1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/ima.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/perf_counter.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlb.h> 36 #include <asm/mmu_context.h> 37 38 #include "internal.h" 39 40 #ifndef arch_mmap_check 41 #define arch_mmap_check(addr, len, flags) (0) 42 #endif 43 44 #ifndef arch_rebalance_pgtables 45 #define arch_rebalance_pgtables(addr, len) (addr) 46 #endif 47 48 static void unmap_region(struct mm_struct *mm, 49 struct vm_area_struct *vma, struct vm_area_struct *prev, 50 unsigned long start, unsigned long end); 51 52 /* 53 * WARNING: the debugging will use recursive algorithms so never enable this 54 * unless you know what you are doing. 55 */ 56 #undef DEBUG_MM_RB 57 58 /* description of effects of mapping type and prot in current implementation. 59 * this is due to the limited x86 page protection hardware. The expected 60 * behavior is in parens: 61 * 62 * map_type prot 63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (yes) yes w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 69 * w: (no) no w: (no) no w: (copy) copy w: (no) no 70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 71 * 72 */ 73 pgprot_t protection_map[16] = { 74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 76 }; 77 78 pgprot_t vm_get_page_prot(unsigned long vm_flags) 79 { 80 return __pgprot(pgprot_val(protection_map[vm_flags & 81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 82 pgprot_val(arch_vm_get_page_prot(vm_flags))); 83 } 84 EXPORT_SYMBOL(vm_get_page_prot); 85 86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 87 int sysctl_overcommit_ratio = 50; /* default is 50% */ 88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 89 struct percpu_counter vm_committed_as; 90 91 /* 92 * Check that a process has enough memory to allocate a new virtual 93 * mapping. 0 means there is enough memory for the allocation to 94 * succeed and -ENOMEM implies there is not. 95 * 96 * We currently support three overcommit policies, which are set via the 97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 98 * 99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 100 * Additional code 2002 Jul 20 by Robert Love. 101 * 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 103 * 104 * Note this is a helper function intended to be used by LSMs which 105 * wish to use this logic. 106 */ 107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 108 { 109 unsigned long free, allowed; 110 111 vm_acct_memory(pages); 112 113 /* 114 * Sometimes we want to use more memory than we have 115 */ 116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 117 return 0; 118 119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 120 unsigned long n; 121 122 free = global_page_state(NR_FILE_PAGES); 123 free += nr_swap_pages; 124 125 /* 126 * Any slabs which are created with the 127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 128 * which are reclaimable, under pressure. The dentry 129 * cache and most inode caches should fall into this 130 */ 131 free += global_page_state(NR_SLAB_RECLAIMABLE); 132 133 /* 134 * Leave the last 3% for root 135 */ 136 if (!cap_sys_admin) 137 free -= free / 32; 138 139 if (free > pages) 140 return 0; 141 142 /* 143 * nr_free_pages() is very expensive on large systems, 144 * only call if we're about to fail. 145 */ 146 n = nr_free_pages(); 147 148 /* 149 * Leave reserved pages. The pages are not for anonymous pages. 150 */ 151 if (n <= totalreserve_pages) 152 goto error; 153 else 154 n -= totalreserve_pages; 155 156 /* 157 * Leave the last 3% for root 158 */ 159 if (!cap_sys_admin) 160 n -= n / 32; 161 free += n; 162 163 if (free > pages) 164 return 0; 165 166 goto error; 167 } 168 169 allowed = (totalram_pages - hugetlb_total_pages()) 170 * sysctl_overcommit_ratio / 100; 171 /* 172 * Leave the last 3% for root 173 */ 174 if (!cap_sys_admin) 175 allowed -= allowed / 32; 176 allowed += total_swap_pages; 177 178 /* Don't let a single process grow too big: 179 leave 3% of the size of this process for other processes */ 180 if (mm) 181 allowed -= mm->total_vm / 32; 182 183 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 184 return 0; 185 error: 186 vm_unacct_memory(pages); 187 188 return -ENOMEM; 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_lock 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct file *file, struct address_space *mapping) 196 { 197 if (vma->vm_flags & VM_DENYWRITE) 198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 199 if (vma->vm_flags & VM_SHARED) 200 mapping->i_mmap_writable--; 201 202 flush_dcache_mmap_lock(mapping); 203 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 204 list_del_init(&vma->shared.vm_set.list); 205 else 206 vma_prio_tree_remove(vma, &mapping->i_mmap); 207 flush_dcache_mmap_unlock(mapping); 208 } 209 210 /* 211 * Unlink a file-based vm structure from its prio_tree, to hide 212 * vma from rmap and vmtruncate before freeing its page tables. 213 */ 214 void unlink_file_vma(struct vm_area_struct *vma) 215 { 216 struct file *file = vma->vm_file; 217 218 if (file) { 219 struct address_space *mapping = file->f_mapping; 220 spin_lock(&mapping->i_mmap_lock); 221 __remove_shared_vm_struct(vma, file, mapping); 222 spin_unlock(&mapping->i_mmap_lock); 223 } 224 } 225 226 /* 227 * Close a vm structure and free it, returning the next. 228 */ 229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 230 { 231 struct vm_area_struct *next = vma->vm_next; 232 233 might_sleep(); 234 if (vma->vm_ops && vma->vm_ops->close) 235 vma->vm_ops->close(vma); 236 if (vma->vm_file) { 237 fput(vma->vm_file); 238 if (vma->vm_flags & VM_EXECUTABLE) 239 removed_exe_file_vma(vma->vm_mm); 240 } 241 mpol_put(vma_policy(vma)); 242 kmem_cache_free(vm_area_cachep, vma); 243 return next; 244 } 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 min_brk = mm->end_code; 257 #else 258 min_brk = mm->start_brk; 259 #endif 260 if (brk < min_brk) 261 goto out; 262 263 /* 264 * Check against rlimit here. If this check is done later after the test 265 * of oldbrk with newbrk then it can escape the test and let the data 266 * segment grow beyond its set limit the in case where the limit is 267 * not page aligned -Ram Gupta 268 */ 269 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 271 (mm->end_data - mm->start_data) > rlim) 272 goto out; 273 274 newbrk = PAGE_ALIGN(brk); 275 oldbrk = PAGE_ALIGN(mm->brk); 276 if (oldbrk == newbrk) 277 goto set_brk; 278 279 /* Always allow shrinking brk. */ 280 if (brk <= mm->brk) { 281 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 282 goto set_brk; 283 goto out; 284 } 285 286 /* Check against existing mmap mappings. */ 287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 288 goto out; 289 290 /* Ok, looks good - let it rip. */ 291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 292 goto out; 293 set_brk: 294 mm->brk = brk; 295 out: 296 retval = mm->brk; 297 up_write(&mm->mmap_sem); 298 return retval; 299 } 300 301 #ifdef DEBUG_MM_RB 302 static int browse_rb(struct rb_root *root) 303 { 304 int i = 0, j; 305 struct rb_node *nd, *pn = NULL; 306 unsigned long prev = 0, pend = 0; 307 308 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 309 struct vm_area_struct *vma; 310 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 311 if (vma->vm_start < prev) 312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 313 if (vma->vm_start < pend) 314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 315 if (vma->vm_start > vma->vm_end) 316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 317 i++; 318 pn = nd; 319 prev = vma->vm_start; 320 pend = vma->vm_end; 321 } 322 j = 0; 323 for (nd = pn; nd; nd = rb_prev(nd)) { 324 j++; 325 } 326 if (i != j) 327 printk("backwards %d, forwards %d\n", j, i), i = 0; 328 return i; 329 } 330 331 void validate_mm(struct mm_struct *mm) 332 { 333 int bug = 0; 334 int i = 0; 335 struct vm_area_struct *tmp = mm->mmap; 336 while (tmp) { 337 tmp = tmp->vm_next; 338 i++; 339 } 340 if (i != mm->map_count) 341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 342 i = browse_rb(&mm->mm_rb); 343 if (i != mm->map_count) 344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 345 BUG_ON(bug); 346 } 347 #else 348 #define validate_mm(mm) do { } while (0) 349 #endif 350 351 static struct vm_area_struct * 352 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 353 struct vm_area_struct **pprev, struct rb_node ***rb_link, 354 struct rb_node ** rb_parent) 355 { 356 struct vm_area_struct * vma; 357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 358 359 __rb_link = &mm->mm_rb.rb_node; 360 rb_prev = __rb_parent = NULL; 361 vma = NULL; 362 363 while (*__rb_link) { 364 struct vm_area_struct *vma_tmp; 365 366 __rb_parent = *__rb_link; 367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 368 369 if (vma_tmp->vm_end > addr) { 370 vma = vma_tmp; 371 if (vma_tmp->vm_start <= addr) 372 break; 373 __rb_link = &__rb_parent->rb_left; 374 } else { 375 rb_prev = __rb_parent; 376 __rb_link = &__rb_parent->rb_right; 377 } 378 } 379 380 *pprev = NULL; 381 if (rb_prev) 382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 383 *rb_link = __rb_link; 384 *rb_parent = __rb_parent; 385 return vma; 386 } 387 388 static inline void 389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 390 struct vm_area_struct *prev, struct rb_node *rb_parent) 391 { 392 if (prev) { 393 vma->vm_next = prev->vm_next; 394 prev->vm_next = vma; 395 } else { 396 mm->mmap = vma; 397 if (rb_parent) 398 vma->vm_next = rb_entry(rb_parent, 399 struct vm_area_struct, vm_rb); 400 else 401 vma->vm_next = NULL; 402 } 403 } 404 405 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 406 struct rb_node **rb_link, struct rb_node *rb_parent) 407 { 408 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 409 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 410 } 411 412 static void __vma_link_file(struct vm_area_struct *vma) 413 { 414 struct file *file; 415 416 file = vma->vm_file; 417 if (file) { 418 struct address_space *mapping = file->f_mapping; 419 420 if (vma->vm_flags & VM_DENYWRITE) 421 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 422 if (vma->vm_flags & VM_SHARED) 423 mapping->i_mmap_writable++; 424 425 flush_dcache_mmap_lock(mapping); 426 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 427 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 428 else 429 vma_prio_tree_insert(vma, &mapping->i_mmap); 430 flush_dcache_mmap_unlock(mapping); 431 } 432 } 433 434 static void 435 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 436 struct vm_area_struct *prev, struct rb_node **rb_link, 437 struct rb_node *rb_parent) 438 { 439 __vma_link_list(mm, vma, prev, rb_parent); 440 __vma_link_rb(mm, vma, rb_link, rb_parent); 441 __anon_vma_link(vma); 442 } 443 444 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 445 struct vm_area_struct *prev, struct rb_node **rb_link, 446 struct rb_node *rb_parent) 447 { 448 struct address_space *mapping = NULL; 449 450 if (vma->vm_file) 451 mapping = vma->vm_file->f_mapping; 452 453 if (mapping) { 454 spin_lock(&mapping->i_mmap_lock); 455 vma->vm_truncate_count = mapping->truncate_count; 456 } 457 anon_vma_lock(vma); 458 459 __vma_link(mm, vma, prev, rb_link, rb_parent); 460 __vma_link_file(vma); 461 462 anon_vma_unlock(vma); 463 if (mapping) 464 spin_unlock(&mapping->i_mmap_lock); 465 466 mm->map_count++; 467 validate_mm(mm); 468 } 469 470 /* 471 * Helper for vma_adjust in the split_vma insert case: 472 * insert vm structure into list and rbtree and anon_vma, 473 * but it has already been inserted into prio_tree earlier. 474 */ 475 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 476 { 477 struct vm_area_struct *__vma, *prev; 478 struct rb_node **rb_link, *rb_parent; 479 480 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 481 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 482 __vma_link(mm, vma, prev, rb_link, rb_parent); 483 mm->map_count++; 484 } 485 486 static inline void 487 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 488 struct vm_area_struct *prev) 489 { 490 prev->vm_next = vma->vm_next; 491 rb_erase(&vma->vm_rb, &mm->mm_rb); 492 if (mm->mmap_cache == vma) 493 mm->mmap_cache = prev; 494 } 495 496 /* 497 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 498 * is already present in an i_mmap tree without adjusting the tree. 499 * The following helper function should be used when such adjustments 500 * are necessary. The "insert" vma (if any) is to be inserted 501 * before we drop the necessary locks. 502 */ 503 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 505 { 506 struct mm_struct *mm = vma->vm_mm; 507 struct vm_area_struct *next = vma->vm_next; 508 struct vm_area_struct *importer = NULL; 509 struct address_space *mapping = NULL; 510 struct prio_tree_root *root = NULL; 511 struct file *file = vma->vm_file; 512 struct anon_vma *anon_vma = NULL; 513 long adjust_next = 0; 514 int remove_next = 0; 515 516 if (next && !insert) { 517 if (end >= next->vm_end) { 518 /* 519 * vma expands, overlapping all the next, and 520 * perhaps the one after too (mprotect case 6). 521 */ 522 again: remove_next = 1 + (end > next->vm_end); 523 end = next->vm_end; 524 anon_vma = next->anon_vma; 525 importer = vma; 526 } else if (end > next->vm_start) { 527 /* 528 * vma expands, overlapping part of the next: 529 * mprotect case 5 shifting the boundary up. 530 */ 531 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 532 anon_vma = next->anon_vma; 533 importer = vma; 534 } else if (end < vma->vm_end) { 535 /* 536 * vma shrinks, and !insert tells it's not 537 * split_vma inserting another: so it must be 538 * mprotect case 4 shifting the boundary down. 539 */ 540 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 541 anon_vma = next->anon_vma; 542 importer = next; 543 } 544 } 545 546 if (file) { 547 mapping = file->f_mapping; 548 if (!(vma->vm_flags & VM_NONLINEAR)) 549 root = &mapping->i_mmap; 550 spin_lock(&mapping->i_mmap_lock); 551 if (importer && 552 vma->vm_truncate_count != next->vm_truncate_count) { 553 /* 554 * unmap_mapping_range might be in progress: 555 * ensure that the expanding vma is rescanned. 556 */ 557 importer->vm_truncate_count = 0; 558 } 559 if (insert) { 560 insert->vm_truncate_count = vma->vm_truncate_count; 561 /* 562 * Put into prio_tree now, so instantiated pages 563 * are visible to arm/parisc __flush_dcache_page 564 * throughout; but we cannot insert into address 565 * space until vma start or end is updated. 566 */ 567 __vma_link_file(insert); 568 } 569 } 570 571 /* 572 * When changing only vma->vm_end, we don't really need 573 * anon_vma lock: but is that case worth optimizing out? 574 */ 575 if (vma->anon_vma) 576 anon_vma = vma->anon_vma; 577 if (anon_vma) { 578 spin_lock(&anon_vma->lock); 579 /* 580 * Easily overlooked: when mprotect shifts the boundary, 581 * make sure the expanding vma has anon_vma set if the 582 * shrinking vma had, to cover any anon pages imported. 583 */ 584 if (importer && !importer->anon_vma) { 585 importer->anon_vma = anon_vma; 586 __anon_vma_link(importer); 587 } 588 } 589 590 if (root) { 591 flush_dcache_mmap_lock(mapping); 592 vma_prio_tree_remove(vma, root); 593 if (adjust_next) 594 vma_prio_tree_remove(next, root); 595 } 596 597 vma->vm_start = start; 598 vma->vm_end = end; 599 vma->vm_pgoff = pgoff; 600 if (adjust_next) { 601 next->vm_start += adjust_next << PAGE_SHIFT; 602 next->vm_pgoff += adjust_next; 603 } 604 605 if (root) { 606 if (adjust_next) 607 vma_prio_tree_insert(next, root); 608 vma_prio_tree_insert(vma, root); 609 flush_dcache_mmap_unlock(mapping); 610 } 611 612 if (remove_next) { 613 /* 614 * vma_merge has merged next into vma, and needs 615 * us to remove next before dropping the locks. 616 */ 617 __vma_unlink(mm, next, vma); 618 if (file) 619 __remove_shared_vm_struct(next, file, mapping); 620 if (next->anon_vma) 621 __anon_vma_merge(vma, next); 622 } else if (insert) { 623 /* 624 * split_vma has split insert from vma, and needs 625 * us to insert it before dropping the locks 626 * (it may either follow vma or precede it). 627 */ 628 __insert_vm_struct(mm, insert); 629 } 630 631 if (anon_vma) 632 spin_unlock(&anon_vma->lock); 633 if (mapping) 634 spin_unlock(&mapping->i_mmap_lock); 635 636 if (remove_next) { 637 if (file) { 638 fput(file); 639 if (next->vm_flags & VM_EXECUTABLE) 640 removed_exe_file_vma(mm); 641 } 642 mm->map_count--; 643 mpol_put(vma_policy(next)); 644 kmem_cache_free(vm_area_cachep, next); 645 /* 646 * In mprotect's case 6 (see comments on vma_merge), 647 * we must remove another next too. It would clutter 648 * up the code too much to do both in one go. 649 */ 650 if (remove_next == 2) { 651 next = vma->vm_next; 652 goto again; 653 } 654 } 655 656 validate_mm(mm); 657 } 658 659 /* Flags that can be inherited from an existing mapping when merging */ 660 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR) 661 662 /* 663 * If the vma has a ->close operation then the driver probably needs to release 664 * per-vma resources, so we don't attempt to merge those. 