xref: /linux/mm/mmap.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39 
40 #include "internal.h"
41 
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)	(0)
44 #endif
45 
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)		(addr)
48 #endif
49 
50 static void unmap_region(struct mm_struct *mm,
51 		struct vm_area_struct *vma, struct vm_area_struct *prev,
52 		unsigned long start, unsigned long end);
53 
54 /* description of effects of mapping type and prot in current implementation.
55  * this is due to the limited x86 page protection hardware.  The expected
56  * behavior is in parens:
57  *
58  * map_type	prot
59  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
60  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
61  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
62  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
63  *
64  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
65  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
66  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
67  *
68  */
69 pgprot_t protection_map[16] = {
70 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
71 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
72 };
73 
74 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 {
76 	return __pgprot(pgprot_val(protection_map[vm_flags &
77 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
78 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
79 }
80 EXPORT_SYMBOL(vm_get_page_prot);
81 
82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
83 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
85 /*
86  * Make sure vm_committed_as in one cacheline and not cacheline shared with
87  * other variables. It can be updated by several CPUs frequently.
88  */
89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
90 
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 	unsigned long free, allowed;
110 
111 	vm_acct_memory(pages);
112 
113 	/*
114 	 * Sometimes we want to use more memory than we have
115 	 */
116 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 		return 0;
118 
119 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 		free = global_page_state(NR_FREE_PAGES);
121 		free += global_page_state(NR_FILE_PAGES);
122 
123 		/*
124 		 * shmem pages shouldn't be counted as free in this
125 		 * case, they can't be purged, only swapped out, and
126 		 * that won't affect the overall amount of available
127 		 * memory in the system.
128 		 */
129 		free -= global_page_state(NR_SHMEM);
130 
131 		free += nr_swap_pages;
132 
133 		/*
134 		 * Any slabs which are created with the
135 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
136 		 * which are reclaimable, under pressure.  The dentry
137 		 * cache and most inode caches should fall into this
138 		 */
139 		free += global_page_state(NR_SLAB_RECLAIMABLE);
140 
141 		/*
142 		 * Leave reserved pages. The pages are not for anonymous pages.
143 		 */
144 		if (free <= totalreserve_pages)
145 			goto error;
146 		else
147 			free -= totalreserve_pages;
148 
149 		/*
150 		 * Leave the last 3% for root
151 		 */
152 		if (!cap_sys_admin)
153 			free -= free / 32;
154 
155 		if (free > pages)
156 			return 0;
157 
158 		goto error;
159 	}
160 
161 	allowed = (totalram_pages - hugetlb_total_pages())
162 	       	* sysctl_overcommit_ratio / 100;
163 	/*
164 	 * Leave the last 3% for root
165 	 */
166 	if (!cap_sys_admin)
167 		allowed -= allowed / 32;
168 	allowed += total_swap_pages;
169 
170 	/* Don't let a single process grow too big:
171 	   leave 3% of the size of this process for other processes */
172 	if (mm)
173 		allowed -= mm->total_vm / 32;
174 
175 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
176 		return 0;
177 error:
178 	vm_unacct_memory(pages);
179 
180 	return -ENOMEM;
181 }
182 
183 /*
184  * Requires inode->i_mapping->i_mmap_mutex
185  */
186 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
187 		struct file *file, struct address_space *mapping)
188 {
189 	if (vma->vm_flags & VM_DENYWRITE)
190 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
191 	if (vma->vm_flags & VM_SHARED)
192 		mapping->i_mmap_writable--;
193 
194 	flush_dcache_mmap_lock(mapping);
195 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
196 		list_del_init(&vma->shared.nonlinear);
197 	else
198 		vma_interval_tree_remove(vma, &mapping->i_mmap);
199 	flush_dcache_mmap_unlock(mapping);
200 }
201 
202 /*
203  * Unlink a file-based vm structure from its interval tree, to hide
204  * vma from rmap and vmtruncate before freeing its page tables.
205  */
206 void unlink_file_vma(struct vm_area_struct *vma)
207 {
208 	struct file *file = vma->vm_file;
209 
210 	if (file) {
211 		struct address_space *mapping = file->f_mapping;
212 		mutex_lock(&mapping->i_mmap_mutex);
213 		__remove_shared_vm_struct(vma, file, mapping);
214 		mutex_unlock(&mapping->i_mmap_mutex);
215 	}
216 }
217 
218 /*
219  * Close a vm structure and free it, returning the next.
220  */
221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
222 {
223 	struct vm_area_struct *next = vma->vm_next;
224 
225 	might_sleep();
226 	if (vma->vm_ops && vma->vm_ops->close)
227 		vma->vm_ops->close(vma);
228 	if (vma->vm_file)
229 		fput(vma->vm_file);
230 	mpol_put(vma_policy(vma));
231 	kmem_cache_free(vm_area_cachep, vma);
232 	return next;
233 }
234 
235 static unsigned long do_brk(unsigned long addr, unsigned long len);
236 
237 SYSCALL_DEFINE1(brk, unsigned long, brk)
238 {
239 	unsigned long rlim, retval;
240 	unsigned long newbrk, oldbrk;
241 	struct mm_struct *mm = current->mm;
242 	unsigned long min_brk;
243 
244 	down_write(&mm->mmap_sem);
245 
246 #ifdef CONFIG_COMPAT_BRK
247 	/*
248 	 * CONFIG_COMPAT_BRK can still be overridden by setting
249 	 * randomize_va_space to 2, which will still cause mm->start_brk
250 	 * to be arbitrarily shifted
251 	 */
252 	if (current->brk_randomized)
253 		min_brk = mm->start_brk;
254 	else
255 		min_brk = mm->end_data;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = rlimit(RLIMIT_DATA);
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef CONFIG_DEBUG_VM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *vma = mm->mmap;
335 	while (vma) {
336 		struct anon_vma_chain *avc;
337 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
338 			anon_vma_interval_tree_verify(avc);
339 		vma = vma->vm_next;
340 		i++;
341 	}
342 	if (i != mm->map_count)
343 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
344 	i = browse_rb(&mm->mm_rb);
345 	if (i != mm->map_count)
346 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
347 	BUG_ON(bug);
348 }
349 #else
350 #define validate_mm(mm) do { } while (0)
351 #endif
352 
353 /*
354  * vma has some anon_vma assigned, and is already inserted on that
355  * anon_vma's interval trees.
356  *
357  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
358  * vma must be removed from the anon_vma's interval trees using
359  * anon_vma_interval_tree_pre_update_vma().
360  *
361  * After the update, the vma will be reinserted using
362  * anon_vma_interval_tree_post_update_vma().
363  *
364  * The entire update must be protected by exclusive mmap_sem and by
365  * the root anon_vma's mutex.
366  */
367 static inline void
368 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
369 {
370 	struct anon_vma_chain *avc;
371 
372 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
373 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
374 }
375 
376 static inline void
377 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
378 {
379 	struct anon_vma_chain *avc;
380 
381 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
382 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
383 }
384 
385 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
386 		unsigned long end, struct vm_area_struct **pprev,
387 		struct rb_node ***rb_link, struct rb_node **rb_parent)
388 {
389 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
390 
391 	__rb_link = &mm->mm_rb.rb_node;
392 	rb_prev = __rb_parent = NULL;
393 
394 	while (*__rb_link) {
395 		struct vm_area_struct *vma_tmp;
396 
397 		__rb_parent = *__rb_link;
398 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
399 
400 		if (vma_tmp->vm_end > addr) {
401 			/* Fail if an existing vma overlaps the area */
402 			if (vma_tmp->vm_start < end)
403 				return -ENOMEM;
404 			__rb_link = &__rb_parent->rb_left;
405 		} else {
406 			rb_prev = __rb_parent;
407 			__rb_link = &__rb_parent->rb_right;
408 		}
409 	}
410 
411 	*pprev = NULL;
412 	if (rb_prev)
413 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
414 	*rb_link = __rb_link;
415 	*rb_parent = __rb_parent;
416 	return 0;
417 }
418 
419 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
420 		struct rb_node **rb_link, struct rb_node *rb_parent)
421 {
422 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
423 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
424 }
425 
426 static void __vma_link_file(struct vm_area_struct *vma)
427 {
428 	struct file *file;
429 
430 	file = vma->vm_file;
431 	if (file) {
432 		struct address_space *mapping = file->f_mapping;
433 
434 		if (vma->vm_flags & VM_DENYWRITE)
435 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
436 		if (vma->vm_flags & VM_SHARED)
437 			mapping->i_mmap_writable++;
438 
439 		flush_dcache_mmap_lock(mapping);
440 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
441 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
442 		else
443 			vma_interval_tree_insert(vma, &mapping->i_mmap);
444 		flush_dcache_mmap_unlock(mapping);
445 	}
446 }
447 
448 static void
449 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450 	struct vm_area_struct *prev, struct rb_node **rb_link,
451 	struct rb_node *rb_parent)
452 {
453 	__vma_link_list(mm, vma, prev, rb_parent);
454 	__vma_link_rb(mm, vma, rb_link, rb_parent);
455 }
456 
457 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
458 			struct vm_area_struct *prev, struct rb_node **rb_link,
459 			struct rb_node *rb_parent)
460 {
461 	struct address_space *mapping = NULL;
462 
463 	if (vma->vm_file)
464 		mapping = vma->vm_file->f_mapping;
465 
466 	if (mapping)
467 		mutex_lock(&mapping->i_mmap_mutex);
468 
469 	__vma_link(mm, vma, prev, rb_link, rb_parent);
470 	__vma_link_file(vma);
471 
472 	if (mapping)
473 		mutex_unlock(&mapping->i_mmap_mutex);
474 
475 	mm->map_count++;
476 	validate_mm(mm);
477 }
478 
479 /*
480  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
481  * mm's list and rbtree.  It has already been inserted into the interval tree.
