1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 #include <linux/uprobes.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlb.h> 38 #include <asm/mmu_context.h> 39 40 #include "internal.h" 41 42 #ifndef arch_mmap_check 43 #define arch_mmap_check(addr, len, flags) (0) 44 #endif 45 46 #ifndef arch_rebalance_pgtables 47 #define arch_rebalance_pgtables(addr, len) (addr) 48 #endif 49 50 static void unmap_region(struct mm_struct *mm, 51 struct vm_area_struct *vma, struct vm_area_struct *prev, 52 unsigned long start, unsigned long end); 53 54 /* description of effects of mapping type and prot in current implementation. 55 * this is due to the limited x86 page protection hardware. The expected 56 * behavior is in parens: 57 * 58 * map_type prot 59 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 60 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 61 * w: (no) no w: (no) no w: (yes) yes w: (no) no 62 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 63 * 64 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (copy) copy w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 */ 69 pgprot_t protection_map[16] = { 70 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 71 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 72 }; 73 74 pgprot_t vm_get_page_prot(unsigned long vm_flags) 75 { 76 return __pgprot(pgprot_val(protection_map[vm_flags & 77 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 78 pgprot_val(arch_vm_get_page_prot(vm_flags))); 79 } 80 EXPORT_SYMBOL(vm_get_page_prot); 81 82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 83 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 85 /* 86 * Make sure vm_committed_as in one cacheline and not cacheline shared with 87 * other variables. It can be updated by several CPUs frequently. 88 */ 89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 90 91 /* 92 * Check that a process has enough memory to allocate a new virtual 93 * mapping. 0 means there is enough memory for the allocation to 94 * succeed and -ENOMEM implies there is not. 95 * 96 * We currently support three overcommit policies, which are set via the 97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 98 * 99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 100 * Additional code 2002 Jul 20 by Robert Love. 101 * 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 103 * 104 * Note this is a helper function intended to be used by LSMs which 105 * wish to use this logic. 106 */ 107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 108 { 109 unsigned long free, allowed; 110 111 vm_acct_memory(pages); 112 113 /* 114 * Sometimes we want to use more memory than we have 115 */ 116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 117 return 0; 118 119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 120 free = global_page_state(NR_FREE_PAGES); 121 free += global_page_state(NR_FILE_PAGES); 122 123 /* 124 * shmem pages shouldn't be counted as free in this 125 * case, they can't be purged, only swapped out, and 126 * that won't affect the overall amount of available 127 * memory in the system. 128 */ 129 free -= global_page_state(NR_SHMEM); 130 131 free += nr_swap_pages; 132 133 /* 134 * Any slabs which are created with the 135 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 136 * which are reclaimable, under pressure. The dentry 137 * cache and most inode caches should fall into this 138 */ 139 free += global_page_state(NR_SLAB_RECLAIMABLE); 140 141 /* 142 * Leave reserved pages. The pages are not for anonymous pages. 143 */ 144 if (free <= totalreserve_pages) 145 goto error; 146 else 147 free -= totalreserve_pages; 148 149 /* 150 * Leave the last 3% for root 151 */ 152 if (!cap_sys_admin) 153 free -= free / 32; 154 155 if (free > pages) 156 return 0; 157 158 goto error; 159 } 160 161 allowed = (totalram_pages - hugetlb_total_pages()) 162 * sysctl_overcommit_ratio / 100; 163 /* 164 * Leave the last 3% for root 165 */ 166 if (!cap_sys_admin) 167 allowed -= allowed / 32; 168 allowed += total_swap_pages; 169 170 /* Don't let a single process grow too big: 171 leave 3% of the size of this process for other processes */ 172 if (mm) 173 allowed -= mm->total_vm / 32; 174 175 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 176 return 0; 177 error: 178 vm_unacct_memory(pages); 179 180 return -ENOMEM; 181 } 182 183 /* 184 * Requires inode->i_mapping->i_mmap_mutex 185 */ 186 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 187 struct file *file, struct address_space *mapping) 188 { 189 if (vma->vm_flags & VM_DENYWRITE) 190 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 191 if (vma->vm_flags & VM_SHARED) 192 mapping->i_mmap_writable--; 193 194 flush_dcache_mmap_lock(mapping); 195 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 196 list_del_init(&vma->shared.nonlinear); 197 else 198 vma_interval_tree_remove(vma, &mapping->i_mmap); 199 flush_dcache_mmap_unlock(mapping); 200 } 201 202 /* 203 * Unlink a file-based vm structure from its interval tree, to hide 204 * vma from rmap and vmtruncate before freeing its page tables. 205 */ 206 void unlink_file_vma(struct vm_area_struct *vma) 207 { 208 struct file *file = vma->vm_file; 209 210 if (file) { 211 struct address_space *mapping = file->f_mapping; 212 mutex_lock(&mapping->i_mmap_mutex); 213 __remove_shared_vm_struct(vma, file, mapping); 214 mutex_unlock(&mapping->i_mmap_mutex); 215 } 216 } 217 218 /* 219 * Close a vm structure and free it, returning the next. 220 */ 221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 222 { 223 struct vm_area_struct *next = vma->vm_next; 224 225 might_sleep(); 226 if (vma->vm_ops && vma->vm_ops->close) 227 vma->vm_ops->close(vma); 228 if (vma->vm_file) 229 fput(vma->vm_file); 230 mpol_put(vma_policy(vma)); 231 kmem_cache_free(vm_area_cachep, vma); 232 return next; 233 } 234 235 static unsigned long do_brk(unsigned long addr, unsigned long len); 236 237 SYSCALL_DEFINE1(brk, unsigned long, brk) 238 { 239 unsigned long rlim, retval; 240 unsigned long newbrk, oldbrk; 241 struct mm_struct *mm = current->mm; 242 unsigned long min_brk; 243 244 down_write(&mm->mmap_sem); 245 246 #ifdef CONFIG_COMPAT_BRK 247 /* 248 * CONFIG_COMPAT_BRK can still be overridden by setting 249 * randomize_va_space to 2, which will still cause mm->start_brk 250 * to be arbitrarily shifted 251 */ 252 if (current->brk_randomized) 253 min_brk = mm->start_brk; 254 else 255 min_brk = mm->end_data; 256 #else 257 min_brk = mm->start_brk; 258 #endif 259 if (brk < min_brk) 260 goto out; 261 262 /* 263 * Check against rlimit here. If this check is done later after the test 264 * of oldbrk with newbrk then it can escape the test and let the data 265 * segment grow beyond its set limit the in case where the limit is 266 * not page aligned -Ram Gupta 267 */ 268 rlim = rlimit(RLIMIT_DATA); 269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 270 (mm->end_data - mm->start_data) > rlim) 271 goto out; 272 273 newbrk = PAGE_ALIGN(brk); 274 oldbrk = PAGE_ALIGN(mm->brk); 275 if (oldbrk == newbrk) 276 goto set_brk; 277 278 /* Always allow shrinking brk. */ 279 if (brk <= mm->brk) { 280 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 281 goto set_brk; 282 goto out; 283 } 284 285 /* Check against existing mmap mappings. */ 286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 287 goto out; 288 289 /* Ok, looks good - let it rip. */ 290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 291 goto out; 292 set_brk: 293 mm->brk = brk; 294 out: 295 retval = mm->brk; 296 up_write(&mm->mmap_sem); 297 return retval; 298 } 299 300 #ifdef CONFIG_DEBUG_VM_RB 301 static int browse_rb(struct rb_root *root) 302 { 303 int i = 0, j; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) 311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 312 if (vma->vm_start < pend) 313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 314 if (vma->vm_start > vma->vm_end) 315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 316 i++; 317 pn = nd; 318 prev = vma->vm_start; 319 pend = vma->vm_end; 320 } 321 j = 0; 322 for (nd = pn; nd; nd = rb_prev(nd)) { 323 j++; 324 } 325 if (i != j) 326 printk("backwards %d, forwards %d\n", j, i), i = 0; 327 return i; 328 } 329 330 void validate_mm(struct mm_struct *mm) 331 { 332 int bug = 0; 333 int i = 0; 334 struct vm_area_struct *vma = mm->mmap; 335 while (vma) { 336 struct anon_vma_chain *avc; 337 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 338 anon_vma_interval_tree_verify(avc); 339 vma = vma->vm_next; 340 i++; 341 } 342 if (i != mm->map_count) 343 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 344 i = browse_rb(&mm->mm_rb); 345 if (i != mm->map_count) 346 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 347 BUG_ON(bug); 348 } 349 #else 350 #define validate_mm(mm) do { } while (0) 351 #endif 352 353 /* 354 * vma has some anon_vma assigned, and is already inserted on that 355 * anon_vma's interval trees. 356 * 357 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 358 * vma must be removed from the anon_vma's interval trees using 359 * anon_vma_interval_tree_pre_update_vma(). 360 * 361 * After the update, the vma will be reinserted using 362 * anon_vma_interval_tree_post_update_vma(). 363 * 364 * The entire update must be protected by exclusive mmap_sem and by 365 * the root anon_vma's mutex. 