xref: /linux/mm/mmap.c (revision 5bbfea1eacdf584d0d159e38c01ee190162706d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *								r: (no) no
100  *								w: (no) no
101  *								x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107 
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 	return prot;
112 }
113 #endif
114 
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
120 
121 	return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124 
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129 
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 	unsigned long vm_flags = vma->vm_flags;
134 	pgprot_t vm_page_prot;
135 
136 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 	if (vma_wants_writenotify(vma, vm_page_prot)) {
138 		vm_flags &= ~VM_SHARED;
139 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 	}
141 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144 
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 		struct file *file, struct address_space *mapping)
150 {
151 	if (vma->vm_flags & VM_SHARED)
152 		mapping_unmap_writable(mapping);
153 
154 	flush_dcache_mmap_lock(mapping);
155 	vma_interval_tree_remove(vma, &mapping->i_mmap);
156 	flush_dcache_mmap_unlock(mapping);
157 }
158 
159 /*
160  * Unlink a file-based vm structure from its interval tree, to hide
161  * vma from rmap and vmtruncate before freeing its page tables.
162  */
163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 	struct file *file = vma->vm_file;
166 
167 	if (file) {
168 		struct address_space *mapping = file->f_mapping;
169 		i_mmap_lock_write(mapping);
170 		__remove_shared_vm_struct(vma, file, mapping);
171 		i_mmap_unlock_write(mapping);
172 	}
173 }
174 
175 /*
176  * Close a vm structure and free it, returning the next.
177  */
178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 	struct vm_area_struct *next = vma->vm_next;
181 
182 	might_sleep();
183 	if (vma->vm_ops && vma->vm_ops->close)
184 		vma->vm_ops->close(vma);
185 	if (vma->vm_file)
186 		fput(vma->vm_file);
187 	mpol_put(vma_policy(vma));
188 	vm_area_free(vma);
189 	return next;
190 }
191 
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 		struct list_head *uf);
194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	if (mmap_write_lock_killable(mm))
205 		return -EINTR;
206 
207 	origbrk = mm->brk;
208 
209 #ifdef CONFIG_COMPAT_BRK
210 	/*
211 	 * CONFIG_COMPAT_BRK can still be overridden by setting
212 	 * randomize_va_space to 2, which will still cause mm->start_brk
213 	 * to be arbitrarily shifted
214 	 */
215 	if (current->brk_randomized)
216 		min_brk = mm->start_brk;
217 	else
218 		min_brk = mm->end_data;
219 #else
220 	min_brk = mm->start_brk;
221 #endif
222 	if (brk < min_brk)
223 		goto out;
224 
225 	/*
226 	 * Check against rlimit here. If this check is done later after the test
227 	 * of oldbrk with newbrk then it can escape the test and let the data
228 	 * segment grow beyond its set limit the in case where the limit is
229 	 * not page aligned -Ram Gupta
230 	 */
231 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 			      mm->end_data, mm->start_data))
233 		goto out;
234 
235 	newbrk = PAGE_ALIGN(brk);
236 	oldbrk = PAGE_ALIGN(mm->brk);
237 	if (oldbrk == newbrk) {
238 		mm->brk = brk;
239 		goto success;
240 	}
241 
242 	/*
243 	 * Always allow shrinking brk.
244 	 * __do_munmap() may downgrade mmap_lock to read.
245 	 */
246 	if (brk <= mm->brk) {
247 		int ret;
248 
249 		/*
250 		 * mm->brk must to be protected by write mmap_lock so update it
251 		 * before downgrading mmap_lock. When __do_munmap() fails,
252 		 * mm->brk will be restored from origbrk.
253 		 */
254 		mm->brk = brk;
255 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 		if (ret < 0) {
257 			mm->brk = origbrk;
258 			goto out;
259 		} else if (ret == 1) {
260 			downgraded = true;
261 		}
262 		goto success;
263 	}
264 
265 	/* Check against existing mmap mappings. */
266 	next = find_vma(mm, oldbrk);
267 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
268 		goto out;
269 
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 		goto out;
273 	mm->brk = brk;
274 
275 success:
276 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
277 	if (downgraded)
278 		mmap_read_unlock(mm);
279 	else
280 		mmap_write_unlock(mm);
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);
284 	return brk;
285 
286 out:
287 	mmap_write_unlock(mm);
288 	return origbrk;
289 }
290 
291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
292 {
293 	unsigned long gap, prev_end;
294 
295 	/*
296 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 	 * allow two stack_guard_gaps between them here, and when choosing
298 	 * an unmapped area; whereas when expanding we only require one.
299 	 * That's a little inconsistent, but keeps the code here simpler.
