xref: /linux/mm/mmap.c (revision 679b2ec8e060ca7a90441aff5e7d384720a41b76)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * mm/mmap.c
4   *
5   * Written by obz.
6   *
7   * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8   */
9  
10  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11  
12  #include <linux/kernel.h>
13  #include <linux/slab.h>
14  #include <linux/backing-dev.h>
15  #include <linux/mm.h>
16  #include <linux/vmacache.h>
17  #include <linux/shm.h>
18  #include <linux/mman.h>
19  #include <linux/pagemap.h>
20  #include <linux/swap.h>
21  #include <linux/syscalls.h>
22  #include <linux/capability.h>
23  #include <linux/init.h>
24  #include <linux/file.h>
25  #include <linux/fs.h>
26  #include <linux/personality.h>
27  #include <linux/security.h>
28  #include <linux/hugetlb.h>
29  #include <linux/shmem_fs.h>
30  #include <linux/profile.h>
31  #include <linux/export.h>
32  #include <linux/mount.h>
33  #include <linux/mempolicy.h>
34  #include <linux/rmap.h>
35  #include <linux/mmu_notifier.h>
36  #include <linux/mmdebug.h>
37  #include <linux/perf_event.h>
38  #include <linux/audit.h>
39  #include <linux/khugepaged.h>
40  #include <linux/uprobes.h>
41  #include <linux/rbtree_augmented.h>
42  #include <linux/notifier.h>
43  #include <linux/memory.h>
44  #include <linux/printk.h>
45  #include <linux/userfaultfd_k.h>
46  #include <linux/moduleparam.h>
47  #include <linux/pkeys.h>
48  #include <linux/oom.h>
49  #include <linux/sched/mm.h>
50  
51  #include <linux/uaccess.h>
52  #include <asm/cacheflush.h>
53  #include <asm/tlb.h>
54  #include <asm/mmu_context.h>
55  
56  #include "internal.h"
57  
58  #ifndef arch_mmap_check
59  #define arch_mmap_check(addr, len, flags)	(0)
60  #endif
61  
62  #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63  const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64  const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65  int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66  #endif
67  #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68  const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69  const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70  int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71  #endif
72  
73  static bool ignore_rlimit_data;
74  core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75  
76  static void unmap_region(struct mm_struct *mm,
77  		struct vm_area_struct *vma, struct vm_area_struct *prev,
78  		unsigned long start, unsigned long end);
79  
80  /* description of effects of mapping type and prot in current implementation.
81   * this is due to the limited x86 page protection hardware.  The expected
82   * behavior is in parens:
83   *
84   * map_type	prot
85   *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86   * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87   *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88   *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89   *
90   * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91   *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92   *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93   */
94  pgprot_t protection_map[16] __ro_after_init = {
95  	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96  	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97  };
98  
99  #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100  static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101  {
102  	return prot;
103  }
104  #endif
105  
106  pgprot_t vm_get_page_prot(unsigned long vm_flags)
107  {
108  	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109  				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110  			pgprot_val(arch_vm_get_page_prot(vm_flags)));
111  
112  	return arch_filter_pgprot(ret);
113  }
114  EXPORT_SYMBOL(vm_get_page_prot);
115  
116  static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117  {
118  	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119  }
120  
121  /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122  void vma_set_page_prot(struct vm_area_struct *vma)
123  {
124  	unsigned long vm_flags = vma->vm_flags;
125  	pgprot_t vm_page_prot;
126  
127  	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128  	if (vma_wants_writenotify(vma, vm_page_prot)) {
129  		vm_flags &= ~VM_SHARED;
130  		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131  	}
132  	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133  	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134  }
135  
136  /*
137   * Requires inode->i_mapping->i_mmap_rwsem
138   */
139  static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140  		struct file *file, struct address_space *mapping)
141  {
142  	if (vma->vm_flags & VM_DENYWRITE)
143  		atomic_inc(&file_inode(file)->i_writecount);
144  	if (vma->vm_flags & VM_SHARED)
145  		mapping_unmap_writable(mapping);
146  
147  	flush_dcache_mmap_lock(mapping);
148  	vma_interval_tree_remove(vma, &mapping->i_mmap);
149  	flush_dcache_mmap_unlock(mapping);
150  }
151  
152  /*
153   * Unlink a file-based vm structure from its interval tree, to hide
154   * vma from rmap and vmtruncate before freeing its page tables.
155   */
156  void unlink_file_vma(struct vm_area_struct *vma)
157  {
158  	struct file *file = vma->vm_file;
159  
160  	if (file) {
161  		struct address_space *mapping = file->f_mapping;
162  		i_mmap_lock_write(mapping);
163  		__remove_shared_vm_struct(vma, file, mapping);
164  		i_mmap_unlock_write(mapping);
165  	}
166  }
167  
168  /*
169   * Close a vm structure and free it, returning the next.
170   */
171  static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172  {
173  	struct vm_area_struct *next = vma->vm_next;
174  
175  	might_sleep();
176  	if (vma->vm_ops && vma->vm_ops->close)
177  		vma->vm_ops->close(vma);
178  	if (vma->vm_file)
179  		fput(vma->vm_file);
180  	mpol_put(vma_policy(vma));
181  	vm_area_free(vma);
182  	return next;
183  }
184  
185  static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186  		struct list_head *uf);
187  SYSCALL_DEFINE1(brk, unsigned long, brk)
188  {
189  	unsigned long retval;
190  	unsigned long newbrk, oldbrk, origbrk;
191  	struct mm_struct *mm = current->mm;
192  	struct vm_area_struct *next;
193  	unsigned long min_brk;
194  	bool populate;
195  	bool downgraded = false;
196  	LIST_HEAD(uf);
197  
198  	brk = untagged_addr(brk);
199  
200  	if (down_write_killable(&mm->mmap_sem))
201  		return -EINTR;
202  
203  	origbrk = mm->brk;
204  
205  #ifdef CONFIG_COMPAT_BRK
206  	/*
207  	 * CONFIG_COMPAT_BRK can still be overridden by setting
208  	 * randomize_va_space to 2, which will still cause mm->start_brk
209  	 * to be arbitrarily shifted
210  	 */
211  	if (current->brk_randomized)
212  		min_brk = mm->start_brk;
213  	else
214  		min_brk = mm->end_data;
215  #else
216  	min_brk = mm->start_brk;
217  #endif
218  	if (brk < min_brk)
219  		goto out;
220  
221  	/*
222  	 * Check against rlimit here. If this check is done later after the test
223  	 * of oldbrk with newbrk then it can escape the test and let the data
224  	 * segment grow beyond its set limit the in case where the limit is
225  	 * not page aligned -Ram Gupta
226  	 */
227  	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228  			      mm->end_data, mm->start_data))
229  		goto out;
230  
231  	newbrk = PAGE_ALIGN(brk);
232  	oldbrk = PAGE_ALIGN(mm->brk);
233  	if (oldbrk == newbrk) {
234  		mm->brk = brk;
235  		goto success;
236  	}
237  
238  	/*
239  	 * Always allow shrinking brk.
240  	 * __do_munmap() may downgrade mmap_sem to read.
241  	 */
242  	if (brk <= mm->brk) {
243  		int ret;
244  
245  		/*
246  		 * mm->brk must to be protected by write mmap_sem so update it
247  		 * before downgrading mmap_sem. When __do_munmap() fails,
248  		 * mm->brk will be restored from origbrk.
249  		 */
250  		mm->brk = brk;
251  		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
252  		if (ret < 0) {
253  			mm->brk = origbrk;
254  			goto out;
255  		} else if (ret == 1) {
256  			downgraded = true;
257  		}
258  		goto success;
259  	}
260  
261  	/* Check against existing mmap mappings. */
262  	next = find_vma(mm, oldbrk);
263  	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
264  		goto out;
265  
266  	/* Ok, looks good - let it rip. */
267  	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
268  		goto out;
269  	mm->brk = brk;
270  
271  success:
272  	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
273  	if (downgraded)
274  		up_read(&mm->mmap_sem);
275  	else
276  		up_write(&mm->mmap_sem);
277  	userfaultfd_unmap_complete(mm, &uf);
278  	if (populate)
279  		mm_populate(oldbrk, newbrk - oldbrk);
280  	return brk;
281  
282  out:
283  	retval = origbrk;
284  	up_write(&mm->mmap_sem);
285  	return retval;
286  }
287  
288  static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
289  {
290  	unsigned long gap, prev_end;
291  
292  	/*
293  	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
294  	 * allow two stack_guard_gaps between them here, and when choosing
295  	 * an unmapped area; whereas when expanding we only require one.
296  	 * That's a little inconsistent, but keeps the code here simpler.
297  	 */
298  	gap = vm_start_gap(vma);
299  	if (vma->vm_prev) {
300  		prev_end = vm_end_gap(vma->vm_prev);
301  		if (gap > prev_end)
302  			gap -= prev_end;
303  		else
304  			gap = 0;
305  	}
306  	return gap;
307  }
308  
309  #ifdef CONFIG_DEBUG_VM_RB
310  static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
311  {
312  	unsigned long max = vma_compute_gap(vma), subtree_gap;
313  	if (vma->vm_rb.rb_left) {
314  		subtree_gap = rb_entry(vma->vm_rb.rb_left,
315  				struct vm_area_struct, vm_rb)->rb_subtree_gap;
316  		if (subtree_gap > max)
317  			max = subtree_gap;
318  	}
319  	if (vma->vm_rb.rb_right) {
320  		subtree_gap = rb_entry(vma->vm_rb.rb_right,
321  				struct vm_area_struct, vm_rb)->rb_subtree_gap;
322  		if (subtree_gap > max)
323  			max = subtree_gap;
324  	}
325  	return max;
326  }
327  
328  static int browse_rb(struct mm_struct *mm)
329  {
330  	struct rb_root *root = &mm->mm_rb;
331  	int i = 0, j, bug = 0;
332  	struct rb_node *nd, *pn = NULL;
333  	unsigned long prev = 0, pend = 0;
334  
335  	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
336  		struct vm_area_struct *vma;
337  		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
338  		if (vma->vm_start < prev) {
339  			pr_emerg("vm_start %lx < prev %lx\n",
340  				  vma->vm_start, prev);
341  			bug = 1;
342  		}
343  		if (vma->vm_start < pend) {
344  			pr_emerg("vm_start %lx < pend %lx\n",
345  				  vma->vm_start, pend);
346  			bug = 1;
347  		}
348  		if (vma->vm_start > vma->vm_end) {
349  			pr_emerg("vm_start %lx > vm_end %lx\n",
350  				  vma->vm_start, vma->vm_end);
351  			bug = 1;
352  		}
353  		spin_lock(&mm->page_table_lock);
354  		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
355  			pr_emerg("free gap %lx, correct %lx\n",
356  			       vma->rb_subtree_gap,
357  			       vma_compute_subtree_gap(vma));
358  			bug = 1;
359  		}
360  		spin_unlock(&mm->page_table_lock);
361  		i++;
362  		pn = nd;
363  		prev = vma->vm_start;
364  		pend = vma->vm_end;
365  	}
366  	j = 0;
367  	for (nd = pn; nd; nd = rb_prev(nd))
368  		j++;
369  	if (i != j) {
370  		pr_emerg("backwards %d, forwards %d\n", j, i);
371  		bug = 1;
372  	}
373  	return bug ? -1 : i;
374  }
375  
376  static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
377  {
378  	struct rb_node *nd;
379  
380  	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
381  		struct vm_area_struct *vma;
382  		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
383  		VM_BUG_ON_VMA(vma != ignore &&
384  			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
385  			vma);
386  	}
387  }
388  
389  static void validate_mm(struct mm_struct *mm)
390  {
391  	int bug = 0;
392  	int i = 0;
393  	unsigned long highest_address = 0;
394  	struct vm_area_struct *vma = mm->mmap;
395  
396  	while (vma) {
397  		struct anon_vma *anon_vma = vma->anon_vma;
398  		struct anon_vma_chain *avc;
399  
400  		if (anon_vma) {
401  			anon_vma_lock_read(anon_vma);
402  			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403  				anon_vma_interval_tree_verify(avc);
404  			anon_vma_unlock_read(anon_vma);
405  		}
406  
407  		highest_address = vm_end_gap(vma);
408  		vma = vma->vm_next;
409  		i++;
410  	}
411  	if (i != mm->map_count) {
412  		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
413  		bug = 1;
414  	}
415  	if (highest_address != mm->highest_vm_end) {
416  		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
417  			  mm->highest_vm_end, highest_address);
418  		bug = 1;
419  	}
420  	i = browse_rb(mm);
421  	if (i != mm->map_count) {
422  		if (i != -1)
423  			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
424  		bug = 1;
425  	}
426  	VM_BUG_ON_MM(bug, mm);
427  }
428  #else
429  #define validate_mm_rb(root, ignore) do { } while (0)
430  #define validate_mm(mm) do { } while (0)
431  #endif
432  
433  RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
434  			 struct vm_area_struct, vm_rb,
435  			 unsigned long, rb_subtree_gap, vma_compute_gap)
436  
437  /*
438   * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
439   * vma->vm_prev->vm_end values changed, without modifying the vma's position
440   * in the rbtree.
441   */
442  static void vma_gap_update(struct vm_area_struct *vma)
443  {
444  	/*
445  	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
446  	 * a callback function that does exactly what we want.
447  	 */
448  	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
449  }
450  
451  static inline void vma_rb_insert(struct vm_area_struct *vma,
452  				 struct rb_root *root)
453  {
454  	/* All rb_subtree_gap values must be consistent prior to insertion */
455  	validate_mm_rb(root, NULL);
456  
457  	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
458  }
459  
460  static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
461  {
462  	/*
463  	 * Note rb_erase_augmented is a fairly large inline function,
464  	 * so make sure we instantiate it only once with our desired
465  	 * augmented rbtree callbacks.
466  	 */
467  	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
468  }
469  
470  static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
471  						struct rb_root *root,
472  						struct vm_area_struct *ignore)
473  {
474  	/*
475  	 * All rb_subtree_gap values must be consistent prior to erase,
476  	 * with the possible exception of the "next" vma being erased if
477  	 * next->vm_start was reduced.
478  	 */
479  	validate_mm_rb(root, ignore);
480  
481  	__vma_rb_erase(vma, root);
482  }
483  
484  static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
485  					 struct rb_root *root)
486  {
487  	/*
488  	 * All rb_subtree_gap values must be consistent prior to erase,
489  	 * with the possible exception of the vma being erased.
490  	 */
491  	validate_mm_rb(root, vma);
492  
493  	__vma_rb_erase(vma, root);
494  }
495  
496  /*
497   * vma has some anon_vma assigned, and is already inserted on that
498   * anon_vma's interval trees.
499   *
500   * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501   * vma must be removed from the anon_vma's interval trees using
502   * anon_vma_interval_tree_pre_update_vma().
503   *
504   * After the update, the vma will be reinserted using
505   * anon_vma_interval_tree_post_update_vma().
506   *
507   * The entire update must be protected by exclusive mmap_sem and by
508   * the root anon_vma's mutex.
