1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/cacheflush.h> 36 #include <asm/tlb.h> 37 #include <asm/mmu_context.h> 38 39 #include "internal.h" 40 41 #ifndef arch_mmap_check 42 #define arch_mmap_check(addr, len, flags) (0) 43 #endif 44 45 #ifndef arch_rebalance_pgtables 46 #define arch_rebalance_pgtables(addr, len) (addr) 47 #endif 48 49 static void unmap_region(struct mm_struct *mm, 50 struct vm_area_struct *vma, struct vm_area_struct *prev, 51 unsigned long start, unsigned long end); 52 53 /* 54 * WARNING: the debugging will use recursive algorithms so never enable this 55 * unless you know what you are doing. 56 */ 57 #undef DEBUG_MM_RB 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 /* 91 * Make sure vm_committed_as in one cacheline and not cacheline shared with 92 * other variables. It can be updated by several CPUs frequently. 93 */ 94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 95 96 /* 97 * Check that a process has enough memory to allocate a new virtual 98 * mapping. 0 means there is enough memory for the allocation to 99 * succeed and -ENOMEM implies there is not. 100 * 101 * We currently support three overcommit policies, which are set via the 102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 103 * 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 105 * Additional code 2002 Jul 20 by Robert Love. 106 * 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 108 * 109 * Note this is a helper function intended to be used by LSMs which 110 * wish to use this logic. 111 */ 112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 113 { 114 unsigned long free, allowed; 115 116 vm_acct_memory(pages); 117 118 /* 119 * Sometimes we want to use more memory than we have 120 */ 121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 122 return 0; 123 124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 125 free = global_page_state(NR_FREE_PAGES); 126 free += global_page_state(NR_FILE_PAGES); 127 128 /* 129 * shmem pages shouldn't be counted as free in this 130 * case, they can't be purged, only swapped out, and 131 * that won't affect the overall amount of available 132 * memory in the system. 133 */ 134 free -= global_page_state(NR_SHMEM); 135 136 free += nr_swap_pages; 137 138 /* 139 * Any slabs which are created with the 140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 141 * which are reclaimable, under pressure. The dentry 142 * cache and most inode caches should fall into this 143 */ 144 free += global_page_state(NR_SLAB_RECLAIMABLE); 145 146 /* 147 * Leave reserved pages. The pages are not for anonymous pages. 148 */ 149 if (free <= totalreserve_pages) 150 goto error; 151 else 152 free -= totalreserve_pages; 153 154 /* 155 * Leave the last 3% for root 156 */ 157 if (!cap_sys_admin) 158 free -= free / 32; 159 160 if (free > pages) 161 return 0; 162 163 goto error; 164 } 165 166 allowed = (totalram_pages - hugetlb_total_pages()) 167 * sysctl_overcommit_ratio / 100; 168 /* 169 * Leave the last 3% for root 170 */ 171 if (!cap_sys_admin) 172 allowed -= allowed / 32; 173 allowed += total_swap_pages; 174 175 /* Don't let a single process grow too big: 176 leave 3% of the size of this process for other processes */ 177 if (mm) 178 allowed -= mm->total_vm / 32; 179 180 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 181 return 0; 182 error: 183 vm_unacct_memory(pages); 184 185 return -ENOMEM; 186 } 187 188 /* 189 * Requires inode->i_mapping->i_mmap_mutex 190 */ 191 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 192 struct file *file, struct address_space *mapping) 193 { 194 if (vma->vm_flags & VM_DENYWRITE) 195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 196 if (vma->vm_flags & VM_SHARED) 197 mapping->i_mmap_writable--; 198 199 flush_dcache_mmap_lock(mapping); 200 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 201 list_del_init(&vma->shared.vm_set.list); 202 else 203 vma_prio_tree_remove(vma, &mapping->i_mmap); 204 flush_dcache_mmap_unlock(mapping); 205 } 206 207 /* 208 * Unlink a file-based vm structure from its prio_tree, to hide 209 * vma from rmap and vmtruncate before freeing its page tables. 210 */ 211 void unlink_file_vma(struct vm_area_struct *vma) 212 { 213 struct file *file = vma->vm_file; 214 215 if (file) { 216 struct address_space *mapping = file->f_mapping; 217 mutex_lock(&mapping->i_mmap_mutex); 218 __remove_shared_vm_struct(vma, file, mapping); 219 mutex_unlock(&mapping->i_mmap_mutex); 220 } 221 } 222 223 /* 224 * Close a vm structure and free it, returning the next. 225 */ 226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 227 { 228 struct vm_area_struct *next = vma->vm_next; 229 230 might_sleep(); 231 if (vma->vm_ops && vma->vm_ops->close) 232 vma->vm_ops->close(vma); 233 if (vma->vm_file) { 234 fput(vma->vm_file); 235 if (vma->vm_flags & VM_EXECUTABLE) 236 removed_exe_file_vma(vma->vm_mm); 237 } 238 mpol_put(vma_policy(vma)); 239 kmem_cache_free(vm_area_cachep, vma); 240 return next; 241 } 242 243 SYSCALL_DEFINE1(brk, unsigned long, brk) 244 { 245 unsigned long rlim, retval; 246 unsigned long newbrk, oldbrk; 247 struct mm_struct *mm = current->mm; 248 unsigned long min_brk; 249 250 down_write(&mm->mmap_sem); 251 252 #ifdef CONFIG_COMPAT_BRK 253 /* 254 * CONFIG_COMPAT_BRK can still be overridden by setting 255 * randomize_va_space to 2, which will still cause mm->start_brk 256 * to be arbitrarily shifted 257 */ 258 if (current->brk_randomized) 259 min_brk = mm->start_brk; 260 else 261 min_brk = mm->end_data; 262 #else 263 min_brk = mm->start_brk; 264 #endif 265 if (brk < min_brk) 266 goto out; 267 268 /* 269 * Check against rlimit here. If this check is done later after the test 270 * of oldbrk with newbrk then it can escape the test and let the data 271 * segment grow beyond its set limit the in case where the limit is 272 * not page aligned -Ram Gupta 273 */ 274 rlim = rlimit(RLIMIT_DATA); 275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 276 (mm->end_data - mm->start_data) > rlim) 277 goto out; 278 279 newbrk = PAGE_ALIGN(brk); 280 oldbrk = PAGE_ALIGN(mm->brk); 281 if (oldbrk == newbrk) 282 goto set_brk; 283 284 /* Always allow shrinking brk. */ 285 if (brk <= mm->brk) { 286 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 287 goto set_brk; 288 goto out; 289 } 290 291 /* Check against existing mmap mappings. */ 292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 293 goto out; 294 295 /* Ok, looks good - let it rip. */ 296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 297 goto out; 298 set_brk: 299 mm->brk = brk; 300 out: 301 retval = mm->brk; 302 up_write(&mm->mmap_sem); 303 return retval; 304 } 305 306 #ifdef DEBUG_MM_RB 307 static int browse_rb(struct rb_root *root) 308 { 309 int i = 0, j; 310 struct rb_node *nd, *pn = NULL; 311 unsigned long prev = 0, pend = 0; 312 313 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 314 struct vm_area_struct *vma; 315 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 316 if (vma->vm_start < prev) 317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 318 if (vma->vm_start < pend) 319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 320 if (vma->vm_start > vma->vm_end) 321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 322 i++; 323 pn = nd; 324 prev = vma->vm_start; 325 pend = vma->vm_end; 326 } 327 j = 0; 328 for (nd = pn; nd; nd = rb_prev(nd)) { 329 j++; 330 } 331 if (i != j) 332 printk("backwards %d, forwards %d\n", j, i), i = 0; 333 return i; 334 } 335 336 void validate_mm(struct mm_struct *mm) 337 { 338 int bug = 0; 339 int i = 0; 340 struct vm_area_struct *tmp = mm->mmap; 341 while (tmp) { 342 tmp = tmp->vm_next; 343 i++; 344 } 345 if (i != mm->map_count) 346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 347 i = browse_rb(&mm->mm_rb); 348 if (i != mm->map_count) 349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 350 BUG_ON(bug); 351 } 352 #else 353 #define validate_mm(mm) do { } while (0) 354 #endif 355 356 static struct vm_area_struct * 357 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 358 struct vm_area_struct **pprev, struct rb_node ***rb_link, 359 struct rb_node ** rb_parent) 360 { 361 struct vm_area_struct * vma; 362 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 363 364 __rb_link = &mm->mm_rb.rb_node; 365 rb_prev = __rb_parent = NULL; 366 vma = NULL; 367 368 while (*__rb_link) { 369 struct vm_area_struct *vma_tmp; 370 371 __rb_parent = *__rb_link; 372 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 373 374 if (vma_tmp->vm_end > addr) { 375 vma = vma_tmp; 376 if (vma_tmp->vm_start <= addr) 377 break; 378 __rb_link = &__rb_parent->rb_left; 379 } else { 380 rb_prev = __rb_parent; 381 __rb_link = &__rb_parent->rb_right; 382 } 383 } 384 385 *pprev = NULL; 386 if (rb_prev) 387 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 388 *rb_link = __rb_link; 389 *rb_parent = __rb_parent; 390 return vma; 391 } 392 393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 394 struct rb_node **rb_link, struct rb_node *rb_parent) 395 { 396 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 397 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 398 } 399 400 static void __vma_link_file(struct vm_area_struct *vma) 401 { 402 struct file *file; 403 404 file = vma->vm_file; 405 if (file) { 406 struct address_space *mapping = file->f_mapping; 407 408 if (vma->vm_flags & VM_DENYWRITE) 409 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 410 if (vma->vm_flags & VM_SHARED) 411 mapping->i_mmap_writable++; 412 413 flush_dcache_mmap_lock(mapping); 414 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 415 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 416 else 417 vma_prio_tree_insert(vma, &mapping->i_mmap); 418 flush_dcache_mmap_unlock(mapping); 419 } 420 } 421 422 static void 423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 424 struct vm_area_struct *prev, struct rb_node **rb_link, 425 struct rb_node *rb_parent) 426 { 427 __vma_link_list(mm, vma, prev, rb_parent); 428 __vma_link_rb(mm, vma, rb_link, rb_parent); 429 } 430 431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 432 struct vm_area_struct *prev, struct rb_node **rb_link, 433 struct rb_node *rb_parent) 434 { 435 struct address_space *mapping = NULL; 436 437 if (vma->vm_file) 438 mapping = vma->vm_file->f_mapping; 439 440 if (mapping) 441 mutex_lock(&mapping->i_mmap_mutex); 442 443 __vma_link(mm, vma, prev, rb_link, rb_parent); 444 __vma_link_file(vma); 445 446 if (mapping) 447 mutex_unlock(&mapping->i_mmap_mutex); 448 449 mm->map_count++; 450 validate_mm(mm); 451 } 452 453 /* 454 * Helper for vma_adjust in the split_vma insert case: 455 * insert vm structure into list and rbtree and anon_vma, 456 * but it has already been inserted into prio_tree earlier. 