xref: /linux/mm/mmap.c (revision 61307b7be41a1f1039d1d1368810a1d92cb97b44)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 				      struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397 	struct file *file = vma->vm_file;
398 	struct address_space *mapping;
399 
400 	if (file) {
401 		mapping = file->f_mapping;
402 		i_mmap_lock_write(mapping);
403 		__vma_link_file(vma, mapping);
404 		i_mmap_unlock_write(mapping);
405 	}
406 }
407 
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410 	VMA_ITERATOR(vmi, mm, 0);
411 
412 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413 	if (vma_iter_prealloc(&vmi, vma))
414 		return -ENOMEM;
415 
416 	vma_start_write(vma);
417 	vma_iter_store(&vmi, vma);
418 	vma_link_file(vma);
419 	mm->map_count++;
420 	validate_mm(mm);
421 	return 0;
422 }
423 
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433 		struct vm_area_struct *vma, struct vm_area_struct *next,
434 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436 	memset(vp, 0, sizeof(struct vma_prepare));
437 	vp->vma = vma;
438 	vp->anon_vma = vma->anon_vma;
439 	vp->remove = remove;
440 	vp->remove2 = remove2;
441 	vp->adj_next = next;
442 	if (!vp->anon_vma && next)
443 		vp->anon_vma = next->anon_vma;
444 
445 	vp->file = vma->vm_file;
446 	if (vp->file)
447 		vp->mapping = vma->vm_file->f_mapping;
448 
449 }
450 
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457 				 struct vm_area_struct *vma)
458 {
459 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461 
462 
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469 	if (vp->file) {
470 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471 
472 		if (vp->adj_next)
473 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474 				      vp->adj_next->vm_end);
475 
476 		i_mmap_lock_write(vp->mapping);
477 		if (vp->insert && vp->insert->vm_file) {
478 			/*
479 			 * Put into interval tree now, so instantiated pages
480 			 * are visible to arm/parisc __flush_dcache_page
481 			 * throughout; but we cannot insert into address
482 			 * space until vma start or end is updated.
483 			 */
484 			__vma_link_file(vp->insert,
485 					vp->insert->vm_file->f_mapping);
486 		}
487 	}
488 
489 	if (vp->anon_vma) {
490 		anon_vma_lock_write(vp->anon_vma);
491 		anon_vma_interval_tree_pre_update_vma(vp->vma);
492 		if (vp->adj_next)
493 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494 	}
495 
496 	if (vp->file) {
497 		flush_dcache_mmap_lock(vp->mapping);
498 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499 		if (vp->adj_next)
500 			vma_interval_tree_remove(vp->adj_next,
501 						 &vp->mapping->i_mmap);
502 	}
503 
504 }
505 
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515 				struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517 	if (vp->file) {
518 		if (vp->adj_next)
519 			vma_interval_tree_insert(vp->adj_next,
520 						 &vp->mapping->i_mmap);
521 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522 		flush_dcache_mmap_unlock(vp->mapping);
523 	}
524 
525 	if (vp->remove && vp->file) {
526 		__remove_shared_vm_struct(vp->remove, vp->mapping);
527 		if (vp->remove2)
528 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
529 	} else if (vp->insert) {
530 		/*
531 		 * split_vma has split insert from vma, and needs
532 		 * us to insert it before dropping the locks
533 		 * (it may either follow vma or precede it).
534 		 */
535 		vma_iter_store(vmi, vp->insert);
536 		mm->map_count++;
537 	}
538 
539 	if (vp->anon_vma) {
540 		anon_vma_interval_tree_post_update_vma(vp->vma);
541 		if (vp->adj_next)
542 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
543 		anon_vma_unlock_write(vp->anon_vma);
544 	}
545 
546 	if (vp->file) {
547 		i_mmap_unlock_write(vp->mapping);
548 		uprobe_mmap(vp->vma);
549 
550 		if (vp->adj_next)
551 			uprobe_mmap(vp->adj_next);
552 	}
553 
554 	if (vp->remove) {
555 again:
556 		vma_mark_detached(vp->remove, true);
557 		if (vp->file) {
558 			uprobe_munmap(vp->remove, vp->remove->vm_start,
559 				      vp->remove->vm_end);
560 			fput(vp->file);
561 		}
562 		if (vp->remove->anon_vma)
563 			anon_vma_merge(vp->vma, vp->remove);
564 		mm->map_count--;
565 		mpol_put(vma_policy(vp->remove));
566 		if (!vp->remove2)
567 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568 		vm_area_free(vp->remove);
569 
570 		/*
571 		 * In mprotect's case 6 (see comments on vma_merge),
572 		 * we are removing both mid and next vmas
573 		 */
574 		if (vp->remove2) {
575 			vp->remove = vp->remove2;
576 			vp->remove2 = NULL;
577 			goto again;
578 		}
579 	}
580 	if (vp->insert && vp->file)
581 		uprobe_mmap(vp->insert);
582 	validate_mm(mm);
583 }
584 
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594 		struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596 	/*
597 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
598 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599 	 * anon pages imported.
600 	 */
601 	if (src->anon_vma && !dst->anon_vma) {
602 		int ret;
603 
604 		vma_assert_write_locked(dst);
605 		dst->anon_vma = src->anon_vma;
606 		ret = anon_vma_clone(dst, src);
607 		if (ret)
608 			return ret;
609 
610 		*dup = dst;
611 	}
612 
613 	return 0;
614 }
615 
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634 	       unsigned long start, unsigned long end, pgoff_t pgoff,
635 	       struct vm_area_struct *next)
636 {
637 	struct vm_area_struct *anon_dup = NULL;
638 	bool remove_next = false;
639 	struct vma_prepare vp;
640 
641 	vma_start_write(vma);
642 	if (next && (vma != next) && (end == next->vm_end)) {
643 		int ret;
644 
645 		remove_next = true;
646 		vma_start_write(next);
647 		ret = dup_anon_vma(vma, next, &anon_dup);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653 	/* Not merging but overwriting any part of next is not handled. */
654 	VM_WARN_ON(next && !vp.remove &&
655 		  next != vma && end > next->vm_start);
656 	/* Only handles expanding */
657 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658 
659 	/* Note: vma iterator must be pointing to 'start' */
660 	vma_iter_config(vmi, start, end);
661 	if (vma_iter_prealloc(vmi, vma))
662 		goto nomem;
663 
664 	vma_prepare(&vp);
665 	vma_adjust_trans_huge(vma, start, end, 0);
666 	vma_set_range(vma, start, end, pgoff);
667 	vma_iter_store(vmi, vma);
668 
669 	vma_complete(&vp, vmi, vma->vm_mm);
670 	return 0;
671 
672 nomem:
673 	if (anon_dup)
674 		unlink_anon_vmas(anon_dup);
675 	return -ENOMEM;
676 }
677 
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688 	       unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690 	struct vma_prepare vp;
691 
692 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693 
694 	if (vma->vm_start < start)
695 		vma_iter_config(vmi, vma->vm_start, start);
696 	else
697 		vma_iter_config(vmi, end, vma->vm_end);
698 
699 	if (vma_iter_prealloc(vmi, NULL))
700 		return -ENOMEM;
701 
702 	vma_start_write(vma);
703 
704 	init_vma_prep(&vp, vma);
705 	vma_prepare(&vp);
706 	vma_adjust_trans_huge(vma, start, end, 0);
707 
708 	vma_iter_clear(vmi);
709 	vma_set_range(vma, start, end, pgoff);
710 	vma_complete(&vp, vmi, vma->vm_mm);
711 	return 0;
712 }
713 
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720 		struct file *file, unsigned long vm_flags,
721 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722 		struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724 	/*
725 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726 	 * match the flags but dirty bit -- the caller should mark
727 	 * merged VMA as dirty. If dirty bit won't be excluded from
728 	 * comparison, we increase pressure on the memory system forcing
729 	 * the kernel to generate new VMAs when old one could be
730 	 * extended instead.
731 	 */
732 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733 		return false;
734 	if (vma->vm_file != file)
735 		return false;
736 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737 		return false;
738 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739 		return false;
740 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741 		return false;
742 	return true;
743 }
744 
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748 	/*
749 	 * The list_is_singular() test is to avoid merging VMA cloned from
750 	 * parents. This can improve scalability caused by anon_vma lock.
751 	 */
752 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
753 		list_is_singular(&vma->anon_vma_chain)))
754 		return true;
755 	return anon_vma1 == anon_vma2;
756 }
757 
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773 		struct anon_vma *anon_vma, struct file *file,
774 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775 		struct anon_vma_name *anon_name)
776 {
777 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779 		if (vma->vm_pgoff == vm_pgoff)
780 			return true;
781 	}
782 	return false;
783 }
784 
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796 		struct anon_vma *anon_vma, struct file *file,
797 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798 		struct anon_vma_name *anon_name)
799 {
800 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802 		pgoff_t vm_pglen;
803 		vm_pglen = vma_pages(vma);
804 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805 			return true;
806 	}
807 	return false;
808 }
809 
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
865 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867 	   struct anon_vma_name *anon_name)
868 {
869 	struct mm_struct *mm = src->vm_mm;
870 	struct anon_vma *anon_vma = src->anon_vma;
871 	struct file *file = src->vm_file;
872 	struct vm_area_struct *curr, *next, *res;
873 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
874 	struct vm_area_struct *anon_dup = NULL;
875 	struct vma_prepare vp;
876 	pgoff_t vma_pgoff;
877 	int err = 0;
878 	bool merge_prev = false;
879 	bool merge_next = false;
880 	bool vma_expanded = false;
881 	unsigned long vma_start = addr;
882 	unsigned long vma_end = end;
883 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884 	long adj_start = 0;
885 
886 	/*
887 	 * We later require that vma->vm_flags == vm_flags,
888 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
889 	 */
890 	if (vm_flags & VM_SPECIAL)
891 		return NULL;
892 
893 	/* Does the input range span an existing VMA? (cases 5 - 8) */
894 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895 
896 	if (!curr ||			/* cases 1 - 4 */
897 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
898 		next = vma_lookup(mm, end);
899 	else
900 		next = NULL;		/* case 5 */
901 
902 	if (prev) {
903 		vma_start = prev->vm_start;
904 		vma_pgoff = prev->vm_pgoff;
905 
906 		/* Can we merge the predecessor? */
907 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
910 			merge_prev = true;
911 			vma_prev(vmi);
912 		}
913 	}
914 
915 	/* Can we merge the successor? */
916 	if (next && mpol_equal(policy, vma_policy(next)) &&
917 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918 				 vm_userfaultfd_ctx, anon_name)) {
919 		merge_next = true;
920 	}
921 
922 	/* Verify some invariant that must be enforced by the caller. */
923 	VM_WARN_ON(prev && addr <= prev->vm_start);
924 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925 	VM_WARN_ON(addr >= end);
926 
927 	if (!merge_prev && !merge_next)
928 		return NULL; /* Not mergeable. */
929 
930 	if (merge_prev)
931 		vma_start_write(prev);
932 
933 	res = vma = prev;
934 	remove = remove2 = adjust = NULL;
935 
936 	/* Can we merge both the predecessor and the successor? */
937 	if (merge_prev && merge_next &&
938 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939 		vma_start_write(next);
940 		remove = next;				/* case 1 */
941 		vma_end = next->vm_end;
942 		err = dup_anon_vma(prev, next, &anon_dup);
943 		if (curr) {				/* case 6 */
944 			vma_start_write(curr);
945 			remove = curr;
946 			remove2 = next;
947 			/*
948 			 * Note that the dup_anon_vma below cannot overwrite err
949 			 * since the first caller would do nothing unless next
950 			 * has an anon_vma.
951 			 */
952 			if (!next->anon_vma)
953 				err = dup_anon_vma(prev, curr, &anon_dup);
954 		}
955 	} else if (merge_prev) {			/* case 2 */
956 		if (curr) {
957 			vma_start_write(curr);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				/*
960 				 * can_vma_merge_after() assumed we would not be
961 				 * removing prev vma, so it skipped the check
962 				 * for vm_ops->close, but we are removing curr
963 				 */
964 				if (curr->vm_ops && curr->vm_ops->close)
965 					err = -EINVAL;
966 				remove = curr;
967 			} else {			/* case 5 */
968 				adjust = curr;
969 				adj_start = (end - curr->vm_start);
970 			}
971 			if (!err)
972 				err = dup_anon_vma(prev, curr, &anon_dup);
973 		}
974 	} else { /* merge_next */
975 		vma_start_write(next);
976 		res = next;
977 		if (prev && addr < prev->vm_end) {	/* case 4 */
978 			vma_start_write(prev);
979 			vma_end = addr;
980 			adjust = next;
981 			adj_start = -(prev->vm_end - addr);
982 			err = dup_anon_vma(next, prev, &anon_dup);
983 		} else {
984 			/*
985 			 * Note that cases 3 and 8 are the ONLY ones where prev
986 			 * is permitted to be (but is not necessarily) NULL.