300 	 */
301 	gap = vm_start_gap(vma);
302 	if (vma->vm_prev) {
303 		prev_end = vm_end_gap(vma->vm_prev);
304 		if (gap > prev_end)
305 			gap -= prev_end;
306 		else
307 			gap = 0;
308 	}
309 	return gap;
310 }
311 
312 #ifdef CONFIG_DEBUG_VM_RB
313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
314 {
315 	unsigned long max = vma_compute_gap(vma), subtree_gap;
316 	if (vma->vm_rb.rb_left) {
317 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
318 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 		if (subtree_gap > max)
320 			max = subtree_gap;
321 	}
322 	if (vma->vm_rb.rb_right) {
323 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
324 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 		if (subtree_gap > max)
326 			max = subtree_gap;
327 	}
328 	return max;
329 }
330 
331 static int browse_rb(struct mm_struct *mm)
332 {
333 	struct rb_root *root = &mm->mm_rb;
334 	int i = 0, j, bug = 0;
335 	struct rb_node *nd, *pn = NULL;
336 	unsigned long prev = 0, pend = 0;
337 
338 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 		struct vm_area_struct *vma;
340 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 		if (vma->vm_start < prev) {
342 			pr_emerg("vm_start %lx < prev %lx\n",
343 				  vma->vm_start, prev);
344 			bug = 1;
345 		}
346 		if (vma->vm_start < pend) {
347 			pr_emerg("vm_start %lx < pend %lx\n",
348 				  vma->vm_start, pend);
349 			bug = 1;
350 		}
351 		if (vma->vm_start > vma->vm_end) {
352 			pr_emerg("vm_start %lx > vm_end %lx\n",
353 				  vma->vm_start, vma->vm_end);
354 			bug = 1;
355 		}
356 		spin_lock(&mm->page_table_lock);
357 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
358 			pr_emerg("free gap %lx, correct %lx\n",
359 			       vma->rb_subtree_gap,
360 			       vma_compute_subtree_gap(vma));
361 			bug = 1;
362 		}
363 		spin_unlock(&mm->page_table_lock);
364 		i++;
365 		pn = nd;
366 		prev = vma->vm_start;
367 		pend = vma->vm_end;
368 	}
369 	j = 0;
370 	for (nd = pn; nd; nd = rb_prev(nd))
371 		j++;
372 	if (i != j) {
373 		pr_emerg("backwards %d, forwards %d\n", j, i);
374 		bug = 1;
375 	}
376 	return bug ? -1 : i;
377 }
378 
379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 {
381 	struct rb_node *nd;
382 
383 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 		struct vm_area_struct *vma;
385 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 		VM_BUG_ON_VMA(vma != ignore &&
387 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
388 			vma);
389 	}
390 }
391 
392 static void validate_mm(struct mm_struct *mm)
393 {
394 	int bug = 0;
395 	int i = 0;
396 	unsigned long highest_address = 0;
397 	struct vm_area_struct *vma = mm->mmap;
398 
399 	while (vma) {
400 		struct anon_vma *anon_vma = vma->anon_vma;
401 		struct anon_vma_chain *avc;
402 
403 		if (anon_vma) {
404 			anon_vma_lock_read(anon_vma);
405 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
406 				anon_vma_interval_tree_verify(avc);
407 			anon_vma_unlock_read(anon_vma);
408 		}
409 
410 		highest_address = vm_end_gap(vma);
411 		vma = vma->vm_next;
412 		i++;
413 	}
414 	if (i != mm->map_count) {
415 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416 		bug = 1;
417 	}
418 	if (highest_address != mm->highest_vm_end) {
419 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
420 			  mm->highest_vm_end, highest_address);
421 		bug = 1;
422 	}
423 	i = browse_rb(mm);
424 	if (i != mm->map_count) {
425 		if (i != -1)
426 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427 		bug = 1;
428 	}
429 	VM_BUG_ON_MM(bug, mm);
430 }
431 #else
432 #define validate_mm_rb(root, ignore) do { } while (0)
433 #define validate_mm(mm) do { } while (0)
434 #endif
435 
436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
437 			 struct vm_area_struct, vm_rb,
438 			 unsigned long, rb_subtree_gap, vma_compute_gap)
439 
440 /*
441  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
442  * vma->vm_prev->vm_end values changed, without modifying the vma's position
443  * in the rbtree.
444  */
445 static void vma_gap_update(struct vm_area_struct *vma)
446 {
447 	/*
448 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
449 	 * a callback function that does exactly what we want.
450 	 */
451 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 }
453 
454 static inline void vma_rb_insert(struct vm_area_struct *vma,
455 				 struct rb_root *root)
456 {
457 	/* All rb_subtree_gap values must be consistent prior to insertion */
458 	validate_mm_rb(root, NULL);
459 
460 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 }
462 
463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 {
465 	/*
466 	 * Note rb_erase_augmented is a fairly large inline function,
467 	 * so make sure we instantiate it only once with our desired
468 	 * augmented rbtree callbacks.
469 	 */
470 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 }
472 
473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
474 						struct rb_root *root,
475 						struct vm_area_struct *ignore)
476 {
477 	/*
478 	 * All rb_subtree_gap values must be consistent prior to erase,
479 	 * with the possible exception of
480 	 *
481 	 * a. the "next" vma being erased if next->vm_start was reduced in
482 	 *    __vma_adjust() -> __vma_unlink()
483 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
484 	 *    vma_rb_erase()
485 	 */
486 	validate_mm_rb(root, ignore);
487 
488 	__vma_rb_erase(vma, root);
489 }
490 
491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
492 					 struct rb_root *root)
493 {
494 	vma_rb_erase_ignore(vma, root, vma);
495 }
496 
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 	struct anon_vma_chain *avc;
515 
516 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519 
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 	struct anon_vma_chain *avc;
524 
525 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528 
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 		unsigned long end, struct vm_area_struct **pprev,
531 		struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 
535 	mmap_assert_locked(mm);
536 	__rb_link = &mm->mm_rb.rb_node;
537 	rb_prev = __rb_parent = NULL;
538 
539 	while (*__rb_link) {
540 		struct vm_area_struct *vma_tmp;
541 
542 		__rb_parent = *__rb_link;
543 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544 
545 		if (vma_tmp->vm_end > addr) {
546 			/* Fail if an existing vma overlaps the area */
547 			if (vma_tmp->vm_start < end)
548 				return -ENOMEM;
549 			__rb_link = &__rb_parent->rb_left;
550 		} else {
551 			rb_prev = __rb_parent;
552 			__rb_link = &__rb_parent->rb_right;
553 		}
554 	}
555 
556 	*pprev = NULL;
557 	if (rb_prev)
558 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
559 	*rb_link = __rb_link;
560 	*rb_parent = __rb_parent;
561 	return 0;
562 }
563 
564 /*
565  * vma_next() - Get the next VMA.
