xref: /linux/mm/mmap.c (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 #include <linux/memfd.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 
60 #include "internal.h"
61 
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)	(0)
64 #endif
65 
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76 
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 
80 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
81 void vma_set_page_prot(struct vm_area_struct *vma)
82 {
83 	vm_flags_t vm_flags = vma->vm_flags;
84 	pgprot_t vm_page_prot;
85 
86 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
87 	if (vma_wants_writenotify(vma, vm_page_prot)) {
88 		vm_flags &= ~VM_SHARED;
89 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
90 	}
91 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
92 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
93 }
94 
95 /*
96  * check_brk_limits() - Use platform specific check of range & verify mlock
97  * limits.
98  * @addr: The address to check
99  * @len: The size of increase.
100  *
101  * Return: 0 on success.
102  */
103 static int check_brk_limits(unsigned long addr, unsigned long len)
104 {
105 	unsigned long mapped_addr;
106 
107 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
108 	if (IS_ERR_VALUE(mapped_addr))
109 		return mapped_addr;
110 
111 	return mlock_future_ok(current->mm,
112 			      current->mm->def_flags & VM_LOCKED, len)
113 		? 0 : -EAGAIN;
114 }
115 
116 SYSCALL_DEFINE1(brk, unsigned long, brk)
117 {
118 	unsigned long newbrk, oldbrk, origbrk;
119 	struct mm_struct *mm = current->mm;
120 	struct vm_area_struct *brkvma, *next = NULL;
121 	unsigned long min_brk;
122 	bool populate = false;
123 	LIST_HEAD(uf);
124 	struct vma_iterator vmi;
125 
126 	if (mmap_write_lock_killable(mm))
127 		return -EINTR;
128 
129 	origbrk = mm->brk;
130 
131 	min_brk = mm->start_brk;
132 #ifdef CONFIG_COMPAT_BRK
133 	/*
134 	 * CONFIG_COMPAT_BRK can still be overridden by setting
135 	 * randomize_va_space to 2, which will still cause mm->start_brk
136 	 * to be arbitrarily shifted
137 	 */
138 	if (!current->brk_randomized)
139 		min_brk = mm->end_data;
140 #endif
141 	if (brk < min_brk)
142 		goto out;
143 
144 	/*
145 	 * Check against rlimit here. If this check is done later after the test
146 	 * of oldbrk with newbrk then it can escape the test and let the data
147 	 * segment grow beyond its set limit the in case where the limit is
148 	 * not page aligned -Ram Gupta
149 	 */
150 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
151 			      mm->end_data, mm->start_data))
152 		goto out;
153 
154 	newbrk = PAGE_ALIGN(brk);
155 	oldbrk = PAGE_ALIGN(mm->brk);
156 	if (oldbrk == newbrk) {
157 		mm->brk = brk;
158 		goto success;
159 	}
160 
161 	/* Always allow shrinking brk. */
162 	if (brk <= mm->brk) {
163 		/* Search one past newbrk */
164 		vma_iter_init(&vmi, mm, newbrk);
165 		brkvma = vma_find(&vmi, oldbrk);
166 		if (!brkvma || brkvma->vm_start >= oldbrk)
167 			goto out; /* mapping intersects with an existing non-brk vma. */
168 		/*
169 		 * mm->brk must be protected by write mmap_lock.
170 		 * do_vmi_align_munmap() will drop the lock on success,  so
171 		 * update it before calling do_vma_munmap().
172 		 */
173 		mm->brk = brk;
174 		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
175 					/* unlock = */ true))
176 			goto out;
177 
178 		goto success_unlocked;
179 	}
180 
181 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
182 		goto out;
183 
184 	/*
185 	 * Only check if the next VMA is within the stack_guard_gap of the
186 	 * expansion area
187 	 */
188 	vma_iter_init(&vmi, mm, oldbrk);
189 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
190 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
191 		goto out;
192 
193 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
194 	/* Ok, looks good - let it rip. */
195 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
196 		goto out;
197 
198 	mm->brk = brk;
199 	if (mm->def_flags & VM_LOCKED)
200 		populate = true;
201 
202 success:
203 	mmap_write_unlock(mm);
204 success_unlocked:
205 	userfaultfd_unmap_complete(mm, &uf);
206 	if (populate)
207 		mm_populate(oldbrk, newbrk - oldbrk);
208 	return brk;
209 
210 out:
211 	mm->brk = origbrk;
212 	mmap_write_unlock(mm);
213 	return origbrk;
214 }
215 
216 /*
217  * If a hint addr is less than mmap_min_addr change hint to be as
218  * low as possible but still greater than mmap_min_addr
219  */
220 static inline unsigned long round_hint_to_min(unsigned long hint)
221 {
222 	hint &= PAGE_MASK;
223 	if (((void *)hint != NULL) &&
224 	    (hint < mmap_min_addr))
225 		return PAGE_ALIGN(mmap_min_addr);
226 	return hint;
227 }
228 
229 bool mlock_future_ok(const struct mm_struct *mm, bool is_vma_locked,
230 		     unsigned long bytes)
231 {
232 	unsigned long locked_pages, limit_pages;
233 
234 	if (!is_vma_locked || capable(CAP_IPC_LOCK))
235 		return true;
236 
237 	locked_pages = bytes >> PAGE_SHIFT;
238 	locked_pages += mm->locked_vm;
239 
240 	limit_pages = rlimit(RLIMIT_MEMLOCK);
241 	limit_pages >>= PAGE_SHIFT;
242 
243 	return locked_pages <= limit_pages;
244 }
245 
246 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
247 {
248 	if (S_ISREG(inode->i_mode))
249 		return MAX_LFS_FILESIZE;
250 
251 	if (S_ISBLK(inode->i_mode))
252 		return MAX_LFS_FILESIZE;
253 
254 	if (S_ISSOCK(inode->i_mode))
255 		return MAX_LFS_FILESIZE;
256 
257 	/* Special "we do even unsigned file positions" case */
258 	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
259 		return 0;
260 
261 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
262 	return ULONG_MAX;
263 }
264 
265 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
266 				unsigned long pgoff, unsigned long len)
267 {
268 	u64 maxsize = file_mmap_size_max(file, inode);
269 
270 	if (maxsize && len > maxsize)
271 		return false;
272 	maxsize -= len;
273 	if (pgoff > maxsize >> PAGE_SHIFT)
274 		return false;
275 	return true;
276 }
277 
278 /**
279  * do_mmap() - Perform a userland memory mapping into the current process
280  * address space of length @len with protection bits @prot, mmap flags @flags
281  * (from which VMA flags will be inferred), and any additional VMA flags to
282  * apply @vm_flags. If this is a file-backed mapping then the file is specified
283  * in @file and page offset into the file via @pgoff.
284  *
285  * This function does not perform security checks on the file and assumes, if
286  * @uf is non-NULL, the caller has provided a list head to track unmap events
287  * for userfaultfd @uf.
288  *
289  * It also simply indicates whether memory population is required by setting
290  * @populate, which must be non-NULL, expecting the caller to actually perform
291  * this task itself if appropriate.
292  *
293  * This function will invoke architecture-specific (and if provided and
294  * relevant, file system-specific) logic to determine the most appropriate
295  * unmapped area in which to place the mapping if not MAP_FIXED.
296  *
297  * Callers which require userland mmap() behaviour should invoke vm_mmap(),
298  * which is also exported for module use.
299  *
300  * Those which require this behaviour less security checks, userfaultfd and
301  * populate behaviour, and who handle the mmap write lock themselves, should
302  * call this function.