987 			 */
988 			vma = next;			/* case 3 */
989 			vma_start = addr;
990 			vma_end = next->vm_end;
991 			vma_pgoff = next->vm_pgoff - pglen;
992 			if (curr) {			/* case 8 */
993 				vma_pgoff = curr->vm_pgoff;
994 				vma_start_write(curr);
995 				remove = curr;
996 				err = dup_anon_vma(next, curr, &anon_dup);
997 			}
998 		}
999 	}
1000 
1001 	/* Error in anon_vma clone. */
1002 	if (err)
1003 		goto anon_vma_fail;
1004 
1005 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006 		vma_expanded = true;
1007 
1008 	if (vma_expanded) {
1009 		vma_iter_config(vmi, vma_start, vma_end);
1010 	} else {
1011 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012 				adjust->vm_end);
1013 	}
1014 
1015 	if (vma_iter_prealloc(vmi, vma))
1016 		goto prealloc_fail;
1017 
1018 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020 		   vp.anon_vma != adjust->anon_vma);
1021 
1022 	vma_prepare(&vp);
1023 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025 
1026 	if (vma_expanded)
1027 		vma_iter_store(vmi, vma);
1028 
1029 	if (adj_start) {
1030 		adjust->vm_start += adj_start;
1031 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032 		if (adj_start < 0) {
1033 			WARN_ON(vma_expanded);
1034 			vma_iter_store(vmi, next);
1035 		}
1036 	}
1037 
1038 	vma_complete(&vp, vmi, mm);
1039 	khugepaged_enter_vma(res, vm_flags);
1040 	return res;
1041 
1042 prealloc_fail:
1043 	if (anon_dup)
1044 		unlink_anon_vmas(anon_dup);
1045 
1046 anon_vma_fail:
1047 	vma_iter_set(vmi, addr);
1048 	vma_iter_load(vmi);
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067 	return a->vm_end == b->vm_start &&
1068 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069 		a->vm_file == b->vm_file &&
1070 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073 
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098 	if (anon_vma_compatible(a, b)) {
1099 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100 
1101 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102 			return anon_vma;
1103 	}
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117 	struct anon_vma *anon_vma = NULL;
1118 	struct vm_area_struct *prev, *next;
1119 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120 
1121 	/* Try next first. */
1122 	next = vma_iter_load(&vmi);
1123 	if (next) {
1124 		anon_vma = reusable_anon_vma(next, vma, next);
1125 		if (anon_vma)
1126 			return anon_vma;
1127 	}
1128 
1129 	prev = vma_prev(&vmi);
1130 	VM_BUG_ON_VMA(prev != vma, vma);
1131 	prev = vma_prev(&vmi);
1132 	/* Try prev next. */
1133 	if (prev)
1134 		anon_vma = reusable_anon_vma(prev, prev, vma);
1135 
1136 	/*
1137 	 * We might reach here with anon_vma == NULL if we can't find
1138 	 * any reusable anon_vma.
1139 	 * There's no absolute need to look only at touching neighbours:
1140 	 * we could search further afield for "compatible" anon_vmas.
1141 	 * But it would probably just be a waste of time searching,
1142 	 * or lead to too many vmas hanging off the same anon_vma.
1143 	 * We're trying to allow mprotect remerging later on,
1144 	 * not trying to minimize memory used for anon_vmas.
1145 	 */
1146 	return anon_vma;
1147 }
1148 
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155 	hint &= PAGE_MASK;
1156 	if (((void *)hint != NULL) &&
1157 	    (hint < mmap_min_addr))
1158 		return PAGE_ALIGN(mmap_min_addr);
1159 	return hint;
1160 }
1161 
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163 			unsigned long bytes)
1164 {
1165 	unsigned long locked_pages, limit_pages;
1166 
1167 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168 		return true;
1169 
1170 	locked_pages = bytes >> PAGE_SHIFT;
1171 	locked_pages += mm->locked_vm;
1172 
1173 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174 	limit_pages >>= PAGE_SHIFT;
1175 
1176 	return locked_pages <= limit_pages;
1177 }
1178 
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181 	if (S_ISREG(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	if (S_ISBLK(inode->i_mode))
1185 		return MAX_LFS_FILESIZE;
1186 
1187 	if (S_ISSOCK(inode->i_mode))
1188 		return MAX_LFS_FILESIZE;
1189 
1190 	/* Special "we do even unsigned file positions" case */
1191 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192 		return 0;
1193 
1194 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195 	return ULONG_MAX;
1196 }
1197 
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199 				unsigned long pgoff, unsigned long len)
1200 {
1201 	u64 maxsize = file_mmap_size_max(file, inode);
1202 
1203 	if (maxsize && len > maxsize)
1204 		return false;
1205 	maxsize -= len;
1206 	if (pgoff > maxsize >> PAGE_SHIFT)
1207 		return false;
1208 	return true;
1209 }
1210 
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215 			unsigned long len, unsigned long prot,
1216 			unsigned long flags, vm_flags_t vm_flags,
1217 			unsigned long pgoff, unsigned long *populate,
1218 			struct list_head *uf)
1219 {
1220 	struct mm_struct *mm = current->mm;
1221 	int pkey = 0;
1222 
1223 	*populate = 0;
1224 
1225 	if (!len)
1226 		return -EINVAL;
1227 
1228 	/*
1229 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230 	 *
1231 	 * (the exception is when the underlying filesystem is noexec
1232 	 *  mounted, in which case we don't add PROT_EXEC.)
1233 	 */
1234 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235 		if (!(file && path_noexec(&file->f_path)))
1236 			prot |= PROT_EXEC;
1237 
1238 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239 	if (flags & MAP_FIXED_NOREPLACE)
1240 		flags |= MAP_FIXED;
1241 
1242 	if (!(flags & MAP_FIXED))
1243 		addr = round_hint_to_min(addr);
1244 
1245 	/* Careful about overflows.. */
1246 	len = PAGE_ALIGN(len);
1247 	if (!len)
1248 		return -ENOMEM;
1249 
1250 	/* offset overflow? */
1251 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252 		return -EOVERFLOW;
1253 
1254 	/* Too many mappings? */
1255 	if (mm->map_count > sysctl_max_map_count)
1256 		return -ENOMEM;
1257 
1258 	if (prot == PROT_EXEC) {
1259 		pkey = execute_only_pkey(mm);
1260 		if (pkey < 0)
1261 			pkey = 0;
1262 	}
1263 
1264 	/* Do simple checking here so the lower-level routines won't have
1265 	 * to. we assume access permissions have been handled by the open
1266 	 * of the memory object, so we don't do any here.
1267 	 */
1268 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1270 
1271 	/* Obtain the address to map to. we verify (or select) it and ensure
1272 	 * that it represents a valid section of the address space.
1273 	 */
1274 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1275 	if (IS_ERR_VALUE(addr))
1276 		return addr;
1277 
1278 	if (flags & MAP_FIXED_NOREPLACE) {
1279 		if (find_vma_intersection(mm, addr, addr + len))
1280 			return -EEXIST;
1281 	}
1282 
1283 	if (flags & MAP_LOCKED)
1284 		if (!can_do_mlock())
1285 			return -EPERM;
1286 
1287 	if (!mlock_future_ok(mm, vm_flags, len))
1288 		return -EAGAIN;
1289 
1290 	if (file) {
1291 		struct inode *inode = file_inode(file);
1292 		unsigned long flags_mask;
1293 
1294 		if (!file_mmap_ok(file, inode, pgoff, len))
1295 			return -EOVERFLOW;
1296 
1297 		flags_mask = LEGACY_MAP_MASK;
1298 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1299 			flags_mask |= MAP_SYNC;
1300 
1301 		switch (flags & MAP_TYPE) {
1302 		case MAP_SHARED:
1303 			/*
1304 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305 			 * flags. E.g. MAP_SYNC is dangerous to use with
1306 			 * MAP_SHARED as you don't know which consistency model
1307 			 * you will get. We silently ignore unsupported flags
1308 			 * with MAP_SHARED to preserve backward compatibility.
1309 			 */
1310 			flags &= LEGACY_MAP_MASK;
1311 			fallthrough;
1312 		case MAP_SHARED_VALIDATE:
1313 			if (flags & ~flags_mask)
1314 				return -EOPNOTSUPP;
1315 			if (prot & PROT_WRITE) {
1316 				if (!(file->f_mode & FMODE_WRITE))
1317 					return -EACCES;
1318 				if (IS_SWAPFILE(file->f_mapping->host))
1319 					return -ETXTBSY;
1320 			}
1321 
1322 			/*
1323 			 * Make sure we don't allow writing to an append-only
1324 			 * file..
1325 			 */
1326 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327 				return -EACCES;
1328 
1329 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1330 			if (!(file->f_mode & FMODE_WRITE))
1331 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332 			fallthrough;
1333 		case MAP_PRIVATE:
1334 			if (!(file->f_mode & FMODE_READ))
1335 				return -EACCES;
1336 			if (path_noexec(&file->f_path)) {
1337 				if (vm_flags & VM_EXEC)
1338 					return -EPERM;
1339 				vm_flags &= ~VM_MAYEXEC;
1340 			}
1341 
1342 			if (!file->f_op->mmap)
1343 				return -ENODEV;
1344 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345 				return -EINVAL;
1346 			break;
1347 
1348 		default:
1349 			return -EINVAL;
1350 		}
1351 	} else {
1352 		switch (flags & MAP_TYPE) {
1353 		case MAP_SHARED:
1354 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 				return -EINVAL;
1356 			/*
1357 			 * Ignore pgoff.
1358 			 */
1359 			pgoff = 0;
1360 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1361 			break;
1362 		case MAP_PRIVATE:
1363 			/*
1364 			 * Set pgoff according to addr for anon_vma.
1365 			 */
1366 			pgoff = addr >> PAGE_SHIFT;
1367 			break;
1368 		default:
1369 			return -EINVAL;
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Set 'VM_NORESERVE' if we should not account for the
1375 	 * memory use of this mapping.
1376 	 */
1377 	if (flags & MAP_NORESERVE) {
1378 		/* We honor MAP_NORESERVE if allowed to overcommit */
1379 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380 			vm_flags |= VM_NORESERVE;
1381 
1382 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383 		if (file && is_file_hugepages(file))
1384 			vm_flags |= VM_NORESERVE;
1385 	}
1386 
1387 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388 	if (!IS_ERR_VALUE(addr) &&
1389 	    ((vm_flags & VM_LOCKED) ||
1390 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391 		*populate = len;
1392 	return addr;
1393 }
1394 
1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396 			      unsigned long prot, unsigned long flags,
1397 			      unsigned long fd, unsigned long pgoff)
1398 {
1399 	struct file *file = NULL;
1400 	unsigned long retval;
1401 
1402 	if (!(flags & MAP_ANONYMOUS)) {
1403 		audit_mmap_fd(fd, flags);
1404 		file = fget(fd);
1405 		if (!file)
1406 			return -EBADF;
1407 		if (is_file_hugepages(file)) {
1408 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1409 		} else if (unlikely(flags & MAP_HUGETLB)) {
1410 			retval = -EINVAL;
1411 			goto out_fput;
1412 		}
1413 	} else if (flags & MAP_HUGETLB) {
1414 		struct hstate *hs;
1415 
1416 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417 		if (!hs)
1418 			return -EINVAL;
1419 
1420 		len = ALIGN(len, huge_page_size(hs));
1421 		/*
1422 		 * VM_NORESERVE is used because the reservations will be
1423 		 * taken when vm_ops->mmap() is called
1424 		 */
1425 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426 				VM_NORESERVE,
1427 				HUGETLB_ANONHUGE_INODE,
1428 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429 		if (IS_ERR(file))
1430 			return PTR_ERR(file);
1431 	}
1432 
1433 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434 out_fput:
1435 	if (file)
1436 		fput(file);
1437 	return retval;
1438 }
1439 
1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441 		unsigned long, prot, unsigned long, flags,
1442 		unsigned long, fd, unsigned long, pgoff)
1443 {
1444 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445 }
1446 
1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1448 struct mmap_arg_struct {
1449 	unsigned long addr;
1450 	unsigned long len;
1451 	unsigned long prot;
1452 	unsigned long flags;
1453 	unsigned long fd;
1454 	unsigned long offset;
1455 };
1456 
1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458 {
1459 	struct mmap_arg_struct a;
1460 
1461 	if (copy_from_user(&a, arg, sizeof(a)))
1462 		return -EFAULT;
1463 	if (offset_in_page(a.offset))
1464 		return -EINVAL;
1465 
1466 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467 			       a.offset >> PAGE_SHIFT);
1468 }
1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470 
1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472 {
1473 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474 }
1475 
1476 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477 {
1478 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479 		(VM_WRITE | VM_SHARED);
1480 }
1481 
1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483 {
1484 	/* No managed pages to writeback. */
1485 	if (vma->vm_flags & VM_PFNMAP)
1486 		return false;
1487 
1488 	return vma->vm_file && vma->vm_file->f_mapping &&
1489 		mapping_can_writeback(vma->vm_file->f_mapping);
1490 }
1491 
1492 /*
1493  * Does this VMA require the underlying folios to have their dirty state
1494  * tracked?
1495  */
1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497 {
1498 	/* Only shared, writable VMAs require dirty tracking. */
1499 	if (!vma_is_shared_writable(vma))
1500 		return false;
1501 
1502 	/* Does the filesystem need to be notified? */
1503 	if (vm_ops_needs_writenotify(vma->vm_ops))
1504 		return true;
1505 
1506 	/*
1507 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1508 	 * can writeback, dirty tracking is still required.