366 */ 367 static inline void 368 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 369 { 370 struct anon_vma_chain *avc; 371 372 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 373 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 374 } 375 376 static inline void 377 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 378 { 379 struct anon_vma_chain *avc; 380 381 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 382 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 383 } 384 385 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 386 unsigned long end, struct vm_area_struct **pprev, 387 struct rb_node ***rb_link, struct rb_node **rb_parent) 388 { 389 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 390 391 __rb_link = &mm->mm_rb.rb_node; 392 rb_prev = __rb_parent = NULL; 393 394 while (*__rb_link) { 395 struct vm_area_struct *vma_tmp; 396 397 __rb_parent = *__rb_link; 398 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 399 400 if (vma_tmp->vm_end > addr) { 401 /* Fail if an existing vma overlaps the area */ 402 if (vma_tmp->vm_start < end) 403 return -ENOMEM; 404 __rb_link = &__rb_parent->rb_left; 405 } else { 406 rb_prev = __rb_parent; 407 __rb_link = &__rb_parent->rb_right; 408 } 409 } 410 411 *pprev = NULL; 412 if (rb_prev) 413 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 414 *rb_link = __rb_link; 415 *rb_parent = __rb_parent; 416 return 0; 417 } 418 419 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 420 struct rb_node **rb_link, struct rb_node *rb_parent) 421 { 422 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 423 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 424 } 425 426 static void __vma_link_file(struct vm_area_struct *vma) 427 { 428 struct file *file; 429 430 file = vma->vm_file; 431 if (file) { 432 struct address_space *mapping = file->f_mapping; 433 434 if (vma->vm_flags & VM_DENYWRITE) 435 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 436 if (vma->vm_flags & VM_SHARED) 437 mapping->i_mmap_writable++; 438 439 flush_dcache_mmap_lock(mapping); 440 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 441 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 442 else 443 vma_interval_tree_insert(vma, &mapping->i_mmap); 444 flush_dcache_mmap_unlock(mapping); 445 } 446 } 447 448 static void 449 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 450 struct vm_area_struct *prev, struct rb_node **rb_link, 451 struct rb_node *rb_parent) 452 { 453 __vma_link_list(mm, vma, prev, rb_parent); 454 __vma_link_rb(mm, vma, rb_link, rb_parent); 455 } 456 457 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 458 struct vm_area_struct *prev, struct rb_node **rb_link, 459 struct rb_node *rb_parent) 460 { 461 struct address_space *mapping = NULL; 462 463 if (vma->vm_file) 464 mapping = vma->vm_file->f_mapping; 465 466 if (mapping) 467 mutex_lock(&mapping->i_mmap_mutex); 468 469 __vma_link(mm, vma, prev, rb_link, rb_parent); 470 __vma_link_file(vma); 471 472 if (mapping) 473 mutex_unlock(&mapping->i_mmap_mutex); 474 475 mm->map_count++; 476 validate_mm(mm); 477 } 478 479 /* 480 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 481 * mm's list and rbtree. It has already been inserted into the interval tree. 482 */ 483 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 484 { 485 struct vm_area_struct *prev; 486 struct rb_node **rb_link, *rb_parent; 487 488 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 489 &prev, &rb_link, &rb_parent)) 490 BUG(); 491 __vma_link(mm, vma, prev, rb_link, rb_parent); 492 mm->map_count++; 493 } 494 495 static inline void 496 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 497 struct vm_area_struct *prev) 498 { 499 struct vm_area_struct *next = vma->vm_next; 500 501 prev->vm_next = next; 502 if (next) 503 next->vm_prev = prev; 504 rb_erase(&vma->vm_rb, &mm->mm_rb); 505 if (mm->mmap_cache == vma) 506 mm->mmap_cache = prev; 507 } 508 509 /* 510 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 511 * is already present in an i_mmap tree without adjusting the tree. 512 * The following helper function should be used when such adjustments 513 * are necessary. The "insert" vma (if any) is to be inserted 514 * before we drop the necessary locks. 515 */ 516 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 517 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 518 { 519 struct mm_struct *mm = vma->vm_mm; 520 struct vm_area_struct *next = vma->vm_next; 521 struct vm_area_struct *importer = NULL; 522 struct address_space *mapping = NULL; 523 struct rb_root *root = NULL; 524 struct anon_vma *anon_vma = NULL; 525 struct file *file = vma->vm_file; 526 long adjust_next = 0; 527 int remove_next = 0; 528 529 if (next && !insert) { 530 struct vm_area_struct *exporter = NULL; 531 532 if (end >= next->vm_end) { 533 /* 534 * vma expands, overlapping all the next, and 535 * perhaps the one after too (mprotect case 6). 536 */ 537 again: remove_next = 1 + (end > next->vm_end); 538 end = next->vm_end; 539 exporter = next; 540 importer = vma; 541 } else if (end > next->vm_start) { 542 /* 543 * vma expands, overlapping part of the next: 544 * mprotect case 5 shifting the boundary up. 545 */ 546 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 547 exporter = next; 548 importer = vma; 549 } else if (end < vma->vm_end) { 550 /* 551 * vma shrinks, and !insert tells it's not 552 * split_vma inserting another: so it must be 553 * mprotect case 4 shifting the boundary down. 554 */ 555 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 556 exporter = vma; 557 importer = next; 558 } 559 560 /* 561 * Easily overlooked: when mprotect shifts the boundary, 562 * make sure the expanding vma has anon_vma set if the 563 * shrinking vma had, to cover any anon pages imported. 564 */ 565 if (exporter && exporter->anon_vma && !importer->anon_vma) { 566 if (anon_vma_clone(importer, exporter)) 567 return -ENOMEM; 568 importer->anon_vma = exporter->anon_vma; 569 } 570 } 571 572 if (file) { 573 mapping = file->f_mapping; 574 if (!(vma->vm_flags & VM_NONLINEAR)) { 575 root = &mapping->i_mmap; 576 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 577 578 if (adjust_next) 579 uprobe_munmap(next, next->vm_start, 580 next->vm_end); 581 } 582 583 mutex_lock(&mapping->i_mmap_mutex); 584 if (insert) { 585 /* 586 * Put into interval tree now, so instantiated pages 587 * are visible to arm/parisc __flush_dcache_page 588 * throughout; but we cannot insert into address 589 * space until vma start or end is updated. 590 */ 591 __vma_link_file(insert); 592 } 593 } 594 595 vma_adjust_trans_huge(vma, start, end, adjust_next); 596 597 anon_vma = vma->anon_vma; 598 if (!anon_vma && adjust_next) 599 anon_vma = next->anon_vma; 600 if (anon_vma) { 601 VM_BUG_ON(adjust_next && next->anon_vma && 602 anon_vma != next->anon_vma); 603 anon_vma_lock(anon_vma); 604 anon_vma_interval_tree_pre_update_vma(vma); 605 if (adjust_next) 606 anon_vma_interval_tree_pre_update_vma(next); 607 } 608 609 if (root) { 610 flush_dcache_mmap_lock(mapping); 611 vma_interval_tree_remove(vma, root); 612 if (adjust_next) 613 vma_interval_tree_remove(next, root); 614 } 615 616 vma->vm_start = start; 617 vma->vm_end = end; 618 vma->vm_pgoff = pgoff; 619 if (adjust_next) { 620 next->vm_start += adjust_next << PAGE_SHIFT; 621 next->vm_pgoff += adjust_next; 622 } 623 624 if (root) { 625 if (adjust_next) 626 vma_interval_tree_insert(next, root); 627 vma_interval_tree_insert(vma, root); 628 flush_dcache_mmap_unlock(mapping); 629 } 630 631 if (remove_next) { 632 /* 633 * vma_merge has merged next into vma, and needs 634 * us to remove next before dropping the locks. 635 */ 636 __vma_unlink(mm, next, vma); 637 if (file) 638 __remove_shared_vm_struct(next, file, mapping); 639 } else if (insert) { 640 /* 641 * split_vma has split insert from vma, and needs 642 * us to insert it before dropping the locks 643 * (it may either follow vma or precede it). 644 */ 645 __insert_vm_struct(mm, insert); 646 } 647 648 if (anon_vma) { 649 anon_vma_interval_tree_post_update_vma(vma); 650 if (adjust_next) 651 anon_vma_interval_tree_post_update_vma(next); 652 anon_vma_unlock(anon_vma); 653 } 654 if (mapping) 655 mutex_unlock(&mapping->i_mmap_mutex); 656 657 if (root) { 658 uprobe_mmap(vma); 659 660 if (adjust_next) 661 uprobe_mmap(next); 662 } 663 664 if (remove_next) { 665 if (file) { 666 uprobe_munmap(next, next->vm_start, next->vm_end); 667 fput(file); 668 } 669 if (next->anon_vma) 670 anon_vma_merge(vma, next); 671 mm->map_count--; 672 mpol_put(vma_policy(next)); 673 kmem_cache_free(vm_area_cachep, next); 674 /* 675 * In mprotect's case 6 (see comments on vma_merge), 676 * we must remove another next too. It would clutter 677 * up the code too much to do both in one go. 678 */ 679 if (remove_next == 2) { 680 next = vma->vm_next; 681 goto again; 682 } 683 } 684 if (insert && file) 685 uprobe_mmap(insert); 686 687 validate_mm(mm); 688 689 return 0; 690 } 691 692 /* 693 * If the vma has a ->close operation then the driver probably needs to release 694 * per-vma resources, so we don't attempt to merge those. 