566  * @mm: The mm_struct.
567  * @vma: The current vma.
568  *
569  * If @vma is NULL, return the first vma in the mm.
570  *
571  * Returns: The next VMA after @vma.
572  */
573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
574 					 struct vm_area_struct *vma)
575 {
576 	if (!vma)
577 		return mm->mmap;
578 
579 	return vma->vm_next;
580 }
581 
582 /*
583  * munmap_vma_range() - munmap VMAs that overlap a range.
584  * @mm: The mm struct
585  * @start: The start of the range.
586  * @len: The length of the range.
587  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
588  * @rb_link: the rb_node
589  * @rb_parent: the parent rb_node
590  *
591  * Find all the vm_area_struct that overlap from @start to
592  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
593  *
594  * Returns: -ENOMEM on munmap failure or 0 on success.
595  */
596 static inline int
597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
598 		 struct vm_area_struct **pprev, struct rb_node ***link,
599 		 struct rb_node **parent, struct list_head *uf)
600 {
601 
602 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
603 		if (do_munmap(mm, start, len, uf))
604 			return -ENOMEM;
605 
606 	return 0;
607 }
608 static unsigned long count_vma_pages_range(struct mm_struct *mm,
609 		unsigned long addr, unsigned long end)
610 {
611 	unsigned long nr_pages = 0;
612 	struct vm_area_struct *vma;
613 
614 	/* Find first overlapping mapping */
615 	vma = find_vma_intersection(mm, addr, end);
616 	if (!vma)
617 		return 0;
618 
619 	nr_pages = (min(end, vma->vm_end) -
620 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
621 
622 	/* Iterate over the rest of the overlaps */
623 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
624 		unsigned long overlap_len;
625 
626 		if (vma->vm_start > end)
627 			break;
628 
629 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
630 		nr_pages += overlap_len >> PAGE_SHIFT;
631 	}
632 
633 	return nr_pages;
634 }
635 
636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
637 		struct rb_node **rb_link, struct rb_node *rb_parent)
638 {
639 	/* Update tracking information for the gap following the new vma. */
640 	if (vma->vm_next)
641 		vma_gap_update(vma->vm_next);
642 	else
643 		mm->highest_vm_end = vm_end_gap(vma);
644 
645 	/*
646 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
647 	 * correct insertion point for that vma. As a result, we could not
648 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
649 	 * So, we first insert the vma with a zero rb_subtree_gap value
650 	 * (to be consistent with what we did on the way down), and then
651 	 * immediately update the gap to the correct value. Finally we
652 	 * rebalance the rbtree after all augmented values have been set.
653 	 */
654 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
655 	vma->rb_subtree_gap = 0;
656 	vma_gap_update(vma);
657 	vma_rb_insert(vma, &mm->mm_rb);
658 }
659 
660 static void __vma_link_file(struct vm_area_struct *vma)
661 {
662 	struct file *file;
663 
664 	file = vma->vm_file;
665 	if (file) {
666 		struct address_space *mapping = file->f_mapping;
667 
668 		if (vma->vm_flags & VM_SHARED)
669 			mapping_allow_writable(mapping);
670 
671 		flush_dcache_mmap_lock(mapping);
672 		vma_interval_tree_insert(vma, &mapping->i_mmap);
673 		flush_dcache_mmap_unlock(mapping);
674 	}
675 }
676 
677 static void
678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
679 	struct vm_area_struct *prev, struct rb_node **rb_link,
680 	struct rb_node *rb_parent)
681 {
682 	__vma_link_list(mm, vma, prev);
683 	__vma_link_rb(mm, vma, rb_link, rb_parent);
684 }
685 
686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
687 			struct vm_area_struct *prev, struct rb_node **rb_link,
688 			struct rb_node *rb_parent)
689 {
690 	struct address_space *mapping = NULL;
691 
692 	if (vma->vm_file) {
693 		mapping = vma->vm_file->f_mapping;
694 		i_mmap_lock_write(mapping);
695 	}
696 
697 	__vma_link(mm, vma, prev, rb_link, rb_parent);
698 	__vma_link_file(vma);
699 
700 	if (mapping)
701 		i_mmap_unlock_write(mapping);
702 
703 	mm->map_count++;
704 	validate_mm(mm);
705 }
706 
707 /*
708  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
709  * mm's list and rbtree.  It has already been inserted into the interval tree.
710  */
711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
712 {
713 	struct vm_area_struct *prev;
714 	struct rb_node **rb_link, *rb_parent;
715 
716 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
717 			   &prev, &rb_link, &rb_parent))
718 		BUG();
719 	__vma_link(mm, vma, prev, rb_link, rb_parent);
720 	mm->map_count++;
721 }
722 
723 static __always_inline void __vma_unlink(struct mm_struct *mm,
724 						struct vm_area_struct *vma,
725 						struct vm_area_struct *ignore)
726 {
727 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
728 	__vma_unlink_list(mm, vma);
729 	/* Kill the cache */
730 	vmacache_invalidate(mm);
731 }
732 
733 /*
734  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
735  * is already present in an i_mmap tree without adjusting the tree.