1509 	 */
1510 	return vma_fs_can_writeback(vma);
1511 }
1512 
1513 /*
1514  * Some shared mappings will want the pages marked read-only
1515  * to track write events. If so, we'll downgrade vm_page_prot
1516  * to the private version (using protection_map[] without the
1517  * VM_SHARED bit).
1518  */
1519 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520 {
1521 	/* If it was private or non-writable, the write bit is already clear */
1522 	if (!vma_is_shared_writable(vma))
1523 		return false;
1524 
1525 	/* The backer wishes to know when pages are first written to? */
1526 	if (vm_ops_needs_writenotify(vma->vm_ops))
1527 		return true;
1528 
1529 	/* The open routine did something to the protections that pgprot_modify
1530 	 * won't preserve? */
1531 	if (pgprot_val(vm_page_prot) !=
1532 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533 		return false;
1534 
1535 	/*
1536 	 * Do we need to track softdirty? hugetlb does not support softdirty
1537 	 * tracking yet.
1538 	 */
1539 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540 		return true;
1541 
1542 	/* Do we need write faults for uffd-wp tracking? */
1543 	if (userfaultfd_wp(vma))
1544 		return true;
1545 
1546 	/* Can the mapping track the dirty pages? */
1547 	return vma_fs_can_writeback(vma);
1548 }
1549 
1550 /*
1551  * We account for memory if it's a private writeable mapping,
1552  * not hugepages and VM_NORESERVE wasn't set.
1553  */
1554 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555 {
1556 	/*
1557 	 * hugetlb has its own accounting separate from the core VM
1558 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559 	 */
1560 	if (file && is_file_hugepages(file))
1561 		return false;
1562 
1563 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564 }
1565 
1566 /**
1567  * unmapped_area() - Find an area between the low_limit and the high_limit with
1568  * the correct alignment and offset, all from @info. Note: current->mm is used
1569  * for the search.
1570  *
1571  * @info: The unmapped area information including the range [low_limit -
1572  * high_limit), the alignment offset and mask.
1573  *
1574  * Return: A memory address or -ENOMEM.
1575  */
1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578 	unsigned long length, gap;
1579 	unsigned long low_limit, high_limit;
1580 	struct vm_area_struct *tmp;
1581 	VMA_ITERATOR(vmi, current->mm, 0);
1582 
1583 	/* Adjust search length to account for worst case alignment overhead */
1584 	length = info->length + info->align_mask + info->start_gap;
1585 	if (length < info->length)
1586 		return -ENOMEM;
1587 
1588 	low_limit = info->low_limit;
1589 	if (low_limit < mmap_min_addr)
1590 		low_limit = mmap_min_addr;
1591 	high_limit = info->high_limit;
1592 retry:
1593 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1594 		return -ENOMEM;
1595 
1596 	/*
1597 	 * Adjust for the gap first so it doesn't interfere with the
1598 	 * later alignment. The first step is the minimum needed to
1599 	 * fulill the start gap, the next steps is the minimum to align
1600 	 * that. It is the minimum needed to fulill both.
1601 	 */
1602 	gap = vma_iter_addr(&vmi) + info->start_gap;
1603 	gap += (info->align_offset - gap) & info->align_mask;
1604 	tmp = vma_next(&vmi);
1605 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1606 		if (vm_start_gap(tmp) < gap + length - 1) {
1607 			low_limit = tmp->vm_end;
1608 			vma_iter_reset(&vmi);
1609 			goto retry;
1610 		}
1611 	} else {
1612 		tmp = vma_prev(&vmi);
1613 		if (tmp && vm_end_gap(tmp) > gap) {
1614 			low_limit = vm_end_gap(tmp);
1615 			vma_iter_reset(&vmi);
1616 			goto retry;
1617 		}
1618 	}
1619 
1620 	return gap;
1621 }
1622 
1623 /**
1624  * unmapped_area_topdown() - Find an area between the low_limit and the
1625  * high_limit with the correct alignment and offset at the highest available
1626  * address, all from @info. Note: current->mm is used for the search.
1627  *
1628  * @info: The unmapped area information including the range [low_limit -
1629  * high_limit), the alignment offset and mask.
1630  *
1631  * Return: A memory address or -ENOMEM.
1632  */
1633 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1634 {
1635 	unsigned long length, gap, gap_end;
1636 	unsigned long low_limit, high_limit;
1637 	struct vm_area_struct *tmp;
1638 	VMA_ITERATOR(vmi, current->mm, 0);
1639 
1640 	/* Adjust search length to account for worst case alignment overhead */
1641 	length = info->length + info->align_mask + info->start_gap;
1642 	if (length < info->length)
1643 		return -ENOMEM;
1644 
1645 	low_limit = info->low_limit;
1646 	if (low_limit < mmap_min_addr)
1647 		low_limit = mmap_min_addr;
1648 	high_limit = info->high_limit;
1649 retry:
1650 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1651 		return -ENOMEM;
1652 
1653 	gap = vma_iter_end(&vmi) - info->length;
1654 	gap -= (gap - info->align_offset) & info->align_mask;
1655 	gap_end = vma_iter_end(&vmi);
1656 	tmp = vma_next(&vmi);
1657 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1658 		if (vm_start_gap(tmp) < gap_end) {
1659 			high_limit = vm_start_gap(tmp);
1660 			vma_iter_reset(&vmi);
1661 			goto retry;
1662 		}
1663 	} else {
1664 		tmp = vma_prev(&vmi);
1665 		if (tmp && vm_end_gap(tmp) > gap) {
1666 			high_limit = tmp->vm_start;
1667 			vma_iter_reset(&vmi);
1668 			goto retry;
1669 		}
1670 	}
1671 
1672 	return gap;
1673 }
1674 
1675 /*
1676  * Search for an unmapped address range.
1677  *
1678  * We are looking for a range that:
1679  * - does not intersect with any VMA;
1680  * - is contained within the [low_limit, high_limit) interval;
1681  * - is at least the desired size.
1682  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1683  */
1684 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1685 {
1686 	unsigned long addr;
1687 
1688 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1689 		addr = unmapped_area_topdown(info);
1690 	else
1691 		addr = unmapped_area(info);
1692 
1693 	trace_vm_unmapped_area(addr, info);
1694 	return addr;
1695 }
1696 
1697 /* Get an address range which is currently unmapped.
1698  * For shmat() with addr=0.
1699  *
1700  * Ugly calling convention alert:
1701  * Return value with the low bits set means error value,
1702  * ie
1703  *	if (ret & ~PAGE_MASK)
1704  *		error = ret;
1705  *
1706  * This function "knows" that -ENOMEM has the bits set.
1707  */
1708 unsigned long
1709 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1710 			  unsigned long len, unsigned long pgoff,
1711 			  unsigned long flags)
1712 {
1713 	struct mm_struct *mm = current->mm;
1714 	struct vm_area_struct *vma, *prev;
1715 	struct vm_unmapped_area_info info = {};
1716 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1717 
1718 	if (len > mmap_end - mmap_min_addr)
1719 		return -ENOMEM;
1720 
1721 	if (flags & MAP_FIXED)
1722 		return addr;
1723 
1724 	if (addr) {
1725 		addr = PAGE_ALIGN(addr);
1726 		vma = find_vma_prev(mm, addr, &prev);
1727 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1728 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1729 		    (!prev || addr >= vm_end_gap(prev)))
1730 			return addr;
1731 	}
1732 
1733 	info.length = len;
1734 	info.low_limit = mm->mmap_base;
1735 	info.high_limit = mmap_end;
1736 	return vm_unmapped_area(&info);
1737 }
1738 
1739 #ifndef HAVE_ARCH_UNMAPPED_AREA
1740 unsigned long
1741 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1742 		       unsigned long len, unsigned long pgoff,
1743 		       unsigned long flags)
1744 {
1745 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1746 }
1747 #endif
1748 
1749 /*
1750  * This mmap-allocator allocates new areas top-down from below the
1751  * stack's low limit (the base):
1752  */
1753 unsigned long
1754 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1755 				  unsigned long len, unsigned long pgoff,
1756 				  unsigned long flags)
1757 {
1758 	struct vm_area_struct *vma, *prev;
1759 	struct mm_struct *mm = current->mm;
1760 	struct vm_unmapped_area_info info = {};
1761 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1762 
1763 	/* requested length too big for entire address space */
1764 	if (len > mmap_end - mmap_min_addr)
1765 		return -ENOMEM;
1766 
1767 	if (flags & MAP_FIXED)
1768 		return addr;
1769 
1770 	/* requesting a specific address */
1771 	if (addr) {
1772 		addr = PAGE_ALIGN(addr);
1773 		vma = find_vma_prev(mm, addr, &prev);
1774 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1775 				(!vma || addr + len <= vm_start_gap(vma)) &&
1776 				(!prev || addr >= vm_end_gap(prev)))
1777 			return addr;
1778 	}
1779 
1780 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1781 	info.length = len;
1782 	info.low_limit = PAGE_SIZE;
1783 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1784 	addr = vm_unmapped_area(&info);
1785 
1786 	/*
1787 	 * A failed mmap() very likely causes application failure,
1788 	 * so fall back to the bottom-up function here. This scenario
1789 	 * can happen with large stack limits and large mmap()
1790 	 * allocations.
1791 	 */
1792 	if (offset_in_page(addr)) {
1793 		VM_BUG_ON(addr != -ENOMEM);
1794 		info.flags = 0;
1795 		info.low_limit = TASK_UNMAPPED_BASE;
1796 		info.high_limit = mmap_end;
1797 		addr = vm_unmapped_area(&info);
1798 	}
1799 
1800 	return addr;
1801 }
1802 
1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804 unsigned long
1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806 			       unsigned long len, unsigned long pgoff,
1807 			       unsigned long flags)
1808 {
1809 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810 }
1811 #endif
1812 
1813 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1814 unsigned long
1815 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1816 			       unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1817 {
1818 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1819 }
1820 
1821 unsigned long
1822 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1823 				       unsigned long len, unsigned long pgoff,
1824 				       unsigned long flags, vm_flags_t vm_flags)
1825 {
1826 	return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1827 }
1828 #endif
1829 
1830 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1831 					   unsigned long addr, unsigned long len,
1832 					   unsigned long pgoff, unsigned long flags,
1833 					   vm_flags_t vm_flags)
1834 {
1835 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1836 		return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1837 							      flags, vm_flags);
1838 	return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1839 }
1840 
1841 unsigned long
1842 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1843 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1844 {
1845 	unsigned long (*get_area)(struct file *, unsigned long,
1846 				  unsigned long, unsigned long, unsigned long)
1847 				  = NULL;
1848 
1849 	unsigned long error = arch_mmap_check(addr, len, flags);
1850 	if (error)
1851 		return error;
1852 
1853 	/* Careful about overflows.. */
1854 	if (len > TASK_SIZE)
1855 		return -ENOMEM;
1856 
1857 	if (file) {
1858 		if (file->f_op->get_unmapped_area)
1859 			get_area = file->f_op->get_unmapped_area;
1860 	} else if (flags & MAP_SHARED) {
1861 		/*
1862 		 * mmap_region() will call shmem_zero_setup() to create a file,
1863 		 * so use shmem's get_unmapped_area in case it can be huge.
1864 		 */
1865 		get_area = shmem_get_unmapped_area;
1866 	}
1867 
1868 	/* Always treat pgoff as zero for anonymous memory. */
1869 	if (!file)
1870 		pgoff = 0;
1871 
1872 	if (get_area) {
1873 		addr = get_area(file, addr, len, pgoff, flags);
1874 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1875 		/* Ensures that larger anonymous mappings are THP aligned. */
1876 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
1877 						     pgoff, flags, vm_flags);
1878 	} else {
1879 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1880 						    pgoff, flags, vm_flags);
1881 	}
1882 	if (IS_ERR_VALUE(addr))
1883 		return addr;
1884 
1885 	if (addr > TASK_SIZE - len)
1886 		return -ENOMEM;
1887 	if (offset_in_page(addr))
1888 		return -EINVAL;
1889 
1890 	error = security_mmap_addr(addr);
1891 	return error ? error : addr;
1892 }
1893 
1894 unsigned long
1895 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1896 		     unsigned long addr, unsigned long len,
1897 		     unsigned long pgoff, unsigned long flags)
1898 {
1899 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1900 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1901 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1902 }
1903 EXPORT_SYMBOL(mm_get_unmapped_area);
1904 
1905 /**
1906  * find_vma_intersection() - Look up the first VMA which intersects the interval
1907  * @mm: The process address space.
1908  * @start_addr: The inclusive start user address.
1909  * @end_addr: The exclusive end user address.
1910  *
1911  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1912  * start_addr < end_addr.
1913  */
1914 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1915 					     unsigned long start_addr,
1916 					     unsigned long end_addr)
1917 {
1918 	unsigned long index = start_addr;
1919 
1920 	mmap_assert_locked(mm);
1921 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1922 }
1923 EXPORT_SYMBOL(find_vma_intersection);
1924 
1925 /**
1926  * find_vma() - Find the VMA for a given address, or the next VMA.
1927  * @mm: The mm_struct to check
1928  * @addr: The address
1929  *
1930  * Returns: The VMA associated with addr, or the next VMA.