457 */ 458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 459 { 460 struct vm_area_struct *__vma, *prev; 461 struct rb_node **rb_link, *rb_parent; 462 463 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 464 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 465 __vma_link(mm, vma, prev, rb_link, rb_parent); 466 mm->map_count++; 467 } 468 469 static inline void 470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 471 struct vm_area_struct *prev) 472 { 473 struct vm_area_struct *next = vma->vm_next; 474 475 prev->vm_next = next; 476 if (next) 477 next->vm_prev = prev; 478 rb_erase(&vma->vm_rb, &mm->mm_rb); 479 if (mm->mmap_cache == vma) 480 mm->mmap_cache = prev; 481 } 482 483 /* 484 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 485 * is already present in an i_mmap tree without adjusting the tree. 486 * The following helper function should be used when such adjustments 487 * are necessary. The "insert" vma (if any) is to be inserted 488 * before we drop the necessary locks. 489 */ 490 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 492 { 493 struct mm_struct *mm = vma->vm_mm; 494 struct vm_area_struct *next = vma->vm_next; 495 struct vm_area_struct *importer = NULL; 496 struct address_space *mapping = NULL; 497 struct prio_tree_root *root = NULL; 498 struct anon_vma *anon_vma = NULL; 499 struct file *file = vma->vm_file; 500 long adjust_next = 0; 501 int remove_next = 0; 502 503 if (next && !insert) { 504 struct vm_area_struct *exporter = NULL; 505 506 if (end >= next->vm_end) { 507 /* 508 * vma expands, overlapping all the next, and 509 * perhaps the one after too (mprotect case 6). 510 */ 511 again: remove_next = 1 + (end > next->vm_end); 512 end = next->vm_end; 513 exporter = next; 514 importer = vma; 515 } else if (end > next->vm_start) { 516 /* 517 * vma expands, overlapping part of the next: 518 * mprotect case 5 shifting the boundary up. 519 */ 520 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 521 exporter = next; 522 importer = vma; 523 } else if (end < vma->vm_end) { 524 /* 525 * vma shrinks, and !insert tells it's not 526 * split_vma inserting another: so it must be 527 * mprotect case 4 shifting the boundary down. 528 */ 529 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 530 exporter = vma; 531 importer = next; 532 } 533 534 /* 535 * Easily overlooked: when mprotect shifts the boundary, 536 * make sure the expanding vma has anon_vma set if the 537 * shrinking vma had, to cover any anon pages imported. 538 */ 539 if (exporter && exporter->anon_vma && !importer->anon_vma) { 540 if (anon_vma_clone(importer, exporter)) 541 return -ENOMEM; 542 importer->anon_vma = exporter->anon_vma; 543 } 544 } 545 546 if (file) { 547 mapping = file->f_mapping; 548 if (!(vma->vm_flags & VM_NONLINEAR)) 549 root = &mapping->i_mmap; 550 mutex_lock(&mapping->i_mmap_mutex); 551 if (insert) { 552 /* 553 * Put into prio_tree now, so instantiated pages 554 * are visible to arm/parisc __flush_dcache_page 555 * throughout; but we cannot insert into address 556 * space until vma start or end is updated. 557 */ 558 __vma_link_file(insert); 559 } 560 } 561 562 vma_adjust_trans_huge(vma, start, end, adjust_next); 563 564 /* 565 * When changing only vma->vm_end, we don't really need anon_vma 566 * lock. This is a fairly rare case by itself, but the anon_vma 567 * lock may be shared between many sibling processes. Skipping 568 * the lock for brk adjustments makes a difference sometimes. 569 */ 570 if (vma->anon_vma && (importer || start != vma->vm_start)) { 571 anon_vma = vma->anon_vma; 572 anon_vma_lock(anon_vma); 573 } 574 575 if (root) { 576 flush_dcache_mmap_lock(mapping); 577 vma_prio_tree_remove(vma, root); 578 if (adjust_next) 579 vma_prio_tree_remove(next, root); 580 } 581 582 vma->vm_start = start; 583 vma->vm_end = end; 584 vma->vm_pgoff = pgoff; 585 if (adjust_next) { 586 next->vm_start += adjust_next << PAGE_SHIFT; 587 next->vm_pgoff += adjust_next; 588 } 589 590 if (root) { 591 if (adjust_next) 592 vma_prio_tree_insert(next, root); 593 vma_prio_tree_insert(vma, root); 594 flush_dcache_mmap_unlock(mapping); 595 } 596 597 if (remove_next) { 598 /* 599 * vma_merge has merged next into vma, and needs 600 * us to remove next before dropping the locks. 601 */ 602 __vma_unlink(mm, next, vma); 603 if (file) 604 __remove_shared_vm_struct(next, file, mapping); 605 } else if (insert) { 606 /* 607 * split_vma has split insert from vma, and needs 608 * us to insert it before dropping the locks 609 * (it may either follow vma or precede it). 610 */ 611 __insert_vm_struct(mm, insert); 612 } 613 614 if (anon_vma) 615 anon_vma_unlock(anon_vma); 616 if (mapping) 617 mutex_unlock(&mapping->i_mmap_mutex); 618 619 if (remove_next) { 620 if (file) { 621 fput(file); 622 if (next->vm_flags & VM_EXECUTABLE) 623 removed_exe_file_vma(mm); 624 } 625 if (next->anon_vma) 626 anon_vma_merge(vma, next); 627 mm->map_count--; 628 mpol_put(vma_policy(next)); 629 kmem_cache_free(vm_area_cachep, next); 630 /* 631 * In mprotect's case 6 (see comments on vma_merge), 632 * we must remove another next too. It would clutter 633 * up the code too much to do both in one go. 634 */ 635 if (remove_next == 2) { 636 next = vma->vm_next; 637 goto again; 638 } 639 } 640 641 validate_mm(mm); 642 643 return 0; 644 } 645 646 /* 647 * If the vma has a ->close operation then the driver probably needs to release 648 * per-vma resources, so we don't attempt to merge those. 649 */ 650 static inline int is_mergeable_vma(struct vm_area_struct *vma, 651 struct file *file, unsigned long vm_flags) 652 { 653 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 654 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 655 return 0; 656 if (vma->vm_file != file) 657 return 0; 658 if (vma->vm_ops && vma->vm_ops->close) 659 return 0; 660 return 1; 661 } 662 663 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 664 struct anon_vma *anon_vma2, 665 struct vm_area_struct *vma) 666 { 667 /* 668 * The list_is_singular() test is to avoid merging VMA cloned from 669 * parents. This can improve scalability caused by anon_vma lock. 670 */ 671 if ((!anon_vma1 || !anon_vma2) && (!vma || 672 list_is_singular(&vma->anon_vma_chain))) 673 return 1; 674 return anon_vma1 == anon_vma2; 675 } 676 677 /* 678 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 679 * in front of (at a lower virtual address and file offset than) the vma. 680 * 681 * We cannot merge two vmas if they have differently assigned (non-NULL) 682 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 683 * 684 * We don't check here for the merged mmap wrapping around the end of pagecache 685 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 686 * wrap, nor mmaps which cover the final page at index -1UL. 687 */ 688 static int 689 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 690 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 691 { 692 if (is_mergeable_vma(vma, file, vm_flags) && 693 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 694 if (vma->vm_pgoff == vm_pgoff) 695 return 1; 696 } 697 return 0; 698 } 699 700 /* 701 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 702 * beyond (at a higher virtual address and file offset than) the vma. 703 * 704 * We cannot merge two vmas if they have differently assigned (non-NULL) 705 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 706 */ 707 static int 708 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 710 { 711 if (is_mergeable_vma(vma, file, vm_flags) && 712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 713 pgoff_t vm_pglen; 714 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 715 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 716 return 1; 717 } 718 return 0; 719 } 720 721 /* 722 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 723 * whether that can be merged with its predecessor or its successor. 724 * Or both (it neatly fills a hole). 725 * 726 * In most cases - when called for mmap, brk or mremap - [addr,end) is 727 * certain not to be mapped by the time vma_merge is called; but when 728 * called for mprotect, it is certain to be already mapped (either at 729 * an offset within prev, or at the start of next), and the flags of 730 * this area are about to be changed to vm_flags - and the no-change 731 * case has already been eliminated. 