509   */
510  static inline void
511  anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
512  {
513  	struct anon_vma_chain *avc;
514  
515  	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516  		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517  }
518  
519  static inline void
520  anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
521  {
522  	struct anon_vma_chain *avc;
523  
524  	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525  		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526  }
527  
528  static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529  		unsigned long end, struct vm_area_struct **pprev,
530  		struct rb_node ***rb_link, struct rb_node **rb_parent)
531  {
532  	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
533  
534  	__rb_link = &mm->mm_rb.rb_node;
535  	rb_prev = __rb_parent = NULL;
536  
537  	while (*__rb_link) {
538  		struct vm_area_struct *vma_tmp;
539  
540  		__rb_parent = *__rb_link;
541  		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
542  
543  		if (vma_tmp->vm_end > addr) {
544  			/* Fail if an existing vma overlaps the area */
545  			if (vma_tmp->vm_start < end)
546  				return -ENOMEM;
547  			__rb_link = &__rb_parent->rb_left;
548  		} else {
549  			rb_prev = __rb_parent;
550  			__rb_link = &__rb_parent->rb_right;
551  		}
552  	}
553  
554  	*pprev = NULL;
555  	if (rb_prev)
556  		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557  	*rb_link = __rb_link;
558  	*rb_parent = __rb_parent;
559  	return 0;
560  }
561  
562  static unsigned long count_vma_pages_range(struct mm_struct *mm,
563  		unsigned long addr, unsigned long end)
564  {
565  	unsigned long nr_pages = 0;
566  	struct vm_area_struct *vma;
567  
568  	/* Find first overlaping mapping */
569  	vma = find_vma_intersection(mm, addr, end);
570  	if (!vma)
571  		return 0;
572  
573  	nr_pages = (min(end, vma->vm_end) -
574  		max(addr, vma->vm_start)) >> PAGE_SHIFT;
575  
576  	/* Iterate over the rest of the overlaps */
577  	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578  		unsigned long overlap_len;
579  
580  		if (vma->vm_start > end)
581  			break;
582  
583  		overlap_len = min(end, vma->vm_end) - vma->vm_start;
584  		nr_pages += overlap_len >> PAGE_SHIFT;
585  	}
586  
587  	return nr_pages;
588  }
589  
590  void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591  		struct rb_node **rb_link, struct rb_node *rb_parent)
592  {
593  	/* Update tracking information for the gap following the new vma. */
594  	if (vma->vm_next)
595  		vma_gap_update(vma->vm_next);
596  	else
597  		mm->highest_vm_end = vm_end_gap(vma);
598  
599  	/*
600  	 * vma->vm_prev wasn't known when we followed the rbtree to find the
601  	 * correct insertion point for that vma. As a result, we could not
602  	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603  	 * So, we first insert the vma with a zero rb_subtree_gap value
604  	 * (to be consistent with what we did on the way down), and then
605  	 * immediately update the gap to the correct value. Finally we
606  	 * rebalance the rbtree after all augmented values have been set.
607  	 */
608  	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609  	vma->rb_subtree_gap = 0;
610  	vma_gap_update(vma);
611  	vma_rb_insert(vma, &mm->mm_rb);
612  }
613  
614  static void __vma_link_file(struct vm_area_struct *vma)
615  {
616  	struct file *file;
617  
618  	file = vma->vm_file;
619  	if (file) {
620  		struct address_space *mapping = file->f_mapping;
621  
622  		if (vma->vm_flags & VM_DENYWRITE)
623  			atomic_dec(&file_inode(file)->i_writecount);
624  		if (vma->vm_flags & VM_SHARED)
625  			atomic_inc(&mapping->i_mmap_writable);
626  
627  		flush_dcache_mmap_lock(mapping);
628  		vma_interval_tree_insert(vma, &mapping->i_mmap);
629  		flush_dcache_mmap_unlock(mapping);
630  	}
631  }
632  
633  static void
634  __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
635  	struct vm_area_struct *prev, struct rb_node **rb_link,
636  	struct rb_node *rb_parent)
637  {
638  	__vma_link_list(mm, vma, prev);
639  	__vma_link_rb(mm, vma, rb_link, rb_parent);
640  }
641  
642  static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643  			struct vm_area_struct *prev, struct rb_node **rb_link,
644  			struct rb_node *rb_parent)
645  {
646  	struct address_space *mapping = NULL;
647  
648  	if (vma->vm_file) {
649  		mapping = vma->vm_file->f_mapping;
650  		i_mmap_lock_write(mapping);
651  	}
652  
653  	__vma_link(mm, vma, prev, rb_link, rb_parent);
654  	__vma_link_file(vma);
655  
656  	if (mapping)
657  		i_mmap_unlock_write(mapping);
658  
659  	mm->map_count++;
660  	validate_mm(mm);
661  }
662  
663  /*
664   * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
665   * mm's list and rbtree.  It has already been inserted into the interval tree.
666   */
667  static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
668  {
669  	struct vm_area_struct *prev;
670  	struct rb_node **rb_link, *rb_parent;
671  
672  	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
673  			   &prev, &rb_link, &rb_parent))
674  		BUG();
675  	__vma_link(mm, vma, prev, rb_link, rb_parent);
676  	mm->map_count++;
677  }
678  
679  static __always_inline void __vma_unlink_common(struct mm_struct *mm,
680  						struct vm_area_struct *vma,
681  						struct vm_area_struct *ignore)
682  {
683  	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684  	__vma_unlink_list(mm, vma);
685  	/* Kill the cache */
686  	vmacache_invalidate(mm);
687  }
688  
689  /*
690   * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691   * is already present in an i_mmap tree without adjusting the tree.
692   * The following helper function should be used when such adjustments
693   * are necessary.  The "insert" vma (if any) is to be inserted
694   * before we drop the necessary locks.
695   */
696  int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
697  	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
698  	struct vm_area_struct *expand)
699  {
700  	struct mm_struct *mm = vma->vm_mm;
701  	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
702  	struct address_space *mapping = NULL;
703  	struct rb_root_cached *root = NULL;
704  	struct anon_vma *anon_vma = NULL;
705  	struct file *file = vma->vm_file;
706  	bool start_changed = false, end_changed = false;
707  	long adjust_next = 0;
708  	int remove_next = 0;
709  
710  	if (next && !insert) {
711  		struct vm_area_struct *exporter = NULL, *importer = NULL;
712  
713  		if (end >= next->vm_end) {
714  			/*
715  			 * vma expands, overlapping all the next, and
716  			 * perhaps the one after too (mprotect case 6).
717  			 * The only other cases that gets here are
718  			 * case 1, case 7 and case 8.
719  			 */
720  			if (next == expand) {
721  				/*
722  				 * The only case where we don't expand "vma"
723  				 * and we expand "next" instead is case 8.
724  				 */
725  				VM_WARN_ON(end != next->vm_end);
726  				/*
727  				 * remove_next == 3 means we're
728  				 * removing "vma" and that to do so we
729  				 * swapped "vma" and "next".
730  				 */
731  				remove_next = 3;
732  				VM_WARN_ON(file != next->vm_file);
733  				swap(vma, next);
734  			} else {
735  				VM_WARN_ON(expand != vma);
736  				/*
737  				 * case 1, 6, 7, remove_next == 2 is case 6,
738  				 * remove_next == 1 is case 1 or 7.
739  				 */
740  				remove_next = 1 + (end > next->vm_end);
741  				VM_WARN_ON(remove_next == 2 &&
742  					   end != next->vm_next->vm_end);
743  				/* trim end to next, for case 6 first pass */
744  				end = next->vm_end;
745  			}
746  
747  			exporter = next;
748  			importer = vma;
749  
750  			/*
751  			 * If next doesn't have anon_vma, import from vma after
752  			 * next, if the vma overlaps with it.
753  			 */
754  			if (remove_next == 2 && !next->anon_vma)
755  				exporter = next->vm_next;
756  
757  		} else if (end > next->vm_start) {
758  			/*
759  			 * vma expands, overlapping part of the next:
760  			 * mprotect case 5 shifting the boundary up.
761  			 */
762  			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
763  			exporter = next;
764  			importer = vma;
765  			VM_WARN_ON(expand != importer);
766  		} else if (end < vma->vm_end) {
767  			/*
768  			 * vma shrinks, and !insert tells it's not
769  			 * split_vma inserting another: so it must be
770  			 * mprotect case 4 shifting the boundary down.
771  			 */
772  			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
773  			exporter = vma;
774  			importer = next;
775  			VM_WARN_ON(expand != importer);
776  		}
777  
778  		/*
779  		 * Easily overlooked: when mprotect shifts the boundary,
780  		 * make sure the expanding vma has anon_vma set if the
781  		 * shrinking vma had, to cover any anon pages imported.
782  		 */
783  		if (exporter && exporter->anon_vma && !importer->anon_vma) {
784  			int error;
785  
786  			importer->anon_vma = exporter->anon_vma;
787  			error = anon_vma_clone(importer, exporter);
788  			if (error)
789  				return error;
790  		}
791  	}
792  again:
793  	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
794  
795  	if (file) {
796  		mapping = file->f_mapping;
797  		root = &mapping->i_mmap;
798  		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
799  
800  		if (adjust_next)
801  			uprobe_munmap(next, next->vm_start, next->vm_end);
802  
803  		i_mmap_lock_write(mapping);
804  		if (insert) {
805  			/*
806  			 * Put into interval tree now, so instantiated pages
807  			 * are visible to arm/parisc __flush_dcache_page
808  			 * throughout; but we cannot insert into address
809  			 * space until vma start or end is updated.
810  			 */
811  			__vma_link_file(insert);
812  		}
813  	}
814  
815  	anon_vma = vma->anon_vma;
816  	if (!anon_vma && adjust_next)
817  		anon_vma = next->anon_vma;
818  	if (anon_vma) {
819  		VM_WARN_ON(adjust_next && next->anon_vma &&
820  			   anon_vma != next->anon_vma);
821  		anon_vma_lock_write(anon_vma);
822  		anon_vma_interval_tree_pre_update_vma(vma);
823  		if (adjust_next)
824  			anon_vma_interval_tree_pre_update_vma(next);
825  	}
826  
827  	if (root) {
828  		flush_dcache_mmap_lock(mapping);
829  		vma_interval_tree_remove(vma, root);
830  		if (adjust_next)
831  			vma_interval_tree_remove(next, root);
832  	}
833  
834  	if (start != vma->vm_start) {
835  		vma->vm_start = start;
836  		start_changed = true;
837  	}
838  	if (end != vma->vm_end) {
839  		vma->vm_end = end;
840  		end_changed = true;
841  	}
842  	vma->vm_pgoff = pgoff;
843  	if (adjust_next) {
844  		next->vm_start += adjust_next << PAGE_SHIFT;
845  		next->vm_pgoff += adjust_next;
846  	}
847  
848  	if (root) {
849  		if (adjust_next)
850  			vma_interval_tree_insert(next, root);
851  		vma_interval_tree_insert(vma, root);
852  		flush_dcache_mmap_unlock(mapping);
853  	}
854  
855  	if (remove_next) {
856  		/*
857  		 * vma_merge has merged next into vma, and needs
858  		 * us to remove next before dropping the locks.
859  		 */
860  		if (remove_next != 3)
861  			__vma_unlink_common(mm, next, next);
862  		else
863  			/*
864  			 * vma is not before next if they've been
865  			 * swapped.
866  			 *
867  			 * pre-swap() next->vm_start was reduced so
868  			 * tell validate_mm_rb to ignore pre-swap()
869  			 * "next" (which is stored in post-swap()
870  			 * "vma").
871  			 */
872  			__vma_unlink_common(mm, next, vma);
873  		if (file)
874  			__remove_shared_vm_struct(next, file, mapping);
875  	} else if (insert) {
876  		/*
877  		 * split_vma has split insert from vma, and needs
878  		 * us to insert it before dropping the locks
879  		 * (it may either follow vma or precede it).
880  		 */
881  		__insert_vm_struct(mm, insert);
882  	} else {
883  		if (start_changed)
884  			vma_gap_update(vma);
885  		if (end_changed) {
886  			if (!next)
887  				mm->highest_vm_end = vm_end_gap(vma);
888  			else if (!adjust_next)
889  				vma_gap_update(next);
890  		}
891  	}
892  
893  	if (anon_vma) {
894  		anon_vma_interval_tree_post_update_vma(vma);
895  		if (adjust_next)
896  			anon_vma_interval_tree_post_update_vma(next);
897  		anon_vma_unlock_write(anon_vma);
898  	}
899  	if (mapping)
900  		i_mmap_unlock_write(mapping);
901  
902  	if (root) {
903  		uprobe_mmap(vma);
904  
905  		if (adjust_next)
906  			uprobe_mmap(next);
907  	}
908  
909  	if (remove_next) {
910  		if (file) {
911  			uprobe_munmap(next, next->vm_start, next->vm_end);
912  			fput(file);
913  		}
914  		if (next->anon_vma)
915  			anon_vma_merge(vma, next);
916  		mm->map_count--;
917  		mpol_put(vma_policy(next));
918  		vm_area_free(next);
919  		/*
920  		 * In mprotect's case 6 (see comments on vma_merge),
921  		 * we must remove another next too. It would clutter
922  		 * up the code too much to do both in one go.
923  		 */
924  		if (remove_next != 3) {
925  			/*
926  			 * If "next" was removed and vma->vm_end was
927  			 * expanded (up) over it, in turn
928  			 * "next->vm_prev->vm_end" changed and the
929  			 * "vma->vm_next" gap must be updated.
930  			 */
931  			next = vma->vm_next;
932  		} else {
933  			/*
934  			 * For the scope of the comment "next" and
935  			 * "vma" considered pre-swap(): if "vma" was
936  			 * removed, next->vm_start was expanded (down)
937  			 * over it and the "next" gap must be updated.
938  			 * Because of the swap() the post-swap() "vma"
939  			 * actually points to pre-swap() "next"
940  			 * (post-swap() "next" as opposed is now a
941  			 * dangling pointer).
942  			 */
943  			next = vma;
944  		}
945  		if (remove_next == 2) {
946  			remove_next = 1;
947  			end = next->vm_end;
948  			goto again;
949  		}
950  		else if (next)
951  			vma_gap_update(next);
952  		else {
953  			/*
954  			 * If remove_next == 2 we obviously can't
955  			 * reach this path.
956  			 *
957  			 * If remove_next == 3 we can't reach this
958  			 * path because pre-swap() next is always not
959  			 * NULL. pre-swap() "next" is not being
960  			 * removed and its next->vm_end is not altered
961  			 * (and furthermore "end" already matches
962  			 * next->vm_end in remove_next == 3).
963  			 *
964  			 * We reach this only in the remove_next == 1
965  			 * case if the "next" vma that was removed was
966  			 * the highest vma of the mm. However in such
967  			 * case next->vm_end == "end" and the extended
968  			 * "vma" has vma->vm_end == next->vm_end so
969  			 * mm->highest_vm_end doesn't need any update
970  			 * in remove_next == 1 case.
971  			 */
972  			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
973  		}
974  	}
975  	if (insert && file)
976  		uprobe_mmap(insert);
977  
978  	validate_mm(mm);
979  
980  	return 0;
981  }
982  
983  /*
984   * If the vma has a ->close operation then the driver probably needs to release
985   * per-vma resources, so we don't attempt to merge those.
986   */
987  static inline int is_mergeable_vma(struct vm_area_struct *vma,
988  				struct file *file, unsigned long vm_flags,
989  				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
990  {
991  	/*
992  	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
993  	 * match the flags but dirty bit -- the caller should mark
994  	 * merged VMA as dirty. If dirty bit won't be excluded from
995  	 * comparison, we increase pressure on the memory system forcing
996  	 * the kernel to generate new VMAs when old one could be
997  	 * extended instead.