665 */ 666 static inline int is_mergeable_vma(struct vm_area_struct *vma, 667 struct file *file, unsigned long vm_flags) 668 { 669 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS) 670 return 0; 671 if (vma->vm_file != file) 672 return 0; 673 if (vma->vm_ops && vma->vm_ops->close) 674 return 0; 675 return 1; 676 } 677 678 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 679 struct anon_vma *anon_vma2) 680 { 681 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 682 } 683 684 /* 685 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 686 * in front of (at a lower virtual address and file offset than) the vma. 687 * 688 * We cannot merge two vmas if they have differently assigned (non-NULL) 689 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 690 * 691 * We don't check here for the merged mmap wrapping around the end of pagecache 692 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 693 * wrap, nor mmaps which cover the final page at index -1UL. 694 */ 695 static int 696 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 697 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 698 { 699 if (is_mergeable_vma(vma, file, vm_flags) && 700 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 701 if (vma->vm_pgoff == vm_pgoff) 702 return 1; 703 } 704 return 0; 705 } 706 707 /* 708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 709 * beyond (at a higher virtual address and file offset than) the vma. 710 * 711 * We cannot merge two vmas if they have differently assigned (non-NULL) 712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 713 */ 714 static int 715 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 716 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 717 { 718 if (is_mergeable_vma(vma, file, vm_flags) && 719 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 720 pgoff_t vm_pglen; 721 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 722 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 723 return 1; 724 } 725 return 0; 726 } 727 728 /* 729 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 730 * whether that can be merged with its predecessor or its successor. 731 * Or both (it neatly fills a hole). 732 * 733 * In most cases - when called for mmap, brk or mremap - [addr,end) is 734 * certain not to be mapped by the time vma_merge is called; but when 735 * called for mprotect, it is certain to be already mapped (either at 736 * an offset within prev, or at the start of next), and the flags of 737 * this area are about to be changed to vm_flags - and the no-change 738 * case has already been eliminated. 739 * 740 * The following mprotect cases have to be considered, where AAAA is 741 * the area passed down from mprotect_fixup, never extending beyond one 742 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 743 * 744 * AAAA AAAA AAAA AAAA 745 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 746 * cannot merge might become might become might become 747 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 748 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 749 * mremap move: PPPPNNNNNNNN 8 750 * AAAA 751 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 752 * might become case 1 below case 2 below case 3 below 753 * 754 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 755 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 756 */ 757 struct vm_area_struct *vma_merge(struct mm_struct *mm, 758 struct vm_area_struct *prev, unsigned long addr, 759 unsigned long end, unsigned long vm_flags, 760 struct anon_vma *anon_vma, struct file *file, 761 pgoff_t pgoff, struct mempolicy *policy) 762 { 763 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 764 struct vm_area_struct *area, *next; 765 766 /* 767 * We later require that vma->vm_flags == vm_flags, 768 * so this tests vma->vm_flags & VM_SPECIAL, too. 769 */ 770 if (vm_flags & VM_SPECIAL) 771 return NULL; 772 773 if (prev) 774 next = prev->vm_next; 775 else 776 next = mm->mmap; 777 area = next; 778 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 779 next = next->vm_next; 780 781 /* 782 * Can it merge with the predecessor? 783 */ 784 if (prev && prev->vm_end == addr && 785 mpol_equal(vma_policy(prev), policy) && 786 can_vma_merge_after(prev, vm_flags, 787 anon_vma, file, pgoff)) { 788 /* 789 * OK, it can. Can we now merge in the successor as well? 790 */ 791 if (next && end == next->vm_start && 792 mpol_equal(policy, vma_policy(next)) && 793 can_vma_merge_before(next, vm_flags, 794 anon_vma, file, pgoff+pglen) && 795 is_mergeable_anon_vma(prev->anon_vma, 796 next->anon_vma)) { 797 /* cases 1, 6 */ 798 vma_adjust(prev, prev->vm_start, 799 next->vm_end, prev->vm_pgoff, NULL); 800 } else /* cases 2, 5, 7 */ 801 vma_adjust(prev, prev->vm_start, 802 end, prev->vm_pgoff, NULL); 803 return prev; 804 } 805 806 /* 807 * Can this new request be merged in front of next? 808 */ 809 if (next && end == next->vm_start && 810 mpol_equal(policy, vma_policy(next)) && 811 can_vma_merge_before(next, vm_flags, 812 anon_vma, file, pgoff+pglen)) { 813 if (prev && addr < prev->vm_end) /* case 4 */ 814 vma_adjust(prev, prev->vm_start, 815 addr, prev->vm_pgoff, NULL); 816 else /* cases 3, 8 */ 817 vma_adjust(area, addr, next->vm_end, 818 next->vm_pgoff - pglen, NULL); 819 return area; 820 } 821 822 return NULL; 823 } 824 825 /* 826 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 827 * neighbouring vmas for a suitable anon_vma, before it goes off 828 * to allocate a new anon_vma. It checks because a repetitive 829 * sequence of mprotects and faults may otherwise lead to distinct 830 * anon_vmas being allocated, preventing vma merge in subsequent 831 * mprotect. 832 */ 833 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 834 { 835 struct vm_area_struct *near; 836 unsigned long vm_flags; 837 838 near = vma->vm_next; 839 if (!near) 840 goto try_prev; 841 842 /* 843 * Since only mprotect tries to remerge vmas, match flags 844 * which might be mprotected into each other later on. 845 * Neither mlock nor madvise tries to remerge at present, 846 * so leave their flags as obstructing a merge. 847 */ 848 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 849 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 850 851 if (near->anon_vma && vma->vm_end == near->vm_start && 852 mpol_equal(vma_policy(vma), vma_policy(near)) && 853 can_vma_merge_before(near, vm_flags, 854 NULL, vma->vm_file, vma->vm_pgoff + 855 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 856 return near->anon_vma; 857 try_prev: 858 /* 859 * It is potentially slow to have to call find_vma_prev here. 860 * But it's only on the first write fault on the vma, not 861 * every time, and we could devise a way to avoid it later 862 * (e.g. stash info in next's anon_vma_node when assigning 863 * an anon_vma, or when trying vma_merge). Another time. 864 */ 865 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 866 if (!near) 867 goto none; 868 869 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 870 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 871 872 if (near->anon_vma && near->vm_end == vma->vm_start && 873 mpol_equal(vma_policy(near), vma_policy(vma)) && 874 can_vma_merge_after(near, vm_flags, 875 NULL, vma->vm_file, vma->vm_pgoff)) 876 return near->anon_vma; 877 none: 878 /* 879 * There's no absolute need to look only at touching neighbours: 880 * we could search further afield for "compatible" anon_vmas. 881 * But it would probably just be a waste of time searching, 882 * or lead to too many vmas hanging off the same anon_vma. 883 * We're trying to allow mprotect remerging later on, 884 * not trying to minimize memory used for anon_vmas. 885 */ 886 return NULL; 887 } 888 889 #ifdef CONFIG_PROC_FS 890 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 891 struct file *file, long pages) 892 { 893 const unsigned long stack_flags 894 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 895 896 if (file) { 897 mm->shared_vm += pages; 898 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 899 mm->exec_vm += pages; 900 } else if (flags & stack_flags) 901 mm->stack_vm += pages; 902 if (flags & (VM_RESERVED|VM_IO)) 903 mm->reserved_vm += pages; 904 } 905 #endif /* CONFIG_PROC_FS */ 906 907 /* 908 * The caller must hold down_write(current->mm->mmap_sem). 909 */ 910 911 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 912 unsigned long len, unsigned long prot, 913 unsigned long flags, unsigned long pgoff) 914 { 915 struct mm_struct * mm = current->mm; 916 struct inode *inode; 917 unsigned int vm_flags; 918 int error; 919 unsigned long reqprot = prot; 920 921 /* 922 * Does the application expect PROT_READ to imply PROT_EXEC? 923 * 924 * (the exception is when the underlying filesystem is noexec 925 * mounted, in which case we dont add PROT_EXEC.) 926 */ 927 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 928 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 929 prot |= PROT_EXEC; 930 931 if (!len) 932 return -EINVAL; 933 934 if (!(flags & MAP_FIXED)) 935 addr = round_hint_to_min(addr); 936 937 error = arch_mmap_check(addr, len, flags); 938 if (error) 939 return error; 940 941 /* Careful about overflows.. */ 942 len = PAGE_ALIGN(len); 943 if (!len || len > TASK_SIZE) 944 return -ENOMEM; 945 946 /* offset overflow? */ 947 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 948 return -EOVERFLOW; 949 950 /* Too many mappings? */ 951 if (mm->map_count > sysctl_max_map_count) 952 return -ENOMEM; 953 954 /* Obtain the address to map to. we verify (or select) it and ensure 955 * that it represents a valid section of the address space. 