1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 */ 97 pgprot_t protection_map[16] __ro_after_init = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 104 { 105 return prot; 106 } 107 #endif 108 109 pgprot_t vm_get_page_prot(unsigned long vm_flags) 110 { 111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 113 pgprot_val(arch_vm_get_page_prot(vm_flags))); 114 115 return arch_filter_pgprot(ret); 116 } 117 EXPORT_SYMBOL(vm_get_page_prot); 118 119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 120 { 121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 122 } 123 124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 125 void vma_set_page_prot(struct vm_area_struct *vma) 126 { 127 unsigned long vm_flags = vma->vm_flags; 128 pgprot_t vm_page_prot; 129 130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 131 if (vma_wants_writenotify(vma, vm_page_prot)) { 132 vm_flags &= ~VM_SHARED; 133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 134 } 135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 137 } 138 139 /* 140 * Requires inode->i_mapping->i_mmap_rwsem 141 */ 142 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 143 struct file *file, struct address_space *mapping) 144 { 145 if (vma->vm_flags & VM_DENYWRITE) 146 allow_write_access(file); 147 if (vma->vm_flags & VM_SHARED) 148 mapping_unmap_writable(mapping); 149 150 flush_dcache_mmap_lock(mapping); 151 vma_interval_tree_remove(vma, &mapping->i_mmap); 152 flush_dcache_mmap_unlock(mapping); 153 } 154 155 /* 156 * Unlink a file-based vm structure from its interval tree, to hide 157 * vma from rmap and vmtruncate before freeing its page tables. 158 */ 159 void unlink_file_vma(struct vm_area_struct *vma) 160 { 161 struct file *file = vma->vm_file; 162 163 if (file) { 164 struct address_space *mapping = file->f_mapping; 165 i_mmap_lock_write(mapping); 166 __remove_shared_vm_struct(vma, file, mapping); 167 i_mmap_unlock_write(mapping); 168 } 169 } 170 171 /* 172 * Close a vm structure and free it, returning the next. 173 */ 174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 175 { 176 struct vm_area_struct *next = vma->vm_next; 177 178 might_sleep(); 179 if (vma->vm_ops && vma->vm_ops->close) 180 vma->vm_ops->close(vma); 181 if (vma->vm_file) 182 fput(vma->vm_file); 183 mpol_put(vma_policy(vma)); 184 vm_area_free(vma); 185 return next; 186 } 187 188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 189 struct list_head *uf); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long newbrk, oldbrk, origbrk; 193 struct mm_struct *mm = current->mm; 194 struct vm_area_struct *next; 195 unsigned long min_brk; 196 bool populate; 197 bool downgraded = false; 198 LIST_HEAD(uf); 199 200 if (mmap_write_lock_killable(mm)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* 239 * Always allow shrinking brk. 240 * __do_munmap() may downgrade mmap_lock to read. 241 */ 242 if (brk <= mm->brk) { 243 int ret; 244 245 /* 246 * mm->brk must to be protected by write mmap_lock so update it 247 * before downgrading mmap_lock. When __do_munmap() fails, 248 * mm->brk will be restored from origbrk. 249 */ 250 mm->brk = brk; 251 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 252 if (ret < 0) { 253 mm->brk = origbrk; 254 goto out; 255 } else if (ret == 1) { 256 downgraded = true; 257 } 258 goto success; 259 } 260 261 /* Check against existing mmap mappings. */ 262 next = find_vma(mm, oldbrk); 263 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 264 goto out; 265 266 /* Ok, looks good - let it rip. */ 267 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 268 goto out; 269 mm->brk = brk; 270 271 success: 272 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 273 if (downgraded) 274 mmap_read_unlock(mm); 275 else 276 mmap_write_unlock(mm); 277 userfaultfd_unmap_complete(mm, &uf); 278 if (populate) 279 mm_populate(oldbrk, newbrk - oldbrk); 280 return brk; 281 282 out: 283 mmap_write_unlock(mm); 284 return origbrk; 285 } 286 287 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 288 { 289 unsigned long gap, prev_end; 290 291 /* 292 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 293 * allow two stack_guard_gaps between them here, and when choosing 294 * an unmapped area; whereas when expanding we only require one. 295 * That's a little inconsistent, but keeps the code here simpler. 296 */ 297 gap = vm_start_gap(vma); 298 if (vma->vm_prev) { 299 prev_end = vm_end_gap(vma->vm_prev); 300 if (gap > prev_end) 301 gap -= prev_end; 302 else 303 gap = 0; 304 } 305 return gap; 306 } 307 308 #ifdef CONFIG_DEBUG_VM_RB 309 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 310 { 311 unsigned long max = vma_compute_gap(vma), subtree_gap; 312 if (vma->vm_rb.rb_left) { 313 subtree_gap = rb_entry(vma->vm_rb.rb_left, 314 struct vm_area_struct, vm_rb)->rb_subtree_gap; 315 if (subtree_gap > max) 316 max = subtree_gap; 317 } 318 if (vma->vm_rb.rb_right) { 319 subtree_gap = rb_entry(vma->vm_rb.rb_right, 320 struct vm_area_struct, vm_rb)->rb_subtree_gap; 321 if (subtree_gap > max) 322 max = subtree_gap; 323 } 324 return max; 325 } 326 327 static int browse_rb(struct mm_struct *mm) 328 { 329 struct rb_root *root = &mm->mm_rb; 330 int i = 0, j, bug = 0; 331 struct rb_node *nd, *pn = NULL; 332 unsigned long prev = 0, pend = 0; 333 334 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 335 struct vm_area_struct *vma; 336 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 337 if (vma->vm_start < prev) { 338 pr_emerg("vm_start %lx < prev %lx\n", 339 vma->vm_start, prev); 340 bug = 1; 341 } 342 if (vma->vm_start < pend) { 343 pr_emerg("vm_start %lx < pend %lx\n", 344 vma->vm_start, pend); 345 bug = 1; 346 } 347 if (vma->vm_start > vma->vm_end) { 348 pr_emerg("vm_start %lx > vm_end %lx\n", 349 vma->vm_start, vma->vm_end); 350 bug = 1; 351 } 352 spin_lock(&mm->page_table_lock); 353 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 354 pr_emerg("free gap %lx, correct %lx\n", 355 vma->rb_subtree_gap, 356 vma_compute_subtree_gap(vma)); 357 bug = 1; 358 } 359 spin_unlock(&mm->page_table_lock); 360 i++; 361 pn = nd; 362 prev = vma->vm_start; 363 pend = vma->vm_end; 364 } 365 j = 0; 366 for (nd = pn; nd; nd = rb_prev(nd)) 367 j++; 368 if (i != j) { 369 pr_emerg("backwards %d, forwards %d\n", j, i); 370 bug = 1; 371 } 372 return bug ? -1 : i; 373 } 374 375 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 376 { 377 struct rb_node *nd; 378 379 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 380 struct vm_area_struct *vma; 381 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 382 VM_BUG_ON_VMA(vma != ignore && 383 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 384 vma); 385 } 386 } 387 388 static void validate_mm(struct mm_struct *mm) 389 { 390 int bug = 0; 391 int i = 0; 392 unsigned long highest_address = 0; 393 struct vm_area_struct *vma = mm->mmap; 394 395 while (vma) { 396 struct anon_vma *anon_vma = vma->anon_vma; 397 struct anon_vma_chain *avc; 398 399 if (anon_vma) { 400 anon_vma_lock_read(anon_vma); 401 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 402 anon_vma_interval_tree_verify(avc); 403 anon_vma_unlock_read(anon_vma); 404 } 405 406 highest_address = vm_end_gap(vma); 407 vma = vma->vm_next; 408 i++; 409 } 410 if (i != mm->map_count) { 411 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 412 bug = 1; 413 } 414 if (highest_address != mm->highest_vm_end) { 415 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 416 mm->highest_vm_end, highest_address); 417 bug = 1; 418 } 419 i = browse_rb(mm); 420 if (i != mm->map_count) { 421 if (i != -1) 422 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 423 bug = 1; 424 } 425 VM_BUG_ON_MM(bug, mm); 426 } 427 #else 428 #define validate_mm_rb(root, ignore) do { } while (0) 429 #define validate_mm(mm) do { } while (0) 430 #endif 431 432 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 433 struct vm_area_struct, vm_rb, 434 unsigned long, rb_subtree_gap, vma_compute_gap) 435 436 /* 437 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 438 * vma->vm_prev->vm_end values changed, without modifying the vma's position 439 * in the rbtree. 440 */ 441 static void vma_gap_update(struct vm_area_struct *vma) 442 { 443 /* 444 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 445 * a callback function that does exactly what we want. 446 */ 447 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 448 } 449 450 static inline void vma_rb_insert(struct vm_area_struct *vma, 451 struct rb_root *root) 452 { 453 /* All rb_subtree_gap values must be consistent prior to insertion */ 454 validate_mm_rb(root, NULL); 455 456 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 457 } 458 459 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 460 { 461 /* 462 * Note rb_erase_augmented is a fairly large inline function, 463 * so make sure we instantiate it only once with our desired 464 * augmented rbtree callbacks. 465 */ 466 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 467 } 468 469 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 470 struct rb_root *root, 471 struct vm_area_struct *ignore) 472 { 473 /* 474 * All rb_subtree_gap values must be consistent prior to erase, 475 * with the possible exception of 476 * 477 * a. the "next" vma being erased if next->vm_start was reduced in 478 * __vma_adjust() -> __vma_unlink() 479 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 480 * vma_rb_erase() 481 */ 482 validate_mm_rb(root, ignore); 483 484 __vma_rb_erase(vma, root); 485 } 486 487 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 488 struct rb_root *root) 489 { 490 vma_rb_erase_ignore(vma, root, vma); 491 } 492 493 /* 494 * vma has some anon_vma assigned, and is already inserted on that 495 * anon_vma's interval trees. 496 * 497 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 498 * vma must be removed from the anon_vma's interval trees using 499 * anon_vma_interval_tree_pre_update_vma(). 500 * 501 * After the update, the vma will be reinserted using 502 * anon_vma_interval_tree_post_update_vma(). 503 * 504 * The entire update must be protected by exclusive mmap_lock and by 505 * the root anon_vma's mutex. 506 */ 507 static inline void 508 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 509 { 510 struct anon_vma_chain *avc; 511 512 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 513 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 514 } 515 516 static inline void 517 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 518 { 519 struct anon_vma_chain *avc; 520 521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 522 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 523 } 524 525 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 526 unsigned long end, struct vm_area_struct **pprev, 527 struct rb_node ***rb_link, struct rb_node **rb_parent) 528 { 529 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 530 531 __rb_link = &mm->mm_rb.rb_node; 532 rb_prev = __rb_parent = NULL; 533 534 while (*__rb_link) { 535 struct vm_area_struct *vma_tmp; 536 537 __rb_parent = *__rb_link; 538 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 539 540 if (vma_tmp->vm_end > addr) { 541 /* Fail if an existing vma overlaps the area */ 542 if (vma_tmp->vm_start < end) 543 return -ENOMEM; 544 __rb_link = &__rb_parent->rb_left; 545 } else { 546 rb_prev = __rb_parent; 547 __rb_link = &__rb_parent->rb_right; 548 } 549 } 550 551 *pprev = NULL; 552 if (rb_prev) 553 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 554 *rb_link = __rb_link; 555 *rb_parent = __rb_parent; 556 return 0; 557 } 558 559 /* 560 * vma_next() - Get the next VMA. 561 * @mm: The mm_struct. 562 * @vma: The current vma. 563 * 564 * If @vma is NULL, return the first vma in the mm. 565 * 566 * Returns: The next VMA after @vma. 567 */ 568 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 569 struct vm_area_struct *vma) 570 { 571 if (!vma) 572 return mm->mmap; 573 574 return vma->vm_next; 575 } 576 577 /* 578 * munmap_vma_range() - munmap VMAs that overlap a range. 579 * @mm: The mm struct 580 * @start: The start of the range. 581 * @len: The length of the range. 582 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 583 * @rb_link: the rb_node 584 * @rb_parent: the parent rb_node 585 * 586 * Find all the vm_area_struct that overlap from @start to 587 * @end and munmap them. Set @pprev to the previous vm_area_struct. 588 * 589 * Returns: -ENOMEM on munmap failure or 0 on success. 