;
1342 }
1343 
1344 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1345  * @mm: The mm_struct
1346  * @start: The start address to munmap
1347  * @len: The length to be munmapped.
1348  * @uf: The userfaultfd list_head
1349  *
1350  * Return: 0 on success, error otherwise.
1351  */
1352 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1353 	      struct list_head *uf)
1354 {
1355 	VMA_ITERATOR(vmi, mm, start);
1356 
1357 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1358 }
1359 
1360 unsigned long mmap_region(struct file *file, unsigned long addr,
1361 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1362 		struct list_head *uf)
1363 {
1364 	struct mm_struct *mm = current->mm;
1365 	struct vm_area_struct *vma = NULL;
1366 	pgoff_t pglen = PHYS_PFN(len);
1367 	struct vm_area_struct *merge;
1368 	unsigned long charged = 0;
1369 	struct vma_munmap_struct vms;
1370 	struct ma_state mas_detach;
1371 	struct maple_tree mt_detach;
1372 	unsigned long end = addr + len;
1373 	bool writable_file_mapping = false;
1374 	int error;
1375 	VMA_ITERATOR(vmi, mm, addr);
1376 	VMG_STATE(vmg, mm, &vmi, addr, end, vm_flags, pgoff);
1377 
1378 	vmg.file = file;
1379 	/* Find the first overlapping VMA */
1380 	vma = vma_find(&vmi, end);
1381 	init_vma_munmap(&vms, &vmi, vma, addr, end, uf, /* unlock = */ false);
1382 	if (vma) {
1383 		mt_init_flags(&mt_detach, vmi.mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1384 		mt_on_stack(mt_detach);
1385 		mas_init(&mas_detach, &mt_detach, /* addr = */ 0);
1386 		/* Prepare to unmap any existing mapping in the area */
1387 		error = vms_gather_munmap_vmas(&vms, &mas_detach);
1388 		if (error)
1389 			goto gather_failed;
1390 
1391 		vmg.next = vms.next;
1392 		vmg.prev = vms.prev;
1393 		vma = NULL;
1394 	} else {
1395 		vmg.next = vma_iter_next_rewind(&vmi, &vmg.prev);
1396 	}
1397 
1398 	/* Check against address space limit. */
1399 	if (!may_expand_vm(mm, vm_flags, pglen - vms.nr_pages)) {
1400 		error = -ENOMEM;
1401 		goto abort_munmap;
1402 	}
1403 
1404 	/*
1405 	 * Private writable mapping: check memory availability
1406 	 */
1407 	if (accountable_mapping(file, vm_flags)) {
1408 		charged = pglen;
1409 		charged -= vms.nr_accounted;
1410 		if (charged) {
1411 			error = security_vm_enough_memory_mm(mm, charged);
1412 			if (error)
1413 				goto abort_munmap;
1414 		}
1415 
1416 		vms.nr_accounted = 0;
1417 		vm_flags |= VM_ACCOUNT;
1418 		vmg.flags = vm_flags;
1419 	}
1420 
1421 	/*
1422 	 * clear PTEs while the vma is still in the tree so that rmap
1423 	 * cannot race with the freeing later in the truncate scenario.
1424 	 * This is also needed for call_mmap(), which is why vm_ops
1425 	 * close function is called.
1426 	 */
1427 	vms_clean_up_area(&vms, &mas_detach);
1428 	vma = vma_merge_new_range(&vmg);
1429 	if (vma)
1430 		goto expanded;
1431 	/*
1432 	 * Determine the object being mapped and call the appropriate
1433 	 * specific mapper. the address has already been validated, but
1434 	 * not unmapped, but the maps are removed from the list.
1435 	 */
1436 	vma = vm_area_alloc(mm);
1437 	if (!vma) {
1438 		error = -ENOMEM;
1439 		goto unacct_error;
1440 	}
1441 
1442 	vma_iter_config(&vmi, addr, end);
1443 	vma_set_range(vma, addr, end, pgoff);
1444 	vm_flags_init(vma, vm_flags);
1445 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1446 
1447 	if (file) {
1448 		vma->vm_file = get_file(file);
1449 		error = call_mmap(file, vma);
1450 		if (error)
1451 			goto unmap_and_free_vma;
1452 
1453 		if (vma_is_shared_maywrite(vma)) {
1454 			error = mapping_map_writable(file->f_mapping);
1455 			if (error)
1456 				goto close_and_free_vma;
1457 
1458 			writable_file_mapping = true;
1459 		}
1460 
1461 		/*
1462 		 * Expansion is handled above, merging is handled below.