732 * 733 * The following mprotect cases have to be considered, where AAAA is 734 * the area passed down from mprotect_fixup, never extending beyond one 735 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 736 * 737 * AAAA AAAA AAAA AAAA 738 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 739 * cannot merge might become might become might become 740 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 741 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 742 * mremap move: PPPPNNNNNNNN 8 743 * AAAA 744 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 745 * might become case 1 below case 2 below case 3 below 746 * 747 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 748 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 749 */ 750 struct vm_area_struct *vma_merge(struct mm_struct *mm, 751 struct vm_area_struct *prev, unsigned long addr, 752 unsigned long end, unsigned long vm_flags, 753 struct anon_vma *anon_vma, struct file *file, 754 pgoff_t pgoff, struct mempolicy *policy) 755 { 756 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 757 struct vm_area_struct *area, *next; 758 int err; 759 760 /* 761 * We later require that vma->vm_flags == vm_flags, 762 * so this tests vma->vm_flags & VM_SPECIAL, too. 763 */ 764 if (vm_flags & VM_SPECIAL) 765 return NULL; 766 767 if (prev) 768 next = prev->vm_next; 769 else 770 next = mm->mmap; 771 area = next; 772 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 773 next = next->vm_next; 774 775 /* 776 * Can it merge with the predecessor? 777 */ 778 if (prev && prev->vm_end == addr && 779 mpol_equal(vma_policy(prev), policy) && 780 can_vma_merge_after(prev, vm_flags, 781 anon_vma, file, pgoff)) { 782 /* 783 * OK, it can. Can we now merge in the successor as well? 784 */ 785 if (next && end == next->vm_start && 786 mpol_equal(policy, vma_policy(next)) && 787 can_vma_merge_before(next, vm_flags, 788 anon_vma, file, pgoff+pglen) && 789 is_mergeable_anon_vma(prev->anon_vma, 790 next->anon_vma, NULL)) { 791 /* cases 1, 6 */ 792 err = vma_adjust(prev, prev->vm_start, 793 next->vm_end, prev->vm_pgoff, NULL); 794 } else /* cases 2, 5, 7 */ 795 err = vma_adjust(prev, prev->vm_start, 796 end, prev->vm_pgoff, NULL); 797 if (err) 798 return NULL; 799 khugepaged_enter_vma_merge(prev); 800 return prev; 801 } 802 803 /* 804 * Can this new request be merged in front of next? 805 */ 806 if (next && end == next->vm_start && 807 mpol_equal(policy, vma_policy(next)) && 808 can_vma_merge_before(next, vm_flags, 809 anon_vma, file, pgoff+pglen)) { 810 if (prev && addr < prev->vm_end) /* case 4 */ 811 err = vma_adjust(prev, prev->vm_start, 812 addr, prev->vm_pgoff, NULL); 813 else /* cases 3, 8 */ 814 err = vma_adjust(area, addr, next->vm_end, 815 next->vm_pgoff - pglen, NULL); 816 if (err) 817 return NULL; 818 khugepaged_enter_vma_merge(area); 819 return area; 820 } 821 822 return NULL; 823 } 824 825 /* 826 * Rough compatbility check to quickly see if it's even worth looking 827 * at sharing an anon_vma. 828 * 829 * They need to have the same vm_file, and the flags can only differ 830 * in things that mprotect may change. 831 * 832 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 833 * we can merge the two vma's. For example, we refuse to merge a vma if 834 * there is a vm_ops->close() function, because that indicates that the 835 * driver is doing some kind of reference counting. But that doesn't 836 * really matter for the anon_vma sharing case. 837 */ 838 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 839 { 840 return a->vm_end == b->vm_start && 841 mpol_equal(vma_policy(a), vma_policy(b)) && 842 a->vm_file == b->vm_file && 843 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 844 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 845 } 846 847 /* 848 * Do some basic sanity checking to see if we can re-use the anon_vma 849 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 850 * the same as 'old', the other will be the new one that is trying 851 * to share the anon_vma. 852 * 853 * NOTE! This runs with mm_sem held for reading, so it is possible that 854 * the anon_vma of 'old' is concurrently in the process of being set up 855 * by another page fault trying to merge _that_. But that's ok: if it 856 * is being set up, that automatically means that it will be a singleton 857 * acceptable for merging, so we can do all of this optimistically. But 858 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 859 * 860 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 861 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 862 * is to return an anon_vma that is "complex" due to having gone through 863 * a fork). 864 * 865 * We also make sure that the two vma's are compatible (adjacent, 866 * and with the same memory policies). That's all stable, even with just 867 * a read lock on the mm_sem. 868 */ 869 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 870 { 871 if (anon_vma_compatible(a, b)) { 872 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 873 874 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 875 return anon_vma; 876 } 877 return NULL; 878 } 879 880 /* 881 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 882 * neighbouring vmas for a suitable anon_vma, before it goes off 883 * to allocate a new anon_vma. It checks because a repetitive 884 * sequence of mprotects and faults may otherwise lead to distinct 885 * anon_vmas being allocated, preventing vma merge in subsequent 886 * mprotect. 887 */ 888 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 889 { 890 struct anon_vma *anon_vma; 891 struct vm_area_struct *near; 892 893 near = vma->vm_next; 894 if (!near) 895 goto try_prev; 896 897 anon_vma = reusable_anon_vma(near, vma, near); 898 if (anon_vma) 899 return anon_vma; 900 try_prev: 901 near = vma->vm_prev; 902 if (!near) 903 goto none; 904 905 anon_vma = reusable_anon_vma(near, near, vma); 906 if (anon_vma) 907 return anon_vma; 908 none: 909 /* 910 * There's no absolute need to look only at touching neighbours: 911 * we could search further afield for "compatible" anon_vmas. 912 * But it would probably just be a waste of time searching, 913 * or lead to too many vmas hanging off the same anon_vma. 914 * We're trying to allow mprotect remerging later on, 915 * not trying to minimize memory used for anon_vmas. 916 */ 917 return NULL; 918 } 919 920 #ifdef CONFIG_PROC_FS 921 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 922 struct file *file, long pages) 923 { 924 const unsigned long stack_flags 925 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 926 927 if (file) { 928 mm->shared_vm += pages; 929 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 930 mm->exec_vm += pages; 931 } else if (flags & stack_flags) 932 mm->stack_vm += pages; 933 if (flags & (VM_RESERVED|VM_IO)) 934 mm->reserved_vm += pages; 935 } 936 #endif /* CONFIG_PROC_FS */ 937 938 /* 939 * The caller must hold down_write(¤t->mm->mmap_sem). 940 */ 941 942 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 943 unsigned long len, unsigned long prot, 944 unsigned long flags, unsigned long pgoff) 945 { 946 struct mm_struct * mm = current->mm; 947 struct inode *inode; 948 vm_flags_t vm_flags; 949 int error; 950 unsigned long reqprot = prot; 951 952 /* 953 * Does the application expect PROT_READ to imply PROT_EXEC? 954 * 955 * (the exception is when the underlying filesystem is noexec 956 * mounted, in which case we dont add PROT_EXEC.) 957 */ 958 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 959 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 960 prot |= PROT_EXEC; 961 962 if (!len) 963 return -EINVAL; 964 965 if (!(flags & MAP_FIXED)) 966 addr = round_hint_to_min(addr); 967 968 /* Careful about overflows.. */ 969 len = PAGE_ALIGN(len); 970 if (!len) 971 return -ENOMEM; 972 973 /* offset overflow? */ 974 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 975 return -EOVERFLOW; 976 977 /* Too many mappings? */ 978 if (mm->map_count > sysctl_max_map_count) 979 return -ENOMEM; 980 981 /* Obtain the address to map to. we verify (or select) it and ensure 982 * that it represents a valid section of the address space. 983 */ 984 addr = get_unmapped_area(file, addr, len, pgoff, flags); 985 if (addr & ~PAGE_MASK) 986 return addr; 987 988 /* Do simple checking here so the lower-level routines won't have 989 * to. we assume access permissions have been handled by the open 990 * of the memory object, so we don't do any here. 991 */ 992 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 993 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 994 995 if (flags & MAP_LOCKED) 996 if (!can_do_mlock()) 997 return -EPERM; 998 999 /* mlock MCL_FUTURE? */ 1000 if (vm_flags & VM_LOCKED) { 1001 unsigned long locked, lock_limit; 1002 locked = len >> PAGE_SHIFT; 1003 locked += mm->locked_vm; 1004 lock_limit = rlimit(RLIMIT_MEMLOCK); 1005 lock_limit >>= PAGE_SHIFT; 1006 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1007 return -EAGAIN; 1008 } 1009 1010 inode = file ? file->f_path.dentry->d_inode : NULL; 1011 1012 if (file) { 1013 switch (flags & MAP_TYPE) { 1014 case MAP_SHARED: 1015 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1016 return -EACCES; 1017 1018 /* 1019 * Make sure we don't allow writing to an append-only 1020 * file.. 1021 */ 1022 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1023 return -EACCES; 1024 1025 /* 1026 * Make sure there are no mandatory locks on the file. 1027 */ 1028 if (locks_verify_locked(inode)) 1029 return -EAGAIN; 1030 1031 vm_flags |= VM_SHARED | VM_MAYSHARE; 1032 if (!