1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 #include <linux/uprobes.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlb.h> 38 #include <asm/mmu_context.h> 39 40 #include "internal.h" 41 42 #ifndef arch_mmap_check 43 #define arch_mmap_check(addr, len, flags) (0) 44 #endif 45 46 #ifndef arch_rebalance_pgtables 47 #define arch_rebalance_pgtables(addr, len) (addr) 48 #endif 49 50 static void unmap_region(struct mm_struct *mm, 51 struct vm_area_struct *vma, struct vm_area_struct *prev, 52 unsigned long start, unsigned long end); 53 54 /* 55 * WARNING: the debugging will use recursive algorithms so never enable this 56 * unless you know what you are doing. 57 */ 58 #undef DEBUG_MM_RB 59 60 /* description of effects of mapping type and prot in current implementation. 61 * this is due to the limited x86 page protection hardware. The expected 62 * behavior is in parens: 63 * 64 * map_type prot 65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 67 * w: (no) no w: (no) no w: (yes) yes w: (no) no 68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 69 * 70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (copy) copy w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 */ 75 pgprot_t protection_map[16] = { 76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 78 }; 79 80 pgprot_t vm_get_page_prot(unsigned long vm_flags) 81 { 82 return __pgprot(pgprot_val(protection_map[vm_flags & 83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 84 pgprot_val(arch_vm_get_page_prot(vm_flags))); 85 } 86 EXPORT_SYMBOL(vm_get_page_prot); 87 88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 91 /* 92 * Make sure vm_committed_as in one cacheline and not cacheline shared with 93 * other variables. It can be updated by several CPUs frequently. 94 */ 95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 96 97 /* 98 * Check that a process has enough memory to allocate a new virtual 99 * mapping. 0 means there is enough memory for the allocation to 100 * succeed and -ENOMEM implies there is not. 101 * 102 * We currently support three overcommit policies, which are set via the 103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 104 * 105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 106 * Additional code 2002 Jul 20 by Robert Love. 107 * 108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 109 * 110 * Note this is a helper function intended to be used by LSMs which 111 * wish to use this logic. 112 */ 113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 114 { 115 unsigned long free, allowed; 116 117 vm_acct_memory(pages); 118 119 /* 120 * Sometimes we want to use more memory than we have 121 */ 122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 123 return 0; 124 125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 126 free = global_page_state(NR_FREE_PAGES); 127 free += global_page_state(NR_FILE_PAGES); 128 129 /* 130 * shmem pages shouldn't be counted as free in this 131 * case, they can't be purged, only swapped out, and 132 * that won't affect the overall amount of available 133 * memory in the system. 134 */ 135 free -= global_page_state(NR_SHMEM); 136 137 free += nr_swap_pages; 138 139 /* 140 * Any slabs which are created with the 141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 142 * which are reclaimable, under pressure. The dentry 143 * cache and most inode caches should fall into this 144 */ 145 free += global_page_state(NR_SLAB_RECLAIMABLE); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (free <= totalreserve_pages) 151 goto error; 152 else 153 free -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 free -= free / 32; 160 161 if (free > pages) 162 return 0; 163 164 goto error; 165 } 166 167 allowed = (totalram_pages - hugetlb_total_pages()) 168 * sysctl_overcommit_ratio / 100; 169 /* 170 * Leave the last 3% for root 171 */ 172 if (!cap_sys_admin) 173 allowed -= allowed / 32; 174 allowed += total_swap_pages; 175 176 /* Don't let a single process grow too big: 177 leave 3% of the size of this process for other processes */ 178 if (mm) 179 allowed -= mm->total_vm / 32; 180 181 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 182 return 0; 183 error: 184 vm_unacct_memory(pages); 185 186 return -ENOMEM; 187 } 188 189 /* 190 * Requires inode->i_mapping->i_mmap_mutex 191 */ 192 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 193 struct file *file, struct address_space *mapping) 194 { 195 if (vma->vm_flags & VM_DENYWRITE) 196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 197 if (vma->vm_flags & VM_SHARED) 198 mapping->i_mmap_writable--; 199 200 flush_dcache_mmap_lock(mapping); 201 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 202 list_del_init(&vma->shared.vm_set.list); 203 else 204 vma_prio_tree_remove(vma, &mapping->i_mmap); 205 flush_dcache_mmap_unlock(mapping); 206 } 207 208 /* 209 * Unlink a file-based vm structure from its prio_tree, to hide 210 * vma from rmap and vmtruncate before freeing its page tables. 211 */ 212 void unlink_file_vma(struct vm_area_struct *vma) 213 { 214 struct file *file = vma->vm_file; 215 216 if (file) { 217 struct address_space *mapping = file->f_mapping; 218 mutex_lock(&mapping->i_mmap_mutex); 219 __remove_shared_vm_struct(vma, file, mapping); 220 mutex_unlock(&mapping->i_mmap_mutex); 221 } 222 } 223 224 /* 225 * Close a vm structure and free it, returning the next. 226 */ 227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 228 { 229 struct vm_area_struct *next = vma->vm_next; 230 231 might_sleep(); 232 if (vma->vm_ops && vma->vm_ops->close) 233 vma->vm_ops->close(vma); 234 if (vma->vm_file) { 235 fput(vma->vm_file); 236 if (vma->vm_flags & VM_EXECUTABLE) 237 removed_exe_file_vma(vma->vm_mm); 238 } 239 mpol_put(vma_policy(vma)); 240 kmem_cache_free(vm_area_cachep, vma); 241 return next; 242 } 243 244 static unsigned long do_brk(unsigned long addr, unsigned long len); 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 /* 257 * CONFIG_COMPAT_BRK can still be overridden by setting 258 * randomize_va_space to 2, which will still cause mm->start_brk 259 * to be arbitrarily shifted 260 */ 261 if (current->brk_randomized) 262 min_brk = mm->start_brk; 263 else 264 min_brk = mm->end_data; 265 #else 266 min_brk = mm->start_brk; 267 #endif 268 if (brk < min_brk) 269 goto out; 270 271 /* 272 * Check against rlimit here. If this check is done later after the test 273 * of oldbrk with newbrk then it can escape the test and let the data 274 * segment grow beyond its set limit the in case where the limit is 275 * not page aligned -Ram Gupta 276 */ 277 rlim = rlimit(RLIMIT_DATA); 278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 279 (mm->end_data - mm->start_data) > rlim) 280 goto out; 281 282 newbrk = PAGE_ALIGN(brk); 283 oldbrk = PAGE_ALIGN(mm->brk); 284 if (oldbrk == newbrk) 285 goto set_brk; 286 287 /* Always allow shrinking brk. */ 288 if (brk <= mm->brk) { 289 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 290 goto set_brk; 291 goto out; 292 } 293 294 /* Check against existing mmap mappings. */ 295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 296 goto out; 297 298 /* Ok, looks good - let it rip. */ 299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 300 goto out; 301 set_brk: 302 mm->brk = brk; 303 out: 304 retval = mm->brk; 305 up_write(&mm->mmap_sem); 306 return retval; 307 } 308 309 #ifdef DEBUG_MM_RB 310 static int browse_rb(struct rb_root *root) 311 { 312 int i = 0, j; 313 struct rb_node *nd, *pn = NULL; 314 unsigned long prev = 0, pend = 0; 315 316 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 317 struct vm_area_struct *vma; 318 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 319 if (vma->vm_start < prev) 320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 321 if (vma->vm_start < pend) 322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 323 if (vma->vm_start > vma->vm_end) 324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 325 i++; 326 pn = nd; 327 prev = vma->vm_start; 328 pend = vma->vm_end; 329 } 330 j = 0; 331 for (nd = pn; nd; nd = rb_prev(nd)) { 332 j++; 333 } 334 if (i != j) 335 printk("backwards %d, forwards %d\n", j, i), i = 0; 336 return i; 337 } 338 339 void validate_mm(struct mm_struct *mm) 340 { 341 int bug = 0; 342 int i = 0; 343 struct vm_area_struct *tmp = mm->mmap; 344 while (tmp) { 345 tmp = tmp->vm_next; 346 i++; 347 } 348 if (i != mm->map_count) 349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 350 i = browse_rb(&mm->mm_rb); 351 if (i != mm->map_count) 352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 353 BUG_ON(bug); 354 } 355 #else 356 #define validate_mm(mm) do { } while (0) 357 #endif 358 359 static struct vm_area_struct * 360 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 361 struct vm_area_struct **pprev, struct rb_node ***rb_link, 362 struct rb_node ** rb_parent) 363 { 364 struct vm_area_struct * vma; 365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 366 367 __rb_link = &mm->mm_rb.rb_node; 368 rb_prev = __rb_parent = NULL; 369 vma = NULL; 370 371 while (*__rb_link) { 372 struct vm_area_struct *vma_tmp; 373 374 __rb_parent = *__rb_link; 375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 376 377 if (vma_tmp->vm_end > addr) { 378 vma = vma_tmp; 379 if (vma_tmp->vm_start <= addr) 380 break; 381 __rb_link = &__rb_parent->rb_left; 382 } else { 383 rb_prev = __rb_parent; 384 __rb_link = &__rb_parent->rb_right; 385 } 386 } 387 388 *pprev = NULL; 389 if (rb_prev) 390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 391 *rb_link = __rb_link; 392 *rb_parent = __rb_parent; 393 return vma; 394 } 395 396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 397 struct rb_node **rb_link, struct rb_node *rb_parent) 398 { 399 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 400 