1931  * May return %NULL in the case of no VMA at addr or above.
1932  */
1933 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1934 {
1935 	unsigned long index = addr;
1936 
1937 	mmap_assert_locked(mm);
1938 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1939 }
1940 EXPORT_SYMBOL(find_vma);
1941 
1942 /**
1943  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1944  * set %pprev to the previous VMA, if any.
1945  * @mm: The mm_struct to check
1946  * @addr: The address
1947  * @pprev: The pointer to set to the previous VMA
1948  *
1949  * Note that RCU lock is missing here since the external mmap_lock() is used
1950  * instead.
1951  *
1952  * Returns: The VMA associated with @addr, or the next vma.
1953  * May return %NULL in the case of no vma at addr or above.
1954  */
1955 struct vm_area_struct *
1956 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1957 			struct vm_area_struct **pprev)
1958 {
1959 	struct vm_area_struct *vma;
1960 	VMA_ITERATOR(vmi, mm, addr);
1961 
1962 	vma = vma_iter_load(&vmi);
1963 	*pprev = vma_prev(&vmi);
1964 	if (!vma)
1965 		vma = vma_next(&vmi);
1966 	return vma;
1967 }
1968 
1969 /*
1970  * Verify that the stack growth is acceptable and
1971  * update accounting. This is shared with both the
1972  * grow-up and grow-down cases.
1973  */
1974 static int acct_stack_growth(struct vm_area_struct *vma,
1975 			     unsigned long size, unsigned long grow)
1976 {
1977 	struct mm_struct *mm = vma->vm_mm;
1978 	unsigned long new_start;
1979 
1980 	/* address space limit tests */
1981 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1982 		return -ENOMEM;
1983 
1984 	/* Stack limit test */
1985 	if (size > rlimit(RLIMIT_STACK))
1986 		return -ENOMEM;
1987 
1988 	/* mlock limit tests */
1989 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1990 		return -ENOMEM;
1991 
1992 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1993 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1994 			vma->vm_end - size;
1995 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1996 		return -EFAULT;
1997 
1998 	/*
1999 	 * Overcommit..  This must be the final test, as it will
2000 	 * update security statistics.
2001 	 */
2002 	if (security_vm_enough_memory_mm(mm, grow))
2003 		return -ENOMEM;
2004 
2005 	return 0;
2006 }
2007 
2008 #if defined(CONFIG_STACK_GROWSUP)
2009 /*
2010  * PA-RISC uses this for its stack.
2011  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2012  */
2013 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2014 {
2015 	struct mm_struct *mm = vma->vm_mm;
2016 	struct vm_area_struct *next;
2017 	unsigned long gap_addr;
2018 	int error = 0;
2019 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2020 
2021 	if (!(vma->vm_flags & VM_GROWSUP))
2022 		return -EFAULT;
2023 
2024 	/* Guard against exceeding limits of the address space. */
2025 	address &= PAGE_MASK;
2026 	if (address >= (TASK_SIZE & PAGE_MASK))
2027 		return -ENOMEM;
2028 	address += PAGE_SIZE;
2029 
2030 	/* Enforce stack_guard_gap */
2031 	gap_addr = address + stack_guard_gap;
2032 
2033 	/* Guard against overflow */
2034 	if (gap_addr < address || gap_addr > TASK_SIZE)
2035 		gap_addr = TASK_SIZE;
2036 
2037 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2038 	if (next && vma_is_accessible(next)) {
2039 		if (!(next->vm_flags & VM_GROWSUP))
2040 			return -ENOMEM;
2041 		/* Check that both stack segments have the same anon_vma? */
2042 	}
2043 
2044 	if (next)
2045 		vma_iter_prev_range_limit(&vmi, address);
2046 
2047 	vma_iter_config(&vmi, vma->vm_start, address);
2048 	if (vma_iter_prealloc(&vmi, vma))
2049 		return -ENOMEM;
2050 
2051 	/* We must make sure the anon_vma is allocated. */
2052 	if (unlikely(anon_vma_prepare(vma))) {
2053 		vma_iter_free(&vmi);
2054 		return -ENOMEM;
2055 	}
2056 
2057 	/* Lock the VMA before expanding to prevent concurrent page faults */
2058 	vma_start_write(vma);
2059 	/*
2060 	 * vma->vm_start/vm_end cannot change under us because the caller
2061 	 * is required to hold the mmap_lock in read mode.  We need the
2062 	 * anon_vma lock to serialize against concurrent expand_stacks.
2063 	 */
2064 	anon_vma_lock_write(vma->anon_vma);
2065 
2066 	/* Somebody else might have raced and expanded it already */
2067 	if (address > vma->vm_end) {
2068 		unsigned long size, grow;
2069 
2070 		size = address - vma->vm_start;
2071 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2072 
2073 		error = -ENOMEM;
2074 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2075 			error = acct_stack_growth(vma, size, grow);
2076 			if (!error) {
2077 				/*
2078 				 * We only hold a shared mmap_lock lock here, so
2079 				 * we need to protect against concurrent vma
2080 				 * expansions.  anon_vma_lock_write() doesn't
2081 				 * help here, as we don't guarantee that all
2082 				 * growable vmas in a mm share the same root
2083 				 * anon vma.  So, we reuse mm->page_table_lock
2084 				 * to guard against concurrent vma expansions.
2085 				 */
2086 				spin_lock(&mm->page_table_lock);
2087 				if (vma->vm_flags & VM_LOCKED)
2088 					mm->locked_vm += grow;
2089 				vm_stat_account(mm, vma->vm_flags, grow);
2090 				anon_vma_interval_tree_pre_update_vma(vma);
2091 				vma->vm_end = address;
2092 				/* Overwrite old entry in mtree. */
2093 				vma_iter_store(&vmi, vma);
2094 				anon_vma_interval_tree_post_update_vma(vma);
2095 				spin_unlock(&mm->page_table_lock);
2096 
2097 				perf_event_mmap(vma);
2098 			}
2099 		}
2100 	}
2101 	anon_vma_unlock_write(vma->anon_vma);
2102 	vma_iter_free(&vmi);
2103 	validate_mm(mm);
2104 	return error;
2105 }
2106 #endif /* CONFIG_STACK_GROWSUP */
2107 
2108 /*
2109  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2110  * mmap_lock held for writing.
2111  */
2112 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2113 {
2114 	struct mm_struct *mm = vma->vm_mm;
2115 	struct vm_area_struct *prev;
2116 	int error = 0;
2117 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2118 
2119 	if (!(vma->vm_flags & VM_GROWSDOWN))
2120 		return -EFAULT;
2121 
2122 	address &= PAGE_MASK;
2123 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2124 		return -EPERM;
2125 
2126 	/* Enforce stack_guard_gap */
2127 	prev = vma_prev(&vmi);
2128 	/* Check that both stack segments have the same anon_vma? */
2129 	if (prev) {
2130 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2131 		    vma_is_accessible(prev) &&
2132 		    (address - prev->vm_end < stack_guard_gap))
2133 			return -ENOMEM;
2134 	}
2135 
2136 	if (prev)
2137 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2138 
2139 	vma_iter_config(&vmi, address, vma->vm_end);
2140 	if (vma_iter_prealloc(&vmi, vma))
2141 		return -ENOMEM;
2142 
2143 	/* We must make sure the anon_vma is allocated. */
2144 	if (unlikely(anon_vma_prepare(vma))) {
2145 		vma_iter_free(&vmi);
2146 		return -ENOMEM;
2147 	}
2148 
2149 	/* Lock the VMA before expanding to prevent concurrent page faults */
2150 	vma_start_write(vma);
2151 	/*
2152 	 * vma->vm_start/vm_end cannot change under us because the caller
2153 	 * is required to hold the mmap_lock in read mode.  We need the
2154 	 * anon_vma lock to serialize against concurrent expand_stacks.
2155 	 */
2156 	anon_vma_lock_write(vma->anon_vma);
2157 
2158 	/* Somebody else might have raced and expanded it already */
2159 	if (address < vma->vm_start) {
2160 		unsigned long size, grow;
2161 
2162 		size = vma->vm_end - address;
2163 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2164 
2165 		error = -ENOMEM;
2166 		if (grow <= vma->vm_pgoff) {
2167 			error = acct_stack_growth(vma, size, grow);
2168 			if (!error) {
2169 				/*
2170 				 * We only hold a shared mmap_lock lock here, so
2171 				 * we need to protect against concurrent vma
2172 				 * expansions.  anon_vma_lock_write() doesn't
2173 				 * help here, as we don't guarantee that all
2174 				 * growable vmas in a mm share the same root
2175 				 * anon vma.  So, we reuse mm->page_table_lock
2176 				 * to guard against concurrent vma expansions.
2177 				 */
2178 				spin_lock(&mm->page_table_lock);
2179 				if (vma->vm_flags & VM_LOCKED)
2180 					mm->locked_vm += grow;
2181 				vm_stat_account(mm, vma->vm_flags, grow);
2182 				anon_vma_interval_tree_pre_update_vma(vma);
2183 				vma->vm_start = address;
2184 				vma->vm_pgoff -= grow;
2185 				/* Overwrite old entry in mtree. */
2186 				vma_iter_store(&vmi, vma);
2187 				anon_vma_interval_tree_post_update_vma(vma);
2188 				spin_unlock(&mm->page_table_lock);
2189 
2190 				perf_event_mmap(vma);
2191 			}
2192 		}
2193 	}
2194 	anon_vma_unlock_write(vma->anon_vma);
2195 	vma_iter_free(&vmi);
2196 	validate_mm(mm);
2197 	return error;
2198 }
2199 
2200 /* enforced gap between the expanding stack and other mappings. */
2201 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2202 
2203 static int __init cmdline_parse_stack_guard_gap(char *p)
2204 {
2205 	unsigned long val;
2206 	char *endptr;
2207 
2208 	val = simple_strtoul(p, &endptr, 10);
2209 	if (!*endptr)
2210 		stack_guard_gap = val << PAGE_SHIFT;
2211 
2212 	return 1;
2213 }
2214 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2215 
2216 #ifdef CONFIG_STACK_GROWSUP
2217 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2218 {
2219 	return expand_upwards(vma, address);
2220 }
2221 
2222 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2223 {
2224 	struct vm_area_struct *vma, *prev;
2225 
2226 	addr &= PAGE_MASK;
2227 	vma = find_vma_prev(mm, addr, &prev);
2228 	if (vma && (vma->vm_start <= addr))
2229 		return vma;
2230 	if (!prev)
2231 		return NULL;
2232 	if (expand_stack_locked(prev, addr))
2233 		return NULL;
2234 	if (prev->vm_flags & VM_LOCKED)
2235 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2236 	return prev;
2237 }
2238 #else
2239 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2240 {
2241 	return expand_downwards(vma, address);
2242 }
2243 
2244 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2245 {
2246 	struct vm_area_struct *vma;
2247 	unsigned long start;
2248 
2249 	addr &= PAGE_MASK;
2250 	vma = find_vma(mm, addr);
2251 	if (!vma)
2252 		return NULL;
2253 	if (vma->vm_start <= addr)
2254 		return vma;
2255 	start = vma->vm_start;
2256 	if (expand_stack_locked(vma, addr))
2257 		return NULL;
2258 	if (vma->vm_flags & VM_LOCKED)
2259 		populate_vma_page_range(vma, addr, start, NULL);
2260 	return vma;
2261 }
2262 #endif
2263 
2264 #if defined(CONFIG_STACK_GROWSUP)
2265 
2266 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2267 #define vma_expand_down(vma, addr) (-EFAULT)
2268 
2269 #else
2270 
2271 #define vma_expand_up(vma,addr) (-EFAULT)
2272 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2273 
2274 #endif
2275 
2276 /*
2277  * expand_stack(): legacy interface for page faulting. Don't use unless
2278  * you have to.
2279  *
2280  * This is called with the mm locked for reading, drops the lock, takes
2281  * the lock for writing, tries to look up a vma again, expands it if
2282  * necessary, and downgrades the lock to reading again.
2283  *
2284  * If no vma is found or it can't be expanded, it returns NULL and has
2285  * dropped the lock.
2286  */
2287 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2288 {
2289 	struct vm_area_struct *vma, *prev;
2290 
2291 	mmap_read_unlock(mm);
2292 	if (mmap_write_lock_killable(mm))
2293 		return NULL;
2294 
2295 	vma = find_vma_prev(mm, addr, &prev);
2296 	if (vma && vma->vm_start <= addr)
2297 		goto success;
2298 
2299 	if (prev && !vma_expand_up(prev, addr)) {
2300 		vma = prev;
2301 		goto success;
2302 	}
2303 
2304 	if (vma && !vma_expand_down(vma, addr))
2305 		goto success;
2306 
2307 	mmap_write_unlock(mm);
2308 	return NULL;
2309 
2310 success:
2311 	mmap_write_downgrade(mm);
2312 	return vma;
2313 }
2314 
2315 /*
2316  * Ok - we have the memory areas we should free on a maple tree so release them,
2317  * and do the vma updates.
2318  *
2319  * Called with the mm semaphore held.
