1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 */ 94 pgprot_t protection_map[16] __ro_after_init = { 95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 97 }; 98 99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 101 { 102 return prot; 103 } 104 #endif 105 106 pgprot_t vm_get_page_prot(unsigned long vm_flags) 107 { 108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 110 pgprot_val(arch_vm_get_page_prot(vm_flags))); 111 112 return arch_filter_pgprot(ret); 113 } 114 EXPORT_SYMBOL(vm_get_page_prot); 115 116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 117 { 118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 119 } 120 121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 122 void vma_set_page_prot(struct vm_area_struct *vma) 123 { 124 unsigned long vm_flags = vma->vm_flags; 125 pgprot_t vm_page_prot; 126 127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 128 if (vma_wants_writenotify(vma, vm_page_prot)) { 129 vm_flags &= ~VM_SHARED; 130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 131 } 132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 134 } 135 136 /* 137 * Requires inode->i_mapping->i_mmap_rwsem 138 */ 139 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 140 struct file *file, struct address_space *mapping) 141 { 142 if (vma->vm_flags & VM_DENYWRITE) 143 atomic_inc(&file_inode(file)->i_writecount); 144 if (vma->vm_flags & VM_SHARED) 145 mapping_unmap_writable(mapping); 146 147 flush_dcache_mmap_lock(mapping); 148 vma_interval_tree_remove(vma, &mapping->i_mmap); 149 flush_dcache_mmap_unlock(mapping); 150 } 151 152 /* 153 * Unlink a file-based vm structure from its interval tree, to hide 154 * vma from rmap and vmtruncate before freeing its page tables. 155 */ 156 void unlink_file_vma(struct vm_area_struct *vma) 157 { 158 struct file *file = vma->vm_file; 159 160 if (file) { 161 struct address_space *mapping = file->f_mapping; 162 i_mmap_lock_write(mapping); 163 __remove_shared_vm_struct(vma, file, mapping); 164 i_mmap_unlock_write(mapping); 165 } 166 } 167 168 /* 169 * Close a vm structure and free it, returning the next. 170 */ 171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 172 { 173 struct vm_area_struct *next = vma->vm_next; 174 175 might_sleep(); 176 if (vma->vm_ops && vma->vm_ops->close) 177 vma->vm_ops->close(vma); 178 if (vma->vm_file) 179 fput(vma->vm_file); 180 mpol_put(vma_policy(vma)); 181 vm_area_free(vma); 182 return next; 183 } 184 185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 186 struct list_head *uf); 187 SYSCALL_DEFINE1(brk, unsigned long, brk) 188 { 189 unsigned long retval; 190 unsigned long newbrk, oldbrk, origbrk; 191 struct mm_struct *mm = current->mm; 192 struct vm_area_struct *next; 193 unsigned long min_brk; 194 bool populate; 195 bool downgraded = false; 196 LIST_HEAD(uf); 197 198 brk = untagged_addr(brk); 199 200 if (down_write_killable(&mm->mmap_sem)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* 239 * Always allow shrinking brk. 240 * __do_munmap() may downgrade mmap_sem to read. 241 */ 242 if (brk <= mm->brk) { 243 int ret; 244 245 /* 246 * mm->brk must to be protected by write mmap_sem so update it 247 * before downgrading mmap_sem. When __do_munmap() fails, 248 * mm->brk will be restored from origbrk. 249 */ 250 mm->brk = brk; 251 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 252 if (ret < 0) { 253 mm->brk = origbrk; 254 goto out; 255 } else if (ret == 1) { 256 downgraded = true; 257 } 258 goto success; 259 } 260 261 /* Check against existing mmap mappings. */ 262 next = find_vma(mm, oldbrk); 263 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 264 goto out; 265 266 /* Ok, looks good - let it rip. */ 267 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 268 goto out; 269 mm->brk = brk; 270 271 success: 272 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 273 if (downgraded) 274 up_read(&mm->mmap_sem); 275 else 276 up_write(&mm->mmap_sem); 277 userfaultfd_unmap_complete(mm, &uf); 278 if (populate) 279 mm_populate(oldbrk, newbrk - oldbrk); 280 return brk; 281 282 out: 283 retval = origbrk; 284 up_write(&mm->mmap_sem); 285 return retval; 286 } 287 288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 289 { 290 unsigned long gap, prev_end; 291 292 /* 293 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 294 * allow two stack_guard_gaps between them here, and when choosing 295 * an unmapped area; whereas when expanding we only require one. 296 * That's a little inconsistent, but keeps the code here simpler. 297 */ 298 gap = vm_start_gap(vma); 299 if (vma->vm_prev) { 300 prev_end = vm_end_gap(vma->vm_prev); 301 if (gap > prev_end) 302 gap -= prev_end; 303 else 304 gap = 0; 305 } 306 return gap; 307 } 308 309 #ifdef CONFIG_DEBUG_VM_RB 310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 311 { 312 unsigned long max = vma_compute_gap(vma), subtree_gap; 313 if (vma->vm_rb.rb_left) { 314 subtree_gap = rb_entry(vma->vm_rb.rb_left, 315 struct vm_area_struct, vm_rb)->rb_subtree_gap; 316 if (subtree_gap > max) 317 max = subtree_gap; 318 } 319 if (vma->vm_rb.rb_right) { 320 subtree_gap = rb_entry(vma->vm_rb.rb_right, 321 struct vm_area_struct, vm_rb)->rb_subtree_gap; 322 if (subtree_gap > max) 323 max = subtree_gap; 324 } 325 return max; 326 } 327 328 static int browse_rb(struct mm_struct *mm) 329 { 330 struct rb_root *root = &mm->mm_rb; 331 int i = 0, j, bug = 0; 332 struct rb_node *nd, *pn = NULL; 333 unsigned long prev = 0, pend = 0; 334 335 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 336 struct vm_area_struct *vma; 337 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 338 if (vma->vm_start < prev) { 339 pr_emerg("vm_start %lx < prev %lx\n", 340 vma->vm_start, prev); 341 bug = 1; 342 } 343 if (vma->vm_start < pend) { 344 pr_emerg("vm_start %lx < pend %lx\n", 345 vma->vm_start, pend); 346 bug = 1; 347 } 348 if (vma->vm_start > vma->vm_end) { 349 pr_emerg("vm_start %lx > vm_end %lx\n", 350 vma->vm_start, vma->vm_end); 351 bug = 1; 352 } 353 spin_lock(&mm->page_table_lock); 354 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 355 pr_emerg("free gap %lx, correct %lx\n", 356 vma->rb_subtree_gap, 357 vma_compute_subtree_gap(vma)); 358 bug = 1; 359 } 360 spin_unlock(&mm->page_table_lock); 361 i++; 362 pn = nd; 363 prev = vma->vm_start; 364 pend = vma->vm_end; 365 } 366 j = 0; 367 for (nd = pn; nd; nd = rb_prev(nd)) 368 j++; 369 if (i != j) { 370 pr_emerg("backwards %d, forwards %d\n", j, i); 371 bug = 1; 372 } 373 return bug ? -1 : i; 374 } 375 376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 377 { 378 struct rb_node *nd; 379 380 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 381 struct vm_area_struct *vma; 382 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 383 VM_BUG_ON_VMA(vma != ignore && 384 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 385 vma); 386 } 387 } 388 389 static void validate_mm(struct mm_struct *mm) 390 { 391 int bug = 0; 392 int i = 0; 393 unsigned long highest_address = 0; 394 struct vm_area_struct *vma = mm->mmap; 395 396 while (vma) { 397 struct anon_vma *anon_vma = vma->anon_vma; 398 struct anon_vma_chain *avc; 399 400 if (anon_vma) { 401 anon_vma_lock_read(anon_vma); 402 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 403 anon_vma_interval_tree_verify(avc); 404 anon_vma_unlock_read(anon_vma); 405 } 406 407 highest_address = vm_end_gap(vma); 408 vma = vma->vm_next; 409 i++; 410 } 411 if (i != mm->map_count) { 412 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 413 bug = 1; 414 } 415 if (highest_address != mm->highest_vm_end) { 416 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 417 mm->highest_vm_end, highest_address); 418 bug = 1; 419 } 420 i = browse_rb(mm); 421 if (i != mm->map_count) { 422 if (i != -1) 423 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 424 bug = 1; 425 } 426 VM_BUG_ON_MM(bug, mm); 427 } 428 #else 429 #define validate_mm_rb(root, ignore) do { } while (0) 430 #define validate_mm(mm) do { } while (0) 431 #endif 432 433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 434 struct vm_area_struct, vm_rb, 435 unsigned long, rb_subtree_gap, vma_compute_gap) 436 437 /* 438 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 439 * vma->vm_prev->vm_end values changed, without modifying the vma's position 440 * in the rbtree. 441 */ 442 static void vma_gap_update(struct vm_area_struct *vma) 443 { 444 /* 445 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 446 * a callback function that does exactly what we want. 447 */ 448 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 449 } 450 451 static inline void vma_rb_insert(struct vm_area_struct *vma, 452 struct rb_root *root) 453 { 454 /* All rb_subtree_gap values must be consistent prior to insertion */ 455 validate_mm_rb(root, NULL); 456 457 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 458 } 459 460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 461 { 462 /* 463 * Note rb_erase_augmented is a fairly large inline function, 464 * so make sure we instantiate it only once with our desired 465 * augmented rbtree callbacks. 466 */ 467 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 468 } 469 470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 471 struct rb_root *root, 472 struct vm_area_struct *ignore) 473 { 474 /* 475 * All rb_subtree_gap values must be consistent prior to erase, 476 * with the possible exception of the "next" vma being erased if 477 * next->vm_start was reduced. 478 */ 479 validate_mm_rb(root, ignore); 480 481 __vma_rb_erase(vma, root); 482 } 483 484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 485 struct rb_root *root) 486 { 487 /* 488 * All rb_subtree_gap values must be consistent prior to erase, 489 * with the possible exception of the vma being erased. 490 */ 491 validate_mm_rb(root, vma); 492 493 __vma_rb_erase(vma, root); 494 } 495 496 /* 497 * vma has some anon_vma assigned, and is already inserted on that 498 * anon_vma's interval trees. 499 * 500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 501 * vma must be removed from the anon_vma's interval trees using 502 * anon_vma_interval_tree_pre_update_vma(). 503 * 504 * After the update, the vma will be reinserted using 505 * anon_vma_interval_tree_post_update_vma(). 506 * 507 * The entire update must be protected by exclusive mmap_sem and by 508 * the root anon_vma's mutex. 509 */ 510 static inline void 511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 512 { 513 struct anon_vma_chain *avc; 514 515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 517 } 518 519 static inline void 520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 521 { 522 struct anon_vma_chain *avc; 523 524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 526 } 527 528 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 529 unsigned long end, struct vm_area_struct **pprev, 530 struct rb_node ***rb_link, struct rb_node **rb_parent) 531 { 532 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 533 534 __rb_link = &mm->mm_rb.rb_node; 535 rb_prev = __rb_parent = NULL; 536 537 while (*__rb_link) { 538 struct vm_area_struct *vma_tmp; 539 540 __rb_parent = *__rb_link; 541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 542 543 if (vma_tmp->vm_end > addr) { 544 /* Fail if an existing vma overlaps the area */ 545 if (vma_tmp->vm_start < end) 546 return -ENOMEM; 547 __rb_link = &__rb_parent->rb_left; 548 } else { 549 rb_prev = __rb_parent; 550 __rb_link = &__rb_parent->rb_right; 551 } 552 } 553 554 *pprev = NULL; 555 if (rb_prev) 556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 557 *rb_link = __rb_link; 558 *rb_parent = __rb_parent; 559 return 0; 560 } 561 562 static unsigned long count_vma_pages_range(struct mm_struct *mm, 563 unsigned long addr, unsigned long end) 564 { 565 unsigned long nr_pages = 0; 566 struct vm_area_struct *vma; 567 568 /* Find first overlaping mapping */ 569 vma = find_vma_intersection(mm, addr, end); 570 if (!vma) 571 return 0; 572 573 nr_pages = (min(end, vma->vm_end) - 574 max(addr, vma->vm_start)) >> PAGE_SHIFT; 575 576 /* Iterate over the rest of the overlaps */ 577 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 578 unsigned long overlap_len; 579 580 if (vma->vm_start > end) 581 break; 582 583 overlap_len = min(end, vma->vm_end) - vma->vm_start; 584 nr_pages += overlap_len >> PAGE_SHIFT; 585 } 586 587 return nr_pages; 588 } 589 590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 591 struct rb_node **rb_link, struct rb_node *rb_parent) 592 { 593 /* Update tracking information for the gap following the new vma. */ 594 if (vma->vm_next) 595 vma_gap_update(vma->vm_next); 596 else 597 mm->highest_vm_end = vm_end_gap(vma); 598 599 /* 600 * vma->vm_prev wasn't known when we followed the rbtree to find the 601 * correct insertion point for that vma. As a result, we could not 602 * update the vma vm_rb parents rb_subtree_gap values on the way down. 603 * So, we first insert the vma with a zero rb_subtree_gap value 604 * (to be consistent with what we did on the way down), and then 605 * immediately update the gap to the correct value. Finally we 606 * rebalance the rbtree after all augmented values have been set. 607 */ 608 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 609 vma->rb_subtree_gap = 0; 610 vma_gap_update(vma); 611 vma_rb_insert(vma, &mm->mm_rb); 612 } 