956 */ 957 addr = get_unmapped_area(file, addr, len, pgoff, flags); 958 if (addr & ~PAGE_MASK) 959 return addr; 960 961 /* Do simple checking here so the lower-level routines won't have 962 * to. we assume access permissions have been handled by the open 963 * of the memory object, so we don't do any here. 964 */ 965 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 966 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 967 968 if (flags & MAP_LOCKED) { 969 if (!can_do_mlock()) 970 return -EPERM; 971 vm_flags |= VM_LOCKED; 972 } 973 974 /* mlock MCL_FUTURE? */ 975 if (vm_flags & VM_LOCKED) { 976 unsigned long locked, lock_limit; 977 locked = len >> PAGE_SHIFT; 978 locked += mm->locked_vm; 979 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 980 lock_limit >>= PAGE_SHIFT; 981 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 982 return -EAGAIN; 983 } 984 985 inode = file ? file->f_path.dentry->d_inode : NULL; 986 987 if (file) { 988 switch (flags & MAP_TYPE) { 989 case MAP_SHARED: 990 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 991 return -EACCES; 992 993 /* 994 * Make sure we don't allow writing to an append-only 995 * file.. 996 */ 997 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 998 return -EACCES; 999 1000 /* 1001 * Make sure there are no mandatory locks on the file. 1002 */ 1003 if (locks_verify_locked(inode)) 1004 return -EAGAIN; 1005 1006 vm_flags |= VM_SHARED | VM_MAYSHARE; 1007 if (!(file->f_mode & FMODE_WRITE)) 1008 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1009 1010 /* fall through */ 1011 case MAP_PRIVATE: 1012 if (!(file->f_mode & FMODE_READ)) 1013 return -EACCES; 1014 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1015 if (vm_flags & VM_EXEC) 1016 return -EPERM; 1017 vm_flags &= ~VM_MAYEXEC; 1018 } 1019 1020 if (!file->f_op || !file->f_op->mmap) 1021 return -ENODEV; 1022 break; 1023 1024 default: 1025 return -EINVAL; 1026 } 1027 } else { 1028 switch (flags & MAP_TYPE) { 1029 case MAP_SHARED: 1030 /* 1031 * Ignore pgoff. 1032 */ 1033 pgoff = 0; 1034 vm_flags |= VM_SHARED | VM_MAYSHARE; 1035 break; 1036 case MAP_PRIVATE: 1037 /* 1038 * Set pgoff according to addr for anon_vma. 1039 */ 1040 pgoff = addr >> PAGE_SHIFT; 1041 break; 1042 default: 1043 return -EINVAL; 1044 } 1045 } 1046 1047 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1048 if (error) 1049 return error; 1050 error = ima_file_mmap(file, prot); 1051 if (error) 1052 return error; 1053 1054 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1055 } 1056 EXPORT_SYMBOL(do_mmap_pgoff); 1057 1058 /* 1059 * Some shared mappigns will want the pages marked read-only 1060 * to track write events. If so, we'll downgrade vm_page_prot 1061 * to the private version (using protection_map[] without the 1062 * VM_SHARED bit). 1063 */ 1064 int vma_wants_writenotify(struct vm_area_struct *vma) 1065 { 1066 unsigned int vm_flags = vma->vm_flags; 1067 1068 /* If it was private or non-writable, the write bit is already clear */ 1069 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1070 return 0; 1071 1072 /* The backer wishes to know when pages are first written to? */ 1073 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1074 return 1; 1075 1076 /* The open routine did something to the protections already? */ 1077 if (pgprot_val(vma->vm_page_prot) != 1078 pgprot_val(vm_get_page_prot(vm_flags))) 1079 return 0; 1080 1081 /* Specialty mapping? */ 1082 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1083 return 0; 1084 1085 /* Can the mapping track the dirty pages? */ 1086 return vma->vm_file && vma->vm_file->f_mapping && 1087 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1088 } 1089 1090 /* 1091 * We account for memory if it's a private writeable mapping, 1092 * not hugepages and VM_NORESERVE wasn't set. 1093 */ 1094 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1095 { 1096 /* 1097 * hugetlb has its own accounting separate from the core VM 1098 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1099 */ 1100 if (file && is_file_hugepages(file)) 1101 return 0; 1102 1103 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1104 } 1105 1106 unsigned long mmap_region(struct file *file, unsigned long addr, 1107 unsigned long len, unsigned long flags, 1108 unsigned int vm_flags, unsigned long pgoff) 1109 { 1110 struct mm_struct *mm = current->mm; 1111 struct vm_area_struct *vma, *prev; 1112 int correct_wcount = 0; 1113 int error; 1114 struct rb_node **rb_link, *rb_parent; 1115 unsigned long charged = 0; 1116 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1117 1118 /* Clear old maps */ 1119 error = -ENOMEM; 1120 munmap_back: 1121 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1122 if (vma && vma->vm_start < addr + len) { 1123 if (do_munmap(mm, addr, len)) 1124 return -ENOMEM; 1125 goto munmap_back; 1126 } 1127 1128 /* Check against address space limit. */ 1129 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1130 return -ENOMEM; 1131 1132 /* 1133 * Set 'VM_NORESERVE' if we should not account for the 1134 * memory use of this mapping. 1135 */ 1136 if ((flags & MAP_NORESERVE)) { 1137 /* We honor MAP_NORESERVE if allowed to overcommit */ 1138 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1139 vm_flags |= VM_NORESERVE; 1140 1141 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1142 if (file && is_file_hugepages(file)) 1143 vm_flags |= VM_NORESERVE; 1144 } 1145 1146 /* 1147 * Private writable mapping: check memory availability 1148 */ 1149 if (accountable_mapping(file, vm_flags)) { 1150 charged = len >> PAGE_SHIFT; 1151 if (security_vm_enough_memory(charged)) 1152 return -ENOMEM; 1153 vm_flags |= VM_ACCOUNT; 1154 } 1155 1156 /* 1157 * Can we just expand an old mapping? 1158 */ 1159 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1160 if (vma) 1161 goto out; 1162 1163 /* 1164 * Determine the object being mapped and call the appropriate 1165 * specific mapper. the address has already been validated, but 1166 * not unmapped, but the maps are removed from the list. 1167 */ 1168 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1169 if (!vma) { 1170 error = -ENOMEM; 1171 goto unacct_error; 1172 } 1173 1174 vma->vm_mm = mm; 1175 vma->vm_start = addr; 1176 vma->vm_end = addr + len; 1177 vma->vm_flags = vm_flags; 1178 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1179 vma->vm_pgoff = pgoff; 1180 1181 if (file) { 1182 error = -EINVAL; 1183 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1184 goto free_vma; 1185 if (vm_flags & VM_DENYWRITE) { 1186 error = deny_write_access(file); 1187 if (error) 1188 goto free_vma; 1189 correct_wcount = 1; 1190 } 1191 vma->vm_file = file; 1192 get_file(file); 1193 error = file->f_op->mmap(file, vma); 1194 if (error) 1195 goto unmap_and_free_vma; 1196 if (vm_flags & VM_EXECUTABLE) 1197 added_exe_file_vma(mm); 1198 } else if (vm_flags & VM_SHARED) { 1199 error = shmem_zero_setup(vma); 1200 if (error) 1201 goto free_vma; 1202 } 1203 1204 /* Can addr have changed?? 1205 * 1206 * Answer: Yes, several device drivers can do it in their 1207 * f_op->mmap method. -DaveM 1208 */ 1209 addr = vma->vm_start; 1210 pgoff = vma->vm_pgoff; 1211 vm_flags = vma->vm_flags; 1212 1213 if (vma_wants_writenotify(vma)) 1214 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1215 1216 vma_link(mm, vma, prev, rb_link, rb_parent); 1217 file = vma->vm_file; 1218 1219 /* Once vma denies write, undo our temporary denial count */ 1220 if (correct_wcount) 1221 atomic_inc(&inode->i_writecount); 1222 out: 1223 perf_counter_mmap(vma); 1224 1225 mm->total_vm += len >> PAGE_SHIFT; 1226 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1227 if (vm_flags & VM_LOCKED) { 1228 /* 1229 * makes pages present; downgrades, drops, reacquires mmap_sem 1230 */ 1231 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); 1232 if (nr_pages < 0) 1233 return nr_pages; /* vma gone! */ 1234 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; 1235 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1236 make_pages_present(addr, addr + len); 1237 return addr; 1238 1239 unmap_and_free_vma: 1240 if (correct_wcount) 1241 atomic_inc(&inode->i_writecount); 1242 vma->vm_file = NULL; 1243 fput(file); 1244 1245 /* Undo any partial mapping done by a device driver. */ 1246 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1247 charged = 0; 1248 free_vma: 1249 kmem_cache_free(vm_area_cachep, vma); 1250 unacct_error: 1251 if (charged) 1252 vm_unacct_memory(charged); 1253 return error; 1254 } 1255 1256 /* Get an address range which is currently unmapped. 1257 * For shmat() with addr=0. 