998  	 */
999  	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1000  		return 0;
1001  	if (vma->vm_file != file)
1002  		return 0;
1003  	if (vma->vm_ops && vma->vm_ops->close)
1004  		return 0;
1005  	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1006  		return 0;
1007  	return 1;
1008  }
1009  
1010  static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1011  					struct anon_vma *anon_vma2,
1012  					struct vm_area_struct *vma)
1013  {
1014  	/*
1015  	 * The list_is_singular() test is to avoid merging VMA cloned from
1016  	 * parents. This can improve scalability caused by anon_vma lock.
1017  	 */
1018  	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1019  		list_is_singular(&vma->anon_vma_chain)))
1020  		return 1;
1021  	return anon_vma1 == anon_vma2;
1022  }
1023  
1024  /*
1025   * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1026   * in front of (at a lower virtual address and file offset than) the vma.
1027   *
1028   * We cannot merge two vmas if they have differently assigned (non-NULL)
1029   * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1030   *
1031   * We don't check here for the merged mmap wrapping around the end of pagecache
1032   * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1033   * wrap, nor mmaps which cover the final page at index -1UL.
1034   */
1035  static int
1036  can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1037  		     struct anon_vma *anon_vma, struct file *file,
1038  		     pgoff_t vm_pgoff,
1039  		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1040  {
1041  	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1042  	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1043  		if (vma->vm_pgoff == vm_pgoff)
1044  			return 1;
1045  	}
1046  	return 0;
1047  }
1048  
1049  /*
1050   * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1051   * beyond (at a higher virtual address and file offset than) the vma.
1052   *
1053   * We cannot merge two vmas if they have differently assigned (non-NULL)
1054   * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1055   */
1056  static int
1057  can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1058  		    struct anon_vma *anon_vma, struct file *file,
1059  		    pgoff_t vm_pgoff,
1060  		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061  {
1062  	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063  	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1064  		pgoff_t vm_pglen;
1065  		vm_pglen = vma_pages(vma);
1066  		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1067  			return 1;
1068  	}
1069  	return 0;
1070  }
1071  
1072  /*
1073   * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1074   * whether that can be merged with its predecessor or its successor.
1075   * Or both (it neatly fills a hole).
1076   *
1077   * In most cases - when called for mmap, brk or mremap - [addr,end) is
1078   * certain not to be mapped by the time vma_merge is called; but when
1079   * called for mprotect, it is certain to be already mapped (either at
1080   * an offset within prev, or at the start of next), and the flags of
1081   * this area are about to be changed to vm_flags - and the no-change
1082   * case has already been eliminated.
1083   *
1084   * The following mprotect cases have to be considered, where AAAA is
1085   * the area passed down from mprotect_fixup, never extending beyond one
1086   * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1087   *
1088   *     AAAA             AAAA                   AAAA
1089   *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1090   *    cannot merge    might become       might become
1091   *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1092   *    mmap, brk or    case 4 below       case 5 below
1093   *    mremap move:
1094   *                        AAAA               AAAA
1095   *                    PPPP    NNNN       PPPPNNNNXXXX
1096   *                    might become       might become
1097   *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1098   *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1099   *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1100   *
1101   * It is important for case 8 that the vma NNNN overlapping the
1102   * region AAAA is never going to extended over XXXX. Instead XXXX must
1103   * be extended in region AAAA and NNNN must be removed. This way in
1104   * all cases where vma_merge succeeds, the moment vma_adjust drops the
1105   * rmap_locks, the properties of the merged vma will be already
1106   * correct for the whole merged range. Some of those properties like
1107   * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1108   * be correct for the whole merged range immediately after the
1109   * rmap_locks are released. Otherwise if XXXX would be removed and
1110   * NNNN would be extended over the XXXX range, remove_migration_ptes
1111   * or other rmap walkers (if working on addresses beyond the "end"
1112   * parameter) may establish ptes with the wrong permissions of NNNN
1113   * instead of the right permissions of XXXX.
1114   */
1115  struct vm_area_struct *vma_merge(struct mm_struct *mm,
1116  			struct vm_area_struct *prev, unsigned long addr,
1117  			unsigned long end, unsigned long vm_flags,
1118  			struct anon_vma *anon_vma, struct file *file,
1119  			pgoff_t pgoff, struct mempolicy *policy,
1120  			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1121  {
1122  	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1123  	struct vm_area_struct *area, *next;
1124  	int err;
1125  
1126  	/*
1127  	 * We later require that vma->vm_flags == vm_flags,
1128  	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1129  	 */
1130  	if (vm_flags & VM_SPECIAL)
1131  		return NULL;
1132  
1133  	if (prev)
1134  		next = prev->vm_next;
1135  	else
1136  		next = mm->mmap;
1137  	area = next;
1138  	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1139  		next = next->vm_next;
1140  
1141  	/* verify some invariant that must be enforced by the caller */
1142  	VM_WARN_ON(prev && addr <= prev->vm_start);
1143  	VM_WARN_ON(area && end > area->vm_end);
1144  	VM_WARN_ON(addr >= end);
1145  
1146  	/*
1147  	 * Can it merge with the predecessor?
1148  	 */
1149  	if (prev && prev->vm_end == addr &&
1150  			mpol_equal(vma_policy(prev), policy) &&
1151  			can_vma_merge_after(prev, vm_flags,
1152  					    anon_vma, file, pgoff,
1153  					    vm_userfaultfd_ctx)) {
1154  		/*
1155  		 * OK, it can.  Can we now merge in the successor as well?
1156  		 */
1157  		if (next && end == next->vm_start &&
1158  				mpol_equal(policy, vma_policy(next)) &&
1159  				can_vma_merge_before(next, vm_flags,
1160  						     anon_vma, file,
1161  						     pgoff+pglen,
1162  						     vm_userfaultfd_ctx) &&
1163  				is_mergeable_anon_vma(prev->anon_vma,
1164  						      next->anon_vma, NULL)) {
1165  							/* cases 1, 6 */
1166  			err = __vma_adjust(prev, prev->vm_start,
1167  					 next->vm_end, prev->vm_pgoff, NULL,
1168  					 prev);
1169  		} else					/* cases 2, 5, 7 */
1170  			err = __vma_adjust(prev, prev->vm_start,
1171  					 end, prev->vm_pgoff, NULL, prev);
1172  		if (err)
1173  			return NULL;
1174  		khugepaged_enter_vma_merge(prev, vm_flags);
1175  		return prev;
1176  	}
1177  
1178  	/*
1179  	 * Can this new request be merged in front of next?
1180  	 */
1181  	if (next && end == next->vm_start &&
1182  			mpol_equal(policy, vma_policy(next)) &&
1183  			can_vma_merge_before(next, vm_flags,
1184  					     anon_vma, file, pgoff+pglen,
1185  					     vm_userfaultfd_ctx)) {
1186  		if (prev && addr < prev->vm_end)	/* case 4 */
1187  			err = __vma_adjust(prev, prev->vm_start,
1188  					 addr, prev->vm_pgoff, NULL, next);
1189  		else {					/* cases 3, 8 */
1190  			err = __vma_adjust(area, addr, next->vm_end,
1191  					 next->vm_pgoff - pglen, NULL, next);
1192  			/*
1193  			 * In case 3 area is already equal to next and
1194  			 * this is a noop, but in case 8 "area" has
1195  			 * been removed and next was expanded over it.
1196  			 */
1197  			area = next;
1198  		}
1199  		if (err)
1200  			return NULL;
1201  		khugepaged_enter_vma_merge(area, vm_flags);
1202  		return area;
1203  	}
1204  
1205  	return NULL;
1206  }
1207  
1208  /*
1209   * Rough compatbility check to quickly see if it's even worth looking
1210   * at sharing an anon_vma.
1211   *
1212   * They need to have the same vm_file, and the flags can only differ
1213   * in things that mprotect may change.
1214   *
1215   * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1216   * we can merge the two vma's. For example, we refuse to merge a vma if
1217   * there is a vm_ops->close() function, because that indicates that the
1218   * driver is doing some kind of reference counting. But that doesn't
1219   * really matter for the anon_vma sharing case.
1220   */
1221  static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1222  {
1223  	return a->vm_end == b->vm_start &&
1224  		mpol_equal(vma_policy(a), vma_policy(b)) &&
1225  		a->vm_file == b->vm_file &&
1226  		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1227  		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1228  }
1229  
1230  /*
1231   * Do some basic sanity checking to see if we can re-use the anon_vma
1232   * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1233   * the same as 'old', the other will be the new one that is trying
1234   * to share the anon_vma.
1235   *
1236   * NOTE! This runs with mm_sem held for reading, so it is possible that
1237   * the anon_vma of 'old' is concurrently in the process of being set up
1238   * by another page fault trying to merge _that_. But that's ok: if it
1239   * is being set up, that automatically means that it will be a singleton
1240   * acceptable for merging, so we can do all of this optimistically. But
1241   * we do that READ_ONCE() to make sure that we never re-load the pointer.
1242   *
1243   * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1244   * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1245   * is to return an anon_vma that is "complex" due to having gone through
1246   * a fork).
1247   *
1248   * We also make sure that the two vma's are compatible (adjacent,
1249   * and with the same memory policies). That's all stable, even with just
1250   * a read lock on the mm_sem.
1251   */
1252  static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1253  {
1254  	if (anon_vma_compatible(a, b)) {
1255  		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1256  
1257  		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1258  			return anon_vma;
1259  	}
1260  	return NULL;
1261  }
1262  
1263  /*
1264   * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1265   * neighbouring vmas for a suitable anon_vma, before it goes off
1266   * to allocate a new anon_vma.  It checks because a repetitive
1267   * sequence of mprotects and faults may otherwise lead to distinct
1268   * anon_vmas being allocated, preventing vma merge in subsequent
1269   * mprotect.
1270   */
1271  struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1272  {
1273  	struct anon_vma *anon_vma = NULL;
1274  
1275  	/* Try next first. */
1276  	if (vma->vm_next) {
1277  		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1278  		if (anon_vma)
1279  			return anon_vma;
1280  	}
1281  
1282  	/* Try prev next. */
1283  	if (vma->vm_prev)
1284  		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1285  
1286  	/*
1287  	 * We might reach here with anon_vma == NULL if we can't find
1288  	 * any reusable anon_vma.
1289  	 * There's no absolute need to look only at touching neighbours:
1290  	 * we could search further afield for "compatible" anon_vmas.
1291  	 * But it would probably just be a waste of time searching,
1292  	 * or lead to too many vmas hanging off the same anon_vma.
1293  	 * We're trying to allow mprotect remerging later on,
1294  	 * not trying to minimize memory used for anon_vmas.
1295  	 */
1296  	return anon_vma;
1297  }
1298  
1299  /*
1300   * If a hint addr is less than mmap_min_addr change hint to be as
1301   * low as possible but still greater than mmap_min_addr
1302   */
1303  static inline unsigned long round_hint_to_min(unsigned long hint)
1304  {
1305  	hint &= PAGE_MASK;
1306  	if (((void *)hint != NULL) &&
1307  	    (hint < mmap_min_addr))
1308  		return PAGE_ALIGN(mmap_min_addr);
1309  	return hint;
1310  }
1311  
1312  static inline int mlock_future_check(struct mm_struct *mm,
1313  				     unsigned long flags,
1314  				     unsigned long len)
1315  {
1316  	unsigned long locked, lock_limit;
1317  
1318  	/*  mlock MCL_FUTURE? */
1319  	if (flags & VM_LOCKED) {
1320  		locked = len >> PAGE_SHIFT;
1321  		locked += mm->locked_vm;
1322  		lock_limit = rlimit(RLIMIT_MEMLOCK);
1323  		lock_limit >>= PAGE_SHIFT;
1324  		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1325  			return -EAGAIN;
1326  	}
1327  	return 0;
1328  }
1329  
1330  static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1331  {
1332  	if (S_ISREG(inode->i_mode))
1333  		return MAX_LFS_FILESIZE;
1334  
1335  	if (S_ISBLK(inode->i_mode))
1336  		return MAX_LFS_FILESIZE;
1337  
1338  	if (S_ISSOCK(inode->i_mode))
1339  		return MAX_LFS_FILESIZE;
1340  
1341  	/* Special "we do even unsigned file positions" case */
1342  	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1343  		return 0;
1344  
1345  	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1346  	return ULONG_MAX;
1347  }
1348  
1349  static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1350  				unsigned long pgoff, unsigned long len)
1351  {
1352  	u64 maxsize = file_mmap_size_max(file, inode);
1353  
1354  	if (maxsize && len > maxsize)
1355  		return false;
1356  	maxsize -= len;
1357  	if (pgoff > maxsize >> PAGE_SHIFT)
1358  		return false;
1359  	return true;
1360  }
1361  
1362  /*
1363   * The caller must hold down_write(&current->mm->mmap_sem).
1364   */
1365  unsigned long do_mmap(struct file *file, unsigned long addr,
1366  			unsigned long len, unsigned long prot,
1367  			unsigned long flags, vm_flags_t vm_flags,
1368  			unsigned long pgoff, unsigned long *populate,
1369  			struct list_head *uf)
1370  {
1371  	struct mm_struct *mm = current->mm;
1372  	int pkey = 0;
1373  
1374  	*populate = 0;
1375  
1376  	if (!len)
1377  		return -EINVAL;
1378  
1379  	/*
1380  	 * Does the application expect PROT_READ to imply PROT_EXEC?
1381  	 *
1382  	 * (the exception is when the underlying filesystem is noexec
1383  	 *  mounted, in which case we dont add PROT_EXEC.)
1384  	 */
1385  	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1386  		if (!(file && path_noexec(&file->f_path)))
1387  			prot |= PROT_EXEC;
1388  
1389  	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1390  	if (flags & MAP_FIXED_NOREPLACE)
1391  		flags |= MAP_FIXED;
1392  
1393  	if (!(flags & MAP_FIXED))
1394  		addr = round_hint_to_min(addr);
1395  
1396  	/* Careful about overflows.. */
1397  	len = PAGE_ALIGN(len);
1398  	if (!len)
1399  		return -ENOMEM;
1400  
1401  	/* offset overflow? */
1402  	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1403  		return -EOVERFLOW;
1404  
1405  	/* Too many mappings? */
1406  	if (mm->map_count > sysctl_max_map_count)
1407  		return -ENOMEM;
1408  
1409  	/* Obtain the address to map to. we verify (or select) it and ensure
1410  	 * that it represents a valid section of the address space.
1411  	 */
1412  	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1413  	if (IS_ERR_VALUE(addr))
1414  		return addr;
1415  
1416  	if (flags & MAP_FIXED_NOREPLACE) {
1417  		struct vm_area_struct *vma = find_vma(mm, addr);
1418  
1419  		if (vma && vma->vm_start < addr + len)
1420  			return -EEXIST;
1421  	}
1422  
1423  	if (prot == PROT_EXEC) {
1424  		pkey = execute_only_pkey(mm);
1425  		if (pkey < 0)
1426  			pkey = 0;
1427  	}
1428  
1429  	/* Do simple checking here so the lower-level routines won't have
1430  	 * to. we assume access permissions have been handled by the open
1431  	 * of the memory object, so we don't do any here.
