1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct address_space *mapping) 109 { 110 if (vma_is_shared_maywrite(vma)) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 /* 158 * check_brk_limits() - Use platform specific check of range & verify mlock 159 * limits. 160 * @addr: The address to check 161 * @len: The size of increase. 162 * 163 * Return: 0 on success. 164 */ 165 static int check_brk_limits(unsigned long addr, unsigned long len) 166 { 167 unsigned long mapped_addr; 168 169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 170 if (IS_ERR_VALUE(mapped_addr)) 171 return mapped_addr; 172 173 return mlock_future_ok(current->mm, current->mm->def_flags, len) 174 ? 0 : -EAGAIN; 175 } 176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 177 unsigned long addr, unsigned long request, unsigned long flags); 178 SYSCALL_DEFINE1(brk, unsigned long, brk) 179 { 180 unsigned long newbrk, oldbrk, origbrk; 181 struct mm_struct *mm = current->mm; 182 struct vm_area_struct *brkvma, *next = NULL; 183 unsigned long min_brk; 184 bool populate = false; 185 LIST_HEAD(uf); 186 struct vma_iterator vmi; 187 188 if (mmap_write_lock_killable(mm)) 189 return -EINTR; 190 191 origbrk = mm->brk; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) { 222 mm->brk = brk; 223 goto success; 224 } 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 /* Search one past newbrk */ 229 vma_iter_init(&vmi, mm, newbrk); 230 brkvma = vma_find(&vmi, oldbrk); 231 if (!brkvma || brkvma->vm_start >= oldbrk) 232 goto out; /* mapping intersects with an existing non-brk vma. */ 233 /* 234 * mm->brk must be protected by write mmap_lock. 235 * do_vma_munmap() will drop the lock on success, so update it 236 * before calling do_vma_munmap(). 237 */ 238 mm->brk = brk; 239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 240 goto out; 241 242 goto success_unlocked; 243 } 244 245 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 246 goto out; 247 248 /* 249 * Only check if the next VMA is within the stack_guard_gap of the 250 * expansion area 251 */ 252 vma_iter_init(&vmi, mm, oldbrk); 253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 255 goto out; 256 257 brkvma = vma_prev_limit(&vmi, mm->start_brk); 258 /* Ok, looks good - let it rip. */ 259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 260 goto out; 261 262 mm->brk = brk; 263 if (mm->def_flags & VM_LOCKED) 264 populate = true; 265 266 success: 267 mmap_write_unlock(mm); 268 success_unlocked: 269 userfaultfd_unmap_complete(mm, &uf); 270 if (populate) 271 mm_populate(oldbrk, newbrk - oldbrk); 272 return brk; 273 274 out: 275 mm->brk = origbrk; 276 mmap_write_unlock(mm); 277 return origbrk; 278 } 279 280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 281 static void validate_mm(struct mm_struct *mm) 282 { 283 int bug = 0; 284 int i = 0; 285 struct vm_area_struct *vma; 286 VMA_ITERATOR(vmi, mm, 0); 287 288 mt_validate(&mm->mm_mt); 289 for_each_vma(vmi, vma) { 290 #ifdef CONFIG_DEBUG_VM_RB 291 struct anon_vma *anon_vma = vma->anon_vma; 292 struct anon_vma_chain *avc; 293 #endif 294 unsigned long vmi_start, vmi_end; 295 bool warn = 0; 296 297 vmi_start = vma_iter_addr(&vmi); 298 vmi_end = vma_iter_end(&vmi); 299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 300 warn = 1; 301 302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 303 warn = 1; 304 305 if (warn) { 306 pr_emerg("issue in %s\n", current->comm); 307 dump_stack(); 308 dump_vma(vma); 309 pr_emerg("tree range: %px start %lx end %lx\n", vma, 310 vmi_start, vmi_end - 1); 311 vma_iter_dump_tree(&vmi); 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 if (anon_vma) { 316 anon_vma_lock_read(anon_vma); 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_verify(avc); 319 anon_vma_unlock_read(anon_vma); 320 } 321 #endif 322 i++; 323 } 324 if (i != mm->map_count) { 325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 326 bug = 1; 327 } 328 VM_BUG_ON_MM(bug, mm); 329 } 330 331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 332 #define validate_mm(mm) do { } while (0) 333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 334 335 /* 336 * vma has some anon_vma assigned, and is already inserted on that 337 * anon_vma's interval trees. 338 * 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 340 * vma must be removed from the anon_vma's interval trees using 341 * anon_vma_interval_tree_pre_update_vma(). 342 * 343 * After the update, the vma will be reinserted using 344 * anon_vma_interval_tree_post_update_vma(). 345 * 346 * The entire update must be protected by exclusive mmap_lock and by 347 * the root anon_vma's mutex. 348 */ 349 static inline void 350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 351 { 352 struct anon_vma_chain *avc; 353 354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 356 } 357 358 static inline void 359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 360 { 361 struct anon_vma_chain *avc; 362 363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 365 } 366 367 static unsigned long count_vma_pages_range(struct mm_struct *mm, 368 unsigned long addr, unsigned long end) 369 { 370 VMA_ITERATOR(vmi, mm, addr); 371 struct vm_area_struct *vma; 372 unsigned long nr_pages = 0; 373 374 for_each_vma_range(vmi, vma, end) { 375 unsigned long vm_start = max(addr, vma->vm_start); 376 unsigned long vm_end = min(end, vma->vm_end); 377 378 nr_pages += PHYS_PFN(vm_end - vm_start); 379 } 380 381 return nr_pages; 382 } 383 384 static void __vma_link_file(struct vm_area_struct *vma, 385 struct address_space *mapping) 386 { 387 if (vma_is_shared_maywrite(vma)) 388 mapping_allow_writable(mapping); 389 390 flush_dcache_mmap_lock(mapping); 391 vma_interval_tree_insert(vma, &mapping->i_mmap); 392 flush_dcache_mmap_unlock(mapping); 393 } 394 395 static void vma_link_file(struct vm_area_struct *vma) 396 { 397 struct file *file = vma->vm_file; 398 struct address_space *mapping; 399 400 if (file) { 401 mapping = file->f_mapping; 402 i_mmap_lock_write(mapping); 403 __vma_link_file(vma, mapping); 404 i_mmap_unlock_write(mapping); 405 } 406 } 407 408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 409 { 410 VMA_ITERATOR(vmi, mm, 0); 411 412 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 413 if (vma_iter_prealloc(&vmi, vma)) 414 return -ENOMEM; 415 416 vma_start_write(vma); 417 vma_iter_store(&vmi, vma); 418 vma_link_file(vma); 419 mm->map_count++; 420 validate_mm(mm); 421 return 0; 422 } 423 424 /* 425 * init_multi_vma_prep() - Initializer for struct vma_prepare 426 * @vp: The vma_prepare struct 427 * @vma: The vma that will be altered once locked 428 * @next: The next vma if it is to be adjusted 429 * @remove: The first vma to be removed 430 * @remove2: The second vma to be removed 431 */ 432 static inline void init_multi_vma_prep(struct vma_prepare *vp, 433 struct vm_area_struct *vma, struct vm_area_struct *next, 434 struct vm_area_struct *remove, struct vm_area_struct *remove2) 435 { 436 memset(vp, 0, sizeof(struct vma_prepare)); 437 vp->vma = vma; 438 vp->anon_vma = vma->anon_vma; 439 vp->remove = remove; 440 vp->remove2 = remove2; 441 vp->adj_next = next; 442 if (!vp->anon_vma && next) 443 vp->anon_vma = next->anon_vma; 444 445 vp->file = vma->vm_file; 446 if (vp->file) 447 vp->mapping = vma->vm_file->f_mapping; 448 449 } 450 451 /* 452 * init_vma_prep() - Initializer wrapper for vma_prepare struct 453 * @vp: The vma_prepare struct 454 * @vma: The vma that will be altered once locked 455 */ 456 static inline void init_vma_prep(struct vma_prepare *vp, 457 struct vm_area_struct *vma) 458 { 459 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 460 } 461 462 463 /* 464 * vma_prepare() - Helper function for handling locking VMAs prior to altering 465 * @vp: The initialized vma_prepare struct 466 */ 467 static inline void vma_prepare(struct vma_prepare *vp) 468 { 469 if (vp->file) { 470 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 471 472 if (vp->adj_next) 473 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 474 vp->adj_next->vm_end); 475 476 i_mmap_lock_write(vp->mapping); 477 if (vp->insert && vp->insert->vm_file) { 478 /* 479 * Put into interval tree now, so instantiated pages 480 * are visible to arm/parisc __flush_dcache_page 481 * throughout; but we cannot insert into address 482 * space until vma start or end is updated. 483 */ 484 __vma_link_file(vp->insert, 485 vp->insert->vm_file->f_mapping); 486 } 487 } 488 489 if (vp->anon_vma) { 490 anon_vma_lock_write(vp->anon_vma); 491 anon_vma_interval_tree_pre_update_vma(vp->vma); 492 if (vp->adj_next) 493 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 494 } 495 496 if (vp->file) { 497 flush_dcache_mmap_lock(vp->mapping); 498 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 499 if (vp->adj_next) 500 vma_interval_tree_remove(vp->adj_next, 501 &vp->mapping->i_mmap); 502 } 503 504 } 505 506 /* 507 * vma_complete- Helper function for handling the unlocking after altering VMAs, 508 * or for inserting a VMA. 509 * 510 * @vp: The vma_prepare struct 511 * @vmi: The vma iterator 512 * @mm: The mm_struct 513 */ 514 static inline void vma_complete(struct vma_prepare *vp, 515 struct vma_iterator *vmi, struct mm_struct *mm) 516 { 517 if (vp->file) { 518 if (vp->adj_next) 519 vma_interval_tree_insert(vp->adj_next, 520 &vp->mapping->i_mmap); 521 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 522 flush_dcache_mmap_unlock(vp->mapping); 523 } 524 525 if (vp->remove && vp->file) { 526 __remove_shared_vm_struct(vp->remove, vp->mapping); 527 if (vp->remove2) 528 __remove_shared_vm_struct(vp->remove2, vp->mapping); 529 } else if (vp->insert) { 530 /* 531 * split_vma has split insert from vma, and needs 532 * us to insert it before dropping the locks 533 * (it may either follow vma or precede it). 534 */ 535 vma_iter_store(vmi, vp->insert); 536 mm->map_count++; 537 } 538 539 if (vp->anon_vma) { 540 anon_vma_interval_tree_post_update_vma(vp->vma); 541 if (vp->adj_next) 542 anon_vma_interval_tree_post_update_vma(vp->adj_next); 543 anon_vma_unlock_write(vp->anon_vma); 544 } 545 546 if (vp->file) { 547 i_mmap_unlock_write(vp->mapping); 548 uprobe_mmap(vp->vma); 549 550 if (vp->adj_next) 551 uprobe_mmap(vp->adj_next); 552 } 553 554 if (vp->remove) { 555 again: 556 vma_mark_detached(vp->remove, true); 557 if (vp->file) { 558 uprobe_munmap(vp->remove, vp->remove->vm_start, 559 vp->remove->vm_end); 560 fput(vp->file); 561 } 562 if (vp->remove->anon_vma) 563 anon_vma_merge(vp->vma, vp->remove); 564 mm->map_count--; 565 mpol_put(vma_policy(vp->remove)); 566 if (!vp->remove2) 567 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 568 vm_area_free(vp->remove); 569 570 /* 571 * In mprotect's case 6 (see comments on vma_merge), 572 * we are removing both mid and next vmas 573 */ 574 if (vp->remove2) { 575 vp->remove = vp->remove2; 576 vp->remove2 = NULL; 577 goto again; 578 } 579 } 580 if (vp->insert && vp->file) 581 uprobe_mmap(vp->insert); 582 validate_mm(mm); 583 } 584 585 /* 586 * dup_anon_vma() - Helper function to duplicate anon_vma 587 * @dst: The destination VMA 588 * @src: The source VMA 589 * @dup: Pointer to the destination VMA when successful. 590 * 591 * Returns: 0 on success. 592 */ 593 static inline int dup_anon_vma(struct vm_area_struct *dst, 594 struct vm_area_struct *src, struct vm_area_struct **dup) 595 { 596 /* 597 * Easily overlooked: when mprotect shifts the boundary, make sure the 598 * expanding vma has anon_vma set if the shrinking vma had, to cover any 599 * anon pages imported. 600 */ 601 if (src->anon_vma && !dst->anon_vma) { 602 int ret; 603 604 vma_assert_write_locked(dst); 605 dst->anon_vma = src->anon_vma; 606 ret = anon_vma_clone(dst, src); 607 if (ret) 608 return ret; 609 610 *dup = dst; 611 } 612 613 return 0; 614 } 615 616 /* 617 * vma_expand - Expand an existing VMA 618 * 619 * @vmi: The vma iterator 620 * @vma: The vma to expand 621 * @start: The start of the vma 622 * @end: The exclusive end of the vma 623 * @pgoff: The page offset of vma 624 * @next: The current of next vma. 625 * 626 * Expand @vma to @start and @end. Can expand off the start and end. Will 627 * expand over @next if it's different from @vma and @end == @next->vm_end. 628 * Checking if the @vma can expand and merge with @next needs to be handled by 629 * the caller. 630 * 631 * Returns: 0 on success 632 */ 633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 634 unsigned long start, unsigned long end, pgoff_t pgoff, 635 struct vm_area_struct *next) 636 { 637 struct vm_area_struct *anon_dup = NULL; 638 bool remove_next = false; 639 struct vma_prepare vp; 640 641 vma_start_write(vma); 642 if (next && (vma != next) && (end == next->vm_end)) { 643 int ret; 644 645 remove_next = true; 646 vma_start_write(next); 647 ret = dup_anon_vma(vma, next, &anon_dup); 648 if (ret) 649 return ret; 650 } 651 652 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 653 /* Not merging but overwriting any part of next is not handled. */ 654 VM_WARN_ON(next && !vp.remove && 655 next != vma && end > next->vm_start); 656 /* Only handles expanding */ 657 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 658 659 /* Note: vma iterator must be pointing to 'start' */ 660 vma_iter_config(vmi, start, end); 661 if (vma_iter_prealloc(vmi, vma)) 662 goto nomem; 663 664 vma_prepare(&vp); 665 vma_adjust_trans_huge(vma, start, end, 0); 666 vma_set_range(vma, start, end, pgoff); 667 vma_iter_store(vmi, vma); 668 669 vma_complete(&vp, vmi, vma->vm_mm); 670 return 0; 671 672 nomem: 673 if (anon_dup) 674 unlink_anon_vmas(anon_dup); 675 return -ENOMEM; 676 } 677 678 /* 679 * vma_shrink() - Reduce an existing VMAs memory area 680 * @vmi: The vma iterator 681 * @vma: The VMA to modify 682 * @start: The new start 683 * @end: The new end 684 * 685 * Returns: 0 on success, -ENOMEM otherwise 686 */ 687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 688 unsigned long start, unsigned long end, pgoff_t pgoff) 689 { 690 struct vma_prepare vp; 691 692 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 693 694 if (vma->vm_start < start) 695 vma_iter_config(vmi, vma->vm_start, start); 696 else 697 vma_iter_config(vmi, end, vma->vm_end); 698 699 if (vma_iter_prealloc(vmi, NULL)) 700 return -ENOMEM; 701 702 vma_start_write(vma); 703 704 init_vma_prep(&vp, vma); 705 vma_prepare(&vp); 706 vma_adjust_trans_huge(vma, start, end, 0); 707 708 vma_iter_clear(vmi); 709 vma_set_range(vma, start, end, pgoff); 710 vma_complete(&vp, vmi, vma->vm_mm); 711 return 0; 712 } 713 714 /* 715 * If the vma has a ->close operation then the driver probably needs to release 716 * per-vma resources, so we don't attempt to merge those if the caller indicates 717 * the current vma may be removed as part of the merge. 