590 */ 591 static inline int 592 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 593 struct vm_area_struct **pprev, struct rb_node ***link, 594 struct rb_node **parent, struct list_head *uf) 595 { 596 597 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 598 if (do_munmap(mm, start, len, uf)) 599 return -ENOMEM; 600 601 return 0; 602 } 603 static unsigned long count_vma_pages_range(struct mm_struct *mm, 604 unsigned long addr, unsigned long end) 605 { 606 unsigned long nr_pages = 0; 607 struct vm_area_struct *vma; 608 609 /* Find first overlaping mapping */ 610 vma = find_vma_intersection(mm, addr, end); 611 if (!vma) 612 return 0; 613 614 nr_pages = (min(end, vma->vm_end) - 615 max(addr, vma->vm_start)) >> PAGE_SHIFT; 616 617 /* Iterate over the rest of the overlaps */ 618 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 619 unsigned long overlap_len; 620 621 if (vma->vm_start > end) 622 break; 623 624 overlap_len = min(end, vma->vm_end) - vma->vm_start; 625 nr_pages += overlap_len >> PAGE_SHIFT; 626 } 627 628 return nr_pages; 629 } 630 631 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 632 struct rb_node **rb_link, struct rb_node *rb_parent) 633 { 634 /* Update tracking information for the gap following the new vma. */ 635 if (vma->vm_next) 636 vma_gap_update(vma->vm_next); 637 else 638 mm->highest_vm_end = vm_end_gap(vma); 639 640 /* 641 * vma->vm_prev wasn't known when we followed the rbtree to find the 642 * correct insertion point for that vma. As a result, we could not 643 * update the vma vm_rb parents rb_subtree_gap values on the way down. 644 * So, we first insert the vma with a zero rb_subtree_gap value 645 * (to be consistent with what we did on the way down), and then 646 * immediately update the gap to the correct value. Finally we 647 * rebalance the rbtree after all augmented values have been set. 648 */ 649 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 650 vma->rb_subtree_gap = 0; 651 vma_gap_update(vma); 652 vma_rb_insert(vma, &mm->mm_rb); 653 } 654 655 static void __vma_link_file(struct vm_area_struct *vma) 656 { 657 struct file *file; 658 659 file = vma->vm_file; 660 if (file) { 661 struct address_space *mapping = file->f_mapping; 662 663 if (vma->vm_flags & VM_DENYWRITE) 664 put_write_access(file_inode(file)); 665 if (vma->vm_flags & VM_SHARED) 666 mapping_allow_writable(mapping); 667 668 flush_dcache_mmap_lock(mapping); 669 vma_interval_tree_insert(vma, &mapping->i_mmap); 670 flush_dcache_mmap_unlock(mapping); 671 } 672 } 673 674 static void 675 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 676 struct vm_area_struct *prev, struct rb_node **rb_link, 677 struct rb_node *rb_parent) 678 { 679 __vma_link_list(mm, vma, prev); 680 __vma_link_rb(mm, vma, rb_link, rb_parent); 681 } 682 683 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 684 struct vm_area_struct *prev, struct rb_node **rb_link, 685 struct rb_node *rb_parent) 686 { 687 struct address_space *mapping = NULL; 688 689 if (vma->vm_file) { 690 mapping = vma->vm_file->f_mapping; 691 i_mmap_lock_write(mapping); 692 } 693 694 __vma_link(mm, vma, prev, rb_link, rb_parent); 695 __vma_link_file(vma); 696 697 if (mapping) 698 i_mmap_unlock_write(mapping); 699 700 mm->map_count++; 701 validate_mm(mm); 702 } 703 704 /* 705 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 706 * mm's list and rbtree. It has already been inserted into the interval tree. 707 */ 708 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 709 { 710 struct vm_area_struct *prev; 711 struct rb_node **rb_link, *rb_parent; 712 713 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 714 &prev, &rb_link, &rb_parent)) 715 BUG(); 716 __vma_link(mm, vma, prev, rb_link, rb_parent); 717 mm->map_count++; 718 } 719 720 static __always_inline void __vma_unlink(struct mm_struct *mm, 721 struct vm_area_struct *vma, 722 struct vm_area_struct *ignore) 723 { 724 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 725 __vma_unlink_list(mm, vma); 726 /* Kill the cache */ 727 vmacache_invalidate(mm); 728 } 729 730 /* 731 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 732 * is already present in an i_mmap tree without adjusting the tree. 733 * The following helper function should be used when such adjustments 734 * are necessary. The "insert" vma (if any) is to be inserted 735 * before we drop the necessary locks. 736 */ 737 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 738 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 739 struct vm_area_struct *expand) 740 { 741 struct mm_struct *mm = vma->vm_mm; 742 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 743 struct address_space *mapping = NULL; 744 struct rb_root_cached *root = NULL; 745 struct anon_vma *anon_vma = NULL; 746 struct file *file = vma->vm_file; 747 bool start_changed = false, end_changed = false; 748 long adjust_next = 0; 749 int remove_next = 0; 750 751 if (next && !insert) { 752 struct vm_area_struct *exporter = NULL, *importer = NULL; 753 754 if (end >= next->vm_end) { 755 /* 756 * vma expands, overlapping all the next, and 757 * perhaps the one after too (mprotect case 6). 758 * The only other cases that gets here are 759 * case 1, case 7 and case 8. 760 */ 761 if (next == expand) { 762 /* 763 * The only case where we don't expand "vma" 764 * and we expand "next" instead is case 8. 765 */ 766 VM_WARN_ON(end != next->vm_end); 767 /* 768 * remove_next == 3 means we're 769 * removing "vma" and that to do so we 770 * swapped "vma" and "next". 771 */ 772 remove_next = 3; 773 VM_WARN_ON(file != next->vm_file); 774 swap(vma, next); 775 } else { 776 VM_WARN_ON(expand != vma); 777 /* 778 * case 1, 6, 7, remove_next == 2 is case 6, 779 * remove_next == 1 is case 1 or 7. 780 */ 781 remove_next = 1 + (end > next->vm_end); 782 VM_WARN_ON(remove_next == 2 && 783 end != next->vm_next->vm_end); 784 /* trim end to next, for case 6 first pass */ 785 end = next->vm_end; 786 } 787 788 exporter = next; 789 importer = vma; 790 791 /* 792 * If next doesn't have anon_vma, import from vma after 793 * next, if the vma overlaps with it. 794 */ 795 if (remove_next == 2 && !next->anon_vma) 796 exporter = next->vm_next; 797 798 } else if (end > next->vm_start) { 799 /* 800 * vma expands, overlapping part of the next: 801 * mprotect case 5 shifting the boundary up. 802 */ 803 adjust_next = (end - next->vm_start); 804 exporter = next; 805 importer = vma; 806 VM_WARN_ON(expand != importer); 807 } else if (end < vma->vm_end) { 808 /* 809 * vma shrinks, and !insert tells it's not 810 * split_vma inserting another: so it must be 811 * mprotect case 4 shifting the boundary down. 812 */ 813 adjust_next = -(vma->vm_end - end); 814 exporter = vma; 815 importer = next; 816 VM_WARN_ON(expand != importer); 817 } 818 819 /* 820 * Easily overlooked: when mprotect shifts the boundary, 821 * make sure the expanding vma has anon_vma set if the 822 * shrinking vma had, to cover any anon pages imported. 823 */ 824 if (exporter && exporter->anon_vma && !importer->anon_vma) { 825 int error; 826 827 importer->anon_vma = exporter->anon_vma; 828 error = anon_vma_clone(importer, exporter); 829 if (error) 830 return error; 831 } 832 } 833 again: 834 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 835 836 if (file) { 837 mapping = file->f_mapping; 838 root = &mapping->i_mmap; 839 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 840 841 if (adjust_next) 842 uprobe_munmap(next, next->vm_start, next->vm_end); 843 844 i_mmap_lock_write(mapping); 845 if (insert) { 846 /* 847 * Put into interval tree now, so instantiated pages 848 * are visible to arm/parisc __flush_dcache_page 849 * throughout; but we cannot insert into address 850 * space until vma start or end is updated. 851 */ 852 __vma_link_file(insert); 853 } 854 } 855 856 anon_vma = vma->anon_vma; 857 if (!anon_vma && adjust_next) 858 anon_vma = next->anon_vma; 859 if (anon_vma) { 860 VM_WARN_ON(adjust_next && next->anon_vma && 861 anon_vma != next->anon_vma); 862 anon_vma_lock_write(anon_vma); 863 anon_vma_interval_tree_pre_update_vma(vma); 864 if (adjust_next) 865 anon_vma_interval_tree_pre_update_vma(next); 866 } 867 868 if (file) { 869 flush_dcache_mmap_lock(mapping); 870 vma_interval_tree_remove(vma, root); 871 if (adjust_next) 872 vma_interval_tree_remove(next, root); 873 } 874 875 if (start != vma->vm_start) { 876 vma->vm_start = start; 877 start_changed = true; 878 } 879 if (end != vma->vm_end) { 880 vma->vm_end = end; 881 end_changed = true; 882 } 883 vma->vm_pgoff = pgoff; 884 if (adjust_next) { 885 next->vm_start += adjust_next; 886 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 887 } 888 889 if (file) { 890 if (adjust_next) 891 vma_interval_tree_insert(next, root); 892 vma_interval_tree_insert(vma, root); 893 flush_dcache_mmap_unlock(mapping); 894 } 895 896 if (remove_next) { 897 /* 898 * vma_merge has merged next into vma, and needs 899 * us to remove next before dropping the locks. 900 */ 901 if (remove_next != 3) 902 __vma_unlink(mm, next, next); 903 else 904 /* 905 * vma is not before next if they've been 906 * swapped. 907 * 908 * pre-swap() next->vm_start was reduced so 909 * tell validate_mm_rb to ignore pre-swap() 910 * "next" (which is stored in post-swap() 911 * "vma"). 912 */ 913 __vma_unlink(mm, next, vma); 914 if (file) 915 __remove_shared_vm_struct(next, file, mapping); 916 } else if (insert) { 917 /* 918 * split_vma has split insert from vma, and needs 919 * us to insert it before dropping the locks 920 * (it may either follow vma or precede it). 921 */ 922 __insert_vm_struct(mm, insert); 923 } else { 924 if (start_changed) 925 vma_gap_update(vma); 926 if (end_changed) { 927 if (!next) 928 mm->highest_vm_end = vm_end_gap(vma); 929 else if (!adjust_next) 930 vma_gap_update(next); 931 } 932 } 933 934 if (anon_vma) { 935 anon_vma_interval_tree_post_update_vma(vma); 936 if (adjust_next) 937 anon_vma_interval_tree_post_update_vma(next); 938 anon_vma_unlock_write(anon_vma); 939 } 940 941 if (file) { 942 i_mmap_unlock_write(mapping); 943 uprobe_mmap(vma); 944 945 if (adjust_next) 946 uprobe_mmap(next); 947 } 948 949 if (remove_next) { 950 if (file) { 951 uprobe_munmap(next, next->vm_start, next->vm_end); 952 fput(file); 953 } 954 if (next->anon_vma) 955 anon_vma_merge(vma, next); 956 mm->map_count--; 957 mpol_put(vma_policy(next)); 958 vm_area_free(next); 959 /* 960 * In mprotect's case 6 (see comments on vma_merge), 961 * we must remove another next too. It would clutter 962 * up the code too much to do both in one go. 963 */ 964 if (remove_next != 3) { 965 /* 966 * If "next" was removed and vma->vm_end was 967 * expanded (up) over it, in turn 968 * "next->vm_prev->vm_end" changed and the 969 * "vma->vm_next" gap must be updated. 970 */ 971 next = vma->vm_next; 972 } else { 973 /* 974 * For the scope of the comment "next" and 975 * "vma" considered pre-swap(): if "vma" was 976 * removed, next->vm_start was expanded (down) 977 * over it and the "next" gap must be updated. 978 * Because of the swap() the post-swap() "vma" 979 * actually points to pre-swap() "next" 980 * (post-swap() "next" as opposed is now a 981 * dangling pointer). 982 */ 983 next = vma; 984 } 985 if (remove_next == 2) { 986 remove_next = 1; 987 end = next->vm_end; 988 goto again; 989 } 990 else if (next) 991 vma_gap_update(next); 992 else { 993 /* 994 * If remove_next == 2 we obviously can't 995 * reach this path. 996 * 997 * If remove_next == 3 we can't reach this 998 * path because pre-swap() next is always not 999 * NULL. pre-swap() "next" is not being 1000 * removed and its next->vm_end is not altered 1001 * (and furthermore "end" already matches 1002 * next->vm_end in remove_next == 3). 1003 * 1004 * We reach this only in the remove_next == 1 1005 * case if the "next" vma that was removed was 1006 * the highest vma of the mm. However in such 1007 * case next->vm_end == "end" and the extended 1008 * "vma" has vma->vm_end == next->vm_end so 1009 * mm->highest_vm_end doesn't need any update 1010 * in remove_next == 1 case. 1011 */ 1012 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1013 } 1014 } 1015 if (insert && file) 1016 uprobe_mmap(insert); 1017 1018 validate_mm(mm); 1019 1020 return 0; 1021 } 1022 1023 /* 1024 * If the vma has a ->close operation then the driver probably needs to release 1025 * per-vma resources, so we don't attempt to merge those. 1026 */ 1027 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1028 struct file *file, unsigned long vm_flags, 1029 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1030 { 1031 /* 1032 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1033 * match the flags but dirty bit -- the caller should mark 1034 * merged VMA as dirty. If dirty bit won't be excluded from 1035 * comparison, we increase pressure on the memory system forcing 1036 * the kernel to generate new VMAs when old one could be 1037 * extended instead. 1038 */ 1039 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1040 return 0; 1041 if (vma->vm_file != file) 1042 return 0; 1043 if (vma->vm_ops && vma->vm_ops->close) 1044 return 0; 1045 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1046 return 0; 1047 return 1; 1048 } 1049 1050 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1051 struct anon_vma *anon_vma2, 1052 struct vm_area_struct *vma) 1053 { 1054 /* 1055 * The list_is_singular() test is to avoid merging VMA cloned from 1056 * parents. This can improve scalability caused by anon_vma lock. 1057 */ 1058 if ((!anon_vma1 || !anon_vma2) && (!vma || 1059 list_is_singular(&vma->anon_vma_chain))) 1060 return 1; 1061 return anon_vma1 == anon_vma2; 1062 } 1063 1064 /* 1065 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1066 * in front of (at a lower virtual address and file offset than) the vma. 1067 * 1068 * We cannot merge two vmas if they have differently assigned (non-NULL) 1069 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1070 * 1071 * We don't check here for the merged mmap wrapping around the end of pagecache 1072 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1073 * wrap, nor mmaps which cover the final page at index -1UL. 1074 */ 1075 static int 1076 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1077 struct anon_vma *anon_vma, struct file *file, 1078 pgoff_t vm_pgoff, 1079 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1080 { 1081 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1082 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1083 if (vma->vm_pgoff == vm_pgoff) 1084 return 1; 1085 } 1086 return 0; 1087 } 1088 1089 /* 1090 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1091 * beyond (at a higher virtual address and file offset than) the vma. 1092 * 1093 * We cannot merge two vmas if they have differently assigned (non-NULL) 1094 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1095 */ 1096 static int 1097 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1098 struct anon_vma *anon_vma, struct file *file, 1099 pgoff_t vm_pgoff, 1100 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1101 { 1102 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1103 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1104 pgoff_t vm_pglen; 1105 vm_pglen = vma_pages(vma); 1106 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1107 return 1; 1108 } 1109 return 0; 1110 } 1111 1112 /* 1113 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1114 * whether that can be merged with its predecessor or its successor. 