613 614 static void __vma_link_file(struct vm_area_struct *vma) 615 { 616 struct file *file; 617 618 file = vma->vm_file; 619 if (file) { 620 struct address_space *mapping = file->f_mapping; 621 622 if (vma->vm_flags & VM_DENYWRITE) 623 atomic_dec(&file_inode(file)->i_writecount); 624 if (vma->vm_flags & VM_SHARED) 625 atomic_inc(&mapping->i_mmap_writable); 626 627 flush_dcache_mmap_lock(mapping); 628 vma_interval_tree_insert(vma, &mapping->i_mmap); 629 flush_dcache_mmap_unlock(mapping); 630 } 631 } 632 633 static void 634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 635 struct vm_area_struct *prev, struct rb_node **rb_link, 636 struct rb_node *rb_parent) 637 { 638 __vma_link_list(mm, vma, prev); 639 __vma_link_rb(mm, vma, rb_link, rb_parent); 640 } 641 642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 643 struct vm_area_struct *prev, struct rb_node **rb_link, 644 struct rb_node *rb_parent) 645 { 646 struct address_space *mapping = NULL; 647 648 if (vma->vm_file) { 649 mapping = vma->vm_file->f_mapping; 650 i_mmap_lock_write(mapping); 651 } 652 653 __vma_link(mm, vma, prev, rb_link, rb_parent); 654 __vma_link_file(vma); 655 656 if (mapping) 657 i_mmap_unlock_write(mapping); 658 659 mm->map_count++; 660 validate_mm(mm); 661 } 662 663 /* 664 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 665 * mm's list and rbtree. It has already been inserted into the interval tree. 666 */ 667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 668 { 669 struct vm_area_struct *prev; 670 struct rb_node **rb_link, *rb_parent; 671 672 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 673 &prev, &rb_link, &rb_parent)) 674 BUG(); 675 __vma_link(mm, vma, prev, rb_link, rb_parent); 676 mm->map_count++; 677 } 678 679 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 680 struct vm_area_struct *vma, 681 struct vm_area_struct *ignore) 682 { 683 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 684 __vma_unlink_list(mm, vma); 685 /* Kill the cache */ 686 vmacache_invalidate(mm); 687 } 688 689 /* 690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 691 * is already present in an i_mmap tree without adjusting the tree. 692 * The following helper function should be used when such adjustments 693 * are necessary. The "insert" vma (if any) is to be inserted 694 * before we drop the necessary locks. 695 */ 696 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 698 struct vm_area_struct *expand) 699 { 700 struct mm_struct *mm = vma->vm_mm; 701 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 702 struct address_space *mapping = NULL; 703 struct rb_root_cached *root = NULL; 704 struct anon_vma *anon_vma = NULL; 705 struct file *file = vma->vm_file; 706 bool start_changed = false, end_changed = false; 707 long adjust_next = 0; 708 int remove_next = 0; 709 710 if (next && !insert) { 711 struct vm_area_struct *exporter = NULL, *importer = NULL; 712 713 if (end >= next->vm_end) { 714 /* 715 * vma expands, overlapping all the next, and 716 * perhaps the one after too (mprotect case 6). 717 * The only other cases that gets here are 718 * case 1, case 7 and case 8. 719 */ 720 if (next == expand) { 721 /* 722 * The only case where we don't expand "vma" 723 * and we expand "next" instead is case 8. 724 */ 725 VM_WARN_ON(end != next->vm_end); 726 /* 727 * remove_next == 3 means we're 728 * removing "vma" and that to do so we 729 * swapped "vma" and "next". 730 */ 731 remove_next = 3; 732 VM_WARN_ON(file != next->vm_file); 733 swap(vma, next); 734 } else { 735 VM_WARN_ON(expand != vma); 736 /* 737 * case 1, 6, 7, remove_next == 2 is case 6, 738 * remove_next == 1 is case 1 or 7. 739 */ 740 remove_next = 1 + (end > next->vm_end); 741 VM_WARN_ON(remove_next == 2 && 742 end != next->vm_next->vm_end); 743 /* trim end to next, for case 6 first pass */ 744 end = next->vm_end; 745 } 746 747 exporter = next; 748 importer = vma; 749 750 /* 751 * If next doesn't have anon_vma, import from vma after 752 * next, if the vma overlaps with it. 753 */ 754 if (remove_next == 2 && !next->anon_vma) 755 exporter = next->vm_next; 756 757 } else if (end > next->vm_start) { 758 /* 759 * vma expands, overlapping part of the next: 760 * mprotect case 5 shifting the boundary up. 761 */ 762 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 763 exporter = next; 764 importer = vma; 765 VM_WARN_ON(expand != importer); 766 } else if (end < vma->vm_end) { 767 /* 768 * vma shrinks, and !insert tells it's not 769 * split_vma inserting another: so it must be 770 * mprotect case 4 shifting the boundary down. 771 */ 772 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 773 exporter = vma; 774 importer = next; 775 VM_WARN_ON(expand != importer); 776 } 777 778 /* 779 * Easily overlooked: when mprotect shifts the boundary, 780 * make sure the expanding vma has anon_vma set if the 781 * shrinking vma had, to cover any anon pages imported. 782 */ 783 if (exporter && exporter->anon_vma && !importer->anon_vma) { 784 int error; 785 786 importer->anon_vma = exporter->anon_vma; 787 error = anon_vma_clone(importer, exporter); 788 if (error) 789 return error; 790 } 791 } 792 again: 793 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 794 795 if (file) { 796 mapping = file->f_mapping; 797 root = &mapping->i_mmap; 798 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 799 800 if (adjust_next) 801 uprobe_munmap(next, next->vm_start, next->vm_end); 802 803 i_mmap_lock_write(mapping); 804 if (insert) { 805 /* 806 * Put into interval tree now, so instantiated pages 807 * are visible to arm/parisc __flush_dcache_page 808 * throughout; but we cannot insert into address 809 * space until vma start or end is updated. 810 */ 811 __vma_link_file(insert); 812 } 813 } 814 815 anon_vma = vma->anon_vma; 816 if (!anon_vma && adjust_next) 817 anon_vma = next->anon_vma; 818 if (anon_vma) { 819 VM_WARN_ON(adjust_next && next->anon_vma && 820 anon_vma != next->anon_vma); 821 anon_vma_lock_write(anon_vma); 822 anon_vma_interval_tree_pre_update_vma(vma); 823 if (adjust_next) 824 anon_vma_interval_tree_pre_update_vma(next); 825 } 826 827 if (root) { 828 flush_dcache_mmap_lock(mapping); 829 vma_interval_tree_remove(vma, root); 830 if (adjust_next) 831 vma_interval_tree_remove(next, root); 832 } 833 834 if (start != vma->vm_start) { 835 vma->vm_start = start; 836 start_changed = true; 837 } 838 if (end != vma->vm_end) { 839 vma->vm_end = end; 840 end_changed = true; 841 } 842 vma->vm_pgoff = pgoff; 843 if (adjust_next) { 844 next->vm_start += adjust_next << PAGE_SHIFT; 845 next->vm_pgoff += adjust_next; 846 } 847 848 if (root) { 849 if (adjust_next) 850 vma_interval_tree_insert(next, root); 851 vma_interval_tree_insert(vma, root); 852 flush_dcache_mmap_unlock(mapping); 853 } 854 855 if (remove_next) { 856 /* 857 * vma_merge has merged next into vma, and needs 858 * us to remove next before dropping the locks. 859 */ 860 if (remove_next != 3) 861 __vma_unlink_common(mm, next, next); 862 else 863 /* 864 * vma is not before next if they've been 865 * swapped. 866 * 867 * pre-swap() next->vm_start was reduced so 868 * tell validate_mm_rb to ignore pre-swap() 869 * "next" (which is stored in post-swap() 870 * "vma"). 871 */ 872 __vma_unlink_common(mm, next, vma); 873 if (file) 874 __remove_shared_vm_struct(next, file, mapping); 875 } else if (insert) { 876 /* 877 * split_vma has split insert from vma, and needs 878 * us to insert it before dropping the locks 879 * (it may either follow vma or precede it). 880 */ 881 __insert_vm_struct(mm, insert); 882 } else { 883 if (start_changed) 884 vma_gap_update(vma); 885 if (end_changed) { 886 if (!next) 887 mm->highest_vm_end = vm_end_gap(vma); 888 else if (!adjust_next) 889 vma_gap_update(next); 890 } 891 } 892 893 if (anon_vma) { 894 anon_vma_interval_tree_post_update_vma(vma); 895 if (adjust_next) 896 anon_vma_interval_tree_post_update_vma(next); 897 anon_vma_unlock_write(anon_vma); 898 } 899 if (mapping) 900 i_mmap_unlock_write(mapping); 901 902 if (root) { 903 uprobe_mmap(vma); 904 905 if (adjust_next) 906 uprobe_mmap(next); 907 } 908 909 if (remove_next) { 910 if (file) { 911 uprobe_munmap(next, next->vm_start, next->vm_end); 912 fput(file); 913 } 914 if (next->anon_vma) 915 anon_vma_merge(vma, next); 916 mm->map_count--; 917 mpol_put(vma_policy(next)); 918 vm_area_free(next); 919 /* 920 * In mprotect's case 6 (see comments on vma_merge), 921 * we must remove another next too. It would clutter 922 * up the code too much to do both in one go. 923 */ 924 if (remove_next != 3) { 925 /* 926 * If "next" was removed and vma->vm_end was 927 * expanded (up) over it, in turn 928 * "next->vm_prev->vm_end" changed and the 929 * "vma->vm_next" gap must be updated. 930 */ 931 next = vma->vm_next; 932 } else { 933 /* 934 * For the scope of the comment "next" and 935 * "vma" considered pre-swap(): if "vma" was 936 * removed, next->vm_start was expanded (down) 937 * over it and the "next" gap must be updated. 938 * Because of the swap() the post-swap() "vma" 939 * actually points to pre-swap() "next" 940 * (post-swap() "next" as opposed is now a 941 * dangling pointer). 942 */ 943 next = vma; 944 } 945 if (remove_next == 2) { 946 remove_next = 1; 947 end = next->vm_end; 948 goto again; 949 } 950 else if (next) 951 vma_gap_update(next); 952 else { 953 /* 954 * If remove_next == 2 we obviously can't 955 * reach this path. 956 * 957 * If remove_next == 3 we can't reach this 958 * path because pre-swap() next is always not 959 * NULL. pre-swap() "next" is not being 960 * removed and its next->vm_end is not altered 961 * (and furthermore "end" already matches 962 * next->vm_end in remove_next == 3). 963 * 964 * We reach this only in the remove_next == 1 965 * case if the "next" vma that was removed was 966 * the highest vma of the mm. However in such 967 * case next->vm_end == "end" and the extended 968 * "vma" has vma->vm_end == next->vm_end so 969 * mm->highest_vm_end doesn't need any update 970 * in remove_next == 1 case. 971 */ 972 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 973 } 974 } 975 if (insert && file) 976 uprobe_mmap(insert); 977 978 validate_mm(mm); 979 980 return 0; 981 } 982 983 /* 984 * If the vma has a ->close operation then the driver probably needs to release 985 * per-vma resources, so we don't attempt to merge those. 986 */ 987 static inline int is_mergeable_vma(struct vm_area_struct *vma, 988 struct file *file, unsigned long vm_flags, 989 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 990 { 991 /* 992 * VM_SOFTDIRTY should not prevent from VMA merging, if we 993 * match the flags but dirty bit -- the caller should mark 994 * merged VMA as dirty. If dirty bit won't be excluded from 995 * comparison, we increase pressure on the memory system forcing 996 * the kernel to generate new VMAs when old one could be 997 * extended instead. 998 */ 999 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1000 return 0; 1001 if (vma->vm_file != file) 1002 return 0; 1003 if (vma->vm_ops && vma->vm_ops->close) 1004 return 0; 1005 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1006 return 0; 1007 return 1; 1008 } 1009 1010 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1011 struct anon_vma *anon_vma2, 1012 struct vm_area_struct *vma) 1013 { 1014 /* 1015 * The list_is_singular() test is to avoid merging VMA cloned from 1016 * parents. This can improve scalability caused by anon_vma lock. 1017 */ 1018 if ((!anon_vma1 || !anon_vma2) && (!vma || 1019 list_is_singular(&vma->anon_vma_chain))) 1020 return 1; 1021 return anon_vma1 == anon_vma2; 1022 } 1023 1024 /* 1025 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1026 * in front of (at a lower virtual address and file offset than) the vma. 1027 * 1028 * We cannot merge two vmas if they have differently assigned (non-NULL) 1029 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1030 * 1031 * We don't check here for the merged mmap wrapping around the end of pagecache 1032 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1033 * wrap, nor mmaps which cover the final page at index -1UL. 1034 */ 1035 static int 1036 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1037 struct anon_vma *anon_vma, struct file *file, 1038 pgoff_t vm_pgoff, 1039 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1040 { 1041 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1042 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1043 if (vma->vm_pgoff == vm_pgoff) 1044 return 1; 1045 } 1046 return 0; 1047 } 1048 1049 /* 1050 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1051 * beyond (at a higher virtual address and file offset than) the vma. 1052 * 1053 * We cannot merge two vmas if they have differently assigned (non-NULL) 1054 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1055 */ 1056 static int 1057 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1058 struct anon_vma *anon_vma, struct file *file, 1059 pgoff_t vm_pgoff, 1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1061 { 1062 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1063 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1064 pgoff_t vm_pglen; 1065 vm_pglen = vma_pages(vma); 1066 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1067 return 1; 1068 } 1069 return 0; 1070 } 1071 1072 /* 1073 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1074 * whether that can be merged with its predecessor or its successor. 