2320  */
2321 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2322 {
2323 	unsigned long nr_accounted = 0;
2324 	struct vm_area_struct *vma;
2325 
2326 	/* Update high watermark before we lower total_vm */
2327 	update_hiwater_vm(mm);
2328 	mas_for_each(mas, vma, ULONG_MAX) {
2329 		long nrpages = vma_pages(vma);
2330 
2331 		if (vma->vm_flags & VM_ACCOUNT)
2332 			nr_accounted += nrpages;
2333 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2334 		remove_vma(vma, false);
2335 	}
2336 	vm_unacct_memory(nr_accounted);
2337 }
2338 
2339 /*
2340  * Get rid of page table information in the indicated region.
2341  *
2342  * Called with the mm semaphore held.
2343  */
2344 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2345 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2346 		struct vm_area_struct *next, unsigned long start,
2347 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2348 {
2349 	struct mmu_gather tlb;
2350 	unsigned long mt_start = mas->index;
2351 
2352 	lru_add_drain();
2353 	tlb_gather_mmu(&tlb, mm);
2354 	update_hiwater_rss(mm);
2355 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2356 	mas_set(mas, mt_start);
2357 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2358 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2359 				 mm_wr_locked);
2360 	tlb_finish_mmu(&tlb);
2361 }
2362 
2363 /*
2364  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2365  * has already been checked or doesn't make sense to fail.
2366  * VMA Iterator will point to the end VMA.
2367  */
2368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2369 		       unsigned long addr, int new_below)
2370 {
2371 	struct vma_prepare vp;
2372 	struct vm_area_struct *new;
2373 	int err;
2374 
2375 	WARN_ON(vma->vm_start >= addr);
2376 	WARN_ON(vma->vm_end <= addr);
2377 
2378 	if (vma->vm_ops && vma->vm_ops->may_split) {
2379 		err = vma->vm_ops->may_split(vma, addr);
2380 		if (err)
2381 			return err;
2382 	}
2383 
2384 	new = vm_area_dup(vma);
2385 	if (!new)
2386 		return -ENOMEM;
2387 
2388 	if (new_below) {
2389 		new->vm_end = addr;
2390 	} else {
2391 		new->vm_start = addr;
2392 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2393 	}
2394 
2395 	err = -ENOMEM;
2396 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2397 	if (vma_iter_prealloc(vmi, new))
2398 		goto out_free_vma;
2399 
2400 	err = vma_dup_policy(vma, new);
2401 	if (err)
2402 		goto out_free_vmi;
2403 
2404 	err = anon_vma_clone(new, vma);
2405 	if (err)
2406 		goto out_free_mpol;
2407 
2408 	if (new->vm_file)
2409 		get_file(new->vm_file);
2410 
2411 	if (new->vm_ops && new->vm_ops->open)
2412 		new->vm_ops->open(new);
2413 
2414 	vma_start_write(vma);
2415 	vma_start_write(new);
2416 
2417 	init_vma_prep(&vp, vma);
2418 	vp.insert = new;
2419 	vma_prepare(&vp);
2420 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2421 
2422 	if (new_below) {
2423 		vma->vm_start = addr;
2424 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2425 	} else {
2426 		vma->vm_end = addr;
2427 	}
2428 
2429 	/* vma_complete stores the new vma */
2430 	vma_complete(&vp, vmi, vma->vm_mm);
2431 
2432 	/* Success. */
2433 	if (new_below)
2434 		vma_next(vmi);
2435 	return 0;
2436 
2437 out_free_mpol:
2438 	mpol_put(vma_policy(new));
2439 out_free_vmi:
2440 	vma_iter_free(vmi);
2441 out_free_vma:
2442 	vm_area_free(new);
2443 	return err;
2444 }
2445 
2446 /*
2447  * Split a vma into two pieces at address 'addr', a new vma is allocated
2448  * either for the first part or the tail.
2449  */
2450 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2451 		     unsigned long addr, int new_below)
2452 {
2453 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2454 		return -ENOMEM;
2455 
2456 	return __split_vma(vmi, vma, addr, new_below);
2457 }
2458 
2459 /*
2460  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2461  * context and anonymous VMA name within the range [start, end).
2462  *
2463  * As a result, we might be able to merge the newly modified VMA range with an
2464  * adjacent VMA with identical properties.
2465  *
2466  * If no merge is possible and the range does not span the entirety of the VMA,
2467  * we then need to split the VMA to accommodate the change.
2468  *
2469  * The function returns either the merged VMA, the original VMA if a split was
2470  * required instead, or an error if the split failed.
2471  */
2472 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2473 				  struct vm_area_struct *prev,
2474 				  struct vm_area_struct *vma,
2475 				  unsigned long start, unsigned long end,
2476 				  unsigned long vm_flags,
2477 				  struct mempolicy *policy,
2478 				  struct vm_userfaultfd_ctx uffd_ctx,
2479 				  struct anon_vma_name *anon_name)
2480 {
2481 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2482 	struct vm_area_struct *merged;
2483 
2484 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2485 			   pgoff, policy, uffd_ctx, anon_name);
2486 	if (merged)
2487 		return merged;
2488 
2489 	if (vma->vm_start < start) {
2490 		int err = split_vma(vmi, vma, start, 1);
2491 
2492 		if (err)
2493 			return ERR_PTR(err);
2494 	}
2495 
2496 	if (vma->vm_end > end) {
2497 		int err = split_vma(vmi, vma, end, 0);
2498 
2499 		if (err)
2500 			return ERR_PTR(err);
2501 	}
2502 
2503 	return vma;
2504 }
2505 
2506 /*
2507  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2508  * must ensure that [start, end) does not overlap any existing VMA.
2509  */
2510 static struct vm_area_struct
2511 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2512 		   struct vm_area_struct *vma, unsigned long start,
2513 		   unsigned long end, pgoff_t pgoff)
2514 {
2515 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2516 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2517 }
2518 
2519 /*
2520  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2521  * VMA with identical properties.
2522  */
2523 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2524 					struct vm_area_struct *vma,
2525 					unsigned long delta)
2526 {
2527 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2528 
2529 	/* vma is specified as prev, so case 1 or 2 will apply. */
2530 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2531 			 vma->vm_flags, pgoff, vma_policy(vma),
2532 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2533 }
2534 
2535 /*
2536  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2537  * @vmi: The vma iterator
2538  * @vma: The starting vm_area_struct
2539  * @mm: The mm_struct
2540  * @start: The aligned start address to munmap.
2541  * @end: The aligned end address to munmap.
2542  * @uf: The userfaultfd list_head
2543  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2544  * success.
2545  *
2546  * Return: 0 on success and drops the lock if so directed, error and leaves the
2547  * lock held otherwise.
2548  */
2549 static int
2550 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2551 		    struct mm_struct *mm, unsigned long start,
2552 		    unsigned long end, struct list_head *uf, bool unlock)
2553 {
2554 	struct vm_area_struct *prev, *next = NULL;
2555 	struct maple_tree mt_detach;
2556 	int count = 0;
2557 	int error = -ENOMEM;
2558 	unsigned long locked_vm = 0;
2559 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2560 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2561 	mt_on_stack(mt_detach);
2562 
2563 	/*
2564 	 * If we need to split any vma, do it now to save pain later.
2565 	 *
2566 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2567 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2568 	 * places tmp vma above, and higher split_vma places tmp vma below.
2569 	 */
2570 
2571 	/* Does it split the first one? */
2572 	if (start > vma->vm_start) {
2573 
2574 		/*
2575 		 * Make sure that map_count on return from munmap() will
2576 		 * not exceed its limit; but let map_count go just above
2577 		 * its limit temporarily, to help free resources as expected.
2578 		 */
2579 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2580 			goto map_count_exceeded;
2581 
2582 		error = __split_vma(vmi, vma, start, 1);
2583 		if (error)
2584 			goto start_split_failed;
2585 	}
2586 
2587 	/*
2588 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2589 	 * it is always overwritten.
2590 	 */
2591 	next = vma;
2592 	do {
2593 		/* Does it split the end? */
2594 		if (next->vm_end > end) {
2595 			error = __split_vma(vmi, next, end, 0);
2596 			if (error)
2597 				goto end_split_failed;
2598 		}
2599 		vma_start_write(next);
2600 		mas_set(&mas_detach, count);
2601 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2602 		if (error)
2603 			goto munmap_gather_failed;
2604 		vma_mark_detached(next, true);
2605 		if (next->vm_flags & VM_LOCKED)
2606 			locked_vm += vma_pages(next);
2607 
2608 		count++;
2609 		if (unlikely(uf)) {
2610 			/*
2611 			 * If userfaultfd_unmap_prep returns an error the vmas
2612 			 * will remain split, but userland will get a
2613 			 * highly unexpected error anyway. This is no
2614 			 * different than the case where the first of the two
2615 			 * __split_vma fails, but we don't undo the first
2616 			 * split, despite we could. This is unlikely enough
2617 			 * failure that it's not worth optimizing it for.
2618 			 */
2619 			error = userfaultfd_unmap_prep(next, start, end, uf);
2620 
2621 			if (error)
2622 				goto userfaultfd_error;
2623 		}
2624 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2625 		BUG_ON(next->vm_start < start);
2626 		BUG_ON(next->vm_start > end);
2627 #endif
2628 	} for_each_vma_range(*vmi, next, end);
2629 
2630 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2631 	/* Make sure no VMAs are about to be lost. */
2632 	{
2633 		MA_STATE(test, &mt_detach, 0, 0);
2634 		struct vm_area_struct *vma_mas, *vma_test;
2635 		int test_count = 0;
2636 
2637 		vma_iter_set(vmi, start);
2638 		rcu_read_lock();
2639 		vma_test = mas_find(&test, count - 1);
2640 		for_each_vma_range(*vmi, vma_mas, end) {
2641 			BUG_ON(vma_mas != vma_test);
2642 			test_count++;
2643 			vma_test = mas_next(&test, count - 1);
2644 		}
2645 		rcu_read_unlock();
2646 		BUG_ON(count != test_count);
2647 	}
2648 #endif
2649 
2650 	while (vma_iter_addr(vmi) > start)
2651 		vma_iter_prev_range(vmi);
2652 
2653 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2654 	if (error)
2655 		goto clear_tree_failed;
2656 
2657 	/* Point of no return */
2658 	mm->locked_vm -= locked_vm;
2659 	mm->map_count -= count;
2660 	if (unlock)
2661 		mmap_write_downgrade(mm);
2662 
2663 	prev = vma_iter_prev_range(vmi);
2664 	next = vma_next(vmi);
2665 	if (next)
2666 		vma_iter_prev_range(vmi);
2667 
2668 	/*
2669 	 * We can free page tables without write-locking mmap_lock because VMAs
2670 	 * were isolated before we downgraded mmap_lock.
2671 	 */
2672 	mas_set(&mas_detach, 1);
2673 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2674 		     !unlock);
2675 	/* Statistics and freeing VMAs */
2676 	mas_set(&mas_detach, 0);
2677 	remove_mt(mm, &mas_detach);
2678 	validate_mm(mm);
2679 	if (unlock)
2680 		mmap_read_unlock(mm);
2681 
2682 	__mt_destroy(&mt_detach);
2683 	return 0;
2684 
2685 clear_tree_failed:
2686 userfaultfd_error:
2687 munmap_gather_failed:
2688 end_split_failed:
2689 	mas_set(&mas_detach, 0);
2690 	mas_for_each(&mas_detach, next, end)
2691 		vma_mark_detached(next, false);
2692 
2693 	__mt_destroy(&mt_detach);
2694 start_split_failed:
2695 map_count_exceeded:
2696 	validate_mm(mm);
2697 	return error;
2698 }
2699 
2700 /*
2701  * do_vmi_munmap() - munmap a given range.
2702  * @vmi: The vma iterator
2703  * @mm: The mm_struct
2704  * @start: The start address to munmap
2705  * @len: The length of the range to munmap
2706  * @uf: The userfaultfd list_head
2707  * @unlock: set to true if the user wants to drop the mmap_lock on success
2708  *
2709  * This function takes a @mas that is either pointing to the previous VMA or set
2710  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2711  * aligned and any arch_unmap work will be preformed.
2712  *
2713  * Return: 0 on success and drops the lock if so directed, error and leaves the
2714  * lock held otherwise.
2715  */
2716 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2717 		  unsigned long start, size_t len, struct list_head *uf,
2718 		  bool unlock)
2719 {
2720 	unsigned long end;
2721 	struct vm_area_struct *vma;
2722 
2723 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2724 		return -EINVAL;
2725 
2726 	end = start + PAGE_ALIGN(len);
2727 	if (end == start)
2728 		return -EINVAL;
2729 
2730 	 /* arch_unmap() might do unmaps itself.  */
2731 	arch_unmap(mm, start, end);
2732 
2733 	/* Find the first overlapping VMA */
2734 	vma = vma_find(vmi, end);
2735 	if (!vma) {
2736 		if (unlock)
2737 			mmap_write_unlock(mm);
2738 		return 0;
2739 	}
2740 
2741 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2742 }
2743 
2744 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2745  * @mm: The mm_struct
2746  * @start: The start address to munmap
2747  * @len: The length to be munmapped.
2748  * @uf: The userfaultfd list_head
2749  *
2750  * Return: 0 on success, error otherwise.