303  *
304  * Note that the returned address may reside within a merged VMA if an
305  * appropriate merge were to take place, so it doesn't necessarily specify the
306  * start of a VMA, rather only the start of a valid mapped range of length
307  * @len bytes, rounded down to the nearest page size.
308  *
309  * The caller must write-lock current->mm->mmap_lock.
310  *
311  * @file: An optional struct file pointer describing the file which is to be
312  * mapped, if a file-backed mapping.
313  * @addr: If non-zero, hints at (or if @flags has MAP_FIXED set, specifies) the
314  * address at which to perform this mapping. See mmap (2) for details. Must be
315  * page-aligned.
316  * @len: The length of the mapping. Will be page-aligned and must be at least 1
317  * page in size.
318  * @prot: Protection bits describing access required to the mapping. See mmap
319  * (2) for details.
320  * @flags: Flags specifying how the mapping should be performed, see mmap (2)
321  * for details.
322  * @vm_flags: VMA flags which should be set by default, or 0 otherwise.
323  * @pgoff: Page offset into the @file if file-backed, should be 0 otherwise.
324  * @populate: A pointer to a value which will be set to 0 if no population of
325  * the range is required, or the number of bytes to populate if it is. Must be
326  * non-NULL. See mmap (2) for details as to under what circumstances population
327  * of the range occurs.
328  * @uf: An optional pointer to a list head to track userfaultfd unmap events
329  * should unmapping events arise. If provided, it is up to the caller to manage
330  * this.
331  *
332  * Returns: Either an error, or the address at which the requested mapping has
333  * been performed.
334  */
335 unsigned long do_mmap(struct file *file, unsigned long addr,
336 			unsigned long len, unsigned long prot,
337 			unsigned long flags, vm_flags_t vm_flags,
338 			unsigned long pgoff, unsigned long *populate,
339 			struct list_head *uf)
340 {
341 	struct mm_struct *mm = current->mm;
342 	int pkey = 0;
343 
344 	*populate = 0;
345 
346 	mmap_assert_write_locked(mm);
347 
348 	if (!len)
349 		return -EINVAL;
350 
351 	/*
352 	 * Does the application expect PROT_READ to imply PROT_EXEC?
353 	 *
354 	 * (the exception is when the underlying filesystem is noexec
355 	 *  mounted, in which case we don't add PROT_EXEC.)
356 	 */
357 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
358 		if (!(file && path_noexec(&file->f_path)))
359 			prot |= PROT_EXEC;
360 
361 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
362 	if (flags & MAP_FIXED_NOREPLACE)
363 		flags |= MAP_FIXED;
364 
365 	if (!(flags & MAP_FIXED))
366 		addr = round_hint_to_min(addr);
367 
368 	/* Careful about overflows.. */
369 	len = PAGE_ALIGN(len);
370 	if (!len)
371 		return -ENOMEM;
372 
373 	/* offset overflow? */
374 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
375 		return -EOVERFLOW;
376 
377 	/* Too many mappings? */
378 	if (mm->map_count > sysctl_max_map_count)
379 		return -ENOMEM;
380 
381 	/*
382 	 * addr is returned from get_unmapped_area,
383 	 * There are two cases:
384 	 * 1> MAP_FIXED == false
385 	 *	unallocated memory, no need to check sealing.
386 	 * 1> MAP_FIXED == true
387 	 *	sealing is checked inside mmap_region when
388 	 *	do_vmi_munmap is called.
389 	 */
390 
391 	if (prot == PROT_EXEC) {
392 		pkey = execute_only_pkey(mm);
393 		if (pkey < 0)
394 			pkey = 0;
395 	}
396 
397 	/* Do simple checking here so the lower-level routines won't have
398 	 * to. we assume access permissions have been handled by the open
399 	 * of the memory object, so we don't do any here.
400 	 */
401 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
402 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
403 
404 	/* Obtain the address to map to. we verify (or select) it and ensure
405 	 * that it represents a valid section of the address space.
406 	 */
407 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
408 	if (IS_ERR_VALUE(addr))
409 		return addr;
410 
411 	if (flags & MAP_FIXED_NOREPLACE) {
412 		if (find_vma_intersection(mm, addr, addr + len))
413 			return -EEXIST;
414 	}
415 
416 	if (flags & MAP_LOCKED)
417 		if (!can_do_mlock())
418 			return -EPERM;
419 
420 	if (!mlock_future_ok(mm, vm_flags & VM_LOCKED, len))
421 		return -EAGAIN;
422 
423 	if (file) {
424 		struct inode *inode = file_inode(file);
425 		unsigned long flags_mask;
426 		int err;
427 
428 		if (!file_mmap_ok(file, inode, pgoff, len))
429 			return -EOVERFLOW;
430 
431 		flags_mask = LEGACY_MAP_MASK;
432 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
433 			flags_mask |= MAP_SYNC;
434 
435 		switch (flags & MAP_TYPE) {
436 		case MAP_SHARED:
437 			/*
438 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
439 			 * flags. E.g. MAP_SYNC is dangerous to use with
440 			 * MAP_SHARED as you don't know which consistency model
441 			 * you will get. We silently ignore unsupported flags
442 			 * with MAP_SHARED to preserve backward compatibility.
443 			 */
444 			flags &= LEGACY_MAP_MASK;
445 			fallthrough;
446 		case MAP_SHARED_VALIDATE:
447 			if (flags & ~flags_mask)
448 				return -EOPNOTSUPP;
449 			if (prot & PROT_WRITE) {
450 				if (!(file->f_mode & FMODE_WRITE))
451 					return -EACCES;
452 				if (IS_SWAPFILE(file->f_mapping->host))
453 					return -ETXTBSY;
454 			}
455 
456 			/*
457 			 * Make sure we don't allow writing to an append-only
458 			 * file..
459 			 */
460 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
461 				return -EACCES;
462 
463 			vm_flags |= VM_SHARED | VM_MAYSHARE;
464 			if (!(file->f_mode & FMODE_WRITE))
465 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
466 			fallthrough;
467 		case MAP_PRIVATE:
468 			if (!(file->f_mode & FMODE_READ))
469 				return -EACCES;
470 			if (path_noexec(&file->f_path)) {
471 				if (vm_flags & VM_EXEC)
472 					return -EPERM;
473 				vm_flags &= ~VM_MAYEXEC;
474 			}
475 
476 			if (!can_mmap_file(file))
477 				return -ENODEV;
478 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
479 				return -EINVAL;
480 			break;
481 
482 		default:
483 			return -EINVAL;
484 		}
485 
486 		/*
487 		 * Check to see if we are violating any seals and update VMA
488 		 * flags if necessary to avoid future seal violations.
489 		 */
490 		err = memfd_check_seals_mmap(file, &vm_flags);
491 		if (err)
492 			return (unsigned long)err;
493 	} else {
494 		switch (flags & MAP_TYPE) {
495 		case MAP_SHARED:
496 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
497 				return -EINVAL;
498 			/*
499 			 * Ignore pgoff.
500 			 */
501 			pgoff = 0;
502 			vm_flags |= VM_SHARED | VM_MAYSHARE;
503 			break;
504 		case MAP_DROPPABLE:
505 			if (VM_DROPPABLE == VM_NONE)
506 				return -ENOTSUPP;
507 			/*
508 			 * A locked or stack area makes no sense to be droppable.
509 			 *
510 			 * Also, since droppable pages can just go away at any time
511 			 * it makes no sense to copy them on fork or dump them.
512 			 *
513 			 * And don't attempt to combine with hugetlb for now.
514 			 */
515 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
516 			        return -EINVAL;
517 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
518 			        return -EINVAL;
519 
520 			vm_flags |= VM_DROPPABLE;
521 
522 			/*
523 			 * If the pages can be dropped, then it doesn't make
524 			 * sense to reserve them.