736  * The following helper function should be used when such adjustments
737  * are necessary.  The "insert" vma (if any) is to be inserted
738  * before we drop the necessary locks.
739  */
740 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
741 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
742 	struct vm_area_struct *expand)
743 {
744 	struct mm_struct *mm = vma->vm_mm;
745 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
746 	struct address_space *mapping = NULL;
747 	struct rb_root_cached *root = NULL;
748 	struct anon_vma *anon_vma = NULL;
749 	struct file *file = vma->vm_file;
750 	bool start_changed = false, end_changed = false;
751 	long adjust_next = 0;
752 	int remove_next = 0;
753 
754 	if (next && !insert) {
755 		struct vm_area_struct *exporter = NULL, *importer = NULL;
756 
757 		if (end >= next->vm_end) {
758 			/*
759 			 * vma expands, overlapping all the next, and
760 			 * perhaps the one after too (mprotect case 6).
761 			 * The only other cases that gets here are
762 			 * case 1, case 7 and case 8.
763 			 */
764 			if (next == expand) {
765 				/*
766 				 * The only case where we don't expand "vma"
767 				 * and we expand "next" instead is case 8.
768 				 */
769 				VM_WARN_ON(end != next->vm_end);
770 				/*
771 				 * remove_next == 3 means we're
772 				 * removing "vma" and that to do so we
773 				 * swapped "vma" and "next".
774 				 */
775 				remove_next = 3;
776 				VM_WARN_ON(file != next->vm_file);
777 				swap(vma, next);
778 			} else {
779 				VM_WARN_ON(expand != vma);
780 				/*
781 				 * case 1, 6, 7, remove_next == 2 is case 6,
782 				 * remove_next == 1 is case 1 or 7.
783 				 */
784 				remove_next = 1 + (end > next->vm_end);
785 				VM_WARN_ON(remove_next == 2 &&
786 					   end != next->vm_next->vm_end);
787 				/* trim end to next, for case 6 first pass */
788 				end = next->vm_end;
789 			}
790 
791 			exporter = next;
792 			importer = vma;
793 
794 			/*
795 			 * If next doesn't have anon_vma, import from vma after
796 			 * next, if the vma overlaps with it.
797 			 */
798 			if (remove_next == 2 && !next->anon_vma)
799 				exporter = next->vm_next;
800 
801 		} else if (end > next->vm_start) {
802 			/*
803 			 * vma expands, overlapping part of the next:
804 			 * mprotect case 5 shifting the boundary up.
805 			 */
806 			adjust_next = (end - next->vm_start);
807 			exporter = next;
808 			importer = vma;
809 			VM_WARN_ON(expand != importer);
810 		} else if (end < vma->vm_end) {
811 			/*
812 			 * vma shrinks, and !insert tells it's not
813 			 * split_vma inserting another: so it must be
814 			 * mprotect case 4 shifting the boundary down.
815 			 */
816 			adjust_next = -(vma->vm_end - end);
817 			exporter = vma;
818 			importer = next;
819 			VM_WARN_ON(expand != importer);
820 		}
821 
822 		/*
823 		 * Easily overlooked: when mprotect shifts the boundary,
824 		 * make sure the expanding vma has anon_vma set if the
825 		 * shrinking vma had, to cover any anon pages imported.
826 		 */
827 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
828 			int error;
829 
830 			importer->anon_vma = exporter->anon_vma;
831 			error = anon_vma_clone(importer, exporter);
832 			if (error)
833 				return error;
834 		}
835 	}
836 again:
837 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
838 
839 	if (file) {
840 		mapping = file->f_mapping;
841 		root = &mapping->i_mmap;
842 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
843 
844 		if (adjust_next)
845 			uprobe_munmap(next, next->vm_start, next->vm_end);
846 
847 		i_mmap_lock_write(mapping);
848 		if (insert) {
849 			/*
850 			 * Put into interval tree now, so instantiated pages
851 			 * are visible to arm/parisc __flush_dcache_page
852 			 * throughout; but we cannot insert into address
853 			 * space until vma start or end is updated.
854 			 */
855 			__vma_link_file(insert);
856 		}
857 	}
858 
859 	anon_vma = vma->anon_vma;
860 	if (!anon_vma && adjust_next)
861 		anon_vma = next->anon_vma;
862 	if (anon_vma) {
863 		VM_WARN_ON(adjust_next && next->anon_vma &&
864 			   anon_vma != next->anon_vma);
865 		anon_vma_lock_write(anon_vma);
866 		anon_vma_interval_tree_pre_update_vma(vma);
867 		if (adjust_next)
868 			anon_vma_interval_tree_pre_update_vma(next);
869 	}
870 
871 	if (file) {
872 		flush_dcache_mmap_lock(mapping);
873 		vma_interval_tree_remove(vma, root);
874 		if (adjust_next)
875 			vma_interval_tree_remove(next, root);
876 	}
877 
878 	if (start != vma->vm_start) {
879 		vma->vm_start = start;
880 		start_changed = true;
881 	}
882 	if (end != vma->vm_end) {
883 		vma->vm_end = end;
884 		end_changed = true;
885 	}
886 	vma->vm_pgoff = pgoff;
887 	if (adjust_next) {
888 		next->vm_start += adjust_next;
889 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
890 	}
891 
892 	if (file) {
893 		if (adjust_next)
894 			vma_interval_tree_insert(next, root);
895 		vma_interval_tree_insert(vma, root);
896 		flush_dcache_mmap_unlock(mapping);
897 	}
898 
899 	if (remove_next) {
900 		/*
901 		 * vma_merge has merged next into vma, and needs
902 		 * us to remove next before dropping the locks.