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 401 } 402 403 static void __vma_link_file(struct vm_area_struct *vma) 404 { 405 struct file *file; 406 407 file = vma->vm_file; 408 if (file) { 409 struct address_space *mapping = file->f_mapping; 410 411 if (vma->vm_flags & VM_DENYWRITE) 412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 413 if (vma->vm_flags & VM_SHARED) 414 mapping->i_mmap_writable++; 415 416 flush_dcache_mmap_lock(mapping); 417 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 419 else 420 vma_prio_tree_insert(vma, &mapping->i_mmap); 421 flush_dcache_mmap_unlock(mapping); 422 } 423 } 424 425 static void 426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 427 struct vm_area_struct *prev, struct rb_node **rb_link, 428 struct rb_node *rb_parent) 429 { 430 __vma_link_list(mm, vma, prev, rb_parent); 431 __vma_link_rb(mm, vma, rb_link, rb_parent); 432 } 433 434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 435 struct vm_area_struct *prev, struct rb_node **rb_link, 436 struct rb_node *rb_parent) 437 { 438 struct address_space *mapping = NULL; 439 440 if (vma->vm_file) 441 mapping = vma->vm_file->f_mapping; 442 443 if (mapping) 444 mutex_lock(&mapping->i_mmap_mutex); 445 446 __vma_link(mm, vma, prev, rb_link, rb_parent); 447 __vma_link_file(vma); 448 449 if (mapping) 450 mutex_unlock(&mapping->i_mmap_mutex); 451 452 mm->map_count++; 453 validate_mm(mm); 454 } 455 456 /* 457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 458 * mm's list and rbtree. It has already been inserted into the prio_tree. 459 */ 460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 461 { 462 struct vm_area_struct *__vma, *prev; 463 struct rb_node **rb_link, *rb_parent; 464 465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 466 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 467 __vma_link(mm, vma, prev, rb_link, rb_parent); 468 mm->map_count++; 469 } 470 471 static inline void 472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 473 struct vm_area_struct *prev) 474 { 475 struct vm_area_struct *next = vma->vm_next; 476 477 prev->vm_next = next; 478 if (next) 479 next->vm_prev = prev; 480 rb_erase(&vma->vm_rb, &mm->mm_rb); 481 if (mm->mmap_cache == vma) 482 mm->mmap_cache = prev; 483 } 484 485 /* 486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 487 * is already present in an i_mmap tree without adjusting the tree. 488 * The following helper function should be used when such adjustments 489 * are necessary. The "insert" vma (if any) is to be inserted 490 * before we drop the necessary locks. 491 */ 492 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 493 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 struct vm_area_struct *next = vma->vm_next; 497 struct vm_area_struct *importer = NULL; 498 struct address_space *mapping = NULL; 499 struct prio_tree_root *root = NULL; 500 struct anon_vma *anon_vma = NULL; 501 struct file *file = vma->vm_file; 502 long adjust_next = 0; 503 int remove_next = 0; 504 505 if (next && !insert) { 506 struct vm_area_struct *exporter = NULL; 507 508 if (end >= next->vm_end) { 509 /* 510 * vma expands, overlapping all the next, and 511 * perhaps the one after too (mprotect case 6). 512 */ 513 again: remove_next = 1 + (end > next->vm_end); 514 end = next->vm_end; 515 exporter = next; 516 importer = vma; 517 } else if (end > next->vm_start) { 518 /* 519 * vma expands, overlapping part of the next: 520 * mprotect case 5 shifting the boundary up. 521 */ 522 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 523 exporter = next; 524 importer = vma; 525 } else if (end < vma->vm_end) { 526 /* 527 * vma shrinks, and !insert tells it's not 528 * split_vma inserting another: so it must be 529 * mprotect case 4 shifting the boundary down. 530 */ 531 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 532 exporter = vma; 533 importer = next; 534 } 535 536 /* 537 * Easily overlooked: when mprotect shifts the boundary, 538 * make sure the expanding vma has anon_vma set if the 539 * shrinking vma had, to cover any anon pages imported. 540 */ 541 if (exporter && exporter->anon_vma && !importer->anon_vma) { 542 if (anon_vma_clone(importer, exporter)) 543 return -ENOMEM; 544 importer->anon_vma = exporter->anon_vma; 545 } 546 } 547 548 if (file) { 549 mapping = file->f_mapping; 550 if (!(vma->vm_flags & VM_NONLINEAR)) { 551 root = &mapping->i_mmap; 552 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 553 554 if (adjust_next) 555 uprobe_munmap(next, next->vm_start, 556 next->vm_end); 557 } 558 559 mutex_lock(&mapping->i_mmap_mutex); 560 if (insert) { 561 /* 562 * Put into prio_tree now, so instantiated pages 563 * are visible to arm/parisc __flush_dcache_page 564 * throughout; but we cannot insert into address 565 * space until vma start or end is updated. 566 */ 567 __vma_link_file(insert); 568 } 569 } 570 571 vma_adjust_trans_huge(vma, start, end, adjust_next); 572 573 /* 574 * When changing only vma->vm_end, we don't really need anon_vma 575 * lock. This is a fairly rare case by itself, but the anon_vma 576 * lock may be shared between many sibling processes. Skipping 577 * the lock for brk adjustments makes a difference sometimes. 578 */ 579 if (vma->anon_vma && (importer || start != vma->vm_start)) { 580 anon_vma = vma->anon_vma; 581 anon_vma_lock(anon_vma); 582 } 583 584 if (root) { 585 flush_dcache_mmap_lock(mapping); 586 vma_prio_tree_remove(vma, root); 587 if (adjust_next) 588 vma_prio_tree_remove(next, root); 589 } 590 591 vma->vm_start = start; 592 vma->vm_end = end; 593 vma->vm_pgoff = pgoff; 594 if (adjust_next) { 595 next->vm_start += adjust_next << PAGE_SHIFT; 596 next->vm_pgoff += adjust_next; 597 } 598 599 if (root) { 600 if (adjust_next) 601 vma_prio_tree_insert(next, root); 602 vma_prio_tree_insert(vma, root); 603 flush_dcache_mmap_unlock(mapping); 604 } 605 606 if (remove_next) { 607 /* 608 * vma_merge has merged next into vma, and needs 609 * us to remove next before dropping the locks. 610 */ 611 __vma_unlink(mm, next, vma); 612 if (file) 613 __remove_shared_vm_struct(next, file, mapping); 614 } else if (insert) { 615 /* 616 * split_vma has split insert from vma, and needs 617 * us to insert it before dropping the locks 618 * (it may either follow vma or precede it). 619 */ 620 __insert_vm_struct(mm, insert); 621 } 622 623 if (anon_vma) 624 anon_vma_unlock(anon_vma); 625 if (mapping) 626 mutex_unlock(&mapping->i_mmap_mutex); 627 628 if (root) { 629 uprobe_mmap(vma); 630 631 if (adjust_next) 632 uprobe_mmap(next); 633 } 634 635 if (remove_next) { 636 if (file) { 637 uprobe_munmap(next, next->vm_start, next->vm_end); 638 fput(file); 639 if (next->vm_flags & VM_EXECUTABLE) 640 removed_exe_file_vma(mm); 641 } 642 if (next->anon_vma) 643 anon_vma_merge(vma, next); 644 mm->map_count--; 645 mpol_put(vma_policy(next)); 646 kmem_cache_free(vm_area_cachep, next); 647 /* 648 * In mprotect's case 6 (see comments on vma_merge), 649 * we must remove another next too. It would clutter 650 * up the code too much to do both in one go. 651 */ 652 if (remove_next == 2) { 653 next = vma->vm_next; 654 goto again; 655 } 656 } 657 if (insert && file) 658 uprobe_mmap(insert); 659 660 validate_mm(mm); 661 662 return 0; 663 } 664 665 /* 666 * If the vma has a ->close operation then the driver probably needs to release 667 * per-vma resources, so we don't attempt to merge those. 668 */ 669 static inline int is_mergeable_vma(struct vm_area_struct *vma, 670 struct file *file, unsigned long vm_flags) 671 { 672 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 673 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 674 return 0; 675 if (vma->vm_file != file) 676 return 0; 677 if (vma->vm_ops && vma->vm_ops->close) 678 return 0; 679 return 1; 680 } 681 682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 683 struct anon_vma *anon_vma2, 684 struct vm_area_struct *vma) 685 { 686 /* 687 * The list_is_singular() test is to avoid merging VMA cloned from 688 * parents. This can improve scalability caused by anon_vma lock. 689 */ 690 if ((!anon_vma1 || !anon_vma2) && (!vma || 691 list_is_singular(&vma->anon_vma_chain))) 692 return 1; 693 return anon_vma1 == anon_vma2; 694 } 695 696 /* 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 698 * in front of (at a lower virtual address and file offset than) the vma. 699 * 700 * We cannot merge two vmas if they have differently assigned (non-NULL) 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 702 * 703 * We don't check here for the merged mmap wrapping around the end of pagecache 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 705 * wrap, nor mmaps which cover the final page at index -1UL. 706 */ 707 static int 708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 710 { 711 if (is_mergeable_vma(vma, file, vm_flags) && 712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 713 if (vma->vm_pgoff == vm_pgoff) 714 return 1; 715 } 716 return 0; 717 } 718 719 /* 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 721 * beyond (at a higher virtual address and file offset than) the vma. 722 * 723 * We cannot merge two vmas if they have differently assigned (non-NULL) 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 725 */ 726 static int 727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 729 { 730 if (is_mergeable_vma(vma, file, vm_flags) && 731 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 732 pgoff_t vm_pglen; 733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 734 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 735 return 1; 736 } 737 return 0; 738 } 739 740 /* 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 742 * whether that can be merged with its predecessor or its successor. 743 * Or both (it neatly fills a hole). 