xref: /linux/mm/mmap.c (revision 6161352142d5fed4cd753b32e5ccde66e705b14e)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_counter.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37 
38 #include "internal.h"
39 
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags)	(0)
42 #endif
43 
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len)		(addr)
46 #endif
47 
48 static void unmap_region(struct mm_struct *mm,
49 		struct vm_area_struct *vma, struct vm_area_struct *prev,
50 		unsigned long start, unsigned long end);
51 
52 /*
53  * WARNING: the debugging will use recursive algorithms so never enable this
54  * unless you know what you are doing.
55  */
56 #undef DEBUG_MM_RB
57 
58 /* description of effects of mapping type and prot in current implementation.
59  * this is due to the limited x86 page protection hardware.  The expected
60  * behavior is in parens:
61  *
62  * map_type	prot
63  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
64  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
65  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
66  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
67  *
68  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
69  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
70  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
71  *
72  */
73 pgprot_t protection_map[16] = {
74 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 };
77 
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 {
80 	return __pgprot(pgprot_val(protection_map[vm_flags &
81 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 }
84 EXPORT_SYMBOL(vm_get_page_prot);
85 
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50;	/* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
90 
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 	unsigned long free, allowed;
110 
111 	vm_acct_memory(pages);
112 
113 	/*
114 	 * Sometimes we want to use more memory than we have
115 	 */
116 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 		return 0;
118 
119 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 		unsigned long n;
121 
122 		free = global_page_state(NR_FILE_PAGES);
123 		free += nr_swap_pages;
124 
125 		/*
126 		 * Any slabs which are created with the
127 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 		 * which are reclaimable, under pressure.  The dentry
129 		 * cache and most inode caches should fall into this
130 		 */
131 		free += global_page_state(NR_SLAB_RECLAIMABLE);
132 
133 		/*
134 		 * Leave the last 3% for root
135 		 */
136 		if (!cap_sys_admin)
137 			free -= free / 32;
138 
139 		if (free > pages)
140 			return 0;
141 
142 		/*
143 		 * nr_free_pages() is very expensive on large systems,
144 		 * only call if we're about to fail.
145 		 */
146 		n = nr_free_pages();
147 
148 		/*
149 		 * Leave reserved pages. The pages are not for anonymous pages.
150 		 */
151 		if (n <= totalreserve_pages)
152 			goto error;
153 		else
154 			n -= totalreserve_pages;
155 
156 		/*
157 		 * Leave the last 3% for root
158 		 */
159 		if (!cap_sys_admin)
160 			n -= n / 32;
161 		free += n;
162 
163 		if (free > pages)
164 			return 0;
165 
166 		goto error;
167 	}
168 
169 	allowed = (totalram_pages - hugetlb_total_pages())
170 	       	* sysctl_overcommit_ratio / 100;
171 	/*
172 	 * Leave the last 3% for root
173 	 */
174 	if (!cap_sys_admin)
175 		allowed -= allowed / 32;
176 	allowed += total_swap_pages;
177 
178 	/* Don't let a single process grow too big:
179 	   leave 3% of the size of this process for other processes */
180 	if (mm)
181 		allowed -= mm->total_vm / 32;
182 
183 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184 		return 0;
185 error:
186 	vm_unacct_memory(pages);
187 
188 	return -ENOMEM;
189 }
190 
191 /*
192  * Requires inode->i_mapping->i_mmap_lock
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 		struct file *file, struct address_space *mapping)
196 {
197 	if (vma->vm_flags & VM_DENYWRITE)
198 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199 	if (vma->vm_flags & VM_SHARED)
200 		mapping->i_mmap_writable--;
201 
202 	flush_dcache_mmap_lock(mapping);
203 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
204 		list_del_init(&vma->shared.vm_set.list);
205 	else
206 		vma_prio_tree_remove(vma, &mapping->i_mmap);
207 	flush_dcache_mmap_unlock(mapping);
208 }
209 
210 /*
211  * Unlink a file-based vm structure from its prio_tree, to hide
212  * vma from rmap and vmtruncate before freeing its page tables.
213  */
214 void unlink_file_vma(struct vm_area_struct *vma)
215 {
216 	struct file *file = vma->vm_file;
217 
218 	if (file) {
219 		struct address_space *mapping = file->f_mapping;
220 		spin_lock(&mapping->i_mmap_lock);
221 		__remove_shared_vm_struct(vma, file, mapping);
222 		spin_unlock(&mapping->i_mmap_lock);
223 	}
224 }
225 
226 /*
227  * Close a vm structure and free it, returning the next.
228  */
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 {
231 	struct vm_area_struct *next = vma->vm_next;
232 
233 	might_sleep();
234 	if (vma->vm_ops && vma->vm_ops->close)
235 		vma->vm_ops->close(vma);
236 	if (vma->vm_file) {
237 		fput(vma->vm_file);
238 		if (vma->vm_flags & VM_EXECUTABLE)
239 			removed_exe_file_vma(vma->vm_mm);
240 	}
241 	mpol_put(vma_policy(vma));
242 	kmem_cache_free(vm_area_cachep, vma);
243 	return next;
244 }
245 
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 	unsigned long rlim, retval;
249 	unsigned long newbrk, oldbrk;
250 	struct mm_struct *mm = current->mm;
251 	unsigned long min_brk;
252 
253 	down_write(&mm->mmap_sem);
254 
255 #ifdef CONFIG_COMPAT_BRK
256 	min_brk = mm->end_code;
257 #else
258 	min_brk = mm->start_brk;
259 #endif
260 	if (brk < min_brk)
261 		goto out;
262 
263 	/*
264 	 * Check against rlimit here. If this check is done later after the test
265 	 * of oldbrk with newbrk then it can escape the test and let the data
266 	 * segment grow beyond its set limit the in case where the limit is
267 	 * not page aligned -Ram Gupta
268 	 */
269 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
270 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 			(mm->end_data - mm->start_data) > rlim)
272 		goto out;
273 
274 	newbrk = PAGE_ALIGN(brk);
275 	oldbrk = PAGE_ALIGN(mm->brk);
276 	if (oldbrk == newbrk)
277 		goto set_brk;
278 
279 	/* Always allow shrinking brk. */
280 	if (brk <= mm->brk) {
281 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 			goto set_brk;
283 		goto out;
284 	}
285 
286 	/* Check against existing mmap mappings. */
287 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 		goto out;
289 
290 	/* Ok, looks good - let it rip. */
291 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 		goto out;
293 set_brk:
294 	mm->brk = brk;
295 out:
296 	retval = mm->brk;
297 	up_write(&mm->mmap_sem);
298 	return retval;
299 }
300 
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
303 {
304 	int i = 0, j;
305 	struct rb_node *nd, *pn = NULL;
306 	unsigned long prev = 0, pend = 0;
307 
308 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309 		struct vm_area_struct *vma;
310 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311 		if (vma->vm_start < prev)
312 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313 		if (vma->vm_start < pend)
314 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315 		if (vma->vm_start > vma->vm_end)
316 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317 		i++;
318 		pn = nd;
319 		prev = vma->vm_start;
320 		pend = vma->vm_end;
321 	}
322 	j = 0;
323 	for (nd = pn; nd; nd = rb_prev(nd)) {
324 		j++;
325 	}
326 	if (i != j)
327 		printk("backwards %d, forwards %d\n", j, i), i = 0;
328 	return i;
329 }
330 
331 void validate_mm(struct mm_struct *mm)
332 {
333 	int bug = 0;
334 	int i = 0;
335 	struct vm_area_struct *tmp = mm->mmap;
336 	while (tmp) {
337 		tmp = tmp->vm_next;
338 		i++;
339 	}
340 	if (i != mm->map_count)
341 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342 	i = browse_rb(&mm->mm_rb);
343 	if (i != mm->map_count)
344 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345 	BUG_ON(bug);
346 }
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
350 
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
354 		struct rb_node ** rb_parent)
355 {
356 	struct vm_area_struct * vma;
357 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358 
359 	__rb_link = &mm->mm_rb.rb_node;
360 	rb_prev = __rb_parent = NULL;
361 	vma = NULL;
362 
363 	while (*__rb_link) {
364 		struct vm_area_struct *vma_tmp;
365 
366 		__rb_parent = *__rb_link;
367 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368 
369 		if (vma_tmp->vm_end > addr) {
370 			vma = vma_tmp;
371 			if (vma_tmp->vm_start <= addr)
372 				break;
373 			__rb_link = &__rb_parent->rb_left;
374 		} else {
375 			rb_prev = __rb_parent;
376 			__rb_link = &__rb_parent->rb_right;
377 		}
378 	}
379 
380 	*pprev = NULL;
381 	if (rb_prev)
382 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383 	*rb_link = __rb_link;
384 	*rb_parent = __rb_parent;
385 	return vma;
386 }
387 
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390 		struct vm_area_struct *prev, struct rb_node *rb_parent)
391 {
392 	if (prev) {
393 		vma->vm_next = prev->vm_next;
394 		prev->vm_next = vma;
395 	} else {
396 		mm->mmap = vma;
397 		if (rb_parent)
398 			vma->vm_next = rb_entry(rb_parent,
399 					struct vm_area_struct, vm_rb);
400 		else
401 			vma->vm_next = NULL;
402 	}
403 }
404 
405 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
406 		struct rb_node **rb_link, struct rb_node *rb_parent)
407 {
408 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
409 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
410 }
411 
412 static void __vma_link_file(struct vm_area_struct *vma)
413 {
414 	struct file *file;
415 
416 	file = vma->vm_file;
417 	if (file) {
418 		struct address_space *mapping = file->f_mapping;
419 
420 		if (vma->vm_flags & VM_DENYWRITE)
421 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
422 		if (vma->vm_flags & VM_SHARED)
423 			mapping->i_mmap_writable++;
424 
425 		flush_dcache_mmap_lock(mapping);
426 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
427 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
428 		else
429 			vma_prio_tree_insert(vma, &mapping->i_mmap);
430 		flush_dcache_mmap_unlock(mapping);
431 	}
432 }
433 
434 static void
435 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
436 	struct vm_area_struct *prev, struct rb_node **rb_link,
437 	struct rb_node *rb_parent)
438 {
439 	__vma_link_list(mm, vma, prev, rb_parent);
440 	__vma_link_rb(mm, vma, rb_link, rb_parent);
441 	__anon_vma_link(vma);
442 }
443 
444 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
445 			struct vm_area_struct *prev, struct rb_node **rb_link,
446 			struct rb_node *rb_parent)
447 {
448 	struct address_space *mapping = NULL;
449 
450 	if (vma->vm_file)
451 		mapping = vma->vm_file->f_mapping;
452 
453 	if (mapping) {
454 		spin_lock(&mapping->i_mmap_lock);
455 		vma->vm_truncate_count = mapping->truncate_count;
456 	}
457 	anon_vma_lock(vma);
458 
459 	__vma_link(mm, vma, prev, rb_link, rb_parent);
460 	__vma_link_file(vma);
461 
462 	anon_vma_unlock(vma);
463 	if (mapping)
464 		spin_unlock(&mapping->i_mmap_lock);
465 
466 	mm->map_count++;
467 	validate_mm(mm);
468 }
469 
470 /*
471  * Helper for vma_adjust in the split_vma insert case:
472  * insert vm structure into list and rbtree and anon_vma,
473  * but it has already been inserted into prio_tree earlier.