1075 * Or both (it neatly fills a hole). 1076 * 1077 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1078 * certain not to be mapped by the time vma_merge is called; but when 1079 * called for mprotect, it is certain to be already mapped (either at 1080 * an offset within prev, or at the start of next), and the flags of 1081 * this area are about to be changed to vm_flags - and the no-change 1082 * case has already been eliminated. 1083 * 1084 * The following mprotect cases have to be considered, where AAAA is 1085 * the area passed down from mprotect_fixup, never extending beyond one 1086 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1087 * 1088 * AAAA AAAA AAAA 1089 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1090 * cannot merge might become might become 1091 * PPNNNNNNNNNN PPPPPPPPPPNN 1092 * mmap, brk or case 4 below case 5 below 1093 * mremap move: 1094 * AAAA AAAA 1095 * PPPP NNNN PPPPNNNNXXXX 1096 * might become might become 1097 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1098 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1099 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1100 * 1101 * It is important for case 8 that the vma NNNN overlapping the 1102 * region AAAA is never going to extended over XXXX. Instead XXXX must 1103 * be extended in region AAAA and NNNN must be removed. This way in 1104 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1105 * rmap_locks, the properties of the merged vma will be already 1106 * correct for the whole merged range. Some of those properties like 1107 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1108 * be correct for the whole merged range immediately after the 1109 * rmap_locks are released. Otherwise if XXXX would be removed and 1110 * NNNN would be extended over the XXXX range, remove_migration_ptes 1111 * or other rmap walkers (if working on addresses beyond the "end" 1112 * parameter) may establish ptes with the wrong permissions of NNNN 1113 * instead of the right permissions of XXXX. 1114 */ 1115 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1116 struct vm_area_struct *prev, unsigned long addr, 1117 unsigned long end, unsigned long vm_flags, 1118 struct anon_vma *anon_vma, struct file *file, 1119 pgoff_t pgoff, struct mempolicy *policy, 1120 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1121 { 1122 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1123 struct vm_area_struct *area, *next; 1124 int err; 1125 1126 /* 1127 * We later require that vma->vm_flags == vm_flags, 1128 * so this tests vma->vm_flags & VM_SPECIAL, too. 1129 */ 1130 if (vm_flags & VM_SPECIAL) 1131 return NULL; 1132 1133 if (prev) 1134 next = prev->vm_next; 1135 else 1136 next = mm->mmap; 1137 area = next; 1138 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1139 next = next->vm_next; 1140 1141 /* verify some invariant that must be enforced by the caller */ 1142 VM_WARN_ON(prev && addr <= prev->vm_start); 1143 VM_WARN_ON(area && end > area->vm_end); 1144 VM_WARN_ON(addr >= end); 1145 1146 /* 1147 * Can it merge with the predecessor? 1148 */ 1149 if (prev && prev->vm_end == addr && 1150 mpol_equal(vma_policy(prev), policy) && 1151 can_vma_merge_after(prev, vm_flags, 1152 anon_vma, file, pgoff, 1153 vm_userfaultfd_ctx)) { 1154 /* 1155 * OK, it can. Can we now merge in the successor as well? 1156 */ 1157 if (next && end == next->vm_start && 1158 mpol_equal(policy, vma_policy(next)) && 1159 can_vma_merge_before(next, vm_flags, 1160 anon_vma, file, 1161 pgoff+pglen, 1162 vm_userfaultfd_ctx) && 1163 is_mergeable_anon_vma(prev->anon_vma, 1164 next->anon_vma, NULL)) { 1165 /* cases 1, 6 */ 1166 err = __vma_adjust(prev, prev->vm_start, 1167 next->vm_end, prev->vm_pgoff, NULL, 1168 prev); 1169 } else /* cases 2, 5, 7 */ 1170 err = __vma_adjust(prev, prev->vm_start, 1171 end, prev->vm_pgoff, NULL, prev); 1172 if (err) 1173 return NULL; 1174 khugepaged_enter_vma_merge(prev, vm_flags); 1175 return prev; 1176 } 1177 1178 /* 1179 * Can this new request be merged in front of next? 1180 */ 1181 if (next && end == next->vm_start && 1182 mpol_equal(policy, vma_policy(next)) && 1183 can_vma_merge_before(next, vm_flags, 1184 anon_vma, file, pgoff+pglen, 1185 vm_userfaultfd_ctx)) { 1186 if (prev && addr < prev->vm_end) /* case 4 */ 1187 err = __vma_adjust(prev, prev->vm_start, 1188 addr, prev->vm_pgoff, NULL, next); 1189 else { /* cases 3, 8 */ 1190 err = __vma_adjust(area, addr, next->vm_end, 1191 next->vm_pgoff - pglen, NULL, next); 1192 /* 1193 * In case 3 area is already equal to next and 1194 * this is a noop, but in case 8 "area" has 1195 * been removed and next was expanded over it. 1196 */ 1197 area = next; 1198 } 1199 if (err) 1200 return NULL; 1201 khugepaged_enter_vma_merge(area, vm_flags); 1202 return area; 1203 } 1204 1205 return NULL; 1206 } 1207 1208 /* 1209 * Rough compatbility check to quickly see if it's even worth looking 1210 * at sharing an anon_vma. 1211 * 1212 * They need to have the same vm_file, and the flags can only differ 1213 * in things that mprotect may change. 1214 * 1215 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1216 * we can merge the two vma's. For example, we refuse to merge a vma if 1217 * there is a vm_ops->close() function, because that indicates that the 1218 * driver is doing some kind of reference counting. But that doesn't 1219 * really matter for the anon_vma sharing case. 1220 */ 1221 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1222 { 1223 return a->vm_end == b->vm_start && 1224 mpol_equal(vma_policy(a), vma_policy(b)) && 1225 a->vm_file == b->vm_file && 1226 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1227 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1228 } 1229 1230 /* 1231 * Do some basic sanity checking to see if we can re-use the anon_vma 1232 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1233 * the same as 'old', the other will be the new one that is trying 1234 * to share the anon_vma. 1235 * 1236 * NOTE! This runs with mm_sem held for reading, so it is possible that 1237 * the anon_vma of 'old' is concurrently in the process of being set up 1238 * by another page fault trying to merge _that_. But that's ok: if it 1239 * is being set up, that automatically means that it will be a singleton 1240 * acceptable for merging, so we can do all of this optimistically. But 1241 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1242 * 1243 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1244 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1245 * is to return an anon_vma that is "complex" due to having gone through 1246 * a fork). 1247 * 1248 * We also make sure that the two vma's are compatible (adjacent, 1249 * and with the same memory policies). That's all stable, even with just 1250 * a read lock on the mm_sem. 1251 */ 1252 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1253 { 1254 if (anon_vma_compatible(a, b)) { 1255 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1256 1257 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1258 return anon_vma; 1259 } 1260 return NULL; 1261 } 1262 1263 /* 1264 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1265 * neighbouring vmas for a suitable anon_vma, before it goes off 1266 * to allocate a new anon_vma. It checks because a repetitive 1267 * sequence of mprotects and faults may otherwise lead to distinct 1268 * anon_vmas being allocated, preventing vma merge in subsequent 1269 * mprotect. 1270 */ 1271 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1272 { 1273 struct anon_vma *anon_vma; 1274 struct vm_area_struct *near; 1275 1276 near = vma->vm_next; 1277 if (!near) 1278 goto try_prev; 1279 1280 anon_vma = reusable_anon_vma(near, vma, near); 1281 if (anon_vma) 1282 return anon_vma; 1283 try_prev: 1284 near = vma->vm_prev; 1285 if (!near) 1286 goto none; 1287 1288 anon_vma = reusable_anon_vma(near, near, vma); 1289 if (anon_vma) 1290 return anon_vma; 1291 none: 1292 /* 1293 * There's no absolute need to look only at touching neighbours: 1294 * we could search further afield for "compatible" anon_vmas. 1295 * But it would probably just be a waste of time searching, 1296 * or lead to too many vmas hanging off the same anon_vma. 1297 * We're trying to allow mprotect remerging later on, 1298 * not trying to minimize memory used for anon_vmas. 1299 */ 1300 return NULL; 1301 } 1302 1303 /* 1304 * If a hint addr is less than mmap_min_addr change hint to be as 1305 * low as possible but still greater than mmap_min_addr 1306 */ 1307 static inline unsigned long round_hint_to_min(unsigned long hint) 1308 { 1309 hint &= PAGE_MASK; 1310 if (((void *)hint != NULL) && 1311 (hint < mmap_min_addr)) 1312 return PAGE_ALIGN(mmap_min_addr); 1313 return hint; 1314 } 1315 1316 static inline int mlock_future_check(struct mm_struct *mm, 1317 unsigned long flags, 1318 unsigned long len) 1319 { 1320 unsigned long locked, lock_limit; 1321 1322 /* mlock MCL_FUTURE? */ 1323 if (flags & VM_LOCKED) { 1324 locked = len >> PAGE_SHIFT; 1325 locked += mm->locked_vm; 1326 lock_limit = rlimit(RLIMIT_MEMLOCK); 1327 lock_limit >>= PAGE_SHIFT; 1328 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1329 return -EAGAIN; 1330 } 1331 return 0; 1332 } 1333 1334 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1335 { 1336 if (S_ISREG(inode->i_mode)) 1337 return MAX_LFS_FILESIZE; 1338 1339 if (S_ISBLK(inode->i_mode)) 1340 return MAX_LFS_FILESIZE; 1341 1342 if (S_ISSOCK(inode->i_mode)) 1343 return MAX_LFS_FILESIZE; 1344 1345 /* Special "we do even unsigned file positions" case */ 1346 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1347 return 0; 1348 1349 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1350 return ULONG_MAX; 1351 } 1352 1353 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1354 unsigned long pgoff, unsigned long len) 1355 { 1356 u64 maxsize = file_mmap_size_max(file, inode); 1357 1358 if (maxsize && len > maxsize) 1359 return false; 1360 maxsize -= len; 1361 if (pgoff > maxsize >> PAGE_SHIFT) 1362 return false; 1363 return true; 1364 } 1365 1366 /* 1367 * The caller must hold down_write(¤t->mm->mmap_sem). 1368 */ 1369 unsigned long do_mmap(struct file *file, unsigned long addr, 1370 unsigned long len, unsigned long prot, 1371 unsigned long flags, vm_flags_t vm_flags, 1372 unsigned long pgoff, unsigned long *populate, 1373 struct list_head *uf) 1374 { 1375 struct mm_struct *mm = current->mm; 1376 int pkey = 0; 1377 1378 *populate = 0; 1379 1380 if (!len) 1381 return -EINVAL; 1382 1383 /* 1384 * Does the application expect PROT_READ to imply PROT_EXEC? 1385 * 1386 * (the exception is when the underlying filesystem is noexec 1387 * mounted, in which case we dont add PROT_EXEC.) 1388 */ 1389 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1390 if (!(file && path_noexec(&file->f_path))) 1391 prot |= PROT_EXEC; 1392 1393 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1394 if (flags & MAP_FIXED_NOREPLACE) 1395 flags |= MAP_FIXED; 1396 1397 if (!(flags & MAP_FIXED)) 1398 addr = round_hint_to_min(addr); 1399 1400 /* Careful about overflows.. */ 1401 len = PAGE_ALIGN(len); 1402 if (!len) 1403 return -ENOMEM; 1404 1405 /* offset overflow? */ 1406 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1407 return -EOVERFLOW; 1408 1409 /* Too many mappings? */ 1410 if (mm->map_count > sysctl_max_map_count) 1411 return -ENOMEM; 1412 1413 /* Obtain the address to map to. we verify (or select) it and ensure 1414 * that it represents a valid section of the address space. 1415 */ 1416 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1417 if (IS_ERR_VALUE(addr)) 1418 return addr; 1419 1420 if (flags & MAP_FIXED_NOREPLACE) { 1421 struct vm_area_struct *vma = find_vma(mm, addr); 1422 1423 if (vma && vma->vm_start < addr + len) 1424 return -EEXIST; 1425 } 1426 1427 if (prot == PROT_EXEC) { 1428 pkey = execute_only_pkey(mm); 1429 if (pkey < 0) 1430 pkey = 0; 1431 } 1432 1433 /* Do simple checking here so the lower-level routines won't have 1434 * to. we assume access permissions have been handled by the open 1435 * of the memory object, so we don't do any here. 1436 */ 1437 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1438 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1439 1440 if (flags & MAP_LOCKED) 1441 if (!can_do_mlock()) 1442 return -EPERM; 1443 1444 if (mlock_future_check(mm, vm_flags, len)) 1445 return -EAGAIN; 1446 1447 if (file) { 1448 struct inode *inode = file_inode(file); 1449 unsigned long flags_mask; 1450 1451 if (!file_mmap_ok(file, inode, pgoff, len)) 1452 return -EOVERFLOW; 1453 1454 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1455 1456 switch (flags & MAP_TYPE) { 1457 case MAP_SHARED: 1458 /* 1459 * Force use of MAP_SHARED_VALIDATE with non-legacy 1460 * flags. E.g. MAP_SYNC is dangerous to use with 1461 * MAP_SHARED as you don't know which consistency model 1462 * you will get. We silently ignore unsupported flags 1463 * with MAP_SHARED to preserve backward compatibility. 1464 */ 1465 flags &= LEGACY_MAP_MASK; 1466 /* fall through */ 1467 case MAP_SHARED_VALIDATE: 1468 if (flags & ~flags_mask) 1469 return -EOPNOTSUPP; 1470 if (prot & PROT_WRITE) { 1471 if (!