1115 * Or both (it neatly fills a hole). 1116 * 1117 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1118 * certain not to be mapped by the time vma_merge is called; but when 1119 * called for mprotect, it is certain to be already mapped (either at 1120 * an offset within prev, or at the start of next), and the flags of 1121 * this area are about to be changed to vm_flags - and the no-change 1122 * case has already been eliminated. 1123 * 1124 * The following mprotect cases have to be considered, where AAAA is 1125 * the area passed down from mprotect_fixup, never extending beyond one 1126 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1127 * 1128 * AAAA AAAA AAAA 1129 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1130 * cannot merge might become might become 1131 * PPNNNNNNNNNN PPPPPPPPPPNN 1132 * mmap, brk or case 4 below case 5 below 1133 * mremap move: 1134 * AAAA AAAA 1135 * PPPP NNNN PPPPNNNNXXXX 1136 * might become might become 1137 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1138 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1139 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1140 * 1141 * It is important for case 8 that the vma NNNN overlapping the 1142 * region AAAA is never going to extended over XXXX. Instead XXXX must 1143 * be extended in region AAAA and NNNN must be removed. This way in 1144 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1145 * rmap_locks, the properties of the merged vma will be already 1146 * correct for the whole merged range. Some of those properties like 1147 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1148 * be correct for the whole merged range immediately after the 1149 * rmap_locks are released. Otherwise if XXXX would be removed and 1150 * NNNN would be extended over the XXXX range, remove_migration_ptes 1151 * or other rmap walkers (if working on addresses beyond the "end" 1152 * parameter) may establish ptes with the wrong permissions of NNNN 1153 * instead of the right permissions of XXXX. 1154 */ 1155 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1156 struct vm_area_struct *prev, unsigned long addr, 1157 unsigned long end, unsigned long vm_flags, 1158 struct anon_vma *anon_vma, struct file *file, 1159 pgoff_t pgoff, struct mempolicy *policy, 1160 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1161 { 1162 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1163 struct vm_area_struct *area, *next; 1164 int err; 1165 1166 /* 1167 * We later require that vma->vm_flags == vm_flags, 1168 * so this tests vma->vm_flags & VM_SPECIAL, too. 1169 */ 1170 if (vm_flags & VM_SPECIAL) 1171 return NULL; 1172 1173 next = vma_next(mm, prev); 1174 area = next; 1175 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1176 next = next->vm_next; 1177 1178 /* verify some invariant that must be enforced by the caller */ 1179 VM_WARN_ON(prev && addr <= prev->vm_start); 1180 VM_WARN_ON(area && end > area->vm_end); 1181 VM_WARN_ON(addr >= end); 1182 1183 /* 1184 * Can it merge with the predecessor? 1185 */ 1186 if (prev && prev->vm_end == addr && 1187 mpol_equal(vma_policy(prev), policy) && 1188 can_vma_merge_after(prev, vm_flags, 1189 anon_vma, file, pgoff, 1190 vm_userfaultfd_ctx)) { 1191 /* 1192 * OK, it can. Can we now merge in the successor as well? 1193 */ 1194 if (next && end == next->vm_start && 1195 mpol_equal(policy, vma_policy(next)) && 1196 can_vma_merge_before(next, vm_flags, 1197 anon_vma, file, 1198 pgoff+pglen, 1199 vm_userfaultfd_ctx) && 1200 is_mergeable_anon_vma(prev->anon_vma, 1201 next->anon_vma, NULL)) { 1202 /* cases 1, 6 */ 1203 err = __vma_adjust(prev, prev->vm_start, 1204 next->vm_end, prev->vm_pgoff, NULL, 1205 prev); 1206 } else /* cases 2, 5, 7 */ 1207 err = __vma_adjust(prev, prev->vm_start, 1208 end, prev->vm_pgoff, NULL, prev); 1209 if (err) 1210 return NULL; 1211 khugepaged_enter_vma_merge(prev, vm_flags); 1212 return prev; 1213 } 1214 1215 /* 1216 * Can this new request be merged in front of next? 1217 */ 1218 if (next && end == next->vm_start && 1219 mpol_equal(policy, vma_policy(next)) && 1220 can_vma_merge_before(next, vm_flags, 1221 anon_vma, file, pgoff+pglen, 1222 vm_userfaultfd_ctx)) { 1223 if (prev && addr < prev->vm_end) /* case 4 */ 1224 err = __vma_adjust(prev, prev->vm_start, 1225 addr, prev->vm_pgoff, NULL, next); 1226 else { /* cases 3, 8 */ 1227 err = __vma_adjust(area, addr, next->vm_end, 1228 next->vm_pgoff - pglen, NULL, next); 1229 /* 1230 * In case 3 area is already equal to next and 1231 * this is a noop, but in case 8 "area" has 1232 * been removed and next was expanded over it. 1233 */ 1234 area = next; 1235 } 1236 if (err) 1237 return NULL; 1238 khugepaged_enter_vma_merge(area, vm_flags); 1239 return area; 1240 } 1241 1242 return NULL; 1243 } 1244 1245 /* 1246 * Rough compatibility check to quickly see if it's even worth looking 1247 * at sharing an anon_vma. 1248 * 1249 * They need to have the same vm_file, and the flags can only differ 1250 * in things that mprotect may change. 1251 * 1252 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1253 * we can merge the two vma's. For example, we refuse to merge a vma if 1254 * there is a vm_ops->close() function, because that indicates that the 1255 * driver is doing some kind of reference counting. But that doesn't 1256 * really matter for the anon_vma sharing case. 1257 */ 1258 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1259 { 1260 return a->vm_end == b->vm_start && 1261 mpol_equal(vma_policy(a), vma_policy(b)) && 1262 a->vm_file == b->vm_file && 1263 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1264 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1265 } 1266 1267 /* 1268 * Do some basic sanity checking to see if we can re-use the anon_vma 1269 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1270 * the same as 'old', the other will be the new one that is trying 1271 * to share the anon_vma. 1272 * 1273 * NOTE! This runs with mm_sem held for reading, so it is possible that 1274 * the anon_vma of 'old' is concurrently in the process of being set up 1275 * by another page fault trying to merge _that_. But that's ok: if it 1276 * is being set up, that automatically means that it will be a singleton 1277 * acceptable for merging, so we can do all of this optimistically. But 1278 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1279 * 1280 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1281 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1282 * is to return an anon_vma that is "complex" due to having gone through 1283 * a fork). 1284 * 1285 * We also make sure that the two vma's are compatible (adjacent, 1286 * and with the same memory policies). That's all stable, even with just 1287 * a read lock on the mm_sem. 1288 */ 1289 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1290 { 1291 if (anon_vma_compatible(a, b)) { 1292 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1293 1294 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1295 return anon_vma; 1296 } 1297 return NULL; 1298 } 1299 1300 /* 1301 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1302 * neighbouring vmas for a suitable anon_vma, before it goes off 1303 * to allocate a new anon_vma. It checks because a repetitive 1304 * sequence of mprotects and faults may otherwise lead to distinct 1305 * anon_vmas being allocated, preventing vma merge in subsequent 1306 * mprotect. 1307 */ 1308 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1309 { 1310 struct anon_vma *anon_vma = NULL; 1311 1312 /* Try next first. */ 1313 if (vma->vm_next) { 1314 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1315 if (anon_vma) 1316 return anon_vma; 1317 } 1318 1319 /* Try prev next. */ 1320 if (vma->vm_prev) 1321 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1322 1323 /* 1324 * We might reach here with anon_vma == NULL if we can't find 1325 * any reusable anon_vma. 1326 * There's no absolute need to look only at touching neighbours: 1327 * we could search further afield for "compatible" anon_vmas. 1328 * But it would probably just be a waste of time searching, 1329 * or lead to too many vmas hanging off the same anon_vma. 1330 * We're trying to allow mprotect remerging later on, 1331 * not trying to minimize memory used for anon_vmas. 1332 */ 1333 return anon_vma; 1334 } 1335 1336 /* 1337 * If a hint addr is less than mmap_min_addr change hint to be as 1338 * low as possible but still greater than mmap_min_addr 1339 */ 1340 static inline unsigned long round_hint_to_min(unsigned long hint) 1341 { 1342 hint &= PAGE_MASK; 1343 if (((void *)hint != NULL) && 1344 (hint < mmap_min_addr)) 1345 return PAGE_ALIGN(mmap_min_addr); 1346 return hint; 1347 } 1348 1349 static inline int mlock_future_check(struct mm_struct *mm, 1350 unsigned long flags, 1351 unsigned long len) 1352 { 1353 unsigned long locked, lock_limit; 1354 1355 /* mlock MCL_FUTURE? */ 1356 if (flags & VM_LOCKED) { 1357 locked = len >> PAGE_SHIFT; 1358 locked += mm->locked_vm; 1359 lock_limit = rlimit(RLIMIT_MEMLOCK); 1360 lock_limit >>= PAGE_SHIFT; 1361 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1362 return -EAGAIN; 1363 } 1364 return 0; 1365 } 1366 1367 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1368 { 1369 if (S_ISREG(inode->i_mode)) 1370 return MAX_LFS_FILESIZE; 1371 1372 if (S_ISBLK(inode->i_mode)) 1373 return MAX_LFS_FILESIZE; 1374 1375 if (S_ISSOCK(inode->i_mode)) 1376 return MAX_LFS_FILESIZE; 1377 1378 /* Special "we do even unsigned file positions" case */ 1379 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1380 return 0; 1381 1382 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1383 return ULONG_MAX; 1384 } 1385 1386 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1387 unsigned long pgoff, unsigned long len) 1388 { 1389 u64 maxsize = file_mmap_size_max(file, inode); 1390 1391 if (maxsize && len > maxsize) 1392 return false; 1393 maxsize -= len; 1394 if (pgoff > maxsize >> PAGE_SHIFT) 1395 return false; 1396 return true; 1397 } 1398 1399 /* 1400 * The caller must write-lock current->mm->mmap_lock. 1401 */ 1402 unsigned long do_mmap(struct file *file, unsigned long addr, 1403 unsigned long len, unsigned long prot, 1404 unsigned long flags, unsigned long pgoff, 1405 unsigned long *populate, struct list_head *uf) 1406 { 1407 struct mm_struct *mm = current->mm; 1408 vm_flags_t vm_flags; 1409 int pkey = 0; 1410 1411 *populate = 0; 1412 1413 if (!len) 1414 return -EINVAL; 1415 1416 /* 1417 * Does the application expect PROT_READ to imply PROT_EXEC? 1418 * 1419 * (the exception is when the underlying filesystem is noexec 1420 * mounted, in which case we dont add PROT_EXEC.) 1421 */ 1422 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1423 if (!(file && path_noexec(&file->f_path))) 1424 prot |= PROT_EXEC; 1425 1426 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1427 if (flags & MAP_FIXED_NOREPLACE) 1428 flags |= MAP_FIXED; 1429 1430 if (!(flags & MAP_FIXED)) 1431 addr = round_hint_to_min(addr); 1432 1433 /* Careful about overflows.. */ 1434 len = PAGE_ALIGN(len); 1435 if (!len) 1436 return -ENOMEM; 1437 1438 /* offset overflow? */ 1439 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1440 return -EOVERFLOW; 1441 1442 /* Too many mappings? */ 1443 if (mm->map_count > sysctl_max_map_count) 1444 return -ENOMEM; 1445 1446 /* Obtain the address to map to. we verify (or select) it and ensure 1447 * that it represents a valid section of the address space. 1448 */ 1449 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1450 if (IS_ERR_VALUE(addr)) 1451 return addr; 1452 1453 if (flags & MAP_FIXED_NOREPLACE) { 1454 struct vm_area_struct *vma = find_vma(mm, addr); 1455 1456 if (vma && vma->vm_start < addr + len) 1457 return -EEXIST; 1458 } 1459 1460 if (prot == PROT_EXEC) { 1461 pkey = execute_only_pkey(mm); 1462 if (pkey < 0) 1463 pkey = 0; 1464 } 1465 1466 /* Do simple checking here so the lower-level routines won't have 1467 * to. we assume access permissions have been handled by the open 1468 * of the memory object, so we don't do any here. 1469 */ 1470 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1471 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1472 1473 if (flags & MAP_LOCKED) 1474 if (!can_do_mlock()) 1475 return -EPERM; 1476 1477 if (mlock_future_check(mm, vm_flags, len)) 1478 return -EAGAIN; 1479 1480 if (file) { 1481 struct inode *inode = file_inode(file); 1482 unsigned long flags_mask; 1483 1484 if (!file_mmap_ok(file, inode, pgoff, len)) 1485 return -EOVERFLOW; 1486 1487 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1488 1489 switch (flags & MAP_TYPE) { 1490 case MAP_SHARED: 1491 /* 1492 * Force use of MAP_SHARED_VALIDATE with non-legacy 1493 * flags. E.g. MAP_SYNC is dangerous to use with 1494 * MAP_SHARED as you don't know which consistency model 1495 * you will get. We silently ignore unsupported flags 1496 * with MAP_SHARED to preserve backward compatibility. 1497 */ 1498 flags &= LEGACY_MAP_MASK; 1499 fallthrough; 1500 case MAP_SHARED_VALIDATE: 1501 if (flags & ~flags_mask) 1502 return -EOPNOTSUPP; 1503 if (prot & PROT_WRITE) { 1504 if (!