1463 		 * Drivers should not alter the address of the VMA.
1464 		 */
1465 		if (WARN_ON((addr != vma->vm_start))) {
1466 			error = -EINVAL;
1467 			goto close_and_free_vma;
1468 		}
1469 
1470 		vma_iter_config(&vmi, addr, end);
1471 		/*
1472 		 * If vm_flags changed after call_mmap(), we should try merge
1473 		 * vma again as we may succeed this time.
1474 		 */
1475 		if (unlikely(vm_flags != vma->vm_flags && vmg.prev)) {
1476 			vmg.flags = vma->vm_flags;
1477 			/* If this fails, state is reset ready for a reattempt. */
1478 			merge = vma_merge_new_range(&vmg);
1479 
1480 			if (merge) {
1481 				/*
1482 				 * ->mmap() can change vma->vm_file and fput
1483 				 * the original file. So fput the vma->vm_file
1484 				 * here or we would add an extra fput for file
1485 				 * and cause general protection fault
1486 				 * ultimately.
1487 				 */
1488 				fput(vma->vm_file);
1489 				vm_area_free(vma);
1490 				vma = merge;
1491 				/* Update vm_flags to pick up the change. */
1492 				vm_flags = vma->vm_flags;
1493 				goto unmap_writable;
1494 			}
1495 			vma_iter_config(&vmi, addr, end);
1496 		}
1497 
1498 		vm_flags = vma->vm_flags;
1499 	} else if (vm_flags & VM_SHARED) {
1500 		error = shmem_zero_setup(vma);
1501 		if (error)
1502 			goto free_vma;
1503 	} else {
1504 		vma_set_anonymous(vma);
1505 	}
1506 
1507 	if (map_deny_write_exec(vma, vma->vm_flags)) {
1508 		error = -EACCES;
1509 		goto close_and_free_vma;
1510 	}
1511 
1512 	/* Allow architectures to sanity-check the vm_flags */
1513 	if (!arch_validate_flags(vma->vm_flags)) {
1514 		error = -EINVAL;
1515 		goto close_and_free_vma;
1516 	}
1517 
1518 	if (vma_iter_prealloc(&vmi, vma)) {
1519 		error = -ENOMEM;
1520 		goto close_and_free_vma;
1521 	}
1522 
1523 	/* Lock the VMA since it is modified after insertion into VMA tree */
1524 	vma_start_write(vma);
1525 	vma_iter_store(&vmi, vma);
1526 	mm->map_count++;
1527 	vma_link_file(vma);
1528 
1529 	/*
1530 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
1531 	 * call covers the non-merge case.
1532 	 */
1533 	khugepaged_enter_vma(vma, vma->vm_flags);
1534 
1535 	/* Once vma denies write, undo our temporary denial count */
1536 unmap_writable:
1537 	if (writable_file_mapping)
1538 		mapping_unmap_writable(file->f_mapping);
1539 	file = vma->vm_file;
1540 	ksm_add_vma(vma);
1541 expanded:
1542 	perf_event_mmap(vma);
1543 
1544 	/* Unmap any existing mapping in the area */
1545 	vms_complete_munmap_vmas(&vms, &mas_detach);
1546 
1547 	vm_stat_account(mm, vm_flags, pglen);
1548 	if (vm_flags & VM_LOCKED) {
1549 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1550 					is_vm_hugetlb_page(vma) ||
1551 					vma == get_gate_vma(current->mm))
1552 			vm_flags_clear(vma, VM_LOCKED_MASK);
1553 		else
1554 			mm->locked_vm += pglen;
1555 	}
1556 
1557 	if (file)
1558 		uprobe_mmap(vma);
1559 
1560 	/*
1561 	 * New (or expanded) vma always get soft dirty status.
1562 	 * Otherwise user-space soft-dirty page tracker won't
1563 	 * be able to distinguish situation when vma area unmapped,
1564 	 * then new mapped in-place (which must be aimed as
1565 	 * a completely new data area).