(file->f_mode & FMODE_WRITE)) 1033 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1034 1035 /* fall through */ 1036 case MAP_PRIVATE: 1037 if (!(file->f_mode & FMODE_READ)) 1038 return -EACCES; 1039 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1040 if (vm_flags & VM_EXEC) 1041 return -EPERM; 1042 vm_flags &= ~VM_MAYEXEC; 1043 } 1044 1045 if (!file->f_op || !file->f_op->mmap) 1046 return -ENODEV; 1047 break; 1048 1049 default: 1050 return -EINVAL; 1051 } 1052 } else { 1053 switch (flags & MAP_TYPE) { 1054 case MAP_SHARED: 1055 /* 1056 * Ignore pgoff. 1057 */ 1058 pgoff = 0; 1059 vm_flags |= VM_SHARED | VM_MAYSHARE; 1060 break; 1061 case MAP_PRIVATE: 1062 /* 1063 * Set pgoff according to addr for anon_vma. 1064 */ 1065 pgoff = addr >> PAGE_SHIFT; 1066 break; 1067 default: 1068 return -EINVAL; 1069 } 1070 } 1071 1072 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1073 if (error) 1074 return error; 1075 1076 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1077 } 1078 EXPORT_SYMBOL(do_mmap_pgoff); 1079 1080 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1081 unsigned long, prot, unsigned long, flags, 1082 unsigned long, fd, unsigned long, pgoff) 1083 { 1084 struct file *file = NULL; 1085 unsigned long retval = -EBADF; 1086 1087 if (!(flags & MAP_ANONYMOUS)) { 1088 audit_mmap_fd(fd, flags); 1089 if (unlikely(flags & MAP_HUGETLB)) 1090 return -EINVAL; 1091 file = fget(fd); 1092 if (!file) 1093 goto out; 1094 } else if (flags & MAP_HUGETLB) { 1095 struct user_struct *user = NULL; 1096 /* 1097 * VM_NORESERVE is used because the reservations will be 1098 * taken when vm_ops->mmap() is called 1099 * A dummy user value is used because we are not locking 1100 * memory so no accounting is necessary 1101 */ 1102 len = ALIGN(len, huge_page_size(&default_hstate)); 1103 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1104 &user, HUGETLB_ANONHUGE_INODE); 1105 if (IS_ERR(file)) 1106 return PTR_ERR(file); 1107 } 1108 1109 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1110 1111 down_write(¤t->mm->mmap_sem); 1112 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1113 up_write(¤t->mm->mmap_sem); 1114 1115 if (file) 1116 fput(file); 1117 out: 1118 return retval; 1119 } 1120 1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1122 struct mmap_arg_struct { 1123 unsigned long addr; 1124 unsigned long len; 1125 unsigned long prot; 1126 unsigned long flags; 1127 unsigned long fd; 1128 unsigned long offset; 1129 }; 1130 1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1132 { 1133 struct mmap_arg_struct a; 1134 1135 if (copy_from_user(&a, arg, sizeof(a))) 1136 return -EFAULT; 1137 if (a.offset & ~PAGE_MASK) 1138 return -EINVAL; 1139 1140 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1141 a.offset >> PAGE_SHIFT); 1142 } 1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1144 1145 /* 1146 * Some shared mappigns will want the pages marked read-only 1147 * to track write events. If so, we'll downgrade vm_page_prot 1148 * to the private version (using protection_map[] without the 1149 * VM_SHARED bit). 1150 */ 1151 int vma_wants_writenotify(struct vm_area_struct *vma) 1152 { 1153 vm_flags_t vm_flags = vma->vm_flags; 1154 1155 /* If it was private or non-writable, the write bit is already clear */ 1156 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1157 return 0; 1158 1159 /* The backer wishes to know when pages are first written to? */ 1160 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1161 return 1; 1162 1163 /* The open routine did something to the protections already? */ 1164 if (pgprot_val(vma->vm_page_prot) != 1165 pgprot_val(vm_get_page_prot(vm_flags))) 1166 return 0; 1167 1168 /* Specialty mapping? */ 1169 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1170 return 0; 1171 1172 /* Can the mapping track the dirty pages? */ 1173 return vma->vm_file && vma->vm_file->f_mapping && 1174 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1175 } 1176 1177 /* 1178 * We account for memory if it's a private writeable mapping, 1179 * not hugepages and VM_NORESERVE wasn't set. 1180 */ 1181 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1182 { 1183 /* 1184 * hugetlb has its own accounting separate from the core VM 1185 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1186 */ 1187 if (file && is_file_hugepages(file)) 1188 return 0; 1189 1190 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1191 } 1192 1193 unsigned long mmap_region(struct file *file, unsigned long addr, 1194 unsigned long len, unsigned long flags, 1195 vm_flags_t vm_flags, unsigned long pgoff) 1196 { 1197 struct mm_struct *mm = current->mm; 1198 struct vm_area_struct *vma, *prev; 1199 int correct_wcount = 0; 1200 int error; 1201 struct rb_node **rb_link, *rb_parent; 1202 unsigned long charged = 0; 1203 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1204 1205 /* Clear old maps */ 1206 error = -ENOMEM; 1207 munmap_back: 1208 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1209 if (vma && vma->vm_start < addr + len) { 1210 if (do_munmap(mm, addr, len)) 1211 return -ENOMEM; 1212 goto munmap_back; 1213 } 1214 1215 /* Check against address space limit. */ 1216 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1217 return -ENOMEM; 1218 1219 /* 1220 * Set 'VM_NORESERVE' if we should not account for the 1221 * memory use of this mapping. 1222 */ 1223 if ((flags & MAP_NORESERVE)) { 1224 /* We honor MAP_NORESERVE if allowed to overcommit */ 1225 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1226 vm_flags |= VM_NORESERVE; 1227 1228 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1229 if (file && is_file_hugepages(file)) 1230 vm_flags |= VM_NORESERVE; 1231 } 1232 1233 /* 1234 * Private writable mapping: check memory availability 1235 */ 1236 if (accountable_mapping(file, vm_flags)) { 1237 charged = len >> PAGE_SHIFT; 1238 if (security_vm_enough_memory(charged)) 1239 return -ENOMEM; 1240 vm_flags |= VM_ACCOUNT; 1241 } 1242 1243 /* 1244 * Can we just expand an old mapping? 1245 */ 1246 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1247 if (vma) 1248 goto out; 1249 1250 /* 1251 * Determine the object being mapped and call the appropriate 1252 * specific mapper. the address has already been validated, but 1253 * not unmapped, but the maps are removed from the list. 1254 */ 1255 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1256 if (!vma) { 1257 error = -ENOMEM; 1258 goto unacct_error; 1259 } 1260 1261 vma->vm_mm = mm; 1262 vma->vm_start = addr; 1263 vma->vm_end = addr + len; 1264 vma->vm_flags = vm_flags; 1265 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1266 vma->vm_pgoff = pgoff; 1267 INIT_LIST_HEAD(&vma->anon_vma_chain); 1268 1269 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1270 1271 if (file) { 1272 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1273 goto free_vma; 1274 if (vm_flags & VM_DENYWRITE) { 1275 error = deny_write_access(file); 1276 if (error) 1277 goto free_vma; 1278 correct_wcount = 1; 1279 } 1280 vma->vm_file = file; 1281 get_file(file); 1282 error = file->f_op->mmap(file, vma); 1283 if (error) 1284 goto unmap_and_free_vma; 1285 if (vm_flags & VM_EXECUTABLE) 1286 added_exe_file_vma(mm); 1287 1288 /* Can addr have changed?? 1289 * 1290 * Answer: Yes, several device drivers can do it in their 1291 * f_op->mmap method. -DaveM 1292 */ 1293 addr = vma->vm_start; 1294 pgoff = vma->vm_pgoff; 1295 vm_flags = vma->vm_flags; 1296 } else if (vm_flags & VM_SHARED) { 1297 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1298 goto free_vma; 1299 error = shmem_zero_setup(vma); 1300 if (error) 1301 goto free_vma; 1302 } 1303 1304 if (vma_wants_writenotify(vma)) { 1305 pgprot_t pprot = vma->vm_page_prot; 1306 1307 /* Can vma->vm_page_prot have changed?? 1308 * 1309 * Answer: Yes, drivers may have changed it in their 1310 * f_op->mmap method. 1311 * 1312 * Ensures that vmas marked as uncached stay that way. 1313 */ 1314 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1315 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1316 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1317 } 1318 1319 vma_link(mm, vma, prev, rb_link, rb_parent); 1320 file = vma->vm_file; 1321 1322 /* Once vma denies write, undo our temporary denial count */ 1323 if (correct_wcount) 1324 atomic_inc(&inode->i_writecount); 1325 out: 1326 perf_event_mmap(vma); 1327 1328 mm->total_vm += len >> PAGE_SHIFT; 1329 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1330 if (vm_flags & VM_LOCKED) { 1331 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1332 mm->locked_vm += (len >> PAGE_SHIFT); 1333 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1334 make_pages_present(addr, addr + len); 1335 return addr; 1336 1337 unmap_and_free_vma: 1338 if (correct_wcount) 1339 atomic_inc(&inode->i_writecount); 1340 vma->vm_file = NULL; 1341 fput(file); 1342 1343 /* Undo any partial mapping done by a device driver. */ 1344 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1345 charged = 0; 1346 free_vma: 1347 kmem_cache_free(vm_area_cachep, vma); 1348 unacct_error: 1349 if (charged) 1350 vm_unacct_memory(charged); 1351 return error; 1352 } 1353 1354 /* Get an address range which is currently unmapped. 