903 		 */
904 		if (remove_next != 3)
905 			__vma_unlink(mm, next, next);
906 		else
907 			/*
908 			 * vma is not before next if they've been
909 			 * swapped.
910 			 *
911 			 * pre-swap() next->vm_start was reduced so
912 			 * tell validate_mm_rb to ignore pre-swap()
913 			 * "next" (which is stored in post-swap()
914 			 * "vma").
915 			 */
916 			__vma_unlink(mm, next, vma);
917 		if (file)
918 			__remove_shared_vm_struct(next, file, mapping);
919 	} else if (insert) {
920 		/*
921 		 * split_vma has split insert from vma, and needs
922 		 * us to insert it before dropping the locks
923 		 * (it may either follow vma or precede it).
924 		 */
925 		__insert_vm_struct(mm, insert);
926 	} else {
927 		if (start_changed)
928 			vma_gap_update(vma);
929 		if (end_changed) {
930 			if (!next)
931 				mm->highest_vm_end = vm_end_gap(vma);
932 			else if (!adjust_next)
933 				vma_gap_update(next);
934 		}
935 	}
936 
937 	if (anon_vma) {
938 		anon_vma_interval_tree_post_update_vma(vma);
939 		if (adjust_next)
940 			anon_vma_interval_tree_post_update_vma(next);
941 		anon_vma_unlock_write(anon_vma);
942 	}
943 
944 	if (file) {
945 		i_mmap_unlock_write(mapping);
946 		uprobe_mmap(vma);
947 
948 		if (adjust_next)
949 			uprobe_mmap(next);
950 	}
951 
952 	if (remove_next) {
953 		if (file) {
954 			uprobe_munmap(next, next->vm_start, next->vm_end);
955 			fput(file);
956 		}
957 		if (next->anon_vma)
958 			anon_vma_merge(vma, next);
959 		mm->map_count--;
960 		mpol_put(vma_policy(next));
961 		vm_area_free(next);
962 		/*
963 		 * In mprotect's case 6 (see comments on vma_merge),
964 		 * we must remove another next too. It would clutter
965 		 * up the code too much to do both in one go.
966 		 */
967 		if (remove_next != 3) {
968 			/*
969 			 * If "next" was removed and vma->vm_end was
970 			 * expanded (up) over it, in turn
971 			 * "next->vm_prev->vm_end" changed and the
972 			 * "vma->vm_next" gap must be updated.
973 			 */
974 			next = vma->vm_next;
975 		} else {
976 			/*
977 			 * For the scope of the comment "next" and
978 			 * "vma" considered pre-swap(): if "vma" was
979 			 * removed, next->vm_start was expanded (down)
980 			 * over it and the "next" gap must be updated.
981 			 * Because of the swap() the post-swap() "vma"
982 			 * actually points to pre-swap() "next"
983 			 * (post-swap() "next" as opposed is now a
984 			 * dangling pointer).
985 			 */
986 			next = vma;
987 		}
988 		if (remove_next == 2) {
989 			remove_next = 1;
990 			end = next->vm_end;
991 			goto again;
992 		}
993 		else if (next)
994 			vma_gap_update(next);
995 		else {
996 			/*
997 			 * If remove_next == 2 we obviously can't
998 			 * reach this path.
999 			 *
1000 			 * If remove_next == 3 we can't reach this
1001 			 * path because pre-swap() next is always not
1002 			 * NULL. pre-swap() "next" is not being
1003 			 * removed and its next->vm_end is not altered
1004 			 * (and furthermore "end" already matches
1005 			 * next->vm_end in remove_next == 3).
1006 			 *
1007 			 * We reach this only in the remove_next == 1
1008 			 * case if the "next" vma that was removed was
1009 			 * the highest vma of the mm. However in such
1010 			 * case next->vm_end == "end" and the extended
1011 			 * "vma" has vma->vm_end == next->vm_end so
1012 			 * mm->highest_vm_end doesn't need any update
1013 			 * in remove_next == 1 case.
1014 			 */
1015 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1016 		}
1017 	}
1018 	if (insert && file)
1019 		uprobe_mmap(insert);
1020 
1021 	validate_mm(mm);
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * If the vma has a ->close operation then the driver probably needs to release
1028  * per-vma resources, so we don't attempt to merge those.
1029  */
1030 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1031 				struct file *file, unsigned long vm_flags,
1032 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034 	/*
1035 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1036 	 * match the flags but dirty bit -- the caller should mark
1037 	 * merged VMA as dirty. If dirty bit won't be excluded from
1038 	 * comparison, we increase pressure on the memory system forcing
1039 	 * the kernel to generate new VMAs when old one could be
1040 	 * extended instead.
1041 	 */
1042 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1043 		return 0;
1044 	if (vma->vm_file != file)
1045 		return 0;
1046 	if (vma->vm_ops && vma->vm_ops->close)
1047 		return 0;
1048 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1049 		return 0;
1050 	return 1;
1051 }
1052 
1053 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1054 					struct anon_vma *anon_vma2,
1055 					struct vm_area_struct *vma)
1056 {
1057 	/*
1058 	 * The list_is_singular() test is to avoid merging VMA cloned from
1059 	 * parents. This can improve scalability caused by anon_vma lock.