1566 	 */
1567 	vm_flags_set(vma, VM_SOFTDIRTY);
1568 
1569 	vma_set_page_prot(vma);
1570 
1571 	validate_mm(mm);
1572 	return addr;
1573 
1574 close_and_free_vma:
1575 	if (file && !vms.closed_vm_ops && vma->vm_ops && vma->vm_ops->close)
1576 		vma->vm_ops->close(vma);
1577 
1578 	if (file || vma->vm_file) {
1579 unmap_and_free_vma:
1580 		fput(vma->vm_file);
1581 		vma->vm_file = NULL;
1582 
1583 		vma_iter_set(&vmi, vma->vm_end);
1584 		/* Undo any partial mapping done by a device driver. */
1585 		unmap_region(&vmi.mas, vma, vmg.prev, vmg.next);
1586 	}
1587 	if (writable_file_mapping)
1588 		mapping_unmap_writable(file->f_mapping);
1589 free_vma:
1590 	vm_area_free(vma);
1591 unacct_error:
1592 	if (charged)
1593 		vm_unacct_memory(charged);
1594 
1595 abort_munmap:
1596 	vms_abort_munmap_vmas(&vms, &mas_detach);
1597 gather_failed:
1598 	validate_mm(mm);
1599 	return error;
1600 }
1601 
1602 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1603 {
1604 	int ret;
1605 	struct mm_struct *mm = current->mm;
1606 	LIST_HEAD(uf);
1607 	VMA_ITERATOR(vmi, mm, start);
1608 
1609 	if (mmap_write_lock_killable(mm))
1610 		return -EINTR;
1611 
1612 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1613 	if (ret || !unlock)
1614 		mmap_write_unlock(mm);
1615 
1616 	userfaultfd_unmap_complete(mm, &uf);
1617 	return ret;
1618 }
1619 
1620 int vm_munmap(unsigned long start, size_t len)
1621 {
1622 	return __vm_munmap(start, len, false);
1623 }
1624 EXPORT_SYMBOL(vm_munmap);
1625 
1626 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1627 {
1628 	addr = untagged_addr(addr);
1629 	return __vm_munmap(addr, len, true);
1630 }
1631 
1632 
1633 /*
1634  * Emulation of deprecated remap_file_pages() syscall.
1635  */
1636 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1637 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1638 {
1639 
1640 	struct mm_struct *mm = current->mm;
1641 	struct vm_area_struct *vma;
1642 	unsigned long populate = 0;
1643 	unsigned long ret = -EINVAL;
1644 	struct file *file;
1645 
1646 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1647 		     current->comm, current->pid);
1648 
1649 	if (prot)
1650 		return ret;
1651 	start = start & PAGE_MASK;
1652 	size = size & PAGE_MASK;
1653 
1654 	if (start + size <= start)
1655 		return ret;
1656 
1657 	/* Does pgoff wrap? */
1658 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1659 		return ret;
1660 
1661 	if (mmap_write_lock_killable(mm))
1662 		return -EINTR;
1663 
1664 	vma = vma_lookup(mm, start);
1665 
1666 	if (!vma || !(vma->vm_flags & VM_SHARED))
1667 		goto out;
1668 
1669 	if (start + size > vma->vm_end) {
1670 		VMA_ITERATOR(vmi, mm, vma->vm_end);
1671 		struct vm_area_struct *next, *prev = vma;
1672 
1673 		for_each_vma_range(vmi, next, start + size) {
1674 			/* hole between vmas ? */
1675 			if (next->vm_start != prev->vm_end)
1676 				goto out;
1677 
1678 			if (next->vm_file != vma->vm_file)
1679 				goto out;
1680 
1681 			if (next->vm_flags != vma->vm_flags)
1682 				goto out;
1683 
1684 			if (start + size <= next->vm_end)
1685 				break;
1686 
1687 			prev = next;
1688 		}
1689 
1690 		if (!next)
1691 			goto out;
1692 	}
1693 
1694 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1695 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1696 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1697 
1698 	flags &= MAP_NONBLOCK;
1699 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1700 	if (vma->vm_flags & VM_LOCKED)
1701 		flags |= MAP_LOCKED;
1702 
1703 	file = get_file(vma->vm_file);
1704 	ret = security_mmap_file(vma->vm_file, prot, flags);
1705 	if (ret)
1706 		goto out_fput;
1707 	ret = do_mmap(vma->vm_file, start, size,
1708 			prot, flags, 0, pgoff, &populate, NULL);
1709 out_fput:
1710 	fput(file);
1711 out:
1712 	mmap_write_unlock(mm);
1713 	if (populate)
1714 		mm_populate(ret, populate);
1715 	if (!IS_ERR_VALUE(ret))
1716 		ret = 0;
1717 	return ret;
1718 }
1719 
1720 /*
1721  * do_brk_flags() - Increase the brk vma if the flags match.