1355 * For shmat() with addr=0. 1356 * 1357 * Ugly calling convention alert: 1358 * Return value with the low bits set means error value, 1359 * ie 1360 * if (ret & ~PAGE_MASK) 1361 * error = ret; 1362 * 1363 * This function "knows" that -ENOMEM has the bits set. 1364 */ 1365 #ifndef HAVE_ARCH_UNMAPPED_AREA 1366 unsigned long 1367 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1368 unsigned long len, unsigned long pgoff, unsigned long flags) 1369 { 1370 struct mm_struct *mm = current->mm; 1371 struct vm_area_struct *vma; 1372 unsigned long start_addr; 1373 1374 if (len > TASK_SIZE) 1375 return -ENOMEM; 1376 1377 if (flags & MAP_FIXED) 1378 return addr; 1379 1380 if (addr) { 1381 addr = PAGE_ALIGN(addr); 1382 vma = find_vma(mm, addr); 1383 if (TASK_SIZE - len >= addr && 1384 (!vma || addr + len <= vma->vm_start)) 1385 return addr; 1386 } 1387 if (len > mm->cached_hole_size) { 1388 start_addr = addr = mm->free_area_cache; 1389 } else { 1390 start_addr = addr = TASK_UNMAPPED_BASE; 1391 mm->cached_hole_size = 0; 1392 } 1393 1394 full_search: 1395 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1396 /* At this point: (!vma || addr < vma->vm_end). */ 1397 if (TASK_SIZE - len < addr) { 1398 /* 1399 * Start a new search - just in case we missed 1400 * some holes. 1401 */ 1402 if (start_addr != TASK_UNMAPPED_BASE) { 1403 addr = TASK_UNMAPPED_BASE; 1404 start_addr = addr; 1405 mm->cached_hole_size = 0; 1406 goto full_search; 1407 } 1408 return -ENOMEM; 1409 } 1410 if (!vma || addr + len <= vma->vm_start) { 1411 /* 1412 * Remember the place where we stopped the search: 1413 */ 1414 mm->free_area_cache = addr + len; 1415 return addr; 1416 } 1417 if (addr + mm->cached_hole_size < vma->vm_start) 1418 mm->cached_hole_size = vma->vm_start - addr; 1419 addr = vma->vm_end; 1420 } 1421 } 1422 #endif 1423 1424 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1425 { 1426 /* 1427 * Is this a new hole at the lowest possible address? 1428 */ 1429 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1430 mm->free_area_cache = addr; 1431 mm->cached_hole_size = ~0UL; 1432 } 1433 } 1434 1435 /* 1436 * This mmap-allocator allocates new areas top-down from below the 1437 * stack's low limit (the base): 1438 */ 1439 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1440 unsigned long 1441 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1442 const unsigned long len, const unsigned long pgoff, 1443 const unsigned long flags) 1444 { 1445 struct vm_area_struct *vma; 1446 struct mm_struct *mm = current->mm; 1447 unsigned long addr = addr0; 1448 1449 /* requested length too big for entire address space */ 1450 if (len > TASK_SIZE) 1451 return -ENOMEM; 1452 1453 if (flags & MAP_FIXED) 1454 return addr; 1455 1456 /* requesting a specific address */ 1457 if (addr) { 1458 addr = PAGE_ALIGN(addr); 1459 vma = find_vma(mm, addr); 1460 if (TASK_SIZE - len >= addr && 1461 (!vma || addr + len <= vma->vm_start)) 1462 return addr; 1463 } 1464 1465 /* check if free_area_cache is useful for us */ 1466 if (len <= mm->cached_hole_size) { 1467 mm->cached_hole_size = 0; 1468 mm->free_area_cache = mm->mmap_base; 1469 } 1470 1471 /* either no address requested or can't fit in requested address hole */ 1472 addr = mm->free_area_cache; 1473 1474 /* make sure it can fit in the remaining address space */ 1475 if (addr > len) { 1476 vma = find_vma(mm, addr-len); 1477 if (!vma || addr <= vma->vm_start) 1478 /* remember the address as a hint for next time */ 1479 return (mm->free_area_cache = addr-len); 1480 } 1481 1482 if (mm->mmap_base < len) 1483 goto bottomup; 1484 1485 addr = mm->mmap_base-len; 1486 1487 do { 1488 /* 1489 * Lookup failure means no vma is above this address, 1490 * else if new region fits below vma->vm_start, 1491 * return with success: 1492 */ 1493 vma = find_vma(mm, addr); 1494 if (!vma || addr+len <= vma->vm_start) 1495 /* remember the address as a hint for next time */ 1496 return (mm->free_area_cache = addr); 1497 1498 /* remember the largest hole we saw so far */ 1499 if (addr + mm->cached_hole_size < vma->vm_start) 1500 mm->cached_hole_size = vma->vm_start - addr; 1501 1502 /* try just below the current vma->vm_start */ 1503 addr = vma->vm_start-len; 1504 } while (len < vma->vm_start); 1505 1506 bottomup: 1507 /* 1508 * A failed mmap() very likely causes application failure, 1509 * so fall back to the bottom-up function here. This scenario 1510 * can happen with large stack limits and large mmap() 1511 * allocations. 1512 */ 1513 mm->cached_hole_size = ~0UL; 1514 mm->free_area_cache = TASK_UNMAPPED_BASE; 1515 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1516 /* 1517 * Restore the topdown base: 1518 */ 1519 mm->free_area_cache = mm->mmap_base; 1520 mm->cached_hole_size = ~0UL; 1521 1522 return addr; 1523 } 1524 #endif 1525 1526 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1527 { 1528 /* 1529 * Is this a new hole at the highest possible address? 1530 */ 1531 if (addr > mm->free_area_cache) 1532 mm->free_area_cache = addr; 1533 1534 /* dont allow allocations above current base */ 1535 if (mm->free_area_cache > mm->mmap_base) 1536 mm->free_area_cache = mm->mmap_base; 1537 } 1538 1539 unsigned long 1540 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1541 unsigned long pgoff, unsigned long flags) 1542 { 1543 unsigned long (*get_area)(struct file *, unsigned long, 1544 unsigned long, unsigned long, unsigned long); 1545 1546 unsigned long error = arch_mmap_check(addr, len, flags); 1547 if (error) 1548 return error; 1549 1550 /* Careful about overflows.. */ 1551 if (len > TASK_SIZE) 1552 return -ENOMEM; 1553 1554 get_area = current->mm->get_unmapped_area; 1555 if (file && file->f_op && file->f_op->get_unmapped_area) 1556 get_area = file->f_op->get_unmapped_area; 1557 addr = get_area(file, addr, len, pgoff, flags); 1558 if (IS_ERR_VALUE(addr)) 1559 return addr; 1560 1561 if (addr > TASK_SIZE - len) 1562 return -ENOMEM; 1563 if (addr & ~PAGE_MASK) 1564 return -EINVAL; 1565 1566 return arch_rebalance_pgtables(addr, len); 1567 } 1568 1569 EXPORT_SYMBOL(get_unmapped_area); 1570 1571 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1572 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1573 { 1574 struct vm_area_struct *vma = NULL; 1575 1576 if (mm) { 1577 /* Check the cache first. */ 1578 /* (Cache hit rate is typically around 35%.) */ 1579 vma = mm->mmap_cache; 1580 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1581 struct rb_node * rb_node; 1582 1583 rb_node = mm->mm_rb.rb_node; 1584 vma = NULL; 1585 1586 while (rb_node) { 1587 struct vm_area_struct * vma_tmp; 1588 1589 vma_tmp = rb_entry(rb_node, 1590 struct vm_area_struct, vm_rb); 1591 1592 if (vma_tmp->vm_end > addr) { 1593 vma = vma_tmp; 1594 if (vma_tmp->vm_start <= addr) 1595 break; 1596 rb_node = rb_node->rb_left; 1597 } else 1598 rb_node = rb_node->rb_right; 1599 } 1600 if (vma) 1601 mm->mmap_cache = vma; 1602 } 1603 } 1604 return vma; 1605 } 1606 1607 EXPORT_SYMBOL(find_vma); 1608 1609 /* 1610 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1611 */ 1612 struct vm_area_struct * 1613 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1614 struct vm_area_struct **pprev) 1615 { 1616 struct vm_area_struct *vma; 1617 1618 vma = find_vma(mm, addr); 1619 if (vma) { 1620 *pprev = vma->vm_prev; 1621 } else { 1622 struct rb_node *rb_node = mm->mm_rb.rb_node; 1623 *pprev = NULL; 1624 while (rb_node) { 1625 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1626 rb_node = rb_node->rb_right; 1627 } 1628 } 1629 return vma; 1630 } 1631 1632 /* 1633 * Verify that the stack growth is acceptable and 1634 * update accounting. This is shared with both the 1635 * grow-up and grow-down cases. 1636 */ 1637 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1638 { 1639 struct mm_struct *mm = vma->vm_mm; 1640 struct rlimit *rlim = current->signal->rlim; 1641 unsigned long new_start; 1642 1643 /* address space limit tests */ 1644 if (!may_expand_vm(mm, grow)) 1645 return -ENOMEM; 1646 1647 /* Stack limit test */ 1648 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1649 return -ENOMEM; 1650 1651 /* mlock limit tests */ 1652 if (vma->vm_flags & VM_LOCKED) { 1653 unsigned long locked; 1654 unsigned long limit; 1655 locked = mm->locked_vm + grow; 1656 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1657 limit >>= PAGE_SHIFT; 1658 if (locked > limit && !capable(CAP_IPC_LOCK)) 1659 return -ENOMEM; 1660 } 1661 1662 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1663 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1664 vma->vm_end - size; 1665 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1666 return -EFAULT; 1667 1668 /* 1669 * Overcommit.. This must be the final test, as it will 1670 * update security statistics. 1671 */ 1672 if (security_vm_enough_memory_mm(mm, grow)) 1673 return -ENOMEM; 1674 1675 /* Ok, everything looks good - let it rip */ 1676 mm->total_vm += grow; 1677 if (vma->vm_flags & VM_LOCKED) 1678 mm->locked_vm += grow; 1679 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1680 return 0; 1681 } 1682 1683 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1684 /* 1685 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1686 * vma is the last one with address > vma->vm_end. Have to extend vma. 1687 */ 1688 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1689 { 1690 int error; 1691 1692 if (!