695 */ 696 static inline int is_mergeable_vma(struct vm_area_struct *vma, 697 struct file *file, unsigned long vm_flags) 698 { 699 if (vma->vm_flags ^ vm_flags) 700 return 0; 701 if (vma->vm_file != file) 702 return 0; 703 if (vma->vm_ops && vma->vm_ops->close) 704 return 0; 705 return 1; 706 } 707 708 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 709 struct anon_vma *anon_vma2, 710 struct vm_area_struct *vma) 711 { 712 /* 713 * The list_is_singular() test is to avoid merging VMA cloned from 714 * parents. This can improve scalability caused by anon_vma lock. 715 */ 716 if ((!anon_vma1 || !anon_vma2) && (!vma || 717 list_is_singular(&vma->anon_vma_chain))) 718 return 1; 719 return anon_vma1 == anon_vma2; 720 } 721 722 /* 723 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 724 * in front of (at a lower virtual address and file offset than) the vma. 725 * 726 * We cannot merge two vmas if they have differently assigned (non-NULL) 727 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 728 * 729 * We don't check here for the merged mmap wrapping around the end of pagecache 730 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 731 * wrap, nor mmaps which cover the final page at index -1UL. 732 */ 733 static int 734 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 735 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 736 { 737 if (is_mergeable_vma(vma, file, vm_flags) && 738 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 739 if (vma->vm_pgoff == vm_pgoff) 740 return 1; 741 } 742 return 0; 743 } 744 745 /* 746 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 747 * beyond (at a higher virtual address and file offset than) the vma. 748 * 749 * We cannot merge two vmas if they have differently assigned (non-NULL) 750 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 751 */ 752 static int 753 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 754 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 755 { 756 if (is_mergeable_vma(vma, file, vm_flags) && 757 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 758 pgoff_t vm_pglen; 759 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 760 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 761 return 1; 762 } 763 return 0; 764 } 765 766 /* 767 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 768 * whether that can be merged with its predecessor or its successor. 769 * Or both (it neatly fills a hole). 770 * 771 * In most cases - when called for mmap, brk or mremap - [addr,end) is 772 * certain not to be mapped by the time vma_merge is called; but when 773 * called for mprotect, it is certain to be already mapped (either at 774 * an offset within prev, or at the start of next), and the flags of 775 * this area are about to be changed to vm_flags - and the no-change 776 * case has already been eliminated. 777 * 778 * The following mprotect cases have to be considered, where AAAA is 779 * the area passed down from mprotect_fixup, never extending beyond one 780 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 781 * 782 * AAAA AAAA AAAA AAAA 783 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 784 * cannot merge might become might become might become 785 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 786 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 787 * mremap move: PPPPNNNNNNNN 8 788 * AAAA 789 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 790 * might become case 1 below case 2 below case 3 below 791 * 792 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 793 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 794 */ 795 struct vm_area_struct *vma_merge(struct mm_struct *mm, 796 struct vm_area_struct *prev, unsigned long addr, 797 unsigned long end, unsigned long vm_flags, 798 struct anon_vma *anon_vma, struct file *file, 799 pgoff_t pgoff, struct mempolicy *policy) 800 { 801 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 802 struct vm_area_struct *area, *next; 803 int err; 804 805 /* 806 * We later require that vma->vm_flags == vm_flags, 807 * so this tests vma->vm_flags & VM_SPECIAL, too. 808 */ 809 if (vm_flags & VM_SPECIAL) 810 return NULL; 811 812 if (prev) 813 next = prev->vm_next; 814 else 815 next = mm->mmap; 816 area = next; 817 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 818 next = next->vm_next; 819 820 /* 821 * Can it merge with the predecessor? 822 */ 823 if (prev && prev->vm_end == addr && 824 mpol_equal(vma_policy(prev), policy) && 825 can_vma_merge_after(prev, vm_flags, 826 anon_vma, file, pgoff)) { 827 /* 828 * OK, it can. Can we now merge in the successor as well? 829 */ 830 if (next && end == next->vm_start && 831 mpol_equal(policy, vma_policy(next)) && 832 can_vma_merge_before(next, vm_flags, 833 anon_vma, file, pgoff+pglen) && 834 is_mergeable_anon_vma(prev->anon_vma, 835 next->anon_vma, NULL)) { 836 /* cases 1, 6 */ 837 err = vma_adjust(prev, prev->vm_start, 838 next->vm_end, prev->vm_pgoff, NULL); 839 } else /* cases 2, 5, 7 */ 840 err = vma_adjust(prev, prev->vm_start, 841 end, prev->vm_pgoff, NULL); 842 if (err) 843 return NULL; 844 khugepaged_enter_vma_merge(prev); 845 return prev; 846 } 847 848 /* 849 * Can this new request be merged in front of next? 850 */ 851 if (next && end == next->vm_start && 852 mpol_equal(policy, vma_policy(next)) && 853 can_vma_merge_before(next, vm_flags, 854 anon_vma, file, pgoff+pglen)) { 855 if (prev && addr < prev->vm_end) /* case 4 */ 856 err = vma_adjust(prev, prev->vm_start, 857 addr, prev->vm_pgoff, NULL); 858 else /* cases 3, 8 */ 859 err = vma_adjust(area, addr, next->vm_end, 860 next->vm_pgoff - pglen, NULL); 861 if (err) 862 return NULL; 863 khugepaged_enter_vma_merge(area); 864 return area; 865 } 866 867 return NULL; 868 } 869 870 /* 871 * Rough compatbility check to quickly see if it's even worth looking 872 * at sharing an anon_vma. 873 * 874 * They need to have the same vm_file, and the flags can only differ 875 * in things that mprotect may change. 876 * 877 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 878 * we can merge the two vma's. For example, we refuse to merge a vma if 879 * there is a vm_ops->close() function, because that indicates that the 880 * driver is doing some kind of reference counting. But that doesn't 881 * really matter for the anon_vma sharing case. 882 */ 883 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 884 { 885 return a->vm_end == b->vm_start && 886 mpol_equal(vma_policy(a), vma_policy(b)) && 887 a->vm_file == b->vm_file && 888 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 889 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 890 } 891 892 /* 893 * Do some basic sanity checking to see if we can re-use the anon_vma 894 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 895 * the same as 'old', the other will be the new one that is trying 896 * to share the anon_vma. 897 * 898 * NOTE! This runs with mm_sem held for reading, so it is possible that 899 * the anon_vma of 'old' is concurrently in the process of being set up 900 * by another page fault trying to merge _that_. But that's ok: if it 901 * is being set up, that automatically means that it will be a singleton 902 * acceptable for merging, so we can do all of this optimistically. But 903 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 904 * 905 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 906 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 907 * is to return an anon_vma that is "complex" due to having gone through 908 * a fork). 909 * 910 * We also make sure that the two vma's are compatible (adjacent, 911 * and with the same memory policies). That's all stable, even with just 912 * a read lock on the mm_sem. 913 */ 914 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 915 { 916 if (anon_vma_compatible(a, b)) { 917 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 918 919 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 920 return anon_vma; 921 } 922 return NULL; 923 } 924 925 /* 926 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 927 * neighbouring vmas for a suitable anon_vma, before it goes off 928 * to allocate a new anon_vma. It checks because a repetitive 929 * sequence of mprotects and faults may otherwise lead to distinct 930 * anon_vmas being allocated, preventing vma merge in subsequent 931 * mprotect. 932 */ 933 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 934 { 935 struct anon_vma *anon_vma; 936 struct vm_area_struct *near; 937 938 near = vma->vm_next; 939 if (!near) 940 goto try_prev; 941 942 anon_vma = reusable_anon_vma(near, vma, near); 943 if (anon_vma) 944 return anon_vma; 945 try_prev: 946 near = vma->vm_prev; 947 if (!near) 948 goto none; 949 950 anon_vma = reusable_anon_vma(near, near, vma); 951 if (anon_vma) 952 return anon_vma; 953 none: 954 /* 955 * There's no absolute need to look only at touching neighbours: 956 * we could search further afield for "compatible" anon_vmas. 957 * But it would probably just be a waste of time searching, 958 * or lead to too many vmas hanging off the same anon_vma. 959 * We're trying to allow mprotect remerging later on, 960 * not trying to minimize memory used for anon_vmas. 961 */ 962 return NULL; 963 } 964 965 #ifdef CONFIG_PROC_FS 966 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 967 struct file *file, long pages) 968 { 969 const unsigned long stack_flags 970 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 971 972 mm->total_vm += pages; 973 974 if (file) { 975 mm->shared_vm += pages; 976 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 977 mm->exec_vm += pages; 978 } else if (flags & stack_flags) 979 mm->stack_vm += pages; 980 } 981 #endif /* CONFIG_PROC_FS */ 982 983 /* 984 * If a hint addr is less than mmap_min_addr change hint to be as 985 * low as possible but still greater than mmap_min_addr 986 */ 987 static inline unsigned long round_hint_to_min(unsigned long hint) 988 { 989 hint &= PAGE_MASK; 990 if (((void *)hint != NULL) && 991 (hint < mmap_min_addr)) 992 return PAGE_ALIGN(mmap_min_addr); 993 return hint; 994 } 995 996 /* 997 * The caller must hold down_write(¤t->mm->mmap_sem). 998 */ 999 1000 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1001 unsigned long len, unsigned long prot, 1002 unsigned long flags, unsigned long pgoff) 1003 { 1004 struct mm_struct * mm = current->mm; 1005 struct inode *inode; 1006 vm_flags_t vm_flags; 1007 1008 /* 1009 * Does the application expect PROT_READ to imply PROT_EXEC? 1010 * 1011 * (the exception is when the underlying filesystem is noexec 1012 * mounted, in which case we dont add PROT_EXEC.) 1013 */ 1014 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1015 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1016 prot |= PROT_EXEC; 1017 1018 if (!len) 1019 return -EINVAL; 1020 1021 if (!