744 * 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is 746 * certain not to be mapped by the time vma_merge is called; but when 747 * called for mprotect, it is certain to be already mapped (either at 748 * an offset within prev, or at the start of next), and the flags of 749 * this area are about to be changed to vm_flags - and the no-change 750 * case has already been eliminated. 751 * 752 * The following mprotect cases have to be considered, where AAAA is 753 * the area passed down from mprotect_fixup, never extending beyond one 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 755 * 756 * AAAA AAAA AAAA AAAA 757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 758 * cannot merge might become might become might become 759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 761 * mremap move: PPPPNNNNNNNN 8 762 * AAAA 763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 764 * might become case 1 below case 2 below case 3 below 765 * 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 768 */ 769 struct vm_area_struct *vma_merge(struct mm_struct *mm, 770 struct vm_area_struct *prev, unsigned long addr, 771 unsigned long end, unsigned long vm_flags, 772 struct anon_vma *anon_vma, struct file *file, 773 pgoff_t pgoff, struct mempolicy *policy) 774 { 775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 776 struct vm_area_struct *area, *next; 777 int err; 778 779 /* 780 * We later require that vma->vm_flags == vm_flags, 781 * so this tests vma->vm_flags & VM_SPECIAL, too. 782 */ 783 if (vm_flags & VM_SPECIAL) 784 return NULL; 785 786 if (prev) 787 next = prev->vm_next; 788 else 789 next = mm->mmap; 790 area = next; 791 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 792 next = next->vm_next; 793 794 /* 795 * Can it merge with the predecessor? 796 */ 797 if (prev && prev->vm_end == addr && 798 mpol_equal(vma_policy(prev), policy) && 799 can_vma_merge_after(prev, vm_flags, 800 anon_vma, file, pgoff)) { 801 /* 802 * OK, it can. Can we now merge in the successor as well? 803 */ 804 if (next && end == next->vm_start && 805 mpol_equal(policy, vma_policy(next)) && 806 can_vma_merge_before(next, vm_flags, 807 anon_vma, file, pgoff+pglen) && 808 is_mergeable_anon_vma(prev->anon_vma, 809 next->anon_vma, NULL)) { 810 /* cases 1, 6 */ 811 err = vma_adjust(prev, prev->vm_start, 812 next->vm_end, prev->vm_pgoff, NULL); 813 } else /* cases 2, 5, 7 */ 814 err = vma_adjust(prev, prev->vm_start, 815 end, prev->vm_pgoff, NULL); 816 if (err) 817 return NULL; 818 khugepaged_enter_vma_merge(prev); 819 return prev; 820 } 821 822 /* 823 * Can this new request be merged in front of next? 824 */ 825 if (next && end == next->vm_start && 826 mpol_equal(policy, vma_policy(next)) && 827 can_vma_merge_before(next, vm_flags, 828 anon_vma, file, pgoff+pglen)) { 829 if (prev && addr < prev->vm_end) /* case 4 */ 830 err = vma_adjust(prev, prev->vm_start, 831 addr, prev->vm_pgoff, NULL); 832 else /* cases 3, 8 */ 833 err = vma_adjust(area, addr, next->vm_end, 834 next->vm_pgoff - pglen, NULL); 835 if (err) 836 return NULL; 837 khugepaged_enter_vma_merge(area); 838 return area; 839 } 840 841 return NULL; 842 } 843 844 /* 845 * Rough compatbility check to quickly see if it's even worth looking 846 * at sharing an anon_vma. 847 * 848 * They need to have the same vm_file, and the flags can only differ 849 * in things that mprotect may change. 850 * 851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 852 * we can merge the two vma's. For example, we refuse to merge a vma if 853 * there is a vm_ops->close() function, because that indicates that the 854 * driver is doing some kind of reference counting. But that doesn't 855 * really matter for the anon_vma sharing case. 856 */ 857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 858 { 859 return a->vm_end == b->vm_start && 860 mpol_equal(vma_policy(a), vma_policy(b)) && 861 a->vm_file == b->vm_file && 862 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 863 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 864 } 865 866 /* 867 * Do some basic sanity checking to see if we can re-use the anon_vma 868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 869 * the same as 'old', the other will be the new one that is trying 870 * to share the anon_vma. 871 * 872 * NOTE! This runs with mm_sem held for reading, so it is possible that 873 * the anon_vma of 'old' is concurrently in the process of being set up 874 * by another page fault trying to merge _that_. But that's ok: if it 875 * is being set up, that automatically means that it will be a singleton 876 * acceptable for merging, so we can do all of this optimistically. But 877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 878 * 879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 881 * is to return an anon_vma that is "complex" due to having gone through 882 * a fork). 883 * 884 * We also make sure that the two vma's are compatible (adjacent, 885 * and with the same memory policies). That's all stable, even with just 886 * a read lock on the mm_sem. 887 */ 888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 889 { 890 if (anon_vma_compatible(a, b)) { 891 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 892 893 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 894 return anon_vma; 895 } 896 return NULL; 897 } 898 899 /* 900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 901 * neighbouring vmas for a suitable anon_vma, before it goes off 902 * to allocate a new anon_vma. It checks because a repetitive 903 * sequence of mprotects and faults may otherwise lead to distinct 904 * anon_vmas being allocated, preventing vma merge in subsequent 905 * mprotect. 906 */ 907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 908 { 909 struct anon_vma *anon_vma; 910 struct vm_area_struct *near; 911 912 near = vma->vm_next; 913 if (!near) 914 goto try_prev; 915 916 anon_vma = reusable_anon_vma(near, vma, near); 917 if (anon_vma) 918 return anon_vma; 919 try_prev: 920 near = vma->vm_prev; 921 if (!near) 922 goto none; 923 924 anon_vma = reusable_anon_vma(near, near, vma); 925 if (anon_vma) 926 return anon_vma; 927 none: 928 /* 929 * There's no absolute need to look only at touching neighbours: 930 * we could search further afield for "compatible" anon_vmas. 931 * But it would probably just be a waste of time searching, 932 * or lead to too many vmas hanging off the same anon_vma. 933 * We're trying to allow mprotect remerging later on, 934 * not trying to minimize memory used for anon_vmas. 935 */ 936 return NULL; 937 } 938 939 #ifdef CONFIG_PROC_FS 940 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 941 struct file *file, long pages) 942 { 943 const unsigned long stack_flags 944 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 945 946 if (file) { 947 mm->shared_vm += pages; 948 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 949 mm->exec_vm += pages; 950 } else if (flags & stack_flags) 951 mm->stack_vm += pages; 952 if (flags & (VM_RESERVED|VM_IO)) 953 mm->reserved_vm += pages; 954 } 955 #endif /* CONFIG_PROC_FS */ 956 957 /* 958 * If a hint addr is less than mmap_min_addr change hint to be as 959 * low as possible but still greater than mmap_min_addr 960 */ 961 static inline unsigned long round_hint_to_min(unsigned long hint) 962 { 963 hint &= PAGE_MASK; 964 if (((void *)hint != NULL) && 965 (hint < mmap_min_addr)) 966 return PAGE_ALIGN(mmap_min_addr); 967 return hint; 968 } 969 970 /* 971 * The caller must hold down_write(¤t->mm->mmap_sem). 972 */ 973 974 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 975 unsigned long len, unsigned long prot, 976 unsigned long flags, unsigned long pgoff) 977 { 978 struct mm_struct * mm = current->mm; 979 struct inode *inode; 980 vm_flags_t vm_flags; 981 int error; 982 unsigned long reqprot = prot; 983 984 /* 985 * Does the application expect PROT_READ to imply PROT_EXEC? 986 * 987 * (the exception is when the underlying filesystem is noexec 988 * mounted, in which case we dont add PROT_EXEC.) 989 */ 990 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 991 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 992 prot |= PROT_EXEC; 993 994 if (!len) 995 return -EINVAL; 996 997 if (!(flags & MAP_FIXED)) 998 addr = round_hint_to_min(addr); 999 1000 /* Careful about overflows.. */ 1001 len = PAGE_ALIGN(len); 1002 if (!len) 1003 return -ENOMEM; 1004 1005 /* offset overflow? */ 1006 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1007 return -EOVERFLOW; 1008 1009 /* Too many mappings? */ 1010 if (mm->map_count > sysctl_max_map_count) 1011 return -ENOMEM; 1012 1013 /* Obtain the address to map to. we verify (or select) it and ensure 1014 * that it represents a valid section of the address space. 1015 */ 1016 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1017 if (addr & ~PAGE_MASK) 1018 return addr; 1019 1020 /* Do simple checking here so the lower-level routines won't have 1021 * to. we assume access permissions have been handled by the open 1022 * of the memory object, so we don't do any here. 1023 */ 1024 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1025 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1026 1027 if (flags & MAP_LOCKED) 1028 if (!can_do_mlock()) 1029 return -EPERM; 1030 1031 /* mlock MCL_FUTURE? */ 1032 if (vm_flags & VM_LOCKED) { 1033 unsigned long locked, lock_limit; 1034 locked = len >> PAGE_SHIFT; 1035 locked += mm->locked_vm; 1036 lock_limit = rlimit(RLIMIT_MEMLOCK); 1037 lock_limit >>= PAGE_SHIFT; 1038 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1039 return -EAGAIN; 1040 } 1041 1042 inode = file ? file->f_path.dentry->d_inode : NULL; 1043 1044 if (file) { 1045 switch (flags & MAP_TYPE) { 1046 case MAP_SHARED: 1047 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1048 return -EACCES; 1049 1050 /* 1051 * Make sure we don't allow writing to an append-only 1052 * file.. 1053 */ 1054 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1055 return -EACCES; 1056 1057 /* 1058 * Make sure there are no mandatory locks on the file. 1059 */ 1060 if (locks_verify_locked(inode)) 1061 return -EAGAIN; 1062 1063 vm_flags |= VM_SHARED | VM_MAYSHARE; 1064 if (!