(file->f_mode & FMODE_WRITE)) 1472 return -EACCES; 1473 if (IS_SWAPFILE(file->f_mapping->host)) 1474 return -ETXTBSY; 1475 } 1476 1477 /* 1478 * Make sure we don't allow writing to an append-only 1479 * file.. 1480 */ 1481 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1482 return -EACCES; 1483 1484 /* 1485 * Make sure there are no mandatory locks on the file. 1486 */ 1487 if (locks_verify_locked(file)) 1488 return -EAGAIN; 1489 1490 vm_flags |= VM_SHARED | VM_MAYSHARE; 1491 if (!(file->f_mode & FMODE_WRITE)) 1492 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1493 1494 /* fall through */ 1495 case MAP_PRIVATE: 1496 if (!(file->f_mode & FMODE_READ)) 1497 return -EACCES; 1498 if (path_noexec(&file->f_path)) { 1499 if (vm_flags & VM_EXEC) 1500 return -EPERM; 1501 vm_flags &= ~VM_MAYEXEC; 1502 } 1503 1504 if (!file->f_op->mmap) 1505 return -ENODEV; 1506 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1507 return -EINVAL; 1508 break; 1509 1510 default: 1511 return -EINVAL; 1512 } 1513 } else { 1514 switch (flags & MAP_TYPE) { 1515 case MAP_SHARED: 1516 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1517 return -EINVAL; 1518 /* 1519 * Ignore pgoff. 1520 */ 1521 pgoff = 0; 1522 vm_flags |= VM_SHARED | VM_MAYSHARE; 1523 break; 1524 case MAP_PRIVATE: 1525 /* 1526 * Set pgoff according to addr for anon_vma. 1527 */ 1528 pgoff = addr >> PAGE_SHIFT; 1529 break; 1530 default: 1531 return -EINVAL; 1532 } 1533 } 1534 1535 /* 1536 * Set 'VM_NORESERVE' if we should not account for the 1537 * memory use of this mapping. 1538 */ 1539 if (flags & MAP_NORESERVE) { 1540 /* We honor MAP_NORESERVE if allowed to overcommit */ 1541 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1542 vm_flags |= VM_NORESERVE; 1543 1544 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1545 if (file && is_file_hugepages(file)) 1546 vm_flags |= VM_NORESERVE; 1547 } 1548 1549 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1550 if (!IS_ERR_VALUE(addr) && 1551 ((vm_flags & VM_LOCKED) || 1552 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1553 *populate = len; 1554 return addr; 1555 } 1556 1557 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1558 unsigned long prot, unsigned long flags, 1559 unsigned long fd, unsigned long pgoff) 1560 { 1561 struct file *file = NULL; 1562 unsigned long retval; 1563 1564 addr = untagged_addr(addr); 1565 1566 if (!(flags & MAP_ANONYMOUS)) { 1567 audit_mmap_fd(fd, flags); 1568 file = fget(fd); 1569 if (!file) 1570 return -EBADF; 1571 if (is_file_hugepages(file)) 1572 len = ALIGN(len, huge_page_size(hstate_file(file))); 1573 retval = -EINVAL; 1574 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1575 goto out_fput; 1576 } else if (flags & MAP_HUGETLB) { 1577 struct user_struct *user = NULL; 1578 struct hstate *hs; 1579 1580 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1581 if (!hs) 1582 return -EINVAL; 1583 1584 len = ALIGN(len, huge_page_size(hs)); 1585 /* 1586 * VM_NORESERVE is used because the reservations will be 1587 * taken when vm_ops->mmap() is called 1588 * A dummy user value is used because we are not locking 1589 * memory so no accounting is necessary 1590 */ 1591 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1592 VM_NORESERVE, 1593 &user, HUGETLB_ANONHUGE_INODE, 1594 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1595 if (IS_ERR(file)) 1596 return PTR_ERR(file); 1597 } 1598 1599 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1600 1601 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1602 out_fput: 1603 if (file) 1604 fput(file); 1605 return retval; 1606 } 1607 1608 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1609 unsigned long, prot, unsigned long, flags, 1610 unsigned long, fd, unsigned long, pgoff) 1611 { 1612 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1613 } 1614 1615 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1616 struct mmap_arg_struct { 1617 unsigned long addr; 1618 unsigned long len; 1619 unsigned long prot; 1620 unsigned long flags; 1621 unsigned long fd; 1622 unsigned long offset; 1623 }; 1624 1625 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1626 { 1627 struct mmap_arg_struct a; 1628 1629 if (copy_from_user(&a, arg, sizeof(a))) 1630 return -EFAULT; 1631 if (offset_in_page(a.offset)) 1632 return -EINVAL; 1633 1634 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1635 a.offset >> PAGE_SHIFT); 1636 } 1637 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1638 1639 /* 1640 * Some shared mappings will want the pages marked read-only 1641 * to track write events. If so, we'll downgrade vm_page_prot 1642 * to the private version (using protection_map[] without the 1643 * VM_SHARED bit). 1644 */ 1645 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1646 { 1647 vm_flags_t vm_flags = vma->vm_flags; 1648 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1649 1650 /* If it was private or non-writable, the write bit is already clear */ 1651 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1652 return 0; 1653 1654 /* The backer wishes to know when pages are first written to? */ 1655 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1656 return 1; 1657 1658 /* The open routine did something to the protections that pgprot_modify 1659 * won't preserve? */ 1660 if (pgprot_val(vm_page_prot) != 1661 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1662 return 0; 1663 1664 /* Do we need to track softdirty? */ 1665 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1666 return 1; 1667 1668 /* Specialty mapping? */ 1669 if (vm_flags & VM_PFNMAP) 1670 return 0; 1671 1672 /* Can the mapping track the dirty pages? */ 1673 return vma->vm_file && vma->vm_file->f_mapping && 1674 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1675 } 1676 1677 /* 1678 * We account for memory if it's a private writeable mapping, 1679 * not hugepages and VM_NORESERVE wasn't set. 1680 */ 1681 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1682 { 1683 /* 1684 * hugetlb has its own accounting separate from the core VM 1685 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1686 */ 1687 if (file && is_file_hugepages(file)) 1688 return 0; 1689 1690 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1691 } 1692 1693 unsigned long mmap_region(struct file *file, unsigned long addr, 1694 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1695 struct list_head *uf) 1696 { 1697 struct mm_struct *mm = current->mm; 1698 struct vm_area_struct *vma, *prev; 1699 int error; 1700 struct rb_node **rb_link, *rb_parent; 1701 unsigned long charged = 0; 1702 1703 /* Check against address space limit. */ 1704 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1705 unsigned long nr_pages; 1706 1707 /* 1708 * MAP_FIXED may remove pages of mappings that intersects with 1709 * requested mapping. Account for the pages it would unmap. 1710 */ 1711 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1712 1713 if (!may_expand_vm(mm, vm_flags, 1714 (len >> PAGE_SHIFT) - nr_pages)) 1715 return -ENOMEM; 1716 } 1717 1718 /* Clear old maps */ 1719 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1720 &rb_parent)) { 1721 if (do_munmap(mm, addr, len, uf)) 1722 return -ENOMEM; 1723 } 1724 1725 /* 1726 * Private writable mapping: check memory availability 1727 */ 1728 if (accountable_mapping(file, vm_flags)) { 1729 charged = len >> PAGE_SHIFT; 1730 if (security_vm_enough_memory_mm(mm, charged)) 1731 return -ENOMEM; 1732 vm_flags |= VM_ACCOUNT; 1733 } 1734 1735 /* 1736 * Can we just expand an old mapping? 1737 */ 1738 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1739 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1740 if (vma) 1741 goto out; 1742 1743 /* 1744 * Determine the object being mapped and call the appropriate 1745 * specific mapper. the address has already been validated, but 1746 * not unmapped, but the maps are removed from the list. 1747 */ 1748 vma = vm_area_alloc(mm); 1749 if (!vma) { 1750 error = -ENOMEM; 1751 goto unacct_error; 1752 } 1753 1754 vma->vm_start = addr; 1755 vma->vm_end = addr + len; 1756 vma->vm_flags = vm_flags; 1757 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1758 vma->vm_pgoff = pgoff; 1759 1760 if (file) { 1761 if (vm_flags & VM_DENYWRITE) { 1762 error = deny_write_access(file); 1763 if (error) 1764 goto free_vma; 1765 } 1766 if (vm_flags & VM_SHARED) { 1767 error = mapping_map_writable(file->f_mapping); 1768 if (error) 1769 goto allow_write_and_free_vma; 1770 } 1771 1772 /* ->mmap() can change vma->vm_file, but must guarantee that 1773 * vma_link() below can deny write-access if VM_DENYWRITE is set 1774 * and map writably if VM_SHARED is set. This usually means the 1775 * new file must not have been exposed to user-space, yet. 1776 */ 1777 vma->vm_file = get_file(file); 1778 error = call_mmap(file, vma); 1779 if (error) 1780 goto unmap_and_free_vma; 1781 1782 /* Can addr have changed?? 1783 * 1784 * Answer: Yes, several device drivers can do it in their 1785 * f_op->mmap method. -DaveM 1786 * Bug: If addr is changed, prev, rb_link, rb_parent should 1787 * be updated for vma_link() 1788 */ 1789 WARN_ON_ONCE(addr != vma->vm_start); 1790 1791 addr = vma->vm_start; 1792 vm_flags = vma->vm_flags; 1793 } else if (vm_flags & VM_SHARED) { 1794 error = shmem_zero_setup(vma); 1795 if (error) 1796 goto free_vma; 1797 } else { 1798 vma_set_anonymous(vma); 1799 } 1800 1801 vma_link(mm, vma, prev, rb_link, rb_parent); 1802 /* Once vma denies write, undo our temporary denial count */ 1803 if (file) { 1804 if (vm_flags & VM_SHARED) 1805 mapping_unmap_writable(file->f_mapping); 1806 if (vm_flags & VM_DENYWRITE) 1807 allow_write_access(file); 1808 } 1809 file = vma->vm_file; 1810 out: 1811 perf_event_mmap(vma); 1812 1813 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1814 if (vm_flags & VM_LOCKED) { 1815 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1816 is_vm_hugetlb_page(vma) || 1817 vma == get_gate_vma(current->mm)) 1818 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1819 else 1820 mm->locked_vm += (len >> PAGE_SHIFT); 1821 } 1822 1823 if (file) 1824 uprobe_mmap(vma); 1825 1826 /* 1827 * New (or expanded) vma always get soft dirty status. 1828 * Otherwise user-space soft-dirty page tracker won't 1829 * be able to distinguish situation when vma area unmapped, 1830 * then new mapped in-place (which must be aimed as 1831 * a completely new data area). 1832 */ 1833 vma->vm_flags |= VM_SOFTDIRTY; 1834 1835 vma_set_page_prot(vma); 1836 1837 return addr; 1838 1839 unmap_and_free_vma: 1840 vma->vm_file = NULL; 1841 fput(file); 1842 1843 /* Undo any partial mapping done by a device driver. */ 1844 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1845 charged = 0; 1846 if (vm_flags & VM_SHARED) 1847 mapping_unmap_writable(file->f_mapping); 1848 allow_write_and_free_vma: 1849 if (vm_flags & VM_DENYWRITE) 1850 allow_write_access(file); 1851 free_vma: 1852 vm_area_free(vma); 1853 unacct_error: 1854 if (charged) 1855 vm_unacct_memory(charged); 1856 return error; 1857 } 1858 1859 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1860 { 1861 /* 1862 * We implement the search by looking for an rbtree node that 1863 * immediately follows a suitable gap. That is, 1864 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1865 * - gap_end = vma->vm_start >= info->low_limit + length; 1866 * - gap_end - gap_start >= length 1867 */ 1868 1869 struct mm_struct *mm = current->mm; 1870 struct vm_area_struct *vma; 1871 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1872 1873 /* Adjust search length to account for worst case alignment overhead */ 1874 length = info->length + info->align_mask; 1875 if (length < info->length) 1876 return -ENOMEM; 1877 1878 /* Adjust search limits by the desired length */ 1879 if (info->high_limit < length) 1880 return -ENOMEM; 1881 high_limit = info->high_limit - length; 1882 1883 if (info->low_limit > high_limit) 1884 return -ENOMEM; 1885 low_limit = info->low_limit + length; 1886 1887 /* Check if rbtree root looks promising */ 1888 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1889 goto check_highest; 1890 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1891 if (vma->rb_subtree_gap < length) 1892 goto check_highest; 1893 1894 while (true) { 1895 /* Visit left subtree if it looks promising */ 1896 gap_end = vm_start_gap(vma); 1897 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1898 struct vm_area_struct *left = 1899 rb_entry(vma->vm_rb.rb_left, 1900 struct vm_area_struct, vm_rb); 1901 if (left->rb_subtree_gap >= length) { 1902 vma = left; 1903 continue; 1904 } 1905 } 1906 1907 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1908 check_current: 1909 /* Check if current node has a suitable gap */ 1910 if (gap_start > high_limit) 1911 return -ENOMEM; 1912 if (gap_end >= low_limit && 1913 gap_end > gap_start && gap_end - gap_start >= length) 1914 goto found; 1915 1916 /* Visit right subtree if it looks promising */ 1917 if (vma->vm_rb.rb_right) { 1918 struct vm_area_struct *right = 1919 rb_entry(vma->vm_rb.rb_right, 1920 struct vm_area_struct, vm_rb); 1921 if (right->rb_subtree_gap >= length) { 1922 vma = right; 1923 continue; 1924 } 1925 } 1926 1927 /* Go back up the rbtree to find next candidate node */ 1928 while (true) { 1929 struct rb_node *prev = &vma->vm_rb; 1930 if (!rb_parent(prev)) 1931 goto check_highest; 1932 vma = rb_entry(rb_parent(prev), 1933 struct vm_area_struct, vm_rb); 1934 if (prev == vma->vm_rb.rb_left) { 1935 gap_start = vm_end_gap(vma->vm_prev); 1936 gap_end = vm_start_gap(vma); 1937 goto check_current; 1938 } 1939 } 1940 } 1941 1942 check_highest: 1943 /* Check highest gap, which does not precede any rbtree node */ 1944 gap_start = mm->highest_vm_end; 1945 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1946 if (gap_start > high_limit) 1947 return -ENOMEM; 1948 1949 found: 1950 /* We found a suitable gap. Clip it with the original low_limit. */ 1951 if (gap_start < info->low_limit) 1952 gap_start = info->low_limit; 1953 1954 /* Adjust gap address to the desired alignment */ 1955 gap_start += (info->align_offset - gap_start) & info->align_mask; 1956 1957 VM_BUG_ON(gap_start + info->length > info->high_limit); 1958 VM_BUG_ON(gap_start + info->length > gap_end); 1959 return gap_start; 1960 } 1961 1962 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1963 { 1964 struct mm_struct *mm = current->mm; 1965 struct vm_area_struct *vma; 1966 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1967 1968 /* Adjust search length to account for worst case alignment overhead */ 1969 length = info->length + info->align_mask; 1970 if (length < info->length) 1971 return -ENOMEM; 1972 1973 /* 1974 * Adjust search limits by the desired length. 