(file->f_mode & FMODE_WRITE)) 1505 return -EACCES; 1506 if (IS_SWAPFILE(file->f_mapping->host)) 1507 return -ETXTBSY; 1508 } 1509 1510 /* 1511 * Make sure we don't allow writing to an append-only 1512 * file.. 1513 */ 1514 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1515 return -EACCES; 1516 1517 /* 1518 * Make sure there are no mandatory locks on the file. 1519 */ 1520 if (locks_verify_locked(file)) 1521 return -EAGAIN; 1522 1523 vm_flags |= VM_SHARED | VM_MAYSHARE; 1524 if (!(file->f_mode & FMODE_WRITE)) 1525 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1526 fallthrough; 1527 case MAP_PRIVATE: 1528 if (!(file->f_mode & FMODE_READ)) 1529 return -EACCES; 1530 if (path_noexec(&file->f_path)) { 1531 if (vm_flags & VM_EXEC) 1532 return -EPERM; 1533 vm_flags &= ~VM_MAYEXEC; 1534 } 1535 1536 if (!file->f_op->mmap) 1537 return -ENODEV; 1538 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1539 return -EINVAL; 1540 break; 1541 1542 default: 1543 return -EINVAL; 1544 } 1545 } else { 1546 switch (flags & MAP_TYPE) { 1547 case MAP_SHARED: 1548 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1549 return -EINVAL; 1550 /* 1551 * Ignore pgoff. 1552 */ 1553 pgoff = 0; 1554 vm_flags |= VM_SHARED | VM_MAYSHARE; 1555 break; 1556 case MAP_PRIVATE: 1557 /* 1558 * Set pgoff according to addr for anon_vma. 1559 */ 1560 pgoff = addr >> PAGE_SHIFT; 1561 break; 1562 default: 1563 return -EINVAL; 1564 } 1565 } 1566 1567 /* 1568 * Set 'VM_NORESERVE' if we should not account for the 1569 * memory use of this mapping. 1570 */ 1571 if (flags & MAP_NORESERVE) { 1572 /* We honor MAP_NORESERVE if allowed to overcommit */ 1573 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1574 vm_flags |= VM_NORESERVE; 1575 1576 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1577 if (file && is_file_hugepages(file)) 1578 vm_flags |= VM_NORESERVE; 1579 } 1580 1581 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1582 if (!IS_ERR_VALUE(addr) && 1583 ((vm_flags & VM_LOCKED) || 1584 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1585 *populate = len; 1586 return addr; 1587 } 1588 1589 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1590 unsigned long prot, unsigned long flags, 1591 unsigned long fd, unsigned long pgoff) 1592 { 1593 struct file *file = NULL; 1594 unsigned long retval; 1595 1596 if (!(flags & MAP_ANONYMOUS)) { 1597 audit_mmap_fd(fd, flags); 1598 file = fget(fd); 1599 if (!file) 1600 return -EBADF; 1601 if (is_file_hugepages(file)) { 1602 len = ALIGN(len, huge_page_size(hstate_file(file))); 1603 } else if (unlikely(flags & MAP_HUGETLB)) { 1604 retval = -EINVAL; 1605 goto out_fput; 1606 } 1607 } else if (flags & MAP_HUGETLB) { 1608 struct user_struct *user = NULL; 1609 struct hstate *hs; 1610 1611 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1612 if (!hs) 1613 return -EINVAL; 1614 1615 len = ALIGN(len, huge_page_size(hs)); 1616 /* 1617 * VM_NORESERVE is used because the reservations will be 1618 * taken when vm_ops->mmap() is called 1619 * A dummy user value is used because we are not locking 1620 * memory so no accounting is necessary 1621 */ 1622 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1623 VM_NORESERVE, 1624 &user, HUGETLB_ANONHUGE_INODE, 1625 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1626 if (IS_ERR(file)) 1627 return PTR_ERR(file); 1628 } 1629 1630 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1631 1632 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1633 out_fput: 1634 if (file) 1635 fput(file); 1636 return retval; 1637 } 1638 1639 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1640 unsigned long, prot, unsigned long, flags, 1641 unsigned long, fd, unsigned long, pgoff) 1642 { 1643 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1644 } 1645 1646 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1647 struct mmap_arg_struct { 1648 unsigned long addr; 1649 unsigned long len; 1650 unsigned long prot; 1651 unsigned long flags; 1652 unsigned long fd; 1653 unsigned long offset; 1654 }; 1655 1656 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1657 { 1658 struct mmap_arg_struct a; 1659 1660 if (copy_from_user(&a, arg, sizeof(a))) 1661 return -EFAULT; 1662 if (offset_in_page(a.offset)) 1663 return -EINVAL; 1664 1665 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1666 a.offset >> PAGE_SHIFT); 1667 } 1668 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1669 1670 /* 1671 * Some shared mappings will want the pages marked read-only 1672 * to track write events. If so, we'll downgrade vm_page_prot 1673 * to the private version (using protection_map[] without the 1674 * VM_SHARED bit). 1675 */ 1676 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1677 { 1678 vm_flags_t vm_flags = vma->vm_flags; 1679 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1680 1681 /* If it was private or non-writable, the write bit is already clear */ 1682 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1683 return 0; 1684 1685 /* The backer wishes to know when pages are first written to? */ 1686 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1687 return 1; 1688 1689 /* The open routine did something to the protections that pgprot_modify 1690 * won't preserve? */ 1691 if (pgprot_val(vm_page_prot) != 1692 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1693 return 0; 1694 1695 /* Do we need to track softdirty? */ 1696 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1697 return 1; 1698 1699 /* Specialty mapping? */ 1700 if (vm_flags & VM_PFNMAP) 1701 return 0; 1702 1703 /* Can the mapping track the dirty pages? */ 1704 return vma->vm_file && vma->vm_file->f_mapping && 1705 mapping_can_writeback(vma->vm_file->f_mapping); 1706 } 1707 1708 /* 1709 * We account for memory if it's a private writeable mapping, 1710 * not hugepages and VM_NORESERVE wasn't set. 1711 */ 1712 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1713 { 1714 /* 1715 * hugetlb has its own accounting separate from the core VM 1716 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1717 */ 1718 if (file && is_file_hugepages(file)) 1719 return 0; 1720 1721 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1722 } 1723 1724 unsigned long mmap_region(struct file *file, unsigned long addr, 1725 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1726 struct list_head *uf) 1727 { 1728 struct mm_struct *mm = current->mm; 1729 struct vm_area_struct *vma, *prev, *merge; 1730 int error; 1731 struct rb_node **rb_link, *rb_parent; 1732 unsigned long charged = 0; 1733 1734 /* Check against address space limit. */ 1735 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1736 unsigned long nr_pages; 1737 1738 /* 1739 * MAP_FIXED may remove pages of mappings that intersects with 1740 * requested mapping. Account for the pages it would unmap. 1741 */ 1742 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1743 1744 if (!may_expand_vm(mm, vm_flags, 1745 (len >> PAGE_SHIFT) - nr_pages)) 1746 return -ENOMEM; 1747 } 1748 1749 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1750 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1751 return -ENOMEM; 1752 /* 1753 * Private writable mapping: check memory availability 1754 */ 1755 if (accountable_mapping(file, vm_flags)) { 1756 charged = len >> PAGE_SHIFT; 1757 if (security_vm_enough_memory_mm(mm, charged)) 1758 return -ENOMEM; 1759 vm_flags |= VM_ACCOUNT; 1760 } 1761 1762 /* 1763 * Can we just expand an old mapping? 1764 */ 1765 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1766 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1767 if (vma) 1768 goto out; 1769 1770 /* 1771 * Determine the object being mapped and call the appropriate 1772 * specific mapper. the address has already been validated, but 1773 * not unmapped, but the maps are removed from the list. 1774 */ 1775 vma = vm_area_alloc(mm); 1776 if (!vma) { 1777 error = -ENOMEM; 1778 goto unacct_error; 1779 } 1780 1781 vma->vm_start = addr; 1782 vma->vm_end = addr + len; 1783 vma->vm_flags = vm_flags; 1784 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1785 vma->vm_pgoff = pgoff; 1786 1787 if (file) { 1788 if (vm_flags & VM_DENYWRITE) { 1789 error = deny_write_access(file); 1790 if (error) 1791 goto free_vma; 1792 } 1793 if (vm_flags & VM_SHARED) { 1794 error = mapping_map_writable(file->f_mapping); 1795 if (error) 1796 goto allow_write_and_free_vma; 1797 } 1798 1799 /* ->mmap() can change vma->vm_file, but must guarantee that 1800 * vma_link() below can deny write-access if VM_DENYWRITE is set 1801 * and map writably if VM_SHARED is set. This usually means the 1802 * new file must not have been exposed to user-space, yet. 1803 */ 1804 vma->vm_file = get_file(file); 1805 error = call_mmap(file, vma); 1806 if (error) 1807 goto unmap_and_free_vma; 1808 1809 /* Can addr have changed?? 1810 * 1811 * Answer: Yes, several device drivers can do it in their 1812 * f_op->mmap method. -DaveM 1813 * Bug: If addr is changed, prev, rb_link, rb_parent should 1814 * be updated for vma_link() 1815 */ 1816 WARN_ON_ONCE(addr != vma->vm_start); 1817 1818 addr = vma->vm_start; 1819 1820 /* If vm_flags changed after call_mmap(), we should try merge vma again 1821 * as we may succeed this time. 1822 */ 1823 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1824 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1825 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1826 if (merge) { 1827 /* ->mmap() can change vma->vm_file and fput the original file. So 1828 * fput the vma->vm_file here or we would add an extra fput for file 1829 * and cause general protection fault ultimately. 1830 */ 1831 fput(vma->vm_file); 1832 vm_area_free(vma); 1833 vma = merge; 1834 /* Update vm_flags to pick up the change. */ 1835 vm_flags = vma->vm_flags; 1836 goto unmap_writable; 1837 } 1838 } 1839 1840 vm_flags = vma->vm_flags; 1841 } else if (vm_flags & VM_SHARED) { 1842 error = shmem_zero_setup(vma); 1843 if (error) 1844 goto free_vma; 1845 } else { 1846 vma_set_anonymous(vma); 1847 } 1848 1849 /* Allow architectures to sanity-check the vm_flags */ 1850 if (!arch_validate_flags(vma->vm_flags)) { 1851 error = -EINVAL; 1852 if (file) 1853 goto unmap_and_free_vma; 1854 else 1855 goto free_vma; 1856 } 1857 1858 vma_link(mm, vma, prev, rb_link, rb_parent); 1859 /* Once vma denies write, undo our temporary denial count */ 1860 if (file) { 1861 unmap_writable: 1862 if (vm_flags & VM_SHARED) 1863 mapping_unmap_writable(file->f_mapping); 1864 if (vm_flags & VM_DENYWRITE) 1865 allow_write_access(file); 1866 } 1867 file = vma->vm_file; 1868 out: 1869 perf_event_mmap(vma); 1870 1871 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1872 if (vm_flags & VM_LOCKED) { 1873 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1874 is_vm_hugetlb_page(vma) || 1875 vma == get_gate_vma(current->mm)) 1876 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1877 else 1878 mm->locked_vm += (len >> PAGE_SHIFT); 1879 } 1880 1881 if (file) 1882 uprobe_mmap(vma); 1883 1884 /* 1885 * New (or expanded) vma always get soft dirty status. 1886 * Otherwise user-space soft-dirty page tracker won't 1887 * be able to distinguish situation when vma area unmapped, 1888 * then new mapped in-place (which must be aimed as 1889 * a completely new data area). 1890 */ 1891 vma->vm_flags |= VM_SOFTDIRTY; 1892 1893 vma_set_page_prot(vma); 1894 1895 return addr; 1896 1897 unmap_and_free_vma: 1898 fput(vma->vm_file); 1899 vma->vm_file = NULL; 1900 1901 /* Undo any partial mapping done by a device driver. */ 1902 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1903 charged = 0; 1904 if (vm_flags & VM_SHARED) 1905 mapping_unmap_writable(file->f_mapping); 1906 allow_write_and_free_vma: 1907 if (vm_flags & VM_DENYWRITE) 1908 allow_write_access(file); 1909 free_vma: 1910 vm_area_free(vma); 1911 unacct_error: 1912 if (charged) 1913 vm_unacct_memory(charged); 1914 return error; 1915 } 1916 1917 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1918 { 1919 /* 1920 * We implement the search by looking for an rbtree node that 1921 * immediately follows a suitable gap. That is, 1922 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1923 * - gap_end = vma->vm_start >= info->low_limit + length; 1924 * - gap_end - gap_start >= length 1925 */ 1926 1927 struct mm_struct *mm = current->mm; 1928 struct vm_area_struct *vma; 1929 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1930 1931 /* Adjust search length to account for worst case alignment overhead */ 1932 length = info->length + info->align_mask; 1933 if (length < info->length) 1934 return -ENOMEM; 1935 1936 /* Adjust search limits by the desired length */ 1937 if (info->high_limit < length) 1938 return -ENOMEM; 1939 high_limit = info->high_limit - length; 1940 1941 if (info->low_limit > high_limit) 1942 return -ENOMEM; 1943 low_limit = info->low_limit + length; 1944 1945 /* Check if rbtree root looks promising */ 1946 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1947 goto check_highest; 1948 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1949 if (vma->rb_subtree_gap < length) 1950 goto check_highest; 1951 1952 while (true) { 1953 /* Visit left subtree if it looks promising */ 1954 gap_end = vm_start_gap(vma); 1955 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1956 struct vm_area_struct *left = 1957 rb_entry(vma->vm_rb.rb_left, 1958 struct vm_area_struct, vm_rb); 1959 if (left->rb_subtree_gap >= length) { 1960 vma = left; 1961 continue; 1962 } 1963 } 1964 1965 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1966 check_current: 1967 /* Check if current node has a suitable gap */ 1968 if (gap_start > high_limit) 1969 return -ENOMEM; 1970 if (gap_end >= low_limit && 1971 gap_end > gap_start && gap_end - gap_start >= length) 1972 goto found; 1973 1974 /* Visit right subtree if it looks promising */ 1975 if (vma->vm_rb.rb_right) { 1976 struct vm_area_struct *right = 1977 rb_entry(vma->vm_rb.rb_right, 1978 struct vm_area_struct, vm_rb); 1979 if (right->rb_subtree_gap >= length) { 1980 vma = right; 1981 continue; 1982 } 1983 } 1984 1985 /* Go back up the rbtree to find next candidate node */ 1986 while (true) { 1987 struct rb_node *prev = &vma->vm_rb; 1988 if (!rb_parent(prev)) 1989 goto check_highest; 1990 vma = rb_entry(rb_parent(prev), 1991 struct vm_area_struct, vm_rb); 1992 if (prev == vma->vm_rb.rb_left) { 1993 gap_start = vm_end_gap(vma->vm_prev); 1994 gap_end = vm_start_gap(vma); 1995 goto check_current; 1996 } 1997 } 1998 } 1999 2000 check_highest: 2001 /* Check highest gap, which does not precede any rbtree node */ 2002 gap_start = mm->highest_vm_end; 2003 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 2004 if (gap_start > high_limit) 2005 return -ENOMEM; 2006 2007 found: 2008 /* We found a suitable gap. Clip it with the original low_limit. */ 2009 if (gap_start < info->low_limit) 2010 gap_start = info->low_limit; 2011 2012 /* Adjust gap address to the desired alignment */ 2013 gap_start += (info->align_offset - gap_start) & info->align_mask; 2014 2015 VM_BUG_ON(gap_start + info->length > info->high_limit); 2016 VM_BUG_ON(gap_start + info->length > gap_end); 2017 return gap_start; 2018 } 2019 2020 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2021 { 2022 struct mm_struct *mm = current->mm; 2023 struct vm_area_struct *vma; 2024 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2025 2026 /* Adjust search length to account for worst case alignment overhead */ 2027 length = info->length + info->align_mask; 2028 if (length < info->length) 2029 return -ENOMEM; 2030 2031 /* 2032 * Adjust search limits by the desired length. 