(vma->vm_flags & VM_GROWSUP)) 1693 return -EFAULT; 1694 1695 /* 1696 * We must make sure the anon_vma is allocated 1697 * so that the anon_vma locking is not a noop. 1698 */ 1699 if (unlikely(anon_vma_prepare(vma))) 1700 return -ENOMEM; 1701 vma_lock_anon_vma(vma); 1702 1703 /* 1704 * vma->vm_start/vm_end cannot change under us because the caller 1705 * is required to hold the mmap_sem in read mode. We need the 1706 * anon_vma lock to serialize against concurrent expand_stacks. 1707 * Also guard against wrapping around to address 0. 1708 */ 1709 if (address < PAGE_ALIGN(address+4)) 1710 address = PAGE_ALIGN(address+4); 1711 else { 1712 vma_unlock_anon_vma(vma); 1713 return -ENOMEM; 1714 } 1715 error = 0; 1716 1717 /* Somebody else might have raced and expanded it already */ 1718 if (address > vma->vm_end) { 1719 unsigned long size, grow; 1720 1721 size = address - vma->vm_start; 1722 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1723 1724 error = -ENOMEM; 1725 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1726 error = acct_stack_growth(vma, size, grow); 1727 if (!error) { 1728 vma->vm_end = address; 1729 perf_event_mmap(vma); 1730 } 1731 } 1732 } 1733 vma_unlock_anon_vma(vma); 1734 khugepaged_enter_vma_merge(vma); 1735 return error; 1736 } 1737 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1738 1739 /* 1740 * vma is the first one with address < vma->vm_start. Have to extend vma. 1741 */ 1742 int expand_downwards(struct vm_area_struct *vma, 1743 unsigned long address) 1744 { 1745 int error; 1746 1747 /* 1748 * We must make sure the anon_vma is allocated 1749 * so that the anon_vma locking is not a noop. 1750 */ 1751 if (unlikely(anon_vma_prepare(vma))) 1752 return -ENOMEM; 1753 1754 address &= PAGE_MASK; 1755 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1756 if (error) 1757 return error; 1758 1759 vma_lock_anon_vma(vma); 1760 1761 /* 1762 * vma->vm_start/vm_end cannot change under us because the caller 1763 * is required to hold the mmap_sem in read mode. We need the 1764 * anon_vma lock to serialize against concurrent expand_stacks. 1765 */ 1766 1767 /* Somebody else might have raced and expanded it already */ 1768 if (address < vma->vm_start) { 1769 unsigned long size, grow; 1770 1771 size = vma->vm_end - address; 1772 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1773 1774 error = -ENOMEM; 1775 if (grow <= vma->vm_pgoff) { 1776 error = acct_stack_growth(vma, size, grow); 1777 if (!error) { 1778 vma->vm_start = address; 1779 vma->vm_pgoff -= grow; 1780 perf_event_mmap(vma); 1781 } 1782 } 1783 } 1784 vma_unlock_anon_vma(vma); 1785 khugepaged_enter_vma_merge(vma); 1786 return error; 1787 } 1788 1789 #ifdef CONFIG_STACK_GROWSUP 1790 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1791 { 1792 return expand_upwards(vma, address); 1793 } 1794 1795 struct vm_area_struct * 1796 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1797 { 1798 struct vm_area_struct *vma, *prev; 1799 1800 addr &= PAGE_MASK; 1801 vma = find_vma_prev(mm, addr, &prev); 1802 if (vma && (vma->vm_start <= addr)) 1803 return vma; 1804 if (!prev || expand_stack(prev, addr)) 1805 return NULL; 1806 if (prev->vm_flags & VM_LOCKED) { 1807 mlock_vma_pages_range(prev, addr, prev->vm_end); 1808 } 1809 return prev; 1810 } 1811 #else 1812 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1813 { 1814 return expand_downwards(vma, address); 1815 } 1816 1817 struct vm_area_struct * 1818 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1819 { 1820 struct vm_area_struct * vma; 1821 unsigned long start; 1822 1823 addr &= PAGE_MASK; 1824 vma = find_vma(mm,addr); 1825 if (!vma) 1826 return NULL; 1827 if (vma->vm_start <= addr) 1828 return vma; 1829 if (!(vma->vm_flags & VM_GROWSDOWN)) 1830 return NULL; 1831 start = vma->vm_start; 1832 if (expand_stack(vma, addr)) 1833 return NULL; 1834 if (vma->vm_flags & VM_LOCKED) { 1835 mlock_vma_pages_range(vma, addr, start); 1836 } 1837 return vma; 1838 } 1839 #endif 1840 1841 /* 1842 * Ok - we have the memory areas we should free on the vma list, 1843 * so release them, and do the vma updates. 1844 * 1845 * Called with the mm semaphore held. 1846 */ 1847 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1848 { 1849 /* Update high watermark before we lower total_vm */ 1850 update_hiwater_vm(mm); 1851 do { 1852 long nrpages = vma_pages(vma); 1853 1854 mm->total_vm -= nrpages; 1855 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1856 vma = remove_vma(vma); 1857 } while (vma); 1858 validate_mm(mm); 1859 } 1860 1861 /* 1862 * Get rid of page table information in the indicated region. 1863 * 1864 * Called with the mm semaphore held. 1865 */ 1866 static void unmap_region(struct mm_struct *mm, 1867 struct vm_area_struct *vma, struct vm_area_struct *prev, 1868 unsigned long start, unsigned long end) 1869 { 1870 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1871 struct mmu_gather tlb; 1872 unsigned long nr_accounted = 0; 1873 1874 lru_add_drain(); 1875 tlb_gather_mmu(&tlb, mm, 0); 1876 update_hiwater_rss(mm); 1877 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1878 vm_unacct_memory(nr_accounted); 1879 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1880 next ? next->vm_start : 0); 1881 tlb_finish_mmu(&tlb, start, end); 1882 } 1883 1884 /* 1885 * Create a list of vma's touched by the unmap, removing them from the mm's 1886 * vma list as we go.. 1887 */ 1888 static void 1889 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1890 struct vm_area_struct *prev, unsigned long end) 1891 { 1892 struct vm_area_struct **insertion_point; 1893 struct vm_area_struct *tail_vma = NULL; 1894 unsigned long addr; 1895 1896 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1897 vma->vm_prev = NULL; 1898 do { 1899 rb_erase(&vma->vm_rb, &mm->mm_rb); 1900 mm->map_count--; 1901 tail_vma = vma; 1902 vma = vma->vm_next; 1903 } while (vma && vma->vm_start < end); 1904 *insertion_point = vma; 1905 if (vma) 1906 vma->vm_prev = prev; 1907 tail_vma->vm_next = NULL; 1908 if (mm->unmap_area == arch_unmap_area) 1909 addr = prev ? prev->vm_end : mm->mmap_base; 1910 else 1911 addr = vma ? vma->vm_start : mm->mmap_base; 1912 mm->unmap_area(mm, addr); 1913 mm->mmap_cache = NULL; /* Kill the cache. */ 1914 } 1915 1916 /* 1917 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1918 * munmap path where it doesn't make sense to fail. 1919 */ 1920 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1921 unsigned long addr, int new_below) 1922 { 1923 struct mempolicy *pol; 1924 struct vm_area_struct *new; 1925 int err = -ENOMEM; 1926 1927 if (is_vm_hugetlb_page(vma) && (addr & 1928 ~(huge_page_mask(hstate_vma(vma))))) 1929 return -EINVAL; 1930 1931 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1932 if (!new) 1933 goto out_err; 1934 1935 /* most fields are the same, copy all, and then fixup */ 1936 *new = *vma; 1937 1938 INIT_LIST_HEAD(&new->anon_vma_chain); 1939 1940 if (new_below) 1941 new->vm_end = addr; 1942 else { 1943 new->vm_start = addr; 1944 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1945 } 1946 1947 pol = mpol_dup(vma_policy(vma)); 1948 if (IS_ERR(pol)) { 1949 err = PTR_ERR(pol); 1950 goto out_free_vma; 1951 } 1952 vma_set_policy(new, pol); 1953 1954 if (anon_vma_clone(new, vma)) 1955 goto out_free_mpol; 1956 1957 if (new->vm_file) { 1958 get_file(new->vm_file); 1959 if (vma->vm_flags & VM_EXECUTABLE) 1960 added_exe_file_vma(mm); 1961 } 1962 1963 if (new->vm_ops && new->vm_ops->open) 1964 new->vm_ops->open(new); 1965 1966 if (new_below) 1967 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1968 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1969 else 1970 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1971 1972 /* Success. */ 1973 if (!err) 1974 return 0; 1975 1976 /* Clean everything up if vma_adjust failed. */ 1977 if (new->vm_ops && new->vm_ops->close) 1978 new->vm_ops->close(new); 1979 if (new->vm_file) { 1980 if (vma->vm_flags & VM_EXECUTABLE) 1981 removed_exe_file_vma(mm); 1982 fput(new->vm_file); 1983 } 1984 unlink_anon_vmas(new); 1985 out_free_mpol: 1986 mpol_put(pol); 1987 out_free_vma: 1988 kmem_cache_free(vm_area_cachep, new); 1989 out_err: 1990 return err; 1991 } 1992 1993 /* 1994 * Split a vma into two pieces at address 'addr', a new vma is allocated 1995 * either for the first part or the tail. 1996 */ 1997 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1998 unsigned long addr, int new_below) 1999 { 2000 if (mm->map_count >= sysctl_max_map_count) 2001 return -ENOMEM; 2002 2003 return __split_vma(mm, vma, addr, new_below); 2004 } 2005 2006 /* Munmap is split into 2 main parts -- this part which finds 2007 * what needs doing, and the areas themselves, which do the 2008 * work. This now handles partial unmappings. 2009 * Jeremy Fitzhardinge <jeremy@goop.org> 2010 */ 2011 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2012 { 2013 unsigned long end; 2014 struct vm_area_struct *vma, *prev, *last; 2015 2016 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2017 return -EINVAL; 2018 2019 if ((len = PAGE_ALIGN(len)) == 0) 2020 return -EINVAL; 2021 2022 /* Find the first overlapping VMA */ 2023 vma = find_vma(mm, start); 2024 if (!vma) 2025 return 0; 2026 prev = vma->vm_prev; 2027 /* we have start < vma->vm_end */ 2028 2029 /* if it doesn't overlap, we have nothing.. */ 2030 end = start + len; 2031 if (vma->vm_start >= end) 2032 return 0; 2033 2034 /* 2035 * If we need to split any vma, do it now to save pain later. 