1258 * 1259 * Ugly calling convention alert: 1260 * Return value with the low bits set means error value, 1261 * ie 1262 * if (ret & ~PAGE_MASK) 1263 * error = ret; 1264 * 1265 * This function "knows" that -ENOMEM has the bits set. 1266 */ 1267 #ifndef HAVE_ARCH_UNMAPPED_AREA 1268 unsigned long 1269 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1270 unsigned long len, unsigned long pgoff, unsigned long flags) 1271 { 1272 struct mm_struct *mm = current->mm; 1273 struct vm_area_struct *vma; 1274 unsigned long start_addr; 1275 1276 if (len > TASK_SIZE) 1277 return -ENOMEM; 1278 1279 if (flags & MAP_FIXED) 1280 return addr; 1281 1282 if (addr) { 1283 addr = PAGE_ALIGN(addr); 1284 vma = find_vma(mm, addr); 1285 if (TASK_SIZE - len >= addr && 1286 (!vma || addr + len <= vma->vm_start)) 1287 return addr; 1288 } 1289 if (len > mm->cached_hole_size) { 1290 start_addr = addr = mm->free_area_cache; 1291 } else { 1292 start_addr = addr = TASK_UNMAPPED_BASE; 1293 mm->cached_hole_size = 0; 1294 } 1295 1296 full_search: 1297 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1298 /* At this point: (!vma || addr < vma->vm_end). */ 1299 if (TASK_SIZE - len < addr) { 1300 /* 1301 * Start a new search - just in case we missed 1302 * some holes. 1303 */ 1304 if (start_addr != TASK_UNMAPPED_BASE) { 1305 addr = TASK_UNMAPPED_BASE; 1306 start_addr = addr; 1307 mm->cached_hole_size = 0; 1308 goto full_search; 1309 } 1310 return -ENOMEM; 1311 } 1312 if (!vma || addr + len <= vma->vm_start) { 1313 /* 1314 * Remember the place where we stopped the search: 1315 */ 1316 mm->free_area_cache = addr + len; 1317 return addr; 1318 } 1319 if (addr + mm->cached_hole_size < vma->vm_start) 1320 mm->cached_hole_size = vma->vm_start - addr; 1321 addr = vma->vm_end; 1322 } 1323 } 1324 #endif 1325 1326 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1327 { 1328 /* 1329 * Is this a new hole at the lowest possible address? 1330 */ 1331 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1332 mm->free_area_cache = addr; 1333 mm->cached_hole_size = ~0UL; 1334 } 1335 } 1336 1337 /* 1338 * This mmap-allocator allocates new areas top-down from below the 1339 * stack's low limit (the base): 1340 */ 1341 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1342 unsigned long 1343 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1344 const unsigned long len, const unsigned long pgoff, 1345 const unsigned long flags) 1346 { 1347 struct vm_area_struct *vma; 1348 struct mm_struct *mm = current->mm; 1349 unsigned long addr = addr0; 1350 1351 /* requested length too big for entire address space */ 1352 if (len > TASK_SIZE) 1353 return -ENOMEM; 1354 1355 if (flags & MAP_FIXED) 1356 return addr; 1357 1358 /* requesting a specific address */ 1359 if (addr) { 1360 addr = PAGE_ALIGN(addr); 1361 vma = find_vma(mm, addr); 1362 if (TASK_SIZE - len >= addr && 1363 (!vma || addr + len <= vma->vm_start)) 1364 return addr; 1365 } 1366 1367 /* check if free_area_cache is useful for us */ 1368 if (len <= mm->cached_hole_size) { 1369 mm->cached_hole_size = 0; 1370 mm->free_area_cache = mm->mmap_base; 1371 } 1372 1373 /* either no address requested or can't fit in requested address hole */ 1374 addr = mm->free_area_cache; 1375 1376 /* make sure it can fit in the remaining address space */ 1377 if (addr > len) { 1378 vma = find_vma(mm, addr-len); 1379 if (!vma || addr <= vma->vm_start) 1380 /* remember the address as a hint for next time */ 1381 return (mm->free_area_cache = addr-len); 1382 } 1383 1384 if (mm->mmap_base < len) 1385 goto bottomup; 1386 1387 addr = mm->mmap_base-len; 1388 1389 do { 1390 /* 1391 * Lookup failure means no vma is above this address, 1392 * else if new region fits below vma->vm_start, 1393 * return with success: 1394 */ 1395 vma = find_vma(mm, addr); 1396 if (!vma || addr+len <= vma->vm_start) 1397 /* remember the address as a hint for next time */ 1398 return (mm->free_area_cache = addr); 1399 1400 /* remember the largest hole we saw so far */ 1401 if (addr + mm->cached_hole_size < vma->vm_start) 1402 mm->cached_hole_size = vma->vm_start - addr; 1403 1404 /* try just below the current vma->vm_start */ 1405 addr = vma->vm_start-len; 1406 } while (len < vma->vm_start); 1407 1408 bottomup: 1409 /* 1410 * A failed mmap() very likely causes application failure, 1411 * so fall back to the bottom-up function here. This scenario 1412 * can happen with large stack limits and large mmap() 1413 * allocations. 1414 */ 1415 mm->cached_hole_size = ~0UL; 1416 mm->free_area_cache = TASK_UNMAPPED_BASE; 1417 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1418 /* 1419 * Restore the topdown base: 1420 */ 1421 mm->free_area_cache = mm->mmap_base; 1422 mm->cached_hole_size = ~0UL; 1423 1424 return addr; 1425 } 1426 #endif 1427 1428 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1429 { 1430 /* 1431 * Is this a new hole at the highest possible address? 1432 */ 1433 if (addr > mm->free_area_cache) 1434 mm->free_area_cache = addr; 1435 1436 /* dont allow allocations above current base */ 1437 if (mm->free_area_cache > mm->mmap_base) 1438 mm->free_area_cache = mm->mmap_base; 1439 } 1440 1441 unsigned long 1442 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1443 unsigned long pgoff, unsigned long flags) 1444 { 1445 unsigned long (*get_area)(struct file *, unsigned long, 1446 unsigned long, unsigned long, unsigned long); 1447 1448 get_area = current->mm->get_unmapped_area; 1449 if (file && file->f_op && file->f_op->get_unmapped_area) 1450 get_area = file->f_op->get_unmapped_area; 1451 addr = get_area(file, addr, len, pgoff, flags); 1452 if (IS_ERR_VALUE(addr)) 1453 return addr; 1454 1455 if (addr > TASK_SIZE - len) 1456 return -ENOMEM; 1457 if (addr & ~PAGE_MASK) 1458 return -EINVAL; 1459 1460 return arch_rebalance_pgtables(addr, len); 1461 } 1462 1463 EXPORT_SYMBOL(get_unmapped_area); 1464 1465 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1466 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1467 { 1468 struct vm_area_struct *vma = NULL; 1469 1470 if (mm) { 1471 /* Check the cache first. */ 1472 /* (Cache hit rate is typically around 35%.) */ 1473 vma = mm->mmap_cache; 1474 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1475 struct rb_node * rb_node; 1476 1477 rb_node = mm->mm_rb.rb_node; 1478 vma = NULL; 1479 1480 while (rb_node) { 1481 struct vm_area_struct * vma_tmp; 1482 1483 vma_tmp = rb_entry(rb_node, 1484 struct vm_area_struct, vm_rb); 1485 1486 if (vma_tmp->vm_end > addr) { 1487 vma = vma_tmp; 1488 if (vma_tmp->vm_start <= addr) 1489 break; 1490 rb_node = rb_node->rb_left; 1491 } else 1492 rb_node = rb_node->rb_right; 1493 } 1494 if (vma) 1495 mm->mmap_cache = vma; 1496 } 1497 } 1498 return vma; 1499 } 1500 1501 EXPORT_SYMBOL(find_vma); 1502 1503 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1504 struct vm_area_struct * 1505 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1506 struct vm_area_struct **pprev) 1507 { 1508 struct vm_area_struct *vma = NULL, *prev = NULL; 1509 struct rb_node *rb_node; 1510 if (!mm) 1511 goto out; 1512 1513 /* Guard against addr being lower than the first VMA */ 1514 vma = mm->mmap; 1515 1516 /* Go through the RB tree quickly. */ 1517 rb_node = mm->mm_rb.rb_node; 1518 1519 while (rb_node) { 1520 struct vm_area_struct *vma_tmp; 1521 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1522 1523 if (addr < vma_tmp->vm_end) { 1524 rb_node = rb_node->rb_left; 1525 } else { 1526 prev = vma_tmp; 1527 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1528 break; 1529 rb_node = rb_node->rb_right; 1530 } 1531 } 1532 1533 out: 1534 *pprev = prev; 1535 return prev ? prev->vm_next : vma; 1536 } 1537 1538 /* 1539 * Verify that the stack growth is acceptable and 1540 * update accounting. This is shared with both the 1541 * grow-up and grow-down cases. 1542 */ 1543 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1544 { 1545 struct mm_struct *mm = vma->vm_mm; 1546 struct rlimit *rlim = current->signal->rlim; 1547 unsigned long new_start; 1548 1549 /* address space limit tests */ 1550 if (!may_expand_vm(mm, grow)) 1551 return -ENOMEM; 1552 1553 /* Stack limit test */ 1554 if (size > rlim[RLIMIT_STACK].rlim_cur) 1555 return -ENOMEM; 1556 1557 /* mlock limit tests */ 1558 if (vma->vm_flags & VM_LOCKED) { 1559 unsigned long locked; 1560 unsigned long limit; 1561 locked = mm->locked_vm + grow; 1562 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1563 if (locked > limit && !capable(CAP_IPC_LOCK)) 1564 return -ENOMEM; 1565 } 1566 1567 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1568 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1569 vma->vm_end - size; 1570 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1571 return -EFAULT; 1572 1573 /* 1574 * Overcommit.. This must be the final test, as it will 1575 * update security statistics. 