525 			 */
526 			vm_flags |= VM_NORESERVE;
527 
528 			/*
529 			 * Likewise, they're volatile enough that they
530 			 * shouldn't survive forks or coredumps.
531 			 */
532 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
533 			fallthrough;
534 		case MAP_PRIVATE:
535 			/*
536 			 * Set pgoff according to addr for anon_vma.
537 			 */
538 			pgoff = addr >> PAGE_SHIFT;
539 			break;
540 		default:
541 			return -EINVAL;
542 		}
543 	}
544 
545 	/*
546 	 * Set 'VM_NORESERVE' if we should not account for the
547 	 * memory use of this mapping.
548 	 */
549 	if (flags & MAP_NORESERVE) {
550 		/* We honor MAP_NORESERVE if allowed to overcommit */
551 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
552 			vm_flags |= VM_NORESERVE;
553 
554 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
555 		if (file && is_file_hugepages(file))
556 			vm_flags |= VM_NORESERVE;
557 	}
558 
559 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
560 	if (!IS_ERR_VALUE(addr) &&
561 	    ((vm_flags & VM_LOCKED) ||
562 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
563 		*populate = len;
564 	return addr;
565 }
566 
567 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
568 			      unsigned long prot, unsigned long flags,
569 			      unsigned long fd, unsigned long pgoff)
570 {
571 	struct file *file = NULL;
572 	unsigned long retval;
573 
574 	if (!(flags & MAP_ANONYMOUS)) {
575 		audit_mmap_fd(fd, flags);
576 		file = fget(fd);
577 		if (!file)
578 			return -EBADF;
579 		if (is_file_hugepages(file)) {
580 			len = ALIGN(len, huge_page_size(hstate_file(file)));
581 		} else if (unlikely(flags & MAP_HUGETLB)) {
582 			retval = -EINVAL;
583 			goto out_fput;
584 		}
585 	} else if (flags & MAP_HUGETLB) {
586 		struct hstate *hs;
587 
588 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
589 		if (!hs)
590 			return -EINVAL;
591 
592 		len = ALIGN(len, huge_page_size(hs));
593 		/*
594 		 * VM_NORESERVE is used because the reservations will be
595 		 * taken when vm_ops->mmap() is called
596 		 */
597 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
598 				mk_vma_flags(VMA_NORESERVE_BIT),
599 				HUGETLB_ANONHUGE_INODE,
600 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
601 		if (IS_ERR(file))
602 			return PTR_ERR(file);
603 	}
604 
605 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
606 out_fput:
607 	if (file)
608 		fput(file);
609 	return retval;
610 }
611 
612 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
613 		unsigned long, prot, unsigned long, flags,
614 		unsigned long, fd, unsigned long, pgoff)
615 {
616 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
617 }
618 
619 #ifdef __ARCH_WANT_SYS_OLD_MMAP
620 struct mmap_arg_struct {
621 	unsigned long addr;
622 	unsigned long len;
623 	unsigned long prot;
624 	unsigned long flags;
625 	unsigned long fd;
626 	unsigned long offset;
627 };
628 
629 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
630 {
631 	struct mmap_arg_struct a;
632 
633 	if (copy_from_user(&a, arg, sizeof(a)))
634 		return -EFAULT;
635 	if (offset_in_page(a.offset))
636 		return -EINVAL;
637 
638 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
639 			       a.offset >> PAGE_SHIFT);
640 }
641 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
642 
643 /*
644  * Determine if the allocation needs to ensure that there is no
645  * existing mapping within it's guard gaps, for use as start_gap.
646  */
647 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
648 {
649 	if (vm_flags & VM_SHADOW_STACK)
650 		return PAGE_SIZE;
651 
652 	return 0;
653 }
654 
655 /*
656  * Search for an unmapped address range.
657  *
658  * We are looking for a range that:
659  * - does not intersect with any VMA;
660  * - is contained within the [low_limit, high_limit) interval;
661  * - is at least the desired size.
662  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
663  */
664 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
665 {
666 	unsigned long addr;
667 
668 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
669 		addr = unmapped_area_topdown(info);
670 	else
671 		addr = unmapped_area(info);
672 
673 	trace_vm_unmapped_area(addr, info);
674 	return addr;
675 }
676 
677 /* Get an address range which is currently unmapped.
678  * For shmat() with addr=0.
679  *
680  * Ugly calling convention alert:
681  * Return value with the low bits set means error value,
682  * ie
683  *	if (ret & ~PAGE_MASK)
684  *		error = ret;
685  *
686  * This function "knows" that -ENOMEM has the bits set.
687  */
688 unsigned long
689 generic_get_unmapped_area(struct file *filp, unsigned long addr,
690 			  unsigned long len, unsigned long pgoff,
691 			  unsigned long flags, vm_flags_t vm_flags)
692 {
693 	struct mm_struct *mm = current->mm;
694 	struct vm_area_struct *vma, *prev;
695 	struct vm_unmapped_area_info info = {};
696 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
697 
698 	if (len > mmap_end - mmap_min_addr)
699 		return -ENOMEM;
700 
701 	if (flags & MAP_FIXED)
702 		return addr;
703 
704 	if (addr) {
705 		addr = PAGE_ALIGN(addr);
706 		vma = find_vma_prev(mm, addr, &prev);
707 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
708 		    (!vma || addr + len <= vm_start_gap(vma)) &&
709 		    (!prev || addr >= vm_end_gap(prev)))
710 			return addr;
711 	}
712 
713 	info.length = len;
714 	info.low_limit = mm->mmap_base;
715 	info.high_limit = mmap_end;
716 	info.start_gap = stack_guard_placement(vm_flags);
717 	if (filp && is_file_hugepages(filp))
718 		info.align_mask = huge_page_mask_align(filp);
719 	return vm_unmapped_area(&info);
720 }
721 
722 #ifndef HAVE_ARCH_UNMAPPED_AREA
723 unsigned long
724 arch_get_unmapped_area(struct file *filp, unsigned long addr,
725 		       unsigned long len, unsigned long pgoff,
726 		       unsigned long flags, vm_flags_t vm_flags)
727 {
728 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
729 					 vm_flags);
730 }
731 #endif
732 
733 /*
734  * This mmap-allocator allocates new areas top-down from below the
735  * stack's low limit (the base):
736  */
737 unsigned long
738 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
739 				  unsigned long len, unsigned long pgoff,
740 				  unsigned long flags, vm_flags_t vm_flags)
741 {
742 	struct vm_area_struct *vma, *prev;
743 	struct mm_struct *mm = current->mm;
744 	struct vm_unmapped_area_info info = {};
745 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
746 
747 	/* requested length too big for entire address space */
748 	if (len > mmap_end - mmap_min_addr)
749 		return -ENOMEM;
750 
751 	if (flags & MAP_FIXED)
752 		return addr;
753 
754 	/* requesting a specific address */
755 	if (addr) {
756 		addr = PAGE_ALIGN(addr);
757 		vma = find_vma_prev(mm, addr, &prev);
758 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
759 				(!vma || addr + len <= vm_start_gap(vma)) &&
760 				(!prev || addr >= vm_end_gap(prev)))
761 			return addr;
762 	}
763 
764 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
765 	info.length = len;
766 	info.low_limit = PAGE_SIZE;
767 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
768 	info.start_gap = stack_guard_placement(vm_flags);
769 	if (filp && is_file_hugepages(filp))
770 		info.align_mask = huge_page_mask_align(filp);
771 	addr = vm_unmapped_area(&info);
772 
773 	/*
774 	 * A failed mmap() very likely causes application failure,
775 	 * so fall back to the bottom-up function here. This scenario
776 	 * can happen with large stack limits and large mmap()
777 	 * allocations.