2036 * 2037 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2038 * unmapped vm_area_struct will remain in use: so lower split_vma 2039 * places tmp vma above, and higher split_vma places tmp vma below. 2040 */ 2041 if (start > vma->vm_start) { 2042 int error; 2043 2044 /* 2045 * Make sure that map_count on return from munmap() will 2046 * not exceed its limit; but let map_count go just above 2047 * its limit temporarily, to help free resources as expected. 2048 */ 2049 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2050 return -ENOMEM; 2051 2052 error = __split_vma(mm, vma, start, 0); 2053 if (error) 2054 return error; 2055 prev = vma; 2056 } 2057 2058 /* Does it split the last one? */ 2059 last = find_vma(mm, end); 2060 if (last && end > last->vm_start) { 2061 int error = __split_vma(mm, last, end, 1); 2062 if (error) 2063 return error; 2064 } 2065 vma = prev? prev->vm_next: mm->mmap; 2066 2067 /* 2068 * unlock any mlock()ed ranges before detaching vmas 2069 */ 2070 if (mm->locked_vm) { 2071 struct vm_area_struct *tmp = vma; 2072 while (tmp && tmp->vm_start < end) { 2073 if (tmp->vm_flags & VM_LOCKED) { 2074 mm->locked_vm -= vma_pages(tmp); 2075 munlock_vma_pages_all(tmp); 2076 } 2077 tmp = tmp->vm_next; 2078 } 2079 } 2080 2081 /* 2082 * Remove the vma's, and unmap the actual pages 2083 */ 2084 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2085 unmap_region(mm, vma, prev, start, end); 2086 2087 /* Fix up all other VM information */ 2088 remove_vma_list(mm, vma); 2089 2090 return 0; 2091 } 2092 2093 EXPORT_SYMBOL(do_munmap); 2094 2095 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2096 { 2097 int ret; 2098 struct mm_struct *mm = current->mm; 2099 2100 profile_munmap(addr); 2101 2102 down_write(&mm->mmap_sem); 2103 ret = do_munmap(mm, addr, len); 2104 up_write(&mm->mmap_sem); 2105 return ret; 2106 } 2107 2108 static inline void verify_mm_writelocked(struct mm_struct *mm) 2109 { 2110 #ifdef CONFIG_DEBUG_VM 2111 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2112 WARN_ON(1); 2113 up_read(&mm->mmap_sem); 2114 } 2115 #endif 2116 } 2117 2118 /* 2119 * this is really a simplified "do_mmap". it only handles 2120 * anonymous maps. eventually we may be able to do some 2121 * brk-specific accounting here. 2122 */ 2123 unsigned long do_brk(unsigned long addr, unsigned long len) 2124 { 2125 struct mm_struct * mm = current->mm; 2126 struct vm_area_struct * vma, * prev; 2127 unsigned long flags; 2128 struct rb_node ** rb_link, * rb_parent; 2129 pgoff_t pgoff = addr >> PAGE_SHIFT; 2130 int error; 2131 2132 len = PAGE_ALIGN(len); 2133 if (!len) 2134 return addr; 2135 2136 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2137 if (error) 2138 return error; 2139 2140 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2141 2142 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2143 if (error & ~PAGE_MASK) 2144 return error; 2145 2146 /* 2147 * mlock MCL_FUTURE? 2148 */ 2149 if (mm->def_flags & VM_LOCKED) { 2150 unsigned long locked, lock_limit; 2151 locked = len >> PAGE_SHIFT; 2152 locked += mm->locked_vm; 2153 lock_limit = rlimit(RLIMIT_MEMLOCK); 2154 lock_limit >>= PAGE_SHIFT; 2155 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2156 return -EAGAIN; 2157 } 2158 2159 /* 2160 * mm->mmap_sem is required to protect against another thread 2161 * changing the mappings in case we sleep. 2162 */ 2163 verify_mm_writelocked(mm); 2164 2165 /* 2166 * Clear old maps. this also does some error checking for us 2167 */ 2168 munmap_back: 2169 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2170 if (vma && vma->vm_start < addr + len) { 2171 if (do_munmap(mm, addr, len)) 2172 return -ENOMEM; 2173 goto munmap_back; 2174 } 2175 2176 /* Check against address space limits *after* clearing old maps... */ 2177 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2178 return -ENOMEM; 2179 2180 if (mm->map_count > sysctl_max_map_count) 2181 return -ENOMEM; 2182 2183 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2184 return -ENOMEM; 2185 2186 /* Can we just expand an old private anonymous mapping? */ 2187 vma = vma_merge(mm, prev, addr, addr + len, flags, 2188 NULL, NULL, pgoff, NULL); 2189 if (vma) 2190 goto out; 2191 2192 /* 2193 * create a vma struct for an anonymous mapping 2194 */ 2195 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2196 if (!vma) { 2197 vm_unacct_memory(len >> PAGE_SHIFT); 2198 return -ENOMEM; 2199 } 2200 2201 INIT_LIST_HEAD(&vma->anon_vma_chain); 2202 vma->vm_mm = mm; 2203 vma->vm_start = addr; 2204 vma->vm_end = addr + len; 2205 vma->vm_pgoff = pgoff; 2206 vma->vm_flags = flags; 2207 vma->vm_page_prot = vm_get_page_prot(flags); 2208 vma_link(mm, vma, prev, rb_link, rb_parent); 2209 out: 2210 perf_event_mmap(vma); 2211 mm->total_vm += len >> PAGE_SHIFT; 2212 if (flags & VM_LOCKED) { 2213 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2214 mm->locked_vm += (len >> PAGE_SHIFT); 2215 } 2216 return addr; 2217 } 2218 2219 EXPORT_SYMBOL(do_brk); 2220 2221 /* Release all mmaps. */ 2222 void exit_mmap(struct mm_struct *mm) 2223 { 2224 struct mmu_gather tlb; 2225 struct vm_area_struct *vma; 2226 unsigned long nr_accounted = 0; 2227 unsigned long end; 2228 2229 /* mm's last user has gone, and its about to be pulled down */ 2230 mmu_notifier_release(mm); 2231 2232 if (mm->locked_vm) { 2233 vma = mm->mmap; 2234 while (vma) { 2235 if (vma->vm_flags & VM_LOCKED) 2236 munlock_vma_pages_all(vma); 2237 vma = vma->vm_next; 2238 } 2239 } 2240 2241 arch_exit_mmap(mm); 2242 2243 vma = mm->mmap; 2244 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2245 return; 2246 2247 lru_add_drain(); 2248 flush_cache_mm(mm); 2249 tlb_gather_mmu(&tlb, mm, 1); 2250 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2251 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2252 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2253 vm_unacct_memory(nr_accounted); 2254 2255 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2256 tlb_finish_mmu(&tlb, 0, end); 2257 2258 /* 2259 * Walk the list again, actually closing and freeing it, 2260 * with preemption enabled, without holding any MM locks. 2261 */ 2262 while (vma) 2263 vma = remove_vma(vma); 2264 2265 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2266 } 2267 2268 /* Insert vm structure into process list sorted by address 2269 * and into the inode's i_mmap tree. If vm_file is non-NULL 2270 * then i_mmap_mutex is taken here. 2271 */ 2272 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2273 { 2274 struct vm_area_struct * __vma, * prev; 2275 struct rb_node ** rb_link, * rb_parent; 2276 2277 /* 2278 * The vm_pgoff of a purely anonymous vma should be irrelevant 2279 * until its first write fault, when page's anon_vma and index 2280 * are set. But now set the vm_pgoff it will almost certainly 2281 * end up with (unless mremap moves it elsewhere before that 2282 * first wfault), so /proc/pid/maps tells a consistent story. 2283 * 2284 * By setting it to reflect the virtual start address of the 2285 * vma, merges and splits can happen in a seamless way, just 2286 * using the existing file pgoff checks and manipulations. 2287 * Similarly in do_mmap_pgoff and in do_brk. 2288 */ 2289 if (!vma->vm_file) { 2290 BUG_ON(vma->anon_vma); 2291 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2292 } 2293 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2294 if (__vma && __vma->vm_start < vma->vm_end) 2295 return -ENOMEM; 2296 if ((vma->vm_flags & VM_ACCOUNT) && 2297 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2298 return -ENOMEM; 2299 vma_link(mm, vma, prev, rb_link, rb_parent); 2300 return 0; 2301 } 2302 2303 /* 2304 * Copy the vma structure to a new location in the same mm, 2305 * prior to moving page table entries, to effect an mremap move. 2306 */ 2307 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2308 unsigned long addr, unsigned long len, pgoff_t pgoff) 2309 { 2310 struct vm_area_struct *vma = *vmap; 2311 unsigned long vma_start = vma->vm_start; 2312 struct mm_struct *mm = vma->vm_mm; 2313 struct vm_area_struct *new_vma, *prev; 2314 struct rb_node **rb_link, *rb_parent; 2315 struct mempolicy *pol; 2316 bool faulted_in_anon_vma = true; 2317 2318 /* 2319 * If anonymous vma has not yet been faulted, update new pgoff 2320 * to match new location, to increase its chance of merging. 