474  */
475 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
476 {
477 	struct vm_area_struct *__vma, *prev;
478 	struct rb_node **rb_link, *rb_parent;
479 
480 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
481 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
482 	__vma_link(mm, vma, prev, rb_link, rb_parent);
483 	mm->map_count++;
484 }
485 
486 static inline void
487 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
488 		struct vm_area_struct *prev)
489 {
490 	prev->vm_next = vma->vm_next;
491 	rb_erase(&vma->vm_rb, &mm->mm_rb);
492 	if (mm->mmap_cache == vma)
493 		mm->mmap_cache = prev;
494 }
495 
496 /*
497  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
498  * is already present in an i_mmap tree without adjusting the tree.
499  * The following helper function should be used when such adjustments
500  * are necessary.  The "insert" vma (if any) is to be inserted
501  * before we drop the necessary locks.
502  */
503 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
504 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
505 {
506 	struct mm_struct *mm = vma->vm_mm;
507 	struct vm_area_struct *next = vma->vm_next;
508 	struct vm_area_struct *importer = NULL;
509 	struct address_space *mapping = NULL;
510 	struct prio_tree_root *root = NULL;
511 	struct file *file = vma->vm_file;
512 	struct anon_vma *anon_vma = NULL;
513 	long adjust_next = 0;
514 	int remove_next = 0;
515 
516 	if (next && !insert) {
517 		if (end >= next->vm_end) {
518 			/*
519 			 * vma expands, overlapping all the next, and
520 			 * perhaps the one after too (mprotect case 6).
521 			 */
522 again:			remove_next = 1 + (end > next->vm_end);
523 			end = next->vm_end;
524 			anon_vma = next->anon_vma;
525 			importer = vma;
526 		} else if (end > next->vm_start) {
527 			/*
528 			 * vma expands, overlapping part of the next:
529 			 * mprotect case 5 shifting the boundary up.
530 			 */
531 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
532 			anon_vma = next->anon_vma;
533 			importer = vma;
534 		} else if (end < vma->vm_end) {
535 			/*
536 			 * vma shrinks, and !insert tells it's not
537 			 * split_vma inserting another: so it must be
538 			 * mprotect case 4 shifting the boundary down.
539 			 */
540 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
541 			anon_vma = next->anon_vma;
542 			importer = next;
543 		}
544 	}
545 
546 	if (file) {
547 		mapping = file->f_mapping;
548 		if (!(vma->vm_flags & VM_NONLINEAR))
549 			root = &mapping->i_mmap;
550 		spin_lock(&mapping->i_mmap_lock);
551 		if (importer &&
552 		    vma->vm_truncate_count != next->vm_truncate_count) {
553 			/*
554 			 * unmap_mapping_range might be in progress:
555 			 * ensure that the expanding vma is rescanned.
556 			 */
557 			importer->vm_truncate_count = 0;
558 		}
559 		if (insert) {
560 			insert->vm_truncate_count = vma->vm_truncate_count;
561 			/*
562 			 * Put into prio_tree now, so instantiated pages
563 			 * are visible to arm/parisc __flush_dcache_page
564 			 * throughout; but we cannot insert into address
565 			 * space until vma start or end is updated.
566 			 */
567 			__vma_link_file(insert);
568 		}
569 	}
570 
571 	/*
572 	 * When changing only vma->vm_end, we don't really need
573 	 * anon_vma lock: but is that case worth optimizing out?
574 	 */
575 	if (vma->anon_vma)
576 		anon_vma = vma->anon_vma;
577 	if (anon_vma) {
578 		spin_lock(&anon_vma->lock);
579 		/*
580 		 * Easily overlooked: when mprotect shifts the boundary,
581 		 * make sure the expanding vma has anon_vma set if the
582 		 * shrinking vma had, to cover any anon pages imported.
583 		 */
584 		if (importer && !importer->anon_vma) {
585 			importer->anon_vma = anon_vma;
586 			__anon_vma_link(importer);
587 		}
588 	}
589 
590 	if (root) {
591 		flush_dcache_mmap_lock(mapping);
592 		vma_prio_tree_remove(vma, root);
593 		if (adjust_next)
594 			vma_prio_tree_remove(next, root);
595 	}
596 
597 	vma->vm_start = start;
598 	vma->vm_end = end;
599 	vma->vm_pgoff = pgoff;
600 	if (adjust_next) {
601 		next->vm_start += adjust_next << PAGE_SHIFT;
602 		next->vm_pgoff += adjust_next;
603 	}
604 
605 	if (root) {
606 		if (adjust_next)
607 			vma_prio_tree_insert(next, root);
608 		vma_prio_tree_insert(vma, root);
609 		flush_dcache_mmap_unlock(mapping);
610 	}
611 
612 	if (remove_next) {
613 		/*
614 		 * vma_merge has merged next into vma, and needs
615 		 * us to remove next before dropping the locks.
616 		 */
617 		__vma_unlink(mm, next, vma);
618 		if (file)
619 			__remove_shared_vm_struct(next, file, mapping);
620 		if (next->anon_vma)
621 			__anon_vma_merge(vma, next);
622 	} else if (insert) {
623 		/*
624 		 * split_vma has split insert from vma, and needs
625 		 * us to insert it before dropping the locks
626 		 * (it may either follow vma or precede it).
627 		 */
628 		__insert_vm_struct(mm, insert);
629 	}
630 
631 	if (anon_vma)
632 		spin_unlock(&anon_vma->lock);
633 	if (mapping)
634 		spin_unlock(&mapping->i_mmap_lock);
635 
636 	if (remove_next) {
637 		if (file) {
638 			fput(file);
639 			if (next->vm_flags & VM_EXECUTABLE)
640 				removed_exe_file_vma(mm);
641 		}
642 		mm->map_count--;
643 		mpol_put(vma_policy(next));
644 		kmem_cache_free(vm_area_cachep, next);
645 		/*
646 		 * In mprotect's case 6 (see comments on vma_merge),
647 		 * we must remove another next too. It would clutter
648 		 * up the code too much to do both in one go.
649 		 */
650 		if (remove_next == 2) {
651 			next = vma->vm_next;
652 			goto again;
653 		}
654 	}
655 
656 	validate_mm(mm);
657 }
658 
659 /* Flags that can be inherited from an existing mapping when merging */
660 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
661 
662 /*
663  * If the vma has a ->close operation then the driver probably needs to release
664  * per-vma resources, so we don't attempt to merge those.
665  */
666 static inline int is_mergeable_vma(struct vm_area_struct *vma,
667 			struct file *file, unsigned long vm_flags)
668 {
669 	if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
670 		return 0;
671 	if (vma->vm_file != file)
672 		return 0;
673 	if (vma->vm_ops && vma->vm_ops->close)
674 		return 0;
675 	return 1;
676 }
677 
678 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
679 					struct anon_vma *anon_vma2)
680 {
681 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
682 }
683 
684 /*
685  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
686  * in front of (at a lower virtual address and file offset than) the vma.
687  *
688  * We cannot merge two vmas if they have differently assigned (non-NULL)
689  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
690  *
691  * We don't check here for the merged mmap wrapping around the end of pagecache
692  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
693  * wrap, nor mmaps which cover the final page at index -1UL.
694  */
695 static int
696 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
697 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
698 {
699 	if (is_mergeable_vma(vma, file, vm_flags) &&
700 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
701 		if (vma->vm_pgoff == vm_pgoff)
702 			return 1;
703 	}
704 	return 0;
705 }
706 
707 /*
708  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709  * beyond (at a higher virtual address and file offset than) the vma.