1060 	 */
1061 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1062 		list_is_singular(&vma->anon_vma_chain)))
1063 		return 1;
1064 	return anon_vma1 == anon_vma2;
1065 }
1066 
1067 /*
1068  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1069  * in front of (at a lower virtual address and file offset than) the vma.
1070  *
1071  * We cannot merge two vmas if they have differently assigned (non-NULL)
1072  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1073  *
1074  * We don't check here for the merged mmap wrapping around the end of pagecache
1075  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1076  * wrap, nor mmaps which cover the final page at index -1UL.
1077  */
1078 static int
1079 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1080 		     struct anon_vma *anon_vma, struct file *file,
1081 		     pgoff_t vm_pgoff,
1082 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1083 {
1084 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1085 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1086 		if (vma->vm_pgoff == vm_pgoff)
1087 			return 1;
1088 	}
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1094  * beyond (at a higher virtual address and file offset than) the vma.
1095  *
1096  * We cannot merge two vmas if they have differently assigned (non-NULL)
1097  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1098  */
1099 static int
1100 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1101 		    struct anon_vma *anon_vma, struct file *file,
1102 		    pgoff_t vm_pgoff,
1103 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1104 {
1105 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1106 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1107 		pgoff_t vm_pglen;
1108 		vm_pglen = vma_pages(vma);
1109 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1110 			return 1;
1111 	}
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1117  * whether that can be merged with its predecessor or its successor.
1118  * Or both (it neatly fills a hole).
1119  *
1120  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1121  * certain not to be mapped by the time vma_merge is called; but when
1122  * called for mprotect, it is certain to be already mapped (either at
1123  * an offset within prev, or at the start of next), and the flags of
1124  * this area are about to be changed to vm_flags - and the no-change
1125  * case has already been eliminated.
1126  *
1127  * The following mprotect cases have to be considered, where AAAA is
1128  * the area passed down from mprotect_fixup, never extending beyond one
1129  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1130  *
1131  *     AAAA             AAAA                   AAAA
1132  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1133  *    cannot merge    might become       might become
1134  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1135  *    mmap, brk or    case 4 below       case 5 below
1136  *    mremap move:
1137  *                        AAAA               AAAA
1138  *                    PPPP    NNNN       PPPPNNNNXXXX
1139  *                    might become       might become
1140  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1141  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1142  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1143  *
1144  * It is important for case 8 that the vma NNNN overlapping the
1145  * region AAAA is never going to extended over XXXX. Instead XXXX must
1146  * be extended in region AAAA and NNNN must be removed. This way in
1147  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1148  * rmap_locks, the properties of the merged vma will be already
1149  * correct for the whole merged range. Some of those properties like
1150  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1151  * be correct for the whole merged range immediately after the
1152  * rmap_locks are released. Otherwise if XXXX would be removed and
1153  * NNNN would be extended over the XXXX range, remove_migration_ptes
1154  * or other rmap walkers (if working on addresses beyond the "end"
1155  * parameter) may establish ptes with the wrong permissions of NNNN
1156  * instead of the right permissions of XXXX.
1157  */
1158 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1159 			struct vm_area_struct *prev, unsigned long addr,
1160 			unsigned long end, unsigned long vm_flags,
1161 			struct anon_vma *anon_vma, struct file *file,
1162 			pgoff_t pgoff, struct mempolicy *policy,
1163 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1164 {
1165 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1166 	struct vm_area_struct *area, *next;
1167 	int err;
1168 
1169 	/*
1170 	 * We later require that vma->vm_flags == vm_flags,
1171 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1172 	 */
1173 	if (vm_flags & VM_SPECIAL)
1174 		return NULL;
1175 
1176 	next = vma_next(mm, prev);
1177 	area = next;
1178 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1179 		next = next->vm_next;
1180 
1181 	/* verify some invariant that must be enforced by the caller */
1182 	VM_WARN_ON(prev && addr <= prev->vm_start);
1183 	VM_WARN_ON(area && end > area->vm_end);
1184 	VM_WARN_ON(addr >= end);
1185 
1186 	/*
1187 	 * Can it merge with the predecessor?
1188 	 */
1189 	if (prev && prev->vm_end == addr &&
1190 			mpol_equal(vma_policy(prev), policy) &&
1191 			can_vma_merge_after(prev, vm_flags,
1192 					    anon_vma, file, pgoff,
1193 					    vm_userfaultfd_ctx)) {
1194 		/*
1195 		 * OK, it can.  Can we now merge in the successor as well?
1196 		 */
1197 		if (next && end == next->vm_start &&
1198 				mpol_equal(policy, vma_policy(next)) &&
1199 				can_vma_merge_before(next, vm_flags,
1200 						     anon_vma, file,
1201 						     pgoff+pglen,
1202 						     vm_userfaultfd_ctx) &&
1203 				is_mergeable_anon_vma(prev->anon_vma,
1204 						      next->anon_vma, NULL)) {
1205 							/* cases 1, 6 */
1206 			err = __vma_adjust(prev, prev->vm_start,
1207 					 next->vm_end, prev->vm_pgoff, NULL,
1208 					 prev);
1209 		} else					/* cases 2, 5, 7 */
1210 			err = __vma_adjust(prev, prev->vm_start,
1211 					 end, prev->vm_pgoff, NULL, prev);
1212 		if (err)
1213 			return NULL;
1214 		khugepaged_enter_vma_merge(prev, vm_flags);
1215 		return prev;
1216 	}
1217 
1218 	/*
1219 	 * Can this new request be merged in front of next?