1432  	 */
1433  	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1434  			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1435  
1436  	if (flags & MAP_LOCKED)
1437  		if (!can_do_mlock())
1438  			return -EPERM;
1439  
1440  	if (mlock_future_check(mm, vm_flags, len))
1441  		return -EAGAIN;
1442  
1443  	if (file) {
1444  		struct inode *inode = file_inode(file);
1445  		unsigned long flags_mask;
1446  
1447  		if (!file_mmap_ok(file, inode, pgoff, len))
1448  			return -EOVERFLOW;
1449  
1450  		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1451  
1452  		switch (flags & MAP_TYPE) {
1453  		case MAP_SHARED:
1454  			/*
1455  			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1456  			 * flags. E.g. MAP_SYNC is dangerous to use with
1457  			 * MAP_SHARED as you don't know which consistency model
1458  			 * you will get. We silently ignore unsupported flags
1459  			 * with MAP_SHARED to preserve backward compatibility.
1460  			 */
1461  			flags &= LEGACY_MAP_MASK;
1462  			/* fall through */
1463  		case MAP_SHARED_VALIDATE:
1464  			if (flags & ~flags_mask)
1465  				return -EOPNOTSUPP;
1466  			if (prot & PROT_WRITE) {
1467  				if (!(file->f_mode & FMODE_WRITE))
1468  					return -EACCES;
1469  				if (IS_SWAPFILE(file->f_mapping->host))
1470  					return -ETXTBSY;
1471  			}
1472  
1473  			/*
1474  			 * Make sure we don't allow writing to an append-only
1475  			 * file..
1476  			 */
1477  			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1478  				return -EACCES;
1479  
1480  			/*
1481  			 * Make sure there are no mandatory locks on the file.
1482  			 */
1483  			if (locks_verify_locked(file))
1484  				return -EAGAIN;
1485  
1486  			vm_flags |= VM_SHARED | VM_MAYSHARE;
1487  			if (!(file->f_mode & FMODE_WRITE))
1488  				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1489  
1490  			/* fall through */
1491  		case MAP_PRIVATE:
1492  			if (!(file->f_mode & FMODE_READ))
1493  				return -EACCES;
1494  			if (path_noexec(&file->f_path)) {
1495  				if (vm_flags & VM_EXEC)
1496  					return -EPERM;
1497  				vm_flags &= ~VM_MAYEXEC;
1498  			}
1499  
1500  			if (!file->f_op->mmap)
1501  				return -ENODEV;
1502  			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503  				return -EINVAL;
1504  			break;
1505  
1506  		default:
1507  			return -EINVAL;
1508  		}
1509  	} else {
1510  		switch (flags & MAP_TYPE) {
1511  		case MAP_SHARED:
1512  			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513  				return -EINVAL;
1514  			/*
1515  			 * Ignore pgoff.
1516  			 */
1517  			pgoff = 0;
1518  			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519  			break;
1520  		case MAP_PRIVATE:
1521  			/*
1522  			 * Set pgoff according to addr for anon_vma.
1523  			 */
1524  			pgoff = addr >> PAGE_SHIFT;
1525  			break;
1526  		default:
1527  			return -EINVAL;
1528  		}
1529  	}
1530  
1531  	/*
1532  	 * Set 'VM_NORESERVE' if we should not account for the
1533  	 * memory use of this mapping.
1534  	 */
1535  	if (flags & MAP_NORESERVE) {
1536  		/* We honor MAP_NORESERVE if allowed to overcommit */
1537  		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538  			vm_flags |= VM_NORESERVE;
1539  
1540  		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541  		if (file && is_file_hugepages(file))
1542  			vm_flags |= VM_NORESERVE;
1543  	}
1544  
1545  	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546  	if (!IS_ERR_VALUE(addr) &&
1547  	    ((vm_flags & VM_LOCKED) ||
1548  	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549  		*populate = len;
1550  	return addr;
1551  }
1552  
1553  unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554  			      unsigned long prot, unsigned long flags,
1555  			      unsigned long fd, unsigned long pgoff)
1556  {
1557  	struct file *file = NULL;
1558  	unsigned long retval;
1559  
1560  	addr = untagged_addr(addr);
1561  
1562  	if (!(flags & MAP_ANONYMOUS)) {
1563  		audit_mmap_fd(fd, flags);
1564  		file = fget(fd);
1565  		if (!file)
1566  			return -EBADF;
1567  		if (is_file_hugepages(file))
1568  			len = ALIGN(len, huge_page_size(hstate_file(file)));
1569  		retval = -EINVAL;
1570  		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1571  			goto out_fput;
1572  	} else if (flags & MAP_HUGETLB) {
1573  		struct user_struct *user = NULL;
1574  		struct hstate *hs;
1575  
1576  		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1577  		if (!hs)
1578  			return -EINVAL;
1579  
1580  		len = ALIGN(len, huge_page_size(hs));
1581  		/*
1582  		 * VM_NORESERVE is used because the reservations will be
1583  		 * taken when vm_ops->mmap() is called
1584  		 * A dummy user value is used because we are not locking
1585  		 * memory so no accounting is necessary
1586  		 */
1587  		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1588  				VM_NORESERVE,
1589  				&user, HUGETLB_ANONHUGE_INODE,
1590  				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1591  		if (IS_ERR(file))
1592  			return PTR_ERR(file);
1593  	}
1594  
1595  	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1596  
1597  	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1598  out_fput:
1599  	if (file)
1600  		fput(file);
1601  	return retval;
1602  }
1603  
1604  SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1605  		unsigned long, prot, unsigned long, flags,
1606  		unsigned long, fd, unsigned long, pgoff)
1607  {
1608  	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1609  }
1610  
1611  #ifdef __ARCH_WANT_SYS_OLD_MMAP
1612  struct mmap_arg_struct {
1613  	unsigned long addr;
1614  	unsigned long len;
1615  	unsigned long prot;
1616  	unsigned long flags;
1617  	unsigned long fd;
1618  	unsigned long offset;
1619  };
1620  
1621  SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1622  {
1623  	struct mmap_arg_struct a;
1624  
1625  	if (copy_from_user(&a, arg, sizeof(a)))
1626  		return -EFAULT;
1627  	if (offset_in_page(a.offset))
1628  		return -EINVAL;
1629  
1630  	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1631  			       a.offset >> PAGE_SHIFT);
1632  }
1633  #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1634  
1635  /*
1636   * Some shared mappings will want the pages marked read-only
1637   * to track write events. If so, we'll downgrade vm_page_prot
1638   * to the private version (using protection_map[] without the
1639   * VM_SHARED bit).
1640   */
1641  int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1642  {
1643  	vm_flags_t vm_flags = vma->vm_flags;
1644  	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1645  
1646  	/* If it was private or non-writable, the write bit is already clear */
1647  	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1648  		return 0;
1649  
1650  	/* The backer wishes to know when pages are first written to? */
1651  	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1652  		return 1;
1653  
1654  	/* The open routine did something to the protections that pgprot_modify
1655  	 * won't preserve? */
1656  	if (pgprot_val(vm_page_prot) !=
1657  	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1658  		return 0;
1659  
1660  	/* Do we need to track softdirty? */
1661  	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1662  		return 1;
1663  
1664  	/* Specialty mapping? */
1665  	if (vm_flags & VM_PFNMAP)
1666  		return 0;
1667  
1668  	/* Can the mapping track the dirty pages? */
1669  	return vma->vm_file && vma->vm_file->f_mapping &&
1670  		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1671  }
1672  
1673  /*
1674   * We account for memory if it's a private writeable mapping,
1675   * not hugepages and VM_NORESERVE wasn't set.
1676   */
1677  static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1678  {
1679  	/*
1680  	 * hugetlb has its own accounting separate from the core VM
1681  	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1682  	 */
1683  	if (file && is_file_hugepages(file))
1684  		return 0;
1685  
1686  	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1687  }
1688  
1689  unsigned long mmap_region(struct file *file, unsigned long addr,
1690  		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1691  		struct list_head *uf)
1692  {
1693  	struct mm_struct *mm = current->mm;
1694  	struct vm_area_struct *vma, *prev;
1695  	int error;
1696  	struct rb_node **rb_link, *rb_parent;
1697  	unsigned long charged = 0;
1698  
1699  	/* Check against address space limit. */
1700  	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1701  		unsigned long nr_pages;
1702  
1703  		/*
1704  		 * MAP_FIXED may remove pages of mappings that intersects with
1705  		 * requested mapping. Account for the pages it would unmap.
1706  		 */
1707  		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1708  
1709  		if (!may_expand_vm(mm, vm_flags,
1710  					(len >> PAGE_SHIFT) - nr_pages))
1711  			return -ENOMEM;
1712  	}
1713  
1714  	/* Clear old maps */
1715  	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1716  			      &rb_parent)) {
1717  		if (do_munmap(mm, addr, len, uf))
1718  			return -ENOMEM;
1719  	}
1720  
1721  	/*
1722  	 * Private writable mapping: check memory availability
1723  	 */
1724  	if (accountable_mapping(file, vm_flags)) {
1725  		charged = len >> PAGE_SHIFT;
1726  		if (security_vm_enough_memory_mm(mm, charged))
1727  			return -ENOMEM;
1728  		vm_flags |= VM_ACCOUNT;
1729  	}
1730  
1731  	/*
1732  	 * Can we just expand an old mapping?
1733  	 */
1734  	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1735  			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1736  	if (vma)
1737  		goto out;
1738  
1739  	/*
1740  	 * Determine the object being mapped and call the appropriate
1741  	 * specific mapper. the address has already been validated, but
1742  	 * not unmapped, but the maps are removed from the list.
1743  	 */
1744  	vma = vm_area_alloc(mm);
1745  	if (!vma) {
1746  		error = -ENOMEM;
1747  		goto unacct_error;
1748  	}
1749  
1750  	vma->vm_start = addr;
1751  	vma->vm_end = addr + len;
1752  	vma->vm_flags = vm_flags;
1753  	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1754  	vma->vm_pgoff = pgoff;
1755  
1756  	if (file) {
1757  		if (vm_flags & VM_DENYWRITE) {
1758  			error = deny_write_access(file);
1759  			if (error)
1760  				goto free_vma;
1761  		}
1762  		if (vm_flags & VM_SHARED) {
1763  			error = mapping_map_writable(file->f_mapping);
1764  			if (error)
1765  				goto allow_write_and_free_vma;
1766  		}
1767  
1768  		/* ->mmap() can change vma->vm_file, but must guarantee that
1769  		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1770  		 * and map writably if VM_SHARED is set. This usually means the
1771  		 * new file must not have been exposed to user-space, yet.
1772  		 */
1773  		vma->vm_file = get_file(file);
1774  		error = call_mmap(file, vma);
1775  		if (error)
1776  			goto unmap_and_free_vma;
1777  
1778  		/* Can addr have changed??
1779  		 *
1780  		 * Answer: Yes, several device drivers can do it in their
1781  		 *         f_op->mmap method. -DaveM
1782  		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1783  		 *      be updated for vma_link()
1784  		 */
1785  		WARN_ON_ONCE(addr != vma->vm_start);
1786  
1787  		addr = vma->vm_start;
1788  		vm_flags = vma->vm_flags;
1789  	} else if (vm_flags & VM_SHARED) {
1790  		error = shmem_zero_setup(vma);
1791  		if (error)
1792  			goto free_vma;
1793  	} else {
1794  		vma_set_anonymous(vma);
1795  	}
1796  
1797  	vma_link(mm, vma, prev, rb_link, rb_parent);
1798  	/* Once vma denies write, undo our temporary denial count */
1799  	if (file) {
1800  		if (vm_flags & VM_SHARED)
1801  			mapping_unmap_writable(file->f_mapping);
1802  		if (vm_flags & VM_DENYWRITE)
1803  			allow_write_access(file);
1804  	}
1805  	file = vma->vm_file;
1806  out:
1807  	perf_event_mmap(vma);
1808  
1809  	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1810  	if (vm_flags & VM_LOCKED) {
1811  		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1812  					is_vm_hugetlb_page(vma) ||
1813  					vma == get_gate_vma(current->mm))
1814  			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1815  		else
1816  			mm->locked_vm += (len >> PAGE_SHIFT);
1817  	}
1818  
1819  	if (file)
1820  		uprobe_mmap(vma);
1821  
1822  	/*
1823  	 * New (or expanded) vma always get soft dirty status.
1824  	 * Otherwise user-space soft-dirty page tracker won't
1825  	 * be able to distinguish situation when vma area unmapped,
1826  	 * then new mapped in-place (which must be aimed as
1827  	 * a completely new data area).
1828  	 */
1829  	vma->vm_flags |= VM_SOFTDIRTY;
1830  
1831  	vma_set_page_prot(vma);
1832  
1833  	return addr;
1834  
1835  unmap_and_free_vma:
1836  	vma->vm_file = NULL;
1837  	fput(file);
1838  
1839  	/* Undo any partial mapping done by a device driver. */
1840  	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1841  	charged = 0;
1842  	if (vm_flags & VM_SHARED)
1843  		mapping_unmap_writable(file->f_mapping);
1844  allow_write_and_free_vma:
1845  	if (vm_flags & VM_DENYWRITE)
1846  		allow_write_access(file);
1847  free_vma:
1848  	vm_area_free(vma);
1849  unacct_error:
1850  	if (charged)
1851  		vm_unacct_memory(charged);
1852  	return error;
1853  }
1854  
1855  unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1856  {
1857  	/*
1858  	 * We implement the search by looking for an rbtree node that
1859  	 * immediately follows a suitable gap. That is,
1860  	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1861  	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1862  	 * - gap_end - gap_start >= length
1863  	 */
1864  
1865  	struct mm_struct *mm = current->mm;
1866  	struct vm_area_struct *vma;
1867  	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1868  
1869  	/* Adjust search length to account for worst case alignment overhead */
1870  	length = info->length + info->align_mask;
1871  	if (length < info->length)
1872  		return -ENOMEM;
1873  
1874  	/* Adjust search limits by the desired length */
1875  	if (info->high_limit < length)
1876  		return -ENOMEM;
1877  	high_limit = info->high_limit - length;
1878  
1879  	if (info->low_limit > high_limit)
1880  		return -ENOMEM;
1881  	low_limit = info->low_limit + length;
1882  
1883  	/* Check if rbtree root looks promising */
1884  	if (RB_EMPTY_ROOT(&mm->mm_rb))
1885  		goto check_highest;
1886  	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1887  	if (vma->rb_subtree_gap < length)
1888  		goto check_highest;
1889  
1890  	while (true) {
1891  		/* Visit left subtree if it looks promising */
1892  		gap_end = vm_start_gap(vma);
1893  		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1894  			struct vm_area_struct *left =
1895  				rb_entry(vma->vm_rb.rb_left,
1896  					 struct vm_area_struct, vm_rb);
1897  			if (left->rb_subtree_gap >= length) {
1898  				vma = left;
1899  				continue;
1900  			}
1901  		}
1902  
1903  		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1904  check_current:
1905  		/* Check if current node has a suitable gap */
1906  		if (gap_start > high_limit)
1907  			return -ENOMEM;
1908  		if (gap_end >= low_limit &&
1909  		    gap_end > gap_start && gap_end - gap_start >= length)
1910  			goto found;
1911  
1912  		/* Visit right subtree if it looks promising */
1913  		if (vma->vm_rb.rb_right) {
1914  			struct vm_area_struct *right =
1915  				rb_entry(vma->vm_rb.rb_right,
1916  					 struct vm_area_struct, vm_rb);
1917  			if (right->rb_subtree_gap >= length) {
1918  				vma = right;
1919  				continue;
1920  			}
1921  		}
1922  
1923  		/* Go back up the rbtree to find next candidate node */
1924  		while (true) {
1925  			struct rb_node *prev = &vma->vm_rb;
1926  			if (!rb_parent(prev))
1927  				goto check_highest;
1928  			vma = rb_entry(rb_parent(prev),
1929  				       struct vm_area_struct, vm_rb);
1930  			if (prev == vma->vm_rb.rb_left) {
1931  				gap_start = vm_end_gap(vma->vm_prev);
1932  				gap_end = vm_start_gap(vma);
1933  				goto check_current;
1934  			}
1935  		}
1936  	}
1937  
1938  check_highest:
1939  	/* Check highest gap, which does not precede any rbtree node */
1940  	gap_start = mm->highest_vm_end;
1941  	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1942  	if (gap_start > high_limit)
1943  		return -ENOMEM;
1944  
1945  found:
1946  	/* We found a suitable gap. Clip it with the original low_limit. */
1947  	if (gap_start < info->low_limit)
1948  		gap_start = info->low_limit;
1949  
1950  	/* Adjust gap address to the desired alignment */
1951  	gap_start += (info->align_offset - gap_start) & info->align_mask;
1952  
1953  	VM_BUG_ON(gap_start + info->length > info->high_limit);
1954  	VM_BUG_ON(gap_start + info->length > gap_end);
1955  	return gap_start;
1956  }
1957  
1958  unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1959  {
1960  	struct mm_struct *mm = current->mm;
1961  	struct vm_area_struct *vma;
1962  	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1963  
1964  	/* Adjust search length to account for worst case alignment overhead */
1965  	length = info->length + info->align_mask;
1966  	if (length < info->length)
1967  		return -ENOMEM;
1968  
1969  	/*
1970  	 * Adjust search limits by the desired length.