710  *
711  * We cannot merge two vmas if they have differently assigned (non-NULL)
712  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713  */
714 static int
715 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
716 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
717 {
718 	if (is_mergeable_vma(vma, file, vm_flags) &&
719 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
720 		pgoff_t vm_pglen;
721 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
722 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
723 			return 1;
724 	}
725 	return 0;
726 }
727 
728 /*
729  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
730  * whether that can be merged with its predecessor or its successor.
731  * Or both (it neatly fills a hole).
732  *
733  * In most cases - when called for mmap, brk or mremap - [addr,end) is
734  * certain not to be mapped by the time vma_merge is called; but when
735  * called for mprotect, it is certain to be already mapped (either at
736  * an offset within prev, or at the start of next), and the flags of
737  * this area are about to be changed to vm_flags - and the no-change
738  * case has already been eliminated.
739  *
740  * The following mprotect cases have to be considered, where AAAA is
741  * the area passed down from mprotect_fixup, never extending beyond one
742  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
743  *
744  *     AAAA             AAAA                AAAA          AAAA
745  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
746  *    cannot merge    might become    might become    might become
747  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
748  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
749  *    mremap move:                                    PPPPNNNNNNNN 8
750  *        AAAA
751  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
752  *    might become    case 1 below    case 2 below    case 3 below
753  *
754  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
755  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
756  */
757 struct vm_area_struct *vma_merge(struct mm_struct *mm,
758 			struct vm_area_struct *prev, unsigned long addr,
759 			unsigned long end, unsigned long vm_flags,
760 		     	struct anon_vma *anon_vma, struct file *file,
761 			pgoff_t pgoff, struct mempolicy *policy)
762 {
763 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
764 	struct vm_area_struct *area, *next;
765 
766 	/*
767 	 * We later require that vma->vm_flags == vm_flags,
768 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
769 	 */
770 	if (vm_flags & VM_SPECIAL)
771 		return NULL;
772 
773 	if (prev)
774 		next = prev->vm_next;
775 	else
776 		next = mm->mmap;
777 	area = next;
778 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
779 		next = next->vm_next;
780 
781 	/*
782 	 * Can it merge with the predecessor?
783 	 */
784 	if (prev && prev->vm_end == addr &&
785   			mpol_equal(vma_policy(prev), policy) &&
786 			can_vma_merge_after(prev, vm_flags,
787 						anon_vma, file, pgoff)) {
788 		/*
789 		 * OK, it can.  Can we now merge in the successor as well?
790 		 */
791 		if (next && end == next->vm_start &&
792 				mpol_equal(policy, vma_policy(next)) &&
793 				can_vma_merge_before(next, vm_flags,
794 					anon_vma, file, pgoff+pglen) &&
795 				is_mergeable_anon_vma(prev->anon_vma,
796 						      next->anon_vma)) {
797 							/* cases 1, 6 */
798 			vma_adjust(prev, prev->vm_start,
799 				next->vm_end, prev->vm_pgoff, NULL);
800 		} else					/* cases 2, 5, 7 */
801 			vma_adjust(prev, prev->vm_start,
802 				end, prev->vm_pgoff, NULL);
803 		return prev;
804 	}
805 
806 	/*
807 	 * Can this new request be merged in front of next?
808 	 */
809 	if (next && end == next->vm_start &&
810  			mpol_equal(policy, vma_policy(next)) &&
811 			can_vma_merge_before(next, vm_flags,
812 					anon_vma, file, pgoff+pglen)) {
813 		if (prev && addr < prev->vm_end)	/* case 4 */
814 			vma_adjust(prev, prev->vm_start,
815 				addr, prev->vm_pgoff, NULL);
816 		else					/* cases 3, 8 */
817 			vma_adjust(area, addr, next->vm_end,
818 				next->vm_pgoff - pglen, NULL);
819 		return area;
820 	}
821 
822 	return NULL;
823 }
824 
825 /*
826  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
827  * neighbouring vmas for a suitable anon_vma, before it goes off
828  * to allocate a new anon_vma.  It checks because a repetitive
829  * sequence of mprotects and faults may otherwise lead to distinct
830  * anon_vmas being allocated, preventing vma merge in subsequent
831  * mprotect.
832  */
833 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
834 {
835 	struct vm_area_struct *near;
836 	unsigned long vm_flags;
837 
838 	near = vma->vm_next;
839 	if (!near)
840 		goto try_prev;
841 
842 	/*
843 	 * Since only mprotect tries to remerge vmas, match flags
844 	 * which might be mprotected into each other later on.
845 	 * Neither mlock nor madvise tries to remerge at present,
846 	 * so leave their flags as obstructing a merge.
847 	 */
848 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
849 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
850 
851 	if (near->anon_vma && vma->vm_end == near->vm_start &&
852  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
853 			can_vma_merge_before(near, vm_flags,
854 				NULL, vma->vm_file, vma->vm_pgoff +
855 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
856 		return near->anon_vma;
857 try_prev:
858 	/*
859 	 * It is potentially slow to have to call find_vma_prev here.
860 	 * But it's only on the first write fault on the vma, not
861 	 * every time, and we could devise a way to avoid it later
862 	 * (e.g. stash info in next's anon_vma_node when assigning
863 	 * an anon_vma, or when trying vma_merge).  Another time.
864 	 */
865 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
866 	if (!near)
867 		goto none;
868 
869 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
870 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
871 
872 	if (near->anon_vma && near->vm_end == vma->vm_start &&
873   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
874 			can_vma_merge_after(near, vm_flags,
875 				NULL, vma->vm_file, vma->vm_pgoff))
876 		return near->anon_vma;
877 none:
878 	/*
879 	 * There's no absolute need to look only at touching neighbours:
880 	 * we could search further afield for "compatible" anon_vmas.
881 	 * But it would probably just be a waste of time searching,
882 	 * or lead to too many vmas hanging off the same anon_vma.
883 	 * We're trying to allow mprotect remerging later on,
884 	 * not trying to minimize memory used for anon_vmas.
885 	 */
886 	return NULL;
887 }
888 
889 #ifdef CONFIG_PROC_FS
890 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
891 						struct file *file, long pages)
892 {
893 	const unsigned long stack_flags
894 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
895 
896 	if (file) {
897 		mm->shared_vm += pages;
898 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
899 			mm->exec_vm += pages;
900 	} else if (flags & stack_flags)
901 		mm->stack_vm += pages;
902 	if (flags & (VM_RESERVED|VM_IO))
903 		mm->reserved_vm += pages;
904 }
905 #endif /* CONFIG_PROC_FS */
906 
907 /*
908  * The caller must hold down_write(current->mm->mmap_sem).
909  */
910 
911 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
912 			unsigned long len, unsigned long prot,
913 			unsigned long flags, unsigned long pgoff)
914 {
915 	struct mm_struct * mm = current->mm;
916 	struct inode *inode;
917 	unsigned int vm_flags;
918 	int error;
919 	unsigned long reqprot = prot;
920 
921 	/*
922 	 * Does the application expect PROT_READ to imply PROT_EXEC?
923 	 *
924 	 * (the exception is when the underlying filesystem is noexec
925 	 *  mounted, in which case we dont add PROT_EXEC.)
926 	 */
927 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
928 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
929 			prot |= PROT_EXEC;
930 
931 	if (!len)
932 		return -EINVAL;
933 
934 	if (!(flags & MAP_FIXED))
935 		addr = round_hint_to_min(addr);
936 
937 	error = arch_mmap_check(addr, len, flags);
938 	if (error)
939 		return error;
940 
941 	/* Careful about overflows.. */
942 	len = PAGE_ALIGN(len);
943 	if (!len || len > TASK_SIZE)
944 		return -ENOMEM;
945 
946 	/* offset overflow? */
947 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
948                return -EOVERFLOW;
949 
950 	/* Too many mappings? */
951 	if (mm->map_count > sysctl_max_map_count)
952 		return -ENOMEM;
953 
954 	/* Obtain the address to map to. we verify (or select) it and ensure
955 	 * that it represents a valid section of the address space.
956 	 */
957 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
958 	if (addr & ~PAGE_MASK)
959 		return addr;
960 
961 	/* Do simple checking here so the lower-level routines won't have
962 	 * to. we assume access permissions have been handled by the open
963 	 * of the memory object, so we don't do any here.
964 	 */
965 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
966 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
967 
968 	if (flags & MAP_LOCKED) {
969 		if (!can_do_mlock())
970 			return -EPERM;
971 		vm_flags |= VM_LOCKED;
972 	}
973 
974 	/* mlock MCL_FUTURE? */
975 	if (vm_flags & VM_LOCKED) {
976 		unsigned long locked, lock_limit;
977 		locked = len >> PAGE_SHIFT;
978 		locked += mm->locked_vm;
979 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
980 		lock_limit >>= PAGE_SHIFT;
981 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
982 			return -EAGAIN;
983 	}
984 
985 	inode = file ? file->f_path.dentry->d_inode : NULL;
986 
987 	if (file) {
988 		switch (flags & MAP_TYPE) {
989 		case MAP_SHARED:
990 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
991 				return -EACCES;
992 
993 			/*
994 			 * Make sure we don't allow writing to an append-only
995 			 * file..
996 			 */
997 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
998 				return -EACCES;
999 
1000 			/*
1001 			 * Make sure there are no mandatory locks on the file.