482  */
483 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
484 {
485 	struct vm_area_struct *prev;
486 	struct rb_node **rb_link, *rb_parent;
487 
488 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
489 			   &prev, &rb_link, &rb_parent))
490 		BUG();
491 	__vma_link(mm, vma, prev, rb_link, rb_parent);
492 	mm->map_count++;
493 }
494 
495 static inline void
496 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
497 		struct vm_area_struct *prev)
498 {
499 	struct vm_area_struct *next = vma->vm_next;
500 
501 	prev->vm_next = next;
502 	if (next)
503 		next->vm_prev = prev;
504 	rb_erase(&vma->vm_rb, &mm->mm_rb);
505 	if (mm->mmap_cache == vma)
506 		mm->mmap_cache = prev;
507 }
508 
509 /*
510  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
511  * is already present in an i_mmap tree without adjusting the tree.
512  * The following helper function should be used when such adjustments
513  * are necessary.  The "insert" vma (if any) is to be inserted
514  * before we drop the necessary locks.
515  */
516 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
517 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
518 {
519 	struct mm_struct *mm = vma->vm_mm;
520 	struct vm_area_struct *next = vma->vm_next;
521 	struct vm_area_struct *importer = NULL;
522 	struct address_space *mapping = NULL;
523 	struct rb_root *root = NULL;
524 	struct anon_vma *anon_vma = NULL;
525 	struct file *file = vma->vm_file;
526 	long adjust_next = 0;
527 	int remove_next = 0;
528 
529 	if (next && !insert) {
530 		struct vm_area_struct *exporter = NULL;
531 
532 		if (end >= next->vm_end) {
533 			/*
534 			 * vma expands, overlapping all the next, and
535 			 * perhaps the one after too (mprotect case 6).
536 			 */
537 again:			remove_next = 1 + (end > next->vm_end);
538 			end = next->vm_end;
539 			exporter = next;
540 			importer = vma;
541 		} else if (end > next->vm_start) {
542 			/*
543 			 * vma expands, overlapping part of the next:
544 			 * mprotect case 5 shifting the boundary up.
545 			 */
546 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
547 			exporter = next;
548 			importer = vma;
549 		} else if (end < vma->vm_end) {
550 			/*
551 			 * vma shrinks, and !insert tells it's not
552 			 * split_vma inserting another: so it must be
553 			 * mprotect case 4 shifting the boundary down.
554 			 */
555 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
556 			exporter = vma;
557 			importer = next;
558 		}
559 
560 		/*
561 		 * Easily overlooked: when mprotect shifts the boundary,
562 		 * make sure the expanding vma has anon_vma set if the
563 		 * shrinking vma had, to cover any anon pages imported.
564 		 */
565 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
566 			if (anon_vma_clone(importer, exporter))
567 				return -ENOMEM;
568 			importer->anon_vma = exporter->anon_vma;
569 		}
570 	}
571 
572 	if (file) {
573 		mapping = file->f_mapping;
574 		if (!(vma->vm_flags & VM_NONLINEAR)) {
575 			root = &mapping->i_mmap;
576 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
577 
578 			if (adjust_next)
579 				uprobe_munmap(next, next->vm_start,
580 							next->vm_end);
581 		}
582 
583 		mutex_lock(&mapping->i_mmap_mutex);
584 		if (insert) {
585 			/*
586 			 * Put into interval tree now, so instantiated pages
587 			 * are visible to arm/parisc __flush_dcache_page
588 			 * throughout; but we cannot insert into address
589 			 * space until vma start or end is updated.
590 			 */
591 			__vma_link_file(insert);
592 		}
593 	}
594 
595 	vma_adjust_trans_huge(vma, start, end, adjust_next);
596 
597 	anon_vma = vma->anon_vma;
598 	if (!anon_vma && adjust_next)
599 		anon_vma = next->anon_vma;
600 	if (anon_vma) {
601 		VM_BUG_ON(adjust_next && next->anon_vma &&
602 			  anon_vma != next->anon_vma);
603 		anon_vma_lock(anon_vma);
604 		anon_vma_interval_tree_pre_update_vma(vma);
605 		if (adjust_next)
606 			anon_vma_interval_tree_pre_update_vma(next);
607 	}
608 
609 	if (root) {
610 		flush_dcache_mmap_lock(mapping);
611 		vma_interval_tree_remove(vma, root);
612 		if (adjust_next)
613 			vma_interval_tree_remove(next, root);
614 	}
615 
616 	vma->vm_start = start;
617 	vma->vm_end = end;
618 	vma->vm_pgoff = pgoff;
619 	if (adjust_next) {
620 		next->vm_start += adjust_next << PAGE_SHIFT;
621 		next->vm_pgoff += adjust_next;
622 	}
623 
624 	if (root) {
625 		if (adjust_next)
626 			vma_interval_tree_insert(next, root);
627 		vma_interval_tree_insert(vma, root);
628 		flush_dcache_mmap_unlock(mapping);
629 	}
630 
631 	if (remove_next) {
632 		/*
633 		 * vma_merge has merged next into vma, and needs
634 		 * us to remove next before dropping the locks.
635 		 */
636 		__vma_unlink(mm, next, vma);
637 		if (file)
638 			__remove_shared_vm_struct(next, file, mapping);
639 	} else if (insert) {
640 		/*
641 		 * split_vma has split insert from vma, and needs
642 		 * us to insert it before dropping the locks
643 		 * (it may either follow vma or precede it).
644 		 */
645 		__insert_vm_struct(mm, insert);
646 	}
647 
648 	if (anon_vma) {
649 		anon_vma_interval_tree_post_update_vma(vma);
650 		if (adjust_next)
651 			anon_vma_interval_tree_post_update_vma(next);
652 		anon_vma_unlock(anon_vma);
653 	}
654 	if (mapping)
655 		mutex_unlock(&mapping->i_mmap_mutex);
656 
657 	if (root) {
658 		uprobe_mmap(vma);
659 
660 		if (adjust_next)
661 			uprobe_mmap(next);
662 	}
663 
664 	if (remove_next) {
665 		if (file) {
666 			uprobe_munmap(next, next->vm_start, next->vm_end);
667 			fput(file);
668 		}
669 		if (next->anon_vma)
670 			anon_vma_merge(vma, next);
671 		mm->map_count--;
672 		mpol_put(vma_policy(next));
673 		kmem_cache_free(vm_area_cachep, next);
674 		/*
675 		 * In mprotect's case 6 (see comments on vma_merge),
676 		 * we must remove another next too. It would clutter
677 		 * up the code too much to do both in one go.
678 		 */
679 		if (remove_next == 2) {
680 			next = vma->vm_next;
681 			goto again;
682 		}
683 	}
684 	if (insert && file)
685 		uprobe_mmap(insert);
686 
687 	validate_mm(mm);
688 
689 	return 0;
690 }
691 
692 /*
693  * If the vma has a ->close operation then the driver probably needs to release
694  * per-vma resources, so we don't attempt to merge those.
695  */
696 static inline int is_mergeable_vma(struct vm_area_struct *vma,
697 			struct file *file, unsigned long vm_flags)
698 {
699 	if (vma->vm_flags ^ vm_flags)
700 		return 0;
701 	if (vma->vm_file != file)
702 		return 0;
703 	if (vma->vm_ops && vma->vm_ops->close)
704 		return 0;
705 	return 1;
706 }
707 
708 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
709 					struct anon_vma *anon_vma2,
710 					struct vm_area_struct *vma)
711 {
712 	/*
713 	 * The list_is_singular() test is to avoid merging VMA cloned from
714 	 * parents. This can improve scalability caused by anon_vma lock.
715 	 */
716 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
717 		list_is_singular(&vma->anon_vma_chain)))
718 		return 1;
719 	return anon_vma1 == anon_vma2;
720 }
721 
722 /*
723  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
724  * in front of (at a lower virtual address and file offset than) the vma.
725  *
726  * We cannot merge two vmas if they have differently assigned (non-NULL)
727  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
728  *
729  * We don't check here for the merged mmap wrapping around the end of pagecache
730  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
731  * wrap, nor mmaps which cover the final page at index -1UL.
732  */
733 static int
734 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
735 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
736 {
737 	if (is_mergeable_vma(vma, file, vm_flags) &&
738 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
739 		if (vma->vm_pgoff == vm_pgoff)
740 			return 1;
741 	}
742 	return 0;
743 }
744 
745 /*
746  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
747  * beyond (at a higher virtual address and file offset than) the vma.
748  *
749  * We cannot merge two vmas if they have differently assigned (non-NULL)
750  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
751  */
752 static int
753 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
754 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
755 {
756 	if (is_mergeable_vma(vma, file, vm_flags) &&
757 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
758 		pgoff_t vm_pglen;
759 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
760 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
761 			return 1;
762 	}
763 	return 0;
764 }
765 
766 /*
767  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
768  * whether that can be merged with its predecessor or its successor.
769  * Or both (it neatly fills a hole).
770  *
771  * In most cases - when called for mmap, brk or mremap - [addr,end) is
772  * certain not to be mapped by the time vma_merge is called; but when
773  * called for mprotect, it is certain to be already mapped (either at
774  * an offset within prev, or at the start of next), and the flags of
775  * this area are about to be changed to vm_flags - and the no-change
776  * case has already been eliminated.
777  *
778  * The following mprotect cases have to be considered, where AAAA is
779  * the area passed down from mprotect_fixup, never extending beyond one
780  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
781  *
782  *     AAAA             AAAA                AAAA          AAAA
783  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
784  *    cannot merge    might become    might become    might become
785  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
786  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
787  *    mremap move:                                    PPPPNNNNNNNN 8
788  *        AAAA
789  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
790  *    might become    case 1 below    case 2 below    case 3 below
791  *
792  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
793  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
794  */
795 struct vm_area_struct *vma_merge(struct mm_struct *mm,
796 			struct vm_area_struct *prev, unsigned long addr,
797 			unsigned long end, unsigned long vm_flags,
798 		     	struct anon_vma *anon_vma, struct file *file,
799 			pgoff_t pgoff, struct mempolicy *policy)
800 {
801 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
802 	struct vm_area_struct *area, *next;
803 	int err;
804 
805 	/*
806 	 * We later require that vma->vm_flags == vm_flags,
807 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
808 	 */
809 	if (vm_flags & VM_SPECIAL)
810 		return NULL;
811 
812 	if (prev)
813 		next = prev->vm_next;
814 	else
815 		next = mm->mmap;
816 	area = next;
817 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
818 		next = next->vm_next;
819 
820 	/*
821 	 * Can it merge with the predecessor?