1220 	 */
1221 	if (next && end == next->vm_start &&
1222 			mpol_equal(policy, vma_policy(next)) &&
1223 			can_vma_merge_before(next, vm_flags,
1224 					     anon_vma, file, pgoff+pglen,
1225 					     vm_userfaultfd_ctx)) {
1226 		if (prev && addr < prev->vm_end)	/* case 4 */
1227 			err = __vma_adjust(prev, prev->vm_start,
1228 					 addr, prev->vm_pgoff, NULL, next);
1229 		else {					/* cases 3, 8 */
1230 			err = __vma_adjust(area, addr, next->vm_end,
1231 					 next->vm_pgoff - pglen, NULL, next);
1232 			/*
1233 			 * In case 3 area is already equal to next and
1234 			 * this is a noop, but in case 8 "area" has
1235 			 * been removed and next was expanded over it.
1236 			 */
1237 			area = next;
1238 		}
1239 		if (err)
1240 			return NULL;
1241 		khugepaged_enter_vma_merge(area, vm_flags);
1242 		return area;
1243 	}
1244 
1245 	return NULL;
1246 }
1247 
1248 /*
1249  * Rough compatibility check to quickly see if it's even worth looking
1250  * at sharing an anon_vma.
1251  *
1252  * They need to have the same vm_file, and the flags can only differ
1253  * in things that mprotect may change.
1254  *
1255  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1256  * we can merge the two vma's. For example, we refuse to merge a vma if
1257  * there is a vm_ops->close() function, because that indicates that the
1258  * driver is doing some kind of reference counting. But that doesn't
1259  * really matter for the anon_vma sharing case.
1260  */
1261 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1262 {
1263 	return a->vm_end == b->vm_start &&
1264 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1265 		a->vm_file == b->vm_file &&
1266 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1267 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1268 }
1269 
1270 /*
1271  * Do some basic sanity checking to see if we can re-use the anon_vma
1272  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1273  * the same as 'old', the other will be the new one that is trying
1274  * to share the anon_vma.
1275  *
1276  * NOTE! This runs with mm_sem held for reading, so it is possible that
1277  * the anon_vma of 'old' is concurrently in the process of being set up
1278  * by another page fault trying to merge _that_. But that's ok: if it
1279  * is being set up, that automatically means that it will be a singleton
1280  * acceptable for merging, so we can do all of this optimistically. But
1281  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1282  *
1283  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1284  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1285  * is to return an anon_vma that is "complex" due to having gone through
1286  * a fork).
1287  *
1288  * We also make sure that the two vma's are compatible (adjacent,
1289  * and with the same memory policies). That's all stable, even with just
1290  * a read lock on the mm_sem.
1291  */
1292 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1293 {
1294 	if (anon_vma_compatible(a, b)) {
1295 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1296 
1297 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1298 			return anon_vma;
1299 	}
1300 	return NULL;
1301 }
1302 
1303 /*
1304  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1305  * neighbouring vmas for a suitable anon_vma, before it goes off
1306  * to allocate a new anon_vma.  It checks because a repetitive
1307  * sequence of mprotects and faults may otherwise lead to distinct
1308  * anon_vmas being allocated, preventing vma merge in subsequent
1309  * mprotect.
1310  */
1311 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1312 {
1313 	struct anon_vma *anon_vma = NULL;
1314 
1315 	/* Try next first. */
1316 	if (vma->vm_next) {
1317 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1318 		if (anon_vma)
1319 			return anon_vma;
1320 	}
1321 
1322 	/* Try prev next. */
1323 	if (vma->vm_prev)
1324 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1325 
1326 	/*
1327 	 * We might reach here with anon_vma == NULL if we can't find
1328 	 * any reusable anon_vma.
1329 	 * There's no absolute need to look only at touching neighbours:
1330 	 * we could search further afield for "compatible" anon_vmas.
1331 	 * But it would probably just be a waste of time searching,
1332 	 * or lead to too many vmas hanging off the same anon_vma.
1333 	 * We're trying to allow mprotect remerging later on,
1334 	 * not trying to minimize memory used for anon_vmas.
1335 	 */
1336 	return anon_vma;
1337 }
1338 
1339 /*
1340  * If a hint addr is less than mmap_min_addr change hint to be as
1341  * low as possible but still greater than mmap_min_addr
1342  */
1343 static inline unsigned long round_hint_to_min(unsigned long hint)
1344 {
1345 	hint &= PAGE_MASK;
1346 	if (((void *)hint != NULL) &&
1347 	    (hint < mmap_min_addr))
1348 		return PAGE_ALIGN(mmap_min_addr);
1349 	return hint;
1350 }
1351 
1352 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1353 		       unsigned long len)
1354 {
1355 	unsigned long locked, lock_limit;
1356 
1357 	/*  mlock MCL_FUTURE? */
1358 	if (flags & VM_LOCKED) {
1359 		locked = len >> PAGE_SHIFT;
1360 		locked += mm->locked_vm;
1361 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1362 		lock_limit >>= PAGE_SHIFT;
1363 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364 			return -EAGAIN;
1365 	}
1366 	return 0;
1367 }
1368 
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371 	if (S_ISREG(inode->i_mode))
1372 		return MAX_LFS_FILESIZE;
1373 
1374 	if (S_ISBLK(inode->i_mode))
1375 		return MAX_LFS_FILESIZE;
1376 
1377 	if (S_ISSOCK(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	/* Special "we do even unsigned file positions" case */
1381 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382 		return 0;
1383 
1384 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385 	return ULONG_MAX;
1386 }
1387 
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389 				unsigned long pgoff, unsigned long len)
1390 {
1391 	u64 maxsize = file_mmap_size_max(file, inode);
1392 
1393 	if (maxsize && len > maxsize)
1394 		return false;
1395 	maxsize -= len;
1396 	if (pgoff > maxsize >> PAGE_SHIFT)
1397 		return false;
1398 	return true;
1399 }
1400 
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405 			unsigned long len, unsigned long prot,
1406 			unsigned long flags, unsigned long pgoff,
1407 			unsigned long *populate, struct list_head *uf)
1408 {
1409 	struct mm_struct *mm = current->mm;
1410 	vm_flags_t vm_flags;
1411 	int pkey = 0;
1412 
1413 	*populate = 0;
1414 
1415 	if (!len)
1416 		return -EINVAL;
1417 
1418 	/*
1419 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1420 	 *
1421 	 * (the exception is when the underlying filesystem is noexec
1422 	 *  mounted, in which case we dont add PROT_EXEC.)