(file->f_mode & FMODE_WRITE)) 1065 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1066 1067 /* fall through */ 1068 case MAP_PRIVATE: 1069 if (!(file->f_mode & FMODE_READ)) 1070 return -EACCES; 1071 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1072 if (vm_flags & VM_EXEC) 1073 return -EPERM; 1074 vm_flags &= ~VM_MAYEXEC; 1075 } 1076 1077 if (!file->f_op || !file->f_op->mmap) 1078 return -ENODEV; 1079 break; 1080 1081 default: 1082 return -EINVAL; 1083 } 1084 } else { 1085 switch (flags & MAP_TYPE) { 1086 case MAP_SHARED: 1087 /* 1088 * Ignore pgoff. 1089 */ 1090 pgoff = 0; 1091 vm_flags |= VM_SHARED | VM_MAYSHARE; 1092 break; 1093 case MAP_PRIVATE: 1094 /* 1095 * Set pgoff according to addr for anon_vma. 1096 */ 1097 pgoff = addr >> PAGE_SHIFT; 1098 break; 1099 default: 1100 return -EINVAL; 1101 } 1102 } 1103 1104 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1105 if (error) 1106 return error; 1107 1108 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1109 } 1110 1111 unsigned long do_mmap(struct file *file, unsigned long addr, 1112 unsigned long len, unsigned long prot, 1113 unsigned long flag, unsigned long offset) 1114 { 1115 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 1116 return -EINVAL; 1117 if (unlikely(offset & ~PAGE_MASK)) 1118 return -EINVAL; 1119 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1120 } 1121 EXPORT_SYMBOL(do_mmap); 1122 1123 unsigned long vm_mmap(struct file *file, unsigned long addr, 1124 unsigned long len, unsigned long prot, 1125 unsigned long flag, unsigned long offset) 1126 { 1127 unsigned long ret; 1128 struct mm_struct *mm = current->mm; 1129 1130 down_write(&mm->mmap_sem); 1131 ret = do_mmap(file, addr, len, prot, flag, offset); 1132 up_write(&mm->mmap_sem); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(vm_mmap); 1136 1137 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1138 unsigned long, prot, unsigned long, flags, 1139 unsigned long, fd, unsigned long, pgoff) 1140 { 1141 struct file *file = NULL; 1142 unsigned long retval = -EBADF; 1143 1144 if (!(flags & MAP_ANONYMOUS)) { 1145 audit_mmap_fd(fd, flags); 1146 if (unlikely(flags & MAP_HUGETLB)) 1147 return -EINVAL; 1148 file = fget(fd); 1149 if (!file) 1150 goto out; 1151 } else if (flags & MAP_HUGETLB) { 1152 struct user_struct *user = NULL; 1153 /* 1154 * VM_NORESERVE is used because the reservations will be 1155 * taken when vm_ops->mmap() is called 1156 * A dummy user value is used because we are not locking 1157 * memory so no accounting is necessary 1158 */ 1159 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1160 VM_NORESERVE, &user, 1161 HUGETLB_ANONHUGE_INODE); 1162 if (IS_ERR(file)) 1163 return PTR_ERR(file); 1164 } 1165 1166 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1167 1168 down_write(¤t->mm->mmap_sem); 1169 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1170 up_write(¤t->mm->mmap_sem); 1171 1172 if (file) 1173 fput(file); 1174 out: 1175 return retval; 1176 } 1177 1178 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1179 struct mmap_arg_struct { 1180 unsigned long addr; 1181 unsigned long len; 1182 unsigned long prot; 1183 unsigned long flags; 1184 unsigned long fd; 1185 unsigned long offset; 1186 }; 1187 1188 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1189 { 1190 struct mmap_arg_struct a; 1191 1192 if (copy_from_user(&a, arg, sizeof(a))) 1193 return -EFAULT; 1194 if (a.offset & ~PAGE_MASK) 1195 return -EINVAL; 1196 1197 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1198 a.offset >> PAGE_SHIFT); 1199 } 1200 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1201 1202 /* 1203 * Some shared mappigns will want the pages marked read-only 1204 * to track write events. If so, we'll downgrade vm_page_prot 1205 * to the private version (using protection_map[] without the 1206 * VM_SHARED bit). 1207 */ 1208 int vma_wants_writenotify(struct vm_area_struct *vma) 1209 { 1210 vm_flags_t vm_flags = vma->vm_flags; 1211 1212 /* If it was private or non-writable, the write bit is already clear */ 1213 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1214 return 0; 1215 1216 /* The backer wishes to know when pages are first written to? */ 1217 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1218 return 1; 1219 1220 /* The open routine did something to the protections already? */ 1221 if (pgprot_val(vma->vm_page_prot) != 1222 pgprot_val(vm_get_page_prot(vm_flags))) 1223 return 0; 1224 1225 /* Specialty mapping? */ 1226 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1227 return 0; 1228 1229 /* Can the mapping track the dirty pages? */ 1230 return vma->vm_file && vma->vm_file->f_mapping && 1231 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1232 } 1233 1234 /* 1235 * We account for memory if it's a private writeable mapping, 1236 * not hugepages and VM_NORESERVE wasn't set. 1237 */ 1238 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1239 { 1240 /* 1241 * hugetlb has its own accounting separate from the core VM 1242 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1243 */ 1244 if (file && is_file_hugepages(file)) 1245 return 0; 1246 1247 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1248 } 1249 1250 unsigned long mmap_region(struct file *file, unsigned long addr, 1251 unsigned long len, unsigned long flags, 1252 vm_flags_t vm_flags, unsigned long pgoff) 1253 { 1254 struct mm_struct *mm = current->mm; 1255 struct vm_area_struct *vma, *prev; 1256 int correct_wcount = 0; 1257 int error; 1258 struct rb_node **rb_link, *rb_parent; 1259 unsigned long charged = 0; 1260 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1261 1262 /* Clear old maps */ 1263 error = -ENOMEM; 1264 munmap_back: 1265 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1266 if (vma && vma->vm_start < addr + len) { 1267 if (do_munmap(mm, addr, len)) 1268 return -ENOMEM; 1269 goto munmap_back; 1270 } 1271 1272 /* Check against address space limit. */ 1273 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1274 return -ENOMEM; 1275 1276 /* 1277 * Set 'VM_NORESERVE' if we should not account for the 1278 * memory use of this mapping. 1279 */ 1280 if ((flags & MAP_NORESERVE)) { 1281 /* We honor MAP_NORESERVE if allowed to overcommit */ 1282 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1283 vm_flags |= VM_NORESERVE; 1284 1285 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1286 if (file && is_file_hugepages(file)) 1287 vm_flags |= VM_NORESERVE; 1288 } 1289 1290 /* 1291 * Private writable mapping: check memory availability 1292 */ 1293 if (accountable_mapping(file, vm_flags)) { 1294 charged = len >> PAGE_SHIFT; 1295 if (security_vm_enough_memory_mm(mm, charged)) 1296 return -ENOMEM; 1297 vm_flags |= VM_ACCOUNT; 1298 } 1299 1300 /* 1301 * Can we just expand an old mapping? 1302 */ 1303 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1304 if (vma) 1305 goto out; 1306 1307 /* 1308 * Determine the object being mapped and call the appropriate 1309 * specific mapper. the address has already been validated, but 1310 * not unmapped, but the maps are removed from the list. 1311 */ 1312 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1313 if (!vma) { 1314 error = -ENOMEM; 1315 goto unacct_error; 1316 } 1317 1318 vma->vm_mm = mm; 1319 vma->vm_start = addr; 1320 vma->vm_end = addr + len; 1321 vma->vm_flags = vm_flags; 1322 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1323 vma->vm_pgoff = pgoff; 1324 INIT_LIST_HEAD(&vma->anon_vma_chain); 1325 1326 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1327 1328 if (file) { 1329 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1330 goto free_vma; 1331 if (vm_flags & VM_DENYWRITE) { 1332 error = deny_write_access(file); 1333 if (error) 1334 goto free_vma; 1335 correct_wcount = 1; 1336 } 1337 vma->vm_file = file; 1338 get_file(file); 1339 error = file->f_op->mmap(file, vma); 1340 if (error) 1341 goto unmap_and_free_vma; 1342 if (vm_flags & VM_EXECUTABLE) 1343 added_exe_file_vma(mm); 1344 1345 /* Can addr have changed?? 1346 * 1347 * Answer: Yes, several device drivers can do it in their 1348 * f_op->mmap method. -DaveM 1349 */ 1350 addr = vma->vm_start; 1351 pgoff = vma->vm_pgoff; 1352 vm_flags = vma->vm_flags; 1353 } else if (vm_flags & VM_SHARED) { 1354 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1355 goto free_vma; 1356 error = shmem_zero_setup(vma); 1357 if (error) 1358 goto free_vma; 1359 } 1360 1361 if (vma_wants_writenotify(vma)) { 1362 pgprot_t pprot = vma->vm_page_prot; 1363 1364 /* Can vma->vm_page_prot have changed?? 1365 * 1366 * Answer: Yes, drivers may have changed it in their 1367 * f_op->mmap method. 1368 * 1369 * Ensures that vmas marked as uncached stay that way. 1370 */ 1371 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1372 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1373 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1374 } 1375 1376 vma_link(mm, vma, prev, rb_link, rb_parent); 1377 file = vma->vm_file; 1378 1379 /* Once vma denies write, undo our temporary denial count */ 1380 if (correct_wcount) 1381 atomic_inc(&inode->i_writecount); 1382 out: 1383 perf_event_mmap(vma); 1384 1385 mm->total_vm += len >> PAGE_SHIFT; 1386 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1387 if (vm_flags & VM_LOCKED) { 1388 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1389 mm->locked_vm += (len >> PAGE_SHIFT); 1390 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1391 make_pages_present(addr, addr + len); 1392 1393 if (file && uprobe_mmap(vma)) 1394 /* matching probes but cannot insert */ 1395 goto unmap_and_free_vma; 1396 1397 return addr; 1398 1399 unmap_and_free_vma: 1400 if (correct_wcount) 1401 atomic_inc(&inode->i_writecount); 1402 vma->vm_file = NULL; 1403 fput(file); 1404 1405 /* Undo any partial mapping done by a device driver. */ 1406 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1407 charged = 0; 1408 free_vma: 1409 kmem_cache_free(vm_area_cachep, vma); 1410 unacct_error: 1411 if (charged) 1412 vm_unacct_memory(charged); 1413 return error; 1414 } 1415 1416 /* Get an address range which is currently unmapped. 