822 	 */
823 	if (prev && prev->vm_end == addr &&
824   			mpol_equal(vma_policy(prev), policy) &&
825 			can_vma_merge_after(prev, vm_flags,
826 						anon_vma, file, pgoff)) {
827 		/*
828 		 * OK, it can.  Can we now merge in the successor as well?
829 		 */
830 		if (next && end == next->vm_start &&
831 				mpol_equal(policy, vma_policy(next)) &&
832 				can_vma_merge_before(next, vm_flags,
833 					anon_vma, file, pgoff+pglen) &&
834 				is_mergeable_anon_vma(prev->anon_vma,
835 						      next->anon_vma, NULL)) {
836 							/* cases 1, 6 */
837 			err = vma_adjust(prev, prev->vm_start,
838 				next->vm_end, prev->vm_pgoff, NULL);
839 		} else					/* cases 2, 5, 7 */
840 			err = vma_adjust(prev, prev->vm_start,
841 				end, prev->vm_pgoff, NULL);
842 		if (err)
843 			return NULL;
844 		khugepaged_enter_vma_merge(prev);
845 		return prev;
846 	}
847 
848 	/*
849 	 * Can this new request be merged in front of next?
850 	 */
851 	if (next && end == next->vm_start &&
852  			mpol_equal(policy, vma_policy(next)) &&
853 			can_vma_merge_before(next, vm_flags,
854 					anon_vma, file, pgoff+pglen)) {
855 		if (prev && addr < prev->vm_end)	/* case 4 */
856 			err = vma_adjust(prev, prev->vm_start,
857 				addr, prev->vm_pgoff, NULL);
858 		else					/* cases 3, 8 */
859 			err = vma_adjust(area, addr, next->vm_end,
860 				next->vm_pgoff - pglen, NULL);
861 		if (err)
862 			return NULL;
863 		khugepaged_enter_vma_merge(area);
864 		return area;
865 	}
866 
867 	return NULL;
868 }
869 
870 /*
871  * Rough compatbility check to quickly see if it's even worth looking
872  * at sharing an anon_vma.
873  *
874  * They need to have the same vm_file, and the flags can only differ
875  * in things that mprotect may change.
876  *
877  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
878  * we can merge the two vma's. For example, we refuse to merge a vma if
879  * there is a vm_ops->close() function, because that indicates that the
880  * driver is doing some kind of reference counting. But that doesn't
881  * really matter for the anon_vma sharing case.
882  */
883 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
884 {
885 	return a->vm_end == b->vm_start &&
886 		mpol_equal(vma_policy(a), vma_policy(b)) &&
887 		a->vm_file == b->vm_file &&
888 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
889 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
890 }
891 
892 /*
893  * Do some basic sanity checking to see if we can re-use the anon_vma
894  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
895  * the same as 'old', the other will be the new one that is trying
896  * to share the anon_vma.
897  *
898  * NOTE! This runs with mm_sem held for reading, so it is possible that
899  * the anon_vma of 'old' is concurrently in the process of being set up
900  * by another page fault trying to merge _that_. But that's ok: if it
901  * is being set up, that automatically means that it will be a singleton
902  * acceptable for merging, so we can do all of this optimistically. But
903  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
904  *
905  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
906  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
907  * is to return an anon_vma that is "complex" due to having gone through
908  * a fork).
909  *
910  * We also make sure that the two vma's are compatible (adjacent,
911  * and with the same memory policies). That's all stable, even with just
912  * a read lock on the mm_sem.
913  */
914 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
915 {
916 	if (anon_vma_compatible(a, b)) {
917 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
918 
919 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
920 			return anon_vma;
921 	}
922 	return NULL;
923 }
924 
925 /*
926  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
927  * neighbouring vmas for a suitable anon_vma, before it goes off
928  * to allocate a new anon_vma.  It checks because a repetitive
929  * sequence of mprotects and faults may otherwise lead to distinct
930  * anon_vmas being allocated, preventing vma merge in subsequent
931  * mprotect.
932  */
933 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
934 {
935 	struct anon_vma *anon_vma;
936 	struct vm_area_struct *near;
937 
938 	near = vma->vm_next;
939 	if (!near)
940 		goto try_prev;
941 
942 	anon_vma = reusable_anon_vma(near, vma, near);
943 	if (anon_vma)
944 		return anon_vma;
945 try_prev:
946 	near = vma->vm_prev;
947 	if (!near)
948 		goto none;
949 
950 	anon_vma = reusable_anon_vma(near, near, vma);
951 	if (anon_vma)
952 		return anon_vma;
953 none:
954 	/*
955 	 * There's no absolute need to look only at touching neighbours:
956 	 * we could search further afield for "compatible" anon_vmas.
957 	 * But it would probably just be a waste of time searching,
958 	 * or lead to too many vmas hanging off the same anon_vma.
959 	 * We're trying to allow mprotect remerging later on,
960 	 * not trying to minimize memory used for anon_vmas.
961 	 */
962 	return NULL;
963 }
964 
965 #ifdef CONFIG_PROC_FS
966 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
967 						struct file *file, long pages)
968 {
969 	const unsigned long stack_flags
970 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
971 
972 	mm->total_vm += pages;
973 
974 	if (file) {
975 		mm->shared_vm += pages;
976 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
977 			mm->exec_vm += pages;
978 	} else if (flags & stack_flags)
979 		mm->stack_vm += pages;
980 }
981 #endif /* CONFIG_PROC_FS */
982 
983 /*
984  * If a hint addr is less than mmap_min_addr change hint to be as
985  * low as possible but still greater than mmap_min_addr
986  */
987 static inline unsigned long round_hint_to_min(unsigned long hint)
988 {
989 	hint &= PAGE_MASK;
990 	if (((void *)hint != NULL) &&
991 	    (hint < mmap_min_addr))
992 		return PAGE_ALIGN(mmap_min_addr);
993 	return hint;
994 }
995 
996 /*
997  * The caller must hold down_write(&current->mm->mmap_sem).
998  */
999 
1000 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1001 			unsigned long len, unsigned long prot,
1002 			unsigned long flags, unsigned long pgoff)
1003 {
1004 	struct mm_struct * mm = current->mm;
1005 	struct inode *inode;
1006 	vm_flags_t vm_flags;
1007 
1008 	/*
1009 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1010 	 *
1011 	 * (the exception is when the underlying filesystem is noexec
1012 	 *  mounted, in which case we dont add PROT_EXEC.)
1013 	 */
1014 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1015 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1016 			prot |= PROT_EXEC;
1017 
1018 	if (!len)
1019 		return -EINVAL;
1020 
1021 	if (!(flags & MAP_FIXED))
1022 		addr = round_hint_to_min(addr);
1023 
1024 	/* Careful about overflows.. */
1025 	len = PAGE_ALIGN(len);
1026 	if (!len)
1027 		return -ENOMEM;
1028 
1029 	/* offset overflow? */
1030 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1031                return -EOVERFLOW;
1032 
1033 	/* Too many mappings? */
1034 	if (mm->map_count > sysctl_max_map_count)
1035 		return -ENOMEM;
1036 
1037 	/* Obtain the address to map to. we verify (or select) it and ensure
1038 	 * that it represents a valid section of the address space.
1039 	 */
1040 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1041 	if (addr & ~PAGE_MASK)
1042 		return addr;
1043 
1044 	/* Do simple checking here so the lower-level routines won't have
1045 	 * to. we assume access permissions have been handled by the open
1046 	 * of the memory object, so we don't do any here.
1047 	 */
1048 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1049 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1050 
1051 	if (flags & MAP_LOCKED)
1052 		if (!can_do_mlock())
1053 			return -EPERM;
1054 
1055 	/* mlock MCL_FUTURE? */
1056 	if (vm_flags & VM_LOCKED) {
1057 		unsigned long locked, lock_limit;
1058 		locked = len >> PAGE_SHIFT;
1059 		locked += mm->locked_vm;
1060 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1061 		lock_limit >>= PAGE_SHIFT;
1062 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1063 			return -EAGAIN;
1064 	}
1065 
1066 	inode = file ? file->f_path.dentry->d_inode : NULL;
1067 
1068 	if (file) {
1069 		switch (flags & MAP_TYPE) {
1070 		case MAP_SHARED:
1071 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1072 				return -EACCES;
1073 
1074 			/*
1075 			 * Make sure we don't allow writing to an append-only
1076 			 * file..
1077 			 */
1078 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1079 				return -EACCES;
1080 
1081 			/*
1082 			 * Make sure there are no mandatory locks on the file.
1083 			 */
1084 			if (locks_verify_locked(inode))
1085 				return -EAGAIN;
1086 
1087 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1088 			if (!(file->f_mode & FMODE_WRITE))
1089 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1090 
1091 			/* fall through */
1092 		case MAP_PRIVATE:
1093 			if (!(file->f_mode & FMODE_READ))
1094 				return -EACCES;
1095 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1096 				if (vm_flags & VM_EXEC)
1097 					return -EPERM;
1098 				vm_flags &= ~VM_MAYEXEC;
1099 			}
1100 
1101 			if (!file->f_op || !file->f_op->mmap)
1102 				return -ENODEV;
1103 			break;
1104 
1105 		default:
1106 			return -EINVAL;
1107 		}
1108 	} else {
1109 		switch (flags & MAP_TYPE) {
1110 		case MAP_SHARED:
1111 			/*
1112 			 * Ignore pgoff.
1113 			 */
1114 			pgoff = 0;
1115 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1116 			break;
1117 		case MAP_PRIVATE:
1118 			/*
1119 			 * Set pgoff according to addr for anon_vma.