1971  	 * See implementation comment at top of unmapped_area().
1972  	 */
1973  	gap_end = info->high_limit;
1974  	if (gap_end < length)
1975  		return -ENOMEM;
1976  	high_limit = gap_end - length;
1977  
1978  	if (info->low_limit > high_limit)
1979  		return -ENOMEM;
1980  	low_limit = info->low_limit + length;
1981  
1982  	/* Check highest gap, which does not precede any rbtree node */
1983  	gap_start = mm->highest_vm_end;
1984  	if (gap_start <= high_limit)
1985  		goto found_highest;
1986  
1987  	/* Check if rbtree root looks promising */
1988  	if (RB_EMPTY_ROOT(&mm->mm_rb))
1989  		return -ENOMEM;
1990  	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1991  	if (vma->rb_subtree_gap < length)
1992  		return -ENOMEM;
1993  
1994  	while (true) {
1995  		/* Visit right subtree if it looks promising */
1996  		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1997  		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1998  			struct vm_area_struct *right =
1999  				rb_entry(vma->vm_rb.rb_right,
2000  					 struct vm_area_struct, vm_rb);
2001  			if (right->rb_subtree_gap >= length) {
2002  				vma = right;
2003  				continue;
2004  			}
2005  		}
2006  
2007  check_current:
2008  		/* Check if current node has a suitable gap */
2009  		gap_end = vm_start_gap(vma);
2010  		if (gap_end < low_limit)
2011  			return -ENOMEM;
2012  		if (gap_start <= high_limit &&
2013  		    gap_end > gap_start && gap_end - gap_start >= length)
2014  			goto found;
2015  
2016  		/* Visit left subtree if it looks promising */
2017  		if (vma->vm_rb.rb_left) {
2018  			struct vm_area_struct *left =
2019  				rb_entry(vma->vm_rb.rb_left,
2020  					 struct vm_area_struct, vm_rb);
2021  			if (left->rb_subtree_gap >= length) {
2022  				vma = left;
2023  				continue;
2024  			}
2025  		}
2026  
2027  		/* Go back up the rbtree to find next candidate node */
2028  		while (true) {
2029  			struct rb_node *prev = &vma->vm_rb;
2030  			if (!rb_parent(prev))
2031  				return -ENOMEM;
2032  			vma = rb_entry(rb_parent(prev),
2033  				       struct vm_area_struct, vm_rb);
2034  			if (prev == vma->vm_rb.rb_right) {
2035  				gap_start = vma->vm_prev ?
2036  					vm_end_gap(vma->vm_prev) : 0;
2037  				goto check_current;
2038  			}
2039  		}
2040  	}
2041  
2042  found:
2043  	/* We found a suitable gap. Clip it with the original high_limit. */
2044  	if (gap_end > info->high_limit)
2045  		gap_end = info->high_limit;
2046  
2047  found_highest:
2048  	/* Compute highest gap address at the desired alignment */
2049  	gap_end -= info->length;
2050  	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2051  
2052  	VM_BUG_ON(gap_end < info->low_limit);
2053  	VM_BUG_ON(gap_end < gap_start);
2054  	return gap_end;
2055  }
2056  
2057  
2058  #ifndef arch_get_mmap_end
2059  #define arch_get_mmap_end(addr)	(TASK_SIZE)
2060  #endif
2061  
2062  #ifndef arch_get_mmap_base
2063  #define arch_get_mmap_base(addr, base) (base)
2064  #endif
2065  
2066  /* Get an address range which is currently unmapped.
2067   * For shmat() with addr=0.
2068   *
2069   * Ugly calling convention alert:
2070   * Return value with the low bits set means error value,
2071   * ie
2072   *	if (ret & ~PAGE_MASK)
2073   *		error = ret;
2074   *
2075   * This function "knows" that -ENOMEM has the bits set.
2076   */
2077  #ifndef HAVE_ARCH_UNMAPPED_AREA
2078  unsigned long
2079  arch_get_unmapped_area(struct file *filp, unsigned long addr,
2080  		unsigned long len, unsigned long pgoff, unsigned long flags)
2081  {
2082  	struct mm_struct *mm = current->mm;
2083  	struct vm_area_struct *vma, *prev;
2084  	struct vm_unmapped_area_info info;
2085  	const unsigned long mmap_end = arch_get_mmap_end(addr);
2086  
2087  	if (len > mmap_end - mmap_min_addr)
2088  		return -ENOMEM;
2089  
2090  	if (flags & MAP_FIXED)
2091  		return addr;
2092  
2093  	if (addr) {
2094  		addr = PAGE_ALIGN(addr);
2095  		vma = find_vma_prev(mm, addr, &prev);
2096  		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2097  		    (!vma || addr + len <= vm_start_gap(vma)) &&
2098  		    (!prev || addr >= vm_end_gap(prev)))
2099  			return addr;
2100  	}
2101  
2102  	info.flags = 0;
2103  	info.length = len;
2104  	info.low_limit = mm->mmap_base;
2105  	info.high_limit = mmap_end;
2106  	info.align_mask = 0;
2107  	return vm_unmapped_area(&info);
2108  }
2109  #endif
2110  
2111  /*
2112   * This mmap-allocator allocates new areas top-down from below the
2113   * stack's low limit (the base):
2114   */
2115  #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2116  unsigned long
2117  arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2118  			  unsigned long len, unsigned long pgoff,
2119  			  unsigned long flags)
2120  {
2121  	struct vm_area_struct *vma, *prev;
2122  	struct mm_struct *mm = current->mm;
2123  	struct vm_unmapped_area_info info;
2124  	const unsigned long mmap_end = arch_get_mmap_end(addr);
2125  
2126  	/* requested length too big for entire address space */
2127  	if (len > mmap_end - mmap_min_addr)
2128  		return -ENOMEM;
2129  
2130  	if (flags & MAP_FIXED)
2131  		return addr;
2132  
2133  	/* requesting a specific address */
2134  	if (addr) {
2135  		addr = PAGE_ALIGN(addr);
2136  		vma = find_vma_prev(mm, addr, &prev);
2137  		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2138  				(!vma || addr + len <= vm_start_gap(vma)) &&
2139  				(!prev || addr >= vm_end_gap(prev)))
2140  			return addr;
2141  	}
2142  
2143  	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2144  	info.length = len;
2145  	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2146  	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2147  	info.align_mask = 0;
2148  	addr = vm_unmapped_area(&info);
2149  
2150  	/*
2151  	 * A failed mmap() very likely causes application failure,
2152  	 * so fall back to the bottom-up function here. This scenario
2153  	 * can happen with large stack limits and large mmap()
2154  	 * allocations.
2155  	 */
2156  	if (offset_in_page(addr)) {
2157  		VM_BUG_ON(addr != -ENOMEM);
2158  		info.flags = 0;
2159  		info.low_limit = TASK_UNMAPPED_BASE;
2160  		info.high_limit = mmap_end;
2161  		addr = vm_unmapped_area(&info);
2162  	}
2163  
2164  	return addr;
2165  }
2166  #endif
2167  
2168  unsigned long
2169  get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2170  		unsigned long pgoff, unsigned long flags)
2171  {
2172  	unsigned long (*get_area)(struct file *, unsigned long,
2173  				  unsigned long, unsigned long, unsigned long);
2174  
2175  	unsigned long error = arch_mmap_check(addr, len, flags);
2176  	if (error)
2177  		return error;
2178  
2179  	/* Careful about overflows.. */
2180  	if (len > TASK_SIZE)
2181  		return -ENOMEM;
2182  
2183  	get_area = current->mm->get_unmapped_area;
2184  	if (file) {
2185  		if (file->f_op->get_unmapped_area)
2186  			get_area = file->f_op->get_unmapped_area;
2187  	} else if (flags & MAP_SHARED) {
2188  		/*
2189  		 * mmap_region() will call shmem_zero_setup() to create a file,
2190  		 * so use shmem's get_unmapped_area in case it can be huge.
2191  		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2192  		 */
2193  		pgoff = 0;
2194  		get_area = shmem_get_unmapped_area;
2195  	}
2196  
2197  	addr = get_area(file, addr, len, pgoff, flags);
2198  	if (IS_ERR_VALUE(addr))
2199  		return addr;
2200  
2201  	if (addr > TASK_SIZE - len)
2202  		return -ENOMEM;
2203  	if (offset_in_page(addr))
2204  		return -EINVAL;
2205  
2206  	error = security_mmap_addr(addr);
2207  	return error ? error : addr;
2208  }
2209  
2210  EXPORT_SYMBOL(get_unmapped_area);
2211  
2212  /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2213  struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2214  {
2215  	struct rb_node *rb_node;
2216  	struct vm_area_struct *vma;
2217  
2218  	/* Check the cache first. */
2219  	vma = vmacache_find(mm, addr);
2220  	if (likely(vma))
2221  		return vma;
2222  
2223  	rb_node = mm->mm_rb.rb_node;
2224  
2225  	while (rb_node) {
2226  		struct vm_area_struct *tmp;
2227  
2228  		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2229  
2230  		if (tmp->vm_end > addr) {
2231  			vma = tmp;
2232  			if (tmp->vm_start <= addr)
2233  				break;
2234  			rb_node = rb_node->rb_left;
2235  		} else
2236  			rb_node = rb_node->rb_right;
2237  	}
2238  
2239  	if (vma)
2240  		vmacache_update(addr, vma);
2241  	return vma;
2242  }
2243  
2244  EXPORT_SYMBOL(find_vma);
2245  
2246  /*
2247   * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2248   */
2249  struct vm_area_struct *
2250  find_vma_prev(struct mm_struct *mm, unsigned long addr,
2251  			struct vm_area_struct **pprev)
2252  {
2253  	struct vm_area_struct *vma;
2254  
2255  	vma = find_vma(mm, addr);
2256  	if (vma) {
2257  		*pprev = vma->vm_prev;
2258  	} else {
2259  		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2260  
2261  		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2262  	}
2263  	return vma;
2264  }
2265  
2266  /*
2267   * Verify that the stack growth is acceptable and
2268   * update accounting. This is shared with both the
2269   * grow-up and grow-down cases.
2270   */
2271  static int acct_stack_growth(struct vm_area_struct *vma,
2272  			     unsigned long size, unsigned long grow)
2273  {
2274  	struct mm_struct *mm = vma->vm_mm;
2275  	unsigned long new_start;
2276  
2277  	/* address space limit tests */
2278  	if (!may_expand_vm(mm, vma->vm_flags, grow))
2279  		return -ENOMEM;
2280  
2281  	/* Stack limit test */
2282  	if (size > rlimit(RLIMIT_STACK))
2283  		return -ENOMEM;
2284  
2285  	/* mlock limit tests */
2286  	if (vma->vm_flags & VM_LOCKED) {
2287  		unsigned long locked;
2288  		unsigned long limit;
2289  		locked = mm->locked_vm + grow;
2290  		limit = rlimit(RLIMIT_MEMLOCK);
2291  		limit >>= PAGE_SHIFT;
2292  		if (locked > limit && !capable(CAP_IPC_LOCK))
2293  			return -ENOMEM;
2294  	}
2295  
2296  	/* Check to ensure the stack will not grow into a hugetlb-only region */
2297  	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2298  			vma->vm_end - size;
2299  	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2300  		return -EFAULT;
2301  
2302  	/*
2303  	 * Overcommit..  This must be the final test, as it will
2304  	 * update security statistics.
2305  	 */
2306  	if (security_vm_enough_memory_mm(mm, grow))
2307  		return -ENOMEM;
2308  
2309  	return 0;
2310  }
2311  
2312  #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2313  /*
2314   * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2315   * vma is the last one with address > vma->vm_end.  Have to extend vma.
2316   */
2317  int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2318  {
2319  	struct mm_struct *mm = vma->vm_mm;
2320  	struct vm_area_struct *next;
2321  	unsigned long gap_addr;
2322  	int error = 0;
2323  
2324  	if (!(vma->vm_flags & VM_GROWSUP))
2325  		return -EFAULT;
2326  
2327  	/* Guard against exceeding limits of the address space. */
2328  	address &= PAGE_MASK;
2329  	if (address >= (TASK_SIZE & PAGE_MASK))
2330  		return -ENOMEM;
2331  	address += PAGE_SIZE;
2332  
2333  	/* Enforce stack_guard_gap */
2334  	gap_addr = address + stack_guard_gap;
2335  
2336  	/* Guard against overflow */
2337  	if (gap_addr < address || gap_addr > TASK_SIZE)
2338  		gap_addr = TASK_SIZE;
2339  
2340  	next = vma->vm_next;
2341  	if (next && next->vm_start < gap_addr &&
2342  			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2343  		if (!(next->vm_flags & VM_GROWSUP))
2344  			return -ENOMEM;
2345  		/* Check that both stack segments have the same anon_vma? */
2346  	}
2347  
2348  	/* We must make sure the anon_vma is allocated. */
2349  	if (unlikely(anon_vma_prepare(vma)))
2350  		return -ENOMEM;
2351  
2352  	/*
2353  	 * vma->vm_start/vm_end cannot change under us because the caller
2354  	 * is required to hold the mmap_sem in read mode.  We need the
2355  	 * anon_vma lock to serialize against concurrent expand_stacks.