1002 			 */
1003 			if (locks_verify_locked(inode))
1004 				return -EAGAIN;
1005 
1006 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1007 			if (!(file->f_mode & FMODE_WRITE))
1008 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1009 
1010 			/* fall through */
1011 		case MAP_PRIVATE:
1012 			if (!(file->f_mode & FMODE_READ))
1013 				return -EACCES;
1014 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1015 				if (vm_flags & VM_EXEC)
1016 					return -EPERM;
1017 				vm_flags &= ~VM_MAYEXEC;
1018 			}
1019 
1020 			if (!file->f_op || !file->f_op->mmap)
1021 				return -ENODEV;
1022 			break;
1023 
1024 		default:
1025 			return -EINVAL;
1026 		}
1027 	} else {
1028 		switch (flags & MAP_TYPE) {
1029 		case MAP_SHARED:
1030 			/*
1031 			 * Ignore pgoff.
1032 			 */
1033 			pgoff = 0;
1034 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1035 			break;
1036 		case MAP_PRIVATE:
1037 			/*
1038 			 * Set pgoff according to addr for anon_vma.
1039 			 */
1040 			pgoff = addr >> PAGE_SHIFT;
1041 			break;
1042 		default:
1043 			return -EINVAL;
1044 		}
1045 	}
1046 
1047 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1048 	if (error)
1049 		return error;
1050 	error = ima_file_mmap(file, prot);
1051 	if (error)
1052 		return error;
1053 
1054 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1055 }
1056 EXPORT_SYMBOL(do_mmap_pgoff);
1057 
1058 /*
1059  * Some shared mappigns will want the pages marked read-only
1060  * to track write events. If so, we'll downgrade vm_page_prot
1061  * to the private version (using protection_map[] without the
1062  * VM_SHARED bit).
1063  */
1064 int vma_wants_writenotify(struct vm_area_struct *vma)
1065 {
1066 	unsigned int vm_flags = vma->vm_flags;
1067 
1068 	/* If it was private or non-writable, the write bit is already clear */
1069 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1070 		return 0;
1071 
1072 	/* The backer wishes to know when pages are first written to? */
1073 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1074 		return 1;
1075 
1076 	/* The open routine did something to the protections already? */
1077 	if (pgprot_val(vma->vm_page_prot) !=
1078 	    pgprot_val(vm_get_page_prot(vm_flags)))
1079 		return 0;
1080 
1081 	/* Specialty mapping? */
1082 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1083 		return 0;
1084 
1085 	/* Can the mapping track the dirty pages? */
1086 	return vma->vm_file && vma->vm_file->f_mapping &&
1087 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1088 }
1089 
1090 /*
1091  * We account for memory if it's a private writeable mapping,
1092  * not hugepages and VM_NORESERVE wasn't set.
1093  */
1094 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1095 {
1096 	/*
1097 	 * hugetlb has its own accounting separate from the core VM
1098 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1099 	 */
1100 	if (file && is_file_hugepages(file))
1101 		return 0;
1102 
1103 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1104 }
1105 
1106 unsigned long mmap_region(struct file *file, unsigned long addr,
1107 			  unsigned long len, unsigned long flags,
1108 			  unsigned int vm_flags, unsigned long pgoff)
1109 {
1110 	struct mm_struct *mm = current->mm;
1111 	struct vm_area_struct *vma, *prev;
1112 	int correct_wcount = 0;
1113 	int error;
1114 	struct rb_node **rb_link, *rb_parent;
1115 	unsigned long charged = 0;
1116 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1117 
1118 	/* Clear old maps */
1119 	error = -ENOMEM;
1120 munmap_back:
1121 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1122 	if (vma && vma->vm_start < addr + len) {
1123 		if (do_munmap(mm, addr, len))
1124 			return -ENOMEM;
1125 		goto munmap_back;
1126 	}
1127 
1128 	/* Check against address space limit. */
1129 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1130 		return -ENOMEM;
1131 
1132 	/*
1133 	 * Set 'VM_NORESERVE' if we should not account for the
1134 	 * memory use of this mapping.
1135 	 */
1136 	if ((flags & MAP_NORESERVE)) {
1137 		/* We honor MAP_NORESERVE if allowed to overcommit */
1138 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1139 			vm_flags |= VM_NORESERVE;
1140 
1141 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1142 		if (file && is_file_hugepages(file))
1143 			vm_flags |= VM_NORESERVE;
1144 	}
1145 
1146 	/*
1147 	 * Private writable mapping: check memory availability
1148 	 */
1149 	if (accountable_mapping(file, vm_flags)) {
1150 		charged = len >> PAGE_SHIFT;
1151 		if (security_vm_enough_memory(charged))
1152 			return -ENOMEM;
1153 		vm_flags |= VM_ACCOUNT;
1154 	}
1155 
1156 	/*
1157 	 * Can we just expand an old mapping?
1158 	 */
1159 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1160 	if (vma)
1161 		goto out;
1162 
1163 	/*
1164 	 * Determine the object being mapped and call the appropriate
1165 	 * specific mapper. the address has already been validated, but
1166 	 * not unmapped, but the maps are removed from the list.
1167 	 */
1168 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1169 	if (!vma) {
1170 		error = -ENOMEM;
1171 		goto unacct_error;
1172 	}
1173 
1174 	vma->vm_mm = mm;
1175 	vma->vm_start = addr;
1176 	vma->vm_end = addr + len;
1177 	vma->vm_flags = vm_flags;
1178 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1179 	vma->vm_pgoff = pgoff;
1180 
1181 	if (file) {
1182 		error = -EINVAL;
1183 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1184 			goto free_vma;
1185 		if (vm_flags & VM_DENYWRITE) {
1186 			error = deny_write_access(file);
1187 			if (error)
1188 				goto free_vma;
1189 			correct_wcount = 1;
1190 		}
1191 		vma->vm_file = file;
1192 		get_file(file);
1193 		error = file->f_op->mmap(file, vma);
1194 		if (error)
1195 			goto unmap_and_free_vma;
1196 		if (vm_flags & VM_EXECUTABLE)
1197 			added_exe_file_vma(mm);
1198 	} else if (vm_flags & VM_SHARED) {
1199 		error = shmem_zero_setup(vma);
1200 		if (error)
1201 			goto free_vma;
1202 	}
1203 
1204 	/* Can addr have changed??
1205 	 *
1206 	 * Answer: Yes, several device drivers can do it in their
1207 	 *         f_op->mmap method. -DaveM
1208 	 */
1209 	addr = vma->vm_start;
1210 	pgoff = vma->vm_pgoff;
1211 	vm_flags = vma->vm_flags;
1212 
1213 	if (vma_wants_writenotify(vma))
1214 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1215 
1216 	vma_link(mm, vma, prev, rb_link, rb_parent);
1217 	file = vma->vm_file;
1218 
1219 	/* Once vma denies write, undo our temporary denial count */
1220 	if (correct_wcount)
1221 		atomic_inc(&inode->i_writecount);
1222 out:
1223 	perf_counter_mmap(vma);
1224 
1225 	mm->total_vm += len >> PAGE_SHIFT;
1226 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1227 	if (vm_flags & VM_LOCKED) {
1228 		/*
1229 		 * makes pages present; downgrades, drops, reacquires mmap_sem
1230 		 */
1231 		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1232 		if (nr_pages < 0)
1233 			return nr_pages;	/* vma gone! */
1234 		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1235 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1236 		make_pages_present(addr, addr + len);
1237 	return addr;
1238 
1239 unmap_and_free_vma:
1240 	if (correct_wcount)
1241 		atomic_inc(&inode->i_writecount);
1242 	vma->vm_file = NULL;
1243 	fput(file);
1244 
1245 	/* Undo any partial mapping done by a device driver. */
1246 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1247 	charged = 0;
1248 free_vma:
1249 	kmem_cache_free(vm_area_cachep, vma);
1250 unacct_error:
1251 	if (charged)
1252 		vm_unacct_memory(charged);
1253 	return error;
1254 }
1255 
1256 /* Get an address range which is currently unmapped.
1257  * For shmat() with addr=0.
1258  *
1259  * Ugly calling convention alert:
1260  * Return value with the low bits set means error value,
1261  * ie
1262  *	if (ret & ~PAGE_MASK)
1263  *		error = ret;
1264  *
1265  * This function "knows" that -ENOMEM has the bits set.
1266  */
1267 #ifndef HAVE_ARCH_UNMAPPED_AREA
1268 unsigned long
1269 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1270 		unsigned long len, unsigned long pgoff, unsigned long flags)
1271 {
1272 	struct mm_struct *mm = current->mm;
1273 	struct vm_area_struct *vma;
1274 	unsigned long start_addr;
1275 
1276 	if (len > TASK_SIZE)
1277 		return -ENOMEM;
1278 
1279 	if (flags & MAP_FIXED)
1280 		return addr;
1281 
1282 	if (addr) {
1283 		addr = PAGE_ALIGN(addr);
1284 		vma = find_vma(mm, addr);
1285 		if (TASK_SIZE - len >= addr &&
1286 		    (!vma || addr + len <= vma->vm_start))
1287 			return addr;
1288 	}
1289 	if (len > mm->cached_hole_size) {
1290 	        start_addr = addr = mm->free_area_cache;
1291 	} else {
1292 	        start_addr = addr = TASK_UNMAPPED_BASE;
1293 	        mm->cached_hole_size = 0;
1294 	}
1295 
1296 full_search:
1297 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1298 		/* At this point:  (!vma || addr < vma->vm_end). */
1299 		if (TASK_SIZE - len < addr) {
1300 			/*
1301 			 * Start a new search - just in case we missed
1302 			 * some holes.