1120 			 */
1121 			pgoff = addr >> PAGE_SHIFT;
1122 			break;
1123 		default:
1124 			return -EINVAL;
1125 		}
1126 	}
1127 
1128 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1129 }
1130 
1131 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1132 		unsigned long, prot, unsigned long, flags,
1133 		unsigned long, fd, unsigned long, pgoff)
1134 {
1135 	struct file *file = NULL;
1136 	unsigned long retval = -EBADF;
1137 
1138 	if (!(flags & MAP_ANONYMOUS)) {
1139 		audit_mmap_fd(fd, flags);
1140 		if (unlikely(flags & MAP_HUGETLB))
1141 			return -EINVAL;
1142 		file = fget(fd);
1143 		if (!file)
1144 			goto out;
1145 	} else if (flags & MAP_HUGETLB) {
1146 		struct user_struct *user = NULL;
1147 		/*
1148 		 * VM_NORESERVE is used because the reservations will be
1149 		 * taken when vm_ops->mmap() is called
1150 		 * A dummy user value is used because we are not locking
1151 		 * memory so no accounting is necessary
1152 		 */
1153 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1154 						VM_NORESERVE, &user,
1155 						HUGETLB_ANONHUGE_INODE);
1156 		if (IS_ERR(file))
1157 			return PTR_ERR(file);
1158 	}
1159 
1160 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1161 
1162 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1163 	if (file)
1164 		fput(file);
1165 out:
1166 	return retval;
1167 }
1168 
1169 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1170 struct mmap_arg_struct {
1171 	unsigned long addr;
1172 	unsigned long len;
1173 	unsigned long prot;
1174 	unsigned long flags;
1175 	unsigned long fd;
1176 	unsigned long offset;
1177 };
1178 
1179 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1180 {
1181 	struct mmap_arg_struct a;
1182 
1183 	if (copy_from_user(&a, arg, sizeof(a)))
1184 		return -EFAULT;
1185 	if (a.offset & ~PAGE_MASK)
1186 		return -EINVAL;
1187 
1188 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1189 			      a.offset >> PAGE_SHIFT);
1190 }
1191 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1192 
1193 /*
1194  * Some shared mappigns will want the pages marked read-only
1195  * to track write events. If so, we'll downgrade vm_page_prot
1196  * to the private version (using protection_map[] without the
1197  * VM_SHARED bit).
1198  */
1199 int vma_wants_writenotify(struct vm_area_struct *vma)
1200 {
1201 	vm_flags_t vm_flags = vma->vm_flags;
1202 
1203 	/* If it was private or non-writable, the write bit is already clear */
1204 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1205 		return 0;
1206 
1207 	/* The backer wishes to know when pages are first written to? */
1208 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1209 		return 1;
1210 
1211 	/* The open routine did something to the protections already? */
1212 	if (pgprot_val(vma->vm_page_prot) !=
1213 	    pgprot_val(vm_get_page_prot(vm_flags)))
1214 		return 0;
1215 
1216 	/* Specialty mapping? */
1217 	if (vm_flags & VM_PFNMAP)
1218 		return 0;
1219 
1220 	/* Can the mapping track the dirty pages? */
1221 	return vma->vm_file && vma->vm_file->f_mapping &&
1222 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1223 }
1224 
1225 /*
1226  * We account for memory if it's a private writeable mapping,
1227  * not hugepages and VM_NORESERVE wasn't set.
1228  */
1229 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1230 {
1231 	/*
1232 	 * hugetlb has its own accounting separate from the core VM
1233 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1234 	 */
1235 	if (file && is_file_hugepages(file))
1236 		return 0;
1237 
1238 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1239 }
1240 
1241 unsigned long mmap_region(struct file *file, unsigned long addr,
1242 			  unsigned long len, unsigned long flags,
1243 			  vm_flags_t vm_flags, unsigned long pgoff)
1244 {
1245 	struct mm_struct *mm = current->mm;
1246 	struct vm_area_struct *vma, *prev;
1247 	int correct_wcount = 0;
1248 	int error;
1249 	struct rb_node **rb_link, *rb_parent;
1250 	unsigned long charged = 0;
1251 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1252 
1253 	/* Clear old maps */
1254 	error = -ENOMEM;
1255 munmap_back:
1256 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1257 		if (do_munmap(mm, addr, len))
1258 			return -ENOMEM;
1259 		goto munmap_back;
1260 	}
1261 
1262 	/* Check against address space limit. */
1263 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1264 		return -ENOMEM;
1265 
1266 	/*
1267 	 * Set 'VM_NORESERVE' if we should not account for the
1268 	 * memory use of this mapping.
1269 	 */
1270 	if ((flags & MAP_NORESERVE)) {
1271 		/* We honor MAP_NORESERVE if allowed to overcommit */
1272 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1273 			vm_flags |= VM_NORESERVE;
1274 
1275 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1276 		if (file && is_file_hugepages(file))
1277 			vm_flags |= VM_NORESERVE;
1278 	}
1279 
1280 	/*
1281 	 * Private writable mapping: check memory availability
1282 	 */
1283 	if (accountable_mapping(file, vm_flags)) {
1284 		charged = len >> PAGE_SHIFT;
1285 		if (security_vm_enough_memory_mm(mm, charged))
1286 			return -ENOMEM;
1287 		vm_flags |= VM_ACCOUNT;
1288 	}
1289 
1290 	/*
1291 	 * Can we just expand an old mapping?
1292 	 */
1293 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1294 	if (vma)
1295 		goto out;
1296 
1297 	/*
1298 	 * Determine the object being mapped and call the appropriate
1299 	 * specific mapper. the address has already been validated, but
1300 	 * not unmapped, but the maps are removed from the list.
1301 	 */
1302 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1303 	if (!vma) {
1304 		error = -ENOMEM;
1305 		goto unacct_error;
1306 	}
1307 
1308 	vma->vm_mm = mm;
1309 	vma->vm_start = addr;
1310 	vma->vm_end = addr + len;
1311 	vma->vm_flags = vm_flags;
1312 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1313 	vma->vm_pgoff = pgoff;
1314 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1315 
1316 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1317 
1318 	if (file) {
1319 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1320 			goto free_vma;
1321 		if (vm_flags & VM_DENYWRITE) {
1322 			error = deny_write_access(file);
1323 			if (error)
1324 				goto free_vma;
1325 			correct_wcount = 1;
1326 		}
1327 		vma->vm_file = get_file(file);
1328 		error = file->f_op->mmap(file, vma);
1329 		if (error)
1330 			goto unmap_and_free_vma;
1331 
1332 		/* Can addr have changed??
1333 		 *
1334 		 * Answer: Yes, several device drivers can do it in their
1335 		 *         f_op->mmap method. -DaveM
1336 		 */
1337 		addr = vma->vm_start;
1338 		pgoff = vma->vm_pgoff;
1339 		vm_flags = vma->vm_flags;
1340 	} else if (vm_flags & VM_SHARED) {
1341 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1342 			goto free_vma;
1343 		error = shmem_zero_setup(vma);
1344 		if (error)
1345 			goto free_vma;
1346 	}
1347 
1348 	if (vma_wants_writenotify(vma)) {
1349 		pgprot_t pprot = vma->vm_page_prot;
1350 
1351 		/* Can vma->vm_page_prot have changed??
1352 		 *
1353 		 * Answer: Yes, drivers may have changed it in their
1354 		 *         f_op->mmap method.
1355 		 *
1356 		 * Ensures that vmas marked as uncached stay that way.
1357 		 */
1358 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1359 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1360 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1361 	}
1362 
1363 	vma_link(mm, vma, prev, rb_link, rb_parent);
1364 	file = vma->vm_file;
1365 
1366 	/* Once vma denies write, undo our temporary denial count */
1367 	if (correct_wcount)
1368 		atomic_inc(&inode->i_writecount);
1369 out:
1370 	perf_event_mmap(vma);
1371 
1372 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1373 	if (vm_flags & VM_LOCKED) {
1374 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1375 			mm->locked_vm += (len >> PAGE_SHIFT);
1376 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1377 		make_pages_present(addr, addr + len);
1378 
1379 	if (file)
1380 		uprobe_mmap(vma);
1381 
1382 	return addr;
1383 
1384 unmap_and_free_vma:
1385 	if (correct_wcount)
1386 		atomic_inc(&inode->i_writecount);
1387 	vma->vm_file = NULL;
1388 	fput(file);
1389 
1390 	/* Undo any partial mapping done by a device driver. */
1391 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1392 	charged = 0;
1393 free_vma:
1394 	kmem_cache_free(vm_area_cachep, vma);
1395 unacct_error:
1396 	if (charged)
1397 		vm_unacct_memory(charged);
1398 	return error;
1399 }
1400 
1401 /* Get an address range which is currently unmapped.
1402  * For shmat() with addr=0.
1403  *
1404  * Ugly calling convention alert:
1405  * Return value with the low bits set means error value,
1406  * ie
1407  *	if (ret & ~PAGE_MASK)
1408  *		error = ret;
1409  *
1410  * This function "knows" that -ENOMEM has the bits set.
1411  */
1412 #ifndef HAVE_ARCH_UNMAPPED_AREA
1413 unsigned long
1414 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1415 		unsigned long len, unsigned long pgoff, unsigned long flags)
1416 {
1417 	struct mm_struct *mm = current->mm;
1418 	struct vm_area_struct *vma;
1419 	unsigned long start_addr;
1420 
1421 	if (len > TASK_SIZE)
1422 		return -ENOMEM;
1423 
1424 	if (flags & MAP_FIXED)
1425 		return addr;
1426 
1427 	if (addr) {
1428 		addr = PAGE_ALIGN(addr);
1429 		vma = find_vma(mm, addr);
1430 		if (TASK_SIZE - len >= addr &&
1431 		    (!vma || addr + len <= vma->vm_start))
1432 			return addr;
1433 	}
1434 	if (len > mm->cached_hole_size) {
1435 	        start_addr = addr = mm->free_area_cache;
1436 	} else {
1437 	        start_addr = addr = TASK_UNMAPPED_BASE;
1438 	        mm->cached_hole_size = 0;
1439 	}
1440 
1441 full_search:
1442 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1443 		/* At this point:  (!vma || addr < vma->vm_end). */
1444 		if (TASK_SIZE - len < addr) {
1445 			/*
1446 			 * Start a new search - just in case we missed
1447 			 * some holes.