2033 * See implementation comment at top of unmapped_area(). 2034 */ 2035 gap_end = info->high_limit; 2036 if (gap_end < length) 2037 return -ENOMEM; 2038 high_limit = gap_end - length; 2039 2040 if (info->low_limit > high_limit) 2041 return -ENOMEM; 2042 low_limit = info->low_limit + length; 2043 2044 /* Check highest gap, which does not precede any rbtree node */ 2045 gap_start = mm->highest_vm_end; 2046 if (gap_start <= high_limit) 2047 goto found_highest; 2048 2049 /* Check if rbtree root looks promising */ 2050 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2051 return -ENOMEM; 2052 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2053 if (vma->rb_subtree_gap < length) 2054 return -ENOMEM; 2055 2056 while (true) { 2057 /* Visit right subtree if it looks promising */ 2058 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2059 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2060 struct vm_area_struct *right = 2061 rb_entry(vma->vm_rb.rb_right, 2062 struct vm_area_struct, vm_rb); 2063 if (right->rb_subtree_gap >= length) { 2064 vma = right; 2065 continue; 2066 } 2067 } 2068 2069 check_current: 2070 /* Check if current node has a suitable gap */ 2071 gap_end = vm_start_gap(vma); 2072 if (gap_end < low_limit) 2073 return -ENOMEM; 2074 if (gap_start <= high_limit && 2075 gap_end > gap_start && gap_end - gap_start >= length) 2076 goto found; 2077 2078 /* Visit left subtree if it looks promising */ 2079 if (vma->vm_rb.rb_left) { 2080 struct vm_area_struct *left = 2081 rb_entry(vma->vm_rb.rb_left, 2082 struct vm_area_struct, vm_rb); 2083 if (left->rb_subtree_gap >= length) { 2084 vma = left; 2085 continue; 2086 } 2087 } 2088 2089 /* Go back up the rbtree to find next candidate node */ 2090 while (true) { 2091 struct rb_node *prev = &vma->vm_rb; 2092 if (!rb_parent(prev)) 2093 return -ENOMEM; 2094 vma = rb_entry(rb_parent(prev), 2095 struct vm_area_struct, vm_rb); 2096 if (prev == vma->vm_rb.rb_right) { 2097 gap_start = vma->vm_prev ? 2098 vm_end_gap(vma->vm_prev) : 0; 2099 goto check_current; 2100 } 2101 } 2102 } 2103 2104 found: 2105 /* We found a suitable gap. Clip it with the original high_limit. */ 2106 if (gap_end > info->high_limit) 2107 gap_end = info->high_limit; 2108 2109 found_highest: 2110 /* Compute highest gap address at the desired alignment */ 2111 gap_end -= info->length; 2112 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2113 2114 VM_BUG_ON(gap_end < info->low_limit); 2115 VM_BUG_ON(gap_end < gap_start); 2116 return gap_end; 2117 } 2118 2119 /* 2120 * Search for an unmapped address range. 2121 * 2122 * We are looking for a range that: 2123 * - does not intersect with any VMA; 2124 * - is contained within the [low_limit, high_limit) interval; 2125 * - is at least the desired size. 2126 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2127 */ 2128 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2129 { 2130 unsigned long addr; 2131 2132 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2133 addr = unmapped_area_topdown(info); 2134 else 2135 addr = unmapped_area(info); 2136 2137 trace_vm_unmapped_area(addr, info); 2138 return addr; 2139 } 2140 2141 #ifndef arch_get_mmap_end 2142 #define arch_get_mmap_end(addr) (TASK_SIZE) 2143 #endif 2144 2145 #ifndef arch_get_mmap_base 2146 #define arch_get_mmap_base(addr, base) (base) 2147 #endif 2148 2149 /* Get an address range which is currently unmapped. 2150 * For shmat() with addr=0. 2151 * 2152 * Ugly calling convention alert: 2153 * Return value with the low bits set means error value, 2154 * ie 2155 * if (ret & ~PAGE_MASK) 2156 * error = ret; 2157 * 2158 * This function "knows" that -ENOMEM has the bits set. 2159 */ 2160 #ifndef HAVE_ARCH_UNMAPPED_AREA 2161 unsigned long 2162 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2163 unsigned long len, unsigned long pgoff, unsigned long flags) 2164 { 2165 struct mm_struct *mm = current->mm; 2166 struct vm_area_struct *vma, *prev; 2167 struct vm_unmapped_area_info info; 2168 const unsigned long mmap_end = arch_get_mmap_end(addr); 2169 2170 if (len > mmap_end - mmap_min_addr) 2171 return -ENOMEM; 2172 2173 if (flags & MAP_FIXED) 2174 return addr; 2175 2176 if (addr) { 2177 addr = PAGE_ALIGN(addr); 2178 vma = find_vma_prev(mm, addr, &prev); 2179 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2180 (!vma || addr + len <= vm_start_gap(vma)) && 2181 (!prev || addr >= vm_end_gap(prev))) 2182 return addr; 2183 } 2184 2185 info.flags = 0; 2186 info.length = len; 2187 info.low_limit = mm->mmap_base; 2188 info.high_limit = mmap_end; 2189 info.align_mask = 0; 2190 info.align_offset = 0; 2191 return vm_unmapped_area(&info); 2192 } 2193 #endif 2194 2195 /* 2196 * This mmap-allocator allocates new areas top-down from below the 2197 * stack's low limit (the base): 2198 */ 2199 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2200 unsigned long 2201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2202 unsigned long len, unsigned long pgoff, 2203 unsigned long flags) 2204 { 2205 struct vm_area_struct *vma, *prev; 2206 struct mm_struct *mm = current->mm; 2207 struct vm_unmapped_area_info info; 2208 const unsigned long mmap_end = arch_get_mmap_end(addr); 2209 2210 /* requested length too big for entire address space */ 2211 if (len > mmap_end - mmap_min_addr) 2212 return -ENOMEM; 2213 2214 if (flags & MAP_FIXED) 2215 return addr; 2216 2217 /* requesting a specific address */ 2218 if (addr) { 2219 addr = PAGE_ALIGN(addr); 2220 vma = find_vma_prev(mm, addr, &prev); 2221 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2222 (!vma || addr + len <= vm_start_gap(vma)) && 2223 (!prev || addr >= vm_end_gap(prev))) 2224 return addr; 2225 } 2226 2227 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2228 info.length = len; 2229 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2230 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2231 info.align_mask = 0; 2232 info.align_offset = 0; 2233 addr = vm_unmapped_area(&info); 2234 2235 /* 2236 * A failed mmap() very likely causes application failure, 2237 * so fall back to the bottom-up function here. This scenario 2238 * can happen with large stack limits and large mmap() 2239 * allocations. 2240 */ 2241 if (offset_in_page(addr)) { 2242 VM_BUG_ON(addr != -ENOMEM); 2243 info.flags = 0; 2244 info.low_limit = TASK_UNMAPPED_BASE; 2245 info.high_limit = mmap_end; 2246 addr = vm_unmapped_area(&info); 2247 } 2248 2249 return addr; 2250 } 2251 #endif 2252 2253 unsigned long 2254 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2255 unsigned long pgoff, unsigned long flags) 2256 { 2257 unsigned long (*get_area)(struct file *, unsigned long, 2258 unsigned long, unsigned long, unsigned long); 2259 2260 unsigned long error = arch_mmap_check(addr, len, flags); 2261 if (error) 2262 return error; 2263 2264 /* Careful about overflows.. */ 2265 if (len > TASK_SIZE) 2266 return -ENOMEM; 2267 2268 get_area = current->mm->get_unmapped_area; 2269 if (file) { 2270 if (file->f_op->get_unmapped_area) 2271 get_area = file->f_op->get_unmapped_area; 2272 } else if (flags & MAP_SHARED) { 2273 /* 2274 * mmap_region() will call shmem_zero_setup() to create a file, 2275 * so use shmem's get_unmapped_area in case it can be huge. 2276 * do_mmap() will clear pgoff, so match alignment. 2277 */ 2278 pgoff = 0; 2279 get_area = shmem_get_unmapped_area; 2280 } 2281 2282 addr = get_area(file, addr, len, pgoff, flags); 2283 if (IS_ERR_VALUE(addr)) 2284 return addr; 2285 2286 if (addr > TASK_SIZE - len) 2287 return -ENOMEM; 2288 if (offset_in_page(addr)) 2289 return -EINVAL; 2290 2291 error = security_mmap_addr(addr); 2292 return error ? error : addr; 2293 } 2294 2295 EXPORT_SYMBOL(get_unmapped_area); 2296 2297 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2298 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2299 { 2300 struct rb_node *rb_node; 2301 struct vm_area_struct *vma; 2302 2303 /* Check the cache first. */ 2304 vma = vmacache_find(mm, addr); 2305 if (likely(vma)) 2306 return vma; 2307 2308 rb_node = mm->mm_rb.rb_node; 2309 2310 while (rb_node) { 2311 struct vm_area_struct *tmp; 2312 2313 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2314 2315 if (tmp->vm_end > addr) { 2316 vma = tmp; 2317 if (tmp->vm_start <= addr) 2318 break; 2319 rb_node = rb_node->rb_left; 2320 } else 2321 rb_node = rb_node->rb_right; 2322 } 2323 2324 if (vma) 2325 vmacache_update(addr, vma); 2326 return vma; 2327 } 2328 2329 EXPORT_SYMBOL(find_vma); 2330 2331 /* 2332 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2333 */ 2334 struct vm_area_struct * 2335 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2336 struct vm_area_struct **pprev) 2337 { 2338 struct vm_area_struct *vma; 2339 2340 vma = find_vma(mm, addr); 2341 if (vma) { 2342 *pprev = vma->vm_prev; 2343 } else { 2344 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2345 2346 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2347 } 2348 return vma; 2349 } 2350 2351 /* 2352 * Verify that the stack growth is acceptable and 2353 * update accounting. This is shared with both the 2354 * grow-up and grow-down cases. 2355 */ 2356 static int acct_stack_growth(struct vm_area_struct *vma, 2357 unsigned long size, unsigned long grow) 2358 { 2359 struct mm_struct *mm = vma->vm_mm; 2360 unsigned long new_start; 2361 2362 /* address space limit tests */ 2363 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2364 return -ENOMEM; 2365 2366 /* Stack limit test */ 2367 if (size > rlimit(RLIMIT_STACK)) 2368 return -ENOMEM; 2369 2370 /* mlock limit tests */ 2371 if (vma->vm_flags & VM_LOCKED) { 2372 unsigned long locked; 2373 unsigned long limit; 2374 locked = mm->locked_vm + grow; 2375 limit = rlimit(RLIMIT_MEMLOCK); 2376 limit >>= PAGE_SHIFT; 2377 if (locked > limit && !capable(CAP_IPC_LOCK)) 2378 return -ENOMEM; 2379 } 2380 2381 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2382 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2383 vma->vm_end - size; 2384 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2385 return -EFAULT; 2386 2387 /* 2388 * Overcommit.. This must be the final test, as it will 2389 * update security statistics. 2390 */ 2391 if (security_vm_enough_memory_mm(mm, grow)) 2392 return -ENOMEM; 2393 2394 return 0; 2395 } 2396 2397 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2398 /* 2399 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2400 * vma is the last one with address > vma->vm_end. Have to extend vma. 2401 */ 2402 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2403 { 2404 struct mm_struct *mm = vma->vm_mm; 2405 struct vm_area_struct *next; 2406 unsigned long gap_addr; 2407 int error = 0; 2408 2409 if (!(vma->vm_flags & VM_GROWSUP)) 2410 return -EFAULT; 2411 2412 /* Guard against exceeding limits of the address space. */ 2413 address &= PAGE_MASK; 2414 if (address >= (TASK_SIZE & PAGE_MASK)) 2415 return -ENOMEM; 2416 address += PAGE_SIZE; 2417 2418 /* Enforce stack_guard_gap */ 2419 gap_addr = address + stack_guard_gap; 2420 2421 /* Guard against overflow */ 2422 if (gap_addr < address || gap_addr > TASK_SIZE) 2423 gap_addr = TASK_SIZE; 2424 2425 next = vma->vm_next; 2426 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2427 if (!(next->vm_flags & VM_GROWSUP)) 2428 return -ENOMEM; 2429 /* Check that both stack segments have the same anon_vma? */ 2430 } 2431 2432 /* We must make sure the anon_vma is allocated. */ 2433 if (unlikely(anon_vma_prepare(vma))) 2434 return -ENOMEM; 2435 2436 /* 2437 * vma->vm_start/vm_end cannot change under us because the caller 2438 * is required to hold the mmap_lock in read mode. We need the 2439 * anon_vma lock to serialize against concurrent expand_stacks. 2440 */ 2441 anon_vma_lock_write(vma->anon_vma); 2442 2443 /* Somebody else might have raced and expanded it already */ 2444 if (address > vma->vm_end) { 2445 unsigned long size, grow; 2446 2447 size = address - vma->vm_start; 2448 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2449 2450 error = -ENOMEM; 2451 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2452 error = acct_stack_growth(vma, size, grow); 2453 if (!error) { 2454 /* 2455 * vma_gap_update() doesn't support concurrent 2456 * updates, but we only hold a shared mmap_lock 2457 * lock here, so we need to protect against 2458 * concurrent vma expansions. 