1417 * For shmat() with addr=0. 1418 * 1419 * Ugly calling convention alert: 1420 * Return value with the low bits set means error value, 1421 * ie 1422 * if (ret & ~PAGE_MASK) 1423 * error = ret; 1424 * 1425 * This function "knows" that -ENOMEM has the bits set. 1426 */ 1427 #ifndef HAVE_ARCH_UNMAPPED_AREA 1428 unsigned long 1429 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1430 unsigned long len, unsigned long pgoff, unsigned long flags) 1431 { 1432 struct mm_struct *mm = current->mm; 1433 struct vm_area_struct *vma; 1434 unsigned long start_addr; 1435 1436 if (len > TASK_SIZE) 1437 return -ENOMEM; 1438 1439 if (flags & MAP_FIXED) 1440 return addr; 1441 1442 if (addr) { 1443 addr = PAGE_ALIGN(addr); 1444 vma = find_vma(mm, addr); 1445 if (TASK_SIZE - len >= addr && 1446 (!vma || addr + len <= vma->vm_start)) 1447 return addr; 1448 } 1449 if (len > mm->cached_hole_size) { 1450 start_addr = addr = mm->free_area_cache; 1451 } else { 1452 start_addr = addr = TASK_UNMAPPED_BASE; 1453 mm->cached_hole_size = 0; 1454 } 1455 1456 full_search: 1457 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1458 /* At this point: (!vma || addr < vma->vm_end). */ 1459 if (TASK_SIZE - len < addr) { 1460 /* 1461 * Start a new search - just in case we missed 1462 * some holes. 1463 */ 1464 if (start_addr != TASK_UNMAPPED_BASE) { 1465 addr = TASK_UNMAPPED_BASE; 1466 start_addr = addr; 1467 mm->cached_hole_size = 0; 1468 goto full_search; 1469 } 1470 return -ENOMEM; 1471 } 1472 if (!vma || addr + len <= vma->vm_start) { 1473 /* 1474 * Remember the place where we stopped the search: 1475 */ 1476 mm->free_area_cache = addr + len; 1477 return addr; 1478 } 1479 if (addr + mm->cached_hole_size < vma->vm_start) 1480 mm->cached_hole_size = vma->vm_start - addr; 1481 addr = vma->vm_end; 1482 } 1483 } 1484 #endif 1485 1486 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1487 { 1488 /* 1489 * Is this a new hole at the lowest possible address? 1490 */ 1491 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1492 mm->free_area_cache = addr; 1493 } 1494 1495 /* 1496 * This mmap-allocator allocates new areas top-down from below the 1497 * stack's low limit (the base): 1498 */ 1499 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1500 unsigned long 1501 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1502 const unsigned long len, const unsigned long pgoff, 1503 const unsigned long flags) 1504 { 1505 struct vm_area_struct *vma; 1506 struct mm_struct *mm = current->mm; 1507 unsigned long addr = addr0, start_addr; 1508 1509 /* requested length too big for entire address space */ 1510 if (len > TASK_SIZE) 1511 return -ENOMEM; 1512 1513 if (flags & MAP_FIXED) 1514 return addr; 1515 1516 /* requesting a specific address */ 1517 if (addr) { 1518 addr = PAGE_ALIGN(addr); 1519 vma = find_vma(mm, addr); 1520 if (TASK_SIZE - len >= addr && 1521 (!vma || addr + len <= vma->vm_start)) 1522 return addr; 1523 } 1524 1525 /* check if free_area_cache is useful for us */ 1526 if (len <= mm->cached_hole_size) { 1527 mm->cached_hole_size = 0; 1528 mm->free_area_cache = mm->mmap_base; 1529 } 1530 1531 try_again: 1532 /* either no address requested or can't fit in requested address hole */ 1533 start_addr = addr = mm->free_area_cache; 1534 1535 if (addr < len) 1536 goto fail; 1537 1538 addr -= len; 1539 do { 1540 /* 1541 * Lookup failure means no vma is above this address, 1542 * else if new region fits below vma->vm_start, 1543 * return with success: 1544 */ 1545 vma = find_vma(mm, addr); 1546 if (!vma || addr+len <= vma->vm_start) 1547 /* remember the address as a hint for next time */ 1548 return (mm->free_area_cache = addr); 1549 1550 /* remember the largest hole we saw so far */ 1551 if (addr + mm->cached_hole_size < vma->vm_start) 1552 mm->cached_hole_size = vma->vm_start - addr; 1553 1554 /* try just below the current vma->vm_start */ 1555 addr = vma->vm_start-len; 1556 } while (len < vma->vm_start); 1557 1558 fail: 1559 /* 1560 * if hint left us with no space for the requested 1561 * mapping then try again: 1562 * 1563 * Note: this is different with the case of bottomup 1564 * which does the fully line-search, but we use find_vma 1565 * here that causes some holes skipped. 1566 */ 1567 if (start_addr != mm->mmap_base) { 1568 mm->free_area_cache = mm->mmap_base; 1569 mm->cached_hole_size = 0; 1570 goto try_again; 1571 } 1572 1573 /* 1574 * A failed mmap() very likely causes application failure, 1575 * so fall back to the bottom-up function here. This scenario 1576 * can happen with large stack limits and large mmap() 1577 * allocations. 1578 */ 1579 mm->cached_hole_size = ~0UL; 1580 mm->free_area_cache = TASK_UNMAPPED_BASE; 1581 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1582 /* 1583 * Restore the topdown base: 1584 */ 1585 mm->free_area_cache = mm->mmap_base; 1586 mm->cached_hole_size = ~0UL; 1587 1588 return addr; 1589 } 1590 #endif 1591 1592 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1593 { 1594 /* 1595 * Is this a new hole at the highest possible address? 1596 */ 1597 if (addr > mm->free_area_cache) 1598 mm->free_area_cache = addr; 1599 1600 /* dont allow allocations above current base */ 1601 if (mm->free_area_cache > mm->mmap_base) 1602 mm->free_area_cache = mm->mmap_base; 1603 } 1604 1605 unsigned long 1606 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1607 unsigned long pgoff, unsigned long flags) 1608 { 1609 unsigned long (*get_area)(struct file *, unsigned long, 1610 unsigned long, unsigned long, unsigned long); 1611 1612 unsigned long error = arch_mmap_check(addr, len, flags); 1613 if (error) 1614 return error; 1615 1616 /* Careful about overflows.. */ 1617 if (len > TASK_SIZE) 1618 return -ENOMEM; 1619 1620 get_area = current->mm->get_unmapped_area; 1621 if (file && file->f_op && file->f_op->get_unmapped_area) 1622 get_area = file->f_op->get_unmapped_area; 1623 addr = get_area(file, addr, len, pgoff, flags); 1624 if (IS_ERR_VALUE(addr)) 1625 return addr; 1626 1627 if (addr > TASK_SIZE - len) 1628 return -ENOMEM; 1629 if (addr & ~PAGE_MASK) 1630 return -EINVAL; 1631 1632 return arch_rebalance_pgtables(addr, len); 1633 } 1634 1635 EXPORT_SYMBOL(get_unmapped_area); 1636 1637 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1638 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1639 { 1640 struct vm_area_struct *vma = NULL; 1641 1642 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ 1643 return NULL; 1644 1645 /* Check the cache first. */ 1646 /* (Cache hit rate is typically around 35%.) */ 1647 vma = mm->mmap_cache; 1648 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1649 struct rb_node *rb_node; 1650 1651 rb_node = mm->mm_rb.rb_node; 1652 vma = NULL; 1653 1654 while (rb_node) { 1655 struct vm_area_struct *vma_tmp; 1656 1657 vma_tmp = rb_entry(rb_node, 1658 struct vm_area_struct, vm_rb); 1659 1660 if (vma_tmp->vm_end > addr) { 1661 vma = vma_tmp; 1662 if (vma_tmp->vm_start <= addr) 1663 break; 1664 rb_node = rb_node->rb_left; 1665 } else 1666 rb_node = rb_node->rb_right; 1667 } 1668 if (vma) 1669 mm->mmap_cache = vma; 1670 } 1671 return vma; 1672 } 1673 1674 EXPORT_SYMBOL(find_vma); 1675 1676 /* 1677 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1678 */ 1679 struct vm_area_struct * 1680 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1681 struct vm_area_struct **pprev) 1682 { 1683 struct vm_area_struct *vma; 1684 1685 vma = find_vma(mm, addr); 1686 if (vma) { 1687 *pprev = vma->vm_prev; 1688 } else { 1689 struct rb_node *rb_node = mm->mm_rb.rb_node; 1690 *pprev = NULL; 1691 while (rb_node) { 1692 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1693 rb_node = rb_node->rb_right; 1694 } 1695 } 1696 return vma; 1697 } 1698 1699 /* 1700 * Verify that the stack growth is acceptable and 1701 * update accounting. This is shared with both the 1702 * grow-up and grow-down cases. 1703 */ 1704 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1705 { 1706 struct mm_struct *mm = vma->vm_mm; 1707 struct rlimit *rlim = current->signal->rlim; 1708 unsigned long new_start; 1709 1710 /* address space limit tests */ 1711 if (!may_expand_vm(mm, grow)) 1712 return -ENOMEM; 1713 1714 /* Stack limit test */ 1715 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1716 return -ENOMEM; 1717 1718 /* mlock limit tests */ 1719 if (vma->vm_flags & VM_LOCKED) { 1720 unsigned long locked; 1721 unsigned long limit; 1722 locked = mm->locked_vm + grow; 1723 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1724 limit >>= PAGE_SHIFT; 1725 if (locked > limit && !capable(CAP_IPC_LOCK)) 1726 return -ENOMEM; 1727 } 1728 1729 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1730 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1731 vma->vm_end - size; 1732 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1733 return -EFAULT; 1734 1735 /* 1736 * Overcommit.. This must be the final test, as it will 1737 * update security statistics. 