(flags & MAP_FIXED)) 1022 addr = round_hint_to_min(addr); 1023 1024 /* Careful about overflows.. */ 1025 len = PAGE_ALIGN(len); 1026 if (!len) 1027 return -ENOMEM; 1028 1029 /* offset overflow? */ 1030 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1031 return -EOVERFLOW; 1032 1033 /* Too many mappings? */ 1034 if (mm->map_count > sysctl_max_map_count) 1035 return -ENOMEM; 1036 1037 /* Obtain the address to map to. we verify (or select) it and ensure 1038 * that it represents a valid section of the address space. 1039 */ 1040 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1041 if (addr & ~PAGE_MASK) 1042 return addr; 1043 1044 /* Do simple checking here so the lower-level routines won't have 1045 * to. we assume access permissions have been handled by the open 1046 * of the memory object, so we don't do any here. 1047 */ 1048 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1049 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1050 1051 if (flags & MAP_LOCKED) 1052 if (!can_do_mlock()) 1053 return -EPERM; 1054 1055 /* mlock MCL_FUTURE? */ 1056 if (vm_flags & VM_LOCKED) { 1057 unsigned long locked, lock_limit; 1058 locked = len >> PAGE_SHIFT; 1059 locked += mm->locked_vm; 1060 lock_limit = rlimit(RLIMIT_MEMLOCK); 1061 lock_limit >>= PAGE_SHIFT; 1062 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1063 return -EAGAIN; 1064 } 1065 1066 inode = file ? file->f_path.dentry->d_inode : NULL; 1067 1068 if (file) { 1069 switch (flags & MAP_TYPE) { 1070 case MAP_SHARED: 1071 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1072 return -EACCES; 1073 1074 /* 1075 * Make sure we don't allow writing to an append-only 1076 * file.. 1077 */ 1078 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1079 return -EACCES; 1080 1081 /* 1082 * Make sure there are no mandatory locks on the file. 1083 */ 1084 if (locks_verify_locked(inode)) 1085 return -EAGAIN; 1086 1087 vm_flags |= VM_SHARED | VM_MAYSHARE; 1088 if (!(file->f_mode & FMODE_WRITE)) 1089 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1090 1091 /* fall through */ 1092 case MAP_PRIVATE: 1093 if (!(file->f_mode & FMODE_READ)) 1094 return -EACCES; 1095 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1096 if (vm_flags & VM_EXEC) 1097 return -EPERM; 1098 vm_flags &= ~VM_MAYEXEC; 1099 } 1100 1101 if (!file->f_op || !file->f_op->mmap) 1102 return -ENODEV; 1103 break; 1104 1105 default: 1106 return -EINVAL; 1107 } 1108 } else { 1109 switch (flags & MAP_TYPE) { 1110 case MAP_SHARED: 1111 /* 1112 * Ignore pgoff. 1113 */ 1114 pgoff = 0; 1115 vm_flags |= VM_SHARED | VM_MAYSHARE; 1116 break; 1117 case MAP_PRIVATE: 1118 /* 1119 * Set pgoff according to addr for anon_vma. 1120 */ 1121 pgoff = addr >> PAGE_SHIFT; 1122 break; 1123 default: 1124 return -EINVAL; 1125 } 1126 } 1127 1128 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1129 } 1130 1131 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1132 unsigned long, prot, unsigned long, flags, 1133 unsigned long, fd, unsigned long, pgoff) 1134 { 1135 struct file *file = NULL; 1136 unsigned long retval = -EBADF; 1137 1138 if (!(flags & MAP_ANONYMOUS)) { 1139 audit_mmap_fd(fd, flags); 1140 if (unlikely(flags & MAP_HUGETLB)) 1141 return -EINVAL; 1142 file = fget(fd); 1143 if (!file) 1144 goto out; 1145 } else if (flags & MAP_HUGETLB) { 1146 struct user_struct *user = NULL; 1147 /* 1148 * VM_NORESERVE is used because the reservations will be 1149 * taken when vm_ops->mmap() is called 1150 * A dummy user value is used because we are not locking 1151 * memory so no accounting is necessary 1152 */ 1153 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1154 VM_NORESERVE, &user, 1155 HUGETLB_ANONHUGE_INODE); 1156 if (IS_ERR(file)) 1157 return PTR_ERR(file); 1158 } 1159 1160 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1161 1162 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1163 if (file) 1164 fput(file); 1165 out: 1166 return retval; 1167 } 1168 1169 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1170 struct mmap_arg_struct { 1171 unsigned long addr; 1172 unsigned long len; 1173 unsigned long prot; 1174 unsigned long flags; 1175 unsigned long fd; 1176 unsigned long offset; 1177 }; 1178 1179 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1180 { 1181 struct mmap_arg_struct a; 1182 1183 if (copy_from_user(&a, arg, sizeof(a))) 1184 return -EFAULT; 1185 if (a.offset & ~PAGE_MASK) 1186 return -EINVAL; 1187 1188 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1189 a.offset >> PAGE_SHIFT); 1190 } 1191 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1192 1193 /* 1194 * Some shared mappigns will want the pages marked read-only 1195 * to track write events. If so, we'll downgrade vm_page_prot 1196 * to the private version (using protection_map[] without the 1197 * VM_SHARED bit). 1198 */ 1199 int vma_wants_writenotify(struct vm_area_struct *vma) 1200 { 1201 vm_flags_t vm_flags = vma->vm_flags; 1202 1203 /* If it was private or non-writable, the write bit is already clear */ 1204 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1205 return 0; 1206 1207 /* The backer wishes to know when pages are first written to? */ 1208 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1209 return 1; 1210 1211 /* The open routine did something to the protections already? */ 1212 if (pgprot_val(vma->vm_page_prot) != 1213 pgprot_val(vm_get_page_prot(vm_flags))) 1214 return 0; 1215 1216 /* Specialty mapping? */ 1217 if (vm_flags & VM_PFNMAP) 1218 return 0; 1219 1220 /* Can the mapping track the dirty pages? */ 1221 return vma->vm_file && vma->vm_file->f_mapping && 1222 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1223 } 1224 1225 /* 1226 * We account for memory if it's a private writeable mapping, 1227 * not hugepages and VM_NORESERVE wasn't set. 1228 */ 1229 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1230 { 1231 /* 1232 * hugetlb has its own accounting separate from the core VM 1233 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1234 */ 1235 if (file && is_file_hugepages(file)) 1236 return 0; 1237 1238 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1239 } 1240 1241 unsigned long mmap_region(struct file *file, unsigned long addr, 1242 unsigned long len, unsigned long flags, 1243 vm_flags_t vm_flags, unsigned long pgoff) 1244 { 1245 struct mm_struct *mm = current->mm; 1246 struct vm_area_struct *vma, *prev; 1247 int correct_wcount = 0; 1248 int error; 1249 struct rb_node **rb_link, *rb_parent; 1250 unsigned long charged = 0; 1251 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1252 1253 /* Clear old maps */ 1254 error = -ENOMEM; 1255 munmap_back: 1256 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1257 if (do_munmap(mm, addr, len)) 1258 return -ENOMEM; 1259 goto munmap_back; 1260 } 1261 1262 /* Check against address space limit. */ 1263 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1264 return -ENOMEM; 1265 1266 /* 1267 * Set 'VM_NORESERVE' if we should not account for the 1268 * memory use of this mapping. 1269 */ 1270 if ((flags & MAP_NORESERVE)) { 1271 /* We honor MAP_NORESERVE if allowed to overcommit */ 1272 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1273 vm_flags |= VM_NORESERVE; 1274 1275 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1276 if (file && is_file_hugepages(file)) 1277 vm_flags |= VM_NORESERVE; 1278 } 1279 1280 /* 1281 * Private writable mapping: check memory availability 1282 */ 1283 if (accountable_mapping(file, vm_flags)) { 1284 charged = len >> PAGE_SHIFT; 1285 if (security_vm_enough_memory_mm(mm, charged)) 1286 return -ENOMEM; 1287 vm_flags |= VM_ACCOUNT; 1288 } 1289 1290 /* 1291 * Can we just expand an old mapping? 1292 */ 1293 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1294 if (vma) 1295 goto out; 1296 1297 /* 1298 * Determine the object being mapped and call the appropriate 1299 * specific mapper. the address has already been validated, but 1300 * not unmapped, but the maps are removed from the list. 1301 */ 1302 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1303 if (!vma) { 1304 error = -ENOMEM; 1305 goto unacct_error; 1306 } 1307 1308 vma->vm_mm = mm; 1309 vma->vm_start = addr; 1310 vma->vm_end = addr + len; 1311 vma->vm_flags = vm_flags; 1312 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1313 vma->vm_pgoff = pgoff; 1314 INIT_LIST_HEAD(&vma->anon_vma_chain); 1315 1316 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1317 1318 if (file) { 1319 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1320 goto free_vma; 1321 if (vm_flags & VM_DENYWRITE) { 1322 error = deny_write_access(file); 1323 if (error) 1324 goto free_vma; 1325 correct_wcount = 1; 1326 } 1327 vma->vm_file = get_file(file); 1328 error = file->f_op->mmap(file, vma); 1329 if (error) 1330 goto unmap_and_free_vma; 1331 1332 /* Can addr have changed?? 1333 * 1334 * Answer: Yes, several device drivers can do it in their 1335 * f_op->mmap method. -DaveM 1336 */ 1337 addr = vma->vm_start; 1338 pgoff = vma->vm_pgoff; 1339 vm_flags = vma->vm_flags; 1340 } else if (vm_flags & VM_SHARED) { 1341 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1342 goto free_vma; 1343 error = shmem_zero_setup(vma); 1344 if (error) 1345 goto free_vma; 1346 } 1347 1348 if (vma_wants_writenotify(vma)) { 1349 pgprot_t pprot = vma->vm_page_prot; 1350 1351 /* Can vma->vm_page_prot have changed?? 1352 * 1353 * Answer: Yes, drivers may have changed it in their 1354 * f_op->mmap method. 