2459 * anon_vma_lock_write() doesn't help here, as 2460 * we don't guarantee that all growable vmas 2461 * in a mm share the same root anon vma. 2462 * So, we reuse mm->page_table_lock to guard 2463 * against concurrent vma expansions. 2464 */ 2465 spin_lock(&mm->page_table_lock); 2466 if (vma->vm_flags & VM_LOCKED) 2467 mm->locked_vm += grow; 2468 vm_stat_account(mm, vma->vm_flags, grow); 2469 anon_vma_interval_tree_pre_update_vma(vma); 2470 vma->vm_end = address; 2471 anon_vma_interval_tree_post_update_vma(vma); 2472 if (vma->vm_next) 2473 vma_gap_update(vma->vm_next); 2474 else 2475 mm->highest_vm_end = vm_end_gap(vma); 2476 spin_unlock(&mm->page_table_lock); 2477 2478 perf_event_mmap(vma); 2479 } 2480 } 2481 } 2482 anon_vma_unlock_write(vma->anon_vma); 2483 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2484 validate_mm(mm); 2485 return error; 2486 } 2487 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2488 2489 /* 2490 * vma is the first one with address < vma->vm_start. Have to extend vma. 2491 */ 2492 int expand_downwards(struct vm_area_struct *vma, 2493 unsigned long address) 2494 { 2495 struct mm_struct *mm = vma->vm_mm; 2496 struct vm_area_struct *prev; 2497 int error = 0; 2498 2499 address &= PAGE_MASK; 2500 if (address < mmap_min_addr) 2501 return -EPERM; 2502 2503 /* Enforce stack_guard_gap */ 2504 prev = vma->vm_prev; 2505 /* Check that both stack segments have the same anon_vma? */ 2506 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2507 vma_is_accessible(prev)) { 2508 if (address - prev->vm_end < stack_guard_gap) 2509 return -ENOMEM; 2510 } 2511 2512 /* We must make sure the anon_vma is allocated. */ 2513 if (unlikely(anon_vma_prepare(vma))) 2514 return -ENOMEM; 2515 2516 /* 2517 * vma->vm_start/vm_end cannot change under us because the caller 2518 * is required to hold the mmap_lock in read mode. We need the 2519 * anon_vma lock to serialize against concurrent expand_stacks. 2520 */ 2521 anon_vma_lock_write(vma->anon_vma); 2522 2523 /* Somebody else might have raced and expanded it already */ 2524 if (address < vma->vm_start) { 2525 unsigned long size, grow; 2526 2527 size = vma->vm_end - address; 2528 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2529 2530 error = -ENOMEM; 2531 if (grow <= vma->vm_pgoff) { 2532 error = acct_stack_growth(vma, size, grow); 2533 if (!error) { 2534 /* 2535 * vma_gap_update() doesn't support concurrent 2536 * updates, but we only hold a shared mmap_lock 2537 * lock here, so we need to protect against 2538 * concurrent vma expansions. 2539 * anon_vma_lock_write() doesn't help here, as 2540 * we don't guarantee that all growable vmas 2541 * in a mm share the same root anon vma. 2542 * So, we reuse mm->page_table_lock to guard 2543 * against concurrent vma expansions. 2544 */ 2545 spin_lock(&mm->page_table_lock); 2546 if (vma->vm_flags & VM_LOCKED) 2547 mm->locked_vm += grow; 2548 vm_stat_account(mm, vma->vm_flags, grow); 2549 anon_vma_interval_tree_pre_update_vma(vma); 2550 vma->vm_start = address; 2551 vma->vm_pgoff -= grow; 2552 anon_vma_interval_tree_post_update_vma(vma); 2553 vma_gap_update(vma); 2554 spin_unlock(&mm->page_table_lock); 2555 2556 perf_event_mmap(vma); 2557 } 2558 } 2559 } 2560 anon_vma_unlock_write(vma->anon_vma); 2561 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2562 validate_mm(mm); 2563 return error; 2564 } 2565 2566 /* enforced gap between the expanding stack and other mappings. */ 2567 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2568 2569 static int __init cmdline_parse_stack_guard_gap(char *p) 2570 { 2571 unsigned long val; 2572 char *endptr; 2573 2574 val = simple_strtoul(p, &endptr, 10); 2575 if (!*endptr) 2576 stack_guard_gap = val << PAGE_SHIFT; 2577 2578 return 0; 2579 } 2580 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2581 2582 #ifdef CONFIG_STACK_GROWSUP 2583 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2584 { 2585 return expand_upwards(vma, address); 2586 } 2587 2588 struct vm_area_struct * 2589 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2590 { 2591 struct vm_area_struct *vma, *prev; 2592 2593 addr &= PAGE_MASK; 2594 vma = find_vma_prev(mm, addr, &prev); 2595 if (vma && (vma->vm_start <= addr)) 2596 return vma; 2597 /* don't alter vm_end if the coredump is running */ 2598 if (!prev || expand_stack(prev, addr)) 2599 return NULL; 2600 if (prev->vm_flags & VM_LOCKED) 2601 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2602 return prev; 2603 } 2604 #else 2605 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2606 { 2607 return expand_downwards(vma, address); 2608 } 2609 2610 struct vm_area_struct * 2611 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2612 { 2613 struct vm_area_struct *vma; 2614 unsigned long start; 2615 2616 addr &= PAGE_MASK; 2617 vma = find_vma(mm, addr); 2618 if (!vma) 2619 return NULL; 2620 if (vma->vm_start <= addr) 2621 return vma; 2622 if (!(vma->vm_flags & VM_GROWSDOWN)) 2623 return NULL; 2624 start = vma->vm_start; 2625 if (expand_stack(vma, addr)) 2626 return NULL; 2627 if (vma->vm_flags & VM_LOCKED) 2628 populate_vma_page_range(vma, addr, start, NULL); 2629 return vma; 2630 } 2631 #endif 2632 2633 EXPORT_SYMBOL_GPL(find_extend_vma); 2634 2635 /* 2636 * Ok - we have the memory areas we should free on the vma list, 2637 * so release them, and do the vma updates. 2638 * 2639 * Called with the mm semaphore held. 2640 */ 2641 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2642 { 2643 unsigned long nr_accounted = 0; 2644 2645 /* Update high watermark before we lower total_vm */ 2646 update_hiwater_vm(mm); 2647 do { 2648 long nrpages = vma_pages(vma); 2649 2650 if (vma->vm_flags & VM_ACCOUNT) 2651 nr_accounted += nrpages; 2652 vm_stat_account(mm, vma->vm_flags, -nrpages); 2653 vma = remove_vma(vma); 2654 } while (vma); 2655 vm_unacct_memory(nr_accounted); 2656 validate_mm(mm); 2657 } 2658 2659 /* 2660 * Get rid of page table information in the indicated region. 2661 * 2662 * Called with the mm semaphore held. 2663 */ 2664 static void unmap_region(struct mm_struct *mm, 2665 struct vm_area_struct *vma, struct vm_area_struct *prev, 2666 unsigned long start, unsigned long end) 2667 { 2668 struct vm_area_struct *next = vma_next(mm, prev); 2669 struct mmu_gather tlb; 2670 2671 lru_add_drain(); 2672 tlb_gather_mmu(&tlb, mm); 2673 update_hiwater_rss(mm); 2674 unmap_vmas(&tlb, vma, start, end); 2675 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2676 next ? next->vm_start : USER_PGTABLES_CEILING); 2677 tlb_finish_mmu(&tlb); 2678 } 2679 2680 /* 2681 * Create a list of vma's touched by the unmap, removing them from the mm's 2682 * vma list as we go.. 2683 */ 2684 static bool 2685 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2686 struct vm_area_struct *prev, unsigned long end) 2687 { 2688 struct vm_area_struct **insertion_point; 2689 struct vm_area_struct *tail_vma = NULL; 2690 2691 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2692 vma->vm_prev = NULL; 2693 do { 2694 vma_rb_erase(vma, &mm->mm_rb); 2695 mm->map_count--; 2696 tail_vma = vma; 2697 vma = vma->vm_next; 2698 } while (vma && vma->vm_start < end); 2699 *insertion_point = vma; 2700 if (vma) { 2701 vma->vm_prev = prev; 2702 vma_gap_update(vma); 2703 } else 2704 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2705 tail_vma->vm_next = NULL; 2706 2707 /* Kill the cache */ 2708 vmacache_invalidate(mm); 2709 2710 /* 2711 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2712 * VM_GROWSUP VMA. Such VMAs can change their size under 2713 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2714 */ 2715 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2716 return false; 2717 if (prev && (prev->vm_flags & VM_GROWSUP)) 2718 return false; 2719 return true; 2720 } 2721 2722 /* 2723 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2724 * has already been checked or doesn't make sense to fail. 2725 */ 2726 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2727 unsigned long addr, int new_below) 2728 { 2729 struct vm_area_struct *new; 2730 int err; 2731 2732 if (vma->vm_ops && vma->vm_ops->may_split) { 2733 err = vma->vm_ops->may_split(vma, addr); 2734 if (err) 2735 return err; 2736 } 2737 2738 new = vm_area_dup(vma); 2739 if (!new) 2740 return -ENOMEM; 2741 2742 if (new_below) 2743 new->vm_end = addr; 2744 else { 2745 new->vm_start = addr; 2746 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2747 } 2748 2749 err = vma_dup_policy(vma, new); 2750 if (err) 2751 goto out_free_vma; 2752 2753 err = anon_vma_clone(new, vma); 2754 if (err) 2755 goto out_free_mpol; 2756 2757 if (new->vm_file) 2758 get_file(new->vm_file); 2759 2760 if (new->vm_ops && new->vm_ops->open) 2761 new->vm_ops->open(new); 2762 2763 if (new_below) 2764 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2765 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2766 else 2767 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2768 2769 /* Success. */ 2770 if (!err) 2771 return 0; 2772 2773 /* Clean everything up if vma_adjust failed. */ 2774 if (new->vm_ops && new->vm_ops->close) 2775 new->vm_ops->close(new); 2776 if (new->vm_file) 2777 fput(new->vm_file); 2778 unlink_anon_vmas(new); 2779 out_free_mpol: 2780 mpol_put(vma_policy(new)); 2781 out_free_vma: 2782 vm_area_free(new); 2783 return err; 2784 } 2785 2786 /* 2787 * Split a vma into two pieces at address 'addr', a new vma is allocated 2788 * either for the first part or the tail. 2789 */ 2790 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2791 unsigned long addr, int new_below) 2792 { 2793 if (mm->map_count >= sysctl_max_map_count) 2794 return -ENOMEM; 2795 2796 return __split_vma(mm, vma, addr, new_below); 2797 } 2798 2799 /* Munmap is split into 2 main parts -- this part which finds 2800 * what needs doing, and the areas themselves, which do the 2801 * work. This now handles partial unmappings. 2802 * Jeremy Fitzhardinge <jeremy@goop.org> 2803 */ 2804 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2805 struct list_head *uf, bool downgrade) 2806 { 2807 unsigned long end; 2808 struct vm_area_struct *vma, *prev, *last; 2809 2810 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2811 return -EINVAL; 2812 2813 len = PAGE_ALIGN(len); 2814 end = start + len; 2815 if (len == 0) 2816 return -EINVAL; 2817 2818 /* 2819 * arch_unmap() might do unmaps itself. It must be called 2820 * and finish any rbtree manipulation before this code 2821 * runs and also starts to manipulate the rbtree. 2822 */ 2823 arch_unmap(mm, start, end); 2824 2825 /* Find the first overlapping VMA */ 2826 vma = find_vma(mm, start); 2827 if (!vma) 2828 return 0; 2829 prev = vma->vm_prev; 2830 /* we have start < vma->vm_end */ 2831 2832 /* if it doesn't overlap, we have nothing.. */ 2833 if (vma->vm_start >= end) 2834 return 0; 2835 2836 /* 2837 * If we need to split any vma, do it now to save pain later. 2838 * 2839 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2840 * unmapped vm_area_struct will remain in use: so lower split_vma 2841 * places tmp vma above, and higher split_vma places tmp vma below. 2842 */ 2843 if (start > vma->vm_start) { 2844 int error; 2845 2846 /* 2847 * Make sure that map_count on return from munmap() will 2848 * not exceed its limit; but let map_count go just above 2849 * its limit temporarily, to help free resources as expected. 2850 */ 2851 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2852 return -ENOMEM; 2853 2854 error = __split_vma(mm, vma, start, 0); 2855 if (error) 2856 return error; 2857 prev = vma; 2858 } 2859 2860 /* Does it split the last one? */ 2861 last = find_vma(mm, end); 2862 if (last && end > last->vm_start) { 2863 int error = __split_vma(mm, last, end, 1); 2864 if (error) 2865 return error; 2866 } 2867 vma = vma_next(mm, prev); 2868 2869 if (unlikely(uf)) { 2870 /* 2871 * If userfaultfd_unmap_prep returns an error the vmas 2872 * will remain splitted, but userland will get a 2873 * highly unexpected error anyway. This is no 2874 * different than the case where the first of the two 2875 * __split_vma fails, but we don't undo the first 2876 * split, despite we could. This is unlikely enough 2877 * failure that it's not worth optimizing it for. 2878 */ 2879 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2880 if (error) 2881 return error; 2882 } 2883 2884 /* 2885 * unlock any mlock()ed ranges before detaching vmas 2886 */ 2887 if (mm->locked_vm) { 2888 struct vm_area_struct *tmp = vma; 2889 while (tmp && tmp->vm_start < end) { 2890 if (tmp->vm_flags & VM_LOCKED) { 2891 mm->locked_vm -= vma_pages(tmp); 2892 munlock_vma_pages_all(tmp); 2893 } 2894 2895 tmp = tmp->vm_next; 2896 } 2897 } 2898 2899 /* Detach vmas from rbtree */ 2900 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2901 downgrade = false; 2902 2903 if (downgrade) 2904 mmap_write_downgrade(mm); 2905 2906 unmap_region(mm, vma, prev, start, end); 2907 2908 /* Fix up all other VM information */ 2909 remove_vma_list(mm, vma); 2910 2911 return downgrade ? 1 : 0; 2912 } 2913 2914 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2915 struct list_head *uf) 2916 { 2917 return __do_munmap(mm, start, len, uf, false); 2918 } 2919 2920 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2921 { 2922 int ret; 2923 struct mm_struct *mm = current->mm; 2924 LIST_HEAD(uf); 2925 2926 if (mmap_write_lock_killable(mm)) 2927 return -EINTR; 2928 2929 ret = __do_munmap(mm, start, len, &uf, downgrade); 2930 /* 2931 * Returning 1 indicates mmap_lock is downgraded. 2932 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2933 * it to 0 before return. 