1576 */ 1577 if (security_vm_enough_memory_mm(mm, grow)) 1578 return -ENOMEM; 1579 1580 /* Ok, everything looks good - let it rip */ 1581 mm->total_vm += grow; 1582 if (vma->vm_flags & VM_LOCKED) 1583 mm->locked_vm += grow; 1584 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1585 return 0; 1586 } 1587 1588 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1589 /* 1590 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1591 * vma is the last one with address > vma->vm_end. Have to extend vma. 1592 */ 1593 #ifndef CONFIG_IA64 1594 static 1595 #endif 1596 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1597 { 1598 int error; 1599 1600 if (!(vma->vm_flags & VM_GROWSUP)) 1601 return -EFAULT; 1602 1603 /* 1604 * We must make sure the anon_vma is allocated 1605 * so that the anon_vma locking is not a noop. 1606 */ 1607 if (unlikely(anon_vma_prepare(vma))) 1608 return -ENOMEM; 1609 anon_vma_lock(vma); 1610 1611 /* 1612 * vma->vm_start/vm_end cannot change under us because the caller 1613 * is required to hold the mmap_sem in read mode. We need the 1614 * anon_vma lock to serialize against concurrent expand_stacks. 1615 * Also guard against wrapping around to address 0. 1616 */ 1617 if (address < PAGE_ALIGN(address+4)) 1618 address = PAGE_ALIGN(address+4); 1619 else { 1620 anon_vma_unlock(vma); 1621 return -ENOMEM; 1622 } 1623 error = 0; 1624 1625 /* Somebody else might have raced and expanded it already */ 1626 if (address > vma->vm_end) { 1627 unsigned long size, grow; 1628 1629 size = address - vma->vm_start; 1630 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1631 1632 error = acct_stack_growth(vma, size, grow); 1633 if (!error) 1634 vma->vm_end = address; 1635 } 1636 anon_vma_unlock(vma); 1637 return error; 1638 } 1639 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1640 1641 /* 1642 * vma is the first one with address < vma->vm_start. Have to extend vma. 1643 */ 1644 static int expand_downwards(struct vm_area_struct *vma, 1645 unsigned long address) 1646 { 1647 int error; 1648 1649 /* 1650 * We must make sure the anon_vma is allocated 1651 * so that the anon_vma locking is not a noop. 1652 */ 1653 if (unlikely(anon_vma_prepare(vma))) 1654 return -ENOMEM; 1655 1656 address &= PAGE_MASK; 1657 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1658 if (error) 1659 return error; 1660 1661 anon_vma_lock(vma); 1662 1663 /* 1664 * vma->vm_start/vm_end cannot change under us because the caller 1665 * is required to hold the mmap_sem in read mode. We need the 1666 * anon_vma lock to serialize against concurrent expand_stacks. 1667 */ 1668 1669 /* Somebody else might have raced and expanded it already */ 1670 if (address < vma->vm_start) { 1671 unsigned long size, grow; 1672 1673 size = vma->vm_end - address; 1674 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1675 1676 error = acct_stack_growth(vma, size, grow); 1677 if (!error) { 1678 vma->vm_start = address; 1679 vma->vm_pgoff -= grow; 1680 } 1681 } 1682 anon_vma_unlock(vma); 1683 return error; 1684 } 1685 1686 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1687 { 1688 return expand_downwards(vma, address); 1689 } 1690 1691 #ifdef CONFIG_STACK_GROWSUP 1692 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1693 { 1694 return expand_upwards(vma, address); 1695 } 1696 1697 struct vm_area_struct * 1698 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1699 { 1700 struct vm_area_struct *vma, *prev; 1701 1702 addr &= PAGE_MASK; 1703 vma = find_vma_prev(mm, addr, &prev); 1704 if (vma && (vma->vm_start <= addr)) 1705 return vma; 1706 if (!prev || expand_stack(prev, addr)) 1707 return NULL; 1708 if (prev->vm_flags & VM_LOCKED) { 1709 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) 1710 return NULL; /* vma gone! */ 1711 } 1712 return prev; 1713 } 1714 #else 1715 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1716 { 1717 return expand_downwards(vma, address); 1718 } 1719 1720 struct vm_area_struct * 1721 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1722 { 1723 struct vm_area_struct * vma; 1724 unsigned long start; 1725 1726 addr &= PAGE_MASK; 1727 vma = find_vma(mm,addr); 1728 if (!vma) 1729 return NULL; 1730 if (vma->vm_start <= addr) 1731 return vma; 1732 if (!(vma->vm_flags & VM_GROWSDOWN)) 1733 return NULL; 1734 start = vma->vm_start; 1735 if (expand_stack(vma, addr)) 1736 return NULL; 1737 if (vma->vm_flags & VM_LOCKED) { 1738 if (mlock_vma_pages_range(vma, addr, start) < 0) 1739 return NULL; /* vma gone! */ 1740 } 1741 return vma; 1742 } 1743 #endif 1744 1745 /* 1746 * Ok - we have the memory areas we should free on the vma list, 1747 * so release them, and do the vma updates. 1748 * 1749 * Called with the mm semaphore held. 1750 */ 1751 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1752 { 1753 /* Update high watermark before we lower total_vm */ 1754 update_hiwater_vm(mm); 1755 do { 1756 long nrpages = vma_pages(vma); 1757 1758 mm->total_vm -= nrpages; 1759 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1760 vma = remove_vma(vma); 1761 } while (vma); 1762 validate_mm(mm); 1763 } 1764 1765 /* 1766 * Get rid of page table information in the indicated region. 1767 * 1768 * Called with the mm semaphore held. 1769 */ 1770 static void unmap_region(struct mm_struct *mm, 1771 struct vm_area_struct *vma, struct vm_area_struct *prev, 1772 unsigned long start, unsigned long end) 1773 { 1774 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1775 struct mmu_gather *tlb; 1776 unsigned long nr_accounted = 0; 1777 1778 lru_add_drain(); 1779 tlb = tlb_gather_mmu(mm, 0); 1780 update_hiwater_rss(mm); 1781 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1782 vm_unacct_memory(nr_accounted); 1783 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1784 next? next->vm_start: 0); 1785 tlb_finish_mmu(tlb, start, end); 1786 } 1787 1788 /* 1789 * Create a list of vma's touched by the unmap, removing them from the mm's 1790 * vma list as we go.. 1791 */ 1792 static void 1793 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1794 struct vm_area_struct *prev, unsigned long end) 1795 { 1796 struct vm_area_struct **insertion_point; 1797 struct vm_area_struct *tail_vma = NULL; 1798 unsigned long addr; 1799 1800 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1801 do { 1802 rb_erase(&vma->vm_rb, &mm->mm_rb); 1803 mm->map_count--; 1804 tail_vma = vma; 1805 vma = vma->vm_next; 1806 } while (vma && vma->vm_start < end); 1807 *insertion_point = vma; 1808 tail_vma->vm_next = NULL; 1809 if (mm->unmap_area == arch_unmap_area) 1810 addr = prev ? prev->vm_end : mm->mmap_base; 1811 else 1812 addr = vma ? vma->vm_start : mm->mmap_base; 1813 mm->unmap_area(mm, addr); 1814 mm->mmap_cache = NULL; /* Kill the cache. */ 1815 } 1816 1817 /* 1818 * Split a vma into two pieces at address 'addr', a new vma is allocated 1819 * either for the first part or the tail. 1820 */ 1821 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1822 unsigned long addr, int new_below) 1823 { 1824 struct mempolicy *pol; 1825 struct vm_area_struct *new; 1826 1827 if (is_vm_hugetlb_page(vma) && (addr & 1828 ~(huge_page_mask(hstate_vma(vma))))) 1829 return -EINVAL; 1830 1831 if (mm->map_count >= sysctl_max_map_count) 1832 return -ENOMEM; 1833 1834 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1835 if (!new) 1836 return -ENOMEM; 1837 1838 /* most fields are the same, copy all, and then fixup */ 1839 *new = *vma; 1840 1841 if (new_below) 1842 new->vm_end = addr; 1843 else { 1844 new->vm_start = addr; 1845 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1846 } 1847 1848 pol = mpol_dup(vma_policy(vma)); 1849 if (IS_ERR(pol)) { 1850 kmem_cache_free(vm_area_cachep, new); 1851 return PTR_ERR(pol); 1852 } 1853 vma_set_policy(new, pol); 1854 1855 if (new->vm_file) { 1856 get_file(new->vm_file); 1857 if (vma->vm_flags & VM_EXECUTABLE) 1858 added_exe_file_vma(mm); 1859 } 1860 1861 if (new->vm_ops && new->vm_ops->open) 1862 new->vm_ops->open(new); 1863 1864 if (new_below) 1865 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1866 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1867 else 1868 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1869 1870 return 0; 1871 } 1872 1873 /* Munmap is split into 2 main parts -- this part which finds 1874 * what needs doing, and the areas themselves, which do the 1875 * work. This now handles partial unmappings. 1876 * Jeremy Fitzhardinge <jeremy@goop.org> 1877 */ 1878 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1879 { 1880 unsigned long end; 1881 struct vm_area_struct *vma, *prev, *last; 1882 1883 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1884 return -EINVAL; 1885 1886 if ((len = PAGE_ALIGN(len)) == 0) 1887 return -EINVAL; 1888 1889 /* Find the first overlapping VMA */ 1890 vma = find_vma_prev(mm, start, &prev); 1891 if (!vma) 1892 return 0; 1893 /* we have start < vma->vm_end */ 1894 1895 /* if it doesn't overlap, we have nothing.. */ 1896 end = start + len; 1897 if (vma->vm_start >= end) 1898 return 0; 1899 1900 /* 1901 * If we need to split any vma, do it now to save pain later. 