1738 */ 1739 if (security_vm_enough_memory_mm(mm, grow)) 1740 return -ENOMEM; 1741 1742 /* Ok, everything looks good - let it rip */ 1743 mm->total_vm += grow; 1744 if (vma->vm_flags & VM_LOCKED) 1745 mm->locked_vm += grow; 1746 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1747 return 0; 1748 } 1749 1750 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1751 /* 1752 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1753 * vma is the last one with address > vma->vm_end. Have to extend vma. 1754 */ 1755 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1756 { 1757 int error; 1758 1759 if (!(vma->vm_flags & VM_GROWSUP)) 1760 return -EFAULT; 1761 1762 /* 1763 * We must make sure the anon_vma is allocated 1764 * so that the anon_vma locking is not a noop. 1765 */ 1766 if (unlikely(anon_vma_prepare(vma))) 1767 return -ENOMEM; 1768 vma_lock_anon_vma(vma); 1769 1770 /* 1771 * vma->vm_start/vm_end cannot change under us because the caller 1772 * is required to hold the mmap_sem in read mode. We need the 1773 * anon_vma lock to serialize against concurrent expand_stacks. 1774 * Also guard against wrapping around to address 0. 1775 */ 1776 if (address < PAGE_ALIGN(address+4)) 1777 address = PAGE_ALIGN(address+4); 1778 else { 1779 vma_unlock_anon_vma(vma); 1780 return -ENOMEM; 1781 } 1782 error = 0; 1783 1784 /* Somebody else might have raced and expanded it already */ 1785 if (address > vma->vm_end) { 1786 unsigned long size, grow; 1787 1788 size = address - vma->vm_start; 1789 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1790 1791 error = -ENOMEM; 1792 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1793 error = acct_stack_growth(vma, size, grow); 1794 if (!error) { 1795 vma->vm_end = address; 1796 perf_event_mmap(vma); 1797 } 1798 } 1799 } 1800 vma_unlock_anon_vma(vma); 1801 khugepaged_enter_vma_merge(vma); 1802 return error; 1803 } 1804 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1805 1806 /* 1807 * vma is the first one with address < vma->vm_start. Have to extend vma. 1808 */ 1809 int expand_downwards(struct vm_area_struct *vma, 1810 unsigned long address) 1811 { 1812 int error; 1813 1814 /* 1815 * We must make sure the anon_vma is allocated 1816 * so that the anon_vma locking is not a noop. 1817 */ 1818 if (unlikely(anon_vma_prepare(vma))) 1819 return -ENOMEM; 1820 1821 address &= PAGE_MASK; 1822 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1823 if (error) 1824 return error; 1825 1826 vma_lock_anon_vma(vma); 1827 1828 /* 1829 * vma->vm_start/vm_end cannot change under us because the caller 1830 * is required to hold the mmap_sem in read mode. We need the 1831 * anon_vma lock to serialize against concurrent expand_stacks. 1832 */ 1833 1834 /* Somebody else might have raced and expanded it already */ 1835 if (address < vma->vm_start) { 1836 unsigned long size, grow; 1837 1838 size = vma->vm_end - address; 1839 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1840 1841 error = -ENOMEM; 1842 if (grow <= vma->vm_pgoff) { 1843 error = acct_stack_growth(vma, size, grow); 1844 if (!error) { 1845 vma->vm_start = address; 1846 vma->vm_pgoff -= grow; 1847 perf_event_mmap(vma); 1848 } 1849 } 1850 } 1851 vma_unlock_anon_vma(vma); 1852 khugepaged_enter_vma_merge(vma); 1853 return error; 1854 } 1855 1856 #ifdef CONFIG_STACK_GROWSUP 1857 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1858 { 1859 return expand_upwards(vma, address); 1860 } 1861 1862 struct vm_area_struct * 1863 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1864 { 1865 struct vm_area_struct *vma, *prev; 1866 1867 addr &= PAGE_MASK; 1868 vma = find_vma_prev(mm, addr, &prev); 1869 if (vma && (vma->vm_start <= addr)) 1870 return vma; 1871 if (!prev || expand_stack(prev, addr)) 1872 return NULL; 1873 if (prev->vm_flags & VM_LOCKED) { 1874 mlock_vma_pages_range(prev, addr, prev->vm_end); 1875 } 1876 return prev; 1877 } 1878 #else 1879 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1880 { 1881 return expand_downwards(vma, address); 1882 } 1883 1884 struct vm_area_struct * 1885 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1886 { 1887 struct vm_area_struct * vma; 1888 unsigned long start; 1889 1890 addr &= PAGE_MASK; 1891 vma = find_vma(mm,addr); 1892 if (!vma) 1893 return NULL; 1894 if (vma->vm_start <= addr) 1895 return vma; 1896 if (!(vma->vm_flags & VM_GROWSDOWN)) 1897 return NULL; 1898 start = vma->vm_start; 1899 if (expand_stack(vma, addr)) 1900 return NULL; 1901 if (vma->vm_flags & VM_LOCKED) { 1902 mlock_vma_pages_range(vma, addr, start); 1903 } 1904 return vma; 1905 } 1906 #endif 1907 1908 /* 1909 * Ok - we have the memory areas we should free on the vma list, 1910 * so release them, and do the vma updates. 1911 * 1912 * Called with the mm semaphore held. 1913 */ 1914 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1915 { 1916 unsigned long nr_accounted = 0; 1917 1918 /* Update high watermark before we lower total_vm */ 1919 update_hiwater_vm(mm); 1920 do { 1921 long nrpages = vma_pages(vma); 1922 1923 if (vma->vm_flags & VM_ACCOUNT) 1924 nr_accounted += nrpages; 1925 mm->total_vm -= nrpages; 1926 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1927 vma = remove_vma(vma); 1928 } while (vma); 1929 vm_unacct_memory(nr_accounted); 1930 validate_mm(mm); 1931 } 1932 1933 /* 1934 * Get rid of page table information in the indicated region. 1935 * 1936 * Called with the mm semaphore held. 1937 */ 1938 static void unmap_region(struct mm_struct *mm, 1939 struct vm_area_struct *vma, struct vm_area_struct *prev, 1940 unsigned long start, unsigned long end) 1941 { 1942 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1943 struct mmu_gather tlb; 1944 1945 lru_add_drain(); 1946 tlb_gather_mmu(&tlb, mm, 0); 1947 update_hiwater_rss(mm); 1948 unmap_vmas(&tlb, vma, start, end); 1949 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1950 next ? next->vm_start : 0); 1951 tlb_finish_mmu(&tlb, start, end); 1952 } 1953 1954 /* 1955 * Create a list of vma's touched by the unmap, removing them from the mm's 1956 * vma list as we go.. 1957 */ 1958 static void 1959 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1960 struct vm_area_struct *prev, unsigned long end) 1961 { 1962 struct vm_area_struct **insertion_point; 1963 struct vm_area_struct *tail_vma = NULL; 1964 unsigned long addr; 1965 1966 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1967 vma->vm_prev = NULL; 1968 do { 1969 rb_erase(&vma->vm_rb, &mm->mm_rb); 1970 mm->map_count--; 1971 tail_vma = vma; 1972 vma = vma->vm_next; 1973 } while (vma && vma->vm_start < end); 1974 *insertion_point = vma; 1975 if (vma) 1976 vma->vm_prev = prev; 1977 tail_vma->vm_next = NULL; 1978 if (mm->unmap_area == arch_unmap_area) 1979 addr = prev ? prev->vm_end : mm->mmap_base; 1980 else 1981 addr = vma ? vma->vm_start : mm->mmap_base; 1982 mm->unmap_area(mm, addr); 1983 mm->mmap_cache = NULL; /* Kill the cache. */ 1984 } 1985 1986 /* 1987 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1988 * munmap path where it doesn't make sense to fail. 1989 */ 1990 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1991 unsigned long addr, int new_below) 1992 { 1993 struct mempolicy *pol; 1994 struct vm_area_struct *new; 1995 int err = -ENOMEM; 1996 1997 if (is_vm_hugetlb_page(vma) && (addr & 1998 ~(huge_page_mask(hstate_vma(vma))))) 1999 return -EINVAL; 2000 2001 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2002 if (!new) 2003 goto out_err; 2004 2005 /* most fields are the same, copy all, and then fixup */ 2006 *new = *vma; 2007 2008 INIT_LIST_HEAD(&new->anon_vma_chain); 2009 2010 if (new_below) 2011 new->vm_end = addr; 2012 else { 2013 new->vm_start = addr; 2014 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2015 } 2016 2017 pol = mpol_dup(vma_policy(vma)); 2018 if (IS_ERR(pol)) { 2019 err = PTR_ERR(pol); 2020 goto out_free_vma; 2021 } 2022 vma_set_policy(new, pol); 2023 2024 if (anon_vma_clone(new, vma)) 2025 goto out_free_mpol; 2026 2027 if (new->vm_file) { 2028 get_file(new->vm_file); 2029 if (vma->vm_flags & VM_EXECUTABLE) 2030 added_exe_file_vma(mm); 2031 } 2032 2033 if (new->vm_ops && new->vm_ops->open) 2034 new->vm_ops->open(new); 2035 2036 if (new_below) 2037 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2038 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2039 else 2040 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2041 2042 /* Success. */ 2043 if (!err) 2044 return 0; 2045 2046 /* Clean everything up if vma_adjust failed. */ 2047 if (new->vm_ops && new->vm_ops->close) 2048 new->vm_ops->close(new); 2049 if (new->vm_file) { 2050 if (vma->vm_flags & VM_EXECUTABLE) 2051 removed_exe_file_vma(mm); 2052 fput(new->vm_file); 2053 } 2054 unlink_anon_vmas(new); 2055 out_free_mpol: 2056 mpol_put(pol); 2057 out_free_vma: 2058 kmem_cache_free(vm_area_cachep, new); 2059 out_err: 2060 return err; 2061 } 2062 2063 /* 2064 * Split a vma into two pieces at address 'addr', a new vma is allocated 2065 * either for the first part or the tail. 2066 */ 2067 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2068 unsigned long addr, int new_below) 2069 { 2070 if (mm->map_count >= sysctl_max_map_count) 2071 return -ENOMEM; 2072 2073 return __split_vma(mm, vma, addr, new_below); 2074 } 2075 2076 /* Munmap is split into 2 main parts -- this part which finds 2077 * what needs doing, and the areas themselves, which do the 2078 * work. This now handles partial unmappings. 2079 * Jeremy Fitzhardinge <jeremy@goop.org> 2080 */ 2081 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2082 { 2083 unsigned long end; 2084 struct vm_area_struct *vma, *prev, *last; 2085 2086 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2087 return -EINVAL; 2088 2089 if ((len = PAGE_ALIGN(len)) == 0) 2090 return -EINVAL; 2091 2092 /* Find the first overlapping VMA */ 2093 vma = find_vma(mm, start); 2094 if (!vma) 2095 return 0; 2096 prev = vma->vm_prev; 2097 /* we have start < vma->vm_end */ 2098 2099 /* if it doesn't overlap, we have nothing.. */ 2100 end = start + len; 2101 if (vma->vm_start >= end) 2102 return 0; 2103 2104 /* 2105 * If we need to split any vma, do it now to save pain later. 