1975 * See implementation comment at top of unmapped_area(). 1976 */ 1977 gap_end = info->high_limit; 1978 if (gap_end < length) 1979 return -ENOMEM; 1980 high_limit = gap_end - length; 1981 1982 if (info->low_limit > high_limit) 1983 return -ENOMEM; 1984 low_limit = info->low_limit + length; 1985 1986 /* Check highest gap, which does not precede any rbtree node */ 1987 gap_start = mm->highest_vm_end; 1988 if (gap_start <= high_limit) 1989 goto found_highest; 1990 1991 /* Check if rbtree root looks promising */ 1992 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1993 return -ENOMEM; 1994 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1995 if (vma->rb_subtree_gap < length) 1996 return -ENOMEM; 1997 1998 while (true) { 1999 /* Visit right subtree if it looks promising */ 2000 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2001 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2002 struct vm_area_struct *right = 2003 rb_entry(vma->vm_rb.rb_right, 2004 struct vm_area_struct, vm_rb); 2005 if (right->rb_subtree_gap >= length) { 2006 vma = right; 2007 continue; 2008 } 2009 } 2010 2011 check_current: 2012 /* Check if current node has a suitable gap */ 2013 gap_end = vm_start_gap(vma); 2014 if (gap_end < low_limit) 2015 return -ENOMEM; 2016 if (gap_start <= high_limit && 2017 gap_end > gap_start && gap_end - gap_start >= length) 2018 goto found; 2019 2020 /* Visit left subtree if it looks promising */ 2021 if (vma->vm_rb.rb_left) { 2022 struct vm_area_struct *left = 2023 rb_entry(vma->vm_rb.rb_left, 2024 struct vm_area_struct, vm_rb); 2025 if (left->rb_subtree_gap >= length) { 2026 vma = left; 2027 continue; 2028 } 2029 } 2030 2031 /* Go back up the rbtree to find next candidate node */ 2032 while (true) { 2033 struct rb_node *prev = &vma->vm_rb; 2034 if (!rb_parent(prev)) 2035 return -ENOMEM; 2036 vma = rb_entry(rb_parent(prev), 2037 struct vm_area_struct, vm_rb); 2038 if (prev == vma->vm_rb.rb_right) { 2039 gap_start = vma->vm_prev ? 2040 vm_end_gap(vma->vm_prev) : 0; 2041 goto check_current; 2042 } 2043 } 2044 } 2045 2046 found: 2047 /* We found a suitable gap. Clip it with the original high_limit. */ 2048 if (gap_end > info->high_limit) 2049 gap_end = info->high_limit; 2050 2051 found_highest: 2052 /* Compute highest gap address at the desired alignment */ 2053 gap_end -= info->length; 2054 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2055 2056 VM_BUG_ON(gap_end < info->low_limit); 2057 VM_BUG_ON(gap_end < gap_start); 2058 return gap_end; 2059 } 2060 2061 2062 #ifndef arch_get_mmap_end 2063 #define arch_get_mmap_end(addr) (TASK_SIZE) 2064 #endif 2065 2066 #ifndef arch_get_mmap_base 2067 #define arch_get_mmap_base(addr, base) (base) 2068 #endif 2069 2070 /* Get an address range which is currently unmapped. 2071 * For shmat() with addr=0. 2072 * 2073 * Ugly calling convention alert: 2074 * Return value with the low bits set means error value, 2075 * ie 2076 * if (ret & ~PAGE_MASK) 2077 * error = ret; 2078 * 2079 * This function "knows" that -ENOMEM has the bits set. 2080 */ 2081 #ifndef HAVE_ARCH_UNMAPPED_AREA 2082 unsigned long 2083 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2084 unsigned long len, unsigned long pgoff, unsigned long flags) 2085 { 2086 struct mm_struct *mm = current->mm; 2087 struct vm_area_struct *vma, *prev; 2088 struct vm_unmapped_area_info info; 2089 const unsigned long mmap_end = arch_get_mmap_end(addr); 2090 2091 if (len > mmap_end - mmap_min_addr) 2092 return -ENOMEM; 2093 2094 if (flags & MAP_FIXED) 2095 return addr; 2096 2097 if (addr) { 2098 addr = PAGE_ALIGN(addr); 2099 vma = find_vma_prev(mm, addr, &prev); 2100 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2101 (!vma || addr + len <= vm_start_gap(vma)) && 2102 (!prev || addr >= vm_end_gap(prev))) 2103 return addr; 2104 } 2105 2106 info.flags = 0; 2107 info.length = len; 2108 info.low_limit = mm->mmap_base; 2109 info.high_limit = mmap_end; 2110 info.align_mask = 0; 2111 return vm_unmapped_area(&info); 2112 } 2113 #endif 2114 2115 /* 2116 * This mmap-allocator allocates new areas top-down from below the 2117 * stack's low limit (the base): 2118 */ 2119 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2120 unsigned long 2121 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2122 unsigned long len, unsigned long pgoff, 2123 unsigned long flags) 2124 { 2125 struct vm_area_struct *vma, *prev; 2126 struct mm_struct *mm = current->mm; 2127 struct vm_unmapped_area_info info; 2128 const unsigned long mmap_end = arch_get_mmap_end(addr); 2129 2130 /* requested length too big for entire address space */ 2131 if (len > mmap_end - mmap_min_addr) 2132 return -ENOMEM; 2133 2134 if (flags & MAP_FIXED) 2135 return addr; 2136 2137 /* requesting a specific address */ 2138 if (addr) { 2139 addr = PAGE_ALIGN(addr); 2140 vma = find_vma_prev(mm, addr, &prev); 2141 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2142 (!vma || addr + len <= vm_start_gap(vma)) && 2143 (!prev || addr >= vm_end_gap(prev))) 2144 return addr; 2145 } 2146 2147 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2148 info.length = len; 2149 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2150 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2151 info.align_mask = 0; 2152 addr = vm_unmapped_area(&info); 2153 2154 /* 2155 * A failed mmap() very likely causes application failure, 2156 * so fall back to the bottom-up function here. This scenario 2157 * can happen with large stack limits and large mmap() 2158 * allocations. 2159 */ 2160 if (offset_in_page(addr)) { 2161 VM_BUG_ON(addr != -ENOMEM); 2162 info.flags = 0; 2163 info.low_limit = TASK_UNMAPPED_BASE; 2164 info.high_limit = mmap_end; 2165 addr = vm_unmapped_area(&info); 2166 } 2167 2168 return addr; 2169 } 2170 #endif 2171 2172 unsigned long 2173 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2174 unsigned long pgoff, unsigned long flags) 2175 { 2176 unsigned long (*get_area)(struct file *, unsigned long, 2177 unsigned long, unsigned long, unsigned long); 2178 2179 unsigned long error = arch_mmap_check(addr, len, flags); 2180 if (error) 2181 return error; 2182 2183 /* Careful about overflows.. */ 2184 if (len > TASK_SIZE) 2185 return -ENOMEM; 2186 2187 get_area = current->mm->get_unmapped_area; 2188 if (file) { 2189 if (file->f_op->get_unmapped_area) 2190 get_area = file->f_op->get_unmapped_area; 2191 } else if (flags & MAP_SHARED) { 2192 /* 2193 * mmap_region() will call shmem_zero_setup() to create a file, 2194 * so use shmem's get_unmapped_area in case it can be huge. 2195 * do_mmap_pgoff() will clear pgoff, so match alignment. 2196 */ 2197 pgoff = 0; 2198 get_area = shmem_get_unmapped_area; 2199 } 2200 2201 addr = get_area(file, addr, len, pgoff, flags); 2202 if (IS_ERR_VALUE(addr)) 2203 return addr; 2204 2205 if (addr > TASK_SIZE - len) 2206 return -ENOMEM; 2207 if (offset_in_page(addr)) 2208 return -EINVAL; 2209 2210 error = security_mmap_addr(addr); 2211 return error ? error : addr; 2212 } 2213 2214 EXPORT_SYMBOL(get_unmapped_area); 2215 2216 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2217 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2218 { 2219 struct rb_node *rb_node; 2220 struct vm_area_struct *vma; 2221 2222 /* Check the cache first. */ 2223 vma = vmacache_find(mm, addr); 2224 if (likely(vma)) 2225 return vma; 2226 2227 rb_node = mm->mm_rb.rb_node; 2228 2229 while (rb_node) { 2230 struct vm_area_struct *tmp; 2231 2232 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2233 2234 if (tmp->vm_end > addr) { 2235 vma = tmp; 2236 if (tmp->vm_start <= addr) 2237 break; 2238 rb_node = rb_node->rb_left; 2239 } else 2240 rb_node = rb_node->rb_right; 2241 } 2242 2243 if (vma) 2244 vmacache_update(addr, vma); 2245 return vma; 2246 } 2247 2248 EXPORT_SYMBOL(find_vma); 2249 2250 /* 2251 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2252 */ 2253 struct vm_area_struct * 2254 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2255 struct vm_area_struct **pprev) 2256 { 2257 struct vm_area_struct *vma; 2258 2259 vma = find_vma(mm, addr); 2260 if (vma) { 2261 *pprev = vma->vm_prev; 2262 } else { 2263 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2264 2265 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2266 } 2267 return vma; 2268 } 2269 2270 /* 2271 * Verify that the stack growth is acceptable and 2272 * update accounting. This is shared with both the 2273 * grow-up and grow-down cases. 2274 */ 2275 static int acct_stack_growth(struct vm_area_struct *vma, 2276 unsigned long size, unsigned long grow) 2277 { 2278 struct mm_struct *mm = vma->vm_mm; 2279 unsigned long new_start; 2280 2281 /* address space limit tests */ 2282 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2283 return -ENOMEM; 2284 2285 /* Stack limit test */ 2286 if (size > rlimit(RLIMIT_STACK)) 2287 return -ENOMEM; 2288 2289 /* mlock limit tests */ 2290 if (vma->vm_flags & VM_LOCKED) { 2291 unsigned long locked; 2292 unsigned long limit; 2293 locked = mm->locked_vm + grow; 2294 limit = rlimit(RLIMIT_MEMLOCK); 2295 limit >>= PAGE_SHIFT; 2296 if (locked > limit && !capable(CAP_IPC_LOCK)) 2297 return -ENOMEM; 2298 } 2299 2300 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2301 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2302 vma->vm_end - size; 2303 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2304 return -EFAULT; 2305 2306 /* 2307 * Overcommit.. This must be the final test, as it will 2308 * update security statistics. 2309 */ 2310 if (security_vm_enough_memory_mm(mm, grow)) 2311 return -ENOMEM; 2312 2313 return 0; 2314 } 2315 2316 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2317 /* 2318 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2319 * vma is the last one with address > vma->vm_end. Have to extend vma. 2320 */ 2321 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2322 { 2323 struct mm_struct *mm = vma->vm_mm; 2324 struct vm_area_struct *next; 2325 unsigned long gap_addr; 2326 int error = 0; 2327 2328 if (!(vma->vm_flags & VM_GROWSUP)) 2329 return -EFAULT; 2330 2331 /* Guard against exceeding limits of the address space. */ 2332 address &= PAGE_MASK; 2333 if (address >= (TASK_SIZE & PAGE_MASK)) 2334 return -ENOMEM; 2335 address += PAGE_SIZE; 2336 2337 /* Enforce stack_guard_gap */ 2338 gap_addr = address + stack_guard_gap; 2339 2340 /* Guard against overflow */ 2341 if (gap_addr < address || gap_addr > TASK_SIZE) 2342 gap_addr = TASK_SIZE; 2343 2344 next = vma->vm_next; 2345 if (next && next->vm_start < gap_addr && 2346 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2347 if (!(next->vm_flags & VM_GROWSUP)) 2348 return -ENOMEM; 2349 /* Check that both stack segments have the same anon_vma? */ 2350 } 2351 2352 /* We must make sure the anon_vma is allocated. */ 2353 if (unlikely(anon_vma_prepare(vma))) 2354 return -ENOMEM; 2355 2356 /* 2357 * vma->vm_start/vm_end cannot change under us because the caller 2358 * is required to hold the mmap_sem in read mode. We need the 2359 * anon_vma lock to serialize against concurrent expand_stacks. 2360 */ 2361 anon_vma_lock_write(vma->anon_vma); 2362 2363 /* Somebody else might have raced and expanded it already */ 2364 if (address > vma->vm_end) { 2365 unsigned long size, grow; 2366 2367 size = address - vma->vm_start; 2368 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2369 2370 error = -ENOMEM; 2371 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2372 error = acct_stack_growth(vma, size, grow); 2373 if (!error) { 2374 /* 2375 * vma_gap_update() doesn't support concurrent 2376 * updates, but we only hold a shared mmap_sem 2377 * lock here, so we need to protect against 2378 * concurrent vma expansions. 2379 * anon_vma_lock_write() doesn't help here, as 2380 * we don't guarantee that all growable vmas 2381 * in a mm share the same root anon vma. 2382 * So, we reuse mm->page_table_lock to guard 2383 * against concurrent vma expansions. 