1722  * @vmi: The vma iterator
1723  * @addr: The start address
1724  * @len: The length of the increase
1725  * @vma: The vma,
1726  * @flags: The VMA Flags
1727  *
1728  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1729  * do not match then create a new anonymous VMA.  Eventually we may be able to
1730  * do some brk-specific accounting here.
1731  */
1732 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1733 		unsigned long addr, unsigned long len, unsigned long flags)
1734 {
1735 	struct mm_struct *mm = current->mm;
1736 
1737 	/*
1738 	 * Check against address space limits by the changed size
1739 	 * Note: This happens *after* clearing old mappings in some code paths.
1740 	 */
1741 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1742 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1743 		return -ENOMEM;
1744 
1745 	if (mm->map_count > sysctl_max_map_count)
1746 		return -ENOMEM;
1747 
1748 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1749 		return -ENOMEM;
1750 
1751 	/*
1752 	 * Expand the existing vma if possible; Note that singular lists do not
1753 	 * occur after forking, so the expand will only happen on new VMAs.
1754 	 */
1755 	if (vma && vma->vm_end == addr) {
1756 		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1757 
1758 		vmg.prev = vma;
1759 		vma_iter_next_range(vmi);
1760 
1761 		if (vma_merge_new_range(&vmg))
1762 			goto out;
1763 		else if (vmg_nomem(&vmg))
1764 			goto unacct_fail;
1765 	}
1766 
1767 	if (vma)
1768 		vma_iter_next_range(vmi);
1769 	/* create a vma struct for an anonymous mapping */
1770 	vma = vm_area_alloc(mm);
1771 	if (!vma)
1772 		goto unacct_fail;
1773 
1774 	vma_set_anonymous(vma);
1775 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1776 	vm_flags_init(vma, flags);
1777 	vma->vm_page_prot = vm_get_page_prot(flags);
1778 	vma_start_write(vma);
1779 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1780 		goto mas_store_fail;
1781 
1782 	mm->map_count++;
1783 	validate_mm(mm);
1784 	ksm_add_vma(vma);
1785 out:
1786 	perf_event_mmap(vma);
1787 	mm->total_vm += len >> PAGE_SHIFT;
1788 	mm->data_vm += len >> PAGE_SHIFT;
1789 	if (flags & VM_LOCKED)
1790 		mm->locked_vm += (len >> PAGE_SHIFT);
1791 	vm_flags_set(vma, VM_SOFTDIRTY);
1792 	return 0;
1793 
1794 mas_store_fail:
1795 	vm_area_free(vma);
1796 unacct_fail:
1797 	vm_unacct_memory(len >> PAGE_SHIFT);
1798 	return -ENOMEM;
1799 }
1800 
1801 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1802 {
1803 	struct mm_struct *mm = current->mm;
1804 	struct vm_area_struct *vma = NULL;
1805 	unsigned long len;
1806 	int ret;
1807 	bool populate;
1808 	LIST_HEAD(uf);
1809 	VMA_ITERATOR(vmi, mm, addr);
1810 
1811 	len = PAGE_ALIGN(request);
1812 	if (len < request)
1813 		return -ENOMEM;
1814 	if (!len)
1815 		return 0;
1816 
1817 	/* Until we need other flags, refuse anything except VM_EXEC. */
1818 	if ((flags & (~VM_EXEC)) != 0)
1819 		return -EINVAL;
1820 
1821 	if (mmap_write_lock_killable(mm))
1822 		return -EINTR;
1823 
1824 	ret = check_brk_limits(addr, len);
1825 	if (ret)
1826 		goto limits_failed;
1827 
1828 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1829 	if (ret)
1830 		goto munmap_failed;
1831 
1832 	vma = vma_prev(&vmi);
1833 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
1834 	populate = ((mm->def_flags & VM_LOCKED) != 0);
1835 	mmap_write_unlock(mm);