718 */ 719 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 720 struct file *file, unsigned long vm_flags, 721 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 722 struct anon_vma_name *anon_name, bool may_remove_vma) 723 { 724 /* 725 * VM_SOFTDIRTY should not prevent from VMA merging, if we 726 * match the flags but dirty bit -- the caller should mark 727 * merged VMA as dirty. If dirty bit won't be excluded from 728 * comparison, we increase pressure on the memory system forcing 729 * the kernel to generate new VMAs when old one could be 730 * extended instead. 731 */ 732 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 733 return false; 734 if (vma->vm_file != file) 735 return false; 736 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 737 return false; 738 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 739 return false; 740 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 741 return false; 742 return true; 743 } 744 745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 746 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 747 { 748 /* 749 * The list_is_singular() test is to avoid merging VMA cloned from 750 * parents. This can improve scalability caused by anon_vma lock. 751 */ 752 if ((!anon_vma1 || !anon_vma2) && (!vma || 753 list_is_singular(&vma->anon_vma_chain))) 754 return true; 755 return anon_vma1 == anon_vma2; 756 } 757 758 /* 759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 760 * in front of (at a lower virtual address and file offset than) the vma. 761 * 762 * We cannot merge two vmas if they have differently assigned (non-NULL) 763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 764 * 765 * We don't check here for the merged mmap wrapping around the end of pagecache 766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 767 * wrap, nor mmaps which cover the final page at index -1UL. 768 * 769 * We assume the vma may be removed as part of the merge. 770 */ 771 static bool 772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 773 struct anon_vma *anon_vma, struct file *file, 774 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 775 struct anon_vma_name *anon_name) 776 { 777 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 778 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 779 if (vma->vm_pgoff == vm_pgoff) 780 return true; 781 } 782 return false; 783 } 784 785 /* 786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 787 * beyond (at a higher virtual address and file offset than) the vma. 788 * 789 * We cannot merge two vmas if they have differently assigned (non-NULL) 790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 791 * 792 * We assume that vma is not removed as part of the merge. 793 */ 794 static bool 795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 796 struct anon_vma *anon_vma, struct file *file, 797 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 798 struct anon_vma_name *anon_name) 799 { 800 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 801 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 802 pgoff_t vm_pglen; 803 vm_pglen = vma_pages(vma); 804 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 805 return true; 806 } 807 return false; 808 } 809 810 /* 811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 812 * figure out whether that can be merged with its predecessor or its 813 * successor. Or both (it neatly fills a hole). 814 * 815 * In most cases - when called for mmap, brk or mremap - [addr,end) is 816 * certain not to be mapped by the time vma_merge is called; but when 817 * called for mprotect, it is certain to be already mapped (either at 818 * an offset within prev, or at the start of next), and the flags of 819 * this area are about to be changed to vm_flags - and the no-change 820 * case has already been eliminated. 821 * 822 * The following mprotect cases have to be considered, where **** is 823 * the area passed down from mprotect_fixup, never extending beyond one 824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 825 * at the same address as **** and is of the same or larger span, and 826 * NNNN the next vma after ****: 827 * 828 * **** **** **** 829 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 830 * cannot merge might become might become 831 * PPNNNNNNNNNN PPPPPPPPPPCC 832 * mmap, brk or case 4 below case 5 below 833 * mremap move: 834 * **** **** 835 * PPPP NNNN PPPPCCCCNNNN 836 * might become might become 837 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 838 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 839 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 840 * 841 * It is important for case 8 that the vma CCCC overlapping the 842 * region **** is never going to extended over NNNN. Instead NNNN must 843 * be extended in region **** and CCCC must be removed. This way in 844 * all cases where vma_merge succeeds, the moment vma_merge drops the 845 * rmap_locks, the properties of the merged vma will be already 846 * correct for the whole merged range. Some of those properties like 847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 848 * be correct for the whole merged range immediately after the 849 * rmap_locks are released. Otherwise if NNNN would be removed and 850 * CCCC would be extended over the NNNN range, remove_migration_ptes 851 * or other rmap walkers (if working on addresses beyond the "end" 852 * parameter) may establish ptes with the wrong permissions of CCCC 853 * instead of the right permissions of NNNN. 854 * 855 * In the code below: 856 * PPPP is represented by *prev 857 * CCCC is represented by *curr or not represented at all (NULL) 858 * NNNN is represented by *next or not represented at all (NULL) 859 * **** is not represented - it will be merged and the vma containing the 860 * area is returned, or the function will return NULL 861 */ 862 static struct vm_area_struct 863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev, 864 struct vm_area_struct *src, unsigned long addr, unsigned long end, 865 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy, 866 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 867 struct anon_vma_name *anon_name) 868 { 869 struct mm_struct *mm = src->vm_mm; 870 struct anon_vma *anon_vma = src->anon_vma; 871 struct file *file = src->vm_file; 872 struct vm_area_struct *curr, *next, *res; 873 struct vm_area_struct *vma, *adjust, *remove, *remove2; 874 struct vm_area_struct *anon_dup = NULL; 875 struct vma_prepare vp; 876 pgoff_t vma_pgoff; 877 int err = 0; 878 bool merge_prev = false; 879 bool merge_next = false; 880 bool vma_expanded = false; 881 unsigned long vma_start = addr; 882 unsigned long vma_end = end; 883 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 884 long adj_start = 0; 885 886 /* 887 * We later require that vma->vm_flags == vm_flags, 888 * so this tests vma->vm_flags & VM_SPECIAL, too. 889 */ 890 if (vm_flags & VM_SPECIAL) 891 return NULL; 892 893 /* Does the input range span an existing VMA? (cases 5 - 8) */ 894 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 895 896 if (!curr || /* cases 1 - 4 */ 897 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 898 next = vma_lookup(mm, end); 899 else 900 next = NULL; /* case 5 */ 901 902 if (prev) { 903 vma_start = prev->vm_start; 904 vma_pgoff = prev->vm_pgoff; 905 906 /* Can we merge the predecessor? */ 907 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 908 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 909 pgoff, vm_userfaultfd_ctx, anon_name)) { 910 merge_prev = true; 911 vma_prev(vmi); 912 } 913 } 914 915 /* Can we merge the successor? */ 916 if (next && mpol_equal(policy, vma_policy(next)) && 917 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 918 vm_userfaultfd_ctx, anon_name)) { 919 merge_next = true; 920 } 921 922 /* Verify some invariant that must be enforced by the caller. */ 923 VM_WARN_ON(prev && addr <= prev->vm_start); 924 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 925 VM_WARN_ON(addr >= end); 926 927 if (!merge_prev && !merge_next) 928 return NULL; /* Not mergeable. */ 929 930 if (merge_prev) 931 vma_start_write(prev); 932 933 res = vma = prev; 934 remove = remove2 = adjust = NULL; 935 936 /* Can we merge both the predecessor and the successor? */ 937 if (merge_prev && merge_next && 938 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 939 vma_start_write(next); 940 remove = next; /* case 1 */ 941 vma_end = next->vm_end; 942 err = dup_anon_vma(prev, next, &anon_dup); 943 if (curr) { /* case 6 */ 944 vma_start_write(curr); 945 remove = curr; 946 remove2 = next; 947 /* 948 * Note that the dup_anon_vma below cannot overwrite err 949 * since the first caller would do nothing unless next 950 * has an anon_vma. 951 */ 952 if (!next->anon_vma) 953 err = dup_anon_vma(prev, curr, &anon_dup); 954 } 955 } else if (merge_prev) { /* case 2 */ 956 if (curr) { 957 vma_start_write(curr); 958 if (end == curr->vm_end) { /* case 7 */ 959 /* 960 * can_vma_merge_after() assumed we would not be 961 * removing prev vma, so it skipped the check 962 * for vm_ops->close, but we are removing curr 963 */ 964 if (curr->vm_ops && curr->vm_ops->close) 965 err = -EINVAL; 966 remove = curr; 967 } else { /* case 5 */ 968 adjust = curr; 969 adj_start = (end - curr->vm_start); 970 } 971 if (!err) 972 err = dup_anon_vma(prev, curr, &anon_dup); 973 } 974 } else { /* merge_next */ 975 vma_start_write(next); 976 res = next; 977 if (prev && addr < prev->vm_end) { /* case 4 */ 978 vma_start_write(prev); 979 vma_end = addr; 980 adjust = next; 981 adj_start = -(prev->vm_end - addr); 982 err = dup_anon_vma(next, prev, &anon_dup); 983 } else { 984 /* 985 * Note that cases 3 and 8 are the ONLY ones where prev 986 * is permitted to be (but is not necessarily) NULL. 987 */ 988 vma = next; /* case 3 */ 989 vma_start = addr; 990 vma_end = next->vm_end; 991 vma_pgoff = next->vm_pgoff - pglen; 992 if (curr) { /* case 8 */ 993 vma_pgoff = curr->vm_pgoff; 994 vma_start_write(curr); 995 remove = curr; 996 err = dup_anon_vma(next, curr, &anon_dup); 997 } 998 } 999 } 1000 1001 /* Error in anon_vma clone. */ 1002 if (err) 1003 goto anon_vma_fail; 1004 1005 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1006 vma_expanded = true; 1007 1008 if (vma_expanded) { 1009 vma_iter_config(vmi, vma_start, vma_end); 1010 } else { 1011 vma_iter_config(vmi, adjust->vm_start + adj_start, 1012 adjust->vm_end); 1013 } 1014 1015 if (vma_iter_prealloc(vmi, vma)) 1016 goto prealloc_fail; 1017 1018 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1019 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1020 vp.anon_vma != adjust->anon_vma); 1021 1022 vma_prepare(&vp); 1023 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1024 vma_set_range(vma, vma_start, vma_end, vma_pgoff); 1025 1026 if (vma_expanded) 1027 vma_iter_store(vmi, vma); 1028 1029 if (adj_start) { 1030 adjust->vm_start += adj_start; 1031 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1032 if (adj_start < 0) { 1033 WARN_ON(vma_expanded); 1034 vma_iter_store(vmi, next); 1035 } 1036 } 1037 1038 vma_complete(&vp, vmi, mm); 1039 khugepaged_enter_vma(res, vm_flags); 1040 return res; 1041 1042 prealloc_fail: 1043 if (anon_dup) 1044 unlink_anon_vmas(anon_dup); 1045 1046 anon_vma_fail: 1047 vma_iter_set(vmi, addr); 1048 vma_iter_load(vmi); 1049 return NULL; 1050 } 1051 1052 /* 1053 * Rough compatibility check to quickly see if it's even worth looking 1054 * at sharing an anon_vma. 1055 * 1056 * They need to have the same vm_file, and the flags can only differ 1057 * in things that mprotect may change. 1058 * 1059 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1060 * we can merge the two vma's. For example, we refuse to merge a vma if 1061 * there is a vm_ops->close() function, because that indicates that the 1062 * driver is doing some kind of reference counting. But that doesn't 1063 * really matter for the anon_vma sharing case. 1064 */ 1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1066 { 1067 return a->vm_end == b->vm_start && 1068 mpol_equal(vma_policy(a), vma_policy(b)) && 1069 a->vm_file == b->vm_file && 1070 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1071 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1072 } 1073 1074 /* 1075 * Do some basic sanity checking to see if we can re-use the anon_vma 1076 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1077 * the same as 'old', the other will be the new one that is trying 1078 * to share the anon_vma. 1079 * 1080 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1081 * the anon_vma of 'old' is concurrently in the process of being set up 1082 * by another page fault trying to merge _that_. But that's ok: if it 1083 * is being set up, that automatically means that it will be a singleton 1084 * acceptable for merging, so we can do all of this optimistically. But 1085 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1086 * 1087 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1088 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1089 * is to return an anon_vma that is "complex" due to having gone through 1090 * a fork). 1091 * 1092 * We also make sure that the two vma's are compatible (adjacent, 1093 * and with the same memory policies). That's all stable, even with just 1094 * a read lock on the mmap_lock. 1095 */ 1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1097 { 1098 if (anon_vma_compatible(a, b)) { 1099 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1100 1101 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1102 return anon_vma; 1103 } 1104 return NULL; 1105 } 1106 1107 /* 1108 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1109 * neighbouring vmas for a suitable anon_vma, before it goes off 1110 * to allocate a new anon_vma. It checks because a repetitive 1111 * sequence of mprotects and faults may otherwise lead to distinct 1112 * anon_vmas being allocated, preventing vma merge in subsequent 1113 * mprotect. 