2384 */ 2385 spin_lock(&mm->page_table_lock); 2386 if (vma->vm_flags & VM_LOCKED) 2387 mm->locked_vm += grow; 2388 vm_stat_account(mm, vma->vm_flags, grow); 2389 anon_vma_interval_tree_pre_update_vma(vma); 2390 vma->vm_end = address; 2391 anon_vma_interval_tree_post_update_vma(vma); 2392 if (vma->vm_next) 2393 vma_gap_update(vma->vm_next); 2394 else 2395 mm->highest_vm_end = vm_end_gap(vma); 2396 spin_unlock(&mm->page_table_lock); 2397 2398 perf_event_mmap(vma); 2399 } 2400 } 2401 } 2402 anon_vma_unlock_write(vma->anon_vma); 2403 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2404 validate_mm(mm); 2405 return error; 2406 } 2407 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2408 2409 /* 2410 * vma is the first one with address < vma->vm_start. Have to extend vma. 2411 */ 2412 int expand_downwards(struct vm_area_struct *vma, 2413 unsigned long address) 2414 { 2415 struct mm_struct *mm = vma->vm_mm; 2416 struct vm_area_struct *prev; 2417 int error = 0; 2418 2419 address &= PAGE_MASK; 2420 if (address < mmap_min_addr) 2421 return -EPERM; 2422 2423 /* Enforce stack_guard_gap */ 2424 prev = vma->vm_prev; 2425 /* Check that both stack segments have the same anon_vma? */ 2426 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2427 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2428 if (address - prev->vm_end < stack_guard_gap) 2429 return -ENOMEM; 2430 } 2431 2432 /* We must make sure the anon_vma is allocated. */ 2433 if (unlikely(anon_vma_prepare(vma))) 2434 return -ENOMEM; 2435 2436 /* 2437 * vma->vm_start/vm_end cannot change under us because the caller 2438 * is required to hold the mmap_sem in read mode. We need the 2439 * anon_vma lock to serialize against concurrent expand_stacks. 2440 */ 2441 anon_vma_lock_write(vma->anon_vma); 2442 2443 /* Somebody else might have raced and expanded it already */ 2444 if (address < vma->vm_start) { 2445 unsigned long size, grow; 2446 2447 size = vma->vm_end - address; 2448 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2449 2450 error = -ENOMEM; 2451 if (grow <= vma->vm_pgoff) { 2452 error = acct_stack_growth(vma, size, grow); 2453 if (!error) { 2454 /* 2455 * vma_gap_update() doesn't support concurrent 2456 * updates, but we only hold a shared mmap_sem 2457 * lock here, so we need to protect against 2458 * concurrent vma expansions. 2459 * anon_vma_lock_write() doesn't help here, as 2460 * we don't guarantee that all growable vmas 2461 * in a mm share the same root anon vma. 2462 * So, we reuse mm->page_table_lock to guard 2463 * against concurrent vma expansions. 2464 */ 2465 spin_lock(&mm->page_table_lock); 2466 if (vma->vm_flags & VM_LOCKED) 2467 mm->locked_vm += grow; 2468 vm_stat_account(mm, vma->vm_flags, grow); 2469 anon_vma_interval_tree_pre_update_vma(vma); 2470 vma->vm_start = address; 2471 vma->vm_pgoff -= grow; 2472 anon_vma_interval_tree_post_update_vma(vma); 2473 vma_gap_update(vma); 2474 spin_unlock(&mm->page_table_lock); 2475 2476 perf_event_mmap(vma); 2477 } 2478 } 2479 } 2480 anon_vma_unlock_write(vma->anon_vma); 2481 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2482 validate_mm(mm); 2483 return error; 2484 } 2485 2486 /* enforced gap between the expanding stack and other mappings. */ 2487 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2488 2489 static int __init cmdline_parse_stack_guard_gap(char *p) 2490 { 2491 unsigned long val; 2492 char *endptr; 2493 2494 val = simple_strtoul(p, &endptr, 10); 2495 if (!*endptr) 2496 stack_guard_gap = val << PAGE_SHIFT; 2497 2498 return 0; 2499 } 2500 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2501 2502 #ifdef CONFIG_STACK_GROWSUP 2503 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2504 { 2505 return expand_upwards(vma, address); 2506 } 2507 2508 struct vm_area_struct * 2509 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2510 { 2511 struct vm_area_struct *vma, *prev; 2512 2513 addr &= PAGE_MASK; 2514 vma = find_vma_prev(mm, addr, &prev); 2515 if (vma && (vma->vm_start <= addr)) 2516 return vma; 2517 /* don't alter vm_end if the coredump is running */ 2518 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2519 return NULL; 2520 if (prev->vm_flags & VM_LOCKED) 2521 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2522 return prev; 2523 } 2524 #else 2525 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2526 { 2527 return expand_downwards(vma, address); 2528 } 2529 2530 struct vm_area_struct * 2531 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2532 { 2533 struct vm_area_struct *vma; 2534 unsigned long start; 2535 2536 addr &= PAGE_MASK; 2537 vma = find_vma(mm, addr); 2538 if (!vma) 2539 return NULL; 2540 if (vma->vm_start <= addr) 2541 return vma; 2542 if (!(vma->vm_flags & VM_GROWSDOWN)) 2543 return NULL; 2544 /* don't alter vm_start if the coredump is running */ 2545 if (!mmget_still_valid(mm)) 2546 return NULL; 2547 start = vma->vm_start; 2548 if (expand_stack(vma, addr)) 2549 return NULL; 2550 if (vma->vm_flags & VM_LOCKED) 2551 populate_vma_page_range(vma, addr, start, NULL); 2552 return vma; 2553 } 2554 #endif 2555 2556 EXPORT_SYMBOL_GPL(find_extend_vma); 2557 2558 /* 2559 * Ok - we have the memory areas we should free on the vma list, 2560 * so release them, and do the vma updates. 2561 * 2562 * Called with the mm semaphore held. 2563 */ 2564 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2565 { 2566 unsigned long nr_accounted = 0; 2567 2568 /* Update high watermark before we lower total_vm */ 2569 update_hiwater_vm(mm); 2570 do { 2571 long nrpages = vma_pages(vma); 2572 2573 if (vma->vm_flags & VM_ACCOUNT) 2574 nr_accounted += nrpages; 2575 vm_stat_account(mm, vma->vm_flags, -nrpages); 2576 vma = remove_vma(vma); 2577 } while (vma); 2578 vm_unacct_memory(nr_accounted); 2579 validate_mm(mm); 2580 } 2581 2582 /* 2583 * Get rid of page table information in the indicated region. 2584 * 2585 * Called with the mm semaphore held. 2586 */ 2587 static void unmap_region(struct mm_struct *mm, 2588 struct vm_area_struct *vma, struct vm_area_struct *prev, 2589 unsigned long start, unsigned long end) 2590 { 2591 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2592 struct mmu_gather tlb; 2593 2594 lru_add_drain(); 2595 tlb_gather_mmu(&tlb, mm, start, end); 2596 update_hiwater_rss(mm); 2597 unmap_vmas(&tlb, vma, start, end); 2598 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2599 next ? next->vm_start : USER_PGTABLES_CEILING); 2600 tlb_finish_mmu(&tlb, start, end); 2601 } 2602 2603 /* 2604 * Create a list of vma's touched by the unmap, removing them from the mm's 2605 * vma list as we go.. 2606 */ 2607 static void 2608 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2609 struct vm_area_struct *prev, unsigned long end) 2610 { 2611 struct vm_area_struct **insertion_point; 2612 struct vm_area_struct *tail_vma = NULL; 2613 2614 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2615 vma->vm_prev = NULL; 2616 do { 2617 vma_rb_erase(vma, &mm->mm_rb); 2618 mm->map_count--; 2619 tail_vma = vma; 2620 vma = vma->vm_next; 2621 } while (vma && vma->vm_start < end); 2622 *insertion_point = vma; 2623 if (vma) { 2624 vma->vm_prev = prev; 2625 vma_gap_update(vma); 2626 } else 2627 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2628 tail_vma->vm_next = NULL; 2629 2630 /* Kill the cache */ 2631 vmacache_invalidate(mm); 2632 } 2633 2634 /* 2635 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2636 * has already been checked or doesn't make sense to fail. 2637 */ 2638 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2639 unsigned long addr, int new_below) 2640 { 2641 struct vm_area_struct *new; 2642 int err; 2643 2644 if (vma->vm_ops && vma->vm_ops->split) { 2645 err = vma->vm_ops->split(vma, addr); 2646 if (err) 2647 return err; 2648 } 2649 2650 new = vm_area_dup(vma); 2651 if (!new) 2652 return -ENOMEM; 2653 2654 if (new_below) 2655 new->vm_end = addr; 2656 else { 2657 new->vm_start = addr; 2658 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2659 } 2660 2661 err = vma_dup_policy(vma, new); 2662 if (err) 2663 goto out_free_vma; 2664 2665 err = anon_vma_clone(new, vma); 2666 if (err) 2667 goto out_free_mpol; 2668 2669 if (new->vm_file) 2670 get_file(new->vm_file); 2671 2672 if (new->vm_ops && new->vm_ops->open) 2673 new->vm_ops->open(new); 2674 2675 if (new_below) 2676 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2677 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2678 else 2679 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2680 2681 /* Success. */ 2682 if (!err) 2683 return 0; 2684 2685 /* Clean everything up if vma_adjust failed. */ 2686 if (new->vm_ops && new->vm_ops->close) 2687 new->vm_ops->close(new); 2688 if (new->vm_file) 2689 fput(new->vm_file); 2690 unlink_anon_vmas(new); 2691 out_free_mpol: 2692 mpol_put(vma_policy(new)); 2693 out_free_vma: 2694 vm_area_free(new); 2695 return err; 2696 } 2697 2698 /* 2699 * Split a vma into two pieces at address 'addr', a new vma is allocated 2700 * either for the first part or the tail. 2701 */ 2702 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2703 unsigned long addr, int new_below) 2704 { 2705 if (mm->map_count >= sysctl_max_map_count) 2706 return -ENOMEM; 2707 2708 return __split_vma(mm, vma, addr, new_below); 2709 } 2710 2711 /* Munmap is split into 2 main parts -- this part which finds 2712 * what needs doing, and the areas themselves, which do the 2713 * work. This now handles partial unmappings. 2714 * Jeremy Fitzhardinge <jeremy@goop.org> 2715 */ 2716 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2717 struct list_head *uf, bool downgrade) 2718 { 2719 unsigned long end; 2720 struct vm_area_struct *vma, *prev, *last; 2721 2722 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2723 return -EINVAL; 2724 2725 len = PAGE_ALIGN(len); 2726 end = start + len; 2727 if (len == 0) 2728 return -EINVAL; 2729 2730 /* 2731 * arch_unmap() might do unmaps itself. It must be called 2732 * and finish any rbtree manipulation before this code 2733 * runs and also starts to manipulate the rbtree. 2734 */ 2735 arch_unmap(mm, start, end); 2736 2737 /* Find the first overlapping VMA */ 2738 vma = find_vma(mm, start); 2739 if (!vma) 2740 return 0; 2741 prev = vma->vm_prev; 2742 /* we have start < vma->vm_end */ 2743 2744 /* if it doesn't overlap, we have nothing.. */ 2745 if (vma->vm_start >= end) 2746 return 0; 2747 2748 /* 2749 * If we need to split any vma, do it now to save pain later. 2750 * 2751 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2752 * unmapped vm_area_struct will remain in use: so lower split_vma 2753 * places tmp vma above, and higher split_vma places tmp vma below. 2754 */ 2755 if (start > vma->vm_start) { 2756 int error; 2757 2758 /* 2759 * Make sure that map_count on return from munmap() will 2760 * not exceed its limit; but let map_count go just above 2761 * its limit temporarily, to help free resources as expected. 2762 */ 2763 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2764 return -ENOMEM; 2765 2766 error = __split_vma(mm, vma, start, 0); 2767 if (error) 2768 return error; 2769 prev = vma; 2770 } 2771 2772 /* Does it split the last one? */ 2773 last = find_vma(mm, end); 2774 if (last && end > last->vm_start) { 2775 int error = __split_vma(mm, last, end, 1); 2776 if (error) 2777 return error; 2778 } 2779 vma = prev ? prev->vm_next : mm->mmap; 2780 2781 if (unlikely(uf)) { 2782 /* 2783 * If userfaultfd_unmap_prep returns an error the vmas 2784 * will remain splitted, but userland will get a 2785 * highly unexpected error anyway. This is no 2786 * different than the case where the first of the two 2787 * __split_vma fails, but we don't undo the first 2788 * split, despite we could. This is unlikely enough 2789 * failure that it's not worth optimizing it for. 2790 */ 2791 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2792 if (error) 2793 return error; 2794 } 2795 2796 /* 2797 * unlock any mlock()ed ranges before detaching vmas 2798 */ 2799 if (mm->locked_vm) { 2800 struct vm_area_struct *tmp = vma; 2801 while (tmp && tmp->vm_start < end) { 2802 if (tmp->vm_flags & VM_LOCKED) { 2803 mm->locked_vm -= vma_pages(tmp); 2804 munlock_vma_pages_all(tmp); 2805 } 2806 2807 tmp = tmp->vm_next; 2808 } 2809 } 2810 2811 /* Detach vmas from rbtree */ 2812 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2813 2814 if (downgrade) 2815 downgrade_write(&mm->mmap_sem); 2816 2817 unmap_region(mm, vma, prev, start, end); 2818 2819 /* Fix up all other VM information */ 2820 remove_vma_list(mm, vma); 2821 2822 return downgrade ? 1 : 0; 2823 } 2824 2825 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2826 struct list_head *uf) 2827 { 2828 return __do_munmap(mm, start, len, uf, false); 2829 } 2830 2831 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2832 { 2833 int ret; 2834 struct mm_struct *mm = current->mm; 2835 LIST_HEAD(uf); 2836 2837 if (down_write_killable(&mm->mmap_sem)) 2838 return -EINTR; 2839 2840 ret = __do_munmap(mm, start, len, &uf, downgrade); 2841 /* 2842 * Returning 1 indicates mmap_sem is downgraded. 2843 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2844 * it to 0 before return. 2845 */ 2846 if (ret == 1) { 2847 up_read(&mm->mmap_sem); 2848 ret = 0; 2849 } else 2850 up_write(&mm->mmap_sem); 2851 2852 userfaultfd_unmap_complete(mm, &uf); 2853 return ret; 2854 } 2855 2856 int vm_munmap(unsigned long start, size_t len) 2857 { 2858 return __vm_munmap(start, len, false); 2859 } 2860 EXPORT_SYMBOL(vm_munmap); 2861 2862 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2863 { 2864 addr = untagged_addr(addr); 2865 profile_munmap(addr); 2866 return __vm_munmap(addr, len, true); 2867 } 2868 2869 2870 /* 2871 * Emulation of deprecated remap_file_pages() syscall. 