2751  */
2752 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2753 	      struct list_head *uf)
2754 {
2755 	VMA_ITERATOR(vmi, mm, start);
2756 
2757 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2758 }
2759 
2760 unsigned long mmap_region(struct file *file, unsigned long addr,
2761 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2762 		struct list_head *uf)
2763 {
2764 	struct mm_struct *mm = current->mm;
2765 	struct vm_area_struct *vma = NULL;
2766 	struct vm_area_struct *next, *prev, *merge;
2767 	pgoff_t pglen = len >> PAGE_SHIFT;
2768 	unsigned long charged = 0;
2769 	unsigned long end = addr + len;
2770 	unsigned long merge_start = addr, merge_end = end;
2771 	bool writable_file_mapping = false;
2772 	pgoff_t vm_pgoff;
2773 	int error;
2774 	VMA_ITERATOR(vmi, mm, addr);
2775 
2776 	/* Check against address space limit. */
2777 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2778 		unsigned long nr_pages;
2779 
2780 		/*
2781 		 * MAP_FIXED may remove pages of mappings that intersects with
2782 		 * requested mapping. Account for the pages it would unmap.
2783 		 */
2784 		nr_pages = count_vma_pages_range(mm, addr, end);
2785 
2786 		if (!may_expand_vm(mm, vm_flags,
2787 					(len >> PAGE_SHIFT) - nr_pages))
2788 			return -ENOMEM;
2789 	}
2790 
2791 	/* Unmap any existing mapping in the area */
2792 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2793 		return -ENOMEM;
2794 
2795 	/*
2796 	 * Private writable mapping: check memory availability
2797 	 */
2798 	if (accountable_mapping(file, vm_flags)) {
2799 		charged = len >> PAGE_SHIFT;
2800 		if (security_vm_enough_memory_mm(mm, charged))
2801 			return -ENOMEM;
2802 		vm_flags |= VM_ACCOUNT;
2803 	}
2804 
2805 	next = vma_next(&vmi);
2806 	prev = vma_prev(&vmi);
2807 	if (vm_flags & VM_SPECIAL) {
2808 		if (prev)
2809 			vma_iter_next_range(&vmi);
2810 		goto cannot_expand;
2811 	}
2812 
2813 	/* Attempt to expand an old mapping */
2814 	/* Check next */
2815 	if (next && next->vm_start == end && !vma_policy(next) &&
2816 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2817 				 NULL_VM_UFFD_CTX, NULL)) {
2818 		merge_end = next->vm_end;
2819 		vma = next;
2820 		vm_pgoff = next->vm_pgoff - pglen;
2821 	}
2822 
2823 	/* Check prev */
2824 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2825 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2826 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2827 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2828 				       NULL_VM_UFFD_CTX, NULL))) {
2829 		merge_start = prev->vm_start;
2830 		vma = prev;
2831 		vm_pgoff = prev->vm_pgoff;
2832 	} else if (prev) {
2833 		vma_iter_next_range(&vmi);
2834 	}
2835 
2836 	/* Actually expand, if possible */
2837 	if (vma &&
2838 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2839 		khugepaged_enter_vma(vma, vm_flags);
2840 		goto expanded;
2841 	}
2842 
2843 	if (vma == prev)
2844 		vma_iter_set(&vmi, addr);
2845 cannot_expand:
2846 
2847 	/*
2848 	 * Determine the object being mapped and call the appropriate
2849 	 * specific mapper. the address has already been validated, but
2850 	 * not unmapped, but the maps are removed from the list.
2851 	 */
2852 	vma = vm_area_alloc(mm);
2853 	if (!vma) {
2854 		error = -ENOMEM;
2855 		goto unacct_error;
2856 	}
2857 
2858 	vma_iter_config(&vmi, addr, end);
2859 	vma_set_range(vma, addr, end, pgoff);
2860 	vm_flags_init(vma, vm_flags);
2861 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2862 
2863 	if (file) {
2864 		vma->vm_file = get_file(file);
2865 		error = call_mmap(file, vma);
2866 		if (error)
2867 			goto unmap_and_free_vma;
2868 
2869 		if (vma_is_shared_maywrite(vma)) {
2870 			error = mapping_map_writable(file->f_mapping);
2871 			if (error)
2872 				goto close_and_free_vma;
2873 
2874 			writable_file_mapping = true;
2875 		}
2876 
2877 		/*
2878 		 * Expansion is handled above, merging is handled below.
2879 		 * Drivers should not alter the address of the VMA.
2880 		 */
2881 		error = -EINVAL;
2882 		if (WARN_ON((addr != vma->vm_start)))
2883 			goto close_and_free_vma;
2884 
2885 		vma_iter_config(&vmi, addr, end);
2886 		/*
2887 		 * If vm_flags changed after call_mmap(), we should try merge
2888 		 * vma again as we may succeed this time.
2889 		 */
2890 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2891 			merge = vma_merge_new_vma(&vmi, prev, vma,
2892 						  vma->vm_start, vma->vm_end,
2893 						  vma->vm_pgoff);
2894 			if (merge) {
2895 				/*
2896 				 * ->mmap() can change vma->vm_file and fput
2897 				 * the original file. So fput the vma->vm_file
2898 				 * here or we would add an extra fput for file
2899 				 * and cause general protection fault
2900 				 * ultimately.
2901 				 */
2902 				fput(vma->vm_file);
2903 				vm_area_free(vma);
2904 				vma = merge;
2905 				/* Update vm_flags to pick up the change. */
2906 				vm_flags = vma->vm_flags;
2907 				goto unmap_writable;
2908 			}
2909 		}
2910 
2911 		vm_flags = vma->vm_flags;
2912 	} else if (vm_flags & VM_SHARED) {
2913 		error = shmem_zero_setup(vma);
2914 		if (error)
2915 			goto free_vma;
2916 	} else {
2917 		vma_set_anonymous(vma);
2918 	}
2919 
2920 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2921 		error = -EACCES;
2922 		goto close_and_free_vma;
2923 	}
2924 
2925 	/* Allow architectures to sanity-check the vm_flags */
2926 	error = -EINVAL;
2927 	if (!arch_validate_flags(vma->vm_flags))
2928 		goto close_and_free_vma;
2929 
2930 	error = -ENOMEM;
2931 	if (vma_iter_prealloc(&vmi, vma))
2932 		goto close_and_free_vma;
2933 
2934 	/* Lock the VMA since it is modified after insertion into VMA tree */
2935 	vma_start_write(vma);
2936 	vma_iter_store(&vmi, vma);
2937 	mm->map_count++;
2938 	vma_link_file(vma);
2939 
2940 	/*
2941 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2942 	 * call covers the non-merge case.
2943 	 */
2944 	khugepaged_enter_vma(vma, vma->vm_flags);
2945 
2946 	/* Once vma denies write, undo our temporary denial count */
2947 unmap_writable:
2948 	if (writable_file_mapping)
2949 		mapping_unmap_writable(file->f_mapping);
2950 	file = vma->vm_file;
2951 	ksm_add_vma(vma);
2952 expanded:
2953 	perf_event_mmap(vma);
2954 
2955 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2956 	if (vm_flags & VM_LOCKED) {
2957 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2958 					is_vm_hugetlb_page(vma) ||
2959 					vma == get_gate_vma(current->mm))
2960 			vm_flags_clear(vma, VM_LOCKED_MASK);
2961 		else
2962 			mm->locked_vm += (len >> PAGE_SHIFT);
2963 	}
2964 
2965 	if (file)
2966 		uprobe_mmap(vma);
2967 
2968 	/*
2969 	 * New (or expanded) vma always get soft dirty status.
2970 	 * Otherwise user-space soft-dirty page tracker won't
2971 	 * be able to distinguish situation when vma area unmapped,
2972 	 * then new mapped in-place (which must be aimed as
2973 	 * a completely new data area).
2974 	 */
2975 	vm_flags_set(vma, VM_SOFTDIRTY);
2976 
2977 	vma_set_page_prot(vma);
2978 
2979 	validate_mm(mm);
2980 	return addr;
2981 
2982 close_and_free_vma:
2983 	if (file && vma->vm_ops && vma->vm_ops->close)
2984 		vma->vm_ops->close(vma);
2985 
2986 	if (file || vma->vm_file) {
2987 unmap_and_free_vma:
2988 		fput(vma->vm_file);
2989 		vma->vm_file = NULL;
2990 
2991 		vma_iter_set(&vmi, vma->vm_end);
2992 		/* Undo any partial mapping done by a device driver. */
2993 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2994 			     vma->vm_end, vma->vm_end, true);
2995 	}
2996 	if (writable_file_mapping)
2997 		mapping_unmap_writable(file->f_mapping);
2998 free_vma:
2999 	vm_area_free(vma);
3000 unacct_error:
3001 	if (charged)
3002 		vm_unacct_memory(charged);
3003 	validate_mm(mm);
3004 	return error;
3005 }
3006 
3007 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3008 {
3009 	int ret;
3010 	struct mm_struct *mm = current->mm;
3011 	LIST_HEAD(uf);
3012 	VMA_ITERATOR(vmi, mm, start);
3013 
3014 	if (mmap_write_lock_killable(mm))
3015 		return -EINTR;
3016 
3017 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3018 	if (ret || !unlock)
3019 		mmap_write_unlock(mm);
3020 
3021 	userfaultfd_unmap_complete(mm, &uf);
3022 	return ret;
3023 }
3024 
3025 int vm_munmap(unsigned long start, size_t len)
3026 {
3027 	return __vm_munmap(start, len, false);
3028 }
3029 EXPORT_SYMBOL(vm_munmap);
3030 
3031 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3032 {
3033 	addr = untagged_addr(addr);
3034 	return __vm_munmap(addr, len, true);
3035 }
3036 
3037 
3038 /*
3039  * Emulation of deprecated remap_file_pages() syscall.
3040  */
3041 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3042 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3043 {
3044 
3045 	struct mm_struct *mm = current->mm;
3046 	struct vm_area_struct *vma;
3047 	unsigned long populate = 0;
3048 	unsigned long ret = -EINVAL;
3049 	struct file *file;
3050 
3051 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3052 		     current->comm, current->pid);
3053 
3054 	if (prot)
3055 		return ret;
3056 	start = start & PAGE_MASK;
3057 	size = size & PAGE_MASK;
3058 
3059 	if (start + size <= start)
3060 		return ret;
3061 
3062 	/* Does pgoff wrap? */
3063 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3064 		return ret;
3065 
3066 	if (mmap_write_lock_killable(mm))
3067 		return -EINTR;
3068 
3069 	vma = vma_lookup(mm, start);
3070 
3071 	if (!vma || !(vma->vm_flags & VM_SHARED))
3072 		goto out;
3073 
3074 	if (start + size > vma->vm_end) {
3075 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3076 		struct vm_area_struct *next, *prev = vma;
3077 
3078 		for_each_vma_range(vmi, next, start + size) {
3079 			/* hole between vmas ? */
3080 			if (next->vm_start != prev->vm_end)
3081 				goto out;
3082 
3083 			if (next->vm_file != vma->vm_file)
3084 				goto out;
3085 
3086 			if (next->vm_flags != vma->vm_flags)
3087 				goto out;
3088 
3089 			if (start + size <= next->vm_end)
3090 				break;
3091 
3092 			prev = next;
3093 		}
3094 
3095 		if (!next)
3096 			goto out;
3097 	}
3098 
3099 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3100 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3101 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3102 
3103 	flags &= MAP_NONBLOCK;
3104 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3105 	if (vma->vm_flags & VM_LOCKED)
3106 		flags |= MAP_LOCKED;
3107 
3108 	file = get_file(vma->vm_file);
3109 	ret = do_mmap(vma->vm_file, start, size,
3110 			prot, flags, 0, pgoff, &populate, NULL);
3111 	fput(file);
3112 out:
3113 	mmap_write_unlock(mm);
3114 	if (populate)
3115 		mm_populate(ret, populate);
3116 	if (!IS_ERR_VALUE(ret))
3117 		ret = 0;
3118 	return ret;
3119 }
3120 
3121 /*
3122  * do_vma_munmap() - Unmap a full or partial vma.
3123  * @vmi: The vma iterator pointing at the vma
3124  * @vma: The first vma to be munmapped
3125  * @start: the start of the address to unmap
3126  * @end: The end of the address to unmap
3127  * @uf: The userfaultfd list_head
3128  * @unlock: Drop the lock on success
3129  *
3130  * unmaps a VMA mapping when the vma iterator is already in position.
3131  * Does not handle alignment.
3132  *
3133  * Return: 0 on success drops the lock of so directed, error on failure and will
3134  * still hold the lock.
3135  */
3136 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3137 		unsigned long start, unsigned long end, struct list_head *uf,
3138 		bool unlock)
3139 {
3140 	struct mm_struct *mm = vma->vm_mm;
3141 
3142 	arch_unmap(mm, start, end);
3143 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3144 }
3145 
3146 /*
3147  * do_brk_flags() - Increase the brk vma if the flags match.
3148  * @vmi: The vma iterator
3149  * @addr: The start address
3150  * @len: The length of the increase
3151  * @vma: The vma,
3152  * @flags: The VMA Flags
3153  *
3154  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3155  * do not match then create a new anonymous VMA.  Eventually we may be able to
3156  * do some brk-specific accounting here.