778 	 */
779 	if (offset_in_page(addr)) {
780 		VM_BUG_ON(addr != -ENOMEM);
781 		info.flags = 0;
782 		info.low_limit = TASK_UNMAPPED_BASE;
783 		info.high_limit = mmap_end;
784 		addr = vm_unmapped_area(&info);
785 	}
786 
787 	return addr;
788 }
789 
790 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
791 unsigned long
792 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
793 			       unsigned long len, unsigned long pgoff,
794 			       unsigned long flags, vm_flags_t vm_flags)
795 {
796 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
797 						 vm_flags);
798 }
799 #endif
800 
801 unsigned long mm_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
802 					   unsigned long len, unsigned long pgoff,
803 					   unsigned long flags, vm_flags_t vm_flags)
804 {
805 	if (mm_flags_test(MMF_TOPDOWN, current->mm))
806 		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
807 						      flags, vm_flags);
808 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
809 }
810 
811 unsigned long
812 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
813 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
814 {
815 	unsigned long (*get_area)(struct file *, unsigned long,
816 				  unsigned long, unsigned long, unsigned long)
817 				  = NULL;
818 
819 	unsigned long error = arch_mmap_check(addr, len, flags);
820 	if (error)
821 		return error;
822 
823 	/* Careful about overflows.. */
824 	if (len > TASK_SIZE)
825 		return -ENOMEM;
826 
827 	if (file) {
828 		if (file->f_op->get_unmapped_area)
829 			get_area = file->f_op->get_unmapped_area;
830 	} else if (flags & MAP_SHARED) {
831 		/*
832 		 * mmap_region() will call shmem_zero_setup() to create a file,
833 		 * so use shmem's get_unmapped_area in case it can be huge.
834 		 */
835 		get_area = shmem_get_unmapped_area;
836 	}
837 
838 	/* Always treat pgoff as zero for anonymous memory. */
839 	if (!file)
840 		pgoff = 0;
841 
842 	if (get_area) {
843 		addr = get_area(file, addr, len, pgoff, flags);
844 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
845 		   && !addr /* no hint */
846 		   && IS_ALIGNED(len, PMD_SIZE)) {
847 		/* Ensures that larger anonymous mappings are THP aligned. */
848 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
849 						     pgoff, flags, vm_flags);
850 	} else {
851 		addr = mm_get_unmapped_area_vmflags(file, addr, len,
852 						    pgoff, flags, vm_flags);
853 	}
854 	if (IS_ERR_VALUE(addr))
855 		return addr;
856 
857 	if (addr > TASK_SIZE - len)
858 		return -ENOMEM;
859 	if (offset_in_page(addr))
860 		return -EINVAL;
861 
862 	error = security_mmap_addr(addr);
863 	return error ? error : addr;
864 }
865 
866 unsigned long
867 mm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
868 		     unsigned long pgoff, unsigned long flags)
869 {
870 	return mm_get_unmapped_area_vmflags(file, addr, len, pgoff, flags, 0);
871 }
872 EXPORT_SYMBOL(mm_get_unmapped_area);
873 
874 /**
875  * find_vma_intersection() - Look up the first VMA which intersects the interval
876  * @mm: The process address space.
877  * @start_addr: The inclusive start user address.
878  * @end_addr: The exclusive end user address.
879  *
880  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
881  * start_addr < end_addr.
882  */
883 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
884 					     unsigned long start_addr,
885 					     unsigned long end_addr)
886 {
887 	unsigned long index = start_addr;
888 
889 	mmap_assert_locked(mm);
890 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
891 }
892 EXPORT_SYMBOL(find_vma_intersection);
893 
894 /**
895  * find_vma() - Find the VMA for a given address, or the next VMA.
896  * @mm: The mm_struct to check
897  * @addr: The address
898  *
899  * Returns: The VMA associated with addr, or the next VMA.
900  * May return %NULL in the case of no VMA at addr or above.
901  */
902 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
903 {
904 	unsigned long index = addr;
905 
906 	mmap_assert_locked(mm);
907 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
908 }
909 EXPORT_SYMBOL(find_vma);
910 
911 /**
912  * find_vma_prev() - Find the VMA for a given address, or the next vma and
913  * set %pprev to the previous VMA, if any.
914  * @mm: The mm_struct to check
915  * @addr: The address
916  * @pprev: The pointer to set to the previous VMA
917  *
918  * Note that RCU lock is missing here since the external mmap_lock() is used
919  * instead.
920  *
921  * Returns: The VMA associated with @addr, or the next vma.
922  * May return %NULL in the case of no vma at addr or above.
923  */
924 struct vm_area_struct *
925 find_vma_prev(struct mm_struct *mm, unsigned long addr,
926 			struct vm_area_struct **pprev)
927 {
928 	struct vm_area_struct *vma;
929 	VMA_ITERATOR(vmi, mm, addr);
930 
931 	vma = vma_iter_load(&vmi);
932 	*pprev = vma_prev(&vmi);
933 	if (!vma)
934 		vma = vma_next(&vmi);
935 	return vma;
936 }
937 
938 /* enforced gap between the expanding stack and other mappings. */
939 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
940 
941 static int __init cmdline_parse_stack_guard_gap(char *p)
942 {
943 	unsigned long val;
944 	char *endptr;
945 
946 	val = simple_strtoul(p, &endptr, 10);
947 	if (!*endptr)
948 		stack_guard_gap = val << PAGE_SHIFT;
949 
950 	return 1;
951 }
952 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
953 
954 #ifdef CONFIG_STACK_GROWSUP
955 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
956 {
957 	return expand_upwards(vma, address);
958 }
959 
960 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
961 {
962 	struct vm_area_struct *vma, *prev;
963 
964 	addr &= PAGE_MASK;
965 	vma = find_vma_prev(mm, addr, &prev);
966 	if (vma && (vma->vm_start <= addr))
967 		return vma;
968 	if (!prev)
969 		return NULL;
970 	if (expand_stack_locked(prev, addr))
971 		return NULL;
972 	if (prev->vm_flags & VM_LOCKED)
973 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
974 	return prev;
975 }
976 #else
977 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
978 {
979 	return expand_downwards(vma, address);
980 }
981 
982 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
983 {
984 	struct vm_area_struct *vma;
985 	unsigned long start;
986 
987 	addr &= PAGE_MASK;
988 	vma = find_vma(mm, addr);
989 	if (!vma)
990 		return NULL;
991 	if (vma->vm_start <= addr)
992 		return vma;
993 	start = vma->vm_start;
994 	if (expand_stack_locked(vma, addr))
995 		return NULL;
996 	if (vma->vm_flags & VM_LOCKED)
997 		populate_vma_page_range(vma, addr, start, NULL);
998 	return vma;
999 }
1000 #endif
1001 
1002 #if defined(CONFIG_STACK_GROWSUP)
1003 
1004 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1005 #define vma_expand_down(vma, addr) (-EFAULT)
1006 
1007 #else
1008 
1009 #define vma_expand_up(vma,addr) (-EFAULT)
1010 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1011 
1012 #endif
1013 
1014 /*
1015  * expand_stack(): legacy interface for page faulting. Don't use unless
1016  * you have to.
1017  *
1018  * This is called with the mm locked for reading, drops the lock, takes
1019  * the lock for writing, tries to look up a vma again, expands it if
1020  * necessary, and downgrades the lock to reading again.
1021  *
1022  * If no vma is found or it can't be expanded, it returns NULL and has
1023  * dropped the lock.