2934 */ 2935 if (ret == 1) { 2936 mmap_read_unlock(mm); 2937 ret = 0; 2938 } else 2939 mmap_write_unlock(mm); 2940 2941 userfaultfd_unmap_complete(mm, &uf); 2942 return ret; 2943 } 2944 2945 int vm_munmap(unsigned long start, size_t len) 2946 { 2947 return __vm_munmap(start, len, false); 2948 } 2949 EXPORT_SYMBOL(vm_munmap); 2950 2951 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2952 { 2953 addr = untagged_addr(addr); 2954 profile_munmap(addr); 2955 return __vm_munmap(addr, len, true); 2956 } 2957 2958 2959 /* 2960 * Emulation of deprecated remap_file_pages() syscall. 2961 */ 2962 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2963 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2964 { 2965 2966 struct mm_struct *mm = current->mm; 2967 struct vm_area_struct *vma; 2968 unsigned long populate = 0; 2969 unsigned long ret = -EINVAL; 2970 struct file *file; 2971 2972 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2973 current->comm, current->pid); 2974 2975 if (prot) 2976 return ret; 2977 start = start & PAGE_MASK; 2978 size = size & PAGE_MASK; 2979 2980 if (start + size <= start) 2981 return ret; 2982 2983 /* Does pgoff wrap? */ 2984 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2985 return ret; 2986 2987 if (mmap_write_lock_killable(mm)) 2988 return -EINTR; 2989 2990 vma = find_vma(mm, start); 2991 2992 if (!vma || !(vma->vm_flags & VM_SHARED)) 2993 goto out; 2994 2995 if (start < vma->vm_start) 2996 goto out; 2997 2998 if (start + size > vma->vm_end) { 2999 struct vm_area_struct *next; 3000 3001 for (next = vma->vm_next; next; next = next->vm_next) { 3002 /* hole between vmas ? */ 3003 if (next->vm_start != next->vm_prev->vm_end) 3004 goto out; 3005 3006 if (next->vm_file != vma->vm_file) 3007 goto out; 3008 3009 if (next->vm_flags != vma->vm_flags) 3010 goto out; 3011 3012 if (start + size <= next->vm_end) 3013 break; 3014 } 3015 3016 if (!next) 3017 goto out; 3018 } 3019 3020 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3021 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3022 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3023 3024 flags &= MAP_NONBLOCK; 3025 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3026 if (vma->vm_flags & VM_LOCKED) { 3027 struct vm_area_struct *tmp; 3028 flags |= MAP_LOCKED; 3029 3030 /* drop PG_Mlocked flag for over-mapped range */ 3031 for (tmp = vma; tmp->vm_start >= start + size; 3032 tmp = tmp->vm_next) { 3033 /* 3034 * Split pmd and munlock page on the border 3035 * of the range. 3036 */ 3037 vma_adjust_trans_huge(tmp, start, start + size, 0); 3038 3039 munlock_vma_pages_range(tmp, 3040 max(tmp->vm_start, start), 3041 min(tmp->vm_end, start + size)); 3042 } 3043 } 3044 3045 file = get_file(vma->vm_file); 3046 ret = do_mmap(vma->vm_file, start, size, 3047 prot, flags, pgoff, &populate, NULL); 3048 fput(file); 3049 out: 3050 mmap_write_unlock(mm); 3051 if (populate) 3052 mm_populate(ret, populate); 3053 if (!IS_ERR_VALUE(ret)) 3054 ret = 0; 3055 return ret; 3056 } 3057 3058 /* 3059 * this is really a simplified "do_mmap". it only handles 3060 * anonymous maps. eventually we may be able to do some 3061 * brk-specific accounting here. 3062 */ 3063 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3064 { 3065 struct mm_struct *mm = current->mm; 3066 struct vm_area_struct *vma, *prev; 3067 struct rb_node **rb_link, *rb_parent; 3068 pgoff_t pgoff = addr >> PAGE_SHIFT; 3069 int error; 3070 unsigned long mapped_addr; 3071 3072 /* Until we need other flags, refuse anything except VM_EXEC. */ 3073 if ((flags & (~VM_EXEC)) != 0) 3074 return -EINVAL; 3075 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3076 3077 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3078 if (IS_ERR_VALUE(mapped_addr)) 3079 return mapped_addr; 3080 3081 error = mlock_future_check(mm, mm->def_flags, len); 3082 if (error) 3083 return error; 3084 3085 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3086 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3087 return -ENOMEM; 3088 3089 /* Check against address space limits *after* clearing old maps... */ 3090 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3091 return -ENOMEM; 3092 3093 if (mm->map_count > sysctl_max_map_count) 3094 return -ENOMEM; 3095 3096 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3097 return -ENOMEM; 3098 3099 /* Can we just expand an old private anonymous mapping? */ 3100 vma = vma_merge(mm, prev, addr, addr + len, flags, 3101 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3102 if (vma) 3103 goto out; 3104 3105 /* 3106 * create a vma struct for an anonymous mapping 3107 */ 3108 vma = vm_area_alloc(mm); 3109 if (!vma) { 3110 vm_unacct_memory(len >> PAGE_SHIFT); 3111 return -ENOMEM; 3112 } 3113 3114 vma_set_anonymous(vma); 3115 vma->vm_start = addr; 3116 vma->vm_end = addr + len; 3117 vma->vm_pgoff = pgoff; 3118 vma->vm_flags = flags; 3119 vma->vm_page_prot = vm_get_page_prot(flags); 3120 vma_link(mm, vma, prev, rb_link, rb_parent); 3121 out: 3122 perf_event_mmap(vma); 3123 mm->total_vm += len >> PAGE_SHIFT; 3124 mm->data_vm += len >> PAGE_SHIFT; 3125 if (flags & VM_LOCKED) 3126 mm->locked_vm += (len >> PAGE_SHIFT); 3127 vma->vm_flags |= VM_SOFTDIRTY; 3128 return 0; 3129 } 3130 3131 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3132 { 3133 struct mm_struct *mm = current->mm; 3134 unsigned long len; 3135 int ret; 3136 bool populate; 3137 LIST_HEAD(uf); 3138 3139 len = PAGE_ALIGN(request); 3140 if (len < request) 3141 return -ENOMEM; 3142 if (!len) 3143 return 0; 3144 3145 if (mmap_write_lock_killable(mm)) 3146 return -EINTR; 3147 3148 ret = do_brk_flags(addr, len, flags, &uf); 3149 populate = ((mm->def_flags & VM_LOCKED) != 0); 3150 mmap_write_unlock(mm); 3151 userfaultfd_unmap_complete(mm, &uf); 3152 if (populate && !ret) 3153 mm_populate(addr, len); 3154 return ret; 3155 } 3156 EXPORT_SYMBOL(vm_brk_flags); 3157 3158 int vm_brk(unsigned long addr, unsigned long len) 3159 { 3160 return vm_brk_flags(addr, len, 0); 3161 } 3162 EXPORT_SYMBOL(vm_brk); 3163 3164 /* Release all mmaps. */ 3165 void exit_mmap(struct mm_struct *mm) 3166 { 3167 struct mmu_gather tlb; 3168 struct vm_area_struct *vma; 3169 unsigned long nr_accounted = 0; 3170 3171 /* mm's last user has gone, and its about to be pulled down */ 3172 mmu_notifier_release(mm); 3173 3174 if (unlikely(mm_is_oom_victim(mm))) { 3175 /* 3176 * Manually reap the mm to free as much memory as possible. 3177 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3178 * this mm from further consideration. Taking mm->mmap_lock for 3179 * write after setting MMF_OOM_SKIP will guarantee that the oom 3180 * reaper will not run on this mm again after mmap_lock is 3181 * dropped. 3182 * 3183 * Nothing can be holding mm->mmap_lock here and the above call 3184 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3185 * __oom_reap_task_mm() will not block. 3186 * 3187 * This needs to be done before calling munlock_vma_pages_all(), 3188 * which clears VM_LOCKED, otherwise the oom reaper cannot 3189 * reliably test it. 3190 */ 3191 (void)__oom_reap_task_mm(mm); 3192 3193 set_bit(MMF_OOM_SKIP, &mm->flags); 3194 mmap_write_lock(mm); 3195 mmap_write_unlock(mm); 3196 } 3197 3198 if (mm->locked_vm) { 3199 vma = mm->mmap; 3200 while (vma) { 3201 if (vma->vm_flags & VM_LOCKED) 3202 munlock_vma_pages_all(vma); 3203 vma = vma->vm_next; 3204 } 3205 } 3206 3207 arch_exit_mmap(mm); 3208 3209 vma = mm->mmap; 3210 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3211 return; 3212 3213 lru_add_drain(); 3214 flush_cache_mm(mm); 3215 tlb_gather_mmu_fullmm(&tlb, mm); 3216 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3217 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3218 unmap_vmas(&tlb, vma, 0, -1); 3219 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3220 tlb_finish_mmu(&tlb); 3221 3222 /* 3223 * Walk the list again, actually closing and freeing it, 3224 * with preemption enabled, without holding any MM locks. 3225 */ 3226 while (vma) { 3227 if (vma->vm_flags & VM_ACCOUNT) 3228 nr_accounted += vma_pages(vma); 3229 vma = remove_vma(vma); 3230 cond_resched(); 3231 } 3232 vm_unacct_memory(nr_accounted); 3233 } 3234 3235 /* Insert vm structure into process list sorted by address 3236 * and into the inode's i_mmap tree. If vm_file is non-NULL 3237 * then i_mmap_rwsem is taken here. 3238 */ 3239 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3240 { 3241 struct vm_area_struct *prev; 3242 struct rb_node **rb_link, *rb_parent; 3243 3244 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3245 &prev, &rb_link, &rb_parent)) 3246 return -ENOMEM; 3247 if ((vma->vm_flags & VM_ACCOUNT) && 3248 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3249 return -ENOMEM; 3250 3251 /* 3252 * The vm_pgoff of a purely anonymous vma should be irrelevant 3253 * until its first write fault, when page's anon_vma and index 3254 * are set. But now set the vm_pgoff it will almost certainly 3255 * end up with (unless mremap moves it elsewhere before that 3256 * first wfault), so /proc/pid/maps tells a consistent story. 3257 * 3258 * By setting it to reflect the virtual start address of the 3259 * vma, merges and splits can happen in a seamless way, just 3260 * using the existing file pgoff checks and manipulations. 3261 * Similarly in do_mmap and in do_brk_flags. 3262 */ 3263 if (vma_is_anonymous(vma)) { 3264 BUG_ON(vma->anon_vma); 3265 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3266 } 3267 3268 vma_link(mm, vma, prev, rb_link, rb_parent); 3269 return 0; 3270 } 3271 3272 /* 3273 * Copy the vma structure to a new location in the same mm, 3274 * prior to moving page table entries, to effect an mremap move. 3275 */ 3276 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3277 unsigned long addr, unsigned long len, pgoff_t pgoff, 3278 bool *need_rmap_locks) 3279 { 3280 struct vm_area_struct *vma = *vmap; 3281 unsigned long vma_start = vma->vm_start; 3282 struct mm_struct *mm = vma->vm_mm; 3283 struct vm_area_struct *new_vma, *prev; 3284 struct rb_node **rb_link, *rb_parent; 3285 bool faulted_in_anon_vma = true; 3286 3287 /* 3288 * If anonymous vma has not yet been faulted, update new pgoff 3289 * to match new location, to increase its chance of merging. 3290 */ 3291 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3292 pgoff = addr >> PAGE_SHIFT; 3293 faulted_in_anon_vma = false; 3294 } 3295 3296 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3297 return NULL; /* should never get here */ 3298 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3299 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3300 vma->vm_userfaultfd_ctx); 3301 if (new_vma) { 3302 /* 3303 * Source vma may have been merged into new_vma 3304 */ 3305 if (unlikely(vma_start >= new_vma->vm_start && 3306 vma_start < new_vma->vm_end)) { 3307 /* 3308 * The only way we can get a vma_merge with 3309 * self during an mremap is if the vma hasn't 3310 * been faulted in yet and we were allowed to 3311 * reset the dst vma->vm_pgoff to the 3312 * destination address of the mremap to allow 3313 * the merge to happen. mremap must change the 3314 * vm_pgoff linearity between src and dst vmas 3315 * (in turn preventing a vma_merge) to be 3316 * safe. It is only safe to keep the vm_pgoff 3317 * linear if there are no pages mapped yet. 3318 */ 3319 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3320 *vmap = vma = new_vma; 3321 } 3322 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3323 } else { 3324 new_vma = vm_area_dup(vma); 3325 if (!new_vma) 3326 goto out; 3327 new_vma->vm_start = addr; 3328 new_vma->vm_end = addr + len; 3329 new_vma->vm_pgoff = pgoff; 3330 if (vma_dup_policy(vma, new_vma)) 3331 goto out_free_vma; 3332 if (anon_vma_clone(new_vma, vma)) 3333 goto out_free_mempol; 3334 if (new_vma->vm_file) 3335 get_file(new_vma->vm_file); 3336 if (new_vma->vm_ops && new_vma->vm_ops->open) 3337 new_vma->vm_ops->open(new_vma); 3338 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3339 *need_rmap_locks = false; 3340 } 3341 return new_vma; 3342 3343 out_free_mempol: 3344 mpol_put(vma_policy(new_vma)); 3345 out_free_vma: 3346 vm_area_free(new_vma); 3347 out: 3348 return NULL; 3349 } 3350 3351 /* 3352 * Return true if the calling process may expand its vm space by the passed 3353 * number of pages 3354 */ 3355 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3356 { 3357 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3358 return false; 3359 3360 if (is_data_mapping(flags) && 3361 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3362 /* Workaround for Valgrind */ 3363 if (rlimit(RLIMIT_DATA) == 0 && 3364 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3365 return true; 3366 3367 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3368 current->comm, current->pid, 3369 (mm->data_vm + npages) << PAGE_SHIFT, 3370 rlimit(RLIMIT_DATA), 3371 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3372 3373 if (!ignore_rlimit_data) 3374 return false; 3375 } 3376 3377 return true; 3378 } 3379 3380 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3381 { 3382 mm->total_vm += npages; 3383 3384 if (is_exec_mapping(flags)) 3385 mm->exec_vm += npages; 3386 else if (is_stack_mapping(flags)) 3387 mm->stack_vm += npages; 3388 else if (is_data_mapping(flags)) 3389 mm->data_vm += npages; 3390 } 3391 3392 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3393 3394 /* 3395 * Having a close hook prevents vma merging regardless of flags. 