3157  */
3158 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3159 		unsigned long addr, unsigned long len, unsigned long flags)
3160 {
3161 	struct mm_struct *mm = current->mm;
3162 	struct vma_prepare vp;
3163 
3164 	/*
3165 	 * Check against address space limits by the changed size
3166 	 * Note: This happens *after* clearing old mappings in some code paths.
3167 	 */
3168 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3169 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3170 		return -ENOMEM;
3171 
3172 	if (mm->map_count > sysctl_max_map_count)
3173 		return -ENOMEM;
3174 
3175 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3176 		return -ENOMEM;
3177 
3178 	/*
3179 	 * Expand the existing vma if possible; Note that singular lists do not
3180 	 * occur after forking, so the expand will only happen on new VMAs.
3181 	 */
3182 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3183 	    can_vma_merge_after(vma, flags, NULL, NULL,
3184 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3185 		vma_iter_config(vmi, vma->vm_start, addr + len);
3186 		if (vma_iter_prealloc(vmi, vma))
3187 			goto unacct_fail;
3188 
3189 		vma_start_write(vma);
3190 
3191 		init_vma_prep(&vp, vma);
3192 		vma_prepare(&vp);
3193 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3194 		vma->vm_end = addr + len;
3195 		vm_flags_set(vma, VM_SOFTDIRTY);
3196 		vma_iter_store(vmi, vma);
3197 
3198 		vma_complete(&vp, vmi, mm);
3199 		khugepaged_enter_vma(vma, flags);
3200 		goto out;
3201 	}
3202 
3203 	if (vma)
3204 		vma_iter_next_range(vmi);
3205 	/* create a vma struct for an anonymous mapping */
3206 	vma = vm_area_alloc(mm);
3207 	if (!vma)
3208 		goto unacct_fail;
3209 
3210 	vma_set_anonymous(vma);
3211 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3212 	vm_flags_init(vma, flags);
3213 	vma->vm_page_prot = vm_get_page_prot(flags);
3214 	vma_start_write(vma);
3215 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3216 		goto mas_store_fail;
3217 
3218 	mm->map_count++;
3219 	validate_mm(mm);
3220 	ksm_add_vma(vma);
3221 out:
3222 	perf_event_mmap(vma);
3223 	mm->total_vm += len >> PAGE_SHIFT;
3224 	mm->data_vm += len >> PAGE_SHIFT;
3225 	if (flags & VM_LOCKED)
3226 		mm->locked_vm += (len >> PAGE_SHIFT);
3227 	vm_flags_set(vma, VM_SOFTDIRTY);
3228 	return 0;
3229 
3230 mas_store_fail:
3231 	vm_area_free(vma);
3232 unacct_fail:
3233 	vm_unacct_memory(len >> PAGE_SHIFT);
3234 	return -ENOMEM;
3235 }
3236 
3237 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3238 {
3239 	struct mm_struct *mm = current->mm;
3240 	struct vm_area_struct *vma = NULL;
3241 	unsigned long len;
3242 	int ret;
3243 	bool populate;
3244 	LIST_HEAD(uf);
3245 	VMA_ITERATOR(vmi, mm, addr);
3246 
3247 	len = PAGE_ALIGN(request);
3248 	if (len < request)
3249 		return -ENOMEM;
3250 	if (!len)
3251 		return 0;
3252 
3253 	/* Until we need other flags, refuse anything except VM_EXEC. */
3254 	if ((flags & (~VM_EXEC)) != 0)
3255 		return -EINVAL;
3256 
3257 	if (mmap_write_lock_killable(mm))
3258 		return -EINTR;
3259 
3260 	ret = check_brk_limits(addr, len);
3261 	if (ret)
3262 		goto limits_failed;
3263 
3264 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3265 	if (ret)
3266 		goto munmap_failed;
3267 
3268 	vma = vma_prev(&vmi);
3269 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3270 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3271 	mmap_write_unlock(mm);
3272 	userfaultfd_unmap_complete(mm, &uf);
3273 	if (populate && !ret)
3274 		mm_populate(addr, len);
3275 	return ret;
3276 
3277 munmap_failed:
3278 limits_failed:
3279 	mmap_write_unlock(mm);
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL(vm_brk_flags);
3283 
3284 /* Release all mmaps. */
3285 void exit_mmap(struct mm_struct *mm)
3286 {
3287 	struct mmu_gather tlb;
3288 	struct vm_area_struct *vma;
3289 	unsigned long nr_accounted = 0;
3290 	VMA_ITERATOR(vmi, mm, 0);
3291 	int count = 0;
3292 
3293 	/* mm's last user has gone, and its about to be pulled down */
3294 	mmu_notifier_release(mm);
3295 
3296 	mmap_read_lock(mm);
3297 	arch_exit_mmap(mm);
3298 
3299 	vma = vma_next(&vmi);
3300 	if (!vma || unlikely(xa_is_zero(vma))) {
3301 		/* Can happen if dup_mmap() received an OOM */
3302 		mmap_read_unlock(mm);
3303 		mmap_write_lock(mm);
3304 		goto destroy;
3305 	}
3306 
3307 	lru_add_drain();
3308 	flush_cache_mm(mm);
3309 	tlb_gather_mmu_fullmm(&tlb, mm);
3310 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3311 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3312 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3313 	mmap_read_unlock(mm);
3314 
3315 	/*
3316 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3317 	 * because the memory has been already freed.
3318 	 */
3319 	set_bit(MMF_OOM_SKIP, &mm->flags);
3320 	mmap_write_lock(mm);
3321 	mt_clear_in_rcu(&mm->mm_mt);
3322 	vma_iter_set(&vmi, vma->vm_end);
3323 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3324 		      USER_PGTABLES_CEILING, true);
3325 	tlb_finish_mmu(&tlb);
3326 
3327 	/*
3328 	 * Walk the list again, actually closing and freeing it, with preemption
3329 	 * enabled, without holding any MM locks besides the unreachable
3330 	 * mmap_write_lock.
3331 	 */
3332 	vma_iter_set(&vmi, vma->vm_end);
3333 	do {
3334 		if (vma->vm_flags & VM_ACCOUNT)
3335 			nr_accounted += vma_pages(vma);
3336 		remove_vma(vma, true);
3337 		count++;
3338 		cond_resched();
3339 		vma = vma_next(&vmi);
3340 	} while (vma && likely(!xa_is_zero(vma)));
3341 
3342 	BUG_ON(count != mm->map_count);
3343 
3344 	trace_exit_mmap(mm);
3345 destroy:
3346 	__mt_destroy(&mm->mm_mt);
3347 	mmap_write_unlock(mm);
3348 	vm_unacct_memory(nr_accounted);
3349 }
3350 
3351 /* Insert vm structure into process list sorted by address
3352  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3353  * then i_mmap_rwsem is taken here.
3354  */
3355 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3356 {
3357 	unsigned long charged = vma_pages(vma);
3358 
3359 
3360 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3361 		return -ENOMEM;
3362 
3363 	if ((vma->vm_flags & VM_ACCOUNT) &&
3364 	     security_vm_enough_memory_mm(mm, charged))
3365 		return -ENOMEM;
3366 
3367 	/*
3368 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3369 	 * until its first write fault, when page's anon_vma and index
3370 	 * are set.  But now set the vm_pgoff it will almost certainly
3371 	 * end up with (unless mremap moves it elsewhere before that
3372 	 * first wfault), so /proc/pid/maps tells a consistent story.
3373 	 *
3374 	 * By setting it to reflect the virtual start address of the
3375 	 * vma, merges and splits can happen in a seamless way, just
3376 	 * using the existing file pgoff checks and manipulations.
3377 	 * Similarly in do_mmap and in do_brk_flags.
3378 	 */
3379 	if (vma_is_anonymous(vma)) {
3380 		BUG_ON(vma->anon_vma);
3381 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3382 	}
3383 
3384 	if (vma_link(mm, vma)) {
3385 		if (vma->vm_flags & VM_ACCOUNT)
3386 			vm_unacct_memory(charged);
3387 		return -ENOMEM;
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 /*
3394  * Copy the vma structure to a new location in the same mm,
3395  * prior to moving page table entries, to effect an mremap move.
3396  */
3397 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3398 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3399 	bool *need_rmap_locks)
3400 {
3401 	struct vm_area_struct *vma = *vmap;
3402 	unsigned long vma_start = vma->vm_start;
3403 	struct mm_struct *mm = vma->vm_mm;
3404 	struct vm_area_struct *new_vma, *prev;
3405 	bool faulted_in_anon_vma = true;
3406 	VMA_ITERATOR(vmi, mm, addr);
3407 
3408 	/*
3409 	 * If anonymous vma has not yet been faulted, update new pgoff
3410 	 * to match new location, to increase its chance of merging.
3411 	 */
3412 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3413 		pgoff = addr >> PAGE_SHIFT;
3414 		faulted_in_anon_vma = false;
3415 	}
3416 
3417 	new_vma = find_vma_prev(mm, addr, &prev);
3418 	if (new_vma && new_vma->vm_start < addr + len)
3419 		return NULL;	/* should never get here */
3420 
3421 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3422 	if (new_vma) {
3423 		/*
3424 		 * Source vma may have been merged into new_vma
3425 		 */
3426 		if (unlikely(vma_start >= new_vma->vm_start &&
3427 			     vma_start < new_vma->vm_end)) {
3428 			/*
3429 			 * The only way we can get a vma_merge with
3430 			 * self during an mremap is if the vma hasn't
3431 			 * been faulted in yet and we were allowed to
3432 			 * reset the dst vma->vm_pgoff to the
3433 			 * destination address of the mremap to allow
3434 			 * the merge to happen. mremap must change the
3435 			 * vm_pgoff linearity between src and dst vmas
3436 			 * (in turn preventing a vma_merge) to be
3437 			 * safe. It is only safe to keep the vm_pgoff
3438 			 * linear if there are no pages mapped yet.
3439 			 */
3440 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3441 			*vmap = vma = new_vma;
3442 		}
3443 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3444 	} else {
3445 		new_vma = vm_area_dup(vma);
3446 		if (!new_vma)
3447 			goto out;
3448 		vma_set_range(new_vma, addr, addr + len, pgoff);
3449 		if (vma_dup_policy(vma, new_vma))
3450 			goto out_free_vma;
3451 		if (anon_vma_clone(new_vma, vma))
3452 			goto out_free_mempol;
3453 		if (new_vma->vm_file)
3454 			get_file(new_vma->vm_file);
3455 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3456 			new_vma->vm_ops->open(new_vma);
3457 		if (vma_link(mm, new_vma))
3458 			goto out_vma_link;
3459 		*need_rmap_locks = false;
3460 	}
3461 	return new_vma;
3462 
3463 out_vma_link:
3464 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3465 		new_vma->vm_ops->close(new_vma);
3466 
3467 	if (new_vma->vm_file)
3468 		fput(new_vma->vm_file);
3469 
3470 	unlink_anon_vmas(new_vma);
3471 out_free_mempol:
3472 	mpol_put(vma_policy(new_vma));
3473 out_free_vma:
3474 	vm_area_free(new_vma);
3475 out:
3476 	return NULL;
3477 }
3478 
3479 /*
3480  * Return true if the calling process may expand its vm space by the passed
3481  * number of pages
3482  */
3483 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3484 {
3485 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3486 		return false;
3487 
3488 	if (is_data_mapping(flags) &&
3489 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3490 		/* Workaround for Valgrind */
3491 		if (rlimit(RLIMIT_DATA) == 0 &&
3492 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3493 			return true;
3494 
3495 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3496 			     current->comm, current->pid,
3497 			     (mm->data_vm + npages) << PAGE_SHIFT,
3498 			     rlimit(RLIMIT_DATA),
3499 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3500 
3501 		if (!ignore_rlimit_data)
3502 			return false;
3503 	}
3504 
3505 	return true;
3506 }
3507 
3508 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3509 {
3510 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3511 
3512 	if (is_exec_mapping(flags))
3513 		mm->exec_vm += npages;
3514 	else if (is_stack_mapping(flags))
3515 		mm->stack_vm += npages;
3516 	else if (is_data_mapping(flags))
3517 		mm->data_vm += npages;
3518 }
3519 
3520 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3521 
3522 /*
3523  * Having a close hook prevents vma merging regardless of flags.
3524  */
3525 static void special_mapping_close(struct vm_area_struct *vma)
3526 {
3527 }
3528 
3529 static const char *special_mapping_name(struct vm_area_struct *vma)
3530 {
3531 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3532 }
3533 
3534 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3535 {
3536 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3537 
3538 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3539 		return -EFAULT;
3540 
3541 	if (sm->mremap)
3542 		return sm->mremap(sm, new_vma);
3543 
3544 	return 0;
3545 }
3546 
3547 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3548 {
3549 	/*
3550 	 * Forbid splitting special mappings - kernel has expectations over
3551 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3552 	 * the size of vma should stay the same over the special mapping's
3553 	 * lifetime.