1024  */
1025 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1026 {
1027 	struct vm_area_struct *vma, *prev;
1028 
1029 	mmap_read_unlock(mm);
1030 	if (mmap_write_lock_killable(mm))
1031 		return NULL;
1032 
1033 	vma = find_vma_prev(mm, addr, &prev);
1034 	if (vma && vma->vm_start <= addr)
1035 		goto success;
1036 
1037 	if (prev && !vma_expand_up(prev, addr)) {
1038 		vma = prev;
1039 		goto success;
1040 	}
1041 
1042 	if (vma && !vma_expand_down(vma, addr))
1043 		goto success;
1044 
1045 	mmap_write_unlock(mm);
1046 	return NULL;
1047 
1048 success:
1049 	mmap_write_downgrade(mm);
1050 	return vma;
1051 }
1052 
1053 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1054  * @mm: The mm_struct
1055  * @start: The start address to munmap
1056  * @len: The length to be munmapped.
1057  * @uf: The userfaultfd list_head
1058  *
1059  * Return: 0 on success, error otherwise.
1060  */
1061 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1062 	      struct list_head *uf)
1063 {
1064 	VMA_ITERATOR(vmi, mm, start);
1065 
1066 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1067 }
1068 
1069 int vm_munmap(unsigned long start, size_t len)
1070 {
1071 	return __vm_munmap(start, len, false);
1072 }
1073 EXPORT_SYMBOL(vm_munmap);
1074 
1075 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1076 {
1077 	addr = untagged_addr(addr);
1078 	return __vm_munmap(addr, len, true);
1079 }
1080 
1081 
1082 /*
1083  * Emulation of deprecated remap_file_pages() syscall.
1084  */
1085 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1086 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1087 {
1088 
1089 	struct mm_struct *mm = current->mm;
1090 	struct vm_area_struct *vma;
1091 	unsigned long populate = 0;
1092 	unsigned long ret = -EINVAL;
1093 	struct file *file;
1094 	vm_flags_t vm_flags;
1095 
1096 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1097 		     current->comm, current->pid);
1098 
1099 	if (prot)
1100 		return ret;
1101 	start = start & PAGE_MASK;
1102 	size = size & PAGE_MASK;
1103 
1104 	if (start + size <= start)
1105 		return ret;
1106 
1107 	/* Does pgoff wrap? */
1108 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1109 		return ret;
1110 
1111 	if (mmap_read_lock_killable(mm))
1112 		return -EINTR;
1113 
1114 	/*
1115 	 * Look up VMA under read lock first so we can perform the security
1116 	 * without holding locks (which can be problematic). We reacquire a
1117 	 * write lock later and check nothing changed underneath us.
1118 	 */
1119 	vma = vma_lookup(mm, start);
1120 
1121 	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1122 		mmap_read_unlock(mm);
1123 		return -EINVAL;
1124 	}
1125 
1126 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1127 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1128 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1129 
1130 	flags &= MAP_NONBLOCK;
1131 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1132 	if (vma->vm_flags & VM_LOCKED)
1133 		flags |= MAP_LOCKED;
1134 
1135 	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1136 	vm_flags = vma->vm_flags;
1137 	file = get_file(vma->vm_file);
1138 
1139 	mmap_read_unlock(mm);
1140 
1141 	/* Call outside mmap_lock to be consistent with other callers. */
1142 	ret = security_mmap_file(file, prot, flags);
1143 	if (ret) {
1144 		fput(file);
1145 		return ret;
1146 	}
1147 
1148 	ret = -EINVAL;
1149 
1150 	/* OK security check passed, take write lock + let it rip. */
1151 	if (mmap_write_lock_killable(mm)) {
1152 		fput(file);
1153 		return -EINTR;
1154 	}
1155 
1156 	vma = vma_lookup(mm, start);
1157 
1158 	if (!vma)
1159 		goto out;
1160 
1161 	/* Make sure things didn't change under us. */
1162 	if (vma->vm_flags != vm_flags)
1163 		goto out;
1164 	if (vma->vm_file != file)
1165 		goto out;
1166 
1167 	if (start + size > vma->vm_end) {
1168 		VMA_ITERATOR(vmi, mm, vma->vm_end);
1169 		struct vm_area_struct *next, *prev = vma;
1170 
1171 		for_each_vma_range(vmi, next, start + size) {
1172 			/* hole between vmas ? */
1173 			if (next->vm_start != prev->vm_end)
1174 				goto out;
1175 
1176 			if (next->vm_file != vma->vm_file)
1177 				goto out;
1178 
1179 			if (next->vm_flags != vma->vm_flags)
1180 				goto out;
1181 
1182 			if (start + size <= next->vm_end)
1183 				break;
1184 
1185 			prev = next;
1186 		}
1187 
1188 		if (!next)
1189 			goto out;
1190 	}
1191 
1192 	ret = do_mmap(vma->vm_file, start, size,
1193 			prot, flags, 0, pgoff, &populate, NULL);
1194 out:
1195 	mmap_write_unlock(mm);
1196 	fput(file);
1197 	if (populate)
1198 		mm_populate(ret, populate);
1199 	if (!IS_ERR_VALUE(ret))
1200 		ret = 0;
1201 	return ret;
1202 }
1203 
1204 int vm_brk_flags(unsigned long addr, unsigned long request, vm_flags_t vm_flags)
1205 {
1206 	struct mm_struct *mm = current->mm;
1207 	struct vm_area_struct *vma = NULL;
1208 	unsigned long len;
1209 	int ret;
1210 	bool populate;
1211 	LIST_HEAD(uf);
1212 	VMA_ITERATOR(vmi, mm, addr);
1213 
1214 	len = PAGE_ALIGN(request);
1215 	if (len < request)
1216 		return -ENOMEM;
1217 	if (!len)
1218 		return 0;
1219 
1220 	/* Until we need other flags, refuse anything except VM_EXEC. */
1221 	if ((vm_flags & (~VM_EXEC)) != 0)
1222 		return -EINVAL;
1223 
1224 	if (mmap_write_lock_killable(mm))
1225 		return -EINTR;
1226 
1227 	ret = check_brk_limits(addr, len);
1228 	if (ret)
1229 		goto limits_failed;
1230 
1231 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1232 	if (ret)
1233 		goto munmap_failed;
1234 
1235 	vma = vma_prev(&vmi);
1236 	ret = do_brk_flags(&vmi, vma, addr, len, vm_flags);
1237 	populate = ((mm->def_flags & VM_LOCKED) != 0);
1238 	mmap_write_unlock(mm);
1239 	userfaultfd_unmap_complete(mm, &uf);
1240 	if (populate && !ret)
1241 		mm_populate(addr, len);
1242 	return ret;
1243 
1244 munmap_failed:
1245 limits_failed:
1246 	mmap_write_unlock(mm);
1247 	return ret;
1248 }
1249 EXPORT_SYMBOL(vm_brk_flags);
1250 
1251 static
1252 unsigned long tear_down_vmas(struct mm_struct *mm, struct vma_iterator *vmi,
1253 		struct vm_area_struct *vma, unsigned long end)
1254 {
1255 	unsigned long nr_accounted = 0;
1256 	int count = 0;
1257 
1258 	mmap_assert_write_locked(mm);
1259 	vma_iter_set(vmi, vma->vm_end);
1260 	do {
1261 		if (vma->vm_flags & VM_ACCOUNT)
1262 			nr_accounted += vma_pages(vma);
1263 		vma_mark_detached(vma);
1264 		remove_vma(vma);
1265 		count++;
1266 		cond_resched();
1267 		vma = vma_next(vmi);
1268 	} while (vma && vma->vm_end <= end);
1269 
1270 	VM_WARN_ON_ONCE(count != mm->map_count);
1271 	return nr_accounted;
1272 }
1273 
1274 /* Release all mmaps. */
1275 void exit_mmap(struct mm_struct *mm)
1276 {
1277 	struct mmu_gather tlb;
1278 	struct vm_area_struct *vma;
1279 	unsigned long nr_accounted = 0;
1280 	VMA_ITERATOR(vmi, mm, 0);
1281 	struct unmap_desc unmap;
1282 
1283 	/* mm's last user has gone, and its about to be pulled down */
1284 	mmu_notifier_release(mm);
1285 
1286 	mmap_read_lock(mm);
1287 	arch_exit_mmap(mm);
1288 
1289 	vma = vma_next(&vmi);
1290 	if (!vma) {
1291 		/* Can happen if dup_mmap() received an OOM */
1292 		mmap_read_unlock(mm);
1293 		mmap_write_lock(mm);
1294 		goto destroy;
1295 	}
1296 
1297 	unmap_all_init(&unmap, &vmi, vma);
1298 	flush_cache_mm(mm);
1299 	tlb_gather_mmu_fullmm(&tlb, mm);
1300 	/* update_hiwater_rss(mm) here? but nobody should be looking */
1301 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1302 	unmap_vmas(&tlb, &unmap);
1303 	mmap_read_unlock(mm);
1304 
1305 	/*
1306 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1307 	 * because the memory has been already freed.