1355 * 1356 * Ensures that vmas marked as uncached stay that way. 1357 */ 1358 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1359 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1360 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1361 } 1362 1363 vma_link(mm, vma, prev, rb_link, rb_parent); 1364 file = vma->vm_file; 1365 1366 /* Once vma denies write, undo our temporary denial count */ 1367 if (correct_wcount) 1368 atomic_inc(&inode->i_writecount); 1369 out: 1370 perf_event_mmap(vma); 1371 1372 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1373 if (vm_flags & VM_LOCKED) { 1374 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1375 mm->locked_vm += (len >> PAGE_SHIFT); 1376 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1377 make_pages_present(addr, addr + len); 1378 1379 if (file) 1380 uprobe_mmap(vma); 1381 1382 return addr; 1383 1384 unmap_and_free_vma: 1385 if (correct_wcount) 1386 atomic_inc(&inode->i_writecount); 1387 vma->vm_file = NULL; 1388 fput(file); 1389 1390 /* Undo any partial mapping done by a device driver. */ 1391 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1392 charged = 0; 1393 free_vma: 1394 kmem_cache_free(vm_area_cachep, vma); 1395 unacct_error: 1396 if (charged) 1397 vm_unacct_memory(charged); 1398 return error; 1399 } 1400 1401 /* Get an address range which is currently unmapped. 1402 * For shmat() with addr=0. 1403 * 1404 * Ugly calling convention alert: 1405 * Return value with the low bits set means error value, 1406 * ie 1407 * if (ret & ~PAGE_MASK) 1408 * error = ret; 1409 * 1410 * This function "knows" that -ENOMEM has the bits set. 1411 */ 1412 #ifndef HAVE_ARCH_UNMAPPED_AREA 1413 unsigned long 1414 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1415 unsigned long len, unsigned long pgoff, unsigned long flags) 1416 { 1417 struct mm_struct *mm = current->mm; 1418 struct vm_area_struct *vma; 1419 unsigned long start_addr; 1420 1421 if (len > TASK_SIZE) 1422 return -ENOMEM; 1423 1424 if (flags & MAP_FIXED) 1425 return addr; 1426 1427 if (addr) { 1428 addr = PAGE_ALIGN(addr); 1429 vma = find_vma(mm, addr); 1430 if (TASK_SIZE - len >= addr && 1431 (!vma || addr + len <= vma->vm_start)) 1432 return addr; 1433 } 1434 if (len > mm->cached_hole_size) { 1435 start_addr = addr = mm->free_area_cache; 1436 } else { 1437 start_addr = addr = TASK_UNMAPPED_BASE; 1438 mm->cached_hole_size = 0; 1439 } 1440 1441 full_search: 1442 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1443 /* At this point: (!vma || addr < vma->vm_end). */ 1444 if (TASK_SIZE - len < addr) { 1445 /* 1446 * Start a new search - just in case we missed 1447 * some holes. 1448 */ 1449 if (start_addr != TASK_UNMAPPED_BASE) { 1450 addr = TASK_UNMAPPED_BASE; 1451 start_addr = addr; 1452 mm->cached_hole_size = 0; 1453 goto full_search; 1454 } 1455 return -ENOMEM; 1456 } 1457 if (!vma || addr + len <= vma->vm_start) { 1458 /* 1459 * Remember the place where we stopped the search: 1460 */ 1461 mm->free_area_cache = addr + len; 1462 return addr; 1463 } 1464 if (addr + mm->cached_hole_size < vma->vm_start) 1465 mm->cached_hole_size = vma->vm_start - addr; 1466 addr = vma->vm_end; 1467 } 1468 } 1469 #endif 1470 1471 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1472 { 1473 /* 1474 * Is this a new hole at the lowest possible address? 1475 */ 1476 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1477 mm->free_area_cache = addr; 1478 } 1479 1480 /* 1481 * This mmap-allocator allocates new areas top-down from below the 1482 * stack's low limit (the base): 1483 */ 1484 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1485 unsigned long 1486 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1487 const unsigned long len, const unsigned long pgoff, 1488 const unsigned long flags) 1489 { 1490 struct vm_area_struct *vma; 1491 struct mm_struct *mm = current->mm; 1492 unsigned long addr = addr0, start_addr; 1493 1494 /* requested length too big for entire address space */ 1495 if (len > TASK_SIZE) 1496 return -ENOMEM; 1497 1498 if (flags & MAP_FIXED) 1499 return addr; 1500 1501 /* requesting a specific address */ 1502 if (addr) { 1503 addr = PAGE_ALIGN(addr); 1504 vma = find_vma(mm, addr); 1505 if (TASK_SIZE - len >= addr && 1506 (!vma || addr + len <= vma->vm_start)) 1507 return addr; 1508 } 1509 1510 /* check if free_area_cache is useful for us */ 1511 if (len <= mm->cached_hole_size) { 1512 mm->cached_hole_size = 0; 1513 mm->free_area_cache = mm->mmap_base; 1514 } 1515 1516 try_again: 1517 /* either no address requested or can't fit in requested address hole */ 1518 start_addr = addr = mm->free_area_cache; 1519 1520 if (addr < len) 1521 goto fail; 1522 1523 addr -= len; 1524 do { 1525 /* 1526 * Lookup failure means no vma is above this address, 1527 * else if new region fits below vma->vm_start, 1528 * return with success: 1529 */ 1530 vma = find_vma(mm, addr); 1531 if (!vma || addr+len <= vma->vm_start) 1532 /* remember the address as a hint for next time */ 1533 return (mm->free_area_cache = addr); 1534 1535 /* remember the largest hole we saw so far */ 1536 if (addr + mm->cached_hole_size < vma->vm_start) 1537 mm->cached_hole_size = vma->vm_start - addr; 1538 1539 /* try just below the current vma->vm_start */ 1540 addr = vma->vm_start-len; 1541 } while (len < vma->vm_start); 1542 1543 fail: 1544 /* 1545 * if hint left us with no space for the requested 1546 * mapping then try again: 1547 * 1548 * Note: this is different with the case of bottomup 1549 * which does the fully line-search, but we use find_vma 1550 * here that causes some holes skipped. 1551 */ 1552 if (start_addr != mm->mmap_base) { 1553 mm->free_area_cache = mm->mmap_base; 1554 mm->cached_hole_size = 0; 1555 goto try_again; 1556 } 1557 1558 /* 1559 * A failed mmap() very likely causes application failure, 1560 * so fall back to the bottom-up function here. This scenario 1561 * can happen with large stack limits and large mmap() 1562 * allocations. 1563 */ 1564 mm->cached_hole_size = ~0UL; 1565 mm->free_area_cache = TASK_UNMAPPED_BASE; 1566 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1567 /* 1568 * Restore the topdown base: 1569 */ 1570 mm->free_area_cache = mm->mmap_base; 1571 mm->cached_hole_size = ~0UL; 1572 1573 return addr; 1574 } 1575 #endif 1576 1577 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1578 { 1579 /* 1580 * Is this a new hole at the highest possible address? 1581 */ 1582 if (addr > mm->free_area_cache) 1583 mm->free_area_cache = addr; 1584 1585 /* dont allow allocations above current base */ 1586 if (mm->free_area_cache > mm->mmap_base) 1587 mm->free_area_cache = mm->mmap_base; 1588 } 1589 1590 unsigned long 1591 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1592 unsigned long pgoff, unsigned long flags) 1593 { 1594 unsigned long (*get_area)(struct file *, unsigned long, 1595 unsigned long, unsigned long, unsigned long); 1596 1597 unsigned long error = arch_mmap_check(addr, len, flags); 1598 if (error) 1599 return error; 1600 1601 /* Careful about overflows.. */ 1602 if (len > TASK_SIZE) 1603 return -ENOMEM; 1604 1605 get_area = current->mm->get_unmapped_area; 1606 if (file && file->f_op && file->f_op->get_unmapped_area) 1607 get_area = file->f_op->get_unmapped_area; 1608 addr = get_area(file, addr, len, pgoff, flags); 1609 if (IS_ERR_VALUE(addr)) 1610 return addr; 1611 1612 if (addr > TASK_SIZE - len) 1613 return -ENOMEM; 1614 if (addr & ~PAGE_MASK) 1615 return -EINVAL; 1616 1617 addr = arch_rebalance_pgtables(addr, len); 1618 error = security_mmap_addr(addr); 1619 return error ? error : addr; 1620 } 1621 1622 EXPORT_SYMBOL(get_unmapped_area); 1623 1624 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1626 { 1627 struct vm_area_struct *vma = NULL; 1628 1629 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ 1630 return NULL; 1631 1632 /* Check the cache first. */ 1633 /* (Cache hit rate is typically around 35%.) */ 1634 vma = mm->mmap_cache; 1635 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1636 struct rb_node *rb_node; 1637 1638 rb_node = mm->mm_rb.rb_node; 1639 vma = NULL; 1640 1641 while (rb_node) { 1642 struct vm_area_struct *vma_tmp; 1643 1644 vma_tmp = rb_entry(rb_node, 1645 struct vm_area_struct, vm_rb); 1646 1647 if (vma_tmp->vm_end > addr) { 1648 vma = vma_tmp; 1649 if (vma_tmp->vm_start <= addr) 1650 break; 1651 rb_node = rb_node->rb_left; 1652 } else 1653 rb_node = rb_node->rb_right; 1654 } 1655 if (vma) 1656 mm->mmap_cache = vma; 1657 } 1658 return vma; 1659 } 1660 1661 EXPORT_SYMBOL(find_vma); 1662 1663 /* 1664 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1665 */ 1666 struct vm_area_struct * 1667 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1668 struct vm_area_struct **pprev) 1669 { 1670 struct vm_area_struct *vma; 1671 1672 vma = find_vma(mm, addr); 1673 if (vma) { 1674 *pprev = vma->vm_prev; 1675 } else { 1676 struct rb_node *rb_node = mm->mm_rb.rb_node; 1677 *pprev = NULL; 1678 while (rb_node) { 1679 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1680 rb_node = rb_node->rb_right; 1681 } 1682 } 1683 return vma; 1684 } 1685 1686 /* 1687 * Verify that the stack growth is acceptable and 1688 * update accounting. This is shared with both the 1689 * grow-up and grow-down cases. 1690 */ 1691 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1692 { 1693 struct mm_struct *mm = vma->vm_mm; 1694 struct rlimit *rlim = current->signal->rlim; 1695 unsigned long new_start; 1696 1697 /* address space limit tests */ 1698 if (!may_expand_vm(mm, grow)) 1699 return -ENOMEM; 1700 1701 /* Stack limit test */ 1702 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1703 return -ENOMEM; 1704 1705 /* mlock limit tests */ 1706 if (vma->vm_flags & VM_LOCKED) { 1707 unsigned long locked; 1708 unsigned long limit; 1709 locked = mm->locked_vm + grow; 1710 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1711 limit >>= PAGE_SHIFT; 1712 if (locked > limit && !capable(CAP_IPC_LOCK)) 1713 return -ENOMEM; 1714 } 1715 1716 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1717 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1718 vma->vm_end - size; 1719 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1720 return -EFAULT; 1721 1722 /* 1723 * Overcommit.. This must be the final test, as it will 1724 * update security statistics. 