1114 */ 1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1116 { 1117 struct anon_vma *anon_vma = NULL; 1118 struct vm_area_struct *prev, *next; 1119 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1120 1121 /* Try next first. */ 1122 next = vma_iter_load(&vmi); 1123 if (next) { 1124 anon_vma = reusable_anon_vma(next, vma, next); 1125 if (anon_vma) 1126 return anon_vma; 1127 } 1128 1129 prev = vma_prev(&vmi); 1130 VM_BUG_ON_VMA(prev != vma, vma); 1131 prev = vma_prev(&vmi); 1132 /* Try prev next. */ 1133 if (prev) 1134 anon_vma = reusable_anon_vma(prev, prev, vma); 1135 1136 /* 1137 * We might reach here with anon_vma == NULL if we can't find 1138 * any reusable anon_vma. 1139 * There's no absolute need to look only at touching neighbours: 1140 * we could search further afield for "compatible" anon_vmas. 1141 * But it would probably just be a waste of time searching, 1142 * or lead to too many vmas hanging off the same anon_vma. 1143 * We're trying to allow mprotect remerging later on, 1144 * not trying to minimize memory used for anon_vmas. 1145 */ 1146 return anon_vma; 1147 } 1148 1149 /* 1150 * If a hint addr is less than mmap_min_addr change hint to be as 1151 * low as possible but still greater than mmap_min_addr 1152 */ 1153 static inline unsigned long round_hint_to_min(unsigned long hint) 1154 { 1155 hint &= PAGE_MASK; 1156 if (((void *)hint != NULL) && 1157 (hint < mmap_min_addr)) 1158 return PAGE_ALIGN(mmap_min_addr); 1159 return hint; 1160 } 1161 1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1163 unsigned long bytes) 1164 { 1165 unsigned long locked_pages, limit_pages; 1166 1167 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1168 return true; 1169 1170 locked_pages = bytes >> PAGE_SHIFT; 1171 locked_pages += mm->locked_vm; 1172 1173 limit_pages = rlimit(RLIMIT_MEMLOCK); 1174 limit_pages >>= PAGE_SHIFT; 1175 1176 return locked_pages <= limit_pages; 1177 } 1178 1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1180 { 1181 if (S_ISREG(inode->i_mode)) 1182 return MAX_LFS_FILESIZE; 1183 1184 if (S_ISBLK(inode->i_mode)) 1185 return MAX_LFS_FILESIZE; 1186 1187 if (S_ISSOCK(inode->i_mode)) 1188 return MAX_LFS_FILESIZE; 1189 1190 /* Special "we do even unsigned file positions" case */ 1191 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1192 return 0; 1193 1194 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1195 return ULONG_MAX; 1196 } 1197 1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1199 unsigned long pgoff, unsigned long len) 1200 { 1201 u64 maxsize = file_mmap_size_max(file, inode); 1202 1203 if (maxsize && len > maxsize) 1204 return false; 1205 maxsize -= len; 1206 if (pgoff > maxsize >> PAGE_SHIFT) 1207 return false; 1208 return true; 1209 } 1210 1211 /* 1212 * The caller must write-lock current->mm->mmap_lock. 1213 */ 1214 unsigned long do_mmap(struct file *file, unsigned long addr, 1215 unsigned long len, unsigned long prot, 1216 unsigned long flags, vm_flags_t vm_flags, 1217 unsigned long pgoff, unsigned long *populate, 1218 struct list_head *uf) 1219 { 1220 struct mm_struct *mm = current->mm; 1221 int pkey = 0; 1222 1223 *populate = 0; 1224 1225 if (!len) 1226 return -EINVAL; 1227 1228 /* 1229 * Does the application expect PROT_READ to imply PROT_EXEC? 1230 * 1231 * (the exception is when the underlying filesystem is noexec 1232 * mounted, in which case we don't add PROT_EXEC.) 1233 */ 1234 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1235 if (!(file && path_noexec(&file->f_path))) 1236 prot |= PROT_EXEC; 1237 1238 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1239 if (flags & MAP_FIXED_NOREPLACE) 1240 flags |= MAP_FIXED; 1241 1242 if (!(flags & MAP_FIXED)) 1243 addr = round_hint_to_min(addr); 1244 1245 /* Careful about overflows.. */ 1246 len = PAGE_ALIGN(len); 1247 if (!len) 1248 return -ENOMEM; 1249 1250 /* offset overflow? */ 1251 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1252 return -EOVERFLOW; 1253 1254 /* Too many mappings? */ 1255 if (mm->map_count > sysctl_max_map_count) 1256 return -ENOMEM; 1257 1258 if (prot == PROT_EXEC) { 1259 pkey = execute_only_pkey(mm); 1260 if (pkey < 0) 1261 pkey = 0; 1262 } 1263 1264 /* Do simple checking here so the lower-level routines won't have 1265 * to. we assume access permissions have been handled by the open 1266 * of the memory object, so we don't do any here. 1267 */ 1268 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1269 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1270 1271 /* Obtain the address to map to. we verify (or select) it and ensure 1272 * that it represents a valid section of the address space. 1273 */ 1274 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 1275 if (IS_ERR_VALUE(addr)) 1276 return addr; 1277 1278 if (flags & MAP_FIXED_NOREPLACE) { 1279 if (find_vma_intersection(mm, addr, addr + len)) 1280 return -EEXIST; 1281 } 1282 1283 if (flags & MAP_LOCKED) 1284 if (!can_do_mlock()) 1285 return -EPERM; 1286 1287 if (!mlock_future_ok(mm, vm_flags, len)) 1288 return -EAGAIN; 1289 1290 if (file) { 1291 struct inode *inode = file_inode(file); 1292 unsigned long flags_mask; 1293 1294 if (!file_mmap_ok(file, inode, pgoff, len)) 1295 return -EOVERFLOW; 1296 1297 flags_mask = LEGACY_MAP_MASK; 1298 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 1299 flags_mask |= MAP_SYNC; 1300 1301 switch (flags & MAP_TYPE) { 1302 case MAP_SHARED: 1303 /* 1304 * Force use of MAP_SHARED_VALIDATE with non-legacy 1305 * flags. E.g. MAP_SYNC is dangerous to use with 1306 * MAP_SHARED as you don't know which consistency model 1307 * you will get. We silently ignore unsupported flags 1308 * with MAP_SHARED to preserve backward compatibility. 1309 */ 1310 flags &= LEGACY_MAP_MASK; 1311 fallthrough; 1312 case MAP_SHARED_VALIDATE: 1313 if (flags & ~flags_mask) 1314 return -EOPNOTSUPP; 1315 if (prot & PROT_WRITE) { 1316 if (!(file->f_mode & FMODE_WRITE)) 1317 return -EACCES; 1318 if (IS_SWAPFILE(file->f_mapping->host)) 1319 return -ETXTBSY; 1320 } 1321 1322 /* 1323 * Make sure we don't allow writing to an append-only 1324 * file.. 1325 */ 1326 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1327 return -EACCES; 1328 1329 vm_flags |= VM_SHARED | VM_MAYSHARE; 1330 if (!(file->f_mode & FMODE_WRITE)) 1331 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1332 fallthrough; 1333 case MAP_PRIVATE: 1334 if (!(file->f_mode & FMODE_READ)) 1335 return -EACCES; 1336 if (path_noexec(&file->f_path)) { 1337 if (vm_flags & VM_EXEC) 1338 return -EPERM; 1339 vm_flags &= ~VM_MAYEXEC; 1340 } 1341 1342 if (!file->f_op->mmap) 1343 return -ENODEV; 1344 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1345 return -EINVAL; 1346 break; 1347 1348 default: 1349 return -EINVAL; 1350 } 1351 } else { 1352 switch (flags & MAP_TYPE) { 1353 case MAP_SHARED: 1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1355 return -EINVAL; 1356 /* 1357 * Ignore pgoff. 1358 */ 1359 pgoff = 0; 1360 vm_flags |= VM_SHARED | VM_MAYSHARE; 1361 break; 1362 case MAP_PRIVATE: 1363 /* 1364 * Set pgoff according to addr for anon_vma. 1365 */ 1366 pgoff = addr >> PAGE_SHIFT; 1367 break; 1368 default: 1369 return -EINVAL; 1370 } 1371 } 1372 1373 /* 1374 * Set 'VM_NORESERVE' if we should not account for the 1375 * memory use of this mapping. 1376 */ 1377 if (flags & MAP_NORESERVE) { 1378 /* We honor MAP_NORESERVE if allowed to overcommit */ 1379 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1380 vm_flags |= VM_NORESERVE; 1381 1382 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1383 if (file && is_file_hugepages(file)) 1384 vm_flags |= VM_NORESERVE; 1385 } 1386 1387 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1388 if (!IS_ERR_VALUE(addr) && 1389 ((vm_flags & VM_LOCKED) || 1390 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1391 *populate = len; 1392 return addr; 1393 } 1394 1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1396 unsigned long prot, unsigned long flags, 1397 unsigned long fd, unsigned long pgoff) 1398 { 1399 struct file *file = NULL; 1400 unsigned long retval; 1401 1402 if (!(flags & MAP_ANONYMOUS)) { 1403 audit_mmap_fd(fd, flags); 1404 file = fget(fd); 1405 if (!file) 1406 return -EBADF; 1407 if (is_file_hugepages(file)) { 1408 len = ALIGN(len, huge_page_size(hstate_file(file))); 1409 } else if (unlikely(flags & MAP_HUGETLB)) { 1410 retval = -EINVAL; 1411 goto out_fput; 1412 } 1413 } else if (flags & MAP_HUGETLB) { 1414 struct hstate *hs; 1415 1416 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1417 if (!hs) 1418 return -EINVAL; 1419 1420 len = ALIGN(len, huge_page_size(hs)); 1421 /* 1422 * VM_NORESERVE is used because the reservations will be 1423 * taken when vm_ops->mmap() is called 1424 */ 1425 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1426 VM_NORESERVE, 1427 HUGETLB_ANONHUGE_INODE, 1428 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1429 if (IS_ERR(file)) 1430 return PTR_ERR(file); 1431 } 1432 1433 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1434 out_fput: 1435 if (file) 1436 fput(file); 1437 return retval; 1438 } 1439 1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1441 unsigned long, prot, unsigned long, flags, 1442 unsigned long, fd, unsigned long, pgoff) 1443 { 1444 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1445 } 1446 1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1448 struct mmap_arg_struct { 1449 unsigned long addr; 1450 unsigned long len; 1451 unsigned long prot; 1452 unsigned long flags; 1453 unsigned long fd; 1454 unsigned long offset; 1455 }; 1456 1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1458 { 1459 struct mmap_arg_struct a; 1460 1461 if (copy_from_user(&a, arg, sizeof(a))) 1462 return -EFAULT; 1463 if (offset_in_page(a.offset)) 1464 return -EINVAL; 1465 1466 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1467 a.offset >> PAGE_SHIFT); 1468 } 1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1470 1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1472 { 1473 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1474 } 1475 1476 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1477 { 1478 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1479 (VM_WRITE | VM_SHARED); 1480 } 1481 1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1483 { 1484 /* No managed pages to writeback. */ 1485 if (vma->vm_flags & VM_PFNMAP) 1486 return false; 1487 1488 return vma->vm_file && vma->vm_file->f_mapping && 1489 mapping_can_writeback(vma->vm_file->f_mapping); 1490 } 1491 1492 /* 1493 * Does this VMA require the underlying folios to have their dirty state 1494 * tracked? 1495 */ 1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1497 { 1498 /* Only shared, writable VMAs require dirty tracking. */ 1499 if (!vma_is_shared_writable(vma)) 1500 return false; 1501 1502 /* Does the filesystem need to be notified? */ 1503 if (vm_ops_needs_writenotify(vma->vm_ops)) 1504 return true; 1505 1506 /* 1507 * Even if the filesystem doesn't indicate a need for writenotify, if it 1508 * can writeback, dirty tracking is still required. 1509 */ 1510 return vma_fs_can_writeback(vma); 1511 } 1512 1513 /* 1514 * Some shared mappings will want the pages marked read-only 1515 * to track write events. If so, we'll downgrade vm_page_prot 1516 * to the private version (using protection_map[] without the 1517 * VM_SHARED bit). 1518 */ 1519 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1520 { 1521 /* If it was private or non-writable, the write bit is already clear */ 1522 if (!vma_is_shared_writable(vma)) 1523 return false; 1524 1525 /* The backer wishes to know when pages are first written to? */ 1526 if (vm_ops_needs_writenotify(vma->vm_ops)) 1527 return true; 1528 1529 /* The open routine did something to the protections that pgprot_modify 1530 * won't preserve? */ 1531 if (pgprot_val(vm_page_prot) != 1532 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1533 return false; 1534 1535 /* 1536 * Do we need to track softdirty? hugetlb does not support softdirty 1537 * tracking yet. 1538 */ 1539 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1540 return true; 1541 1542 /* Do we need write faults for uffd-wp tracking? */ 1543 if (userfaultfd_wp(vma)) 1544 return true; 1545 1546 /* Can the mapping track the dirty pages? */ 1547 return vma_fs_can_writeback(vma); 1548 } 1549 1550 /* 1551 * We account for memory if it's a private writeable mapping, 1552 * not hugepages and VM_NORESERVE wasn't set. 1553 */ 1554 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 1555 { 1556 /* 1557 * hugetlb has its own accounting separate from the core VM 1558 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1559 */ 1560 if (file && is_file_hugepages(file)) 1561 return false; 1562 1563 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1564 } 1565 1566 /** 1567 * unmapped_area() - Find an area between the low_limit and the high_limit with 1568 * the correct alignment and offset, all from @info. Note: current->mm is used 1569 * for the search. 1570 * 1571 * @info: The unmapped area information including the range [low_limit - 1572 * high_limit), the alignment offset and mask. 1573 * 1574 * Return: A memory address or -ENOMEM. 