2872 */ 2873 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2874 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2875 { 2876 2877 struct mm_struct *mm = current->mm; 2878 struct vm_area_struct *vma; 2879 unsigned long populate = 0; 2880 unsigned long ret = -EINVAL; 2881 struct file *file; 2882 2883 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2884 current->comm, current->pid); 2885 2886 if (prot) 2887 return ret; 2888 start = start & PAGE_MASK; 2889 size = size & PAGE_MASK; 2890 2891 if (start + size <= start) 2892 return ret; 2893 2894 /* Does pgoff wrap? */ 2895 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2896 return ret; 2897 2898 if (down_write_killable(&mm->mmap_sem)) 2899 return -EINTR; 2900 2901 vma = find_vma(mm, start); 2902 2903 if (!vma || !(vma->vm_flags & VM_SHARED)) 2904 goto out; 2905 2906 if (start < vma->vm_start) 2907 goto out; 2908 2909 if (start + size > vma->vm_end) { 2910 struct vm_area_struct *next; 2911 2912 for (next = vma->vm_next; next; next = next->vm_next) { 2913 /* hole between vmas ? */ 2914 if (next->vm_start != next->vm_prev->vm_end) 2915 goto out; 2916 2917 if (next->vm_file != vma->vm_file) 2918 goto out; 2919 2920 if (next->vm_flags != vma->vm_flags) 2921 goto out; 2922 2923 if (start + size <= next->vm_end) 2924 break; 2925 } 2926 2927 if (!next) 2928 goto out; 2929 } 2930 2931 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2932 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2933 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2934 2935 flags &= MAP_NONBLOCK; 2936 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2937 if (vma->vm_flags & VM_LOCKED) { 2938 struct vm_area_struct *tmp; 2939 flags |= MAP_LOCKED; 2940 2941 /* drop PG_Mlocked flag for over-mapped range */ 2942 for (tmp = vma; tmp->vm_start >= start + size; 2943 tmp = tmp->vm_next) { 2944 /* 2945 * Split pmd and munlock page on the border 2946 * of the range. 2947 */ 2948 vma_adjust_trans_huge(tmp, start, start + size, 0); 2949 2950 munlock_vma_pages_range(tmp, 2951 max(tmp->vm_start, start), 2952 min(tmp->vm_end, start + size)); 2953 } 2954 } 2955 2956 file = get_file(vma->vm_file); 2957 ret = do_mmap_pgoff(vma->vm_file, start, size, 2958 prot, flags, pgoff, &populate, NULL); 2959 fput(file); 2960 out: 2961 up_write(&mm->mmap_sem); 2962 if (populate) 2963 mm_populate(ret, populate); 2964 if (!IS_ERR_VALUE(ret)) 2965 ret = 0; 2966 return ret; 2967 } 2968 2969 /* 2970 * this is really a simplified "do_mmap". it only handles 2971 * anonymous maps. eventually we may be able to do some 2972 * brk-specific accounting here. 2973 */ 2974 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2975 { 2976 struct mm_struct *mm = current->mm; 2977 struct vm_area_struct *vma, *prev; 2978 struct rb_node **rb_link, *rb_parent; 2979 pgoff_t pgoff = addr >> PAGE_SHIFT; 2980 int error; 2981 unsigned long mapped_addr; 2982 2983 /* Until we need other flags, refuse anything except VM_EXEC. */ 2984 if ((flags & (~VM_EXEC)) != 0) 2985 return -EINVAL; 2986 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2987 2988 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2989 if (IS_ERR_VALUE(mapped_addr)) 2990 return mapped_addr; 2991 2992 error = mlock_future_check(mm, mm->def_flags, len); 2993 if (error) 2994 return error; 2995 2996 /* 2997 * Clear old maps. this also does some error checking for us 2998 */ 2999 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3000 &rb_parent)) { 3001 if (do_munmap(mm, addr, len, uf)) 3002 return -ENOMEM; 3003 } 3004 3005 /* Check against address space limits *after* clearing old maps... */ 3006 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3007 return -ENOMEM; 3008 3009 if (mm->map_count > sysctl_max_map_count) 3010 return -ENOMEM; 3011 3012 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3013 return -ENOMEM; 3014 3015 /* Can we just expand an old private anonymous mapping? */ 3016 vma = vma_merge(mm, prev, addr, addr + len, flags, 3017 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3018 if (vma) 3019 goto out; 3020 3021 /* 3022 * create a vma struct for an anonymous mapping 3023 */ 3024 vma = vm_area_alloc(mm); 3025 if (!vma) { 3026 vm_unacct_memory(len >> PAGE_SHIFT); 3027 return -ENOMEM; 3028 } 3029 3030 vma_set_anonymous(vma); 3031 vma->vm_start = addr; 3032 vma->vm_end = addr + len; 3033 vma->vm_pgoff = pgoff; 3034 vma->vm_flags = flags; 3035 vma->vm_page_prot = vm_get_page_prot(flags); 3036 vma_link(mm, vma, prev, rb_link, rb_parent); 3037 out: 3038 perf_event_mmap(vma); 3039 mm->total_vm += len >> PAGE_SHIFT; 3040 mm->data_vm += len >> PAGE_SHIFT; 3041 if (flags & VM_LOCKED) 3042 mm->locked_vm += (len >> PAGE_SHIFT); 3043 vma->vm_flags |= VM_SOFTDIRTY; 3044 return 0; 3045 } 3046 3047 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3048 { 3049 struct mm_struct *mm = current->mm; 3050 unsigned long len; 3051 int ret; 3052 bool populate; 3053 LIST_HEAD(uf); 3054 3055 len = PAGE_ALIGN(request); 3056 if (len < request) 3057 return -ENOMEM; 3058 if (!len) 3059 return 0; 3060 3061 if (down_write_killable(&mm->mmap_sem)) 3062 return -EINTR; 3063 3064 ret = do_brk_flags(addr, len, flags, &uf); 3065 populate = ((mm->def_flags & VM_LOCKED) != 0); 3066 up_write(&mm->mmap_sem); 3067 userfaultfd_unmap_complete(mm, &uf); 3068 if (populate && !ret) 3069 mm_populate(addr, len); 3070 return ret; 3071 } 3072 EXPORT_SYMBOL(vm_brk_flags); 3073 3074 int vm_brk(unsigned long addr, unsigned long len) 3075 { 3076 return vm_brk_flags(addr, len, 0); 3077 } 3078 EXPORT_SYMBOL(vm_brk); 3079 3080 /* Release all mmaps. */ 3081 void exit_mmap(struct mm_struct *mm) 3082 { 3083 struct mmu_gather tlb; 3084 struct vm_area_struct *vma; 3085 unsigned long nr_accounted = 0; 3086 3087 /* mm's last user has gone, and its about to be pulled down */ 3088 mmu_notifier_release(mm); 3089 3090 if (unlikely(mm_is_oom_victim(mm))) { 3091 /* 3092 * Manually reap the mm to free as much memory as possible. 3093 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3094 * this mm from further consideration. Taking mm->mmap_sem for 3095 * write after setting MMF_OOM_SKIP will guarantee that the oom 3096 * reaper will not run on this mm again after mmap_sem is 3097 * dropped. 3098 * 3099 * Nothing can be holding mm->mmap_sem here and the above call 3100 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3101 * __oom_reap_task_mm() will not block. 3102 * 3103 * This needs to be done before calling munlock_vma_pages_all(), 3104 * which clears VM_LOCKED, otherwise the oom reaper cannot 3105 * reliably test it. 3106 */ 3107 (void)__oom_reap_task_mm(mm); 3108 3109 set_bit(MMF_OOM_SKIP, &mm->flags); 3110 down_write(&mm->mmap_sem); 3111 up_write(&mm->mmap_sem); 3112 } 3113 3114 if (mm->locked_vm) { 3115 vma = mm->mmap; 3116 while (vma) { 3117 if (vma->vm_flags & VM_LOCKED) 3118 munlock_vma_pages_all(vma); 3119 vma = vma->vm_next; 3120 } 3121 } 3122 3123 arch_exit_mmap(mm); 3124 3125 vma = mm->mmap; 3126 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3127 return; 3128 3129 lru_add_drain(); 3130 flush_cache_mm(mm); 3131 tlb_gather_mmu(&tlb, mm, 0, -1); 3132 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3133 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3134 unmap_vmas(&tlb, vma, 0, -1); 3135 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3136 tlb_finish_mmu(&tlb, 0, -1); 3137 3138 /* 3139 * Walk the list again, actually closing and freeing it, 3140 * with preemption enabled, without holding any MM locks. 3141 */ 3142 while (vma) { 3143 if (vma->vm_flags & VM_ACCOUNT) 3144 nr_accounted += vma_pages(vma); 3145 vma = remove_vma(vma); 3146 } 3147 vm_unacct_memory(nr_accounted); 3148 } 3149 3150 /* Insert vm structure into process list sorted by address 3151 * and into the inode's i_mmap tree. If vm_file is non-NULL 3152 * then i_mmap_rwsem is taken here. 3153 */ 3154 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3155 { 3156 struct vm_area_struct *prev; 3157 struct rb_node **rb_link, *rb_parent; 3158 3159 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3160 &prev, &rb_link, &rb_parent)) 3161 return -ENOMEM; 3162 if ((vma->vm_flags & VM_ACCOUNT) && 3163 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3164 return -ENOMEM; 3165 3166 /* 3167 * The vm_pgoff of a purely anonymous vma should be irrelevant 3168 * until its first write fault, when page's anon_vma and index 3169 * are set. But now set the vm_pgoff it will almost certainly 3170 * end up with (unless mremap moves it elsewhere before that 3171 * first wfault), so /proc/pid/maps tells a consistent story. 3172 * 3173 * By setting it to reflect the virtual start address of the 3174 * vma, merges and splits can happen in a seamless way, just 3175 * using the existing file pgoff checks and manipulations. 3176 * Similarly in do_mmap_pgoff and in do_brk. 3177 */ 3178 if (vma_is_anonymous(vma)) { 3179 BUG_ON(vma->anon_vma); 3180 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3181 } 3182 3183 vma_link(mm, vma, prev, rb_link, rb_parent); 3184 return 0; 3185 } 3186 3187 /* 3188 * Copy the vma structure to a new location in the same mm, 3189 * prior to moving page table entries, to effect an mremap move. 3190 */ 3191 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3192 unsigned long addr, unsigned long len, pgoff_t pgoff, 3193 bool *need_rmap_locks) 3194 { 3195 struct vm_area_struct *vma = *vmap; 3196 unsigned long vma_start = vma->vm_start; 3197 struct mm_struct *mm = vma->vm_mm; 3198 struct vm_area_struct *new_vma, *prev; 3199 struct rb_node **rb_link, *rb_parent; 3200 bool faulted_in_anon_vma = true; 3201 3202 /* 3203 * If anonymous vma has not yet been faulted, update new pgoff 3204 * to match new location, to increase its chance of merging. 3205 */ 3206 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3207 pgoff = addr >> PAGE_SHIFT; 3208 faulted_in_anon_vma = false; 3209 } 3210 3211 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3212 return NULL; /* should never get here */ 3213 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3214 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3215 vma->vm_userfaultfd_ctx); 3216 if (new_vma) { 3217 /* 3218 * Source vma may have been merged into new_vma 3219 */ 3220 if (unlikely(vma_start >= new_vma->vm_start && 3221 vma_start < new_vma->vm_end)) { 3222 /* 3223 * The only way we can get a vma_merge with 3224 * self during an mremap is if the vma hasn't 3225 * been faulted in yet and we were allowed to 3226 * reset the dst vma->vm_pgoff to the 3227 * destination address of the mremap to allow 3228 * the merge to happen. mremap must change the 3229 * vm_pgoff linearity between src and dst vmas 3230 * (in turn preventing a vma_merge) to be 3231 * safe. It is only safe to keep the vm_pgoff 3232 * linear if there are no pages mapped yet. 3233 */ 3234 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3235 *vmap = vma = new_vma; 3236 } 3237 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3238 } else { 3239 new_vma = vm_area_dup(vma); 3240 if (!new_vma) 3241 goto out; 3242 new_vma->vm_start = addr; 3243 new_vma->vm_end = addr + len; 3244 new_vma->vm_pgoff = pgoff; 3245 if (vma_dup_policy(vma, new_vma)) 3246 goto out_free_vma; 3247 if (anon_vma_clone(new_vma, vma)) 3248 goto out_free_mempol; 3249 if (new_vma->vm_file) 3250 get_file(new_vma->vm_file); 3251 if (new_vma->vm_ops && new_vma->vm_ops->open) 3252 new_vma->vm_ops->open(new_vma); 3253 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3254 *need_rmap_locks = false; 3255 } 3256 return new_vma; 3257 3258 out_free_mempol: 3259 mpol_put(vma_policy(new_vma)); 3260 out_free_vma: 3261 vm_area_free(new_vma); 3262 out: 3263 return NULL; 3264 } 3265 3266 /* 3267 * Return true if the calling process may expand its vm space by the passed 3268 * number of pages 3269 */ 3270 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3271 { 3272 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3273 return false; 3274 3275 if (is_data_mapping(flags) && 3276 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3277 /* Workaround for Valgrind */ 3278 if (rlimit(RLIMIT_DATA) == 0 && 3279 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3280 return true; 3281 3282 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3283 current->comm, current->pid, 3284 (mm->data_vm + npages) << PAGE_SHIFT, 3285 rlimit(RLIMIT_DATA), 3286 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3287 3288 if (!ignore_rlimit_data) 3289 return false; 3290 } 3291 3292 return true; 3293 } 3294 3295 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3296 { 3297 mm->total_vm += npages; 3298 3299 if (is_exec_mapping(flags)) 3300 mm->exec_vm += npages; 3301 else if (is_stack_mapping(flags)) 3302 mm->stack_vm += npages; 3303 else if (is_data_mapping(flags)) 3304 mm->data_vm += npages; 3305 } 3306 3307 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3308 3309 /* 3310 * Having a close hook prevents vma merging regardless of flags. 