2321 */ 2322 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2323 pgoff = addr >> PAGE_SHIFT; 2324 faulted_in_anon_vma = false; 2325 } 2326 2327 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2328 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2329 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2330 if (new_vma) { 2331 /* 2332 * Source vma may have been merged into new_vma 2333 */ 2334 if (unlikely(vma_start >= new_vma->vm_start && 2335 vma_start < new_vma->vm_end)) { 2336 /* 2337 * The only way we can get a vma_merge with 2338 * self during an mremap is if the vma hasn't 2339 * been faulted in yet and we were allowed to 2340 * reset the dst vma->vm_pgoff to the 2341 * destination address of the mremap to allow 2342 * the merge to happen. mremap must change the 2343 * vm_pgoff linearity between src and dst vmas 2344 * (in turn preventing a vma_merge) to be 2345 * safe. It is only safe to keep the vm_pgoff 2346 * linear if there are no pages mapped yet. 2347 */ 2348 VM_BUG_ON(faulted_in_anon_vma); 2349 *vmap = new_vma; 2350 } else 2351 anon_vma_moveto_tail(new_vma); 2352 } else { 2353 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2354 if (new_vma) { 2355 *new_vma = *vma; 2356 pol = mpol_dup(vma_policy(vma)); 2357 if (IS_ERR(pol)) 2358 goto out_free_vma; 2359 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2360 if (anon_vma_clone(new_vma, vma)) 2361 goto out_free_mempol; 2362 vma_set_policy(new_vma, pol); 2363 new_vma->vm_start = addr; 2364 new_vma->vm_end = addr + len; 2365 new_vma->vm_pgoff = pgoff; 2366 if (new_vma->vm_file) { 2367 get_file(new_vma->vm_file); 2368 if (vma->vm_flags & VM_EXECUTABLE) 2369 added_exe_file_vma(mm); 2370 } 2371 if (new_vma->vm_ops && new_vma->vm_ops->open) 2372 new_vma->vm_ops->open(new_vma); 2373 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2374 } 2375 } 2376 return new_vma; 2377 2378 out_free_mempol: 2379 mpol_put(pol); 2380 out_free_vma: 2381 kmem_cache_free(vm_area_cachep, new_vma); 2382 return NULL; 2383 } 2384 2385 /* 2386 * Return true if the calling process may expand its vm space by the passed 2387 * number of pages 2388 */ 2389 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2390 { 2391 unsigned long cur = mm->total_vm; /* pages */ 2392 unsigned long lim; 2393 2394 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2395 2396 if (cur + npages > lim) 2397 return 0; 2398 return 1; 2399 } 2400 2401 2402 static int special_mapping_fault(struct vm_area_struct *vma, 2403 struct vm_fault *vmf) 2404 { 2405 pgoff_t pgoff; 2406 struct page **pages; 2407 2408 /* 2409 * special mappings have no vm_file, and in that case, the mm 2410 * uses vm_pgoff internally. So we have to subtract it from here. 2411 * We are allowed to do this because we are the mm; do not copy 2412 * this code into drivers! 2413 */ 2414 pgoff = vmf->pgoff - vma->vm_pgoff; 2415 2416 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2417 pgoff--; 2418 2419 if (*pages) { 2420 struct page *page = *pages; 2421 get_page(page); 2422 vmf->page = page; 2423 return 0; 2424 } 2425 2426 return VM_FAULT_SIGBUS; 2427 } 2428 2429 /* 2430 * Having a close hook prevents vma merging regardless of flags. 2431 */ 2432 static void special_mapping_close(struct vm_area_struct *vma) 2433 { 2434 } 2435 2436 static const struct vm_operations_struct special_mapping_vmops = { 2437 .close = special_mapping_close, 2438 .fault = special_mapping_fault, 2439 }; 2440 2441 /* 2442 * Called with mm->mmap_sem held for writing. 2443 * Insert a new vma covering the given region, with the given flags. 2444 * Its pages are supplied by the given array of struct page *. 2445 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2446 * The region past the last page supplied will always produce SIGBUS. 2447 * The array pointer and the pages it points to are assumed to stay alive 2448 * for as long as this mapping might exist. 2449 */ 2450 int install_special_mapping(struct mm_struct *mm, 2451 unsigned long addr, unsigned long len, 2452 unsigned long vm_flags, struct page **pages) 2453 { 2454 int ret; 2455 struct vm_area_struct *vma; 2456 2457 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2458 if (unlikely(vma == NULL)) 2459 return -ENOMEM; 2460 2461 INIT_LIST_HEAD(&vma->anon_vma_chain); 2462 vma->vm_mm = mm; 2463 vma->vm_start = addr; 2464 vma->vm_end = addr + len; 2465 2466 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2467 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2468 2469 vma->vm_ops = &special_mapping_vmops; 2470 vma->vm_private_data = pages; 2471 2472 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2473 if (ret) 2474 goto out; 2475 2476 ret = insert_vm_struct(mm, vma); 2477 if (ret) 2478 goto out; 2479 2480 mm->total_vm += len >> PAGE_SHIFT; 2481 2482 perf_event_mmap(vma); 2483 2484 return 0; 2485 2486 out: 2487 kmem_cache_free(vm_area_cachep, vma); 2488 return ret; 2489 } 2490 2491 static DEFINE_MUTEX(mm_all_locks_mutex); 2492 2493 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2494 { 2495 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2496 /* 2497 * The LSB of head.next can't change from under us 2498 * because we hold the mm_all_locks_mutex. 2499 */ 2500 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2501 /* 2502 * We can safely modify head.next after taking the 2503 * anon_vma->root->mutex. If some other vma in this mm shares 2504 * the same anon_vma we won't take it again. 2505 * 2506 * No need of atomic instructions here, head.next 2507 * can't change from under us thanks to the 2508 * anon_vma->root->mutex. 2509 */ 2510 if (__test_and_set_bit(0, (unsigned long *) 2511 &anon_vma->root->head.next)) 2512 BUG(); 2513 } 2514 } 2515 2516 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2517 { 2518 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2519 /* 2520 * AS_MM_ALL_LOCKS can't change from under us because 2521 * we hold the mm_all_locks_mutex. 2522 * 2523 * Operations on ->flags have to be atomic because 2524 * even if AS_MM_ALL_LOCKS is stable thanks to the 2525 * mm_all_locks_mutex, there may be other cpus 2526 * changing other bitflags in parallel to us. 2527 */ 2528 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2529 BUG(); 2530 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2531 } 2532 } 2533 2534 /* 2535 * This operation locks against the VM for all pte/vma/mm related 2536 * operations that could ever happen on a certain mm. This includes 2537 * vmtruncate, try_to_unmap, and all page faults. 2538 * 2539 * The caller must take the mmap_sem in write mode before calling 2540 * mm_take_all_locks(). The caller isn't allowed to release the 2541 * mmap_sem until mm_drop_all_locks() returns. 2542 * 2543 * mmap_sem in write mode is required in order to block all operations 2544 * that could modify pagetables and free pages without need of 2545 * altering the vma layout (for example populate_range() with 2546 * nonlinear vmas). It's also needed in write mode to avoid new 2547 * anon_vmas to be associated with existing vmas. 2548 * 2549 * A single task can't take more than one mm_take_all_locks() in a row 2550 * or it would deadlock. 2551 * 2552 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2553 * mapping->flags avoid to take the same lock twice, if more than one 2554 * vma in this mm is backed by the same anon_vma or address_space. 2555 * 2556 * We can take all the locks in random order because the VM code 2557 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2558 * takes more than one of them in a row. Secondly we're protected 2559 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2560 * 2561 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2562 * that may have to take thousand of locks. 2563 * 2564 * mm_take_all_locks() can fail if it's interrupted by signals. 2565 */ 2566 int mm_take_all_locks(struct mm_struct *mm) 2567 { 2568 struct vm_area_struct *vma; 2569 struct anon_vma_chain *avc; 2570 2571 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2572 2573 mutex_lock(&mm_all_locks_mutex); 2574 2575 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2576 if (signal_pending(current)) 2577 goto out_unlock; 2578 if (vma->vm_file && vma->vm_file->f_mapping) 2579 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2580 } 2581 2582 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2583 if (signal_pending(current)) 2584 goto out_unlock; 2585 if (vma->anon_vma) 2586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2587 vm_lock_anon_vma(mm, avc->anon_vma); 2588 } 2589 2590 return 0; 2591 2592 out_unlock: 2593 mm_drop_all_locks(mm); 2594 return -EINTR; 2595 } 2596 2597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2598 { 2599 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2600 /* 2601 * The LSB of head.next can't change to 0 from under 2602 * us because we hold the mm_all_locks_mutex. 2603 * 2604 * We must however clear the bitflag before unlocking 2605 * the vma so the users using the anon_vma->head will 2606 * never see our bitflag. 2607 * 2608 * No need of atomic instructions here, head.next 2609 * can't change from under us until we release the 2610 * anon_vma->root->mutex. 2611 */ 2612 if (!__test_and_clear_bit(0, (unsigned long *) 2613 &anon_vma->root->head.next)) 2614 BUG(); 2615 anon_vma_unlock(anon_vma); 2616 } 2617 } 2618 2619 static void vm_unlock_mapping(struct address_space *mapping) 2620 { 2621 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2622 /* 2623 * AS_MM_ALL_LOCKS can't change to 0 from under us 2624 * because we hold the mm_all_locks_mutex. 2625 */ 2626 mutex_unlock(&mapping->i_mmap_mutex); 2627 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2628 &mapping->flags)) 2629 BUG(); 2630 } 2631 } 2632 2633 /* 2634 * The mmap_sem cannot be released by the caller until 2635 * mm_drop_all_locks() returns. 2636 */ 2637 void mm_drop_all_locks(struct mm_struct *mm) 2638 { 2639 struct vm_area_struct *vma; 2640 struct anon_vma_chain *avc; 2641 2642 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2643 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2644 2645 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2646 if (vma->anon_vma) 2647 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2648 vm_unlock_anon_vma(avc->anon_vma); 2649 if (vma->vm_file && vma->vm_file->f_mapping) 2650 vm_unlock_mapping(vma->vm_file->f_mapping); 2651 } 2652 2653 mutex_unlock(&mm_all_locks_mutex); 2654 } 2655 2656 /* 2657 * initialise the VMA slab 2658 */ 2659 void __init mmap_init(void) 2660 { 2661 int ret; 2662 2663 ret = percpu_counter_init(&vm_committed_as, 0); 2664 VM_BUG_ON(ret); 2665 } 2666