1575 */ 1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1577 { 1578 unsigned long length, gap; 1579 unsigned long low_limit, high_limit; 1580 struct vm_area_struct *tmp; 1581 VMA_ITERATOR(vmi, current->mm, 0); 1582 1583 /* Adjust search length to account for worst case alignment overhead */ 1584 length = info->length + info->align_mask + info->start_gap; 1585 if (length < info->length) 1586 return -ENOMEM; 1587 1588 low_limit = info->low_limit; 1589 if (low_limit < mmap_min_addr) 1590 low_limit = mmap_min_addr; 1591 high_limit = info->high_limit; 1592 retry: 1593 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 1594 return -ENOMEM; 1595 1596 /* 1597 * Adjust for the gap first so it doesn't interfere with the 1598 * later alignment. The first step is the minimum needed to 1599 * fulill the start gap, the next steps is the minimum to align 1600 * that. It is the minimum needed to fulill both. 1601 */ 1602 gap = vma_iter_addr(&vmi) + info->start_gap; 1603 gap += (info->align_offset - gap) & info->align_mask; 1604 tmp = vma_next(&vmi); 1605 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1606 if (vm_start_gap(tmp) < gap + length - 1) { 1607 low_limit = tmp->vm_end; 1608 vma_iter_reset(&vmi); 1609 goto retry; 1610 } 1611 } else { 1612 tmp = vma_prev(&vmi); 1613 if (tmp && vm_end_gap(tmp) > gap) { 1614 low_limit = vm_end_gap(tmp); 1615 vma_iter_reset(&vmi); 1616 goto retry; 1617 } 1618 } 1619 1620 return gap; 1621 } 1622 1623 /** 1624 * unmapped_area_topdown() - Find an area between the low_limit and the 1625 * high_limit with the correct alignment and offset at the highest available 1626 * address, all from @info. Note: current->mm is used for the search. 1627 * 1628 * @info: The unmapped area information including the range [low_limit - 1629 * high_limit), the alignment offset and mask. 1630 * 1631 * Return: A memory address or -ENOMEM. 1632 */ 1633 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1634 { 1635 unsigned long length, gap, gap_end; 1636 unsigned long low_limit, high_limit; 1637 struct vm_area_struct *tmp; 1638 VMA_ITERATOR(vmi, current->mm, 0); 1639 1640 /* Adjust search length to account for worst case alignment overhead */ 1641 length = info->length + info->align_mask + info->start_gap; 1642 if (length < info->length) 1643 return -ENOMEM; 1644 1645 low_limit = info->low_limit; 1646 if (low_limit < mmap_min_addr) 1647 low_limit = mmap_min_addr; 1648 high_limit = info->high_limit; 1649 retry: 1650 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 1651 return -ENOMEM; 1652 1653 gap = vma_iter_end(&vmi) - info->length; 1654 gap -= (gap - info->align_offset) & info->align_mask; 1655 gap_end = vma_iter_end(&vmi); 1656 tmp = vma_next(&vmi); 1657 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1658 if (vm_start_gap(tmp) < gap_end) { 1659 high_limit = vm_start_gap(tmp); 1660 vma_iter_reset(&vmi); 1661 goto retry; 1662 } 1663 } else { 1664 tmp = vma_prev(&vmi); 1665 if (tmp && vm_end_gap(tmp) > gap) { 1666 high_limit = tmp->vm_start; 1667 vma_iter_reset(&vmi); 1668 goto retry; 1669 } 1670 } 1671 1672 return gap; 1673 } 1674 1675 /* 1676 * Search for an unmapped address range. 1677 * 1678 * We are looking for a range that: 1679 * - does not intersect with any VMA; 1680 * - is contained within the [low_limit, high_limit) interval; 1681 * - is at least the desired size. 1682 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1683 */ 1684 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1685 { 1686 unsigned long addr; 1687 1688 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1689 addr = unmapped_area_topdown(info); 1690 else 1691 addr = unmapped_area(info); 1692 1693 trace_vm_unmapped_area(addr, info); 1694 return addr; 1695 } 1696 1697 /* Get an address range which is currently unmapped. 1698 * For shmat() with addr=0. 1699 * 1700 * Ugly calling convention alert: 1701 * Return value with the low bits set means error value, 1702 * ie 1703 * if (ret & ~PAGE_MASK) 1704 * error = ret; 1705 * 1706 * This function "knows" that -ENOMEM has the bits set. 1707 */ 1708 unsigned long 1709 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1710 unsigned long len, unsigned long pgoff, 1711 unsigned long flags) 1712 { 1713 struct mm_struct *mm = current->mm; 1714 struct vm_area_struct *vma, *prev; 1715 struct vm_unmapped_area_info info = {}; 1716 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1717 1718 if (len > mmap_end - mmap_min_addr) 1719 return -ENOMEM; 1720 1721 if (flags & MAP_FIXED) 1722 return addr; 1723 1724 if (addr) { 1725 addr = PAGE_ALIGN(addr); 1726 vma = find_vma_prev(mm, addr, &prev); 1727 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1728 (!vma || addr + len <= vm_start_gap(vma)) && 1729 (!prev || addr >= vm_end_gap(prev))) 1730 return addr; 1731 } 1732 1733 info.length = len; 1734 info.low_limit = mm->mmap_base; 1735 info.high_limit = mmap_end; 1736 return vm_unmapped_area(&info); 1737 } 1738 1739 #ifndef HAVE_ARCH_UNMAPPED_AREA 1740 unsigned long 1741 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1742 unsigned long len, unsigned long pgoff, 1743 unsigned long flags) 1744 { 1745 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1746 } 1747 #endif 1748 1749 /* 1750 * This mmap-allocator allocates new areas top-down from below the 1751 * stack's low limit (the base): 1752 */ 1753 unsigned long 1754 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1755 unsigned long len, unsigned long pgoff, 1756 unsigned long flags) 1757 { 1758 struct vm_area_struct *vma, *prev; 1759 struct mm_struct *mm = current->mm; 1760 struct vm_unmapped_area_info info = {}; 1761 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1762 1763 /* requested length too big for entire address space */ 1764 if (len > mmap_end - mmap_min_addr) 1765 return -ENOMEM; 1766 1767 if (flags & MAP_FIXED) 1768 return addr; 1769 1770 /* requesting a specific address */ 1771 if (addr) { 1772 addr = PAGE_ALIGN(addr); 1773 vma = find_vma_prev(mm, addr, &prev); 1774 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1775 (!vma || addr + len <= vm_start_gap(vma)) && 1776 (!prev || addr >= vm_end_gap(prev))) 1777 return addr; 1778 } 1779 1780 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1781 info.length = len; 1782 info.low_limit = PAGE_SIZE; 1783 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1784 addr = vm_unmapped_area(&info); 1785 1786 /* 1787 * A failed mmap() very likely causes application failure, 1788 * so fall back to the bottom-up function here. This scenario 1789 * can happen with large stack limits and large mmap() 1790 * allocations. 1791 */ 1792 if (offset_in_page(addr)) { 1793 VM_BUG_ON(addr != -ENOMEM); 1794 info.flags = 0; 1795 info.low_limit = TASK_UNMAPPED_BASE; 1796 info.high_limit = mmap_end; 1797 addr = vm_unmapped_area(&info); 1798 } 1799 1800 return addr; 1801 } 1802 1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1804 unsigned long 1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1806 unsigned long len, unsigned long pgoff, 1807 unsigned long flags) 1808 { 1809 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1810 } 1811 #endif 1812 1813 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS 1814 unsigned long 1815 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len, 1816 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 1817 { 1818 return arch_get_unmapped_area(filp, addr, len, pgoff, flags); 1819 } 1820 1821 unsigned long 1822 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr, 1823 unsigned long len, unsigned long pgoff, 1824 unsigned long flags, vm_flags_t vm_flags) 1825 { 1826 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1827 } 1828 #endif 1829 1830 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 1831 unsigned long addr, unsigned long len, 1832 unsigned long pgoff, unsigned long flags, 1833 vm_flags_t vm_flags) 1834 { 1835 if (test_bit(MMF_TOPDOWN, &mm->flags)) 1836 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff, 1837 flags, vm_flags); 1838 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags); 1839 } 1840 1841 unsigned long 1842 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1843 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 1844 { 1845 unsigned long (*get_area)(struct file *, unsigned long, 1846 unsigned long, unsigned long, unsigned long) 1847 = NULL; 1848 1849 unsigned long error = arch_mmap_check(addr, len, flags); 1850 if (error) 1851 return error; 1852 1853 /* Careful about overflows.. */ 1854 if (len > TASK_SIZE) 1855 return -ENOMEM; 1856 1857 if (file) { 1858 if (file->f_op->get_unmapped_area) 1859 get_area = file->f_op->get_unmapped_area; 1860 } else if (flags & MAP_SHARED) { 1861 /* 1862 * mmap_region() will call shmem_zero_setup() to create a file, 1863 * so use shmem's get_unmapped_area in case it can be huge. 1864 */ 1865 get_area = shmem_get_unmapped_area; 1866 } 1867 1868 /* Always treat pgoff as zero for anonymous memory. */ 1869 if (!file) 1870 pgoff = 0; 1871 1872 if (get_area) { 1873 addr = get_area(file, addr, len, pgoff, flags); 1874 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1875 /* Ensures that larger anonymous mappings are THP aligned. */ 1876 addr = thp_get_unmapped_area_vmflags(file, addr, len, 1877 pgoff, flags, vm_flags); 1878 } else { 1879 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 1880 pgoff, flags, vm_flags); 1881 } 1882 if (IS_ERR_VALUE(addr)) 1883 return addr; 1884 1885 if (addr > TASK_SIZE - len) 1886 return -ENOMEM; 1887 if (offset_in_page(addr)) 1888 return -EINVAL; 1889 1890 error = security_mmap_addr(addr); 1891 return error ? error : addr; 1892 } 1893 1894 unsigned long 1895 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 1896 unsigned long addr, unsigned long len, 1897 unsigned long pgoff, unsigned long flags) 1898 { 1899 if (test_bit(MMF_TOPDOWN, &mm->flags)) 1900 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags); 1901 return arch_get_unmapped_area(file, addr, len, pgoff, flags); 1902 } 1903 EXPORT_SYMBOL(mm_get_unmapped_area); 1904 1905 /** 1906 * find_vma_intersection() - Look up the first VMA which intersects the interval 1907 * @mm: The process address space. 1908 * @start_addr: The inclusive start user address. 1909 * @end_addr: The exclusive end user address. 1910 * 1911 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1912 * start_addr < end_addr. 1913 */ 1914 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1915 unsigned long start_addr, 1916 unsigned long end_addr) 1917 { 1918 unsigned long index = start_addr; 1919 1920 mmap_assert_locked(mm); 1921 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1922 } 1923 EXPORT_SYMBOL(find_vma_intersection); 1924 1925 /** 1926 * find_vma() - Find the VMA for a given address, or the next VMA. 1927 * @mm: The mm_struct to check 1928 * @addr: The address 1929 * 1930 * Returns: The VMA associated with addr, or the next VMA. 1931 * May return %NULL in the case of no VMA at addr or above. 1932 */ 1933 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1934 { 1935 unsigned long index = addr; 1936 1937 mmap_assert_locked(mm); 1938 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1939 } 1940 EXPORT_SYMBOL(find_vma); 1941 1942 /** 1943 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1944 * set %pprev to the previous VMA, if any. 1945 * @mm: The mm_struct to check 1946 * @addr: The address 1947 * @pprev: The pointer to set to the previous VMA 1948 * 1949 * Note that RCU lock is missing here since the external mmap_lock() is used 1950 * instead. 1951 * 1952 * Returns: The VMA associated with @addr, or the next vma. 1953 * May return %NULL in the case of no vma at addr or above. 1954 */ 1955 struct vm_area_struct * 1956 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1957 struct vm_area_struct **pprev) 1958 { 1959 struct vm_area_struct *vma; 1960 VMA_ITERATOR(vmi, mm, addr); 1961 1962 vma = vma_iter_load(&vmi); 1963 *pprev = vma_prev(&vmi); 1964 if (!vma) 1965 vma = vma_next(&vmi); 1966 return vma; 1967 } 1968 1969 /* 1970 * Verify that the stack growth is acceptable and 1971 * update accounting. This is shared with both the 1972 * grow-up and grow-down cases. 1973 */ 1974 static int acct_stack_growth(struct vm_area_struct *vma, 1975 unsigned long size, unsigned long grow) 1976 { 1977 struct mm_struct *mm = vma->vm_mm; 1978 unsigned long new_start; 1979 1980 /* address space limit tests */ 1981 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1982 return -ENOMEM; 1983 1984 /* Stack limit test */ 1985 if (size > rlimit(RLIMIT_STACK)) 1986 return -ENOMEM; 1987 1988 /* mlock limit tests */ 1989 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1990 return -ENOMEM; 1991 1992 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1993 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1994 vma->vm_end - size; 1995 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1996 return -EFAULT; 1997 1998 /* 1999 * Overcommit.. This must be the final test, as it will 2000 * update security statistics. 2001 */ 2002 if (security_vm_enough_memory_mm(mm, grow)) 2003 return -ENOMEM; 2004 2005 return 0; 2006 } 2007 2008 #if defined(CONFIG_STACK_GROWSUP) 2009 /* 2010 * PA-RISC uses this for its stack. 2011 * vma is the last one with address > vma->vm_end. Have to extend vma. 2012 */ 2013 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2014 { 2015 struct mm_struct *mm = vma->vm_mm; 2016 struct vm_area_struct *next; 2017 unsigned long gap_addr; 2018 int error = 0; 2019 VMA_ITERATOR(vmi, mm, vma->vm_start); 2020 2021 if (!(vma->vm_flags & VM_GROWSUP)) 2022 return -EFAULT; 2023 2024 /* Guard against exceeding limits of the address space. */ 2025 address &= PAGE_MASK; 2026 if (address >= (TASK_SIZE & PAGE_MASK)) 2027 return -ENOMEM; 2028 address += PAGE_SIZE; 2029 2030 /* Enforce stack_guard_gap */ 2031 gap_addr = address + stack_guard_gap; 2032 2033 /* Guard against overflow */ 2034 if (gap_addr < address || gap_addr > TASK_SIZE) 2035 gap_addr = TASK_SIZE; 2036 2037 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2038 if (next && vma_is_accessible(next)) { 2039 if (!(next->vm_flags & VM_GROWSUP)) 2040 return -ENOMEM; 2041 /* Check that both stack segments have the same anon_vma? */ 2042 } 2043 2044 if (next) 2045 vma_iter_prev_range_limit(&vmi, address); 2046 2047 vma_iter_config(&vmi, vma->vm_start, address); 2048 if (vma_iter_prealloc(&vmi, vma)) 2049 return -ENOMEM; 2050 2051 /* We must make sure the anon_vma is allocated. */ 2052 if (unlikely(anon_vma_prepare(vma))) { 2053 vma_iter_free(&vmi); 2054 return -ENOMEM; 2055 } 2056 2057 /* Lock the VMA before expanding to prevent concurrent page faults */ 2058 vma_start_write(vma); 2059 /* 2060 * vma->vm_start/vm_end cannot change under us because the caller 2061 * is required to hold the mmap_lock in read mode. We need the 2062 * anon_vma lock to serialize against concurrent expand_stacks. 