1448 			 */
1449 			if (start_addr != TASK_UNMAPPED_BASE) {
1450 				addr = TASK_UNMAPPED_BASE;
1451 			        start_addr = addr;
1452 				mm->cached_hole_size = 0;
1453 				goto full_search;
1454 			}
1455 			return -ENOMEM;
1456 		}
1457 		if (!vma || addr + len <= vma->vm_start) {
1458 			/*
1459 			 * Remember the place where we stopped the search:
1460 			 */
1461 			mm->free_area_cache = addr + len;
1462 			return addr;
1463 		}
1464 		if (addr + mm->cached_hole_size < vma->vm_start)
1465 		        mm->cached_hole_size = vma->vm_start - addr;
1466 		addr = vma->vm_end;
1467 	}
1468 }
1469 #endif
1470 
1471 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1472 {
1473 	/*
1474 	 * Is this a new hole at the lowest possible address?
1475 	 */
1476 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1477 		mm->free_area_cache = addr;
1478 }
1479 
1480 /*
1481  * This mmap-allocator allocates new areas top-down from below the
1482  * stack's low limit (the base):
1483  */
1484 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1485 unsigned long
1486 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1487 			  const unsigned long len, const unsigned long pgoff,
1488 			  const unsigned long flags)
1489 {
1490 	struct vm_area_struct *vma;
1491 	struct mm_struct *mm = current->mm;
1492 	unsigned long addr = addr0, start_addr;
1493 
1494 	/* requested length too big for entire address space */
1495 	if (len > TASK_SIZE)
1496 		return -ENOMEM;
1497 
1498 	if (flags & MAP_FIXED)
1499 		return addr;
1500 
1501 	/* requesting a specific address */
1502 	if (addr) {
1503 		addr = PAGE_ALIGN(addr);
1504 		vma = find_vma(mm, addr);
1505 		if (TASK_SIZE - len >= addr &&
1506 				(!vma || addr + len <= vma->vm_start))
1507 			return addr;
1508 	}
1509 
1510 	/* check if free_area_cache is useful for us */
1511 	if (len <= mm->cached_hole_size) {
1512  	        mm->cached_hole_size = 0;
1513  		mm->free_area_cache = mm->mmap_base;
1514  	}
1515 
1516 try_again:
1517 	/* either no address requested or can't fit in requested address hole */
1518 	start_addr = addr = mm->free_area_cache;
1519 
1520 	if (addr < len)
1521 		goto fail;
1522 
1523 	addr -= len;
1524 	do {
1525 		/*
1526 		 * Lookup failure means no vma is above this address,
1527 		 * else if new region fits below vma->vm_start,
1528 		 * return with success:
1529 		 */
1530 		vma = find_vma(mm, addr);
1531 		if (!vma || addr+len <= vma->vm_start)
1532 			/* remember the address as a hint for next time */
1533 			return (mm->free_area_cache = addr);
1534 
1535  		/* remember the largest hole we saw so far */
1536  		if (addr + mm->cached_hole_size < vma->vm_start)
1537  		        mm->cached_hole_size = vma->vm_start - addr;
1538 
1539 		/* try just below the current vma->vm_start */
1540 		addr = vma->vm_start-len;
1541 	} while (len < vma->vm_start);
1542 
1543 fail:
1544 	/*
1545 	 * if hint left us with no space for the requested
1546 	 * mapping then try again:
1547 	 *
1548 	 * Note: this is different with the case of bottomup
1549 	 * which does the fully line-search, but we use find_vma
1550 	 * here that causes some holes skipped.
1551 	 */
1552 	if (start_addr != mm->mmap_base) {
1553 		mm->free_area_cache = mm->mmap_base;
1554 		mm->cached_hole_size = 0;
1555 		goto try_again;
1556 	}
1557 
1558 	/*
1559 	 * A failed mmap() very likely causes application failure,
1560 	 * so fall back to the bottom-up function here. This scenario
1561 	 * can happen with large stack limits and large mmap()
1562 	 * allocations.
1563 	 */
1564 	mm->cached_hole_size = ~0UL;
1565   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1566 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1567 	/*
1568 	 * Restore the topdown base:
1569 	 */
1570 	mm->free_area_cache = mm->mmap_base;
1571 	mm->cached_hole_size = ~0UL;
1572 
1573 	return addr;
1574 }
1575 #endif
1576 
1577 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1578 {
1579 	/*
1580 	 * Is this a new hole at the highest possible address?
1581 	 */
1582 	if (addr > mm->free_area_cache)
1583 		mm->free_area_cache = addr;
1584 
1585 	/* dont allow allocations above current base */
1586 	if (mm->free_area_cache > mm->mmap_base)
1587 		mm->free_area_cache = mm->mmap_base;
1588 }
1589 
1590 unsigned long
1591 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1592 		unsigned long pgoff, unsigned long flags)
1593 {
1594 	unsigned long (*get_area)(struct file *, unsigned long,
1595 				  unsigned long, unsigned long, unsigned long);
1596 
1597 	unsigned long error = arch_mmap_check(addr, len, flags);
1598 	if (error)
1599 		return error;
1600 
1601 	/* Careful about overflows.. */
1602 	if (len > TASK_SIZE)
1603 		return -ENOMEM;
1604 
1605 	get_area = current->mm->get_unmapped_area;
1606 	if (file && file->f_op && file->f_op->get_unmapped_area)
1607 		get_area = file->f_op->get_unmapped_area;
1608 	addr = get_area(file, addr, len, pgoff, flags);
1609 	if (IS_ERR_VALUE(addr))
1610 		return addr;
1611 
1612 	if (addr > TASK_SIZE - len)
1613 		return -ENOMEM;
1614 	if (addr & ~PAGE_MASK)
1615 		return -EINVAL;
1616 
1617 	addr = arch_rebalance_pgtables(addr, len);
1618 	error = security_mmap_addr(addr);
1619 	return error ? error : addr;
1620 }
1621 
1622 EXPORT_SYMBOL(get_unmapped_area);
1623 
1624 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1626 {
1627 	struct vm_area_struct *vma = NULL;
1628 
1629 	if (WARN_ON_ONCE(!mm))		/* Remove this in linux-3.6 */
1630 		return NULL;
1631 
1632 	/* Check the cache first. */
1633 	/* (Cache hit rate is typically around 35%.) */
1634 	vma = mm->mmap_cache;
1635 	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1636 		struct rb_node *rb_node;
1637 
1638 		rb_node = mm->mm_rb.rb_node;
1639 		vma = NULL;
1640 
1641 		while (rb_node) {
1642 			struct vm_area_struct *vma_tmp;
1643 
1644 			vma_tmp = rb_entry(rb_node,
1645 					   struct vm_area_struct, vm_rb);
1646 
1647 			if (vma_tmp->vm_end > addr) {
1648 				vma = vma_tmp;
1649 				if (vma_tmp->vm_start <= addr)
1650 					break;
1651 				rb_node = rb_node->rb_left;
1652 			} else
1653 				rb_node = rb_node->rb_right;
1654 		}
1655 		if (vma)
1656 			mm->mmap_cache = vma;
1657 	}
1658 	return vma;
1659 }
1660 
1661 EXPORT_SYMBOL(find_vma);
1662 
1663 /*
1664  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1665  */
1666 struct vm_area_struct *
1667 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1668 			struct vm_area_struct **pprev)
1669 {
1670 	struct vm_area_struct *vma;
1671 
1672 	vma = find_vma(mm, addr);
1673 	if (vma) {
1674 		*pprev = vma->vm_prev;
1675 	} else {
1676 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1677 		*pprev = NULL;
1678 		while (rb_node) {
1679 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1680 			rb_node = rb_node->rb_right;
1681 		}
1682 	}
1683 	return vma;
1684 }
1685 
1686 /*
1687  * Verify that the stack growth is acceptable and
1688  * update accounting. This is shared with both the
1689  * grow-up and grow-down cases.
1690  */
1691 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1692 {
1693 	struct mm_struct *mm = vma->vm_mm;
1694 	struct rlimit *rlim = current->signal->rlim;
1695 	unsigned long new_start;
1696 
1697 	/* address space limit tests */
1698 	if (!may_expand_vm(mm, grow))
1699 		return -ENOMEM;
1700 
1701 	/* Stack limit test */
1702 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1703 		return -ENOMEM;
1704 
1705 	/* mlock limit tests */
1706 	if (vma->vm_flags & VM_LOCKED) {
1707 		unsigned long locked;
1708 		unsigned long limit;
1709 		locked = mm->locked_vm + grow;
1710 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1711 		limit >>= PAGE_SHIFT;
1712 		if (locked > limit && !capable(CAP_IPC_LOCK))
1713 			return -ENOMEM;
1714 	}
1715 
1716 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1717 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1718 			vma->vm_end - size;
1719 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1720 		return -EFAULT;
1721 
1722 	/*
1723 	 * Overcommit..  This must be the final test, as it will
1724 	 * update security statistics.
1725 	 */
1726 	if (security_vm_enough_memory_mm(mm, grow))
1727 		return -ENOMEM;
1728 
1729 	/* Ok, everything looks good - let it rip */
1730 	if (vma->vm_flags & VM_LOCKED)
1731 		mm->locked_vm += grow;
1732 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1733 	return 0;
1734 }
1735 
1736 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1737 /*
1738  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1739  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1740  */
1741 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1742 {
1743 	int error;
1744 
1745 	if (!(vma->vm_flags & VM_GROWSUP))
1746 		return -EFAULT;
1747 
1748 	/*
1749 	 * We must make sure the anon_vma is allocated
1750 	 * so that the anon_vma locking is not a noop.
1751 	 */
1752 	if (unlikely(anon_vma_prepare(vma)))
1753 		return -ENOMEM;
1754 	vma_lock_anon_vma(vma);
1755 
1756 	/*
1757 	 * vma->vm_start/vm_end cannot change under us because the caller
1758 	 * is required to hold the mmap_sem in read mode.  We need the
1759 	 * anon_vma lock to serialize against concurrent expand_stacks.
1760 	 * Also guard against wrapping around to address 0.