1836 	userfaultfd_unmap_complete(mm, &uf);
1837 	if (populate && !ret)
1838 		mm_populate(addr, len);
1839 	return ret;
1840 
1841 munmap_failed:
1842 limits_failed:
1843 	mmap_write_unlock(mm);
1844 	return ret;
1845 }
1846 EXPORT_SYMBOL(vm_brk_flags);
1847 
1848 /* Release all mmaps. */
1849 void exit_mmap(struct mm_struct *mm)
1850 {
1851 	struct mmu_gather tlb;
1852 	struct vm_area_struct *vma;
1853 	unsigned long nr_accounted = 0;
1854 	VMA_ITERATOR(vmi, mm, 0);
1855 	int count = 0;
1856 
1857 	/* mm's last user has gone, and its about to be pulled down */
1858 	mmu_notifier_release(mm);
1859 
1860 	mmap_read_lock(mm);
1861 	arch_exit_mmap(mm);
1862 
1863 	vma = vma_next(&vmi);
1864 	if (!vma || unlikely(xa_is_zero(vma))) {
1865 		/* Can happen if dup_mmap() received an OOM */
1866 		mmap_read_unlock(mm);
1867 		mmap_write_lock(mm);
1868 		goto destroy;
1869 	}
1870 
1871 	lru_add_drain();
1872 	flush_cache_mm(mm);
1873 	tlb_gather_mmu_fullmm(&tlb, mm);
1874 	/* update_hiwater_rss(mm) here? but nobody should be looking */
1875 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1876 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1877 	mmap_read_unlock(mm);
1878 
1879 	/*
1880 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1881 	 * because the memory has been already freed.
1882 	 */
1883 	set_bit(MMF_OOM_SKIP, &mm->flags);
1884 	mmap_write_lock(mm);
1885 	mt_clear_in_rcu(&mm->mm_mt);
1886 	vma_iter_set(&vmi, vma->vm_end);
1887 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1888 		      USER_PGTABLES_CEILING, true);
1889 	tlb_finish_mmu(&tlb);
1890 
1891 	/*
1892 	 * Walk the list again, actually closing and freeing it, with preemption
1893 	 * enabled, without holding any MM locks besides the unreachable
1894 	 * mmap_write_lock.
1895 	 */
1896 	vma_iter_set(&vmi, vma->vm_end);
1897 	do {
1898 		if (vma->vm_flags & VM_ACCOUNT)
1899 			nr_accounted += vma_pages(vma);
1900 		remove_vma(vma, /* unreachable = */ true, /* closed = */ false);
1901 		count++;
1902 		cond_resched();
1903 		vma = vma_next(&vmi);
1904 	} while (vma && likely(!xa_is_zero(vma)));
1905 
1906 	BUG_ON(count != mm->map_count);
1907 
1908 	trace_exit_mmap(mm);
1909 destroy:
1910 	__mt_destroy(&mm->mm_mt);
1911 	mmap_write_unlock(mm);
1912 	vm_unacct_memory(nr_accounted);
1913 }
1914 
1915 /* Insert vm structure into process list sorted by address
1916  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1917  * then i_mmap_rwsem is taken here.
1918  */
1919 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1920 {
1921 	unsigned long charged = vma_pages(vma);
1922 
1923 
1924 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1925 		return -ENOMEM;
1926 
1927 	if ((vma->vm_flags & VM_ACCOUNT) &&
1928 	     security_vm_enough_memory_mm(mm, charged))
1929 		return -ENOMEM;
1930 
1931 	/*
1932 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1933 	 * until its first write fault, when page's anon_vma and index
1934 	 * are set.  But now set the vm_pgoff it will almost certainly
1935 	 * end up with (unless mremap moves it elsewhere before that
1936 	 * first wfault), so /proc/pid/maps tells a consistent story.
1937 	 *
1938 	 * By setting it to reflect the virtual start address of the
1939 	 * vma, merges and splits can happen in a seamless way, just
1940 	 * using the existing file pgoff checks and manipulations.