1303 			 */
1304 			if (start_addr != TASK_UNMAPPED_BASE) {
1305 				addr = TASK_UNMAPPED_BASE;
1306 			        start_addr = addr;
1307 				mm->cached_hole_size = 0;
1308 				goto full_search;
1309 			}
1310 			return -ENOMEM;
1311 		}
1312 		if (!vma || addr + len <= vma->vm_start) {
1313 			/*
1314 			 * Remember the place where we stopped the search:
1315 			 */
1316 			mm->free_area_cache = addr + len;
1317 			return addr;
1318 		}
1319 		if (addr + mm->cached_hole_size < vma->vm_start)
1320 		        mm->cached_hole_size = vma->vm_start - addr;
1321 		addr = vma->vm_end;
1322 	}
1323 }
1324 #endif
1325 
1326 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1327 {
1328 	/*
1329 	 * Is this a new hole at the lowest possible address?
1330 	 */
1331 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1332 		mm->free_area_cache = addr;
1333 		mm->cached_hole_size = ~0UL;
1334 	}
1335 }
1336 
1337 /*
1338  * This mmap-allocator allocates new areas top-down from below the
1339  * stack's low limit (the base):
1340  */
1341 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1342 unsigned long
1343 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1344 			  const unsigned long len, const unsigned long pgoff,
1345 			  const unsigned long flags)
1346 {
1347 	struct vm_area_struct *vma;
1348 	struct mm_struct *mm = current->mm;
1349 	unsigned long addr = addr0;
1350 
1351 	/* requested length too big for entire address space */
1352 	if (len > TASK_SIZE)
1353 		return -ENOMEM;
1354 
1355 	if (flags & MAP_FIXED)
1356 		return addr;
1357 
1358 	/* requesting a specific address */
1359 	if (addr) {
1360 		addr = PAGE_ALIGN(addr);
1361 		vma = find_vma(mm, addr);
1362 		if (TASK_SIZE - len >= addr &&
1363 				(!vma || addr + len <= vma->vm_start))
1364 			return addr;
1365 	}
1366 
1367 	/* check if free_area_cache is useful for us */
1368 	if (len <= mm->cached_hole_size) {
1369  	        mm->cached_hole_size = 0;
1370  		mm->free_area_cache = mm->mmap_base;
1371  	}
1372 
1373 	/* either no address requested or can't fit in requested address hole */
1374 	addr = mm->free_area_cache;
1375 
1376 	/* make sure it can fit in the remaining address space */
1377 	if (addr > len) {
1378 		vma = find_vma(mm, addr-len);
1379 		if (!vma || addr <= vma->vm_start)
1380 			/* remember the address as a hint for next time */
1381 			return (mm->free_area_cache = addr-len);
1382 	}
1383 
1384 	if (mm->mmap_base < len)
1385 		goto bottomup;
1386 
1387 	addr = mm->mmap_base-len;
1388 
1389 	do {
1390 		/*
1391 		 * Lookup failure means no vma is above this address,
1392 		 * else if new region fits below vma->vm_start,
1393 		 * return with success:
1394 		 */
1395 		vma = find_vma(mm, addr);
1396 		if (!vma || addr+len <= vma->vm_start)
1397 			/* remember the address as a hint for next time */
1398 			return (mm->free_area_cache = addr);
1399 
1400  		/* remember the largest hole we saw so far */
1401  		if (addr + mm->cached_hole_size < vma->vm_start)
1402  		        mm->cached_hole_size = vma->vm_start - addr;
1403 
1404 		/* try just below the current vma->vm_start */
1405 		addr = vma->vm_start-len;
1406 	} while (len < vma->vm_start);
1407 
1408 bottomup:
1409 	/*
1410 	 * A failed mmap() very likely causes application failure,
1411 	 * so fall back to the bottom-up function here. This scenario
1412 	 * can happen with large stack limits and large mmap()
1413 	 * allocations.
1414 	 */
1415 	mm->cached_hole_size = ~0UL;
1416   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1417 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1418 	/*
1419 	 * Restore the topdown base:
1420 	 */
1421 	mm->free_area_cache = mm->mmap_base;
1422 	mm->cached_hole_size = ~0UL;
1423 
1424 	return addr;
1425 }
1426 #endif
1427 
1428 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1429 {
1430 	/*
1431 	 * Is this a new hole at the highest possible address?
1432 	 */
1433 	if (addr > mm->free_area_cache)
1434 		mm->free_area_cache = addr;
1435 
1436 	/* dont allow allocations above current base */
1437 	if (mm->free_area_cache > mm->mmap_base)
1438 		mm->free_area_cache = mm->mmap_base;
1439 }
1440 
1441 unsigned long
1442 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1443 		unsigned long pgoff, unsigned long flags)
1444 {
1445 	unsigned long (*get_area)(struct file *, unsigned long,
1446 				  unsigned long, unsigned long, unsigned long);
1447 
1448 	get_area = current->mm->get_unmapped_area;
1449 	if (file && file->f_op && file->f_op->get_unmapped_area)
1450 		get_area = file->f_op->get_unmapped_area;
1451 	addr = get_area(file, addr, len, pgoff, flags);
1452 	if (IS_ERR_VALUE(addr))
1453 		return addr;
1454 
1455 	if (addr > TASK_SIZE - len)
1456 		return -ENOMEM;
1457 	if (addr & ~PAGE_MASK)
1458 		return -EINVAL;
1459 
1460 	return arch_rebalance_pgtables(addr, len);
1461 }
1462 
1463 EXPORT_SYMBOL(get_unmapped_area);
1464 
1465 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1466 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1467 {
1468 	struct vm_area_struct *vma = NULL;
1469 
1470 	if (mm) {
1471 		/* Check the cache first. */
1472 		/* (Cache hit rate is typically around 35%.) */
1473 		vma = mm->mmap_cache;
1474 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1475 			struct rb_node * rb_node;
1476 
1477 			rb_node = mm->mm_rb.rb_node;
1478 			vma = NULL;
1479 
1480 			while (rb_node) {
1481 				struct vm_area_struct * vma_tmp;
1482 
1483 				vma_tmp = rb_entry(rb_node,
1484 						struct vm_area_struct, vm_rb);
1485 
1486 				if (vma_tmp->vm_end > addr) {
1487 					vma = vma_tmp;
1488 					if (vma_tmp->vm_start <= addr)
1489 						break;
1490 					rb_node = rb_node->rb_left;
1491 				} else
1492 					rb_node = rb_node->rb_right;
1493 			}
1494 			if (vma)
1495 				mm->mmap_cache = vma;
1496 		}
1497 	}
1498 	return vma;
1499 }
1500 
1501 EXPORT_SYMBOL(find_vma);
1502 
1503 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1504 struct vm_area_struct *
1505 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1506 			struct vm_area_struct **pprev)
1507 {
1508 	struct vm_area_struct *vma = NULL, *prev = NULL;
1509 	struct rb_node *rb_node;
1510 	if (!mm)
1511 		goto out;
1512 
1513 	/* Guard against addr being lower than the first VMA */
1514 	vma = mm->mmap;
1515 
1516 	/* Go through the RB tree quickly. */
1517 	rb_node = mm->mm_rb.rb_node;
1518 
1519 	while (rb_node) {
1520 		struct vm_area_struct *vma_tmp;
1521 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1522 
1523 		if (addr < vma_tmp->vm_end) {
1524 			rb_node = rb_node->rb_left;
1525 		} else {
1526 			prev = vma_tmp;
1527 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1528 				break;
1529 			rb_node = rb_node->rb_right;
1530 		}
1531 	}
1532 
1533 out:
1534 	*pprev = prev;
1535 	return prev ? prev->vm_next : vma;
1536 }
1537 
1538 /*
1539  * Verify that the stack growth is acceptable and
1540  * update accounting. This is shared with both the
1541  * grow-up and grow-down cases.
1542  */
1543 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1544 {
1545 	struct mm_struct *mm = vma->vm_mm;
1546 	struct rlimit *rlim = current->signal->rlim;
1547 	unsigned long new_start;
1548 
1549 	/* address space limit tests */
1550 	if (!may_expand_vm(mm, grow))
1551 		return -ENOMEM;
1552 
1553 	/* Stack limit test */
1554 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1555 		return -ENOMEM;
1556 
1557 	/* mlock limit tests */
1558 	if (vma->vm_flags & VM_LOCKED) {
1559 		unsigned long locked;
1560 		unsigned long limit;
1561 		locked = mm->locked_vm + grow;
1562 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1563 		if (locked > limit && !capable(CAP_IPC_LOCK))
1564 			return -ENOMEM;
1565 	}
1566 
1567 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1568 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1569 			vma->vm_end - size;
1570 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1571 		return -EFAULT;
1572 
1573 	/*
1574 	 * Overcommit..  This must be the final test, as it will
1575 	 * update security statistics.
1576 	 */
1577 	if (security_vm_enough_memory_mm(mm, grow))
1578 		return -ENOMEM;
1579 
1580 	/* Ok, everything looks good - let it rip */
1581 	mm->total_vm += grow;
1582 	if (vma->vm_flags & VM_LOCKED)
1583 		mm->locked_vm += grow;
1584 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1585 	return 0;
1586 }
1587 
1588 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1589 /*
1590  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1591  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1592  */
1593 #ifndef CONFIG_IA64
1594 static
1595 #endif
1596 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1597 {
1598 	int error;
1599 
1600 	if (!(vma->vm_flags & VM_GROWSUP))
1601 		return -EFAULT;
1602 
1603 	/*
1604 	 * We must make sure the anon_vma is allocated
1605 	 * so that the anon_vma locking is not a noop.