1761 	 */
1762 	if (address < PAGE_ALIGN(address+4))
1763 		address = PAGE_ALIGN(address+4);
1764 	else {
1765 		vma_unlock_anon_vma(vma);
1766 		return -ENOMEM;
1767 	}
1768 	error = 0;
1769 
1770 	/* Somebody else might have raced and expanded it already */
1771 	if (address > vma->vm_end) {
1772 		unsigned long size, grow;
1773 
1774 		size = address - vma->vm_start;
1775 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1776 
1777 		error = -ENOMEM;
1778 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1779 			error = acct_stack_growth(vma, size, grow);
1780 			if (!error) {
1781 				anon_vma_interval_tree_pre_update_vma(vma);
1782 				vma->vm_end = address;
1783 				anon_vma_interval_tree_post_update_vma(vma);
1784 				perf_event_mmap(vma);
1785 			}
1786 		}
1787 	}
1788 	vma_unlock_anon_vma(vma);
1789 	khugepaged_enter_vma_merge(vma);
1790 	validate_mm(vma->vm_mm);
1791 	return error;
1792 }
1793 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1794 
1795 /*
1796  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1797  */
1798 int expand_downwards(struct vm_area_struct *vma,
1799 				   unsigned long address)
1800 {
1801 	int error;
1802 
1803 	/*
1804 	 * We must make sure the anon_vma is allocated
1805 	 * so that the anon_vma locking is not a noop.
1806 	 */
1807 	if (unlikely(anon_vma_prepare(vma)))
1808 		return -ENOMEM;
1809 
1810 	address &= PAGE_MASK;
1811 	error = security_mmap_addr(address);
1812 	if (error)
1813 		return error;
1814 
1815 	vma_lock_anon_vma(vma);
1816 
1817 	/*
1818 	 * vma->vm_start/vm_end cannot change under us because the caller
1819 	 * is required to hold the mmap_sem in read mode.  We need the
1820 	 * anon_vma lock to serialize against concurrent expand_stacks.
1821 	 */
1822 
1823 	/* Somebody else might have raced and expanded it already */
1824 	if (address < vma->vm_start) {
1825 		unsigned long size, grow;
1826 
1827 		size = vma->vm_end - address;
1828 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1829 
1830 		error = -ENOMEM;
1831 		if (grow <= vma->vm_pgoff) {
1832 			error = acct_stack_growth(vma, size, grow);
1833 			if (!error) {
1834 				anon_vma_interval_tree_pre_update_vma(vma);
1835 				vma->vm_start = address;
1836 				vma->vm_pgoff -= grow;
1837 				anon_vma_interval_tree_post_update_vma(vma);
1838 				perf_event_mmap(vma);
1839 			}
1840 		}
1841 	}
1842 	vma_unlock_anon_vma(vma);
1843 	khugepaged_enter_vma_merge(vma);
1844 	validate_mm(vma->vm_mm);
1845 	return error;
1846 }
1847 
1848 #ifdef CONFIG_STACK_GROWSUP
1849 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1850 {
1851 	return expand_upwards(vma, address);
1852 }
1853 
1854 struct vm_area_struct *
1855 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1856 {
1857 	struct vm_area_struct *vma, *prev;
1858 
1859 	addr &= PAGE_MASK;
1860 	vma = find_vma_prev(mm, addr, &prev);
1861 	if (vma && (vma->vm_start <= addr))
1862 		return vma;
1863 	if (!prev || expand_stack(prev, addr))
1864 		return NULL;
1865 	if (prev->vm_flags & VM_LOCKED) {
1866 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1867 	}
1868 	return prev;
1869 }
1870 #else
1871 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1872 {
1873 	return expand_downwards(vma, address);
1874 }
1875 
1876 struct vm_area_struct *
1877 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1878 {
1879 	struct vm_area_struct * vma;
1880 	unsigned long start;
1881 
1882 	addr &= PAGE_MASK;
1883 	vma = find_vma(mm,addr);
1884 	if (!vma)
1885 		return NULL;
1886 	if (vma->vm_start <= addr)
1887 		return vma;
1888 	if (!(vma->vm_flags & VM_GROWSDOWN))
1889 		return NULL;
1890 	start = vma->vm_start;
1891 	if (expand_stack(vma, addr))
1892 		return NULL;
1893 	if (vma->vm_flags & VM_LOCKED) {
1894 		mlock_vma_pages_range(vma, addr, start);
1895 	}
1896 	return vma;
1897 }
1898 #endif
1899 
1900 /*
1901  * Ok - we have the memory areas we should free on the vma list,
1902  * so release them, and do the vma updates.
1903  *
1904  * Called with the mm semaphore held.
1905  */
1906 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1907 {
1908 	unsigned long nr_accounted = 0;
1909 
1910 	/* Update high watermark before we lower total_vm */
1911 	update_hiwater_vm(mm);
1912 	do {
1913 		long nrpages = vma_pages(vma);
1914 
1915 		if (vma->vm_flags & VM_ACCOUNT)
1916 			nr_accounted += nrpages;
1917 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1918 		vma = remove_vma(vma);
1919 	} while (vma);
1920 	vm_unacct_memory(nr_accounted);
1921 	validate_mm(mm);
1922 }
1923 
1924 /*
1925  * Get rid of page table information in the indicated region.
1926  *
1927  * Called with the mm semaphore held.
1928  */
1929 static void unmap_region(struct mm_struct *mm,
1930 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1931 		unsigned long start, unsigned long end)
1932 {
1933 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1934 	struct mmu_gather tlb;
1935 
1936 	lru_add_drain();
1937 	tlb_gather_mmu(&tlb, mm, 0);
1938 	update_hiwater_rss(mm);
1939 	unmap_vmas(&tlb, vma, start, end);
1940 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1941 				 next ? next->vm_start : 0);
1942 	tlb_finish_mmu(&tlb, start, end);
1943 }
1944 
1945 /*
1946  * Create a list of vma's touched by the unmap, removing them from the mm's
1947  * vma list as we go..
1948  */
1949 static void
1950 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1951 	struct vm_area_struct *prev, unsigned long end)
1952 {
1953 	struct vm_area_struct **insertion_point;
1954 	struct vm_area_struct *tail_vma = NULL;
1955 	unsigned long addr;
1956 
1957 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1958 	vma->vm_prev = NULL;
1959 	do {
1960 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1961 		mm->map_count--;
1962 		tail_vma = vma;
1963 		vma = vma->vm_next;
1964 	} while (vma && vma->vm_start < end);
1965 	*insertion_point = vma;
1966 	if (vma)
1967 		vma->vm_prev = prev;
1968 	tail_vma->vm_next = NULL;
1969 	if (mm->unmap_area == arch_unmap_area)
1970 		addr = prev ? prev->vm_end : mm->mmap_base;
1971 	else
1972 		addr = vma ?  vma->vm_start : mm->mmap_base;
1973 	mm->unmap_area(mm, addr);
1974 	mm->mmap_cache = NULL;		/* Kill the cache. */
1975 }
1976 
1977 /*
1978  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1979  * munmap path where it doesn't make sense to fail.
1980  */
1981 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1982 	      unsigned long addr, int new_below)
1983 {
1984 	struct mempolicy *pol;
1985 	struct vm_area_struct *new;
1986 	int err = -ENOMEM;
1987 
1988 	if (is_vm_hugetlb_page(vma) && (addr &
1989 					~(huge_page_mask(hstate_vma(vma)))))
1990 		return -EINVAL;
1991 
1992 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1993 	if (!new)
1994 		goto out_err;
1995 
1996 	/* most fields are the same, copy all, and then fixup */
1997 	*new = *vma;
1998 
1999 	INIT_LIST_HEAD(&new->anon_vma_chain);
2000 
2001 	if (new_below)
2002 		new->vm_end = addr;
2003 	else {
2004 		new->vm_start = addr;
2005 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2006 	}
2007 
2008 	pol = mpol_dup(vma_policy(vma));
2009 	if (IS_ERR(pol)) {
2010 		err = PTR_ERR(pol);
2011 		goto out_free_vma;
2012 	}
2013 	vma_set_policy(new, pol);
2014 
2015 	if (anon_vma_clone(new, vma))
2016 		goto out_free_mpol;
2017 
2018 	if (new->vm_file)
2019 		get_file(new->vm_file);
2020 
2021 	if (new->vm_ops && new->vm_ops->open)
2022 		new->vm_ops->open(new);
2023 
2024 	if (new_below)
2025 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2026 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2027 	else
2028 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2029 
2030 	/* Success. */
2031 	if (!err)
2032 		return 0;
2033 
2034 	/* Clean everything up if vma_adjust failed. */
2035 	if (new->vm_ops && new->vm_ops->close)
2036 		new->vm_ops->close(new);
2037 	if (new->vm_file)
2038 		fput(new->vm_file);
2039 	unlink_anon_vmas(new);
2040  out_free_mpol:
2041 	mpol_put(pol);
2042  out_free_vma:
2043 	kmem_cache_free(vm_area_cachep, new);
2044  out_err:
2045 	return err;
2046 }
2047 
2048 /*
2049  * Split a vma into two pieces at address 'addr', a new vma is allocated
2050  * either for the first part or the tail.
2051  */
2052 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2053 	      unsigned long addr, int new_below)
2054 {
2055 	if (mm->map_count >= sysctl_max_map_count)
2056 		return -ENOMEM;
2057 
2058 	return __split_vma(mm, vma, addr, new_below);
2059 }
2060 
2061 /* Munmap is split into 2 main parts -- this part which finds
2062  * what needs doing, and the areas themselves, which do the
2063  * work.  This now handles partial unmappings.
2064  * Jeremy Fitzhardinge <jeremy@goop.org>
2065  */
2066 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2067 {
2068 	unsigned long end;
2069 	struct vm_area_struct *vma, *prev, *last;
2070 
2071 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2072 		return -EINVAL;
2073 
2074 	if ((len = PAGE_ALIGN(len)) == 0)
2075 		return -EINVAL;
2076 
2077 	/* Find the first overlapping VMA */
2078 	vma = find_vma(mm, start);
2079 	if (!vma)
2080 		return 0;
2081 	prev = vma->vm_prev;
2082 	/* we have  start < vma->vm_end  */
2083 
2084 	/* if it doesn't overlap, we have nothing.. */
2085 	end = start + len;
2086 	if (vma->vm_start >= end)
2087 		return 0;
2088 
2089 	/*
2090 	 * If we need to split any vma, do it now to save pain later.