2106 * 2107 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2108 * unmapped vm_area_struct will remain in use: so lower split_vma 2109 * places tmp vma above, and higher split_vma places tmp vma below. 2110 */ 2111 if (start > vma->vm_start) { 2112 int error; 2113 2114 /* 2115 * Make sure that map_count on return from munmap() will 2116 * not exceed its limit; but let map_count go just above 2117 * its limit temporarily, to help free resources as expected. 2118 */ 2119 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2120 return -ENOMEM; 2121 2122 error = __split_vma(mm, vma, start, 0); 2123 if (error) 2124 return error; 2125 prev = vma; 2126 } 2127 2128 /* Does it split the last one? */ 2129 last = find_vma(mm, end); 2130 if (last && end > last->vm_start) { 2131 int error = __split_vma(mm, last, end, 1); 2132 if (error) 2133 return error; 2134 } 2135 vma = prev? prev->vm_next: mm->mmap; 2136 2137 /* 2138 * unlock any mlock()ed ranges before detaching vmas 2139 */ 2140 if (mm->locked_vm) { 2141 struct vm_area_struct *tmp = vma; 2142 while (tmp && tmp->vm_start < end) { 2143 if (tmp->vm_flags & VM_LOCKED) { 2144 mm->locked_vm -= vma_pages(tmp); 2145 munlock_vma_pages_all(tmp); 2146 } 2147 tmp = tmp->vm_next; 2148 } 2149 } 2150 2151 /* 2152 * Remove the vma's, and unmap the actual pages 2153 */ 2154 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2155 unmap_region(mm, vma, prev, start, end); 2156 2157 /* Fix up all other VM information */ 2158 remove_vma_list(mm, vma); 2159 2160 return 0; 2161 } 2162 EXPORT_SYMBOL(do_munmap); 2163 2164 int vm_munmap(unsigned long start, size_t len) 2165 { 2166 int ret; 2167 struct mm_struct *mm = current->mm; 2168 2169 down_write(&mm->mmap_sem); 2170 ret = do_munmap(mm, start, len); 2171 up_write(&mm->mmap_sem); 2172 return ret; 2173 } 2174 EXPORT_SYMBOL(vm_munmap); 2175 2176 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2177 { 2178 profile_munmap(addr); 2179 return vm_munmap(addr, len); 2180 } 2181 2182 static inline void verify_mm_writelocked(struct mm_struct *mm) 2183 { 2184 #ifdef CONFIG_DEBUG_VM 2185 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2186 WARN_ON(1); 2187 up_read(&mm->mmap_sem); 2188 } 2189 #endif 2190 } 2191 2192 /* 2193 * this is really a simplified "do_mmap". it only handles 2194 * anonymous maps. eventually we may be able to do some 2195 * brk-specific accounting here. 2196 */ 2197 static unsigned long do_brk(unsigned long addr, unsigned long len) 2198 { 2199 struct mm_struct * mm = current->mm; 2200 struct vm_area_struct * vma, * prev; 2201 unsigned long flags; 2202 struct rb_node ** rb_link, * rb_parent; 2203 pgoff_t pgoff = addr >> PAGE_SHIFT; 2204 int error; 2205 2206 len = PAGE_ALIGN(len); 2207 if (!len) 2208 return addr; 2209 2210 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2211 if (error) 2212 return error; 2213 2214 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2215 2216 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2217 if (error & ~PAGE_MASK) 2218 return error; 2219 2220 /* 2221 * mlock MCL_FUTURE? 2222 */ 2223 if (mm->def_flags & VM_LOCKED) { 2224 unsigned long locked, lock_limit; 2225 locked = len >> PAGE_SHIFT; 2226 locked += mm->locked_vm; 2227 lock_limit = rlimit(RLIMIT_MEMLOCK); 2228 lock_limit >>= PAGE_SHIFT; 2229 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2230 return -EAGAIN; 2231 } 2232 2233 /* 2234 * mm->mmap_sem is required to protect against another thread 2235 * changing the mappings in case we sleep. 2236 */ 2237 verify_mm_writelocked(mm); 2238 2239 /* 2240 * Clear old maps. this also does some error checking for us 2241 */ 2242 munmap_back: 2243 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2244 if (vma && vma->vm_start < addr + len) { 2245 if (do_munmap(mm, addr, len)) 2246 return -ENOMEM; 2247 goto munmap_back; 2248 } 2249 2250 /* Check against address space limits *after* clearing old maps... */ 2251 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2252 return -ENOMEM; 2253 2254 if (mm->map_count > sysctl_max_map_count) 2255 return -ENOMEM; 2256 2257 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2258 return -ENOMEM; 2259 2260 /* Can we just expand an old private anonymous mapping? */ 2261 vma = vma_merge(mm, prev, addr, addr + len, flags, 2262 NULL, NULL, pgoff, NULL); 2263 if (vma) 2264 goto out; 2265 2266 /* 2267 * create a vma struct for an anonymous mapping 2268 */ 2269 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2270 if (!vma) { 2271 vm_unacct_memory(len >> PAGE_SHIFT); 2272 return -ENOMEM; 2273 } 2274 2275 INIT_LIST_HEAD(&vma->anon_vma_chain); 2276 vma->vm_mm = mm; 2277 vma->vm_start = addr; 2278 vma->vm_end = addr + len; 2279 vma->vm_pgoff = pgoff; 2280 vma->vm_flags = flags; 2281 vma->vm_page_prot = vm_get_page_prot(flags); 2282 vma_link(mm, vma, prev, rb_link, rb_parent); 2283 out: 2284 perf_event_mmap(vma); 2285 mm->total_vm += len >> PAGE_SHIFT; 2286 if (flags & VM_LOCKED) { 2287 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2288 mm->locked_vm += (len >> PAGE_SHIFT); 2289 } 2290 return addr; 2291 } 2292 2293 unsigned long vm_brk(unsigned long addr, unsigned long len) 2294 { 2295 struct mm_struct *mm = current->mm; 2296 unsigned long ret; 2297 2298 down_write(&mm->mmap_sem); 2299 ret = do_brk(addr, len); 2300 up_write(&mm->mmap_sem); 2301 return ret; 2302 } 2303 EXPORT_SYMBOL(vm_brk); 2304 2305 /* Release all mmaps. */ 2306 void exit_mmap(struct mm_struct *mm) 2307 { 2308 struct mmu_gather tlb; 2309 struct vm_area_struct *vma; 2310 unsigned long nr_accounted = 0; 2311 2312 /* mm's last user has gone, and its about to be pulled down */ 2313 mmu_notifier_release(mm); 2314 2315 if (mm->locked_vm) { 2316 vma = mm->mmap; 2317 while (vma) { 2318 if (vma->vm_flags & VM_LOCKED) 2319 munlock_vma_pages_all(vma); 2320 vma = vma->vm_next; 2321 } 2322 } 2323 2324 arch_exit_mmap(mm); 2325 2326 vma = mm->mmap; 2327 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2328 return; 2329 2330 lru_add_drain(); 2331 flush_cache_mm(mm); 2332 tlb_gather_mmu(&tlb, mm, 1); 2333 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2334 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2335 unmap_vmas(&tlb, vma, 0, -1); 2336 2337 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2338 tlb_finish_mmu(&tlb, 0, -1); 2339 2340 /* 2341 * Walk the list again, actually closing and freeing it, 2342 * with preemption enabled, without holding any MM locks. 2343 */ 2344 while (vma) { 2345 if (vma->vm_flags & VM_ACCOUNT) 2346 nr_accounted += vma_pages(vma); 2347 vma = remove_vma(vma); 2348 } 2349 vm_unacct_memory(nr_accounted); 2350 2351 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2352 } 2353 2354 /* Insert vm structure into process list sorted by address 2355 * and into the inode's i_mmap tree. If vm_file is non-NULL 2356 * then i_mmap_mutex is taken here. 2357 */ 2358 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2359 { 2360 struct vm_area_struct * __vma, * prev; 2361 struct rb_node ** rb_link, * rb_parent; 2362 2363 /* 2364 * The vm_pgoff of a purely anonymous vma should be irrelevant 2365 * until its first write fault, when page's anon_vma and index 2366 * are set. But now set the vm_pgoff it will almost certainly 2367 * end up with (unless mremap moves it elsewhere before that 2368 * first wfault), so /proc/pid/maps tells a consistent story. 2369 * 2370 * By setting it to reflect the virtual start address of the 2371 * vma, merges and splits can happen in a seamless way, just 2372 * using the existing file pgoff checks and manipulations. 2373 * Similarly in do_mmap_pgoff and in do_brk. 2374 */ 2375 if (!vma->vm_file) { 2376 BUG_ON(vma->anon_vma); 2377 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2378 } 2379 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2380 if (__vma && __vma->vm_start < vma->vm_end) 2381 return -ENOMEM; 2382 if ((vma->vm_flags & VM_ACCOUNT) && 2383 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2384 return -ENOMEM; 2385 2386 if (vma->vm_file && uprobe_mmap(vma)) 2387 return -EINVAL; 2388 2389 vma_link(mm, vma, prev, rb_link, rb_parent); 2390 return 0; 2391 } 2392 2393 /* 2394 * Copy the vma structure to a new location in the same mm, 2395 * prior to moving page table entries, to effect an mremap move. 2396 */ 2397 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2398 unsigned long addr, unsigned long len, pgoff_t pgoff) 2399 { 2400 struct vm_area_struct *vma = *vmap; 2401 unsigned long vma_start = vma->vm_start; 2402 struct mm_struct *mm = vma->vm_mm; 2403 struct vm_area_struct *new_vma, *prev; 2404 struct rb_node **rb_link, *rb_parent; 2405 struct mempolicy *pol; 2406 bool faulted_in_anon_vma = true; 2407 2408 /* 2409 * If anonymous vma has not yet been faulted, update new pgoff 2410 * to match new location, to increase its chance of merging. 