1308 	 */
1309 	mm_flags_set(MMF_OOM_SKIP, mm);
1310 	mmap_write_lock(mm);
1311 	unmap.mm_wr_locked = true;
1312 	mt_clear_in_rcu(&mm->mm_mt);
1313 	unmap_pgtable_init(&unmap, &vmi);
1314 	free_pgtables(&tlb, &unmap);
1315 	tlb_finish_mmu(&tlb);
1316 
1317 	/*
1318 	 * Walk the list again, actually closing and freeing it, with preemption
1319 	 * enabled, without holding any MM locks besides the unreachable
1320 	 * mmap_write_lock.
1321 	 */
1322 	nr_accounted = tear_down_vmas(mm, &vmi, vma, ULONG_MAX);
1323 
1324 destroy:
1325 	__mt_destroy(&mm->mm_mt);
1326 	trace_exit_mmap(mm);
1327 	mmap_write_unlock(mm);
1328 	vm_unacct_memory(nr_accounted);
1329 }
1330 
1331 /*
1332  * Return true if the calling process may expand its vm space by the passed
1333  * number of pages
1334  */
1335 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1336 {
1337 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1338 		return false;
1339 
1340 	if (is_data_mapping(flags) &&
1341 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1342 		/* Workaround for Valgrind */
1343 		if (rlimit(RLIMIT_DATA) == 0 &&
1344 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1345 			return true;
1346 
1347 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1348 			     current->comm, current->pid,
1349 			     (mm->data_vm + npages) << PAGE_SHIFT,
1350 			     rlimit(RLIMIT_DATA),
1351 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1352 
1353 		if (!ignore_rlimit_data)
1354 			return false;
1355 	}
1356 
1357 	return true;
1358 }
1359 
1360 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1361 {
1362 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1363 
1364 	if (is_exec_mapping(flags))
1365 		mm->exec_vm += npages;
1366 	else if (is_stack_mapping(flags))
1367 		mm->stack_vm += npages;
1368 	else if (is_data_mapping(flags))
1369 		mm->data_vm += npages;
1370 }
1371 
1372 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1373 
1374 /*
1375  * Close hook, called for unmap() and on the old vma for mremap().
1376  *
1377  * Having a close hook prevents vma merging regardless of flags.
1378  */
1379 static void special_mapping_close(struct vm_area_struct *vma)
1380 {
1381 	const struct vm_special_mapping *sm = vma->vm_private_data;
1382 
1383 	if (sm->close)
1384 		sm->close(sm, vma);
1385 }
1386 
1387 static const char *special_mapping_name(struct vm_area_struct *vma)
1388 {
1389 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1390 }
1391 
1392 static int special_mapping_mremap(struct vm_area_struct *new_vma)
1393 {
1394 	struct vm_special_mapping *sm = new_vma->vm_private_data;
1395 
1396 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1397 		return -EFAULT;
1398 
1399 	if (sm->mremap)
1400 		return sm->mremap(sm, new_vma);
1401 
1402 	return 0;
1403 }
1404 
1405 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1406 {
1407 	/*
1408 	 * Forbid splitting special mappings - kernel has expectations over
1409 	 * the number of pages in mapping. Together with VM_DONTEXPAND
1410 	 * the size of vma should stay the same over the special mapping's
1411 	 * lifetime.
1412 	 */
1413 	return -EINVAL;
1414 }
1415 
1416 static const struct vm_operations_struct special_mapping_vmops = {
1417 	.close = special_mapping_close,
1418 	.fault = special_mapping_fault,
1419 	.mremap = special_mapping_mremap,
1420 	.name = special_mapping_name,
1421 	/* vDSO code relies that VVAR can't be accessed remotely */
1422 	.access = NULL,
1423 	.may_split = special_mapping_split,
1424 };
1425 
1426 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1427 {
1428 	struct vm_area_struct *vma = vmf->vma;
1429 	pgoff_t pgoff;
1430 	struct page **pages;
1431 	struct vm_special_mapping *sm = vma->vm_private_data;
1432 
1433 	if (sm->fault)
1434 		return sm->fault(sm, vmf->vma, vmf);
1435 
1436 	pages = sm->pages;
1437 
1438 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1439 		pgoff--;
1440 
1441 	if (*pages) {
1442 		struct page *page = *pages;
1443 		get_page(page);
1444 		vmf->page = page;
1445 		return 0;
1446 	}
1447 
1448 	return VM_FAULT_SIGBUS;
1449 }
1450 
1451 static struct vm_area_struct *__install_special_mapping(
1452 	struct mm_struct *mm,
1453 	unsigned long addr, unsigned long len,
1454 	vm_flags_t vm_flags, void *priv,
1455 	const struct vm_operations_struct *ops)
1456 {
1457 	int ret;
1458 	struct vm_area_struct *vma;
1459 
1460 	vma = vm_area_alloc(mm);
1461 	if (unlikely(vma == NULL))
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	vma_set_range(vma, addr, addr + len, 0);
1465 	vm_flags |= mm->def_flags | VM_DONTEXPAND;
1466 	if (pgtable_supports_soft_dirty())
1467 		vm_flags |= VM_SOFTDIRTY;
1468 	vm_flags_init(vma, vm_flags & ~VM_LOCKED_MASK);
1469 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1470 
1471 	vma->vm_ops = ops;
1472 	vma->vm_private_data = priv;
1473 
1474 	ret = insert_vm_struct(mm, vma);
1475 	if (ret)
1476 		goto out;
1477 
1478 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1479 
1480 	perf_event_mmap(vma);
1481 
1482 	return vma;
1483 
1484 out:
1485 	vm_area_free(vma);
1486 	return ERR_PTR(ret);
1487 }
1488 
1489 bool vma_is_special_mapping(const struct vm_area_struct *vma,
1490 	const struct vm_special_mapping *sm)
1491 {
1492 	return vma->vm_private_data == sm &&
1493 		vma->vm_ops == &special_mapping_vmops;
1494 }
1495 
1496 /*
1497  * Called with mm->mmap_lock held for writing.
1498  * Insert a new vma covering the given region, with the given flags.
1499  * Its pages are supplied by the given array of struct page *.
1500  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1501  * The region past the last page supplied will always produce SIGBUS.
1502  * The array pointer and the pages it points to are assumed to stay alive
1503  * for as long as this mapping might exist.