1902 * 1903 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1904 * unmapped vm_area_struct will remain in use: so lower split_vma 1905 * places tmp vma above, and higher split_vma places tmp vma below. 1906 */ 1907 if (start > vma->vm_start) { 1908 int error = split_vma(mm, vma, start, 0); 1909 if (error) 1910 return error; 1911 prev = vma; 1912 } 1913 1914 /* Does it split the last one? */ 1915 last = find_vma(mm, end); 1916 if (last && end > last->vm_start) { 1917 int error = split_vma(mm, last, end, 1); 1918 if (error) 1919 return error; 1920 } 1921 vma = prev? prev->vm_next: mm->mmap; 1922 1923 /* 1924 * unlock any mlock()ed ranges before detaching vmas 1925 */ 1926 if (mm->locked_vm) { 1927 struct vm_area_struct *tmp = vma; 1928 while (tmp && tmp->vm_start < end) { 1929 if (tmp->vm_flags & VM_LOCKED) { 1930 mm->locked_vm -= vma_pages(tmp); 1931 munlock_vma_pages_all(tmp); 1932 } 1933 tmp = tmp->vm_next; 1934 } 1935 } 1936 1937 /* 1938 * Remove the vma's, and unmap the actual pages 1939 */ 1940 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1941 unmap_region(mm, vma, prev, start, end); 1942 1943 /* Fix up all other VM information */ 1944 remove_vma_list(mm, vma); 1945 1946 return 0; 1947 } 1948 1949 EXPORT_SYMBOL(do_munmap); 1950 1951 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1952 { 1953 int ret; 1954 struct mm_struct *mm = current->mm; 1955 1956 profile_munmap(addr); 1957 1958 down_write(&mm->mmap_sem); 1959 ret = do_munmap(mm, addr, len); 1960 up_write(&mm->mmap_sem); 1961 return ret; 1962 } 1963 1964 static inline void verify_mm_writelocked(struct mm_struct *mm) 1965 { 1966 #ifdef CONFIG_DEBUG_VM 1967 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1968 WARN_ON(1); 1969 up_read(&mm->mmap_sem); 1970 } 1971 #endif 1972 } 1973 1974 /* 1975 * this is really a simplified "do_mmap". it only handles 1976 * anonymous maps. eventually we may be able to do some 1977 * brk-specific accounting here. 1978 */ 1979 unsigned long do_brk(unsigned long addr, unsigned long len) 1980 { 1981 struct mm_struct * mm = current->mm; 1982 struct vm_area_struct * vma, * prev; 1983 unsigned long flags; 1984 struct rb_node ** rb_link, * rb_parent; 1985 pgoff_t pgoff = addr >> PAGE_SHIFT; 1986 int error; 1987 1988 len = PAGE_ALIGN(len); 1989 if (!len) 1990 return addr; 1991 1992 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1993 return -EINVAL; 1994 1995 if (is_hugepage_only_range(mm, addr, len)) 1996 return -EINVAL; 1997 1998 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 1999 if (error) 2000 return error; 2001 2002 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2003 2004 error = arch_mmap_check(addr, len, flags); 2005 if (error) 2006 return error; 2007 2008 /* 2009 * mlock MCL_FUTURE? 2010 */ 2011 if (mm->def_flags & VM_LOCKED) { 2012 unsigned long locked, lock_limit; 2013 locked = len >> PAGE_SHIFT; 2014 locked += mm->locked_vm; 2015 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 2016 lock_limit >>= PAGE_SHIFT; 2017 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2018 return -EAGAIN; 2019 } 2020 2021 /* 2022 * mm->mmap_sem is required to protect against another thread 2023 * changing the mappings in case we sleep. 2024 */ 2025 verify_mm_writelocked(mm); 2026 2027 /* 2028 * Clear old maps. this also does some error checking for us 2029 */ 2030 munmap_back: 2031 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2032 if (vma && vma->vm_start < addr + len) { 2033 if (do_munmap(mm, addr, len)) 2034 return -ENOMEM; 2035 goto munmap_back; 2036 } 2037 2038 /* Check against address space limits *after* clearing old maps... */ 2039 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2040 return -ENOMEM; 2041 2042 if (mm->map_count > sysctl_max_map_count) 2043 return -ENOMEM; 2044 2045 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2046 return -ENOMEM; 2047 2048 /* Can we just expand an old private anonymous mapping? */ 2049 vma = vma_merge(mm, prev, addr, addr + len, flags, 2050 NULL, NULL, pgoff, NULL); 2051 if (vma) 2052 goto out; 2053 2054 /* 2055 * create a vma struct for an anonymous mapping 2056 */ 2057 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2058 if (!vma) { 2059 vm_unacct_memory(len >> PAGE_SHIFT); 2060 return -ENOMEM; 2061 } 2062 2063 vma->vm_mm = mm; 2064 vma->vm_start = addr; 2065 vma->vm_end = addr + len; 2066 vma->vm_pgoff = pgoff; 2067 vma->vm_flags = flags; 2068 vma->vm_page_prot = vm_get_page_prot(flags); 2069 vma_link(mm, vma, prev, rb_link, rb_parent); 2070 out: 2071 mm->total_vm += len >> PAGE_SHIFT; 2072 if (flags & VM_LOCKED) { 2073 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2074 mm->locked_vm += (len >> PAGE_SHIFT); 2075 } 2076 return addr; 2077 } 2078 2079 EXPORT_SYMBOL(do_brk); 2080 2081 /* Release all mmaps. */ 2082 void exit_mmap(struct mm_struct *mm) 2083 { 2084 struct mmu_gather *tlb; 2085 struct vm_area_struct *vma; 2086 unsigned long nr_accounted = 0; 2087 unsigned long end; 2088 2089 /* mm's last user has gone, and its about to be pulled down */ 2090 mmu_notifier_release(mm); 2091 2092 if (mm->locked_vm) { 2093 vma = mm->mmap; 2094 while (vma) { 2095 if (vma->vm_flags & VM_LOCKED) 2096 munlock_vma_pages_all(vma); 2097 vma = vma->vm_next; 2098 } 2099 } 2100 2101 arch_exit_mmap(mm); 2102 2103 vma = mm->mmap; 2104 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2105 return; 2106 2107 lru_add_drain(); 2108 flush_cache_mm(mm); 2109 tlb = tlb_gather_mmu(mm, 1); 2110 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2111 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2112 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2113 vm_unacct_memory(nr_accounted); 2114 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2115 tlb_finish_mmu(tlb, 0, end); 2116 2117 /* 2118 * Walk the list again, actually closing and freeing it, 2119 * with preemption enabled, without holding any MM locks. 2120 */ 2121 while (vma) 2122 vma = remove_vma(vma); 2123 2124 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2125 } 2126 2127 /* Insert vm structure into process list sorted by address 2128 * and into the inode's i_mmap tree. If vm_file is non-NULL 2129 * then i_mmap_lock is taken here. 2130 */ 2131 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2132 { 2133 struct vm_area_struct * __vma, * prev; 2134 struct rb_node ** rb_link, * rb_parent; 2135 2136 /* 2137 * The vm_pgoff of a purely anonymous vma should be irrelevant 2138 * until its first write fault, when page's anon_vma and index 2139 * are set. But now set the vm_pgoff it will almost certainly 2140 * end up with (unless mremap moves it elsewhere before that 2141 * first wfault), so /proc/pid/maps tells a consistent story. 2142 * 2143 * By setting it to reflect the virtual start address of the 2144 * vma, merges and splits can happen in a seamless way, just 2145 * using the existing file pgoff checks and manipulations. 2146 * Similarly in do_mmap_pgoff and in do_brk. 2147 */ 2148 if (!vma->vm_file) { 2149 BUG_ON(vma->anon_vma); 2150 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2151 } 2152 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2153 if (__vma && __vma->vm_start < vma->vm_end) 2154 return -ENOMEM; 2155 if ((vma->vm_flags & VM_ACCOUNT) && 2156 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2157 return -ENOMEM; 2158 vma_link(mm, vma, prev, rb_link, rb_parent); 2159 return 0; 2160 } 2161 2162 /* 2163 * Copy the vma structure to a new location in the same mm, 2164 * prior to moving page table entries, to effect an mremap move. 2165 */ 2166 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2167 unsigned long addr, unsigned long len, pgoff_t pgoff) 2168 { 2169 struct vm_area_struct *vma = *vmap; 2170 unsigned long vma_start = vma->vm_start; 2171 struct mm_struct *mm = vma->vm_mm; 2172 struct vm_area_struct *new_vma, *prev; 2173 struct rb_node **rb_link, *rb_parent; 2174 struct mempolicy *pol; 2175 2176 /* 2177 * If anonymous vma has not yet been faulted, update new pgoff 2178 * to match new location, to increase its chance of merging. 