3554 	 */
3555 	return -EINVAL;
3556 }
3557 
3558 static const struct vm_operations_struct special_mapping_vmops = {
3559 	.close = special_mapping_close,
3560 	.fault = special_mapping_fault,
3561 	.mremap = special_mapping_mremap,
3562 	.name = special_mapping_name,
3563 	/* vDSO code relies that VVAR can't be accessed remotely */
3564 	.access = NULL,
3565 	.may_split = special_mapping_split,
3566 };
3567 
3568 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3569 	.close = special_mapping_close,
3570 	.fault = special_mapping_fault,
3571 };
3572 
3573 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3574 {
3575 	struct vm_area_struct *vma = vmf->vma;
3576 	pgoff_t pgoff;
3577 	struct page **pages;
3578 
3579 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3580 		pages = vma->vm_private_data;
3581 	} else {
3582 		struct vm_special_mapping *sm = vma->vm_private_data;
3583 
3584 		if (sm->fault)
3585 			return sm->fault(sm, vmf->vma, vmf);
3586 
3587 		pages = sm->pages;
3588 	}
3589 
3590 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3591 		pgoff--;
3592 
3593 	if (*pages) {
3594 		struct page *page = *pages;
3595 		get_page(page);
3596 		vmf->page = page;
3597 		return 0;
3598 	}
3599 
3600 	return VM_FAULT_SIGBUS;
3601 }
3602 
3603 static struct vm_area_struct *__install_special_mapping(
3604 	struct mm_struct *mm,
3605 	unsigned long addr, unsigned long len,
3606 	unsigned long vm_flags, void *priv,
3607 	const struct vm_operations_struct *ops)
3608 {
3609 	int ret;
3610 	struct vm_area_struct *vma;
3611 
3612 	vma = vm_area_alloc(mm);
3613 	if (unlikely(vma == NULL))
3614 		return ERR_PTR(-ENOMEM);
3615 
3616 	vma_set_range(vma, addr, addr + len, 0);
3617 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3618 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3619 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3620 
3621 	vma->vm_ops = ops;
3622 	vma->vm_private_data = priv;
3623 
3624 	ret = insert_vm_struct(mm, vma);
3625 	if (ret)
3626 		goto out;
3627 
3628 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3629 
3630 	perf_event_mmap(vma);
3631 
3632 	return vma;
3633 
3634 out:
3635 	vm_area_free(vma);
3636 	return ERR_PTR(ret);
3637 }
3638 
3639 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3640 	const struct vm_special_mapping *sm)
3641 {
3642 	return vma->vm_private_data == sm &&
3643 		(vma->vm_ops == &special_mapping_vmops ||
3644 		 vma->vm_ops == &legacy_special_mapping_vmops);
3645 }
3646 
3647 /*
3648  * Called with mm->mmap_lock held for writing.
3649  * Insert a new vma covering the given region, with the given flags.
3650  * Its pages are supplied by the given array of struct page *.
3651  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3652  * The region past the last page supplied will always produce SIGBUS.
3653  * The array pointer and the pages it points to are assumed to stay alive
3654  * for as long as this mapping might exist.
3655  */
3656 struct vm_area_struct *_install_special_mapping(
3657 	struct mm_struct *mm,
3658 	unsigned long addr, unsigned long len,
3659 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3660 {
3661 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3662 					&special_mapping_vmops);
3663 }
3664 
3665 int install_special_mapping(struct mm_struct *mm,
3666 			    unsigned long addr, unsigned long len,
3667 			    unsigned long vm_flags, struct page **pages)
3668 {
3669 	struct vm_area_struct *vma = __install_special_mapping(
3670 		mm, addr, len, vm_flags, (void *)pages,
3671 		&legacy_special_mapping_vmops);
3672 
3673 	return PTR_ERR_OR_ZERO(vma);
3674 }
3675 
3676 static DEFINE_MUTEX(mm_all_locks_mutex);
3677 
3678 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3679 {
3680 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3681 		/*
3682 		 * The LSB of head.next can't change from under us
3683 		 * because we hold the mm_all_locks_mutex.
3684 		 */
3685 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3686 		/*
3687 		 * We can safely modify head.next after taking the
3688 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3689 		 * the same anon_vma we won't take it again.
3690 		 *
3691 		 * No need of atomic instructions here, head.next
3692 		 * can't change from under us thanks to the
3693 		 * anon_vma->root->rwsem.
3694 		 */
3695 		if (__test_and_set_bit(0, (unsigned long *)
3696 				       &anon_vma->root->rb_root.rb_root.rb_node))
3697 			BUG();
3698 	}
3699 }
3700 
3701 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3702 {
3703 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3704 		/*
3705 		 * AS_MM_ALL_LOCKS can't change from under us because
3706 		 * we hold the mm_all_locks_mutex.
3707 		 *
3708 		 * Operations on ->flags have to be atomic because
3709 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3710 		 * mm_all_locks_mutex, there may be other cpus
3711 		 * changing other bitflags in parallel to us.
3712 		 */
3713 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3714 			BUG();
3715 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3716 	}
3717 }
3718 
3719 /*
3720  * This operation locks against the VM for all pte/vma/mm related
3721  * operations that could ever happen on a certain mm. This includes
3722  * vmtruncate, try_to_unmap, and all page faults.
3723  *
3724  * The caller must take the mmap_lock in write mode before calling
3725  * mm_take_all_locks(). The caller isn't allowed to release the
3726  * mmap_lock until mm_drop_all_locks() returns.
3727  *
3728  * mmap_lock in write mode is required in order to block all operations
3729  * that could modify pagetables and free pages without need of
3730  * altering the vma layout. It's also needed in write mode to avoid new
3731  * anon_vmas to be associated with existing vmas.
3732  *
3733  * A single task can't take more than one mm_take_all_locks() in a row
3734  * or it would deadlock.
3735  *
3736  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3737  * mapping->flags avoid to take the same lock twice, if more than one
3738  * vma in this mm is backed by the same anon_vma or address_space.
3739  *
3740  * We take locks in following order, accordingly to comment at beginning
3741  * of mm/rmap.c:
3742  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3743  *     hugetlb mapping);
3744  *   - all vmas marked locked
3745  *   - all i_mmap_rwsem locks;
3746  *   - all anon_vma->rwseml
3747  *
3748  * We can take all locks within these types randomly because the VM code
3749  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3750  * mm_all_locks_mutex.
3751  *
3752  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3753  * that may have to take thousand of locks.
3754  *
3755  * mm_take_all_locks() can fail if it's interrupted by signals.
3756  */
3757 int mm_take_all_locks(struct mm_struct *mm)
3758 {
3759 	struct vm_area_struct *vma;
3760 	struct anon_vma_chain *avc;
3761 	VMA_ITERATOR(vmi, mm, 0);
3762 
3763 	mmap_assert_write_locked(mm);
3764 
3765 	mutex_lock(&mm_all_locks_mutex);
3766 
3767 	/*
3768 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3769 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3770 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3771 	 * is reached.
3772 	 */
3773 	for_each_vma(vmi, vma) {
3774 		if (signal_pending(current))
3775 			goto out_unlock;
3776 		vma_start_write(vma);
3777 	}
3778 
3779 	vma_iter_init(&vmi, mm, 0);
3780 	for_each_vma(vmi, vma) {
3781 		if (signal_pending(current))
3782 			goto out_unlock;
3783 		if (vma->vm_file && vma->vm_file->f_mapping &&
3784 				is_vm_hugetlb_page(vma))
3785 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3786 	}
3787 
3788 	vma_iter_init(&vmi, mm, 0);
3789 	for_each_vma(vmi, vma) {
3790 		if (signal_pending(current))
3791 			goto out_unlock;
3792 		if (vma->vm_file && vma->vm_file->f_mapping &&
3793 				!is_vm_hugetlb_page(vma))
3794 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3795 	}
3796 
3797 	vma_iter_init(&vmi, mm, 0);
3798 	for_each_vma(vmi, vma) {
3799 		if (signal_pending(current))
3800 			goto out_unlock;
3801 		if (vma->anon_vma)
3802 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3803 				vm_lock_anon_vma(mm, avc->anon_vma);
3804 	}
3805 
3806 	return 0;
3807 
3808 out_unlock:
3809 	mm_drop_all_locks(mm);
3810 	return -EINTR;
3811 }
3812 
3813 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3814 {
3815 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3816 		/*
3817 		 * The LSB of head.next can't change to 0 from under
3818 		 * us because we hold the mm_all_locks_mutex.
3819 		 *
3820 		 * We must however clear the bitflag before unlocking
3821 		 * the vma so the users using the anon_vma->rb_root will
3822 		 * never see our bitflag.
3823 		 *
3824 		 * No need of atomic instructions here, head.next
3825 		 * can't change from under us until we release the
3826 		 * anon_vma->root->rwsem.
3827 		 */
3828 		if (!__test_and_clear_bit(0, (unsigned long *)
3829 					  &anon_vma->root->rb_root.rb_root.rb_node))
3830 			BUG();
3831 		anon_vma_unlock_write(anon_vma);
3832 	}
3833 }
3834 
3835 static void vm_unlock_mapping(struct address_space *mapping)
3836 {
3837 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3838 		/*
3839 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3840 		 * because we hold the mm_all_locks_mutex.
3841 		 */
3842 		i_mmap_unlock_write(mapping);
3843 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3844 					&mapping->flags))
3845 			BUG();
3846 	}
3847 }
3848 
3849 /*
3850  * The mmap_lock cannot be released by the caller until
3851  * mm_drop_all_locks() returns.
3852  */
3853 void mm_drop_all_locks(struct mm_struct *mm)
3854 {
3855 	struct vm_area_struct *vma;
3856 	struct anon_vma_chain *avc;
3857 	VMA_ITERATOR(vmi, mm, 0);
3858 
3859 	mmap_assert_write_locked(mm);
3860 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3861 
3862 	for_each_vma(vmi, vma) {
3863 		if (vma->anon_vma)
3864 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3865 				vm_unlock_anon_vma(avc->anon_vma);
3866 		if (vma->vm_file && vma->vm_file->f_mapping)
3867 			vm_unlock_mapping(vma->vm_file->f_mapping);
3868 	}
3869 
3870 	mutex_unlock(&mm_all_locks_mutex);
3871 }
3872 
3873 /*
3874  * initialise the percpu counter for VM
3875  */
3876 void __init mmap_init(void)
3877 {
3878 	int ret;
3879 
3880 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3881 	VM_BUG_ON(ret);
3882 }
3883 
3884 /*
3885  * Initialise sysctl_user_reserve_kbytes.
3886  *
3887  * This is intended to prevent a user from starting a single memory hogging
3888  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3889  * mode.
3890  *
3891  * The default value is min(3% of free memory, 128MB)
3892  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3893  */
3894 static int init_user_reserve(void)
3895 {
3896 	unsigned long free_kbytes;
3897 
3898 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899 
3900 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3901 	return 0;
3902 }
3903 subsys_initcall(init_user_reserve);
3904 
3905 /*
3906  * Initialise sysctl_admin_reserve_kbytes.
3907  *
3908  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3909  * to log in and kill a memory hogging process.
3910  *
3911  * Systems with more than 256MB will reserve 8MB, enough to recover
3912  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3913  * only reserve 3% of free pages by default.
3914  */
3915 static int init_admin_reserve(void)
3916 {
3917 	unsigned long free_kbytes;
3918 
3919 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3920 
3921 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3922 	return 0;
3923 }
3924 subsys_initcall(init_admin_reserve);
3925 
3926 /*
3927  * Reinititalise user and admin reserves if memory is added or removed.
3928  *
3929  * The default user reserve max is 128MB, and the default max for the
3930  * admin reserve is 8MB. These are usually, but not always, enough to
3931  * enable recovery from a memory hogging process using login/sshd, a shell,
3932  * and tools like top. It may make sense to increase or even disable the
3933  * reserve depending on the existence of swap or variations in the recovery
3934  * tools. So, the admin may have changed them.
3935  *
3936  * If memory is added and the reserves have been eliminated or increased above
3937  * the default max, then we'll trust the admin.
3938  *
3939  * If memory is removed and there isn't enough free memory, then we
3940  * need to reset the reserves.
3941  *
3942  * Otherwise keep the reserve set by the admin.
3943  */
3944 static int reserve_mem_notifier(struct notifier_block *nb,
3945 			     unsigned long action, void *data)
3946 {
3947 	unsigned long tmp, free_kbytes;
3948 
3949 	switch (action) {
3950 	case MEM_ONLINE:
3951 		/* Default max is 128MB. Leave alone if modified by operator. */
3952 		tmp = sysctl_user_reserve_kbytes;
3953 		if (tmp > 0 && tmp < SZ_128K)
3954 			init_user_reserve();
3955 
3956 		/* Default max is 8MB.  Leave alone if modified by operator. */
3957 		tmp = sysctl_admin_reserve_kbytes;
3958 		if (tmp > 0 && tmp < SZ_8K)
3959 			init_admin_reserve();
3960 
3961 		break;
3962 	case MEM_OFFLINE:
3963 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3964 
3965 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3966 			init_user_reserve();
3967 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3968 				sysctl_user_reserve_kbytes);
3969 		}
3970 
3971 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3972 			init_admin_reserve();
3973 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3974 				sysctl_admin_reserve_kbytes);
3975 		}
3976 		break;
3977 	default:
3978 		break;
3979 	}
3980 	return NOTIFY_OK;
3981 }
3982 
3983 static int __meminit init_reserve_notifier(void)
3984 {
3985 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3986 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3987 
3988 	return 0;
3989 }
3990 subsys_initcall(init_reserve_notifier);
3991