1504  */
1505 struct vm_area_struct *_install_special_mapping(
1506 	struct mm_struct *mm,
1507 	unsigned long addr, unsigned long len,
1508 	vm_flags_t vm_flags, const struct vm_special_mapping *spec)
1509 {
1510 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1511 					&special_mapping_vmops);
1512 }
1513 
1514 #ifdef CONFIG_SYSCTL
1515 #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1516 		defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1517 int sysctl_legacy_va_layout;
1518 #endif
1519 
1520 static const struct ctl_table mmap_table[] = {
1521 		{
1522 				.procname       = "max_map_count",
1523 				.data           = &sysctl_max_map_count,
1524 				.maxlen         = sizeof(sysctl_max_map_count),
1525 				.mode           = 0644,
1526 				.proc_handler   = proc_dointvec_minmax,
1527 				.extra1         = SYSCTL_ZERO,
1528 		},
1529 #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \
1530 		defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)
1531 		{
1532 				.procname       = "legacy_va_layout",
1533 				.data           = &sysctl_legacy_va_layout,
1534 				.maxlen         = sizeof(sysctl_legacy_va_layout),
1535 				.mode           = 0644,
1536 				.proc_handler   = proc_dointvec_minmax,
1537 				.extra1         = SYSCTL_ZERO,
1538 		},
1539 #endif
1540 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
1541 		{
1542 				.procname       = "mmap_rnd_bits",
1543 				.data           = &mmap_rnd_bits,
1544 				.maxlen         = sizeof(mmap_rnd_bits),
1545 				.mode           = 0600,
1546 				.proc_handler   = proc_dointvec_minmax,
1547 				.extra1         = (void *)&mmap_rnd_bits_min,
1548 				.extra2         = (void *)&mmap_rnd_bits_max,
1549 		},
1550 #endif
1551 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
1552 		{
1553 				.procname       = "mmap_rnd_compat_bits",
1554 				.data           = &mmap_rnd_compat_bits,
1555 				.maxlen         = sizeof(mmap_rnd_compat_bits),
1556 				.mode           = 0600,
1557 				.proc_handler   = proc_dointvec_minmax,
1558 				.extra1         = (void *)&mmap_rnd_compat_bits_min,
1559 				.extra2         = (void *)&mmap_rnd_compat_bits_max,
1560 		},
1561 #endif
1562 };
1563 #endif /* CONFIG_SYSCTL */
1564 
1565 /*
1566  * initialise the percpu counter for VM, initialise VMA state.
1567  */
1568 void __init mmap_init(void)
1569 {
1570 	int ret;
1571 
1572 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1573 	VM_BUG_ON(ret);
1574 #ifdef CONFIG_SYSCTL
1575 	register_sysctl_init("vm", mmap_table);
1576 #endif
1577 	vma_state_init();
1578 }
1579 
1580 /*
1581  * Initialise sysctl_user_reserve_kbytes.
1582  *
1583  * This is intended to prevent a user from starting a single memory hogging
1584  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1585  * mode.
1586  *
1587  * The default value is min(3% of free memory, 128MB)
1588  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1589  */
1590 static int init_user_reserve(void)
1591 {
1592 	unsigned long free_kbytes;
1593 
1594 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1595 
1596 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1597 	return 0;
1598 }
1599 subsys_initcall(init_user_reserve);
1600 
1601 /*
1602  * Initialise sysctl_admin_reserve_kbytes.
1603  *
1604  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1605  * to log in and kill a memory hogging process.
1606  *
1607  * Systems with more than 256MB will reserve 8MB, enough to recover
1608  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1609  * only reserve 3% of free pages by default.
1610  */
1611 static int init_admin_reserve(void)
1612 {
1613 	unsigned long free_kbytes;
1614 
1615 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1616 
1617 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1618 	return 0;
1619 }
1620 subsys_initcall(init_admin_reserve);
1621 
1622 /*
1623  * Reinititalise user and admin reserves if memory is added or removed.
1624  *
1625  * The default user reserve max is 128MB, and the default max for the
1626  * admin reserve is 8MB. These are usually, but not always, enough to
1627  * enable recovery from a memory hogging process using login/sshd, a shell,
1628  * and tools like top. It may make sense to increase or even disable the
1629  * reserve depending on the existence of swap or variations in the recovery
1630  * tools. So, the admin may have changed them.
1631  *
1632  * If memory is added and the reserves have been eliminated or increased above
1633  * the default max, then we'll trust the admin.
1634  *
1635  * If memory is removed and there isn't enough free memory, then we
1636  * need to reset the reserves.
1637  *
1638  * Otherwise keep the reserve set by the admin.
1639  */
1640 static int reserve_mem_notifier(struct notifier_block *nb,
1641 			     unsigned long action, void *data)
1642 {
1643 	unsigned long tmp, free_kbytes;
1644 
1645 	switch (action) {
1646 	case MEM_ONLINE:
1647 		/* Default max is 128MB. Leave alone if modified by operator. */
1648 		tmp = sysctl_user_reserve_kbytes;
1649 		if (tmp > 0 && tmp < SZ_128K)
1650 			init_user_reserve();
1651 
1652 		/* Default max is 8MB.  Leave alone if modified by operator. */
1653 		tmp = sysctl_admin_reserve_kbytes;
1654 		if (tmp > 0 && tmp < SZ_8K)
1655 			init_admin_reserve();
1656 
1657 		break;
1658 	case MEM_OFFLINE:
1659 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1660 
1661 		if (sysctl_user_reserve_kbytes > free_kbytes) {
1662 			init_user_reserve();
1663 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
1664 				sysctl_user_reserve_kbytes);
1665 		}
1666 
1667 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
1668 			init_admin_reserve();
1669 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
1670 				sysctl_admin_reserve_kbytes);
1671 		}
1672 		break;
1673 	default:
1674 		break;
1675 	}
1676 	return NOTIFY_OK;
1677 }
1678 
1679 static int __meminit init_reserve_notifier(void)
1680 {
1681 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
1682 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
1683 
1684 	return 0;
1685 }
1686 subsys_initcall(init_reserve_notifier);
1687 
1688 /*
1689  * Obtain a read lock on mm->mmap_lock, if the specified address is below the
1690  * start of the VMA, the intent is to perform a write, and it is a
1691  * downward-growing stack, then attempt to expand the stack to contain it.
1692  *
1693  * This function is intended only for obtaining an argument page from an ELF
1694  * image, and is almost certainly NOT what you want to use for any other
1695  * purpose.
1696  *
1697  * IMPORTANT - VMA fields are accessed without an mmap lock being held, so the
1698  * VMA referenced must not be linked in any user-visible tree, i.e. it must be a
1699  * new VMA being mapped.
1700  *
1701  * The function assumes that addr is either contained within the VMA or below
1702  * it, and makes no attempt to validate this value beyond that.
1703  *
1704  * Returns true if the read lock was obtained and a stack was perhaps expanded,
1705  * false if the stack expansion failed.
1706  *
1707  * On stack expansion the function temporarily acquires an mmap write lock
1708  * before downgrading it.