1606 	 */
1607 	if (unlikely(anon_vma_prepare(vma)))
1608 		return -ENOMEM;
1609 	anon_vma_lock(vma);
1610 
1611 	/*
1612 	 * vma->vm_start/vm_end cannot change under us because the caller
1613 	 * is required to hold the mmap_sem in read mode.  We need the
1614 	 * anon_vma lock to serialize against concurrent expand_stacks.
1615 	 * Also guard against wrapping around to address 0.
1616 	 */
1617 	if (address < PAGE_ALIGN(address+4))
1618 		address = PAGE_ALIGN(address+4);
1619 	else {
1620 		anon_vma_unlock(vma);
1621 		return -ENOMEM;
1622 	}
1623 	error = 0;
1624 
1625 	/* Somebody else might have raced and expanded it already */
1626 	if (address > vma->vm_end) {
1627 		unsigned long size, grow;
1628 
1629 		size = address - vma->vm_start;
1630 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1631 
1632 		error = acct_stack_growth(vma, size, grow);
1633 		if (!error)
1634 			vma->vm_end = address;
1635 	}
1636 	anon_vma_unlock(vma);
1637 	return error;
1638 }
1639 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1640 
1641 /*
1642  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1643  */
1644 static int expand_downwards(struct vm_area_struct *vma,
1645 				   unsigned long address)
1646 {
1647 	int error;
1648 
1649 	/*
1650 	 * We must make sure the anon_vma is allocated
1651 	 * so that the anon_vma locking is not a noop.
1652 	 */
1653 	if (unlikely(anon_vma_prepare(vma)))
1654 		return -ENOMEM;
1655 
1656 	address &= PAGE_MASK;
1657 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1658 	if (error)
1659 		return error;
1660 
1661 	anon_vma_lock(vma);
1662 
1663 	/*
1664 	 * vma->vm_start/vm_end cannot change under us because the caller
1665 	 * is required to hold the mmap_sem in read mode.  We need the
1666 	 * anon_vma lock to serialize against concurrent expand_stacks.
1667 	 */
1668 
1669 	/* Somebody else might have raced and expanded it already */
1670 	if (address < vma->vm_start) {
1671 		unsigned long size, grow;
1672 
1673 		size = vma->vm_end - address;
1674 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1675 
1676 		error = acct_stack_growth(vma, size, grow);
1677 		if (!error) {
1678 			vma->vm_start = address;
1679 			vma->vm_pgoff -= grow;
1680 		}
1681 	}
1682 	anon_vma_unlock(vma);
1683 	return error;
1684 }
1685 
1686 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1687 {
1688 	return expand_downwards(vma, address);
1689 }
1690 
1691 #ifdef CONFIG_STACK_GROWSUP
1692 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1693 {
1694 	return expand_upwards(vma, address);
1695 }
1696 
1697 struct vm_area_struct *
1698 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1699 {
1700 	struct vm_area_struct *vma, *prev;
1701 
1702 	addr &= PAGE_MASK;
1703 	vma = find_vma_prev(mm, addr, &prev);
1704 	if (vma && (vma->vm_start <= addr))
1705 		return vma;
1706 	if (!prev || expand_stack(prev, addr))
1707 		return NULL;
1708 	if (prev->vm_flags & VM_LOCKED) {
1709 		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1710 			return NULL;	/* vma gone! */
1711 	}
1712 	return prev;
1713 }
1714 #else
1715 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1716 {
1717 	return expand_downwards(vma, address);
1718 }
1719 
1720 struct vm_area_struct *
1721 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1722 {
1723 	struct vm_area_struct * vma;
1724 	unsigned long start;
1725 
1726 	addr &= PAGE_MASK;
1727 	vma = find_vma(mm,addr);
1728 	if (!vma)
1729 		return NULL;
1730 	if (vma->vm_start <= addr)
1731 		return vma;
1732 	if (!(vma->vm_flags & VM_GROWSDOWN))
1733 		return NULL;
1734 	start = vma->vm_start;
1735 	if (expand_stack(vma, addr))
1736 		return NULL;
1737 	if (vma->vm_flags & VM_LOCKED) {
1738 		if (mlock_vma_pages_range(vma, addr, start) < 0)
1739 			return NULL;	/* vma gone! */
1740 	}
1741 	return vma;
1742 }
1743 #endif
1744 
1745 /*
1746  * Ok - we have the memory areas we should free on the vma list,
1747  * so release them, and do the vma updates.
1748  *
1749  * Called with the mm semaphore held.
1750  */
1751 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1752 {
1753 	/* Update high watermark before we lower total_vm */
1754 	update_hiwater_vm(mm);
1755 	do {
1756 		long nrpages = vma_pages(vma);
1757 
1758 		mm->total_vm -= nrpages;
1759 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1760 		vma = remove_vma(vma);
1761 	} while (vma);
1762 	validate_mm(mm);
1763 }
1764 
1765 /*
1766  * Get rid of page table information in the indicated region.
1767  *
1768  * Called with the mm semaphore held.
1769  */
1770 static void unmap_region(struct mm_struct *mm,
1771 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1772 		unsigned long start, unsigned long end)
1773 {
1774 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1775 	struct mmu_gather *tlb;
1776 	unsigned long nr_accounted = 0;
1777 
1778 	lru_add_drain();
1779 	tlb = tlb_gather_mmu(mm, 0);
1780 	update_hiwater_rss(mm);
1781 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1782 	vm_unacct_memory(nr_accounted);
1783 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1784 				 next? next->vm_start: 0);
1785 	tlb_finish_mmu(tlb, start, end);
1786 }
1787 
1788 /*
1789  * Create a list of vma's touched by the unmap, removing them from the mm's
1790  * vma list as we go..
1791  */
1792 static void
1793 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1794 	struct vm_area_struct *prev, unsigned long end)
1795 {
1796 	struct vm_area_struct **insertion_point;
1797 	struct vm_area_struct *tail_vma = NULL;
1798 	unsigned long addr;
1799 
1800 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1801 	do {
1802 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1803 		mm->map_count--;
1804 		tail_vma = vma;
1805 		vma = vma->vm_next;
1806 	} while (vma && vma->vm_start < end);
1807 	*insertion_point = vma;
1808 	tail_vma->vm_next = NULL;
1809 	if (mm->unmap_area == arch_unmap_area)
1810 		addr = prev ? prev->vm_end : mm->mmap_base;
1811 	else
1812 		addr = vma ?  vma->vm_start : mm->mmap_base;
1813 	mm->unmap_area(mm, addr);
1814 	mm->mmap_cache = NULL;		/* Kill the cache. */
1815 }
1816 
1817 /*
1818  * Split a vma into two pieces at address 'addr', a new vma is allocated
1819  * either for the first part or the tail.
1820  */
1821 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1822 	      unsigned long addr, int new_below)
1823 {
1824 	struct mempolicy *pol;
1825 	struct vm_area_struct *new;
1826 
1827 	if (is_vm_hugetlb_page(vma) && (addr &
1828 					~(huge_page_mask(hstate_vma(vma)))))
1829 		return -EINVAL;
1830 
1831 	if (mm->map_count >= sysctl_max_map_count)
1832 		return -ENOMEM;
1833 
1834 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1835 	if (!new)
1836 		return -ENOMEM;
1837 
1838 	/* most fields are the same, copy all, and then fixup */
1839 	*new = *vma;
1840 
1841 	if (new_below)
1842 		new->vm_end = addr;
1843 	else {
1844 		new->vm_start = addr;
1845 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1846 	}
1847 
1848 	pol = mpol_dup(vma_policy(vma));
1849 	if (IS_ERR(pol)) {
1850 		kmem_cache_free(vm_area_cachep, new);
1851 		return PTR_ERR(pol);
1852 	}
1853 	vma_set_policy(new, pol);
1854 
1855 	if (new->vm_file) {
1856 		get_file(new->vm_file);
1857 		if (vma->vm_flags & VM_EXECUTABLE)
1858 			added_exe_file_vma(mm);
1859 	}
1860 
1861 	if (new->vm_ops && new->vm_ops->open)
1862 		new->vm_ops->open(new);
1863 
1864 	if (new_below)
1865 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1866 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1867 	else
1868 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1869 
1870 	return 0;
1871 }
1872 
1873 /* Munmap is split into 2 main parts -- this part which finds
1874  * what needs doing, and the areas themselves, which do the
1875  * work.  This now handles partial unmappings.
1876  * Jeremy Fitzhardinge <jeremy@goop.org>
1877  */
1878 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1879 {
1880 	unsigned long end;
1881 	struct vm_area_struct *vma, *prev, *last;
1882 
1883 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1884 		return -EINVAL;
1885 
1886 	if ((len = PAGE_ALIGN(len)) == 0)
1887 		return -EINVAL;
1888 
1889 	/* Find the first overlapping VMA */
1890 	vma = find_vma_prev(mm, start, &prev);
1891 	if (!vma)
1892 		return 0;
1893 	/* we have  start < vma->vm_end  */
1894 
1895 	/* if it doesn't overlap, we have nothing.. */
1896 	end = start + len;
1897 	if (vma->vm_start >= end)
1898 		return 0;
1899 
1900 	/*
1901 	 * If we need to split any vma, do it now to save pain later.