2063 */ 2064 anon_vma_lock_write(vma->anon_vma); 2065 2066 /* Somebody else might have raced and expanded it already */ 2067 if (address > vma->vm_end) { 2068 unsigned long size, grow; 2069 2070 size = address - vma->vm_start; 2071 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2072 2073 error = -ENOMEM; 2074 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2075 error = acct_stack_growth(vma, size, grow); 2076 if (!error) { 2077 /* 2078 * We only hold a shared mmap_lock lock here, so 2079 * we need to protect against concurrent vma 2080 * expansions. anon_vma_lock_write() doesn't 2081 * help here, as we don't guarantee that all 2082 * growable vmas in a mm share the same root 2083 * anon vma. So, we reuse mm->page_table_lock 2084 * to guard against concurrent vma expansions. 2085 */ 2086 spin_lock(&mm->page_table_lock); 2087 if (vma->vm_flags & VM_LOCKED) 2088 mm->locked_vm += grow; 2089 vm_stat_account(mm, vma->vm_flags, grow); 2090 anon_vma_interval_tree_pre_update_vma(vma); 2091 vma->vm_end = address; 2092 /* Overwrite old entry in mtree. */ 2093 vma_iter_store(&vmi, vma); 2094 anon_vma_interval_tree_post_update_vma(vma); 2095 spin_unlock(&mm->page_table_lock); 2096 2097 perf_event_mmap(vma); 2098 } 2099 } 2100 } 2101 anon_vma_unlock_write(vma->anon_vma); 2102 vma_iter_free(&vmi); 2103 validate_mm(mm); 2104 return error; 2105 } 2106 #endif /* CONFIG_STACK_GROWSUP */ 2107 2108 /* 2109 * vma is the first one with address < vma->vm_start. Have to extend vma. 2110 * mmap_lock held for writing. 2111 */ 2112 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2113 { 2114 struct mm_struct *mm = vma->vm_mm; 2115 struct vm_area_struct *prev; 2116 int error = 0; 2117 VMA_ITERATOR(vmi, mm, vma->vm_start); 2118 2119 if (!(vma->vm_flags & VM_GROWSDOWN)) 2120 return -EFAULT; 2121 2122 address &= PAGE_MASK; 2123 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2124 return -EPERM; 2125 2126 /* Enforce stack_guard_gap */ 2127 prev = vma_prev(&vmi); 2128 /* Check that both stack segments have the same anon_vma? */ 2129 if (prev) { 2130 if (!(prev->vm_flags & VM_GROWSDOWN) && 2131 vma_is_accessible(prev) && 2132 (address - prev->vm_end < stack_guard_gap)) 2133 return -ENOMEM; 2134 } 2135 2136 if (prev) 2137 vma_iter_next_range_limit(&vmi, vma->vm_start); 2138 2139 vma_iter_config(&vmi, address, vma->vm_end); 2140 if (vma_iter_prealloc(&vmi, vma)) 2141 return -ENOMEM; 2142 2143 /* We must make sure the anon_vma is allocated. */ 2144 if (unlikely(anon_vma_prepare(vma))) { 2145 vma_iter_free(&vmi); 2146 return -ENOMEM; 2147 } 2148 2149 /* Lock the VMA before expanding to prevent concurrent page faults */ 2150 vma_start_write(vma); 2151 /* 2152 * vma->vm_start/vm_end cannot change under us because the caller 2153 * is required to hold the mmap_lock in read mode. We need the 2154 * anon_vma lock to serialize against concurrent expand_stacks. 2155 */ 2156 anon_vma_lock_write(vma->anon_vma); 2157 2158 /* Somebody else might have raced and expanded it already */ 2159 if (address < vma->vm_start) { 2160 unsigned long size, grow; 2161 2162 size = vma->vm_end - address; 2163 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2164 2165 error = -ENOMEM; 2166 if (grow <= vma->vm_pgoff) { 2167 error = acct_stack_growth(vma, size, grow); 2168 if (!error) { 2169 /* 2170 * We only hold a shared mmap_lock lock here, so 2171 * we need to protect against concurrent vma 2172 * expansions. anon_vma_lock_write() doesn't 2173 * help here, as we don't guarantee that all 2174 * growable vmas in a mm share the same root 2175 * anon vma. So, we reuse mm->page_table_lock 2176 * to guard against concurrent vma expansions. 2177 */ 2178 spin_lock(&mm->page_table_lock); 2179 if (vma->vm_flags & VM_LOCKED) 2180 mm->locked_vm += grow; 2181 vm_stat_account(mm, vma->vm_flags, grow); 2182 anon_vma_interval_tree_pre_update_vma(vma); 2183 vma->vm_start = address; 2184 vma->vm_pgoff -= grow; 2185 /* Overwrite old entry in mtree. */ 2186 vma_iter_store(&vmi, vma); 2187 anon_vma_interval_tree_post_update_vma(vma); 2188 spin_unlock(&mm->page_table_lock); 2189 2190 perf_event_mmap(vma); 2191 } 2192 } 2193 } 2194 anon_vma_unlock_write(vma->anon_vma); 2195 vma_iter_free(&vmi); 2196 validate_mm(mm); 2197 return error; 2198 } 2199 2200 /* enforced gap between the expanding stack and other mappings. */ 2201 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2202 2203 static int __init cmdline_parse_stack_guard_gap(char *p) 2204 { 2205 unsigned long val; 2206 char *endptr; 2207 2208 val = simple_strtoul(p, &endptr, 10); 2209 if (!*endptr) 2210 stack_guard_gap = val << PAGE_SHIFT; 2211 2212 return 1; 2213 } 2214 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2215 2216 #ifdef CONFIG_STACK_GROWSUP 2217 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2218 { 2219 return expand_upwards(vma, address); 2220 } 2221 2222 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2223 { 2224 struct vm_area_struct *vma, *prev; 2225 2226 addr &= PAGE_MASK; 2227 vma = find_vma_prev(mm, addr, &prev); 2228 if (vma && (vma->vm_start <= addr)) 2229 return vma; 2230 if (!prev) 2231 return NULL; 2232 if (expand_stack_locked(prev, addr)) 2233 return NULL; 2234 if (prev->vm_flags & VM_LOCKED) 2235 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2236 return prev; 2237 } 2238 #else 2239 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2240 { 2241 return expand_downwards(vma, address); 2242 } 2243 2244 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2245 { 2246 struct vm_area_struct *vma; 2247 unsigned long start; 2248 2249 addr &= PAGE_MASK; 2250 vma = find_vma(mm, addr); 2251 if (!vma) 2252 return NULL; 2253 if (vma->vm_start <= addr) 2254 return vma; 2255 start = vma->vm_start; 2256 if (expand_stack_locked(vma, addr)) 2257 return NULL; 2258 if (vma->vm_flags & VM_LOCKED) 2259 populate_vma_page_range(vma, addr, start, NULL); 2260 return vma; 2261 } 2262 #endif 2263 2264 #if defined(CONFIG_STACK_GROWSUP) 2265 2266 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2267 #define vma_expand_down(vma, addr) (-EFAULT) 2268 2269 #else 2270 2271 #define vma_expand_up(vma,addr) (-EFAULT) 2272 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2273 2274 #endif 2275 2276 /* 2277 * expand_stack(): legacy interface for page faulting. Don't use unless 2278 * you have to. 2279 * 2280 * This is called with the mm locked for reading, drops the lock, takes 2281 * the lock for writing, tries to look up a vma again, expands it if 2282 * necessary, and downgrades the lock to reading again. 2283 * 2284 * If no vma is found or it can't be expanded, it returns NULL and has 2285 * dropped the lock. 2286 */ 2287 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2288 { 2289 struct vm_area_struct *vma, *prev; 2290 2291 mmap_read_unlock(mm); 2292 if (mmap_write_lock_killable(mm)) 2293 return NULL; 2294 2295 vma = find_vma_prev(mm, addr, &prev); 2296 if (vma && vma->vm_start <= addr) 2297 goto success; 2298 2299 if (prev && !vma_expand_up(prev, addr)) { 2300 vma = prev; 2301 goto success; 2302 } 2303 2304 if (vma && !vma_expand_down(vma, addr)) 2305 goto success; 2306 2307 mmap_write_unlock(mm); 2308 return NULL; 2309 2310 success: 2311 mmap_write_downgrade(mm); 2312 return vma; 2313 } 2314 2315 /* 2316 * Ok - we have the memory areas we should free on a maple tree so release them, 2317 * and do the vma updates. 2318 * 2319 * Called with the mm semaphore held. 2320 */ 2321 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2322 { 2323 unsigned long nr_accounted = 0; 2324 struct vm_area_struct *vma; 2325 2326 /* Update high watermark before we lower total_vm */ 2327 update_hiwater_vm(mm); 2328 mas_for_each(mas, vma, ULONG_MAX) { 2329 long nrpages = vma_pages(vma); 2330 2331 if (vma->vm_flags & VM_ACCOUNT) 2332 nr_accounted += nrpages; 2333 vm_stat_account(mm, vma->vm_flags, -nrpages); 2334 remove_vma(vma, false); 2335 } 2336 vm_unacct_memory(nr_accounted); 2337 } 2338 2339 /* 2340 * Get rid of page table information in the indicated region. 2341 * 2342 * Called with the mm semaphore held. 2343 */ 2344 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2345 struct vm_area_struct *vma, struct vm_area_struct *prev, 2346 struct vm_area_struct *next, unsigned long start, 2347 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2348 { 2349 struct mmu_gather tlb; 2350 unsigned long mt_start = mas->index; 2351 2352 lru_add_drain(); 2353 tlb_gather_mmu(&tlb, mm); 2354 update_hiwater_rss(mm); 2355 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2356 mas_set(mas, mt_start); 2357 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2358 next ? next->vm_start : USER_PGTABLES_CEILING, 2359 mm_wr_locked); 2360 tlb_finish_mmu(&tlb); 2361 } 2362 2363 /* 2364 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2365 * has already been checked or doesn't make sense to fail. 2366 * VMA Iterator will point to the end VMA. 2367 */ 2368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2369 unsigned long addr, int new_below) 2370 { 2371 struct vma_prepare vp; 2372 struct vm_area_struct *new; 2373 int err; 2374 2375 WARN_ON(vma->vm_start >= addr); 2376 WARN_ON(vma->vm_end <= addr); 2377 2378 if (vma->vm_ops && vma->vm_ops->may_split) { 2379 err = vma->vm_ops->may_split(vma, addr); 2380 if (err) 2381 return err; 2382 } 2383 2384 new = vm_area_dup(vma); 2385 if (!new) 2386 return -ENOMEM; 2387 2388 if (new_below) { 2389 new->vm_end = addr; 2390 } else { 2391 new->vm_start = addr; 2392 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2393 } 2394 2395 err = -ENOMEM; 2396 vma_iter_config(vmi, new->vm_start, new->vm_end); 2397 if (vma_iter_prealloc(vmi, new)) 2398 goto out_free_vma; 2399 2400 err = vma_dup_policy(vma, new); 2401 if (err) 2402 goto out_free_vmi; 2403 2404 err = anon_vma_clone(new, vma); 2405 if (err) 2406 goto out_free_mpol; 2407 2408 if (new->vm_file) 2409 get_file(new->vm_file); 2410 2411 if (new->vm_ops && new->vm_ops->open) 2412 new->vm_ops->open(new); 2413 2414 vma_start_write(vma); 2415 vma_start_write(new); 2416 2417 init_vma_prep(&vp, vma); 2418 vp.insert = new; 2419 vma_prepare(&vp); 2420 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2421 2422 if (new_below) { 2423 vma->vm_start = addr; 2424 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2425 } else { 2426 vma->vm_end = addr; 2427 } 2428 2429 /* vma_complete stores the new vma */ 2430 vma_complete(&vp, vmi, vma->vm_mm); 2431 2432 /* Success. */ 2433 if (new_below) 2434 vma_next(vmi); 2435 return 0; 2436 2437 out_free_mpol: 2438 mpol_put(vma_policy(new)); 2439 out_free_vmi: 2440 vma_iter_free(vmi); 2441 out_free_vma: 2442 vm_area_free(new); 2443 return err; 2444 } 2445 2446 /* 2447 * Split a vma into two pieces at address 'addr', a new vma is allocated 2448 * either for the first part or the tail. 2449 */ 2450 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2451 unsigned long addr, int new_below) 2452 { 2453 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2454 return -ENOMEM; 2455 2456 return __split_vma(vmi, vma, addr, new_below); 2457 } 2458 2459 /* 2460 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 2461 * context and anonymous VMA name within the range [start, end). 2462 * 2463 * As a result, we might be able to merge the newly modified VMA range with an 2464 * adjacent VMA with identical properties. 2465 * 2466 * If no merge is possible and the range does not span the entirety of the VMA, 2467 * we then need to split the VMA to accommodate the change. 2468 * 2469 * The function returns either the merged VMA, the original VMA if a split was 2470 * required instead, or an error if the split failed. 2471 */ 2472 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 2473 struct vm_area_struct *prev, 2474 struct vm_area_struct *vma, 2475 unsigned long start, unsigned long end, 2476 unsigned long vm_flags, 2477 struct mempolicy *policy, 2478 struct vm_userfaultfd_ctx uffd_ctx, 2479 struct anon_vma_name *anon_name) 2480 { 2481 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 2482 struct vm_area_struct *merged; 2483 2484 merged = vma_merge(vmi, prev, vma, start, end, vm_flags, 2485 pgoff, policy, uffd_ctx, anon_name); 2486 if (merged) 2487 return merged; 2488 2489 if (vma->vm_start < start) { 2490 int err = split_vma(vmi, vma, start, 1); 2491 2492 if (err) 2493 return ERR_PTR(err); 2494 } 2495 2496 if (vma->vm_end > end) { 2497 int err = split_vma(vmi, vma, end, 0); 2498 2499 if (err) 2500 return ERR_PTR(err); 2501 } 2502 2503 return vma; 2504 } 2505 2506 /* 2507 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 2508 * must ensure that [start, end) does not overlap any existing VMA. 2509 */ 2510 static struct vm_area_struct 2511 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 2512 struct vm_area_struct *vma, unsigned long start, 2513 unsigned long end, pgoff_t pgoff) 2514 { 2515 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff, 2516 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2517 } 2518 2519 /* 2520 * Expand vma by delta bytes, potentially merging with an immediately adjacent 2521 * VMA with identical properties. 2522 */ 2523 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 2524 struct vm_area_struct *vma, 2525 unsigned long delta) 2526 { 2527 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma); 2528 2529 /* vma is specified as prev, so case 1 or 2 will apply. */ 2530 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta, 2531 vma->vm_flags, pgoff, vma_policy(vma), 2532 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2533 } 2534 2535 /* 2536 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2537 * @vmi: The vma iterator 2538 * @vma: The starting vm_area_struct 2539 * @mm: The mm_struct 2540 * @start: The aligned start address to munmap. 2541 * @end: The aligned end address to munmap. 2542 * @uf: The userfaultfd list_head 2543 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2544 * success. 2545 * 2546 * Return: 0 on success and drops the lock if so directed, error and leaves the 2547 * lock held otherwise. 