2179 */ 2180 if (!vma->vm_file && !vma->anon_vma) 2181 pgoff = addr >> PAGE_SHIFT; 2182 2183 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2184 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2185 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2186 if (new_vma) { 2187 /* 2188 * Source vma may have been merged into new_vma 2189 */ 2190 if (vma_start >= new_vma->vm_start && 2191 vma_start < new_vma->vm_end) 2192 *vmap = new_vma; 2193 } else { 2194 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2195 if (new_vma) { 2196 *new_vma = *vma; 2197 pol = mpol_dup(vma_policy(vma)); 2198 if (IS_ERR(pol)) { 2199 kmem_cache_free(vm_area_cachep, new_vma); 2200 return NULL; 2201 } 2202 vma_set_policy(new_vma, pol); 2203 new_vma->vm_start = addr; 2204 new_vma->vm_end = addr + len; 2205 new_vma->vm_pgoff = pgoff; 2206 if (new_vma->vm_file) { 2207 get_file(new_vma->vm_file); 2208 if (vma->vm_flags & VM_EXECUTABLE) 2209 added_exe_file_vma(mm); 2210 } 2211 if (new_vma->vm_ops && new_vma->vm_ops->open) 2212 new_vma->vm_ops->open(new_vma); 2213 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2214 } 2215 } 2216 return new_vma; 2217 } 2218 2219 /* 2220 * Return true if the calling process may expand its vm space by the passed 2221 * number of pages 2222 */ 2223 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2224 { 2225 unsigned long cur = mm->total_vm; /* pages */ 2226 unsigned long lim; 2227 2228 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2229 2230 if (cur + npages > lim) 2231 return 0; 2232 return 1; 2233 } 2234 2235 2236 static int special_mapping_fault(struct vm_area_struct *vma, 2237 struct vm_fault *vmf) 2238 { 2239 pgoff_t pgoff; 2240 struct page **pages; 2241 2242 /* 2243 * special mappings have no vm_file, and in that case, the mm 2244 * uses vm_pgoff internally. So we have to subtract it from here. 2245 * We are allowed to do this because we are the mm; do not copy 2246 * this code into drivers! 2247 */ 2248 pgoff = vmf->pgoff - vma->vm_pgoff; 2249 2250 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2251 pgoff--; 2252 2253 if (*pages) { 2254 struct page *page = *pages; 2255 get_page(page); 2256 vmf->page = page; 2257 return 0; 2258 } 2259 2260 return VM_FAULT_SIGBUS; 2261 } 2262 2263 /* 2264 * Having a close hook prevents vma merging regardless of flags. 2265 */ 2266 static void special_mapping_close(struct vm_area_struct *vma) 2267 { 2268 } 2269 2270 static struct vm_operations_struct special_mapping_vmops = { 2271 .close = special_mapping_close, 2272 .fault = special_mapping_fault, 2273 }; 2274 2275 /* 2276 * Called with mm->mmap_sem held for writing. 2277 * Insert a new vma covering the given region, with the given flags. 2278 * Its pages are supplied by the given array of struct page *. 2279 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2280 * The region past the last page supplied will always produce SIGBUS. 2281 * The array pointer and the pages it points to are assumed to stay alive 2282 * for as long as this mapping might exist. 2283 */ 2284 int install_special_mapping(struct mm_struct *mm, 2285 unsigned long addr, unsigned long len, 2286 unsigned long vm_flags, struct page **pages) 2287 { 2288 struct vm_area_struct *vma; 2289 2290 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2291 if (unlikely(vma == NULL)) 2292 return -ENOMEM; 2293 2294 vma->vm_mm = mm; 2295 vma->vm_start = addr; 2296 vma->vm_end = addr + len; 2297 2298 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2299 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2300 2301 vma->vm_ops = &special_mapping_vmops; 2302 vma->vm_private_data = pages; 2303 2304 if (unlikely(insert_vm_struct(mm, vma))) { 2305 kmem_cache_free(vm_area_cachep, vma); 2306 return -ENOMEM; 2307 } 2308 2309 mm->total_vm += len >> PAGE_SHIFT; 2310 2311 perf_counter_mmap(vma); 2312 2313 return 0; 2314 } 2315 2316 static DEFINE_MUTEX(mm_all_locks_mutex); 2317 2318 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2319 { 2320 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2321 /* 2322 * The LSB of head.next can't change from under us 2323 * because we hold the mm_all_locks_mutex. 2324 */ 2325 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2326 /* 2327 * We can safely modify head.next after taking the 2328 * anon_vma->lock. If some other vma in this mm shares 2329 * the same anon_vma we won't take it again. 2330 * 2331 * No need of atomic instructions here, head.next 2332 * can't change from under us thanks to the 2333 * anon_vma->lock. 2334 */ 2335 if (__test_and_set_bit(0, (unsigned long *) 2336 &anon_vma->head.next)) 2337 BUG(); 2338 } 2339 } 2340 2341 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2342 { 2343 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2344 /* 2345 * AS_MM_ALL_LOCKS can't change from under us because 2346 * we hold the mm_all_locks_mutex. 2347 * 2348 * Operations on ->flags have to be atomic because 2349 * even if AS_MM_ALL_LOCKS is stable thanks to the 2350 * mm_all_locks_mutex, there may be other cpus 2351 * changing other bitflags in parallel to us. 2352 */ 2353 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2354 BUG(); 2355 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2356 } 2357 } 2358 2359 /* 2360 * This operation locks against the VM for all pte/vma/mm related 2361 * operations that could ever happen on a certain mm. This includes 2362 * vmtruncate, try_to_unmap, and all page faults. 2363 * 2364 * The caller must take the mmap_sem in write mode before calling 2365 * mm_take_all_locks(). The caller isn't allowed to release the 2366 * mmap_sem until mm_drop_all_locks() returns. 2367 * 2368 * mmap_sem in write mode is required in order to block all operations 2369 * that could modify pagetables and free pages without need of 2370 * altering the vma layout (for example populate_range() with 2371 * nonlinear vmas). It's also needed in write mode to avoid new 2372 * anon_vmas to be associated with existing vmas. 2373 * 2374 * A single task can't take more than one mm_take_all_locks() in a row 2375 * or it would deadlock. 2376 * 2377 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2378 * mapping->flags avoid to take the same lock twice, if more than one 2379 * vma in this mm is backed by the same anon_vma or address_space. 2380 * 2381 * We can take all the locks in random order because the VM code 2382 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2383 * takes more than one of them in a row. Secondly we're protected 2384 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2385 * 2386 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2387 * that may have to take thousand of locks. 2388 * 2389 * mm_take_all_locks() can fail if it's interrupted by signals. 2390 */ 2391 int mm_take_all_locks(struct mm_struct *mm) 2392 { 2393 struct vm_area_struct *vma; 2394 int ret = -EINTR; 2395 2396 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2397 2398 mutex_lock(&mm_all_locks_mutex); 2399 2400 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2401 if (signal_pending(current)) 2402 goto out_unlock; 2403 if (vma->vm_file && vma->vm_file->f_mapping) 2404 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2405 } 2406 2407 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2408 if (signal_pending(current)) 2409 goto out_unlock; 2410 if (vma->anon_vma) 2411 vm_lock_anon_vma(mm, vma->anon_vma); 2412 } 2413 2414 ret = 0; 2415 2416 out_unlock: 2417 if (ret) 2418 mm_drop_all_locks(mm); 2419 2420 return ret; 2421 } 2422 2423 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2424 { 2425 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2426 /* 2427 * The LSB of head.next can't change to 0 from under 2428 * us because we hold the mm_all_locks_mutex. 2429 * 2430 * We must however clear the bitflag before unlocking 2431 * the vma so the users using the anon_vma->head will 2432 * never see our bitflag. 2433 * 2434 * No need of atomic instructions here, head.next 2435 * can't change from under us until we release the 2436 * anon_vma->lock. 2437 */ 2438 if (!__test_and_clear_bit(0, (unsigned long *) 2439 &anon_vma->head.next)) 2440 BUG(); 2441 spin_unlock(&anon_vma->lock); 2442 } 2443 } 2444 2445 static void vm_unlock_mapping(struct address_space *mapping) 2446 { 2447 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2448 /* 2449 * AS_MM_ALL_LOCKS can't change to 0 from under us 2450 * because we hold the mm_all_locks_mutex. 2451 */ 2452 spin_unlock(&mapping->i_mmap_lock); 2453 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2454 &mapping->flags)) 2455 BUG(); 2456 } 2457 } 2458 2459 /* 2460 * The mmap_sem cannot be released by the caller until 2461 * mm_drop_all_locks() returns. 2462 */ 2463 void mm_drop_all_locks(struct mm_struct *mm) 2464 { 2465 struct vm_area_struct *vma; 2466 2467 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2468 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2469 2470 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2471 if (vma->anon_vma) 2472 vm_unlock_anon_vma(vma->anon_vma); 2473 if (vma->vm_file && vma->vm_file->f_mapping) 2474 vm_unlock_mapping(vma->vm_file->f_mapping); 2475 } 2476 2477 mutex_unlock(&mm_all_locks_mutex); 2478 } 2479 2480 /* 2481 * initialise the VMA slab 2482 */ 2483 void __init mmap_init(void) 2484 { 2485 int ret; 2486 2487 ret = percpu_counter_init(&vm_committed_as, 0); 2488 VM_BUG_ON(ret); 2489 } 2490