2356  	 */
2357  	anon_vma_lock_write(vma->anon_vma);
2358  
2359  	/* Somebody else might have raced and expanded it already */
2360  	if (address > vma->vm_end) {
2361  		unsigned long size, grow;
2362  
2363  		size = address - vma->vm_start;
2364  		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2365  
2366  		error = -ENOMEM;
2367  		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2368  			error = acct_stack_growth(vma, size, grow);
2369  			if (!error) {
2370  				/*
2371  				 * vma_gap_update() doesn't support concurrent
2372  				 * updates, but we only hold a shared mmap_sem
2373  				 * lock here, so we need to protect against
2374  				 * concurrent vma expansions.
2375  				 * anon_vma_lock_write() doesn't help here, as
2376  				 * we don't guarantee that all growable vmas
2377  				 * in a mm share the same root anon vma.
2378  				 * So, we reuse mm->page_table_lock to guard
2379  				 * against concurrent vma expansions.
2380  				 */
2381  				spin_lock(&mm->page_table_lock);
2382  				if (vma->vm_flags & VM_LOCKED)
2383  					mm->locked_vm += grow;
2384  				vm_stat_account(mm, vma->vm_flags, grow);
2385  				anon_vma_interval_tree_pre_update_vma(vma);
2386  				vma->vm_end = address;
2387  				anon_vma_interval_tree_post_update_vma(vma);
2388  				if (vma->vm_next)
2389  					vma_gap_update(vma->vm_next);
2390  				else
2391  					mm->highest_vm_end = vm_end_gap(vma);
2392  				spin_unlock(&mm->page_table_lock);
2393  
2394  				perf_event_mmap(vma);
2395  			}
2396  		}
2397  	}
2398  	anon_vma_unlock_write(vma->anon_vma);
2399  	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2400  	validate_mm(mm);
2401  	return error;
2402  }
2403  #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2404  
2405  /*
2406   * vma is the first one with address < vma->vm_start.  Have to extend vma.
2407   */
2408  int expand_downwards(struct vm_area_struct *vma,
2409  				   unsigned long address)
2410  {
2411  	struct mm_struct *mm = vma->vm_mm;
2412  	struct vm_area_struct *prev;
2413  	int error = 0;
2414  
2415  	address &= PAGE_MASK;
2416  	if (address < mmap_min_addr)
2417  		return -EPERM;
2418  
2419  	/* Enforce stack_guard_gap */
2420  	prev = vma->vm_prev;
2421  	/* Check that both stack segments have the same anon_vma? */
2422  	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2423  			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2424  		if (address - prev->vm_end < stack_guard_gap)
2425  			return -ENOMEM;
2426  	}
2427  
2428  	/* We must make sure the anon_vma is allocated. */
2429  	if (unlikely(anon_vma_prepare(vma)))
2430  		return -ENOMEM;
2431  
2432  	/*
2433  	 * vma->vm_start/vm_end cannot change under us because the caller
2434  	 * is required to hold the mmap_sem in read mode.  We need the
2435  	 * anon_vma lock to serialize against concurrent expand_stacks.
2436  	 */
2437  	anon_vma_lock_write(vma->anon_vma);
2438  
2439  	/* Somebody else might have raced and expanded it already */
2440  	if (address < vma->vm_start) {
2441  		unsigned long size, grow;
2442  
2443  		size = vma->vm_end - address;
2444  		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2445  
2446  		error = -ENOMEM;
2447  		if (grow <= vma->vm_pgoff) {
2448  			error = acct_stack_growth(vma, size, grow);
2449  			if (!error) {
2450  				/*
2451  				 * vma_gap_update() doesn't support concurrent
2452  				 * updates, but we only hold a shared mmap_sem
2453  				 * lock here, so we need to protect against
2454  				 * concurrent vma expansions.
2455  				 * anon_vma_lock_write() doesn't help here, as
2456  				 * we don't guarantee that all growable vmas
2457  				 * in a mm share the same root anon vma.
2458  				 * So, we reuse mm->page_table_lock to guard
2459  				 * against concurrent vma expansions.
2460  				 */
2461  				spin_lock(&mm->page_table_lock);
2462  				if (vma->vm_flags & VM_LOCKED)
2463  					mm->locked_vm += grow;
2464  				vm_stat_account(mm, vma->vm_flags, grow);
2465  				anon_vma_interval_tree_pre_update_vma(vma);
2466  				vma->vm_start = address;
2467  				vma->vm_pgoff -= grow;
2468  				anon_vma_interval_tree_post_update_vma(vma);
2469  				vma_gap_update(vma);
2470  				spin_unlock(&mm->page_table_lock);
2471  
2472  				perf_event_mmap(vma);
2473  			}
2474  		}
2475  	}
2476  	anon_vma_unlock_write(vma->anon_vma);
2477  	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2478  	validate_mm(mm);
2479  	return error;
2480  }
2481  
2482  /* enforced gap between the expanding stack and other mappings. */
2483  unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2484  
2485  static int __init cmdline_parse_stack_guard_gap(char *p)
2486  {
2487  	unsigned long val;
2488  	char *endptr;
2489  
2490  	val = simple_strtoul(p, &endptr, 10);
2491  	if (!*endptr)
2492  		stack_guard_gap = val << PAGE_SHIFT;
2493  
2494  	return 0;
2495  }
2496  __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2497  
2498  #ifdef CONFIG_STACK_GROWSUP
2499  int expand_stack(struct vm_area_struct *vma, unsigned long address)
2500  {
2501  	return expand_upwards(vma, address);
2502  }
2503  
2504  struct vm_area_struct *
2505  find_extend_vma(struct mm_struct *mm, unsigned long addr)
2506  {
2507  	struct vm_area_struct *vma, *prev;
2508  
2509  	addr &= PAGE_MASK;
2510  	vma = find_vma_prev(mm, addr, &prev);
2511  	if (vma && (vma->vm_start <= addr))
2512  		return vma;
2513  	/* don't alter vm_end if the coredump is running */
2514  	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2515  		return NULL;
2516  	if (prev->vm_flags & VM_LOCKED)
2517  		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2518  	return prev;
2519  }
2520  #else
2521  int expand_stack(struct vm_area_struct *vma, unsigned long address)
2522  {
2523  	return expand_downwards(vma, address);
2524  }
2525  
2526  struct vm_area_struct *
2527  find_extend_vma(struct mm_struct *mm, unsigned long addr)
2528  {
2529  	struct vm_area_struct *vma;
2530  	unsigned long start;
2531  
2532  	addr &= PAGE_MASK;
2533  	vma = find_vma(mm, addr);
2534  	if (!vma)
2535  		return NULL;
2536  	if (vma->vm_start <= addr)
2537  		return vma;
2538  	if (!(vma->vm_flags & VM_GROWSDOWN))
2539  		return NULL;
2540  	/* don't alter vm_start if the coredump is running */
2541  	if (!mmget_still_valid(mm))
2542  		return NULL;
2543  	start = vma->vm_start;
2544  	if (expand_stack(vma, addr))
2545  		return NULL;
2546  	if (vma->vm_flags & VM_LOCKED)
2547  		populate_vma_page_range(vma, addr, start, NULL);
2548  	return vma;
2549  }
2550  #endif
2551  
2552  EXPORT_SYMBOL_GPL(find_extend_vma);
2553  
2554  /*
2555   * Ok - we have the memory areas we should free on the vma list,
2556   * so release them, and do the vma updates.
2557   *
2558   * Called with the mm semaphore held.
2559   */
2560  static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2561  {
2562  	unsigned long nr_accounted = 0;
2563  
2564  	/* Update high watermark before we lower total_vm */
2565  	update_hiwater_vm(mm);
2566  	do {
2567  		long nrpages = vma_pages(vma);
2568  
2569  		if (vma->vm_flags & VM_ACCOUNT)
2570  			nr_accounted += nrpages;
2571  		vm_stat_account(mm, vma->vm_flags, -nrpages);
2572  		vma = remove_vma(vma);
2573  	} while (vma);
2574  	vm_unacct_memory(nr_accounted);
2575  	validate_mm(mm);
2576  }
2577  
2578  /*
2579   * Get rid of page table information in the indicated region.
2580   *
2581   * Called with the mm semaphore held.
2582   */
2583  static void unmap_region(struct mm_struct *mm,
2584  		struct vm_area_struct *vma, struct vm_area_struct *prev,
2585  		unsigned long start, unsigned long end)
2586  {
2587  	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2588  	struct mmu_gather tlb;
2589  
2590  	lru_add_drain();
2591  	tlb_gather_mmu(&tlb, mm, start, end);
2592  	update_hiwater_rss(mm);
2593  	unmap_vmas(&tlb, vma, start, end);
2594  	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2595  				 next ? next->vm_start : USER_PGTABLES_CEILING);
2596  	tlb_finish_mmu(&tlb, start, end);
2597  }
2598  
2599  /*
2600   * Create a list of vma's touched by the unmap, removing them from the mm's
2601   * vma list as we go..
2602   */
2603  static void
2604  detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2605  	struct vm_area_struct *prev, unsigned long end)
2606  {
2607  	struct vm_area_struct **insertion_point;
2608  	struct vm_area_struct *tail_vma = NULL;
2609  
2610  	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2611  	vma->vm_prev = NULL;
2612  	do {
2613  		vma_rb_erase(vma, &mm->mm_rb);
2614  		mm->map_count--;
2615  		tail_vma = vma;
2616  		vma = vma->vm_next;
2617  	} while (vma && vma->vm_start < end);
2618  	*insertion_point = vma;
2619  	if (vma) {
2620  		vma->vm_prev = prev;
2621  		vma_gap_update(vma);
2622  	} else
2623  		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2624  	tail_vma->vm_next = NULL;
2625  
2626  	/* Kill the cache */
2627  	vmacache_invalidate(mm);
2628  }
2629  
2630  /*
2631   * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2632   * has already been checked or doesn't make sense to fail.
2633   */
2634  int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2635  		unsigned long addr, int new_below)
2636  {
2637  	struct vm_area_struct *new;
2638  	int err;
2639  
2640  	if (vma->vm_ops && vma->vm_ops->split) {
2641  		err = vma->vm_ops->split(vma, addr);
2642  		if (err)
2643  			return err;
2644  	}
2645  
2646  	new = vm_area_dup(vma);
2647  	if (!new)
2648  		return -ENOMEM;
2649  
2650  	if (new_below)
2651  		new->vm_end = addr;
2652  	else {
2653  		new->vm_start = addr;
2654  		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2655  	}
2656  
2657  	err = vma_dup_policy(vma, new);
2658  	if (err)
2659  		goto out_free_vma;
2660  
2661  	err = anon_vma_clone(new, vma);
2662  	if (err)
2663  		goto out_free_mpol;
2664  
2665  	if (new->vm_file)
2666  		get_file(new->vm_file);
2667  
2668  	if (new->vm_ops && new->vm_ops->open)
2669  		new->vm_ops->open(new);
2670  
2671  	if (new_below)
2672  		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2673  			((addr - new->vm_start) >> PAGE_SHIFT), new);
2674  	else
2675  		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2676  
2677  	/* Success. */
2678  	if (!err)
2679  		return 0;
2680  
2681  	/* Clean everything up if vma_adjust failed. */
2682  	if (new->vm_ops && new->vm_ops->close)
2683  		new->vm_ops->close(new);
2684  	if (new->vm_file)
2685  		fput(new->vm_file);
2686  	unlink_anon_vmas(new);
2687   out_free_mpol:
2688  	mpol_put(vma_policy(new));
2689   out_free_vma:
2690  	vm_area_free(new);
2691  	return err;
2692  }
2693  
2694  /*
2695   * Split a vma into two pieces at address 'addr', a new vma is allocated
2696   * either for the first part or the tail.
2697   */
2698  int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2699  	      unsigned long addr, int new_below)
2700  {
2701  	if (mm->map_count >= sysctl_max_map_count)
2702  		return -ENOMEM;
2703  
2704  	return __split_vma(mm, vma, addr, new_below);
2705  }
2706  
2707  /* Munmap is split into 2 main parts -- this part which finds
2708   * what needs doing, and the areas themselves, which do the
2709   * work.  This now handles partial unmappings.
2710   * Jeremy Fitzhardinge <jeremy@goop.org>
2711   */
2712  int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2713  		struct list_head *uf, bool downgrade)
2714  {
2715  	unsigned long end;
2716  	struct vm_area_struct *vma, *prev, *last;
2717  
2718  	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2719  		return -EINVAL;
2720  
2721  	len = PAGE_ALIGN(len);
2722  	end = start + len;
2723  	if (len == 0)
2724  		return -EINVAL;
2725  
2726  	/*
2727  	 * arch_unmap() might do unmaps itself.  It must be called
2728  	 * and finish any rbtree manipulation before this code
2729  	 * runs and also starts to manipulate the rbtree.
2730  	 */
2731  	arch_unmap(mm, start, end);
2732  
2733  	/* Find the first overlapping VMA */
2734  	vma = find_vma(mm, start);
2735  	if (!vma)
2736  		return 0;
2737  	prev = vma->vm_prev;
2738  	/* we have  start < vma->vm_end  */
2739  
2740  	/* if it doesn't overlap, we have nothing.. */
2741  	if (vma->vm_start >= end)
2742  		return 0;
2743  
2744  	/*
2745  	 * If we need to split any vma, do it now to save pain later.
2746  	 *
2747  	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2748  	 * unmapped vm_area_struct will remain in use: so lower split_vma
2749  	 * places tmp vma above, and higher split_vma places tmp vma below.
2750  	 */
2751  	if (start > vma->vm_start) {
2752  		int error;
2753  
2754  		/*
2755  		 * Make sure that map_count on return from munmap() will
2756  		 * not exceed its limit; but let map_count go just above
2757  		 * its limit temporarily, to help free resources as expected.
2758  		 */
2759  		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2760  			return -ENOMEM;
2761  
2762  		error = __split_vma(mm, vma, start, 0);
2763  		if (error)
2764  			return error;
2765  		prev = vma;
2766  	}
2767  
2768  	/* Does it split the last one? */
2769  	last = find_vma(mm, end);
2770  	if (last && end > last->vm_start) {
2771  		int error = __split_vma(mm, last, end, 1);
2772  		if (error)
2773  			return error;
2774  	}
2775  	vma = prev ? prev->vm_next : mm->mmap;
2776  
2777  	if (unlikely(uf)) {
2778  		/*
2779  		 * If userfaultfd_unmap_prep returns an error the vmas
2780  		 * will remain splitted, but userland will get a
2781  		 * highly unexpected error anyway. This is no
2782  		 * different than the case where the first of the two
2783  		 * __split_vma fails, but we don't undo the first
2784  		 * split, despite we could. This is unlikely enough
2785  		 * failure that it's not worth optimizing it for.