2548 */ 2549 static int 2550 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2551 struct mm_struct *mm, unsigned long start, 2552 unsigned long end, struct list_head *uf, bool unlock) 2553 { 2554 struct vm_area_struct *prev, *next = NULL; 2555 struct maple_tree mt_detach; 2556 int count = 0; 2557 int error = -ENOMEM; 2558 unsigned long locked_vm = 0; 2559 MA_STATE(mas_detach, &mt_detach, 0, 0); 2560 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2561 mt_on_stack(mt_detach); 2562 2563 /* 2564 * If we need to split any vma, do it now to save pain later. 2565 * 2566 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2567 * unmapped vm_area_struct will remain in use: so lower split_vma 2568 * places tmp vma above, and higher split_vma places tmp vma below. 2569 */ 2570 2571 /* Does it split the first one? */ 2572 if (start > vma->vm_start) { 2573 2574 /* 2575 * Make sure that map_count on return from munmap() will 2576 * not exceed its limit; but let map_count go just above 2577 * its limit temporarily, to help free resources as expected. 2578 */ 2579 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2580 goto map_count_exceeded; 2581 2582 error = __split_vma(vmi, vma, start, 1); 2583 if (error) 2584 goto start_split_failed; 2585 } 2586 2587 /* 2588 * Detach a range of VMAs from the mm. Using next as a temp variable as 2589 * it is always overwritten. 2590 */ 2591 next = vma; 2592 do { 2593 /* Does it split the end? */ 2594 if (next->vm_end > end) { 2595 error = __split_vma(vmi, next, end, 0); 2596 if (error) 2597 goto end_split_failed; 2598 } 2599 vma_start_write(next); 2600 mas_set(&mas_detach, count); 2601 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2602 if (error) 2603 goto munmap_gather_failed; 2604 vma_mark_detached(next, true); 2605 if (next->vm_flags & VM_LOCKED) 2606 locked_vm += vma_pages(next); 2607 2608 count++; 2609 if (unlikely(uf)) { 2610 /* 2611 * If userfaultfd_unmap_prep returns an error the vmas 2612 * will remain split, but userland will get a 2613 * highly unexpected error anyway. This is no 2614 * different than the case where the first of the two 2615 * __split_vma fails, but we don't undo the first 2616 * split, despite we could. This is unlikely enough 2617 * failure that it's not worth optimizing it for. 2618 */ 2619 error = userfaultfd_unmap_prep(next, start, end, uf); 2620 2621 if (error) 2622 goto userfaultfd_error; 2623 } 2624 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2625 BUG_ON(next->vm_start < start); 2626 BUG_ON(next->vm_start > end); 2627 #endif 2628 } for_each_vma_range(*vmi, next, end); 2629 2630 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2631 /* Make sure no VMAs are about to be lost. */ 2632 { 2633 MA_STATE(test, &mt_detach, 0, 0); 2634 struct vm_area_struct *vma_mas, *vma_test; 2635 int test_count = 0; 2636 2637 vma_iter_set(vmi, start); 2638 rcu_read_lock(); 2639 vma_test = mas_find(&test, count - 1); 2640 for_each_vma_range(*vmi, vma_mas, end) { 2641 BUG_ON(vma_mas != vma_test); 2642 test_count++; 2643 vma_test = mas_next(&test, count - 1); 2644 } 2645 rcu_read_unlock(); 2646 BUG_ON(count != test_count); 2647 } 2648 #endif 2649 2650 while (vma_iter_addr(vmi) > start) 2651 vma_iter_prev_range(vmi); 2652 2653 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2654 if (error) 2655 goto clear_tree_failed; 2656 2657 /* Point of no return */ 2658 mm->locked_vm -= locked_vm; 2659 mm->map_count -= count; 2660 if (unlock) 2661 mmap_write_downgrade(mm); 2662 2663 prev = vma_iter_prev_range(vmi); 2664 next = vma_next(vmi); 2665 if (next) 2666 vma_iter_prev_range(vmi); 2667 2668 /* 2669 * We can free page tables without write-locking mmap_lock because VMAs 2670 * were isolated before we downgraded mmap_lock. 2671 */ 2672 mas_set(&mas_detach, 1); 2673 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2674 !unlock); 2675 /* Statistics and freeing VMAs */ 2676 mas_set(&mas_detach, 0); 2677 remove_mt(mm, &mas_detach); 2678 validate_mm(mm); 2679 if (unlock) 2680 mmap_read_unlock(mm); 2681 2682 __mt_destroy(&mt_detach); 2683 return 0; 2684 2685 clear_tree_failed: 2686 userfaultfd_error: 2687 munmap_gather_failed: 2688 end_split_failed: 2689 mas_set(&mas_detach, 0); 2690 mas_for_each(&mas_detach, next, end) 2691 vma_mark_detached(next, false); 2692 2693 __mt_destroy(&mt_detach); 2694 start_split_failed: 2695 map_count_exceeded: 2696 validate_mm(mm); 2697 return error; 2698 } 2699 2700 /* 2701 * do_vmi_munmap() - munmap a given range. 2702 * @vmi: The vma iterator 2703 * @mm: The mm_struct 2704 * @start: The start address to munmap 2705 * @len: The length of the range to munmap 2706 * @uf: The userfaultfd list_head 2707 * @unlock: set to true if the user wants to drop the mmap_lock on success 2708 * 2709 * This function takes a @mas that is either pointing to the previous VMA or set 2710 * to MA_START and sets it up to remove the mapping(s). The @len will be 2711 * aligned and any arch_unmap work will be preformed. 2712 * 2713 * Return: 0 on success and drops the lock if so directed, error and leaves the 2714 * lock held otherwise. 2715 */ 2716 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2717 unsigned long start, size_t len, struct list_head *uf, 2718 bool unlock) 2719 { 2720 unsigned long end; 2721 struct vm_area_struct *vma; 2722 2723 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2724 return -EINVAL; 2725 2726 end = start + PAGE_ALIGN(len); 2727 if (end == start) 2728 return -EINVAL; 2729 2730 /* arch_unmap() might do unmaps itself. */ 2731 arch_unmap(mm, start, end); 2732 2733 /* Find the first overlapping VMA */ 2734 vma = vma_find(vmi, end); 2735 if (!vma) { 2736 if (unlock) 2737 mmap_write_unlock(mm); 2738 return 0; 2739 } 2740 2741 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2742 } 2743 2744 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2745 * @mm: The mm_struct 2746 * @start: The start address to munmap 2747 * @len: The length to be munmapped. 2748 * @uf: The userfaultfd list_head 2749 * 2750 * Return: 0 on success, error otherwise. 2751 */ 2752 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2753 struct list_head *uf) 2754 { 2755 VMA_ITERATOR(vmi, mm, start); 2756 2757 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2758 } 2759 2760 unsigned long mmap_region(struct file *file, unsigned long addr, 2761 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2762 struct list_head *uf) 2763 { 2764 struct mm_struct *mm = current->mm; 2765 struct vm_area_struct *vma = NULL; 2766 struct vm_area_struct *next, *prev, *merge; 2767 pgoff_t pglen = len >> PAGE_SHIFT; 2768 unsigned long charged = 0; 2769 unsigned long end = addr + len; 2770 unsigned long merge_start = addr, merge_end = end; 2771 bool writable_file_mapping = false; 2772 pgoff_t vm_pgoff; 2773 int error; 2774 VMA_ITERATOR(vmi, mm, addr); 2775 2776 /* Check against address space limit. */ 2777 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2778 unsigned long nr_pages; 2779 2780 /* 2781 * MAP_FIXED may remove pages of mappings that intersects with 2782 * requested mapping. Account for the pages it would unmap. 2783 */ 2784 nr_pages = count_vma_pages_range(mm, addr, end); 2785 2786 if (!may_expand_vm(mm, vm_flags, 2787 (len >> PAGE_SHIFT) - nr_pages)) 2788 return -ENOMEM; 2789 } 2790 2791 /* Unmap any existing mapping in the area */ 2792 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2793 return -ENOMEM; 2794 2795 /* 2796 * Private writable mapping: check memory availability 2797 */ 2798 if (accountable_mapping(file, vm_flags)) { 2799 charged = len >> PAGE_SHIFT; 2800 if (security_vm_enough_memory_mm(mm, charged)) 2801 return -ENOMEM; 2802 vm_flags |= VM_ACCOUNT; 2803 } 2804 2805 next = vma_next(&vmi); 2806 prev = vma_prev(&vmi); 2807 if (vm_flags & VM_SPECIAL) { 2808 if (prev) 2809 vma_iter_next_range(&vmi); 2810 goto cannot_expand; 2811 } 2812 2813 /* Attempt to expand an old mapping */ 2814 /* Check next */ 2815 if (next && next->vm_start == end && !vma_policy(next) && 2816 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2817 NULL_VM_UFFD_CTX, NULL)) { 2818 merge_end = next->vm_end; 2819 vma = next; 2820 vm_pgoff = next->vm_pgoff - pglen; 2821 } 2822 2823 /* Check prev */ 2824 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2825 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2826 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2827 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2828 NULL_VM_UFFD_CTX, NULL))) { 2829 merge_start = prev->vm_start; 2830 vma = prev; 2831 vm_pgoff = prev->vm_pgoff; 2832 } else if (prev) { 2833 vma_iter_next_range(&vmi); 2834 } 2835 2836 /* Actually expand, if possible */ 2837 if (vma && 2838 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2839 khugepaged_enter_vma(vma, vm_flags); 2840 goto expanded; 2841 } 2842 2843 if (vma == prev) 2844 vma_iter_set(&vmi, addr); 2845 cannot_expand: 2846 2847 /* 2848 * Determine the object being mapped and call the appropriate 2849 * specific mapper. the address has already been validated, but 2850 * not unmapped, but the maps are removed from the list. 2851 */ 2852 vma = vm_area_alloc(mm); 2853 if (!vma) { 2854 error = -ENOMEM; 2855 goto unacct_error; 2856 } 2857 2858 vma_iter_config(&vmi, addr, end); 2859 vma_set_range(vma, addr, end, pgoff); 2860 vm_flags_init(vma, vm_flags); 2861 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2862 2863 if (file) { 2864 vma->vm_file = get_file(file); 2865 error = call_mmap(file, vma); 2866 if (error) 2867 goto unmap_and_free_vma; 2868 2869 if (vma_is_shared_maywrite(vma)) { 2870 error = mapping_map_writable(file->f_mapping); 2871 if (error) 2872 goto close_and_free_vma; 2873 2874 writable_file_mapping = true; 2875 } 2876 2877 /* 2878 * Expansion is handled above, merging is handled below. 2879 * Drivers should not alter the address of the VMA. 2880 */ 2881 error = -EINVAL; 2882 if (WARN_ON((addr != vma->vm_start))) 2883 goto close_and_free_vma; 2884 2885 vma_iter_config(&vmi, addr, end); 2886 /* 2887 * If vm_flags changed after call_mmap(), we should try merge 2888 * vma again as we may succeed this time. 2889 */ 2890 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2891 merge = vma_merge_new_vma(&vmi, prev, vma, 2892 vma->vm_start, vma->vm_end, 2893 vma->vm_pgoff); 2894 if (merge) { 2895 /* 2896 * ->mmap() can change vma->vm_file and fput 2897 * the original file. So fput the vma->vm_file 2898 * here or we would add an extra fput for file 2899 * and cause general protection fault 2900 * ultimately. 2901 */ 2902 fput(vma->vm_file); 2903 vm_area_free(vma); 2904 vma = merge; 2905 /* Update vm_flags to pick up the change. */ 2906 vm_flags = vma->vm_flags; 2907 goto unmap_writable; 2908 } 2909 } 2910 2911 vm_flags = vma->vm_flags; 2912 } else if (vm_flags & VM_SHARED) { 2913 error = shmem_zero_setup(vma); 2914 if (error) 2915 goto free_vma; 2916 } else { 2917 vma_set_anonymous(vma); 2918 } 2919 2920 if (map_deny_write_exec(vma, vma->vm_flags)) { 2921 error = -EACCES; 2922 goto close_and_free_vma; 2923 } 2924 2925 /* Allow architectures to sanity-check the vm_flags */ 2926 error = -EINVAL; 2927 if (!arch_validate_flags(vma->vm_flags)) 2928 goto close_and_free_vma; 2929 2930 error = -ENOMEM; 2931 if (vma_iter_prealloc(&vmi, vma)) 2932 goto close_and_free_vma; 2933 2934 /* Lock the VMA since it is modified after insertion into VMA tree */ 2935 vma_start_write(vma); 2936 vma_iter_store(&vmi, vma); 2937 mm->map_count++; 2938 vma_link_file(vma); 2939 2940 /* 2941 * vma_merge() calls khugepaged_enter_vma() either, the below 2942 * call covers the non-merge case. 2943 */ 2944 khugepaged_enter_vma(vma, vma->vm_flags); 2945 2946 /* Once vma denies write, undo our temporary denial count */ 2947 unmap_writable: 2948 if (writable_file_mapping) 2949 mapping_unmap_writable(file->f_mapping); 2950 file = vma->vm_file; 2951 ksm_add_vma(vma); 2952 expanded: 2953 perf_event_mmap(vma); 2954 2955 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2956 if (vm_flags & VM_LOCKED) { 2957 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2958 is_vm_hugetlb_page(vma) || 2959 vma == get_gate_vma(current->mm)) 2960 vm_flags_clear(vma, VM_LOCKED_MASK); 2961 else 2962 mm->locked_vm += (len >> PAGE_SHIFT); 2963 } 2964 2965 if (file) 2966 uprobe_mmap(vma); 2967 2968 /* 2969 * New (or expanded) vma always get soft dirty status. 2970 * Otherwise user-space soft-dirty page tracker won't 2971 * be able to distinguish situation when vma area unmapped, 2972 * then new mapped in-place (which must be aimed as 2973 * a completely new data area). 2974 */ 2975 vm_flags_set(vma, VM_SOFTDIRTY); 2976 2977 vma_set_page_prot(vma); 2978 2979 validate_mm(mm); 2980 return addr; 2981 2982 close_and_free_vma: 2983 if (file && vma->vm_ops && vma->vm_ops->close) 2984 vma->vm_ops->close(vma); 2985 2986 if (file || vma->vm_file) { 2987 unmap_and_free_vma: 2988 fput(vma->vm_file); 2989 vma->vm_file = NULL; 2990 2991 vma_iter_set(&vmi, vma->vm_end); 2992 /* Undo any partial mapping done by a device driver. */ 2993 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 2994 vma->vm_end, vma->vm_end, true); 2995 } 2996 if (writable_file_mapping) 2997 mapping_unmap_writable(file->f_mapping); 2998 free_vma: 2999 vm_area_free(vma); 3000 unacct_error: 3001 if (charged) 3002 vm_unacct_memory(charged); 3003 validate_mm(mm); 3004 return error; 3005 } 3006 3007 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 3008 { 3009 int ret; 3010 struct mm_struct *mm = current->mm; 3011 LIST_HEAD(uf); 3012 VMA_ITERATOR(vmi, mm, start); 3013 3014 if (mmap_write_lock_killable(mm)) 3015 return -EINTR; 3016 3017 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3018 if (ret || !unlock) 3019 mmap_write_unlock(mm); 3020 3021 userfaultfd_unmap_complete(mm, &uf); 3022 return ret; 3023 } 3024 3025 int vm_munmap(unsigned long start, size_t len) 3026 { 3027 return __vm_munmap(start, len, false); 3028 } 3029 EXPORT_SYMBOL(vm_munmap); 3030 3031 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 3032 { 3033 addr = untagged_addr(addr); 3034 return __vm_munmap(addr, len, true); 3035 } 3036 3037 3038 /* 3039 * Emulation of deprecated remap_file_pages() syscall. 