1902 	 *
1903 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1904 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1905 	 * places tmp vma above, and higher split_vma places tmp vma below.
1906 	 */
1907 	if (start > vma->vm_start) {
1908 		int error = split_vma(mm, vma, start, 0);
1909 		if (error)
1910 			return error;
1911 		prev = vma;
1912 	}
1913 
1914 	/* Does it split the last one? */
1915 	last = find_vma(mm, end);
1916 	if (last && end > last->vm_start) {
1917 		int error = split_vma(mm, last, end, 1);
1918 		if (error)
1919 			return error;
1920 	}
1921 	vma = prev? prev->vm_next: mm->mmap;
1922 
1923 	/*
1924 	 * unlock any mlock()ed ranges before detaching vmas
1925 	 */
1926 	if (mm->locked_vm) {
1927 		struct vm_area_struct *tmp = vma;
1928 		while (tmp && tmp->vm_start < end) {
1929 			if (tmp->vm_flags & VM_LOCKED) {
1930 				mm->locked_vm -= vma_pages(tmp);
1931 				munlock_vma_pages_all(tmp);
1932 			}
1933 			tmp = tmp->vm_next;
1934 		}
1935 	}
1936 
1937 	/*
1938 	 * Remove the vma's, and unmap the actual pages
1939 	 */
1940 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1941 	unmap_region(mm, vma, prev, start, end);
1942 
1943 	/* Fix up all other VM information */
1944 	remove_vma_list(mm, vma);
1945 
1946 	return 0;
1947 }
1948 
1949 EXPORT_SYMBOL(do_munmap);
1950 
1951 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1952 {
1953 	int ret;
1954 	struct mm_struct *mm = current->mm;
1955 
1956 	profile_munmap(addr);
1957 
1958 	down_write(&mm->mmap_sem);
1959 	ret = do_munmap(mm, addr, len);
1960 	up_write(&mm->mmap_sem);
1961 	return ret;
1962 }
1963 
1964 static inline void verify_mm_writelocked(struct mm_struct *mm)
1965 {
1966 #ifdef CONFIG_DEBUG_VM
1967 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1968 		WARN_ON(1);
1969 		up_read(&mm->mmap_sem);
1970 	}
1971 #endif
1972 }
1973 
1974 /*
1975  *  this is really a simplified "do_mmap".  it only handles
1976  *  anonymous maps.  eventually we may be able to do some
1977  *  brk-specific accounting here.
1978  */
1979 unsigned long do_brk(unsigned long addr, unsigned long len)
1980 {
1981 	struct mm_struct * mm = current->mm;
1982 	struct vm_area_struct * vma, * prev;
1983 	unsigned long flags;
1984 	struct rb_node ** rb_link, * rb_parent;
1985 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1986 	int error;
1987 
1988 	len = PAGE_ALIGN(len);
1989 	if (!len)
1990 		return addr;
1991 
1992 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1993 		return -EINVAL;
1994 
1995 	if (is_hugepage_only_range(mm, addr, len))
1996 		return -EINVAL;
1997 
1998 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1999 	if (error)
2000 		return error;
2001 
2002 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2003 
2004 	error = arch_mmap_check(addr, len, flags);
2005 	if (error)
2006 		return error;
2007 
2008 	/*
2009 	 * mlock MCL_FUTURE?
2010 	 */
2011 	if (mm->def_flags & VM_LOCKED) {
2012 		unsigned long locked, lock_limit;
2013 		locked = len >> PAGE_SHIFT;
2014 		locked += mm->locked_vm;
2015 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2016 		lock_limit >>= PAGE_SHIFT;
2017 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2018 			return -EAGAIN;
2019 	}
2020 
2021 	/*
2022 	 * mm->mmap_sem is required to protect against another thread
2023 	 * changing the mappings in case we sleep.
2024 	 */
2025 	verify_mm_writelocked(mm);
2026 
2027 	/*
2028 	 * Clear old maps.  this also does some error checking for us
2029 	 */
2030  munmap_back:
2031 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2032 	if (vma && vma->vm_start < addr + len) {
2033 		if (do_munmap(mm, addr, len))
2034 			return -ENOMEM;
2035 		goto munmap_back;
2036 	}
2037 
2038 	/* Check against address space limits *after* clearing old maps... */
2039 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2040 		return -ENOMEM;
2041 
2042 	if (mm->map_count > sysctl_max_map_count)
2043 		return -ENOMEM;
2044 
2045 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2046 		return -ENOMEM;
2047 
2048 	/* Can we just expand an old private anonymous mapping? */
2049 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2050 					NULL, NULL, pgoff, NULL);
2051 	if (vma)
2052 		goto out;
2053 
2054 	/*
2055 	 * create a vma struct for an anonymous mapping
2056 	 */
2057 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2058 	if (!vma) {
2059 		vm_unacct_memory(len >> PAGE_SHIFT);
2060 		return -ENOMEM;
2061 	}
2062 
2063 	vma->vm_mm = mm;
2064 	vma->vm_start = addr;
2065 	vma->vm_end = addr + len;
2066 	vma->vm_pgoff = pgoff;
2067 	vma->vm_flags = flags;
2068 	vma->vm_page_prot = vm_get_page_prot(flags);
2069 	vma_link(mm, vma, prev, rb_link, rb_parent);
2070 out:
2071 	mm->total_vm += len >> PAGE_SHIFT;
2072 	if (flags & VM_LOCKED) {
2073 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2074 			mm->locked_vm += (len >> PAGE_SHIFT);
2075 	}
2076 	return addr;
2077 }
2078 
2079 EXPORT_SYMBOL(do_brk);
2080 
2081 /* Release all mmaps. */
2082 void exit_mmap(struct mm_struct *mm)
2083 {
2084 	struct mmu_gather *tlb;
2085 	struct vm_area_struct *vma;
2086 	unsigned long nr_accounted = 0;
2087 	unsigned long end;
2088 
2089 	/* mm's last user has gone, and its about to be pulled down */
2090 	mmu_notifier_release(mm);
2091 
2092 	if (mm->locked_vm) {
2093 		vma = mm->mmap;
2094 		while (vma) {
2095 			if (vma->vm_flags & VM_LOCKED)
2096 				munlock_vma_pages_all(vma);
2097 			vma = vma->vm_next;
2098 		}
2099 	}
2100 
2101 	arch_exit_mmap(mm);
2102 
2103 	vma = mm->mmap;
2104 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2105 		return;
2106 
2107 	lru_add_drain();
2108 	flush_cache_mm(mm);
2109 	tlb = tlb_gather_mmu(mm, 1);
2110 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2111 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2112 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2113 	vm_unacct_memory(nr_accounted);
2114 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2115 	tlb_finish_mmu(tlb, 0, end);
2116 
2117 	/*
2118 	 * Walk the list again, actually closing and freeing it,
2119 	 * with preemption enabled, without holding any MM locks.
2120 	 */
2121 	while (vma)
2122 		vma = remove_vma(vma);
2123 
2124 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2125 }
2126 
2127 /* Insert vm structure into process list sorted by address
2128  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2129  * then i_mmap_lock is taken here.
2130  */
2131 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2132 {
2133 	struct vm_area_struct * __vma, * prev;
2134 	struct rb_node ** rb_link, * rb_parent;
2135 
2136 	/*
2137 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2138 	 * until its first write fault, when page's anon_vma and index
2139 	 * are set.  But now set the vm_pgoff it will almost certainly
2140 	 * end up with (unless mremap moves it elsewhere before that
2141 	 * first wfault), so /proc/pid/maps tells a consistent story.
2142 	 *
2143 	 * By setting it to reflect the virtual start address of the
2144 	 * vma, merges and splits can happen in a seamless way, just
2145 	 * using the existing file pgoff checks and manipulations.
2146 	 * Similarly in do_mmap_pgoff and in do_brk.
2147 	 */
2148 	if (!vma->vm_file) {
2149 		BUG_ON(vma->anon_vma);
2150 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2151 	}
2152 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2153 	if (__vma && __vma->vm_start < vma->vm_end)
2154 		return -ENOMEM;
2155 	if ((vma->vm_flags & VM_ACCOUNT) &&
2156 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2157 		return -ENOMEM;
2158 	vma_link(mm, vma, prev, rb_link, rb_parent);
2159 	return 0;
2160 }
2161 
2162 /*
2163  * Copy the vma structure to a new location in the same mm,
2164  * prior to moving page table entries, to effect an mremap move.
2165  */
2166 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2167 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2168 {
2169 	struct vm_area_struct *vma = *vmap;
2170 	unsigned long vma_start = vma->vm_start;
2171 	struct mm_struct *mm = vma->vm_mm;
2172 	struct vm_area_struct *new_vma, *prev;
2173 	struct rb_node **rb_link, *rb_parent;
2174 	struct mempolicy *pol;
2175 
2176 	/*
2177 	 * If anonymous vma has not yet been faulted, update new pgoff
2178 	 * to match new location, to increase its chance of merging.