2411 */ 2412 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2413 pgoff = addr >> PAGE_SHIFT; 2414 faulted_in_anon_vma = false; 2415 } 2416 2417 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2418 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2419 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2420 if (new_vma) { 2421 /* 2422 * Source vma may have been merged into new_vma 2423 */ 2424 if (unlikely(vma_start >= new_vma->vm_start && 2425 vma_start < new_vma->vm_end)) { 2426 /* 2427 * The only way we can get a vma_merge with 2428 * self during an mremap is if the vma hasn't 2429 * been faulted in yet and we were allowed to 2430 * reset the dst vma->vm_pgoff to the 2431 * destination address of the mremap to allow 2432 * the merge to happen. mremap must change the 2433 * vm_pgoff linearity between src and dst vmas 2434 * (in turn preventing a vma_merge) to be 2435 * safe. It is only safe to keep the vm_pgoff 2436 * linear if there are no pages mapped yet. 2437 */ 2438 VM_BUG_ON(faulted_in_anon_vma); 2439 *vmap = new_vma; 2440 } else 2441 anon_vma_moveto_tail(new_vma); 2442 } else { 2443 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2444 if (new_vma) { 2445 *new_vma = *vma; 2446 pol = mpol_dup(vma_policy(vma)); 2447 if (IS_ERR(pol)) 2448 goto out_free_vma; 2449 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2450 if (anon_vma_clone(new_vma, vma)) 2451 goto out_free_mempol; 2452 vma_set_policy(new_vma, pol); 2453 new_vma->vm_start = addr; 2454 new_vma->vm_end = addr + len; 2455 new_vma->vm_pgoff = pgoff; 2456 if (new_vma->vm_file) { 2457 get_file(new_vma->vm_file); 2458 2459 if (uprobe_mmap(new_vma)) 2460 goto out_free_mempol; 2461 2462 if (vma->vm_flags & VM_EXECUTABLE) 2463 added_exe_file_vma(mm); 2464 } 2465 if (new_vma->vm_ops && new_vma->vm_ops->open) 2466 new_vma->vm_ops->open(new_vma); 2467 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2468 } 2469 } 2470 return new_vma; 2471 2472 out_free_mempol: 2473 mpol_put(pol); 2474 out_free_vma: 2475 kmem_cache_free(vm_area_cachep, new_vma); 2476 return NULL; 2477 } 2478 2479 /* 2480 * Return true if the calling process may expand its vm space by the passed 2481 * number of pages 2482 */ 2483 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2484 { 2485 unsigned long cur = mm->total_vm; /* pages */ 2486 unsigned long lim; 2487 2488 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2489 2490 if (cur + npages > lim) 2491 return 0; 2492 return 1; 2493 } 2494 2495 2496 static int special_mapping_fault(struct vm_area_struct *vma, 2497 struct vm_fault *vmf) 2498 { 2499 pgoff_t pgoff; 2500 struct page **pages; 2501 2502 /* 2503 * special mappings have no vm_file, and in that case, the mm 2504 * uses vm_pgoff internally. So we have to subtract it from here. 2505 * We are allowed to do this because we are the mm; do not copy 2506 * this code into drivers! 2507 */ 2508 pgoff = vmf->pgoff - vma->vm_pgoff; 2509 2510 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2511 pgoff--; 2512 2513 if (*pages) { 2514 struct page *page = *pages; 2515 get_page(page); 2516 vmf->page = page; 2517 return 0; 2518 } 2519 2520 return VM_FAULT_SIGBUS; 2521 } 2522 2523 /* 2524 * Having a close hook prevents vma merging regardless of flags. 2525 */ 2526 static void special_mapping_close(struct vm_area_struct *vma) 2527 { 2528 } 2529 2530 static const struct vm_operations_struct special_mapping_vmops = { 2531 .close = special_mapping_close, 2532 .fault = special_mapping_fault, 2533 }; 2534 2535 /* 2536 * Called with mm->mmap_sem held for writing. 2537 * Insert a new vma covering the given region, with the given flags. 2538 * Its pages are supplied by the given array of struct page *. 2539 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2540 * The region past the last page supplied will always produce SIGBUS. 2541 * The array pointer and the pages it points to are assumed to stay alive 2542 * for as long as this mapping might exist. 2543 */ 2544 int install_special_mapping(struct mm_struct *mm, 2545 unsigned long addr, unsigned long len, 2546 unsigned long vm_flags, struct page **pages) 2547 { 2548 int ret; 2549 struct vm_area_struct *vma; 2550 2551 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2552 if (unlikely(vma == NULL)) 2553 return -ENOMEM; 2554 2555 INIT_LIST_HEAD(&vma->anon_vma_chain); 2556 vma->vm_mm = mm; 2557 vma->vm_start = addr; 2558 vma->vm_end = addr + len; 2559 2560 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2561 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2562 2563 vma->vm_ops = &special_mapping_vmops; 2564 vma->vm_private_data = pages; 2565 2566 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2567 if (ret) 2568 goto out; 2569 2570 ret = insert_vm_struct(mm, vma); 2571 if (ret) 2572 goto out; 2573 2574 mm->total_vm += len >> PAGE_SHIFT; 2575 2576 perf_event_mmap(vma); 2577 2578 return 0; 2579 2580 out: 2581 kmem_cache_free(vm_area_cachep, vma); 2582 return ret; 2583 } 2584 2585 static DEFINE_MUTEX(mm_all_locks_mutex); 2586 2587 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2588 { 2589 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2590 /* 2591 * The LSB of head.next can't change from under us 2592 * because we hold the mm_all_locks_mutex. 2593 */ 2594 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2595 /* 2596 * We can safely modify head.next after taking the 2597 * anon_vma->root->mutex. If some other vma in this mm shares 2598 * the same anon_vma we won't take it again. 2599 * 2600 * No need of atomic instructions here, head.next 2601 * can't change from under us thanks to the 2602 * anon_vma->root->mutex. 2603 */ 2604 if (__test_and_set_bit(0, (unsigned long *) 2605 &anon_vma->root->head.next)) 2606 BUG(); 2607 } 2608 } 2609 2610 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2611 { 2612 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2613 /* 2614 * AS_MM_ALL_LOCKS can't change from under us because 2615 * we hold the mm_all_locks_mutex. 2616 * 2617 * Operations on ->flags have to be atomic because 2618 * even if AS_MM_ALL_LOCKS is stable thanks to the 2619 * mm_all_locks_mutex, there may be other cpus 2620 * changing other bitflags in parallel to us. 2621 */ 2622 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2623 BUG(); 2624 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2625 } 2626 } 2627 2628 /* 2629 * This operation locks against the VM for all pte/vma/mm related 2630 * operations that could ever happen on a certain mm. This includes 2631 * vmtruncate, try_to_unmap, and all page faults. 2632 * 2633 * The caller must take the mmap_sem in write mode before calling 2634 * mm_take_all_locks(). The caller isn't allowed to release the 2635 * mmap_sem until mm_drop_all_locks() returns. 2636 * 2637 * mmap_sem in write mode is required in order to block all operations 2638 * that could modify pagetables and free pages without need of 2639 * altering the vma layout (for example populate_range() with 2640 * nonlinear vmas). It's also needed in write mode to avoid new 2641 * anon_vmas to be associated with existing vmas. 2642 * 2643 * A single task can't take more than one mm_take_all_locks() in a row 2644 * or it would deadlock. 2645 * 2646 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2647 * mapping->flags avoid to take the same lock twice, if more than one 2648 * vma in this mm is backed by the same anon_vma or address_space. 2649 * 2650 * We can take all the locks in random order because the VM code 2651 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2652 * takes more than one of them in a row. Secondly we're protected 2653 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2654 * 2655 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2656 * that may have to take thousand of locks. 2657 * 2658 * mm_take_all_locks() can fail if it's interrupted by signals. 2659 */ 2660 int mm_take_all_locks(struct mm_struct *mm) 2661 { 2662 struct vm_area_struct *vma; 2663 struct anon_vma_chain *avc; 2664 2665 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2666 2667 mutex_lock(&mm_all_locks_mutex); 2668 2669 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2670 if (signal_pending(current)) 2671 goto out_unlock; 2672 if (vma->vm_file && vma->vm_file->f_mapping) 2673 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2674 } 2675 2676 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2677 if (signal_pending(current)) 2678 goto out_unlock; 2679 if (vma->anon_vma) 2680 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2681 vm_lock_anon_vma(mm, avc->anon_vma); 2682 } 2683 2684 return 0; 2685 2686 out_unlock: 2687 mm_drop_all_locks(mm); 2688 return -EINTR; 2689 } 2690 2691 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2692 { 2693 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2694 /* 2695 * The LSB of head.next can't change to 0 from under 2696 * us because we hold the mm_all_locks_mutex. 2697 * 2698 * We must however clear the bitflag before unlocking 2699 * the vma so the users using the anon_vma->head will 2700 * never see our bitflag. 2701 * 2702 * No need of atomic instructions here, head.next 2703 * can't change from under us until we release the 2704 * anon_vma->root->mutex. 2705 */ 2706 if (!__test_and_clear_bit(0, (unsigned long *) 2707 &anon_vma->root->head.next)) 2708 BUG(); 2709 anon_vma_unlock(anon_vma); 2710 } 2711 } 2712 2713 static void vm_unlock_mapping(struct address_space *mapping) 2714 { 2715 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2716 /* 2717 * AS_MM_ALL_LOCKS can't change to 0 from under us 2718 * because we hold the mm_all_locks_mutex. 2719 */ 2720 mutex_unlock(&mapping->i_mmap_mutex); 2721 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2722 &mapping->flags)) 2723 BUG(); 2724 } 2725 } 2726 2727 /* 2728 * The mmap_sem cannot be released by the caller until 2729 * mm_drop_all_locks() returns. 2730 */ 2731 void mm_drop_all_locks(struct mm_struct *mm) 2732 { 2733 struct vm_area_struct *vma; 2734 struct anon_vma_chain *avc; 2735 2736 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2737 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2738 2739 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2740 if (vma->anon_vma) 2741 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2742 vm_unlock_anon_vma(avc->anon_vma); 2743 if (vma->vm_file && vma->vm_file->f_mapping) 2744 vm_unlock_mapping(vma->vm_file->f_mapping); 2745 } 2746 2747 mutex_unlock(&mm_all_locks_mutex); 2748 } 2749 2750 /* 2751 * initialise the VMA slab 2752 */ 2753 void __init mmap_init(void) 2754 { 2755 int ret; 2756 2757 ret = percpu_counter_init(&vm_committed_as, 0); 2758 VM_BUG_ON(ret); 2759 } 2760