1941 	 * Similarly in do_mmap and in do_brk_flags.
1942 	 */
1943 	if (vma_is_anonymous(vma)) {
1944 		BUG_ON(vma->anon_vma);
1945 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1946 	}
1947 
1948 	if (vma_link(mm, vma)) {
1949 		if (vma->vm_flags & VM_ACCOUNT)
1950 			vm_unacct_memory(charged);
1951 		return -ENOMEM;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 /*
1958  * Return true if the calling process may expand its vm space by the passed
1959  * number of pages
1960  */
1961 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1962 {
1963 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1964 		return false;
1965 
1966 	if (is_data_mapping(flags) &&
1967 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1968 		/* Workaround for Valgrind */
1969 		if (rlimit(RLIMIT_DATA) == 0 &&
1970 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1971 			return true;
1972 
1973 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1974 			     current->comm, current->pid,
1975 			     (mm->data_vm + npages) << PAGE_SHIFT,
1976 			     rlimit(RLIMIT_DATA),
1977 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1978 
1979 		if (!ignore_rlimit_data)
1980 			return false;
1981 	}
1982 
1983 	return true;
1984 }
1985 
1986 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1987 {
1988 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1989 
1990 	if (is_exec_mapping(flags))
1991 		mm->exec_vm += npages;
1992 	else if (is_stack_mapping(flags))
1993 		mm->stack_vm += npages;
1994 	else if (is_data_mapping(flags))
1995 		mm->data_vm += npages;
1996 }
1997 
1998 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1999 
2000 /*
2001  * Close hook, called for unmap() and on the old vma for mremap().
2002  *
2003  * Having a close hook prevents vma merging regardless of flags.
2004  */
2005 static void special_mapping_close(struct vm_area_struct *vma)
2006 {
2007 	const struct vm_special_mapping *sm = vma->vm_private_data;
2008 
2009 	if (sm->close)
2010 		sm->close(sm, vma);
2011 }
2012 
2013 static const char *special_mapping_name(struct vm_area_struct *vma)
2014 {
2015 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2016 }
2017 
2018 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2019 {
2020 	struct vm_special_mapping *sm = new_vma->vm_private_data;
2021 
2022 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
2023 		return -EFAULT;
2024 
2025 	if (sm->mremap)
2026 		return sm->mremap(sm, new_vma);
2027 
2028 	return 0;
2029 }
2030 
2031 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
2032 {
2033 	/*
2034 	 * Forbid splitting special mappings - kernel has expectations over
2035 	 * the number of pages in mapping. Together with VM_DONTEXPAND
2036 	 * the size of vma should stay the same over the special mapping's
2037 	 * lifetime.
2038 	 */
2039 	return -EINVAL;
2040 }
2041 
2042 static const struct vm_operations_struct special_mapping_vmops = {
2043 	.close = special_mapping_close,
2044 	.fault = special_mapping_fault,
2045 	.mremap = special_mapping_mremap,
2046 	.name = special_mapping_name,
2047 	/* vDSO code relies that VVAR can't be accessed remotely */
2048 	.access = NULL,
2049 	.may_split = special_mapping_split,
2050 };
2051 
2052 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
2053 {
2054 	struct vm_area_struct *vma = vmf->vma;
2055 	pgoff_t pgoff;
2056 	struct page **pages;
2057 	struct vm_special_mapping *sm = vma->vm_private_data;
2058 
2059 	if (sm->fault)
2060 		return sm->fault(sm, vmf->vma, vmf);
2061 
2062 	pages = sm->pages;
2063 
2064 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2065 		pgoff--;
2066 
2067 	if (*pages) {
2068 		struct page *page = *pages;
2069 		get_page(page);
2070 		vmf->page = page;
2071 		return 0;
2072 	}
2073 
2074 	return VM_FAULT_SIGBUS;
2075 }
2076 
2077 static struct vm_area_struct *__install_special_mapping(
2078 	struct mm_struct *mm,
2079 	unsigned long addr, unsigned long len,
2080 	unsigned long vm_flags, void *priv,
2081 	const struct vm_operations_struct *ops)
2082 {
2083 	int ret;
2084 	struct vm_area_struct *vma;
2085 
2086 	vma = vm_area_alloc(mm);
2087 	if (unlikely(vma == NULL))
2088 		return ERR_PTR(-ENOMEM);
2089 
2090 	vma_set_range(vma, addr, addr + len, 0);
2091 	vm_flags_init(vma, (vm_flags | mm->def_flags |
2092 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
2093 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2094 
2095 	vma->vm_ops = ops;
2096 	vma->vm_private_data = priv;
2097 
2098 	ret = insert_vm_struct(mm, vma);
2099 	if (ret)
2100 		goto out;
2101 
2102 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
2103 
2104 	perf_event_mmap(vma);
2105 
2106 	return vma;
2107 
2108 out:
2109 	vm_area_free(vma);
2110 	return ERR_PTR(ret);
2111 }
2112 
2113 bool vma_is_special_mapping(const struct vm_area_struct *vma,
2114 	const struct vm_special_mapping *sm)
2115 {
2116 	return vma->vm_private_data == sm &&
2117 		vma->vm_ops == &special_mapping_vmops;
2118 }
2119 
2120 /*
2121  * Called with mm->mmap_lock held for writing.