3396 */ 3397 static void special_mapping_close(struct vm_area_struct *vma) 3398 { 3399 } 3400 3401 static const char *special_mapping_name(struct vm_area_struct *vma) 3402 { 3403 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3404 } 3405 3406 static int special_mapping_mremap(struct vm_area_struct *new_vma, 3407 unsigned long flags) 3408 { 3409 struct vm_special_mapping *sm = new_vma->vm_private_data; 3410 3411 if (flags & MREMAP_DONTUNMAP) 3412 return -EINVAL; 3413 3414 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3415 return -EFAULT; 3416 3417 if (sm->mremap) 3418 return sm->mremap(sm, new_vma); 3419 3420 return 0; 3421 } 3422 3423 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3424 { 3425 /* 3426 * Forbid splitting special mappings - kernel has expectations over 3427 * the number of pages in mapping. Together with VM_DONTEXPAND 3428 * the size of vma should stay the same over the special mapping's 3429 * lifetime. 3430 */ 3431 return -EINVAL; 3432 } 3433 3434 static const struct vm_operations_struct special_mapping_vmops = { 3435 .close = special_mapping_close, 3436 .fault = special_mapping_fault, 3437 .mremap = special_mapping_mremap, 3438 .name = special_mapping_name, 3439 /* vDSO code relies that VVAR can't be accessed remotely */ 3440 .access = NULL, 3441 .may_split = special_mapping_split, 3442 }; 3443 3444 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3445 .close = special_mapping_close, 3446 .fault = special_mapping_fault, 3447 }; 3448 3449 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3450 { 3451 struct vm_area_struct *vma = vmf->vma; 3452 pgoff_t pgoff; 3453 struct page **pages; 3454 3455 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3456 pages = vma->vm_private_data; 3457 } else { 3458 struct vm_special_mapping *sm = vma->vm_private_data; 3459 3460 if (sm->fault) 3461 return sm->fault(sm, vmf->vma, vmf); 3462 3463 pages = sm->pages; 3464 } 3465 3466 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3467 pgoff--; 3468 3469 if (*pages) { 3470 struct page *page = *pages; 3471 get_page(page); 3472 vmf->page = page; 3473 return 0; 3474 } 3475 3476 return VM_FAULT_SIGBUS; 3477 } 3478 3479 static struct vm_area_struct *__install_special_mapping( 3480 struct mm_struct *mm, 3481 unsigned long addr, unsigned long len, 3482 unsigned long vm_flags, void *priv, 3483 const struct vm_operations_struct *ops) 3484 { 3485 int ret; 3486 struct vm_area_struct *vma; 3487 3488 vma = vm_area_alloc(mm); 3489 if (unlikely(vma == NULL)) 3490 return ERR_PTR(-ENOMEM); 3491 3492 vma->vm_start = addr; 3493 vma->vm_end = addr + len; 3494 3495 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3496 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3497 3498 vma->vm_ops = ops; 3499 vma->vm_private_data = priv; 3500 3501 ret = insert_vm_struct(mm, vma); 3502 if (ret) 3503 goto out; 3504 3505 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3506 3507 perf_event_mmap(vma); 3508 3509 return vma; 3510 3511 out: 3512 vm_area_free(vma); 3513 return ERR_PTR(ret); 3514 } 3515 3516 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3517 const struct vm_special_mapping *sm) 3518 { 3519 return vma->vm_private_data == sm && 3520 (vma->vm_ops == &special_mapping_vmops || 3521 vma->vm_ops == &legacy_special_mapping_vmops); 3522 } 3523 3524 /* 3525 * Called with mm->mmap_lock held for writing. 3526 * Insert a new vma covering the given region, with the given flags. 3527 * Its pages are supplied by the given array of struct page *. 3528 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3529 * The region past the last page supplied will always produce SIGBUS. 3530 * The array pointer and the pages it points to are assumed to stay alive 3531 * for as long as this mapping might exist. 3532 */ 3533 struct vm_area_struct *_install_special_mapping( 3534 struct mm_struct *mm, 3535 unsigned long addr, unsigned long len, 3536 unsigned long vm_flags, const struct vm_special_mapping *spec) 3537 { 3538 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3539 &special_mapping_vmops); 3540 } 3541 3542 int install_special_mapping(struct mm_struct *mm, 3543 unsigned long addr, unsigned long len, 3544 unsigned long vm_flags, struct page **pages) 3545 { 3546 struct vm_area_struct *vma = __install_special_mapping( 3547 mm, addr, len, vm_flags, (void *)pages, 3548 &legacy_special_mapping_vmops); 3549 3550 return PTR_ERR_OR_ZERO(vma); 3551 } 3552 3553 static DEFINE_MUTEX(mm_all_locks_mutex); 3554 3555 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3556 { 3557 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3558 /* 3559 * The LSB of head.next can't change from under us 3560 * because we hold the mm_all_locks_mutex. 3561 */ 3562 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3563 /* 3564 * We can safely modify head.next after taking the 3565 * anon_vma->root->rwsem. If some other vma in this mm shares 3566 * the same anon_vma we won't take it again. 3567 * 3568 * No need of atomic instructions here, head.next 3569 * can't change from under us thanks to the 3570 * anon_vma->root->rwsem. 3571 */ 3572 if (__test_and_set_bit(0, (unsigned long *) 3573 &anon_vma->root->rb_root.rb_root.rb_node)) 3574 BUG(); 3575 } 3576 } 3577 3578 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3579 { 3580 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3581 /* 3582 * AS_MM_ALL_LOCKS can't change from under us because 3583 * we hold the mm_all_locks_mutex. 3584 * 3585 * Operations on ->flags have to be atomic because 3586 * even if AS_MM_ALL_LOCKS is stable thanks to the 3587 * mm_all_locks_mutex, there may be other cpus 3588 * changing other bitflags in parallel to us. 3589 */ 3590 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3591 BUG(); 3592 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3593 } 3594 } 3595 3596 /* 3597 * This operation locks against the VM for all pte/vma/mm related 3598 * operations that could ever happen on a certain mm. This includes 3599 * vmtruncate, try_to_unmap, and all page faults. 3600 * 3601 * The caller must take the mmap_lock in write mode before calling 3602 * mm_take_all_locks(). The caller isn't allowed to release the 3603 * mmap_lock until mm_drop_all_locks() returns. 3604 * 3605 * mmap_lock in write mode is required in order to block all operations 3606 * that could modify pagetables and free pages without need of 3607 * altering the vma layout. It's also needed in write mode to avoid new 3608 * anon_vmas to be associated with existing vmas. 3609 * 3610 * A single task can't take more than one mm_take_all_locks() in a row 3611 * or it would deadlock. 3612 * 3613 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3614 * mapping->flags avoid to take the same lock twice, if more than one 3615 * vma in this mm is backed by the same anon_vma or address_space. 3616 * 3617 * We take locks in following order, accordingly to comment at beginning 3618 * of mm/rmap.c: 3619 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3620 * hugetlb mapping); 3621 * - all i_mmap_rwsem locks; 3622 * - all anon_vma->rwseml 3623 * 3624 * We can take all locks within these types randomly because the VM code 3625 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3626 * mm_all_locks_mutex. 3627 * 3628 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3629 * that may have to take thousand of locks. 3630 * 3631 * mm_take_all_locks() can fail if it's interrupted by signals. 3632 */ 3633 int mm_take_all_locks(struct mm_struct *mm) 3634 { 3635 struct vm_area_struct *vma; 3636 struct anon_vma_chain *avc; 3637 3638 BUG_ON(mmap_read_trylock(mm)); 3639 3640 mutex_lock(&mm_all_locks_mutex); 3641 3642 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3643 if (signal_pending(current)) 3644 goto out_unlock; 3645 if (vma->vm_file && vma->vm_file->f_mapping && 3646 is_vm_hugetlb_page(vma)) 3647 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3648 } 3649 3650 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3651 if (signal_pending(current)) 3652 goto out_unlock; 3653 if (vma->vm_file && vma->vm_file->f_mapping && 3654 !is_vm_hugetlb_page(vma)) 3655 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3656 } 3657 3658 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3659 if (signal_pending(current)) 3660 goto out_unlock; 3661 if (vma->anon_vma) 3662 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3663 vm_lock_anon_vma(mm, avc->anon_vma); 3664 } 3665 3666 return 0; 3667 3668 out_unlock: 3669 mm_drop_all_locks(mm); 3670 return -EINTR; 3671 } 3672 3673 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3674 { 3675 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3676 /* 3677 * The LSB of head.next can't change to 0 from under 3678 * us because we hold the mm_all_locks_mutex. 3679 * 3680 * We must however clear the bitflag before unlocking 3681 * the vma so the users using the anon_vma->rb_root will 3682 * never see our bitflag. 3683 * 3684 * No need of atomic instructions here, head.next 3685 * can't change from under us until we release the 3686 * anon_vma->root->rwsem. 3687 */ 3688 if (!__test_and_clear_bit(0, (unsigned long *) 3689 &anon_vma->root->rb_root.rb_root.rb_node)) 3690 BUG(); 3691 anon_vma_unlock_write(anon_vma); 3692 } 3693 } 3694 3695 static void vm_unlock_mapping(struct address_space *mapping) 3696 { 3697 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3698 /* 3699 * AS_MM_ALL_LOCKS can't change to 0 from under us 3700 * because we hold the mm_all_locks_mutex. 3701 */ 3702 i_mmap_unlock_write(mapping); 3703 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3704 &mapping->flags)) 3705 BUG(); 3706 } 3707 } 3708 3709 /* 3710 * The mmap_lock cannot be released by the caller until 3711 * mm_drop_all_locks() returns. 3712 */ 3713 void mm_drop_all_locks(struct mm_struct *mm) 3714 { 3715 struct vm_area_struct *vma; 3716 struct anon_vma_chain *avc; 3717 3718 BUG_ON(mmap_read_trylock(mm)); 3719 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3720 3721 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3722 if (vma->anon_vma) 3723 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3724 vm_unlock_anon_vma(avc->anon_vma); 3725 if (vma->vm_file && vma->vm_file->f_mapping) 3726 vm_unlock_mapping(vma->vm_file->f_mapping); 3727 } 3728 3729 mutex_unlock(&mm_all_locks_mutex); 3730 } 3731 3732 /* 3733 * initialise the percpu counter for VM 3734 */ 3735 void __init mmap_init(void) 3736 { 3737 int ret; 3738 3739 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3740 VM_BUG_ON(ret); 3741 } 3742 3743 /* 3744 * Initialise sysctl_user_reserve_kbytes. 3745 * 3746 * This is intended to prevent a user from starting a single memory hogging 3747 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3748 * mode. 3749 * 3750 * The default value is min(3% of free memory, 128MB) 3751 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3752 */ 3753 static int init_user_reserve(void) 3754 { 3755 unsigned long free_kbytes; 3756 3757 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3758 3759 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3760 return 0; 3761 } 3762 subsys_initcall(init_user_reserve); 3763 3764 /* 3765 * Initialise sysctl_admin_reserve_kbytes. 3766 * 3767 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3768 * to log in and kill a memory hogging process. 3769 * 3770 * Systems with more than 256MB will reserve 8MB, enough to recover 3771 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3772 * only reserve 3% of free pages by default. 3773 */ 3774 static int init_admin_reserve(void) 3775 { 3776 unsigned long free_kbytes; 3777 3778 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3779 3780 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3781 return 0; 3782 } 3783 subsys_initcall(init_admin_reserve); 3784 3785 /* 3786 * Reinititalise user and admin reserves if memory is added or removed. 3787 * 3788 * The default user reserve max is 128MB, and the default max for the 3789 * admin reserve is 8MB. These are usually, but not always, enough to 3790 * enable recovery from a memory hogging process using login/sshd, a shell, 3791 * and tools like top. It may make sense to increase or even disable the 3792 * reserve depending on the existence of swap or variations in the recovery 3793 * tools. So, the admin may have changed them. 3794 * 3795 * If memory is added and the reserves have been eliminated or increased above 3796 * the default max, then we'll trust the admin. 3797 * 3798 * If memory is removed and there isn't enough free memory, then we 3799 * need to reset the reserves. 3800 * 3801 * Otherwise keep the reserve set by the admin. 3802 */ 3803 static int reserve_mem_notifier(struct notifier_block *nb, 3804 unsigned long action, void *data) 3805 { 3806 unsigned long tmp, free_kbytes; 3807 3808 switch (action) { 3809 case MEM_ONLINE: 3810 /* Default max is 128MB. Leave alone if modified by operator. */ 3811 tmp = sysctl_user_reserve_kbytes; 3812 if (0 < tmp && tmp < (1UL << 17)) 3813 init_user_reserve(); 3814 3815 /* Default max is 8MB. Leave alone if modified by operator. */ 3816 tmp = sysctl_admin_reserve_kbytes; 3817 if (0 < tmp && tmp < (1UL << 13)) 3818 init_admin_reserve(); 3819 3820 break; 3821 case MEM_OFFLINE: 3822 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3823 3824 if (sysctl_user_reserve_kbytes > free_kbytes) { 3825 init_user_reserve(); 3826 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3827 sysctl_user_reserve_kbytes); 3828 } 3829 3830 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3831 init_admin_reserve(); 3832 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3833 sysctl_admin_reserve_kbytes); 3834 } 3835 break; 3836 default: 3837 break; 3838 } 3839 return NOTIFY_OK; 3840 } 3841 3842 static struct notifier_block reserve_mem_nb = { 3843 .notifier_call = reserve_mem_notifier, 3844 }; 3845 3846 static int __meminit init_reserve_notifier(void) 3847 { 3848 if (register_hotmemory_notifier(&reserve_mem_nb)) 3849 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3850 3851 return 0; 3852 } 3853 subsys_initcall(init_reserve_notifier); 3854