2179 	 */
2180 	if (!vma->vm_file && !vma->anon_vma)
2181 		pgoff = addr >> PAGE_SHIFT;
2182 
2183 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2184 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2185 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2186 	if (new_vma) {
2187 		/*
2188 		 * Source vma may have been merged into new_vma
2189 		 */
2190 		if (vma_start >= new_vma->vm_start &&
2191 		    vma_start < new_vma->vm_end)
2192 			*vmap = new_vma;
2193 	} else {
2194 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2195 		if (new_vma) {
2196 			*new_vma = *vma;
2197 			pol = mpol_dup(vma_policy(vma));
2198 			if (IS_ERR(pol)) {
2199 				kmem_cache_free(vm_area_cachep, new_vma);
2200 				return NULL;
2201 			}
2202 			vma_set_policy(new_vma, pol);
2203 			new_vma->vm_start = addr;
2204 			new_vma->vm_end = addr + len;
2205 			new_vma->vm_pgoff = pgoff;
2206 			if (new_vma->vm_file) {
2207 				get_file(new_vma->vm_file);
2208 				if (vma->vm_flags & VM_EXECUTABLE)
2209 					added_exe_file_vma(mm);
2210 			}
2211 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2212 				new_vma->vm_ops->open(new_vma);
2213 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2214 		}
2215 	}
2216 	return new_vma;
2217 }
2218 
2219 /*
2220  * Return true if the calling process may expand its vm space by the passed
2221  * number of pages
2222  */
2223 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2224 {
2225 	unsigned long cur = mm->total_vm;	/* pages */
2226 	unsigned long lim;
2227 
2228 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2229 
2230 	if (cur + npages > lim)
2231 		return 0;
2232 	return 1;
2233 }
2234 
2235 
2236 static int special_mapping_fault(struct vm_area_struct *vma,
2237 				struct vm_fault *vmf)
2238 {
2239 	pgoff_t pgoff;
2240 	struct page **pages;
2241 
2242 	/*
2243 	 * special mappings have no vm_file, and in that case, the mm
2244 	 * uses vm_pgoff internally. So we have to subtract it from here.
2245 	 * We are allowed to do this because we are the mm; do not copy
2246 	 * this code into drivers!
2247 	 */
2248 	pgoff = vmf->pgoff - vma->vm_pgoff;
2249 
2250 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2251 		pgoff--;
2252 
2253 	if (*pages) {
2254 		struct page *page = *pages;
2255 		get_page(page);
2256 		vmf->page = page;
2257 		return 0;
2258 	}
2259 
2260 	return VM_FAULT_SIGBUS;
2261 }
2262 
2263 /*
2264  * Having a close hook prevents vma merging regardless of flags.
2265  */
2266 static void special_mapping_close(struct vm_area_struct *vma)
2267 {
2268 }
2269 
2270 static struct vm_operations_struct special_mapping_vmops = {
2271 	.close = special_mapping_close,
2272 	.fault = special_mapping_fault,
2273 };
2274 
2275 /*
2276  * Called with mm->mmap_sem held for writing.
2277  * Insert a new vma covering the given region, with the given flags.
2278  * Its pages are supplied by the given array of struct page *.
2279  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2280  * The region past the last page supplied will always produce SIGBUS.
2281  * The array pointer and the pages it points to are assumed to stay alive
2282  * for as long as this mapping might exist.
2283  */
2284 int install_special_mapping(struct mm_struct *mm,
2285 			    unsigned long addr, unsigned long len,
2286 			    unsigned long vm_flags, struct page **pages)
2287 {
2288 	struct vm_area_struct *vma;
2289 
2290 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2291 	if (unlikely(vma == NULL))
2292 		return -ENOMEM;
2293 
2294 	vma->vm_mm = mm;
2295 	vma->vm_start = addr;
2296 	vma->vm_end = addr + len;
2297 
2298 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2299 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2300 
2301 	vma->vm_ops = &special_mapping_vmops;
2302 	vma->vm_private_data = pages;
2303 
2304 	if (unlikely(insert_vm_struct(mm, vma))) {
2305 		kmem_cache_free(vm_area_cachep, vma);
2306 		return -ENOMEM;
2307 	}
2308 
2309 	mm->total_vm += len >> PAGE_SHIFT;
2310 
2311 	perf_counter_mmap(vma);
2312 
2313 	return 0;
2314 }
2315 
2316 static DEFINE_MUTEX(mm_all_locks_mutex);
2317 
2318 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2319 {
2320 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2321 		/*
2322 		 * The LSB of head.next can't change from under us
2323 		 * because we hold the mm_all_locks_mutex.
2324 		 */
2325 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2326 		/*
2327 		 * We can safely modify head.next after taking the
2328 		 * anon_vma->lock. If some other vma in this mm shares
2329 		 * the same anon_vma we won't take it again.
2330 		 *
2331 		 * No need of atomic instructions here, head.next
2332 		 * can't change from under us thanks to the
2333 		 * anon_vma->lock.
2334 		 */
2335 		if (__test_and_set_bit(0, (unsigned long *)
2336 				       &anon_vma->head.next))
2337 			BUG();
2338 	}
2339 }
2340 
2341 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2342 {
2343 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2344 		/*
2345 		 * AS_MM_ALL_LOCKS can't change from under us because
2346 		 * we hold the mm_all_locks_mutex.
2347 		 *
2348 		 * Operations on ->flags have to be atomic because
2349 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2350 		 * mm_all_locks_mutex, there may be other cpus
2351 		 * changing other bitflags in parallel to us.
2352 		 */
2353 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2354 			BUG();
2355 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2356 	}
2357 }
2358 
2359 /*
2360  * This operation locks against the VM for all pte/vma/mm related
2361  * operations that could ever happen on a certain mm. This includes
2362  * vmtruncate, try_to_unmap, and all page faults.
2363  *
2364  * The caller must take the mmap_sem in write mode before calling
2365  * mm_take_all_locks(). The caller isn't allowed to release the
2366  * mmap_sem until mm_drop_all_locks() returns.
2367  *
2368  * mmap_sem in write mode is required in order to block all operations
2369  * that could modify pagetables and free pages without need of
2370  * altering the vma layout (for example populate_range() with
2371  * nonlinear vmas). It's also needed in write mode to avoid new
2372  * anon_vmas to be associated with existing vmas.
2373  *
2374  * A single task can't take more than one mm_take_all_locks() in a row
2375  * or it would deadlock.
2376  *
2377  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2378  * mapping->flags avoid to take the same lock twice, if more than one
2379  * vma in this mm is backed by the same anon_vma or address_space.
2380  *
2381  * We can take all the locks in random order because the VM code
2382  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2383  * takes more than one of them in a row. Secondly we're protected
2384  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2385  *
2386  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2387  * that may have to take thousand of locks.
2388  *
2389  * mm_take_all_locks() can fail if it's interrupted by signals.
2390  */
2391 int mm_take_all_locks(struct mm_struct *mm)
2392 {
2393 	struct vm_area_struct *vma;
2394 	int ret = -EINTR;
2395 
2396 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2397 
2398 	mutex_lock(&mm_all_locks_mutex);
2399 
2400 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2401 		if (signal_pending(current))
2402 			goto out_unlock;
2403 		if (vma->vm_file && vma->vm_file->f_mapping)
2404 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2405 	}
2406 
2407 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2408 		if (signal_pending(current))
2409 			goto out_unlock;
2410 		if (vma->anon_vma)
2411 			vm_lock_anon_vma(mm, vma->anon_vma);
2412 	}
2413 
2414 	ret = 0;
2415 
2416 out_unlock:
2417 	if (ret)
2418 		mm_drop_all_locks(mm);
2419 
2420 	return ret;
2421 }
2422 
2423 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2424 {
2425 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2426 		/*
2427 		 * The LSB of head.next can't change to 0 from under
2428 		 * us because we hold the mm_all_locks_mutex.
2429 		 *
2430 		 * We must however clear the bitflag before unlocking
2431 		 * the vma so the users using the anon_vma->head will
2432 		 * never see our bitflag.
2433 		 *
2434 		 * No need of atomic instructions here, head.next
2435 		 * can't change from under us until we release the
2436 		 * anon_vma->lock.
2437 		 */
2438 		if (!__test_and_clear_bit(0, (unsigned long *)
2439 					  &anon_vma->head.next))
2440 			BUG();
2441 		spin_unlock(&anon_vma->lock);
2442 	}
2443 }
2444 
2445 static void vm_unlock_mapping(struct address_space *mapping)
2446 {
2447 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2448 		/*
2449 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2450 		 * because we hold the mm_all_locks_mutex.
2451 		 */
2452 		spin_unlock(&mapping->i_mmap_lock);
2453 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2454 					&mapping->flags))
2455 			BUG();
2456 	}
2457 }
2458 
2459 /*
2460  * The mmap_sem cannot be released by the caller until
2461  * mm_drop_all_locks() returns.
2462  */
2463 void mm_drop_all_locks(struct mm_struct *mm)
2464 {
2465 	struct vm_area_struct *vma;
2466 
2467 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2468 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2469 
2470 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2471 		if (vma->anon_vma)
2472 			vm_unlock_anon_vma(vma->anon_vma);
2473 		if (vma->vm_file && vma->vm_file->f_mapping)
2474 			vm_unlock_mapping(vma->vm_file->f_mapping);
2475 	}
2476 
2477 	mutex_unlock(&mm_all_locks_mutex);
2478 }
2479 
2480 /*
2481  * initialise the VMA slab
2482  */
2483 void __init mmap_init(void)
2484 {
2485 	int ret;
2486 
2487 	ret = percpu_counter_init(&vm_committed_as, 0);
2488 	VM_BUG_ON(ret);
2489 }
2490