2122  * Insert a new vma covering the given region, with the given flags.
2123  * Its pages are supplied by the given array of struct page *.
2124  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2125  * The region past the last page supplied will always produce SIGBUS.
2126  * The array pointer and the pages it points to are assumed to stay alive
2127  * for as long as this mapping might exist.
2128  */
2129 struct vm_area_struct *_install_special_mapping(
2130 	struct mm_struct *mm,
2131 	unsigned long addr, unsigned long len,
2132 	unsigned long vm_flags, const struct vm_special_mapping *spec)
2133 {
2134 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
2135 					&special_mapping_vmops);
2136 }
2137 
2138 /*
2139  * initialise the percpu counter for VM
2140  */
2141 void __init mmap_init(void)
2142 {
2143 	int ret;
2144 
2145 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
2146 	VM_BUG_ON(ret);
2147 }
2148 
2149 /*
2150  * Initialise sysctl_user_reserve_kbytes.
2151  *
2152  * This is intended to prevent a user from starting a single memory hogging
2153  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2154  * mode.
2155  *
2156  * The default value is min(3% of free memory, 128MB)
2157  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2158  */
2159 static int init_user_reserve(void)
2160 {
2161 	unsigned long free_kbytes;
2162 
2163 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2164 
2165 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
2166 	return 0;
2167 }
2168 subsys_initcall(init_user_reserve);
2169 
2170 /*
2171  * Initialise sysctl_admin_reserve_kbytes.
2172  *
2173  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2174  * to log in and kill a memory hogging process.
2175  *
2176  * Systems with more than 256MB will reserve 8MB, enough to recover
2177  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2178  * only reserve 3% of free pages by default.
2179  */
2180 static int init_admin_reserve(void)
2181 {
2182 	unsigned long free_kbytes;
2183 
2184 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2185 
2186 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
2187 	return 0;
2188 }
2189 subsys_initcall(init_admin_reserve);
2190 
2191 /*
2192  * Reinititalise user and admin reserves if memory is added or removed.
2193  *
2194  * The default user reserve max is 128MB, and the default max for the
2195  * admin reserve is 8MB. These are usually, but not always, enough to
2196  * enable recovery from a memory hogging process using login/sshd, a shell,
2197  * and tools like top. It may make sense to increase or even disable the
2198  * reserve depending on the existence of swap or variations in the recovery
2199  * tools. So, the admin may have changed them.
2200  *
2201  * If memory is added and the reserves have been eliminated or increased above
2202  * the default max, then we'll trust the admin.
2203  *
2204  * If memory is removed and there isn't enough free memory, then we
2205  * need to reset the reserves.
2206  *
2207  * Otherwise keep the reserve set by the admin.