2091 	 *
2092 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2093 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2094 	 * places tmp vma above, and higher split_vma places tmp vma below.
2095 	 */
2096 	if (start > vma->vm_start) {
2097 		int error;
2098 
2099 		/*
2100 		 * Make sure that map_count on return from munmap() will
2101 		 * not exceed its limit; but let map_count go just above
2102 		 * its limit temporarily, to help free resources as expected.
2103 		 */
2104 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2105 			return -ENOMEM;
2106 
2107 		error = __split_vma(mm, vma, start, 0);
2108 		if (error)
2109 			return error;
2110 		prev = vma;
2111 	}
2112 
2113 	/* Does it split the last one? */
2114 	last = find_vma(mm, end);
2115 	if (last && end > last->vm_start) {
2116 		int error = __split_vma(mm, last, end, 1);
2117 		if (error)
2118 			return error;
2119 	}
2120 	vma = prev? prev->vm_next: mm->mmap;
2121 
2122 	/*
2123 	 * unlock any mlock()ed ranges before detaching vmas
2124 	 */
2125 	if (mm->locked_vm) {
2126 		struct vm_area_struct *tmp = vma;
2127 		while (tmp && tmp->vm_start < end) {
2128 			if (tmp->vm_flags & VM_LOCKED) {
2129 				mm->locked_vm -= vma_pages(tmp);
2130 				munlock_vma_pages_all(tmp);
2131 			}
2132 			tmp = tmp->vm_next;
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * Remove the vma's, and unmap the actual pages
2138 	 */
2139 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2140 	unmap_region(mm, vma, prev, start, end);
2141 
2142 	/* Fix up all other VM information */
2143 	remove_vma_list(mm, vma);
2144 
2145 	return 0;
2146 }
2147 
2148 int vm_munmap(unsigned long start, size_t len)
2149 {
2150 	int ret;
2151 	struct mm_struct *mm = current->mm;
2152 
2153 	down_write(&mm->mmap_sem);
2154 	ret = do_munmap(mm, start, len);
2155 	up_write(&mm->mmap_sem);
2156 	return ret;
2157 }
2158 EXPORT_SYMBOL(vm_munmap);
2159 
2160 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2161 {
2162 	profile_munmap(addr);
2163 	return vm_munmap(addr, len);
2164 }
2165 
2166 static inline void verify_mm_writelocked(struct mm_struct *mm)
2167 {
2168 #ifdef CONFIG_DEBUG_VM
2169 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2170 		WARN_ON(1);
2171 		up_read(&mm->mmap_sem);
2172 	}
2173 #endif
2174 }
2175 
2176 /*
2177  *  this is really a simplified "do_mmap".  it only handles
2178  *  anonymous maps.  eventually we may be able to do some
2179  *  brk-specific accounting here.
2180  */
2181 static unsigned long do_brk(unsigned long addr, unsigned long len)
2182 {
2183 	struct mm_struct * mm = current->mm;
2184 	struct vm_area_struct * vma, * prev;
2185 	unsigned long flags;
2186 	struct rb_node ** rb_link, * rb_parent;
2187 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2188 	int error;
2189 
2190 	len = PAGE_ALIGN(len);
2191 	if (!len)
2192 		return addr;
2193 
2194 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2195 
2196 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2197 	if (error & ~PAGE_MASK)
2198 		return error;
2199 
2200 	/*
2201 	 * mlock MCL_FUTURE?
2202 	 */
2203 	if (mm->def_flags & VM_LOCKED) {
2204 		unsigned long locked, lock_limit;
2205 		locked = len >> PAGE_SHIFT;
2206 		locked += mm->locked_vm;
2207 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2208 		lock_limit >>= PAGE_SHIFT;
2209 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2210 			return -EAGAIN;
2211 	}
2212 
2213 	/*
2214 	 * mm->mmap_sem is required to protect against another thread
2215 	 * changing the mappings in case we sleep.
2216 	 */
2217 	verify_mm_writelocked(mm);
2218 
2219 	/*
2220 	 * Clear old maps.  this also does some error checking for us
2221 	 */
2222  munmap_back:
2223 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2224 		if (do_munmap(mm, addr, len))
2225 			return -ENOMEM;
2226 		goto munmap_back;
2227 	}
2228 
2229 	/* Check against address space limits *after* clearing old maps... */
2230 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2231 		return -ENOMEM;
2232 
2233 	if (mm->map_count > sysctl_max_map_count)
2234 		return -ENOMEM;
2235 
2236 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2237 		return -ENOMEM;
2238 
2239 	/* Can we just expand an old private anonymous mapping? */
2240 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2241 					NULL, NULL, pgoff, NULL);
2242 	if (vma)
2243 		goto out;
2244 
2245 	/*
2246 	 * create a vma struct for an anonymous mapping
2247 	 */
2248 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2249 	if (!vma) {
2250 		vm_unacct_memory(len >> PAGE_SHIFT);
2251 		return -ENOMEM;
2252 	}
2253 
2254 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2255 	vma->vm_mm = mm;
2256 	vma->vm_start = addr;
2257 	vma->vm_end = addr + len;
2258 	vma->vm_pgoff = pgoff;
2259 	vma->vm_flags = flags;
2260 	vma->vm_page_prot = vm_get_page_prot(flags);
2261 	vma_link(mm, vma, prev, rb_link, rb_parent);
2262 out:
2263 	perf_event_mmap(vma);
2264 	mm->total_vm += len >> PAGE_SHIFT;
2265 	if (flags & VM_LOCKED) {
2266 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2267 			mm->locked_vm += (len >> PAGE_SHIFT);
2268 	}
2269 	return addr;
2270 }
2271 
2272 unsigned long vm_brk(unsigned long addr, unsigned long len)
2273 {
2274 	struct mm_struct *mm = current->mm;
2275 	unsigned long ret;
2276 
2277 	down_write(&mm->mmap_sem);
2278 	ret = do_brk(addr, len);
2279 	up_write(&mm->mmap_sem);
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL(vm_brk);
2283 
2284 /* Release all mmaps. */
2285 void exit_mmap(struct mm_struct *mm)
2286 {
2287 	struct mmu_gather tlb;
2288 	struct vm_area_struct *vma;
2289 	unsigned long nr_accounted = 0;
2290 
2291 	/* mm's last user has gone, and its about to be pulled down */
2292 	mmu_notifier_release(mm);
2293 
2294 	if (mm->locked_vm) {
2295 		vma = mm->mmap;
2296 		while (vma) {
2297 			if (vma->vm_flags & VM_LOCKED)
2298 				munlock_vma_pages_all(vma);
2299 			vma = vma->vm_next;
2300 		}
2301 	}
2302 
2303 	arch_exit_mmap(mm);
2304 
2305 	vma = mm->mmap;
2306 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2307 		return;
2308 
2309 	lru_add_drain();
2310 	flush_cache_mm(mm);
2311 	tlb_gather_mmu(&tlb, mm, 1);
2312 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2313 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2314 	unmap_vmas(&tlb, vma, 0, -1);
2315 
2316 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2317 	tlb_finish_mmu(&tlb, 0, -1);
2318 
2319 	/*
2320 	 * Walk the list again, actually closing and freeing it,
2321 	 * with preemption enabled, without holding any MM locks.
2322 	 */
2323 	while (vma) {
2324 		if (vma->vm_flags & VM_ACCOUNT)
2325 			nr_accounted += vma_pages(vma);
2326 		vma = remove_vma(vma);
2327 	}
2328 	vm_unacct_memory(nr_accounted);
2329 
2330 	WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2331 }
2332 
2333 /* Insert vm structure into process list sorted by address
2334  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2335  * then i_mmap_mutex is taken here.
2336  */
2337 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2338 {
2339 	struct vm_area_struct *prev;
2340 	struct rb_node **rb_link, *rb_parent;
2341 
2342 	/*
2343 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2344 	 * until its first write fault, when page's anon_vma and index
2345 	 * are set.  But now set the vm_pgoff it will almost certainly
2346 	 * end up with (unless mremap moves it elsewhere before that
2347 	 * first wfault), so /proc/pid/maps tells a consistent story.
2348 	 *
2349 	 * By setting it to reflect the virtual start address of the
2350 	 * vma, merges and splits can happen in a seamless way, just
2351 	 * using the existing file pgoff checks and manipulations.
2352 	 * Similarly in do_mmap_pgoff and in do_brk.
2353 	 */
2354 	if (!vma->vm_file) {
2355 		BUG_ON(vma->anon_vma);
2356 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357 	}
2358 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2359 			   &prev, &rb_link, &rb_parent))
2360 		return -ENOMEM;
2361 	if ((vma->vm_flags & VM_ACCOUNT) &&
2362 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2363 		return -ENOMEM;
2364 
2365 	vma_link(mm, vma, prev, rb_link, rb_parent);
2366 	return 0;
2367 }
2368 
2369 /*
2370  * Copy the vma structure to a new location in the same mm,
2371  * prior to moving page table entries, to effect an mremap move.
2372  */
2373 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2374 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2375 	bool *need_rmap_locks)
2376 {
2377 	struct vm_area_struct *vma = *vmap;
2378 	unsigned long vma_start = vma->vm_start;
2379 	struct mm_struct *mm = vma->vm_mm;
2380 	struct vm_area_struct *new_vma, *prev;
2381 	struct rb_node **rb_link, *rb_parent;
2382 	struct mempolicy *pol;
2383 	bool faulted_in_anon_vma = true;
2384 
2385 	/*
2386 	 * If anonymous vma has not yet been faulted, update new pgoff
2387 	 * to match new location, to increase its chance of merging.
2388 	 */
2389 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2390 		pgoff = addr >> PAGE_SHIFT;
2391 		faulted_in_anon_vma = false;
2392 	}
2393 
2394 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2395 		return NULL;	/* should never get here */
2396 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2397 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2398 	if (new_vma) {
2399 		/*
2400 		 * Source vma may have been merged into new_vma
2401 		 */
2402 		if (unlikely(vma_start >= new_vma->vm_start &&
2403 			     vma_start < new_vma->vm_end)) {
2404 			/*
2405 			 * The only way we can get a vma_merge with
2406 			 * self during an mremap is if the vma hasn't
2407 			 * been faulted in yet and we were allowed to
2408 			 * reset the dst vma->vm_pgoff to the
2409 			 * destination address of the mremap to allow
2410 			 * the merge to happen. mremap must change the
2411 			 * vm_pgoff linearity between src and dst vmas
2412 			 * (in turn preventing a vma_merge) to be
2413 			 * safe. It is only safe to keep the vm_pgoff
2414 			 * linear if there are no pages mapped yet.