3040 */ 3041 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 3042 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 3043 { 3044 3045 struct mm_struct *mm = current->mm; 3046 struct vm_area_struct *vma; 3047 unsigned long populate = 0; 3048 unsigned long ret = -EINVAL; 3049 struct file *file; 3050 3051 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 3052 current->comm, current->pid); 3053 3054 if (prot) 3055 return ret; 3056 start = start & PAGE_MASK; 3057 size = size & PAGE_MASK; 3058 3059 if (start + size <= start) 3060 return ret; 3061 3062 /* Does pgoff wrap? */ 3063 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 3064 return ret; 3065 3066 if (mmap_write_lock_killable(mm)) 3067 return -EINTR; 3068 3069 vma = vma_lookup(mm, start); 3070 3071 if (!vma || !(vma->vm_flags & VM_SHARED)) 3072 goto out; 3073 3074 if (start + size > vma->vm_end) { 3075 VMA_ITERATOR(vmi, mm, vma->vm_end); 3076 struct vm_area_struct *next, *prev = vma; 3077 3078 for_each_vma_range(vmi, next, start + size) { 3079 /* hole between vmas ? */ 3080 if (next->vm_start != prev->vm_end) 3081 goto out; 3082 3083 if (next->vm_file != vma->vm_file) 3084 goto out; 3085 3086 if (next->vm_flags != vma->vm_flags) 3087 goto out; 3088 3089 if (start + size <= next->vm_end) 3090 break; 3091 3092 prev = next; 3093 } 3094 3095 if (!next) 3096 goto out; 3097 } 3098 3099 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3100 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3101 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3102 3103 flags &= MAP_NONBLOCK; 3104 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3105 if (vma->vm_flags & VM_LOCKED) 3106 flags |= MAP_LOCKED; 3107 3108 file = get_file(vma->vm_file); 3109 ret = do_mmap(vma->vm_file, start, size, 3110 prot, flags, 0, pgoff, &populate, NULL); 3111 fput(file); 3112 out: 3113 mmap_write_unlock(mm); 3114 if (populate) 3115 mm_populate(ret, populate); 3116 if (!IS_ERR_VALUE(ret)) 3117 ret = 0; 3118 return ret; 3119 } 3120 3121 /* 3122 * do_vma_munmap() - Unmap a full or partial vma. 3123 * @vmi: The vma iterator pointing at the vma 3124 * @vma: The first vma to be munmapped 3125 * @start: the start of the address to unmap 3126 * @end: The end of the address to unmap 3127 * @uf: The userfaultfd list_head 3128 * @unlock: Drop the lock on success 3129 * 3130 * unmaps a VMA mapping when the vma iterator is already in position. 3131 * Does not handle alignment. 3132 * 3133 * Return: 0 on success drops the lock of so directed, error on failure and will 3134 * still hold the lock. 3135 */ 3136 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3137 unsigned long start, unsigned long end, struct list_head *uf, 3138 bool unlock) 3139 { 3140 struct mm_struct *mm = vma->vm_mm; 3141 3142 arch_unmap(mm, start, end); 3143 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3144 } 3145 3146 /* 3147 * do_brk_flags() - Increase the brk vma if the flags match. 3148 * @vmi: The vma iterator 3149 * @addr: The start address 3150 * @len: The length of the increase 3151 * @vma: The vma, 3152 * @flags: The VMA Flags 3153 * 3154 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3155 * do not match then create a new anonymous VMA. Eventually we may be able to 3156 * do some brk-specific accounting here. 3157 */ 3158 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3159 unsigned long addr, unsigned long len, unsigned long flags) 3160 { 3161 struct mm_struct *mm = current->mm; 3162 struct vma_prepare vp; 3163 3164 /* 3165 * Check against address space limits by the changed size 3166 * Note: This happens *after* clearing old mappings in some code paths. 3167 */ 3168 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3169 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3170 return -ENOMEM; 3171 3172 if (mm->map_count > sysctl_max_map_count) 3173 return -ENOMEM; 3174 3175 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3176 return -ENOMEM; 3177 3178 /* 3179 * Expand the existing vma if possible; Note that singular lists do not 3180 * occur after forking, so the expand will only happen on new VMAs. 3181 */ 3182 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3183 can_vma_merge_after(vma, flags, NULL, NULL, 3184 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3185 vma_iter_config(vmi, vma->vm_start, addr + len); 3186 if (vma_iter_prealloc(vmi, vma)) 3187 goto unacct_fail; 3188 3189 vma_start_write(vma); 3190 3191 init_vma_prep(&vp, vma); 3192 vma_prepare(&vp); 3193 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3194 vma->vm_end = addr + len; 3195 vm_flags_set(vma, VM_SOFTDIRTY); 3196 vma_iter_store(vmi, vma); 3197 3198 vma_complete(&vp, vmi, mm); 3199 khugepaged_enter_vma(vma, flags); 3200 goto out; 3201 } 3202 3203 if (vma) 3204 vma_iter_next_range(vmi); 3205 /* create a vma struct for an anonymous mapping */ 3206 vma = vm_area_alloc(mm); 3207 if (!vma) 3208 goto unacct_fail; 3209 3210 vma_set_anonymous(vma); 3211 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 3212 vm_flags_init(vma, flags); 3213 vma->vm_page_prot = vm_get_page_prot(flags); 3214 vma_start_write(vma); 3215 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3216 goto mas_store_fail; 3217 3218 mm->map_count++; 3219 validate_mm(mm); 3220 ksm_add_vma(vma); 3221 out: 3222 perf_event_mmap(vma); 3223 mm->total_vm += len >> PAGE_SHIFT; 3224 mm->data_vm += len >> PAGE_SHIFT; 3225 if (flags & VM_LOCKED) 3226 mm->locked_vm += (len >> PAGE_SHIFT); 3227 vm_flags_set(vma, VM_SOFTDIRTY); 3228 return 0; 3229 3230 mas_store_fail: 3231 vm_area_free(vma); 3232 unacct_fail: 3233 vm_unacct_memory(len >> PAGE_SHIFT); 3234 return -ENOMEM; 3235 } 3236 3237 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3238 { 3239 struct mm_struct *mm = current->mm; 3240 struct vm_area_struct *vma = NULL; 3241 unsigned long len; 3242 int ret; 3243 bool populate; 3244 LIST_HEAD(uf); 3245 VMA_ITERATOR(vmi, mm, addr); 3246 3247 len = PAGE_ALIGN(request); 3248 if (len < request) 3249 return -ENOMEM; 3250 if (!len) 3251 return 0; 3252 3253 /* Until we need other flags, refuse anything except VM_EXEC. */ 3254 if ((flags & (~VM_EXEC)) != 0) 3255 return -EINVAL; 3256 3257 if (mmap_write_lock_killable(mm)) 3258 return -EINTR; 3259 3260 ret = check_brk_limits(addr, len); 3261 if (ret) 3262 goto limits_failed; 3263 3264 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3265 if (ret) 3266 goto munmap_failed; 3267 3268 vma = vma_prev(&vmi); 3269 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3270 populate = ((mm->def_flags & VM_LOCKED) != 0); 3271 mmap_write_unlock(mm); 3272 userfaultfd_unmap_complete(mm, &uf); 3273 if (populate && !ret) 3274 mm_populate(addr, len); 3275 return ret; 3276 3277 munmap_failed: 3278 limits_failed: 3279 mmap_write_unlock(mm); 3280 return ret; 3281 } 3282 EXPORT_SYMBOL(vm_brk_flags); 3283 3284 /* Release all mmaps. */ 3285 void exit_mmap(struct mm_struct *mm) 3286 { 3287 struct mmu_gather tlb; 3288 struct vm_area_struct *vma; 3289 unsigned long nr_accounted = 0; 3290 VMA_ITERATOR(vmi, mm, 0); 3291 int count = 0; 3292 3293 /* mm's last user has gone, and its about to be pulled down */ 3294 mmu_notifier_release(mm); 3295 3296 mmap_read_lock(mm); 3297 arch_exit_mmap(mm); 3298 3299 vma = vma_next(&vmi); 3300 if (!vma || unlikely(xa_is_zero(vma))) { 3301 /* Can happen if dup_mmap() received an OOM */ 3302 mmap_read_unlock(mm); 3303 mmap_write_lock(mm); 3304 goto destroy; 3305 } 3306 3307 lru_add_drain(); 3308 flush_cache_mm(mm); 3309 tlb_gather_mmu_fullmm(&tlb, mm); 3310 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3311 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3312 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3313 mmap_read_unlock(mm); 3314 3315 /* 3316 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3317 * because the memory has been already freed. 3318 */ 3319 set_bit(MMF_OOM_SKIP, &mm->flags); 3320 mmap_write_lock(mm); 3321 mt_clear_in_rcu(&mm->mm_mt); 3322 vma_iter_set(&vmi, vma->vm_end); 3323 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 3324 USER_PGTABLES_CEILING, true); 3325 tlb_finish_mmu(&tlb); 3326 3327 /* 3328 * Walk the list again, actually closing and freeing it, with preemption 3329 * enabled, without holding any MM locks besides the unreachable 3330 * mmap_write_lock. 3331 */ 3332 vma_iter_set(&vmi, vma->vm_end); 3333 do { 3334 if (vma->vm_flags & VM_ACCOUNT) 3335 nr_accounted += vma_pages(vma); 3336 remove_vma(vma, true); 3337 count++; 3338 cond_resched(); 3339 vma = vma_next(&vmi); 3340 } while (vma && likely(!xa_is_zero(vma))); 3341 3342 BUG_ON(count != mm->map_count); 3343 3344 trace_exit_mmap(mm); 3345 destroy: 3346 __mt_destroy(&mm->mm_mt); 3347 mmap_write_unlock(mm); 3348 vm_unacct_memory(nr_accounted); 3349 } 3350 3351 /* Insert vm structure into process list sorted by address 3352 * and into the inode's i_mmap tree. If vm_file is non-NULL 3353 * then i_mmap_rwsem is taken here. 3354 */ 3355 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3356 { 3357 unsigned long charged = vma_pages(vma); 3358 3359 3360 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3361 return -ENOMEM; 3362 3363 if ((vma->vm_flags & VM_ACCOUNT) && 3364 security_vm_enough_memory_mm(mm, charged)) 3365 return -ENOMEM; 3366 3367 /* 3368 * The vm_pgoff of a purely anonymous vma should be irrelevant 3369 * until its first write fault, when page's anon_vma and index 3370 * are set. But now set the vm_pgoff it will almost certainly 3371 * end up with (unless mremap moves it elsewhere before that 3372 * first wfault), so /proc/pid/maps tells a consistent story. 3373 * 3374 * By setting it to reflect the virtual start address of the 3375 * vma, merges and splits can happen in a seamless way, just 3376 * using the existing file pgoff checks and manipulations. 3377 * Similarly in do_mmap and in do_brk_flags. 3378 */ 3379 if (vma_is_anonymous(vma)) { 3380 BUG_ON(vma->anon_vma); 3381 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3382 } 3383 3384 if (vma_link(mm, vma)) { 3385 if (vma->vm_flags & VM_ACCOUNT) 3386 vm_unacct_memory(charged); 3387 return -ENOMEM; 3388 } 3389 3390 return 0; 3391 } 3392 3393 /* 3394 * Copy the vma structure to a new location in the same mm, 3395 * prior to moving page table entries, to effect an mremap move. 3396 */ 3397 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3398 unsigned long addr, unsigned long len, pgoff_t pgoff, 3399 bool *need_rmap_locks) 3400 { 3401 struct vm_area_struct *vma = *vmap; 3402 unsigned long vma_start = vma->vm_start; 3403 struct mm_struct *mm = vma->vm_mm; 3404 struct vm_area_struct *new_vma, *prev; 3405 bool faulted_in_anon_vma = true; 3406 VMA_ITERATOR(vmi, mm, addr); 3407 3408 /* 3409 * If anonymous vma has not yet been faulted, update new pgoff 3410 * to match new location, to increase its chance of merging. 3411 */ 3412 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3413 pgoff = addr >> PAGE_SHIFT; 3414 faulted_in_anon_vma = false; 3415 } 3416 3417 new_vma = find_vma_prev(mm, addr, &prev); 3418 if (new_vma && new_vma->vm_start < addr + len) 3419 return NULL; /* should never get here */ 3420 3421 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 3422 if (new_vma) { 3423 /* 3424 * Source vma may have been merged into new_vma 3425 */ 3426 if (unlikely(vma_start >= new_vma->vm_start && 3427 vma_start < new_vma->vm_end)) { 3428 /* 3429 * The only way we can get a vma_merge with 3430 * self during an mremap is if the vma hasn't 3431 * been faulted in yet and we were allowed to 3432 * reset the dst vma->vm_pgoff to the 3433 * destination address of the mremap to allow 3434 * the merge to happen. mremap must change the 3435 * vm_pgoff linearity between src and dst vmas 3436 * (in turn preventing a vma_merge) to be 3437 * safe. It is only safe to keep the vm_pgoff 3438 * linear if there are no pages mapped yet. 3439 */ 3440 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3441 *vmap = vma = new_vma; 3442 } 3443 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3444 } else { 3445 new_vma = vm_area_dup(vma); 3446 if (!new_vma) 3447 goto out; 3448 vma_set_range(new_vma, addr, addr + len, pgoff); 3449 if (vma_dup_policy(vma, new_vma)) 3450 goto out_free_vma; 3451 if (anon_vma_clone(new_vma, vma)) 3452 goto out_free_mempol; 3453 if (new_vma->vm_file) 3454 get_file(new_vma->vm_file); 3455 if (new_vma->vm_ops && new_vma->vm_ops->open) 3456 new_vma->vm_ops->open(new_vma); 3457 if (vma_link(mm, new_vma)) 3458 goto out_vma_link; 3459 *need_rmap_locks = false; 3460 } 3461 return new_vma; 3462 3463 out_vma_link: 3464 if (new_vma->vm_ops && new_vma->vm_ops->close) 3465 new_vma->vm_ops->close(new_vma); 3466 3467 if (new_vma->vm_file) 3468 fput(new_vma->vm_file); 3469 3470 unlink_anon_vmas(new_vma); 3471 out_free_mempol: 3472 mpol_put(vma_policy(new_vma)); 3473 out_free_vma: 3474 vm_area_free(new_vma); 3475 out: 3476 return NULL; 3477 } 3478 3479 /* 3480 * Return true if the calling process may expand its vm space by the passed 3481 * number of pages 3482 */ 3483 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3484 { 3485 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3486 return false; 3487 3488 if (is_data_mapping(flags) && 3489 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3490 /* Workaround for Valgrind */ 3491 if (rlimit(RLIMIT_DATA) == 0 && 3492 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3493 return true; 3494 3495 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3496 current->comm, current->pid, 3497 (mm->data_vm + npages) << PAGE_SHIFT, 3498 rlimit(RLIMIT_DATA), 3499 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3500 3501 if (!ignore_rlimit_data) 3502 return false; 3503 } 3504 3505 return true; 3506 } 3507 3508 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3509 { 3510 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3511 3512 if (is_exec_mapping(flags)) 3513 mm->exec_vm += npages; 3514 else if (is_stack_mapping(flags)) 3515 mm->stack_vm += npages; 3516 else if (is_data_mapping(flags)) 3517 mm->data_vm += npages; 3518 } 3519 3520 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3521 3522 /* 3523 * Having a close hook prevents vma merging regardless of flags. 