2208  */
2209 static int reserve_mem_notifier(struct notifier_block *nb,
2210 			     unsigned long action, void *data)
2211 {
2212 	unsigned long tmp, free_kbytes;
2213 
2214 	switch (action) {
2215 	case MEM_ONLINE:
2216 		/* Default max is 128MB. Leave alone if modified by operator. */
2217 		tmp = sysctl_user_reserve_kbytes;
2218 		if (tmp > 0 && tmp < SZ_128K)
2219 			init_user_reserve();
2220 
2221 		/* Default max is 8MB.  Leave alone if modified by operator. */
2222 		tmp = sysctl_admin_reserve_kbytes;
2223 		if (tmp > 0 && tmp < SZ_8K)
2224 			init_admin_reserve();
2225 
2226 		break;
2227 	case MEM_OFFLINE:
2228 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2229 
2230 		if (sysctl_user_reserve_kbytes > free_kbytes) {
2231 			init_user_reserve();
2232 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
2233 				sysctl_user_reserve_kbytes);
2234 		}
2235 
2236 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
2237 			init_admin_reserve();
2238 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2239 				sysctl_admin_reserve_kbytes);
2240 		}
2241 		break;
2242 	default:
2243 		break;
2244 	}
2245 	return NOTIFY_OK;
2246 }
2247 
2248 static int __meminit init_reserve_notifier(void)
2249 {
2250 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2251 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2252 
2253 	return 0;
2254 }
2255 subsys_initcall(init_reserve_notifier);
2256 
2257 /*
2258  * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2259  * this VMA and its relocated range, which will now reside at [vma->vm_start -
2260  * shift, vma->vm_end - shift).
2261  *
2262  * This function is almost certainly NOT what you want for anything other than
2263  * early executable temporary stack relocation.
2264  */
2265 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2266 {
2267 	/*
2268 	 * The process proceeds as follows:
2269 	 *
2270 	 * 1) Use shift to calculate the new vma endpoints.
2271 	 * 2) Extend vma to cover both the old and new ranges.  This ensures the
2272 	 *    arguments passed to subsequent functions are consistent.
2273 	 * 3) Move vma's page tables to the new range.
2274 	 * 4) Free up any cleared pgd range.
2275 	 * 5) Shrink the vma to cover only the new range.
2276 	 */
2277 
2278 	struct mm_struct *mm = vma->vm_mm;
2279 	unsigned long old_start = vma->vm_start;
2280 	unsigned long old_end = vma->vm_end;
2281 	unsigned long length = old_end - old_start;
2282 	unsigned long new_start = old_start - shift;
2283 	unsigned long new_end = old_end - shift;
2284 	VMA_ITERATOR(vmi, mm, new_start);
2285 	VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2286 	struct vm_area_struct *next;
2287 	struct mmu_gather tlb;
2288 
2289 	BUG_ON(new_start > new_end);
2290 
2291 	/*
2292 	 * ensure there are no vmas between where we want to go
2293 	 * and where we are
2294 	 */
2295 	if (vma != vma_next(&vmi))
2296 		return -EFAULT;
2297 
2298 	vma_iter_prev_range(&vmi);
2299 	/*
2300 	 * cover the whole range: [new_start, old_end)
2301 	 */
2302 	vmg.vma = vma;
2303 	if (vma_expand(&vmg))
2304 		return -ENOMEM;
2305 
2306 	/*
2307 	 * move the page tables downwards, on failure we rely on
2308 	 * process cleanup to remove whatever mess we made.
2309 	 */
2310 	if (length != move_page_tables(vma, old_start,
2311 				       vma, new_start, length, false, true))
2312 		return -ENOMEM;
2313 
2314 	lru_add_drain();
2315 	tlb_gather_mmu(&tlb, mm);
2316 	next = vma_next(&vmi);
2317 	if (new_end > old_start) {
2318 		/*
2319 		 * when the old and new regions overlap clear from new_end.
2320 		 */
2321 		free_pgd_range(&tlb, new_end, old_end, new_end,
2322 			next ? next->vm_start : USER_PGTABLES_CEILING);
2323 	} else {
2324 		/*
2325 		 * otherwise, clean from old_start; this is done to not touch
2326 		 * the address space in [new_end, old_start) some architectures
2327 		 * have constraints on va-space that make this illegal (IA64) -
2328 		 * for the others its just a little faster.
2329 		 */
2330 		free_pgd_range(&tlb, old_start, old_end, new_end,
2331 			next ? next->vm_start : USER_PGTABLES_CEILING);
2332 	}
2333 	tlb_finish_mmu(&tlb);
2334 
2335 	vma_prev(&vmi);
2336 	/* Shrink the vma to just the new range */
2337 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2338 }
2339