1725 */ 1726 if (security_vm_enough_memory_mm(mm, grow)) 1727 return -ENOMEM; 1728 1729 /* Ok, everything looks good - let it rip */ 1730 if (vma->vm_flags & VM_LOCKED) 1731 mm->locked_vm += grow; 1732 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1733 return 0; 1734 } 1735 1736 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1737 /* 1738 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1739 * vma is the last one with address > vma->vm_end. Have to extend vma. 1740 */ 1741 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1742 { 1743 int error; 1744 1745 if (!(vma->vm_flags & VM_GROWSUP)) 1746 return -EFAULT; 1747 1748 /* 1749 * We must make sure the anon_vma is allocated 1750 * so that the anon_vma locking is not a noop. 1751 */ 1752 if (unlikely(anon_vma_prepare(vma))) 1753 return -ENOMEM; 1754 vma_lock_anon_vma(vma); 1755 1756 /* 1757 * vma->vm_start/vm_end cannot change under us because the caller 1758 * is required to hold the mmap_sem in read mode. We need the 1759 * anon_vma lock to serialize against concurrent expand_stacks. 1760 * Also guard against wrapping around to address 0. 1761 */ 1762 if (address < PAGE_ALIGN(address+4)) 1763 address = PAGE_ALIGN(address+4); 1764 else { 1765 vma_unlock_anon_vma(vma); 1766 return -ENOMEM; 1767 } 1768 error = 0; 1769 1770 /* Somebody else might have raced and expanded it already */ 1771 if (address > vma->vm_end) { 1772 unsigned long size, grow; 1773 1774 size = address - vma->vm_start; 1775 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1776 1777 error = -ENOMEM; 1778 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1779 error = acct_stack_growth(vma, size, grow); 1780 if (!error) { 1781 anon_vma_interval_tree_pre_update_vma(vma); 1782 vma->vm_end = address; 1783 anon_vma_interval_tree_post_update_vma(vma); 1784 perf_event_mmap(vma); 1785 } 1786 } 1787 } 1788 vma_unlock_anon_vma(vma); 1789 khugepaged_enter_vma_merge(vma); 1790 validate_mm(vma->vm_mm); 1791 return error; 1792 } 1793 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1794 1795 /* 1796 * vma is the first one with address < vma->vm_start. Have to extend vma. 1797 */ 1798 int expand_downwards(struct vm_area_struct *vma, 1799 unsigned long address) 1800 { 1801 int error; 1802 1803 /* 1804 * We must make sure the anon_vma is allocated 1805 * so that the anon_vma locking is not a noop. 1806 */ 1807 if (unlikely(anon_vma_prepare(vma))) 1808 return -ENOMEM; 1809 1810 address &= PAGE_MASK; 1811 error = security_mmap_addr(address); 1812 if (error) 1813 return error; 1814 1815 vma_lock_anon_vma(vma); 1816 1817 /* 1818 * vma->vm_start/vm_end cannot change under us because the caller 1819 * is required to hold the mmap_sem in read mode. We need the 1820 * anon_vma lock to serialize against concurrent expand_stacks. 1821 */ 1822 1823 /* Somebody else might have raced and expanded it already */ 1824 if (address < vma->vm_start) { 1825 unsigned long size, grow; 1826 1827 size = vma->vm_end - address; 1828 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1829 1830 error = -ENOMEM; 1831 if (grow <= vma->vm_pgoff) { 1832 error = acct_stack_growth(vma, size, grow); 1833 if (!error) { 1834 anon_vma_interval_tree_pre_update_vma(vma); 1835 vma->vm_start = address; 1836 vma->vm_pgoff -= grow; 1837 anon_vma_interval_tree_post_update_vma(vma); 1838 perf_event_mmap(vma); 1839 } 1840 } 1841 } 1842 vma_unlock_anon_vma(vma); 1843 khugepaged_enter_vma_merge(vma); 1844 validate_mm(vma->vm_mm); 1845 return error; 1846 } 1847 1848 #ifdef CONFIG_STACK_GROWSUP 1849 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1850 { 1851 return expand_upwards(vma, address); 1852 } 1853 1854 struct vm_area_struct * 1855 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1856 { 1857 struct vm_area_struct *vma, *prev; 1858 1859 addr &= PAGE_MASK; 1860 vma = find_vma_prev(mm, addr, &prev); 1861 if (vma && (vma->vm_start <= addr)) 1862 return vma; 1863 if (!prev || expand_stack(prev, addr)) 1864 return NULL; 1865 if (prev->vm_flags & VM_LOCKED) { 1866 mlock_vma_pages_range(prev, addr, prev->vm_end); 1867 } 1868 return prev; 1869 } 1870 #else 1871 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1872 { 1873 return expand_downwards(vma, address); 1874 } 1875 1876 struct vm_area_struct * 1877 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1878 { 1879 struct vm_area_struct * vma; 1880 unsigned long start; 1881 1882 addr &= PAGE_MASK; 1883 vma = find_vma(mm,addr); 1884 if (!vma) 1885 return NULL; 1886 if (vma->vm_start <= addr) 1887 return vma; 1888 if (!(vma->vm_flags & VM_GROWSDOWN)) 1889 return NULL; 1890 start = vma->vm_start; 1891 if (expand_stack(vma, addr)) 1892 return NULL; 1893 if (vma->vm_flags & VM_LOCKED) { 1894 mlock_vma_pages_range(vma, addr, start); 1895 } 1896 return vma; 1897 } 1898 #endif 1899 1900 /* 1901 * Ok - we have the memory areas we should free on the vma list, 1902 * so release them, and do the vma updates. 1903 * 1904 * Called with the mm semaphore held. 1905 */ 1906 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1907 { 1908 unsigned long nr_accounted = 0; 1909 1910 /* Update high watermark before we lower total_vm */ 1911 update_hiwater_vm(mm); 1912 do { 1913 long nrpages = vma_pages(vma); 1914 1915 if (vma->vm_flags & VM_ACCOUNT) 1916 nr_accounted += nrpages; 1917 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1918 vma = remove_vma(vma); 1919 } while (vma); 1920 vm_unacct_memory(nr_accounted); 1921 validate_mm(mm); 1922 } 1923 1924 /* 1925 * Get rid of page table information in the indicated region. 1926 * 1927 * Called with the mm semaphore held. 1928 */ 1929 static void unmap_region(struct mm_struct *mm, 1930 struct vm_area_struct *vma, struct vm_area_struct *prev, 1931 unsigned long start, unsigned long end) 1932 { 1933 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1934 struct mmu_gather tlb; 1935 1936 lru_add_drain(); 1937 tlb_gather_mmu(&tlb, mm, 0); 1938 update_hiwater_rss(mm); 1939 unmap_vmas(&tlb, vma, start, end); 1940 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1941 next ? next->vm_start : 0); 1942 tlb_finish_mmu(&tlb, start, end); 1943 } 1944 1945 /* 1946 * Create a list of vma's touched by the unmap, removing them from the mm's 1947 * vma list as we go.. 1948 */ 1949 static void 1950 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1951 struct vm_area_struct *prev, unsigned long end) 1952 { 1953 struct vm_area_struct **insertion_point; 1954 struct vm_area_struct *tail_vma = NULL; 1955 unsigned long addr; 1956 1957 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1958 vma->vm_prev = NULL; 1959 do { 1960 rb_erase(&vma->vm_rb, &mm->mm_rb); 1961 mm->map_count--; 1962 tail_vma = vma; 1963 vma = vma->vm_next; 1964 } while (vma && vma->vm_start < end); 1965 *insertion_point = vma; 1966 if (vma) 1967 vma->vm_prev = prev; 1968 tail_vma->vm_next = NULL; 1969 if (mm->unmap_area == arch_unmap_area) 1970 addr = prev ? prev->vm_end : mm->mmap_base; 1971 else 1972 addr = vma ? vma->vm_start : mm->mmap_base; 1973 mm->unmap_area(mm, addr); 1974 mm->mmap_cache = NULL; /* Kill the cache. */ 1975 } 1976 1977 /* 1978 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1979 * munmap path where it doesn't make sense to fail. 1980 */ 1981 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1982 unsigned long addr, int new_below) 1983 { 1984 struct mempolicy *pol; 1985 struct vm_area_struct *new; 1986 int err = -ENOMEM; 1987 1988 if (is_vm_hugetlb_page(vma) && (addr & 1989 ~(huge_page_mask(hstate_vma(vma))))) 1990 return -EINVAL; 1991 1992 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1993 if (!new) 1994 goto out_err; 1995 1996 /* most fields are the same, copy all, and then fixup */ 1997 *new = *vma; 1998 1999 INIT_LIST_HEAD(&new->anon_vma_chain); 2000 2001 if (new_below) 2002 new->vm_end = addr; 2003 else { 2004 new->vm_start = addr; 2005 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2006 } 2007 2008 pol = mpol_dup(vma_policy(vma)); 2009 if (IS_ERR(pol)) { 2010 err = PTR_ERR(pol); 2011 goto out_free_vma; 2012 } 2013 vma_set_policy(new, pol); 2014 2015 if (anon_vma_clone(new, vma)) 2016 goto out_free_mpol; 2017 2018 if (new->vm_file) 2019 get_file(new->vm_file); 2020 2021 if (new->vm_ops && new->vm_ops->open) 2022 new->vm_ops->open(new); 2023 2024 if (new_below) 2025 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2026 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2027 else 2028 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2029 2030 /* Success. */ 2031 if (!err) 2032 return 0; 2033 2034 /* Clean everything up if vma_adjust failed. */ 2035 if (new->vm_ops && new->vm_ops->close) 2036 new->vm_ops->close(new); 2037 if (new->vm_file) 2038 fput(new->vm_file); 2039 unlink_anon_vmas(new); 2040 out_free_mpol: 2041 mpol_put(pol); 2042 out_free_vma: 2043 kmem_cache_free(vm_area_cachep, new); 2044 out_err: 2045 return err; 2046 } 2047 2048 /* 2049 * Split a vma into two pieces at address 'addr', a new vma is allocated 2050 * either for the first part or the tail. 2051 */ 2052 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2053 unsigned long addr, int new_below) 2054 { 2055 if (mm->map_count >= sysctl_max_map_count) 2056 return -ENOMEM; 2057 2058 return __split_vma(mm, vma, addr, new_below); 2059 } 2060 2061 /* Munmap is split into 2 main parts -- this part which finds 2062 * what needs doing, and the areas themselves, which do the 2063 * work. This now handles partial unmappings. 