3311 */ 3312 static void special_mapping_close(struct vm_area_struct *vma) 3313 { 3314 } 3315 3316 static const char *special_mapping_name(struct vm_area_struct *vma) 3317 { 3318 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3319 } 3320 3321 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3322 { 3323 struct vm_special_mapping *sm = new_vma->vm_private_data; 3324 3325 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3326 return -EFAULT; 3327 3328 if (sm->mremap) 3329 return sm->mremap(sm, new_vma); 3330 3331 return 0; 3332 } 3333 3334 static const struct vm_operations_struct special_mapping_vmops = { 3335 .close = special_mapping_close, 3336 .fault = special_mapping_fault, 3337 .mremap = special_mapping_mremap, 3338 .name = special_mapping_name, 3339 }; 3340 3341 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3342 .close = special_mapping_close, 3343 .fault = special_mapping_fault, 3344 }; 3345 3346 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3347 { 3348 struct vm_area_struct *vma = vmf->vma; 3349 pgoff_t pgoff; 3350 struct page **pages; 3351 3352 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3353 pages = vma->vm_private_data; 3354 } else { 3355 struct vm_special_mapping *sm = vma->vm_private_data; 3356 3357 if (sm->fault) 3358 return sm->fault(sm, vmf->vma, vmf); 3359 3360 pages = sm->pages; 3361 } 3362 3363 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3364 pgoff--; 3365 3366 if (*pages) { 3367 struct page *page = *pages; 3368 get_page(page); 3369 vmf->page = page; 3370 return 0; 3371 } 3372 3373 return VM_FAULT_SIGBUS; 3374 } 3375 3376 static struct vm_area_struct *__install_special_mapping( 3377 struct mm_struct *mm, 3378 unsigned long addr, unsigned long len, 3379 unsigned long vm_flags, void *priv, 3380 const struct vm_operations_struct *ops) 3381 { 3382 int ret; 3383 struct vm_area_struct *vma; 3384 3385 vma = vm_area_alloc(mm); 3386 if (unlikely(vma == NULL)) 3387 return ERR_PTR(-ENOMEM); 3388 3389 vma->vm_start = addr; 3390 vma->vm_end = addr + len; 3391 3392 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3393 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3394 3395 vma->vm_ops = ops; 3396 vma->vm_private_data = priv; 3397 3398 ret = insert_vm_struct(mm, vma); 3399 if (ret) 3400 goto out; 3401 3402 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3403 3404 perf_event_mmap(vma); 3405 3406 return vma; 3407 3408 out: 3409 vm_area_free(vma); 3410 return ERR_PTR(ret); 3411 } 3412 3413 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3414 const struct vm_special_mapping *sm) 3415 { 3416 return vma->vm_private_data == sm && 3417 (vma->vm_ops == &special_mapping_vmops || 3418 vma->vm_ops == &legacy_special_mapping_vmops); 3419 } 3420 3421 /* 3422 * Called with mm->mmap_sem held for writing. 3423 * Insert a new vma covering the given region, with the given flags. 3424 * Its pages are supplied by the given array of struct page *. 3425 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3426 * The region past the last page supplied will always produce SIGBUS. 3427 * The array pointer and the pages it points to are assumed to stay alive 3428 * for as long as this mapping might exist. 3429 */ 3430 struct vm_area_struct *_install_special_mapping( 3431 struct mm_struct *mm, 3432 unsigned long addr, unsigned long len, 3433 unsigned long vm_flags, const struct vm_special_mapping *spec) 3434 { 3435 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3436 &special_mapping_vmops); 3437 } 3438 3439 int install_special_mapping(struct mm_struct *mm, 3440 unsigned long addr, unsigned long len, 3441 unsigned long vm_flags, struct page **pages) 3442 { 3443 struct vm_area_struct *vma = __install_special_mapping( 3444 mm, addr, len, vm_flags, (void *)pages, 3445 &legacy_special_mapping_vmops); 3446 3447 return PTR_ERR_OR_ZERO(vma); 3448 } 3449 3450 static DEFINE_MUTEX(mm_all_locks_mutex); 3451 3452 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3453 { 3454 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3455 /* 3456 * The LSB of head.next can't change from under us 3457 * because we hold the mm_all_locks_mutex. 3458 */ 3459 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3460 /* 3461 * We can safely modify head.next after taking the 3462 * anon_vma->root->rwsem. If some other vma in this mm shares 3463 * the same anon_vma we won't take it again. 3464 * 3465 * No need of atomic instructions here, head.next 3466 * can't change from under us thanks to the 3467 * anon_vma->root->rwsem. 3468 */ 3469 if (__test_and_set_bit(0, (unsigned long *) 3470 &anon_vma->root->rb_root.rb_root.rb_node)) 3471 BUG(); 3472 } 3473 } 3474 3475 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3476 { 3477 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3478 /* 3479 * AS_MM_ALL_LOCKS can't change from under us because 3480 * we hold the mm_all_locks_mutex. 3481 * 3482 * Operations on ->flags have to be atomic because 3483 * even if AS_MM_ALL_LOCKS is stable thanks to the 3484 * mm_all_locks_mutex, there may be other cpus 3485 * changing other bitflags in parallel to us. 3486 */ 3487 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3488 BUG(); 3489 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3490 } 3491 } 3492 3493 /* 3494 * This operation locks against the VM for all pte/vma/mm related 3495 * operations that could ever happen on a certain mm. This includes 3496 * vmtruncate, try_to_unmap, and all page faults. 3497 * 3498 * The caller must take the mmap_sem in write mode before calling 3499 * mm_take_all_locks(). The caller isn't allowed to release the 3500 * mmap_sem until mm_drop_all_locks() returns. 3501 * 3502 * mmap_sem in write mode is required in order to block all operations 3503 * that could modify pagetables and free pages without need of 3504 * altering the vma layout. It's also needed in write mode to avoid new 3505 * anon_vmas to be associated with existing vmas. 3506 * 3507 * A single task can't take more than one mm_take_all_locks() in a row 3508 * or it would deadlock. 3509 * 3510 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3511 * mapping->flags avoid to take the same lock twice, if more than one 3512 * vma in this mm is backed by the same anon_vma or address_space. 3513 * 3514 * We take locks in following order, accordingly to comment at beginning 3515 * of mm/rmap.c: 3516 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3517 * hugetlb mapping); 3518 * - all i_mmap_rwsem locks; 3519 * - all anon_vma->rwseml 3520 * 3521 * We can take all locks within these types randomly because the VM code 3522 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3523 * mm_all_locks_mutex. 3524 * 3525 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3526 * that may have to take thousand of locks. 3527 * 3528 * mm_take_all_locks() can fail if it's interrupted by signals. 3529 */ 3530 int mm_take_all_locks(struct mm_struct *mm) 3531 { 3532 struct vm_area_struct *vma; 3533 struct anon_vma_chain *avc; 3534 3535 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3536 3537 mutex_lock(&mm_all_locks_mutex); 3538 3539 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3540 if (signal_pending(current)) 3541 goto out_unlock; 3542 if (vma->vm_file && vma->vm_file->f_mapping && 3543 is_vm_hugetlb_page(vma)) 3544 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3545 } 3546 3547 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3548 if (signal_pending(current)) 3549 goto out_unlock; 3550 if (vma->vm_file && vma->vm_file->f_mapping && 3551 !is_vm_hugetlb_page(vma)) 3552 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3553 } 3554 3555 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3556 if (signal_pending(current)) 3557 goto out_unlock; 3558 if (vma->anon_vma) 3559 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3560 vm_lock_anon_vma(mm, avc->anon_vma); 3561 } 3562 3563 return 0; 3564 3565 out_unlock: 3566 mm_drop_all_locks(mm); 3567 return -EINTR; 3568 } 3569 3570 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3571 { 3572 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3573 /* 3574 * The LSB of head.next can't change to 0 from under 3575 * us because we hold the mm_all_locks_mutex. 3576 * 3577 * We must however clear the bitflag before unlocking 3578 * the vma so the users using the anon_vma->rb_root will 3579 * never see our bitflag. 3580 * 3581 * No need of atomic instructions here, head.next 3582 * can't change from under us until we release the 3583 * anon_vma->root->rwsem. 3584 */ 3585 if (!__test_and_clear_bit(0, (unsigned long *) 3586 &anon_vma->root->rb_root.rb_root.rb_node)) 3587 BUG(); 3588 anon_vma_unlock_write(anon_vma); 3589 } 3590 } 3591 3592 static void vm_unlock_mapping(struct address_space *mapping) 3593 { 3594 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3595 /* 3596 * AS_MM_ALL_LOCKS can't change to 0 from under us 3597 * because we hold the mm_all_locks_mutex. 3598 */ 3599 i_mmap_unlock_write(mapping); 3600 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3601 &mapping->flags)) 3602 BUG(); 3603 } 3604 } 3605 3606 /* 3607 * The mmap_sem cannot be released by the caller until 3608 * mm_drop_all_locks() returns. 3609 */ 3610 void mm_drop_all_locks(struct mm_struct *mm) 3611 { 3612 struct vm_area_struct *vma; 3613 struct anon_vma_chain *avc; 3614 3615 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3616 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3617 3618 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3619 if (vma->anon_vma) 3620 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3621 vm_unlock_anon_vma(avc->anon_vma); 3622 if (vma->vm_file && vma->vm_file->f_mapping) 3623 vm_unlock_mapping(vma->vm_file->f_mapping); 3624 } 3625 3626 mutex_unlock(&mm_all_locks_mutex); 3627 } 3628 3629 /* 3630 * initialise the percpu counter for VM 3631 */ 3632 void __init mmap_init(void) 3633 { 3634 int ret; 3635 3636 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3637 VM_BUG_ON(ret); 3638 } 3639 3640 /* 3641 * Initialise sysctl_user_reserve_kbytes. 3642 * 3643 * This is intended to prevent a user from starting a single memory hogging 3644 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3645 * mode. 3646 * 3647 * The default value is min(3% of free memory, 128MB) 3648 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3649 */ 3650 static int init_user_reserve(void) 3651 { 3652 unsigned long free_kbytes; 3653 3654 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3655 3656 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3657 return 0; 3658 } 3659 subsys_initcall(init_user_reserve); 3660 3661 /* 3662 * Initialise sysctl_admin_reserve_kbytes. 3663 * 3664 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3665 * to log in and kill a memory hogging process. 3666 * 3667 * Systems with more than 256MB will reserve 8MB, enough to recover 3668 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3669 * only reserve 3% of free pages by default. 3670 */ 3671 static int init_admin_reserve(void) 3672 { 3673 unsigned long free_kbytes; 3674 3675 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3676 3677 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3678 return 0; 3679 } 3680 subsys_initcall(init_admin_reserve); 3681 3682 /* 3683 * Reinititalise user and admin reserves if memory is added or removed. 3684 * 3685 * The default user reserve max is 128MB, and the default max for the 3686 * admin reserve is 8MB. These are usually, but not always, enough to 3687 * enable recovery from a memory hogging process using login/sshd, a shell, 3688 * and tools like top. It may make sense to increase or even disable the 3689 * reserve depending on the existence of swap or variations in the recovery 3690 * tools. So, the admin may have changed them. 3691 * 3692 * If memory is added and the reserves have been eliminated or increased above 3693 * the default max, then we'll trust the admin. 3694 * 3695 * If memory is removed and there isn't enough free memory, then we 3696 * need to reset the reserves. 3697 * 3698 * Otherwise keep the reserve set by the admin. 3699 */ 3700 static int reserve_mem_notifier(struct notifier_block *nb, 3701 unsigned long action, void *data) 3702 { 3703 unsigned long tmp, free_kbytes; 3704 3705 switch (action) { 3706 case MEM_ONLINE: 3707 /* Default max is 128MB. Leave alone if modified by operator. */ 3708 tmp = sysctl_user_reserve_kbytes; 3709 if (0 < tmp && tmp < (1UL << 17)) 3710 init_user_reserve(); 3711 3712 /* Default max is 8MB. Leave alone if modified by operator. */ 3713 tmp = sysctl_admin_reserve_kbytes; 3714 if (0 < tmp && tmp < (1UL << 13)) 3715 init_admin_reserve(); 3716 3717 break; 3718 case MEM_OFFLINE: 3719 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3720 3721 if (sysctl_user_reserve_kbytes > free_kbytes) { 3722 init_user_reserve(); 3723 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3724 sysctl_user_reserve_kbytes); 3725 } 3726 3727 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3728 init_admin_reserve(); 3729 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3730 sysctl_admin_reserve_kbytes); 3731 } 3732 break; 3733 default: 3734 break; 3735 } 3736 return NOTIFY_OK; 3737 } 3738 3739 static struct notifier_block reserve_mem_nb = { 3740 .notifier_call = reserve_mem_notifier, 3741 }; 3742 3743 static int __meminit init_reserve_notifier(void) 3744 { 3745 if (register_hotmemory_notifier(&reserve_mem_nb)) 3746 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3747 3748 return 0; 3749 } 3750 subsys_initcall(init_reserve_notifier); 3751