3524 */ 3525 static void special_mapping_close(struct vm_area_struct *vma) 3526 { 3527 } 3528 3529 static const char *special_mapping_name(struct vm_area_struct *vma) 3530 { 3531 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3532 } 3533 3534 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3535 { 3536 struct vm_special_mapping *sm = new_vma->vm_private_data; 3537 3538 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3539 return -EFAULT; 3540 3541 if (sm->mremap) 3542 return sm->mremap(sm, new_vma); 3543 3544 return 0; 3545 } 3546 3547 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3548 { 3549 /* 3550 * Forbid splitting special mappings - kernel has expectations over 3551 * the number of pages in mapping. Together with VM_DONTEXPAND 3552 * the size of vma should stay the same over the special mapping's 3553 * lifetime. 3554 */ 3555 return -EINVAL; 3556 } 3557 3558 static const struct vm_operations_struct special_mapping_vmops = { 3559 .close = special_mapping_close, 3560 .fault = special_mapping_fault, 3561 .mremap = special_mapping_mremap, 3562 .name = special_mapping_name, 3563 /* vDSO code relies that VVAR can't be accessed remotely */ 3564 .access = NULL, 3565 .may_split = special_mapping_split, 3566 }; 3567 3568 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3569 .close = special_mapping_close, 3570 .fault = special_mapping_fault, 3571 }; 3572 3573 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3574 { 3575 struct vm_area_struct *vma = vmf->vma; 3576 pgoff_t pgoff; 3577 struct page **pages; 3578 3579 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3580 pages = vma->vm_private_data; 3581 } else { 3582 struct vm_special_mapping *sm = vma->vm_private_data; 3583 3584 if (sm->fault) 3585 return sm->fault(sm, vmf->vma, vmf); 3586 3587 pages = sm->pages; 3588 } 3589 3590 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3591 pgoff--; 3592 3593 if (*pages) { 3594 struct page *page = *pages; 3595 get_page(page); 3596 vmf->page = page; 3597 return 0; 3598 } 3599 3600 return VM_FAULT_SIGBUS; 3601 } 3602 3603 static struct vm_area_struct *__install_special_mapping( 3604 struct mm_struct *mm, 3605 unsigned long addr, unsigned long len, 3606 unsigned long vm_flags, void *priv, 3607 const struct vm_operations_struct *ops) 3608 { 3609 int ret; 3610 struct vm_area_struct *vma; 3611 3612 vma = vm_area_alloc(mm); 3613 if (unlikely(vma == NULL)) 3614 return ERR_PTR(-ENOMEM); 3615 3616 vma_set_range(vma, addr, addr + len, 0); 3617 vm_flags_init(vma, (vm_flags | mm->def_flags | 3618 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3619 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3620 3621 vma->vm_ops = ops; 3622 vma->vm_private_data = priv; 3623 3624 ret = insert_vm_struct(mm, vma); 3625 if (ret) 3626 goto out; 3627 3628 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3629 3630 perf_event_mmap(vma); 3631 3632 return vma; 3633 3634 out: 3635 vm_area_free(vma); 3636 return ERR_PTR(ret); 3637 } 3638 3639 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3640 const struct vm_special_mapping *sm) 3641 { 3642 return vma->vm_private_data == sm && 3643 (vma->vm_ops == &special_mapping_vmops || 3644 vma->vm_ops == &legacy_special_mapping_vmops); 3645 } 3646 3647 /* 3648 * Called with mm->mmap_lock held for writing. 3649 * Insert a new vma covering the given region, with the given flags. 3650 * Its pages are supplied by the given array of struct page *. 3651 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3652 * The region past the last page supplied will always produce SIGBUS. 3653 * The array pointer and the pages it points to are assumed to stay alive 3654 * for as long as this mapping might exist. 3655 */ 3656 struct vm_area_struct *_install_special_mapping( 3657 struct mm_struct *mm, 3658 unsigned long addr, unsigned long len, 3659 unsigned long vm_flags, const struct vm_special_mapping *spec) 3660 { 3661 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3662 &special_mapping_vmops); 3663 } 3664 3665 int install_special_mapping(struct mm_struct *mm, 3666 unsigned long addr, unsigned long len, 3667 unsigned long vm_flags, struct page **pages) 3668 { 3669 struct vm_area_struct *vma = __install_special_mapping( 3670 mm, addr, len, vm_flags, (void *)pages, 3671 &legacy_special_mapping_vmops); 3672 3673 return PTR_ERR_OR_ZERO(vma); 3674 } 3675 3676 static DEFINE_MUTEX(mm_all_locks_mutex); 3677 3678 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3679 { 3680 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3681 /* 3682 * The LSB of head.next can't change from under us 3683 * because we hold the mm_all_locks_mutex. 3684 */ 3685 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3686 /* 3687 * We can safely modify head.next after taking the 3688 * anon_vma->root->rwsem. If some other vma in this mm shares 3689 * the same anon_vma we won't take it again. 3690 * 3691 * No need of atomic instructions here, head.next 3692 * can't change from under us thanks to the 3693 * anon_vma->root->rwsem. 3694 */ 3695 if (__test_and_set_bit(0, (unsigned long *) 3696 &anon_vma->root->rb_root.rb_root.rb_node)) 3697 BUG(); 3698 } 3699 } 3700 3701 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3702 { 3703 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3704 /* 3705 * AS_MM_ALL_LOCKS can't change from under us because 3706 * we hold the mm_all_locks_mutex. 3707 * 3708 * Operations on ->flags have to be atomic because 3709 * even if AS_MM_ALL_LOCKS is stable thanks to the 3710 * mm_all_locks_mutex, there may be other cpus 3711 * changing other bitflags in parallel to us. 3712 */ 3713 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3714 BUG(); 3715 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3716 } 3717 } 3718 3719 /* 3720 * This operation locks against the VM for all pte/vma/mm related 3721 * operations that could ever happen on a certain mm. This includes 3722 * vmtruncate, try_to_unmap, and all page faults. 3723 * 3724 * The caller must take the mmap_lock in write mode before calling 3725 * mm_take_all_locks(). The caller isn't allowed to release the 3726 * mmap_lock until mm_drop_all_locks() returns. 3727 * 3728 * mmap_lock in write mode is required in order to block all operations 3729 * that could modify pagetables and free pages without need of 3730 * altering the vma layout. It's also needed in write mode to avoid new 3731 * anon_vmas to be associated with existing vmas. 3732 * 3733 * A single task can't take more than one mm_take_all_locks() in a row 3734 * or it would deadlock. 3735 * 3736 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3737 * mapping->flags avoid to take the same lock twice, if more than one 3738 * vma in this mm is backed by the same anon_vma or address_space. 3739 * 3740 * We take locks in following order, accordingly to comment at beginning 3741 * of mm/rmap.c: 3742 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3743 * hugetlb mapping); 3744 * - all vmas marked locked 3745 * - all i_mmap_rwsem locks; 3746 * - all anon_vma->rwseml 3747 * 3748 * We can take all locks within these types randomly because the VM code 3749 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3750 * mm_all_locks_mutex. 3751 * 3752 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3753 * that may have to take thousand of locks. 3754 * 3755 * mm_take_all_locks() can fail if it's interrupted by signals. 3756 */ 3757 int mm_take_all_locks(struct mm_struct *mm) 3758 { 3759 struct vm_area_struct *vma; 3760 struct anon_vma_chain *avc; 3761 VMA_ITERATOR(vmi, mm, 0); 3762 3763 mmap_assert_write_locked(mm); 3764 3765 mutex_lock(&mm_all_locks_mutex); 3766 3767 /* 3768 * vma_start_write() does not have a complement in mm_drop_all_locks() 3769 * because vma_start_write() is always asymmetrical; it marks a VMA as 3770 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3771 * is reached. 3772 */ 3773 for_each_vma(vmi, vma) { 3774 if (signal_pending(current)) 3775 goto out_unlock; 3776 vma_start_write(vma); 3777 } 3778 3779 vma_iter_init(&vmi, mm, 0); 3780 for_each_vma(vmi, vma) { 3781 if (signal_pending(current)) 3782 goto out_unlock; 3783 if (vma->vm_file && vma->vm_file->f_mapping && 3784 is_vm_hugetlb_page(vma)) 3785 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3786 } 3787 3788 vma_iter_init(&vmi, mm, 0); 3789 for_each_vma(vmi, vma) { 3790 if (signal_pending(current)) 3791 goto out_unlock; 3792 if (vma->vm_file && vma->vm_file->f_mapping && 3793 !is_vm_hugetlb_page(vma)) 3794 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3795 } 3796 3797 vma_iter_init(&vmi, mm, 0); 3798 for_each_vma(vmi, vma) { 3799 if (signal_pending(current)) 3800 goto out_unlock; 3801 if (vma->anon_vma) 3802 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3803 vm_lock_anon_vma(mm, avc->anon_vma); 3804 } 3805 3806 return 0; 3807 3808 out_unlock: 3809 mm_drop_all_locks(mm); 3810 return -EINTR; 3811 } 3812 3813 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3814 { 3815 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3816 /* 3817 * The LSB of head.next can't change to 0 from under 3818 * us because we hold the mm_all_locks_mutex. 3819 * 3820 * We must however clear the bitflag before unlocking 3821 * the vma so the users using the anon_vma->rb_root will 3822 * never see our bitflag. 3823 * 3824 * No need of atomic instructions here, head.next 3825 * can't change from under us until we release the 3826 * anon_vma->root->rwsem. 3827 */ 3828 if (!__test_and_clear_bit(0, (unsigned long *) 3829 &anon_vma->root->rb_root.rb_root.rb_node)) 3830 BUG(); 3831 anon_vma_unlock_write(anon_vma); 3832 } 3833 } 3834 3835 static void vm_unlock_mapping(struct address_space *mapping) 3836 { 3837 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3838 /* 3839 * AS_MM_ALL_LOCKS can't change to 0 from under us 3840 * because we hold the mm_all_locks_mutex. 3841 */ 3842 i_mmap_unlock_write(mapping); 3843 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3844 &mapping->flags)) 3845 BUG(); 3846 } 3847 } 3848 3849 /* 3850 * The mmap_lock cannot be released by the caller until 3851 * mm_drop_all_locks() returns. 3852 */ 3853 void mm_drop_all_locks(struct mm_struct *mm) 3854 { 3855 struct vm_area_struct *vma; 3856 struct anon_vma_chain *avc; 3857 VMA_ITERATOR(vmi, mm, 0); 3858 3859 mmap_assert_write_locked(mm); 3860 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3861 3862 for_each_vma(vmi, vma) { 3863 if (vma->anon_vma) 3864 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3865 vm_unlock_anon_vma(avc->anon_vma); 3866 if (vma->vm_file && vma->vm_file->f_mapping) 3867 vm_unlock_mapping(vma->vm_file->f_mapping); 3868 } 3869 3870 mutex_unlock(&mm_all_locks_mutex); 3871 } 3872 3873 /* 3874 * initialise the percpu counter for VM 3875 */ 3876 void __init mmap_init(void) 3877 { 3878 int ret; 3879 3880 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3881 VM_BUG_ON(ret); 3882 } 3883 3884 /* 3885 * Initialise sysctl_user_reserve_kbytes. 3886 * 3887 * This is intended to prevent a user from starting a single memory hogging 3888 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3889 * mode. 3890 * 3891 * The default value is min(3% of free memory, 128MB) 3892 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3893 */ 3894 static int init_user_reserve(void) 3895 { 3896 unsigned long free_kbytes; 3897 3898 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3899 3900 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 3901 return 0; 3902 } 3903 subsys_initcall(init_user_reserve); 3904 3905 /* 3906 * Initialise sysctl_admin_reserve_kbytes. 3907 * 3908 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3909 * to log in and kill a memory hogging process. 3910 * 3911 * Systems with more than 256MB will reserve 8MB, enough to recover 3912 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3913 * only reserve 3% of free pages by default. 3914 */ 3915 static int init_admin_reserve(void) 3916 { 3917 unsigned long free_kbytes; 3918 3919 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3920 3921 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 3922 return 0; 3923 } 3924 subsys_initcall(init_admin_reserve); 3925 3926 /* 3927 * Reinititalise user and admin reserves if memory is added or removed. 3928 * 3929 * The default user reserve max is 128MB, and the default max for the 3930 * admin reserve is 8MB. These are usually, but not always, enough to 3931 * enable recovery from a memory hogging process using login/sshd, a shell, 3932 * and tools like top. It may make sense to increase or even disable the 3933 * reserve depending on the existence of swap or variations in the recovery 3934 * tools. So, the admin may have changed them. 3935 * 3936 * If memory is added and the reserves have been eliminated or increased above 3937 * the default max, then we'll trust the admin. 3938 * 3939 * If memory is removed and there isn't enough free memory, then we 3940 * need to reset the reserves. 3941 * 3942 * Otherwise keep the reserve set by the admin. 3943 */ 3944 static int reserve_mem_notifier(struct notifier_block *nb, 3945 unsigned long action, void *data) 3946 { 3947 unsigned long tmp, free_kbytes; 3948 3949 switch (action) { 3950 case MEM_ONLINE: 3951 /* Default max is 128MB. Leave alone if modified by operator. */ 3952 tmp = sysctl_user_reserve_kbytes; 3953 if (tmp > 0 && tmp < SZ_128K) 3954 init_user_reserve(); 3955 3956 /* Default max is 8MB. Leave alone if modified by operator. */ 3957 tmp = sysctl_admin_reserve_kbytes; 3958 if (tmp > 0 && tmp < SZ_8K) 3959 init_admin_reserve(); 3960 3961 break; 3962 case MEM_OFFLINE: 3963 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3964 3965 if (sysctl_user_reserve_kbytes > free_kbytes) { 3966 init_user_reserve(); 3967 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3968 sysctl_user_reserve_kbytes); 3969 } 3970 3971 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3972 init_admin_reserve(); 3973 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3974 sysctl_admin_reserve_kbytes); 3975 } 3976 break; 3977 default: 3978 break; 3979 } 3980 return NOTIFY_OK; 3981 } 3982 3983 static int __meminit init_reserve_notifier(void) 3984 { 3985 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3986 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3987 3988 return 0; 3989 } 3990 subsys_initcall(init_reserve_notifier); 3991