1709  */
1710 bool mmap_read_lock_maybe_expand(struct mm_struct *mm,
1711 				 struct vm_area_struct *new_vma,
1712 				 unsigned long addr, bool write)
1713 {
1714 	if (!write || addr >= new_vma->vm_start) {
1715 		mmap_read_lock(mm);
1716 		return true;
1717 	}
1718 
1719 	if (!(new_vma->vm_flags & VM_GROWSDOWN))
1720 		return false;
1721 
1722 	mmap_write_lock(mm);
1723 	if (expand_downwards(new_vma, addr)) {
1724 		mmap_write_unlock(mm);
1725 		return false;
1726 	}
1727 
1728 	mmap_write_downgrade(mm);
1729 	return true;
1730 }
1731 
1732 __latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1733 {
1734 	struct vm_area_struct *mpnt, *tmp;
1735 	int retval;
1736 	unsigned long charge = 0;
1737 	LIST_HEAD(uf);
1738 	VMA_ITERATOR(vmi, mm, 0);
1739 
1740 	if (mmap_write_lock_killable(oldmm))
1741 		return -EINTR;
1742 	flush_cache_dup_mm(oldmm);
1743 	uprobe_dup_mmap(oldmm, mm);
1744 	/*
1745 	 * Not linked in yet - no deadlock potential:
1746 	 */
1747 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
1748 
1749 	/* No ordering required: file already has been exposed. */
1750 	dup_mm_exe_file(mm, oldmm);
1751 
1752 	mm->total_vm = oldmm->total_vm;
1753 	mm->data_vm = oldmm->data_vm;
1754 	mm->exec_vm = oldmm->exec_vm;
1755 	mm->stack_vm = oldmm->stack_vm;
1756 
1757 	/* Use __mt_dup() to efficiently build an identical maple tree. */
1758 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
1759 	if (unlikely(retval))
1760 		goto out;
1761 
1762 	mt_clear_in_rcu(vmi.mas.tree);
1763 	for_each_vma(vmi, mpnt) {
1764 		struct file *file;
1765 
1766 		retval = vma_start_write_killable(mpnt);
1767 		if (retval < 0)
1768 			goto loop_out;
1769 		if (mpnt->vm_flags & VM_DONTCOPY) {
1770 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
1771 						    mpnt->vm_end, GFP_KERNEL);
1772 			if (retval)
1773 				goto loop_out;
1774 
1775 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
1776 			continue;
1777 		}
1778 		charge = 0;
1779 		if (mpnt->vm_flags & VM_ACCOUNT) {
1780 			unsigned long len = vma_pages(mpnt);
1781 
1782 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
1783 				goto fail_nomem;
1784 			charge = len;
1785 		}
1786 
1787 		tmp = vm_area_dup(mpnt);
1788 		if (!tmp)
1789 			goto fail_nomem;
1790 		retval = vma_dup_policy(mpnt, tmp);
1791 		if (retval)
1792 			goto fail_nomem_policy;
1793 		tmp->vm_mm = mm;
1794 		retval = dup_userfaultfd(tmp, &uf);
1795 		if (retval)
1796 			goto fail_nomem_anon_vma_fork;
1797 		if (tmp->vm_flags & VM_WIPEONFORK) {
1798 			/*
1799 			 * VM_WIPEONFORK gets a clean slate in the child.
1800 			 * Don't prepare anon_vma until fault since we don't
1801 			 * copy page for current vma.
1802 			 */
1803 			tmp->anon_vma = NULL;
1804 		} else if (anon_vma_fork(tmp, mpnt))
1805 			goto fail_nomem_anon_vma_fork;
1806 		vm_flags_clear(tmp, VM_LOCKED_MASK);
1807 		/*
1808 		 * Copy/update hugetlb private vma information.
1809 		 */
1810 		if (is_vm_hugetlb_page(tmp))
1811 			hugetlb_dup_vma_private(tmp);
1812 
1813 		/*
1814 		 * Link the vma into the MT. After using __mt_dup(), memory
1815 		 * allocation is not necessary here, so it cannot fail.
1816 		 */
1817 		vma_iter_bulk_store(&vmi, tmp);
1818 
1819 		mm->map_count++;
1820 
1821 		if (tmp->vm_ops && tmp->vm_ops->open)
1822 			tmp->vm_ops->open(tmp);
1823 
1824 		file = tmp->vm_file;
1825 		if (file) {
1826 			struct address_space *mapping = file->f_mapping;
1827 
1828 			get_file(file);
1829 			i_mmap_lock_write(mapping);
1830 			if (vma_is_shared_maywrite(tmp))
1831 				mapping_allow_writable(mapping);
1832 			flush_dcache_mmap_lock(mapping);
1833 			/* insert tmp into the share list, just after mpnt */
1834 			vma_interval_tree_insert_after(tmp, mpnt,
1835 					&mapping->i_mmap);
1836 			flush_dcache_mmap_unlock(mapping);
1837 			i_mmap_unlock_write(mapping);
1838 		}
1839 
1840 		if (!(tmp->vm_flags & VM_WIPEONFORK))
1841 			retval = copy_page_range(tmp, mpnt);
1842 
1843 		if (retval) {
1844 			mpnt = vma_next(&vmi);
1845 			goto loop_out;
1846 		}
1847 	}
1848 	/* a new mm has just been created */
1849 	retval = arch_dup_mmap(oldmm, mm);
1850 loop_out:
1851 	vma_iter_free(&vmi);
1852 	if (!retval) {
1853 		mt_set_in_rcu(vmi.mas.tree);
1854 		ksm_fork(mm, oldmm);
1855 		khugepaged_fork(mm, oldmm);
1856 	} else {
1857 		unsigned long end;
1858 
1859 		/*
1860 		 * The entire maple tree has already been duplicated, but
1861 		 * replacing the vmas failed at mpnt (which could be NULL if
1862 		 * all were allocated but the last vma was not fully set up).
1863 		 * Use the start address of the failure point to clean up the
1864 		 * partially initialized tree.
1865 		 */
1866 		if (!mm->map_count) {
1867 			/* zero vmas were written to the new tree. */
1868 			end = 0;
1869 		} else if (mpnt) {
1870 			/* partial tree failure */
1871 			end = mpnt->vm_start;
1872 		} else {
1873 			/* All vmas were written to the new tree */
1874 			end = ULONG_MAX;
1875 		}
1876 
1877 		/* Hide mm from oom killer because the memory is being freed */
1878 		mm_flags_set(MMF_OOM_SKIP, mm);
1879 		if (end) {
1880 			vma_iter_set(&vmi, 0);
1881 			tmp = vma_next(&vmi);
1882 			UNMAP_STATE(unmap, &vmi, /* first = */ tmp,
1883 				    /* vma_start = */ 0, /* vma_end = */ end,
1884 				    /* prev = */ NULL, /* next = */ NULL);
1885 
1886 			/*
1887 			 * Don't iterate over vmas beyond the failure point for
1888 			 * both unmap_vma() and free_pgtables().
1889 			 */
1890 			unmap.tree_end = end;
1891 			flush_cache_mm(mm);
1892 			unmap_region(&unmap);
1893 			charge = tear_down_vmas(mm, &vmi, tmp, end);
1894 			vm_unacct_memory(charge);
1895 		}
1896 		__mt_destroy(&mm->mm_mt);
1897 		/*
1898 		 * The mm_struct is going to exit, but the locks will be dropped
1899 		 * first.  Set the mm_struct as unstable is advisable as it is
1900 		 * not fully initialised.
1901 		 */
1902 		mm_flags_set(MMF_UNSTABLE, mm);
1903 	}
1904 out:
1905 	mmap_write_unlock(mm);
1906 	flush_tlb_mm(oldmm);
1907 	mmap_write_unlock(oldmm);
1908 	if (!retval)
1909 		dup_userfaultfd_complete(&uf);
1910 	else
1911 		dup_userfaultfd_fail(&uf);
1912 	return retval;
1913 
1914 fail_nomem_anon_vma_fork:
1915 	mpol_put(vma_policy(tmp));
1916 fail_nomem_policy:
1917 	vm_area_free(tmp);
1918 fail_nomem:
1919 	retval = -ENOMEM;
1920 	vm_unacct_memory(charge);
1921 	goto loop_out;
1922 }
1923