2415 			 */
2416 			VM_BUG_ON(faulted_in_anon_vma);
2417 			*vmap = vma = new_vma;
2418 		}
2419 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2420 	} else {
2421 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2422 		if (new_vma) {
2423 			*new_vma = *vma;
2424 			new_vma->vm_start = addr;
2425 			new_vma->vm_end = addr + len;
2426 			new_vma->vm_pgoff = pgoff;
2427 			pol = mpol_dup(vma_policy(vma));
2428 			if (IS_ERR(pol))
2429 				goto out_free_vma;
2430 			vma_set_policy(new_vma, pol);
2431 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2432 			if (anon_vma_clone(new_vma, vma))
2433 				goto out_free_mempol;
2434 			if (new_vma->vm_file)
2435 				get_file(new_vma->vm_file);
2436 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2437 				new_vma->vm_ops->open(new_vma);
2438 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2439 			*need_rmap_locks = false;
2440 		}
2441 	}
2442 	return new_vma;
2443 
2444  out_free_mempol:
2445 	mpol_put(pol);
2446  out_free_vma:
2447 	kmem_cache_free(vm_area_cachep, new_vma);
2448 	return NULL;
2449 }
2450 
2451 /*
2452  * Return true if the calling process may expand its vm space by the passed
2453  * number of pages
2454  */
2455 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2456 {
2457 	unsigned long cur = mm->total_vm;	/* pages */
2458 	unsigned long lim;
2459 
2460 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2461 
2462 	if (cur + npages > lim)
2463 		return 0;
2464 	return 1;
2465 }
2466 
2467 
2468 static int special_mapping_fault(struct vm_area_struct *vma,
2469 				struct vm_fault *vmf)
2470 {
2471 	pgoff_t pgoff;
2472 	struct page **pages;
2473 
2474 	/*
2475 	 * special mappings have no vm_file, and in that case, the mm
2476 	 * uses vm_pgoff internally. So we have to subtract it from here.
2477 	 * We are allowed to do this because we are the mm; do not copy
2478 	 * this code into drivers!
2479 	 */
2480 	pgoff = vmf->pgoff - vma->vm_pgoff;
2481 
2482 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2483 		pgoff--;
2484 
2485 	if (*pages) {
2486 		struct page *page = *pages;
2487 		get_page(page);
2488 		vmf->page = page;
2489 		return 0;
2490 	}
2491 
2492 	return VM_FAULT_SIGBUS;
2493 }
2494 
2495 /*
2496  * Having a close hook prevents vma merging regardless of flags.
2497  */
2498 static void special_mapping_close(struct vm_area_struct *vma)
2499 {
2500 }
2501 
2502 static const struct vm_operations_struct special_mapping_vmops = {
2503 	.close = special_mapping_close,
2504 	.fault = special_mapping_fault,
2505 };
2506 
2507 /*
2508  * Called with mm->mmap_sem held for writing.
2509  * Insert a new vma covering the given region, with the given flags.
2510  * Its pages are supplied by the given array of struct page *.
2511  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2512  * The region past the last page supplied will always produce SIGBUS.
2513  * The array pointer and the pages it points to are assumed to stay alive
2514  * for as long as this mapping might exist.
2515  */
2516 int install_special_mapping(struct mm_struct *mm,
2517 			    unsigned long addr, unsigned long len,
2518 			    unsigned long vm_flags, struct page **pages)
2519 {
2520 	int ret;
2521 	struct vm_area_struct *vma;
2522 
2523 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2524 	if (unlikely(vma == NULL))
2525 		return -ENOMEM;
2526 
2527 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2528 	vma->vm_mm = mm;
2529 	vma->vm_start = addr;
2530 	vma->vm_end = addr + len;
2531 
2532 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2533 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2534 
2535 	vma->vm_ops = &special_mapping_vmops;
2536 	vma->vm_private_data = pages;
2537 
2538 	ret = insert_vm_struct(mm, vma);
2539 	if (ret)
2540 		goto out;
2541 
2542 	mm->total_vm += len >> PAGE_SHIFT;
2543 
2544 	perf_event_mmap(vma);
2545 
2546 	return 0;
2547 
2548 out:
2549 	kmem_cache_free(vm_area_cachep, vma);
2550 	return ret;
2551 }
2552 
2553 static DEFINE_MUTEX(mm_all_locks_mutex);
2554 
2555 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2556 {
2557 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2558 		/*
2559 		 * The LSB of head.next can't change from under us
2560 		 * because we hold the mm_all_locks_mutex.
2561 		 */
2562 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2563 		/*
2564 		 * We can safely modify head.next after taking the
2565 		 * anon_vma->root->mutex. If some other vma in this mm shares
2566 		 * the same anon_vma we won't take it again.
2567 		 *
2568 		 * No need of atomic instructions here, head.next
2569 		 * can't change from under us thanks to the
2570 		 * anon_vma->root->mutex.
2571 		 */
2572 		if (__test_and_set_bit(0, (unsigned long *)
2573 				       &anon_vma->root->rb_root.rb_node))
2574 			BUG();
2575 	}
2576 }
2577 
2578 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2579 {
2580 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2581 		/*
2582 		 * AS_MM_ALL_LOCKS can't change from under us because
2583 		 * we hold the mm_all_locks_mutex.
2584 		 *
2585 		 * Operations on ->flags have to be atomic because
2586 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2587 		 * mm_all_locks_mutex, there may be other cpus
2588 		 * changing other bitflags in parallel to us.
2589 		 */
2590 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2591 			BUG();
2592 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2593 	}
2594 }
2595 
2596 /*
2597  * This operation locks against the VM for all pte/vma/mm related
2598  * operations that could ever happen on a certain mm. This includes
2599  * vmtruncate, try_to_unmap, and all page faults.
2600  *
2601  * The caller must take the mmap_sem in write mode before calling
2602  * mm_take_all_locks(). The caller isn't allowed to release the
2603  * mmap_sem until mm_drop_all_locks() returns.
2604  *
2605  * mmap_sem in write mode is required in order to block all operations
2606  * that could modify pagetables and free pages without need of
2607  * altering the vma layout (for example populate_range() with
2608  * nonlinear vmas). It's also needed in write mode to avoid new
2609  * anon_vmas to be associated with existing vmas.
2610  *
2611  * A single task can't take more than one mm_take_all_locks() in a row
2612  * or it would deadlock.
2613  *
2614  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2615  * mapping->flags avoid to take the same lock twice, if more than one
2616  * vma in this mm is backed by the same anon_vma or address_space.
2617  *
2618  * We can take all the locks in random order because the VM code
2619  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2620  * takes more than one of them in a row. Secondly we're protected
2621  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2622  *
2623  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2624  * that may have to take thousand of locks.
2625  *
2626  * mm_take_all_locks() can fail if it's interrupted by signals.
2627  */
2628 int mm_take_all_locks(struct mm_struct *mm)
2629 {
2630 	struct vm_area_struct *vma;
2631 	struct anon_vma_chain *avc;
2632 
2633 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2634 
2635 	mutex_lock(&mm_all_locks_mutex);
2636 
2637 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2638 		if (signal_pending(current))
2639 			goto out_unlock;
2640 		if (vma->vm_file && vma->vm_file->f_mapping)
2641 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2642 	}
2643 
2644 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2645 		if (signal_pending(current))
2646 			goto out_unlock;
2647 		if (vma->anon_vma)
2648 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2649 				vm_lock_anon_vma(mm, avc->anon_vma);
2650 	}
2651 
2652 	return 0;
2653 
2654 out_unlock:
2655 	mm_drop_all_locks(mm);
2656 	return -EINTR;
2657 }
2658 
2659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2660 {
2661 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2662 		/*
2663 		 * The LSB of head.next can't change to 0 from under
2664 		 * us because we hold the mm_all_locks_mutex.
2665 		 *
2666 		 * We must however clear the bitflag before unlocking
2667 		 * the vma so the users using the anon_vma->rb_root will
2668 		 * never see our bitflag.
2669 		 *
2670 		 * No need of atomic instructions here, head.next
2671 		 * can't change from under us until we release the
2672 		 * anon_vma->root->mutex.
2673 		 */
2674 		if (!__test_and_clear_bit(0, (unsigned long *)
2675 					  &anon_vma->root->rb_root.rb_node))
2676 			BUG();
2677 		anon_vma_unlock(anon_vma);
2678 	}
2679 }
2680 
2681 static void vm_unlock_mapping(struct address_space *mapping)
2682 {
2683 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2684 		/*
2685 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2686 		 * because we hold the mm_all_locks_mutex.
2687 		 */
2688 		mutex_unlock(&mapping->i_mmap_mutex);
2689 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2690 					&mapping->flags))
2691 			BUG();
2692 	}
2693 }
2694 
2695 /*
2696  * The mmap_sem cannot be released by the caller until
2697  * mm_drop_all_locks() returns.
2698  */
2699 void mm_drop_all_locks(struct mm_struct *mm)
2700 {
2701 	struct vm_area_struct *vma;
2702 	struct anon_vma_chain *avc;
2703 
2704 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2705 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2706 
2707 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2708 		if (vma->anon_vma)
2709 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2710 				vm_unlock_anon_vma(avc->anon_vma);
2711 		if (vma->vm_file && vma->vm_file->f_mapping)
2712 			vm_unlock_mapping(vma->vm_file->f_mapping);
2713 	}
2714 
2715 	mutex_unlock(&mm_all_locks_mutex);
2716 }
2717 
2718 /*
2719  * initialise the VMA slab
2720  */
2721 void __init mmap_init(void)
2722 {
2723 	int ret;
2724 
2725 	ret = percpu_counter_init(&vm_committed_as, 0);
2726 	VM_BUG_ON(ret);
2727 }
2728