2064 * Jeremy Fitzhardinge <jeremy@goop.org> 2065 */ 2066 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2067 { 2068 unsigned long end; 2069 struct vm_area_struct *vma, *prev, *last; 2070 2071 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2072 return -EINVAL; 2073 2074 if ((len = PAGE_ALIGN(len)) == 0) 2075 return -EINVAL; 2076 2077 /* Find the first overlapping VMA */ 2078 vma = find_vma(mm, start); 2079 if (!vma) 2080 return 0; 2081 prev = vma->vm_prev; 2082 /* we have start < vma->vm_end */ 2083 2084 /* if it doesn't overlap, we have nothing.. */ 2085 end = start + len; 2086 if (vma->vm_start >= end) 2087 return 0; 2088 2089 /* 2090 * If we need to split any vma, do it now to save pain later. 2091 * 2092 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2093 * unmapped vm_area_struct will remain in use: so lower split_vma 2094 * places tmp vma above, and higher split_vma places tmp vma below. 2095 */ 2096 if (start > vma->vm_start) { 2097 int error; 2098 2099 /* 2100 * Make sure that map_count on return from munmap() will 2101 * not exceed its limit; but let map_count go just above 2102 * its limit temporarily, to help free resources as expected. 2103 */ 2104 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2105 return -ENOMEM; 2106 2107 error = __split_vma(mm, vma, start, 0); 2108 if (error) 2109 return error; 2110 prev = vma; 2111 } 2112 2113 /* Does it split the last one? */ 2114 last = find_vma(mm, end); 2115 if (last && end > last->vm_start) { 2116 int error = __split_vma(mm, last, end, 1); 2117 if (error) 2118 return error; 2119 } 2120 vma = prev? prev->vm_next: mm->mmap; 2121 2122 /* 2123 * unlock any mlock()ed ranges before detaching vmas 2124 */ 2125 if (mm->locked_vm) { 2126 struct vm_area_struct *tmp = vma; 2127 while (tmp && tmp->vm_start < end) { 2128 if (tmp->vm_flags & VM_LOCKED) { 2129 mm->locked_vm -= vma_pages(tmp); 2130 munlock_vma_pages_all(tmp); 2131 } 2132 tmp = tmp->vm_next; 2133 } 2134 } 2135 2136 /* 2137 * Remove the vma's, and unmap the actual pages 2138 */ 2139 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2140 unmap_region(mm, vma, prev, start, end); 2141 2142 /* Fix up all other VM information */ 2143 remove_vma_list(mm, vma); 2144 2145 return 0; 2146 } 2147 2148 int vm_munmap(unsigned long start, size_t len) 2149 { 2150 int ret; 2151 struct mm_struct *mm = current->mm; 2152 2153 down_write(&mm->mmap_sem); 2154 ret = do_munmap(mm, start, len); 2155 up_write(&mm->mmap_sem); 2156 return ret; 2157 } 2158 EXPORT_SYMBOL(vm_munmap); 2159 2160 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2161 { 2162 profile_munmap(addr); 2163 return vm_munmap(addr, len); 2164 } 2165 2166 static inline void verify_mm_writelocked(struct mm_struct *mm) 2167 { 2168 #ifdef CONFIG_DEBUG_VM 2169 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2170 WARN_ON(1); 2171 up_read(&mm->mmap_sem); 2172 } 2173 #endif 2174 } 2175 2176 /* 2177 * this is really a simplified "do_mmap". it only handles 2178 * anonymous maps. eventually we may be able to do some 2179 * brk-specific accounting here. 2180 */ 2181 static unsigned long do_brk(unsigned long addr, unsigned long len) 2182 { 2183 struct mm_struct * mm = current->mm; 2184 struct vm_area_struct * vma, * prev; 2185 unsigned long flags; 2186 struct rb_node ** rb_link, * rb_parent; 2187 pgoff_t pgoff = addr >> PAGE_SHIFT; 2188 int error; 2189 2190 len = PAGE_ALIGN(len); 2191 if (!len) 2192 return addr; 2193 2194 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2195 2196 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2197 if (error & ~PAGE_MASK) 2198 return error; 2199 2200 /* 2201 * mlock MCL_FUTURE? 2202 */ 2203 if (mm->def_flags & VM_LOCKED) { 2204 unsigned long locked, lock_limit; 2205 locked = len >> PAGE_SHIFT; 2206 locked += mm->locked_vm; 2207 lock_limit = rlimit(RLIMIT_MEMLOCK); 2208 lock_limit >>= PAGE_SHIFT; 2209 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2210 return -EAGAIN; 2211 } 2212 2213 /* 2214 * mm->mmap_sem is required to protect against another thread 2215 * changing the mappings in case we sleep. 2216 */ 2217 verify_mm_writelocked(mm); 2218 2219 /* 2220 * Clear old maps. this also does some error checking for us 2221 */ 2222 munmap_back: 2223 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2224 if (do_munmap(mm, addr, len)) 2225 return -ENOMEM; 2226 goto munmap_back; 2227 } 2228 2229 /* Check against address space limits *after* clearing old maps... */ 2230 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2231 return -ENOMEM; 2232 2233 if (mm->map_count > sysctl_max_map_count) 2234 return -ENOMEM; 2235 2236 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2237 return -ENOMEM; 2238 2239 /* Can we just expand an old private anonymous mapping? */ 2240 vma = vma_merge(mm, prev, addr, addr + len, flags, 2241 NULL, NULL, pgoff, NULL); 2242 if (vma) 2243 goto out; 2244 2245 /* 2246 * create a vma struct for an anonymous mapping 2247 */ 2248 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2249 if (!vma) { 2250 vm_unacct_memory(len >> PAGE_SHIFT); 2251 return -ENOMEM; 2252 } 2253 2254 INIT_LIST_HEAD(&vma->anon_vma_chain); 2255 vma->vm_mm = mm; 2256 vma->vm_start = addr; 2257 vma->vm_end = addr + len; 2258 vma->vm_pgoff = pgoff; 2259 vma->vm_flags = flags; 2260 vma->vm_page_prot = vm_get_page_prot(flags); 2261 vma_link(mm, vma, prev, rb_link, rb_parent); 2262 out: 2263 perf_event_mmap(vma); 2264 mm->total_vm += len >> PAGE_SHIFT; 2265 if (flags & VM_LOCKED) { 2266 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2267 mm->locked_vm += (len >> PAGE_SHIFT); 2268 } 2269 return addr; 2270 } 2271 2272 unsigned long vm_brk(unsigned long addr, unsigned long len) 2273 { 2274 struct mm_struct *mm = current->mm; 2275 unsigned long ret; 2276 2277 down_write(&mm->mmap_sem); 2278 ret = do_brk(addr, len); 2279 up_write(&mm->mmap_sem); 2280 return ret; 2281 } 2282 EXPORT_SYMBOL(vm_brk); 2283 2284 /* Release all mmaps. */ 2285 void exit_mmap(struct mm_struct *mm) 2286 { 2287 struct mmu_gather tlb; 2288 struct vm_area_struct *vma; 2289 unsigned long nr_accounted = 0; 2290 2291 /* mm's last user has gone, and its about to be pulled down */ 2292 mmu_notifier_release(mm); 2293 2294 if (mm->locked_vm) { 2295 vma = mm->mmap; 2296 while (vma) { 2297 if (vma->vm_flags & VM_LOCKED) 2298 munlock_vma_pages_all(vma); 2299 vma = vma->vm_next; 2300 } 2301 } 2302 2303 arch_exit_mmap(mm); 2304 2305 vma = mm->mmap; 2306 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2307 return; 2308 2309 lru_add_drain(); 2310 flush_cache_mm(mm); 2311 tlb_gather_mmu(&tlb, mm, 1); 2312 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2313 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2314 unmap_vmas(&tlb, vma, 0, -1); 2315 2316 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2317 tlb_finish_mmu(&tlb, 0, -1); 2318 2319 /* 2320 * Walk the list again, actually closing and freeing it, 2321 * with preemption enabled, without holding any MM locks. 2322 */ 2323 while (vma) { 2324 if (vma->vm_flags & VM_ACCOUNT) 2325 nr_accounted += vma_pages(vma); 2326 vma = remove_vma(vma); 2327 } 2328 vm_unacct_memory(nr_accounted); 2329 2330 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2331 } 2332 2333 /* Insert vm structure into process list sorted by address 2334 * and into the inode's i_mmap tree. If vm_file is non-NULL 2335 * then i_mmap_mutex is taken here. 2336 */ 2337 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2338 { 2339 struct vm_area_struct *prev; 2340 struct rb_node **rb_link, *rb_parent; 2341 2342 /* 2343 * The vm_pgoff of a purely anonymous vma should be irrelevant 2344 * until its first write fault, when page's anon_vma and index 2345 * are set. But now set the vm_pgoff it will almost certainly 2346 * end up with (unless mremap moves it elsewhere before that 2347 * first wfault), so /proc/pid/maps tells a consistent story. 2348 * 2349 * By setting it to reflect the virtual start address of the 2350 * vma, merges and splits can happen in a seamless way, just 2351 * using the existing file pgoff checks and manipulations. 2352 * Similarly in do_mmap_pgoff and in do_brk. 2353 */ 2354 if (!vma->vm_file) { 2355 BUG_ON(vma->anon_vma); 2356 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2357 } 2358 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2359 &prev, &rb_link, &rb_parent)) 2360 return -ENOMEM; 2361 if ((vma->vm_flags & VM_ACCOUNT) && 2362 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2363 return -ENOMEM; 2364 2365 vma_link(mm, vma, prev, rb_link, rb_parent); 2366 return 0; 2367 } 2368 2369 /* 2370 * Copy the vma structure to a new location in the same mm, 2371 * prior to moving page table entries, to effect an mremap move. 2372 */ 2373 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2374 unsigned long addr, unsigned long len, pgoff_t pgoff, 2375 bool *need_rmap_locks) 2376 { 2377 struct vm_area_struct *vma = *vmap; 2378 unsigned long vma_start = vma->vm_start; 2379 struct mm_struct *mm = vma->vm_mm; 2380 struct vm_area_struct *new_vma, *prev; 2381 struct rb_node **rb_link, *rb_parent; 2382 struct mempolicy *pol; 2383 bool faulted_in_anon_vma = true; 2384 2385 /* 2386 * If anonymous vma has not yet been faulted, update new pgoff 2387 * to match new location, to increase its chance of merging. 