2786  		 */
2787  		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2788  		if (error)
2789  			return error;
2790  	}
2791  
2792  	/*
2793  	 * unlock any mlock()ed ranges before detaching vmas
2794  	 */
2795  	if (mm->locked_vm) {
2796  		struct vm_area_struct *tmp = vma;
2797  		while (tmp && tmp->vm_start < end) {
2798  			if (tmp->vm_flags & VM_LOCKED) {
2799  				mm->locked_vm -= vma_pages(tmp);
2800  				munlock_vma_pages_all(tmp);
2801  			}
2802  
2803  			tmp = tmp->vm_next;
2804  		}
2805  	}
2806  
2807  	/* Detach vmas from rbtree */
2808  	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2809  
2810  	if (downgrade)
2811  		downgrade_write(&mm->mmap_sem);
2812  
2813  	unmap_region(mm, vma, prev, start, end);
2814  
2815  	/* Fix up all other VM information */
2816  	remove_vma_list(mm, vma);
2817  
2818  	return downgrade ? 1 : 0;
2819  }
2820  
2821  int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2822  	      struct list_head *uf)
2823  {
2824  	return __do_munmap(mm, start, len, uf, false);
2825  }
2826  
2827  static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2828  {
2829  	int ret;
2830  	struct mm_struct *mm = current->mm;
2831  	LIST_HEAD(uf);
2832  
2833  	if (down_write_killable(&mm->mmap_sem))
2834  		return -EINTR;
2835  
2836  	ret = __do_munmap(mm, start, len, &uf, downgrade);
2837  	/*
2838  	 * Returning 1 indicates mmap_sem is downgraded.
2839  	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2840  	 * it to 0 before return.
2841  	 */
2842  	if (ret == 1) {
2843  		up_read(&mm->mmap_sem);
2844  		ret = 0;
2845  	} else
2846  		up_write(&mm->mmap_sem);
2847  
2848  	userfaultfd_unmap_complete(mm, &uf);
2849  	return ret;
2850  }
2851  
2852  int vm_munmap(unsigned long start, size_t len)
2853  {
2854  	return __vm_munmap(start, len, false);
2855  }
2856  EXPORT_SYMBOL(vm_munmap);
2857  
2858  SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2859  {
2860  	addr = untagged_addr(addr);
2861  	profile_munmap(addr);
2862  	return __vm_munmap(addr, len, true);
2863  }
2864  
2865  
2866  /*
2867   * Emulation of deprecated remap_file_pages() syscall.
2868   */
2869  SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2870  		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2871  {
2872  
2873  	struct mm_struct *mm = current->mm;
2874  	struct vm_area_struct *vma;
2875  	unsigned long populate = 0;
2876  	unsigned long ret = -EINVAL;
2877  	struct file *file;
2878  
2879  	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2880  		     current->comm, current->pid);
2881  
2882  	if (prot)
2883  		return ret;
2884  	start = start & PAGE_MASK;
2885  	size = size & PAGE_MASK;
2886  
2887  	if (start + size <= start)
2888  		return ret;
2889  
2890  	/* Does pgoff wrap? */
2891  	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2892  		return ret;
2893  
2894  	if (down_write_killable(&mm->mmap_sem))
2895  		return -EINTR;
2896  
2897  	vma = find_vma(mm, start);
2898  
2899  	if (!vma || !(vma->vm_flags & VM_SHARED))
2900  		goto out;
2901  
2902  	if (start < vma->vm_start)
2903  		goto out;
2904  
2905  	if (start + size > vma->vm_end) {
2906  		struct vm_area_struct *next;
2907  
2908  		for (next = vma->vm_next; next; next = next->vm_next) {
2909  			/* hole between vmas ? */
2910  			if (next->vm_start != next->vm_prev->vm_end)
2911  				goto out;
2912  
2913  			if (next->vm_file != vma->vm_file)
2914  				goto out;
2915  
2916  			if (next->vm_flags != vma->vm_flags)
2917  				goto out;
2918  
2919  			if (start + size <= next->vm_end)
2920  				break;
2921  		}
2922  
2923  		if (!next)
2924  			goto out;
2925  	}
2926  
2927  	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2928  	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2929  	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2930  
2931  	flags &= MAP_NONBLOCK;
2932  	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2933  	if (vma->vm_flags & VM_LOCKED) {
2934  		struct vm_area_struct *tmp;
2935  		flags |= MAP_LOCKED;
2936  
2937  		/* drop PG_Mlocked flag for over-mapped range */
2938  		for (tmp = vma; tmp->vm_start >= start + size;
2939  				tmp = tmp->vm_next) {
2940  			/*
2941  			 * Split pmd and munlock page on the border
2942  			 * of the range.
2943  			 */
2944  			vma_adjust_trans_huge(tmp, start, start + size, 0);
2945  
2946  			munlock_vma_pages_range(tmp,
2947  					max(tmp->vm_start, start),
2948  					min(tmp->vm_end, start + size));
2949  		}
2950  	}
2951  
2952  	file = get_file(vma->vm_file);
2953  	ret = do_mmap_pgoff(vma->vm_file, start, size,
2954  			prot, flags, pgoff, &populate, NULL);
2955  	fput(file);
2956  out:
2957  	up_write(&mm->mmap_sem);
2958  	if (populate)
2959  		mm_populate(ret, populate);
2960  	if (!IS_ERR_VALUE(ret))
2961  		ret = 0;
2962  	return ret;
2963  }
2964  
2965  /*
2966   *  this is really a simplified "do_mmap".  it only handles
2967   *  anonymous maps.  eventually we may be able to do some
2968   *  brk-specific accounting here.
2969   */
2970  static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2971  {
2972  	struct mm_struct *mm = current->mm;
2973  	struct vm_area_struct *vma, *prev;
2974  	struct rb_node **rb_link, *rb_parent;
2975  	pgoff_t pgoff = addr >> PAGE_SHIFT;
2976  	int error;
2977  	unsigned long mapped_addr;
2978  
2979  	/* Until we need other flags, refuse anything except VM_EXEC. */
2980  	if ((flags & (~VM_EXEC)) != 0)
2981  		return -EINVAL;
2982  	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2983  
2984  	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2985  	if (IS_ERR_VALUE(mapped_addr))
2986  		return mapped_addr;
2987  
2988  	error = mlock_future_check(mm, mm->def_flags, len);
2989  	if (error)
2990  		return error;
2991  
2992  	/*
2993  	 * Clear old maps.  this also does some error checking for us
2994  	 */
2995  	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2996  			      &rb_parent)) {
2997  		if (do_munmap(mm, addr, len, uf))
2998  			return -ENOMEM;
2999  	}
3000  
3001  	/* Check against address space limits *after* clearing old maps... */
3002  	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3003  		return -ENOMEM;
3004  
3005  	if (mm->map_count > sysctl_max_map_count)
3006  		return -ENOMEM;
3007  
3008  	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3009  		return -ENOMEM;
3010  
3011  	/* Can we just expand an old private anonymous mapping? */
3012  	vma = vma_merge(mm, prev, addr, addr + len, flags,
3013  			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3014  	if (vma)
3015  		goto out;
3016  
3017  	/*
3018  	 * create a vma struct for an anonymous mapping
3019  	 */
3020  	vma = vm_area_alloc(mm);
3021  	if (!vma) {
3022  		vm_unacct_memory(len >> PAGE_SHIFT);
3023  		return -ENOMEM;
3024  	}
3025  
3026  	vma_set_anonymous(vma);
3027  	vma->vm_start = addr;
3028  	vma->vm_end = addr + len;
3029  	vma->vm_pgoff = pgoff;
3030  	vma->vm_flags = flags;
3031  	vma->vm_page_prot = vm_get_page_prot(flags);
3032  	vma_link(mm, vma, prev, rb_link, rb_parent);
3033  out:
3034  	perf_event_mmap(vma);
3035  	mm->total_vm += len >> PAGE_SHIFT;
3036  	mm->data_vm += len >> PAGE_SHIFT;
3037  	if (flags & VM_LOCKED)
3038  		mm->locked_vm += (len >> PAGE_SHIFT);
3039  	vma->vm_flags |= VM_SOFTDIRTY;
3040  	return 0;
3041  }
3042  
3043  int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3044  {
3045  	struct mm_struct *mm = current->mm;
3046  	unsigned long len;
3047  	int ret;
3048  	bool populate;
3049  	LIST_HEAD(uf);
3050  
3051  	len = PAGE_ALIGN(request);
3052  	if (len < request)
3053  		return -ENOMEM;
3054  	if (!len)
3055  		return 0;
3056  
3057  	if (down_write_killable(&mm->mmap_sem))
3058  		return -EINTR;
3059  
3060  	ret = do_brk_flags(addr, len, flags, &uf);
3061  	populate = ((mm->def_flags & VM_LOCKED) != 0);
3062  	up_write(&mm->mmap_sem);
3063  	userfaultfd_unmap_complete(mm, &uf);
3064  	if (populate && !ret)
3065  		mm_populate(addr, len);
3066  	return ret;
3067  }
3068  EXPORT_SYMBOL(vm_brk_flags);
3069  
3070  int vm_brk(unsigned long addr, unsigned long len)
3071  {
3072  	return vm_brk_flags(addr, len, 0);
3073  }
3074  EXPORT_SYMBOL(vm_brk);
3075  
3076  /* Release all mmaps. */
3077  void exit_mmap(struct mm_struct *mm)
3078  {
3079  	struct mmu_gather tlb;
3080  	struct vm_area_struct *vma;
3081  	unsigned long nr_accounted = 0;
3082  
3083  	/* mm's last user has gone, and its about to be pulled down */
3084  	mmu_notifier_release(mm);
3085  
3086  	if (unlikely(mm_is_oom_victim(mm))) {
3087  		/*
3088  		 * Manually reap the mm to free as much memory as possible.
3089  		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3090  		 * this mm from further consideration.  Taking mm->mmap_sem for
3091  		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3092  		 * reaper will not run on this mm again after mmap_sem is
3093  		 * dropped.
3094  		 *
3095  		 * Nothing can be holding mm->mmap_sem here and the above call
3096  		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3097  		 * __oom_reap_task_mm() will not block.
3098  		 *
3099  		 * This needs to be done before calling munlock_vma_pages_all(),
3100  		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3101  		 * reliably test it.
3102  		 */
3103  		(void)__oom_reap_task_mm(mm);
3104  
3105  		set_bit(MMF_OOM_SKIP, &mm->flags);
3106  		down_write(&mm->mmap_sem);
3107  		up_write(&mm->mmap_sem);
3108  	}
3109  
3110  	if (mm->locked_vm) {
3111  		vma = mm->mmap;
3112  		while (vma) {
3113  			if (vma->vm_flags & VM_LOCKED)
3114  				munlock_vma_pages_all(vma);
3115  			vma = vma->vm_next;
3116  		}
3117  	}
3118  
3119  	arch_exit_mmap(mm);
3120  
3121  	vma = mm->mmap;
3122  	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3123  		return;
3124  
3125  	lru_add_drain();
3126  	flush_cache_mm(mm);
3127  	tlb_gather_mmu(&tlb, mm, 0, -1);
3128  	/* update_hiwater_rss(mm) here? but nobody should be looking */
3129  	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3130  	unmap_vmas(&tlb, vma, 0, -1);
3131  	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3132  	tlb_finish_mmu(&tlb, 0, -1);
3133  
3134  	/*
3135  	 * Walk the list again, actually closing and freeing it,
3136  	 * with preemption enabled, without holding any MM locks.
3137  	 */
3138  	while (vma) {
3139  		if (vma->vm_flags & VM_ACCOUNT)
3140  			nr_accounted += vma_pages(vma);
3141  		vma = remove_vma(vma);
3142  	}
3143  	vm_unacct_memory(nr_accounted);
3144  }
3145  
3146  /* Insert vm structure into process list sorted by address
3147   * and into the inode's i_mmap tree.  If vm_file is non-NULL
3148   * then i_mmap_rwsem is taken here.
3149   */
3150  int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3151  {
3152  	struct vm_area_struct *prev;
3153  	struct rb_node **rb_link, *rb_parent;
3154  
3155  	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3156  			   &prev, &rb_link, &rb_parent))
3157  		return -ENOMEM;
3158  	if ((vma->vm_flags & VM_ACCOUNT) &&
3159  	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3160  		return -ENOMEM;
3161  
3162  	/*
3163  	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3164  	 * until its first write fault, when page's anon_vma and index
3165  	 * are set.  But now set the vm_pgoff it will almost certainly
3166  	 * end up with (unless mremap moves it elsewhere before that
3167  	 * first wfault), so /proc/pid/maps tells a consistent story.
3168  	 *
3169  	 * By setting it to reflect the virtual start address of the
3170  	 * vma, merges and splits can happen in a seamless way, just
3171  	 * using the existing file pgoff checks and manipulations.
3172  	 * Similarly in do_mmap_pgoff and in do_brk.
3173  	 */
3174  	if (vma_is_anonymous(vma)) {
3175  		BUG_ON(vma->anon_vma);
3176  		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3177  	}
3178  
3179  	vma_link(mm, vma, prev, rb_link, rb_parent);
3180  	return 0;
3181  }
3182  
3183  /*
3184   * Copy the vma structure to a new location in the same mm,
3185   * prior to moving page table entries, to effect an mremap move.
3186   */
3187  struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3188  	unsigned long addr, unsigned long len, pgoff_t pgoff,
3189  	bool *need_rmap_locks)
3190  {
3191  	struct vm_area_struct *vma = *vmap;
3192  	unsigned long vma_start = vma->vm_start;
3193  	struct mm_struct *mm = vma->vm_mm;
3194  	struct vm_area_struct *new_vma, *prev;
3195  	struct rb_node **rb_link, *rb_parent;
3196  	bool faulted_in_anon_vma = true;
3197  
3198  	/*
3199  	 * If anonymous vma has not yet been faulted, update new pgoff
3200  	 * to match new location, to increase its chance of merging.
3201  	 */
3202  	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3203  		pgoff = addr >> PAGE_SHIFT;
3204  		faulted_in_anon_vma = false;
3205  	}
3206  
3207  	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3208  		return NULL;	/* should never get here */
3209  	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3210  			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3211  			    vma->vm_userfaultfd_ctx);
3212  	if (new_vma) {
3213  		/*
3214  		 * Source vma may have been merged into new_vma
3215  		 */
3216  		if (unlikely(vma_start >= new_vma->vm_start &&
3217  			     vma_start < new_vma->vm_end)) {
3218  			/*
3219  			 * The only way we can get a vma_merge with
3220  			 * self during an mremap is if the vma hasn't
3221  			 * been faulted in yet and we were allowed to
3222  			 * reset the dst vma->vm_pgoff to the
3223  			 * destination address of the mremap to allow
3224  			 * the merge to happen. mremap must change the
3225  			 * vm_pgoff linearity between src and dst vmas
3226  			 * (in turn preventing a vma_merge) to be
3227  			 * safe. It is only safe to keep the vm_pgoff
3228  			 * linear if there are no pages mapped yet.
3229  			 */
3230  			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3231  			*vmap = vma = new_vma;
3232  		}
3233  		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3234  	} else {
3235  		new_vma = vm_area_dup(vma);
3236  		if (!new_vma)
3237  			goto out;
3238  		new_vma->vm_start = addr;
3239  		new_vma->vm_end = addr + len;
3240  		new_vma->vm_pgoff = pgoff;
3241  		if (vma_dup_policy(vma, new_vma))
3242  			goto out_free_vma;
3243  		if (anon_vma_clone(new_vma, vma))
3244  			goto out_free_mempol;
3245  		if (new_vma->vm_file)
3246  			get_file(new_vma->vm_file);
3247  		if (new_vma->vm_ops && new_vma->vm_ops->open)
3248  			new_vma->vm_ops->open(new_vma);
3249  		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3250  		*need_rmap_locks = false;
3251  	}
3252  	return new_vma;
3253  
3254  out_free_mempol:
3255  	mpol_put(vma_policy(new_vma));
3256  out_free_vma:
3257  	vm_area_free(new_vma);
3258  out:
3259  	return NULL;
3260  }
3261  
3262  /*
3263   * Return true if the calling process may expand its vm space by the passed
3264   * number of pages
3265   */
3266  bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3267  {
3268  	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3269  		return false;
3270  
3271  	if (is_data_mapping(flags) &&
3272  	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3273  		/* Workaround for Valgrind */
3274  		if (rlimit(RLIMIT_DATA) == 0 &&
3275  		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3276  			return true;
3277  
3278  		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3279  			     current->comm, current->pid,
3280  			     (mm->data_vm + npages) << PAGE_SHIFT,
3281  			     rlimit(RLIMIT_DATA),
3282  			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3283  
3284  		if (!ignore_rlimit_data)
3285  			return false;
3286  	}
3287  
3288  	return true;
3289  }
3290  
3291  void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3292  {
3293  	mm->total_vm += npages;
3294  
3295  	if (is_exec_mapping(flags))
3296  		mm->exec_vm += npages;
3297  	else if (is_stack_mapping(flags))
3298  		mm->stack_vm += npages;
3299  	else if (is_data_mapping(flags))
3300  		mm->data_vm += npages;
3301  }
3302  
3303  static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3304  
3305  /*
3306   * Having a close hook prevents vma merging regardless of flags.
3307   */
3308  static void special_mapping_close(struct vm_area_struct *vma)
3309  {
3310  }
3311  
3312  static const char *special_mapping_name(struct vm_area_struct *vma)
3313  {
3314  	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3315  }
3316  
3317  static int special_mapping_mremap(struct vm_area_struct *new_vma)
3318  {
3319  	struct vm_special_mapping *sm = new_vma->vm_private_data;
3320  
3321  	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3322  		return -EFAULT;
3323  
3324  	if (sm->mremap)
3325  		return sm->mremap(sm, new_vma);
3326  
3327  	return 0;
3328  }
3329  
3330  static const struct vm_operations_struct special_mapping_vmops = {
3331  	.close = special_mapping_close,
3332  	.fault = special_mapping_fault,
3333  	.mremap = special_mapping_mremap,
3334  	.name = special_mapping_name,
3335  	/* vDSO code relies that VVAR can't be accessed remotely */
3336  	.access = NULL,
3337  };
3338  
3339  static const struct vm_operations_struct legacy_special_mapping_vmops = {
3340  	.close = special_mapping_close,
3341  	.fault = special_mapping_fault,
3342  };
3343  
3344  static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3345  {
3346  	struct vm_area_struct *vma = vmf->vma;
3347  	pgoff_t pgoff;
3348  	struct page **pages;
3349  
3350  	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3351  		pages = vma->vm_private_data;
3352  	} else {
3353  		struct vm_special_mapping *sm = vma->vm_private_data;
3354  
3355  		if (sm->fault)
3356  			return sm->fault(sm, vmf->vma, vmf);
3357  
3358  		pages = sm->pages;
3359  	}
3360  
3361  	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3362  		pgoff--;
3363  
3364  	if (*pages) {
3365  		struct page *page = *pages;
3366  		get_page(page);
3367  		vmf->page = page;
3368  		return 0;
3369  	}
3370  
3371  	return VM_FAULT_SIGBUS;
3372  }
3373  
3374  static struct vm_area_struct *__install_special_mapping(
3375  	struct mm_struct *mm,
3376  	unsigned long addr, unsigned long len,
3377  	unsigned long vm_flags, void *priv,
3378  	const struct vm_operations_struct *ops)
3379  {
3380  	int ret;
3381  	struct vm_area_struct *vma;
3382  
3383  	vma = vm_area_alloc(mm);
3384  	if (unlikely(vma == NULL))
3385  		return ERR_PTR(-ENOMEM);
3386  
3387  	vma->vm_start = addr;
3388  	vma->vm_end = addr + len;
3389  
3390  	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3391  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3392  
3393  	vma->vm_ops = ops;
3394  	vma->vm_private_data = priv;
3395  
3396  	ret = insert_vm_struct(mm, vma);
3397  	if (ret)
3398  		goto out;
3399  
3400  	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3401  
3402  	perf_event_mmap(vma);
3403  
3404  	return vma;
3405  
3406  out:
3407  	vm_area_free(vma);
3408  	return ERR_PTR(ret);
3409  }
3410  
3411  bool vma_is_special_mapping(const struct vm_area_struct *vma,
3412  	const struct vm_special_mapping *sm)
3413  {
3414  	return vma->vm_private_data == sm &&
3415  		(vma->vm_ops == &special_mapping_vmops ||
3416  		 vma->vm_ops == &legacy_special_mapping_vmops);
3417  }
3418  
3419  /*
3420   * Called with mm->mmap_sem held for writing.
3421   * Insert a new vma covering the given region, with the given flags.
3422   * Its pages are supplied by the given array of struct page *.
3423   * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3424   * The region past the last page supplied will always produce SIGBUS.
3425   * The array pointer and the pages it points to are assumed to stay alive
3426   * for as long as this mapping might exist.
3427   */
3428  struct vm_area_struct *_install_special_mapping(
3429  	struct mm_struct *mm,
3430  	unsigned long addr, unsigned long len,
3431  	unsigned long vm_flags, const struct vm_special_mapping *spec)
3432  {
3433  	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3434  					&special_mapping_vmops);
3435  }
3436  
3437  int install_special_mapping(struct mm_struct *mm,
3438  			    unsigned long addr, unsigned long len,
3439  			    unsigned long vm_flags, struct page **pages)
3440  {
3441  	struct vm_area_struct *vma = __install_special_mapping(
3442  		mm, addr, len, vm_flags, (void *)pages,
3443  		&legacy_special_mapping_vmops);
3444  
3445  	return PTR_ERR_OR_ZERO(vma);
3446  }
3447  
3448  static DEFINE_MUTEX(mm_all_locks_mutex);
3449  
3450  static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3451  {
3452  	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3453  		/*
3454  		 * The LSB of head.next can't change from under us
3455  		 * because we hold the mm_all_locks_mutex.
3456  		 */
3457  		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3458  		/*
3459  		 * We can safely modify head.next after taking the
3460  		 * anon_vma->root->rwsem. If some other vma in this mm shares
3461  		 * the same anon_vma we won't take it again.
3462  		 *
3463  		 * No need of atomic instructions here, head.next
3464  		 * can't change from under us thanks to the
3465  		 * anon_vma->root->rwsem.
3466  		 */
3467  		if (__test_and_set_bit(0, (unsigned long *)
3468  				       &anon_vma->root->rb_root.rb_root.rb_node))
3469  			BUG();
3470  	}
3471  }
3472  
3473  static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3474  {
3475  	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3476  		/*
3477  		 * AS_MM_ALL_LOCKS can't change from under us because
3478  		 * we hold the mm_all_locks_mutex.
3479  		 *
3480  		 * Operations on ->flags have to be atomic because
3481  		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3482  		 * mm_all_locks_mutex, there may be other cpus
3483  		 * changing other bitflags in parallel to us.
3484  		 */
3485  		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3486  			BUG();
3487  		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3488  	}
3489  }
3490  
3491  /*
3492   * This operation locks against the VM for all pte/vma/mm related
3493   * operations that could ever happen on a certain mm. This includes
3494   * vmtruncate, try_to_unmap, and all page faults.
3495   *
3496   * The caller must take the mmap_sem in write mode before calling
3497   * mm_take_all_locks(). The caller isn't allowed to release the
3498   * mmap_sem until mm_drop_all_locks() returns.
3499   *
3500   * mmap_sem in write mode is required in order to block all operations
3501   * that could modify pagetables and free pages without need of
3502   * altering the vma layout. It's also needed in write mode to avoid new
3503   * anon_vmas to be associated with existing vmas.
3504   *
3505   * A single task can't take more than one mm_take_all_locks() in a row
3506   * or it would deadlock.
3507   *
3508   * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3509   * mapping->flags avoid to take the same lock twice, if more than one
3510   * vma in this mm is backed by the same anon_vma or address_space.
3511   *
3512   * We take locks in following order, accordingly to comment at beginning
3513   * of mm/rmap.c:
3514   *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3515   *     hugetlb mapping);
3516   *   - all i_mmap_rwsem locks;
3517   *   - all anon_vma->rwseml
3518   *
3519   * We can take all locks within these types randomly because the VM code
3520   * doesn't nest them and we protected from parallel mm_take_all_locks() by
3521   * mm_all_locks_mutex.
3522   *
3523   * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3524   * that may have to take thousand of locks.
3525   *
3526   * mm_take_all_locks() can fail if it's interrupted by signals.
3527   */
3528  int mm_take_all_locks(struct mm_struct *mm)
3529  {
3530  	struct vm_area_struct *vma;
3531  	struct anon_vma_chain *avc;
3532  
3533  	BUG_ON(down_read_trylock(&mm->mmap_sem));
3534  
3535  	mutex_lock(&mm_all_locks_mutex);
3536  
3537  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3538  		if (signal_pending(current))
3539  			goto out_unlock;
3540  		if (vma->vm_file && vma->vm_file->f_mapping &&
3541  				is_vm_hugetlb_page(vma))
3542  			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3543  	}
3544  
3545  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3546  		if (signal_pending(current))
3547  			goto out_unlock;
3548  		if (vma->vm_file && vma->vm_file->f_mapping &&
3549  				!is_vm_hugetlb_page(vma))
3550  			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3551  	}
3552  
3553  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3554  		if (signal_pending(current))
3555  			goto out_unlock;
3556  		if (vma->anon_vma)
3557  			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3558  				vm_lock_anon_vma(mm, avc->anon_vma);
3559  	}
3560  
3561  	return 0;
3562  
3563  out_unlock:
3564  	mm_drop_all_locks(mm);
3565  	return -EINTR;
3566  }
3567  
3568  static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3569  {
3570  	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3571  		/*
3572  		 * The LSB of head.next can't change to 0 from under
3573  		 * us because we hold the mm_all_locks_mutex.
3574  		 *
3575  		 * We must however clear the bitflag before unlocking
3576  		 * the vma so the users using the anon_vma->rb_root will
3577  		 * never see our bitflag.
3578  		 *
3579  		 * No need of atomic instructions here, head.next
3580  		 * can't change from under us until we release the
3581  		 * anon_vma->root->rwsem.
3582  		 */
3583  		if (!__test_and_clear_bit(0, (unsigned long *)
3584  					  &anon_vma->root->rb_root.rb_root.rb_node))
3585  			BUG();
3586  		anon_vma_unlock_write(anon_vma);
3587  	}
3588  }
3589  
3590  static void vm_unlock_mapping(struct address_space *mapping)
3591  {
3592  	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3593  		/*
3594  		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3595  		 * because we hold the mm_all_locks_mutex.
3596  		 */
3597  		i_mmap_unlock_write(mapping);
3598  		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3599  					&mapping->flags))
3600  			BUG();
3601  	}
3602  }
3603  
3604  /*
3605   * The mmap_sem cannot be released by the caller until
3606   * mm_drop_all_locks() returns.
3607   */
3608  void mm_drop_all_locks(struct mm_struct *mm)
3609  {
3610  	struct vm_area_struct *vma;
3611  	struct anon_vma_chain *avc;
3612  
3613  	BUG_ON(down_read_trylock(&mm->mmap_sem));
3614  	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3615  
3616  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3617  		if (vma->anon_vma)
3618  			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3619  				vm_unlock_anon_vma(avc->anon_vma);
3620  		if (vma->vm_file && vma->vm_file->f_mapping)
3621  			vm_unlock_mapping(vma->vm_file->f_mapping);
3622  	}
3623  
3624  	mutex_unlock(&mm_all_locks_mutex);
3625  }
3626  
3627  /*
3628   * initialise the percpu counter for VM
3629   */
3630  void __init mmap_init(void)
3631  {
3632  	int ret;
3633  
3634  	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3635  	VM_BUG_ON(ret);
3636  }
3637  
3638  /*
3639   * Initialise sysctl_user_reserve_kbytes.
3640   *
3641   * This is intended to prevent a user from starting a single memory hogging
3642   * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3643   * mode.
3644   *
3645   * The default value is min(3% of free memory, 128MB)
3646   * 128MB is enough to recover with sshd/login, bash, and top/kill.
3647   */
3648  static int init_user_reserve(void)
3649  {
3650  	unsigned long free_kbytes;
3651  
3652  	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3653  
3654  	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3655  	return 0;
3656  }
3657  subsys_initcall(init_user_reserve);
3658  
3659  /*
3660   * Initialise sysctl_admin_reserve_kbytes.
3661   *
3662   * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3663   * to log in and kill a memory hogging process.
3664   *
3665   * Systems with more than 256MB will reserve 8MB, enough to recover
3666   * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3667   * only reserve 3% of free pages by default.
3668   */
3669  static int init_admin_reserve(void)
3670  {
3671  	unsigned long free_kbytes;
3672  
3673  	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3674  
3675  	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3676  	return 0;
3677  }
3678  subsys_initcall(init_admin_reserve);
3679  
3680  /*
3681   * Reinititalise user and admin reserves if memory is added or removed.
3682   *
3683   * The default user reserve max is 128MB, and the default max for the
3684   * admin reserve is 8MB. These are usually, but not always, enough to
3685   * enable recovery from a memory hogging process using login/sshd, a shell,
3686   * and tools like top. It may make sense to increase or even disable the
3687   * reserve depending on the existence of swap or variations in the recovery
3688   * tools. So, the admin may have changed them.
3689   *
3690   * If memory is added and the reserves have been eliminated or increased above
3691   * the default max, then we'll trust the admin.
3692   *
3693   * If memory is removed and there isn't enough free memory, then we
3694   * need to reset the reserves.
3695   *
3696   * Otherwise keep the reserve set by the admin.
3697   */
3698  static int reserve_mem_notifier(struct notifier_block *nb,
3699  			     unsigned long action, void *data)
3700  {
3701  	unsigned long tmp, free_kbytes;
3702  
3703  	switch (action) {
3704  	case MEM_ONLINE:
3705  		/* Default max is 128MB. Leave alone if modified by operator. */
3706  		tmp = sysctl_user_reserve_kbytes;
3707  		if (0 < tmp && tmp < (1UL << 17))
3708  			init_user_reserve();
3709  
3710  		/* Default max is 8MB.  Leave alone if modified by operator. */
3711  		tmp = sysctl_admin_reserve_kbytes;
3712  		if (0 < tmp && tmp < (1UL << 13))
3713  			init_admin_reserve();
3714  
3715  		break;
3716  	case MEM_OFFLINE:
3717  		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3718  
3719  		if (sysctl_user_reserve_kbytes > free_kbytes) {
3720  			init_user_reserve();
3721  			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3722  				sysctl_user_reserve_kbytes);
3723  		}
3724  
3725  		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3726  			init_admin_reserve();
3727  			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3728  				sysctl_admin_reserve_kbytes);
3729  		}
3730  		break;
3731  	default:
3732  		break;
3733  	}
3734  	return NOTIFY_OK;
3735  }
3736  
3737  static struct notifier_block reserve_mem_nb = {
3738  	.notifier_call = reserve_mem_notifier,
3739  };
3740  
3741  static int __meminit init_reserve_notifier(void)
3742  {
3743  	if (register_hotmemory_notifier(&reserve_mem_nb))
3744  		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3745  
3746  	return 0;
3747  }
3748  subsys_initcall(init_reserve_notifier);
3749