2388 */ 2389 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2390 pgoff = addr >> PAGE_SHIFT; 2391 faulted_in_anon_vma = false; 2392 } 2393 2394 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2395 return NULL; /* should never get here */ 2396 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2397 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2398 if (new_vma) { 2399 /* 2400 * Source vma may have been merged into new_vma 2401 */ 2402 if (unlikely(vma_start >= new_vma->vm_start && 2403 vma_start < new_vma->vm_end)) { 2404 /* 2405 * The only way we can get a vma_merge with 2406 * self during an mremap is if the vma hasn't 2407 * been faulted in yet and we were allowed to 2408 * reset the dst vma->vm_pgoff to the 2409 * destination address of the mremap to allow 2410 * the merge to happen. mremap must change the 2411 * vm_pgoff linearity between src and dst vmas 2412 * (in turn preventing a vma_merge) to be 2413 * safe. It is only safe to keep the vm_pgoff 2414 * linear if there are no pages mapped yet. 2415 */ 2416 VM_BUG_ON(faulted_in_anon_vma); 2417 *vmap = vma = new_vma; 2418 } 2419 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2420 } else { 2421 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2422 if (new_vma) { 2423 *new_vma = *vma; 2424 new_vma->vm_start = addr; 2425 new_vma->vm_end = addr + len; 2426 new_vma->vm_pgoff = pgoff; 2427 pol = mpol_dup(vma_policy(vma)); 2428 if (IS_ERR(pol)) 2429 goto out_free_vma; 2430 vma_set_policy(new_vma, pol); 2431 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2432 if (anon_vma_clone(new_vma, vma)) 2433 goto out_free_mempol; 2434 if (new_vma->vm_file) 2435 get_file(new_vma->vm_file); 2436 if (new_vma->vm_ops && new_vma->vm_ops->open) 2437 new_vma->vm_ops->open(new_vma); 2438 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2439 *need_rmap_locks = false; 2440 } 2441 } 2442 return new_vma; 2443 2444 out_free_mempol: 2445 mpol_put(pol); 2446 out_free_vma: 2447 kmem_cache_free(vm_area_cachep, new_vma); 2448 return NULL; 2449 } 2450 2451 /* 2452 * Return true if the calling process may expand its vm space by the passed 2453 * number of pages 2454 */ 2455 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2456 { 2457 unsigned long cur = mm->total_vm; /* pages */ 2458 unsigned long lim; 2459 2460 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2461 2462 if (cur + npages > lim) 2463 return 0; 2464 return 1; 2465 } 2466 2467 2468 static int special_mapping_fault(struct vm_area_struct *vma, 2469 struct vm_fault *vmf) 2470 { 2471 pgoff_t pgoff; 2472 struct page **pages; 2473 2474 /* 2475 * special mappings have no vm_file, and in that case, the mm 2476 * uses vm_pgoff internally. So we have to subtract it from here. 2477 * We are allowed to do this because we are the mm; do not copy 2478 * this code into drivers! 2479 */ 2480 pgoff = vmf->pgoff - vma->vm_pgoff; 2481 2482 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2483 pgoff--; 2484 2485 if (*pages) { 2486 struct page *page = *pages; 2487 get_page(page); 2488 vmf->page = page; 2489 return 0; 2490 } 2491 2492 return VM_FAULT_SIGBUS; 2493 } 2494 2495 /* 2496 * Having a close hook prevents vma merging regardless of flags. 2497 */ 2498 static void special_mapping_close(struct vm_area_struct *vma) 2499 { 2500 } 2501 2502 static const struct vm_operations_struct special_mapping_vmops = { 2503 .close = special_mapping_close, 2504 .fault = special_mapping_fault, 2505 }; 2506 2507 /* 2508 * Called with mm->mmap_sem held for writing. 2509 * Insert a new vma covering the given region, with the given flags. 2510 * Its pages are supplied by the given array of struct page *. 2511 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2512 * The region past the last page supplied will always produce SIGBUS. 2513 * The array pointer and the pages it points to are assumed to stay alive 2514 * for as long as this mapping might exist. 2515 */ 2516 int install_special_mapping(struct mm_struct *mm, 2517 unsigned long addr, unsigned long len, 2518 unsigned long vm_flags, struct page **pages) 2519 { 2520 int ret; 2521 struct vm_area_struct *vma; 2522 2523 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2524 if (unlikely(vma == NULL)) 2525 return -ENOMEM; 2526 2527 INIT_LIST_HEAD(&vma->anon_vma_chain); 2528 vma->vm_mm = mm; 2529 vma->vm_start = addr; 2530 vma->vm_end = addr + len; 2531 2532 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2533 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2534 2535 vma->vm_ops = &special_mapping_vmops; 2536 vma->vm_private_data = pages; 2537 2538 ret = insert_vm_struct(mm, vma); 2539 if (ret) 2540 goto out; 2541 2542 mm->total_vm += len >> PAGE_SHIFT; 2543 2544 perf_event_mmap(vma); 2545 2546 return 0; 2547 2548 out: 2549 kmem_cache_free(vm_area_cachep, vma); 2550 return ret; 2551 } 2552 2553 static DEFINE_MUTEX(mm_all_locks_mutex); 2554 2555 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2556 { 2557 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2558 /* 2559 * The LSB of head.next can't change from under us 2560 * because we hold the mm_all_locks_mutex. 2561 */ 2562 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2563 /* 2564 * We can safely modify head.next after taking the 2565 * anon_vma->root->mutex. If some other vma in this mm shares 2566 * the same anon_vma we won't take it again. 2567 * 2568 * No need of atomic instructions here, head.next 2569 * can't change from under us thanks to the 2570 * anon_vma->root->mutex. 2571 */ 2572 if (__test_and_set_bit(0, (unsigned long *) 2573 &anon_vma->root->rb_root.rb_node)) 2574 BUG(); 2575 } 2576 } 2577 2578 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2579 { 2580 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2581 /* 2582 * AS_MM_ALL_LOCKS can't change from under us because 2583 * we hold the mm_all_locks_mutex. 2584 * 2585 * Operations on ->flags have to be atomic because 2586 * even if AS_MM_ALL_LOCKS is stable thanks to the 2587 * mm_all_locks_mutex, there may be other cpus 2588 * changing other bitflags in parallel to us. 2589 */ 2590 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2591 BUG(); 2592 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2593 } 2594 } 2595 2596 /* 2597 * This operation locks against the VM for all pte/vma/mm related 2598 * operations that could ever happen on a certain mm. This includes 2599 * vmtruncate, try_to_unmap, and all page faults. 2600 * 2601 * The caller must take the mmap_sem in write mode before calling 2602 * mm_take_all_locks(). The caller isn't allowed to release the 2603 * mmap_sem until mm_drop_all_locks() returns. 2604 * 2605 * mmap_sem in write mode is required in order to block all operations 2606 * that could modify pagetables and free pages without need of 2607 * altering the vma layout (for example populate_range() with 2608 * nonlinear vmas). It's also needed in write mode to avoid new 2609 * anon_vmas to be associated with existing vmas. 2610 * 2611 * A single task can't take more than one mm_take_all_locks() in a row 2612 * or it would deadlock. 2613 * 2614 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2615 * mapping->flags avoid to take the same lock twice, if more than one 2616 * vma in this mm is backed by the same anon_vma or address_space. 2617 * 2618 * We can take all the locks in random order because the VM code 2619 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2620 * takes more than one of them in a row. Secondly we're protected 2621 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2622 * 2623 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2624 * that may have to take thousand of locks. 2625 * 2626 * mm_take_all_locks() can fail if it's interrupted by signals. 2627 */ 2628 int mm_take_all_locks(struct mm_struct *mm) 2629 { 2630 struct vm_area_struct *vma; 2631 struct anon_vma_chain *avc; 2632 2633 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2634 2635 mutex_lock(&mm_all_locks_mutex); 2636 2637 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2638 if (signal_pending(current)) 2639 goto out_unlock; 2640 if (vma->vm_file && vma->vm_file->f_mapping) 2641 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2642 } 2643 2644 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2645 if (signal_pending(current)) 2646 goto out_unlock; 2647 if (vma->anon_vma) 2648 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2649 vm_lock_anon_vma(mm, avc->anon_vma); 2650 } 2651 2652 return 0; 2653 2654 out_unlock: 2655 mm_drop_all_locks(mm); 2656 return -EINTR; 2657 } 2658 2659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2660 { 2661 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2662 /* 2663 * The LSB of head.next can't change to 0 from under 2664 * us because we hold the mm_all_locks_mutex. 2665 * 2666 * We must however clear the bitflag before unlocking 2667 * the vma so the users using the anon_vma->rb_root will 2668 * never see our bitflag. 2669 * 2670 * No need of atomic instructions here, head.next 2671 * can't change from under us until we release the 2672 * anon_vma->root->mutex. 2673 */ 2674 if (!__test_and_clear_bit(0, (unsigned long *) 2675 &anon_vma->root->rb_root.rb_node)) 2676 BUG(); 2677 anon_vma_unlock(anon_vma); 2678 } 2679 } 2680 2681 static void vm_unlock_mapping(struct address_space *mapping) 2682 { 2683 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2684 /* 2685 * AS_MM_ALL_LOCKS can't change to 0 from under us 2686 * because we hold the mm_all_locks_mutex. 2687 */ 2688 mutex_unlock(&mapping->i_mmap_mutex); 2689 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2690 &mapping->flags)) 2691 BUG(); 2692 } 2693 } 2694 2695 /* 2696 * The mmap_sem cannot be released by the caller until 2697 * mm_drop_all_locks() returns. 2698 */ 2699 void mm_drop_all_locks(struct mm_struct *mm) 2700 { 2701 struct vm_area_struct *vma; 2702 struct anon_vma_chain *avc; 2703 2704 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2705 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2706 2707 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2708 if (vma->anon_vma) 2709 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2710 vm_unlock_anon_vma(avc->anon_vma); 2711 if (vma->vm_file && vma->vm_file->f_mapping) 2712 vm_unlock_mapping(vma->vm_file->f_mapping); 2713 } 2714 2715 mutex_unlock(&mm_all_locks_mutex); 2716 } 2717 2718 /* 2719 * initialise the VMA slab 2720 */ 2721 void __init mmap_init(void) 2722 { 2723 int ret; 2724 2725 ret = percpu_counter_init(&vm_committed_as, 0); 2726 VM_BUG_ON(ret); 2727 } 2728