1423 	 */
1424 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425 		if (!(file && path_noexec(&file->f_path)))
1426 			prot |= PROT_EXEC;
1427 
1428 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1429 	if (flags & MAP_FIXED_NOREPLACE)
1430 		flags |= MAP_FIXED;
1431 
1432 	if (!(flags & MAP_FIXED))
1433 		addr = round_hint_to_min(addr);
1434 
1435 	/* Careful about overflows.. */
1436 	len = PAGE_ALIGN(len);
1437 	if (!len)
1438 		return -ENOMEM;
1439 
1440 	/* offset overflow? */
1441 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442 		return -EOVERFLOW;
1443 
1444 	/* Too many mappings? */
1445 	if (mm->map_count > sysctl_max_map_count)
1446 		return -ENOMEM;
1447 
1448 	/* Obtain the address to map to. we verify (or select) it and ensure
1449 	 * that it represents a valid section of the address space.
1450 	 */
1451 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452 	if (IS_ERR_VALUE(addr))
1453 		return addr;
1454 
1455 	if (flags & MAP_FIXED_NOREPLACE) {
1456 		if (find_vma_intersection(mm, addr, addr + len))
1457 			return -EEXIST;
1458 	}
1459 
1460 	if (prot == PROT_EXEC) {
1461 		pkey = execute_only_pkey(mm);
1462 		if (pkey < 0)
1463 			pkey = 0;
1464 	}
1465 
1466 	/* Do simple checking here so the lower-level routines won't have
1467 	 * to. we assume access permissions have been handled by the open
1468 	 * of the memory object, so we don't do any here.
1469 	 */
1470 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1471 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1472 
1473 	if (flags & MAP_LOCKED)
1474 		if (!can_do_mlock())
1475 			return -EPERM;
1476 
1477 	if (mlock_future_check(mm, vm_flags, len))
1478 		return -EAGAIN;
1479 
1480 	if (file) {
1481 		struct inode *inode = file_inode(file);
1482 		unsigned long flags_mask;
1483 
1484 		if (!file_mmap_ok(file, inode, pgoff, len))
1485 			return -EOVERFLOW;
1486 
1487 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1488 
1489 		switch (flags & MAP_TYPE) {
1490 		case MAP_SHARED:
1491 			/*
1492 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1493 			 * flags. E.g. MAP_SYNC is dangerous to use with
1494 			 * MAP_SHARED as you don't know which consistency model
1495 			 * you will get. We silently ignore unsupported flags
1496 			 * with MAP_SHARED to preserve backward compatibility.
1497 			 */
1498 			flags &= LEGACY_MAP_MASK;
1499 			fallthrough;
1500 		case MAP_SHARED_VALIDATE:
1501 			if (flags & ~flags_mask)
1502 				return -EOPNOTSUPP;
1503 			if (prot & PROT_WRITE) {
1504 				if (!(file->f_mode & FMODE_WRITE))
1505 					return -EACCES;
1506 				if (IS_SWAPFILE(file->f_mapping->host))
1507 					return -ETXTBSY;
1508 			}
1509 
1510 			/*
1511 			 * Make sure we don't allow writing to an append-only
1512 			 * file..
1513 			 */
1514 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1515 				return -EACCES;
1516 
1517 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1518 			if (!(file->f_mode & FMODE_WRITE))
1519 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1520 			fallthrough;
1521 		case MAP_PRIVATE:
1522 			if (!(file->f_mode & FMODE_READ))
1523 				return -EACCES;
1524 			if (path_noexec(&file->f_path)) {
1525 				if (vm_flags & VM_EXEC)
1526 					return -EPERM;
1527 				vm_flags &= ~VM_MAYEXEC;
1528 			}
1529 
1530 			if (!file->f_op->mmap)
1531 				return -ENODEV;
1532 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1533 				return -EINVAL;
1534 			break;
1535 
1536 		default:
1537 			return -EINVAL;
1538 		}
1539 	} else {
1540 		switch (flags & MAP_TYPE) {
1541 		case MAP_SHARED:
1542 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543 				return -EINVAL;
1544 			/*
1545 			 * Ignore pgoff.
1546 			 */
1547 			pgoff = 0;
1548 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1549 			break;
1550 		case MAP_PRIVATE:
1551 			/*
1552 			 * Set pgoff according to addr for anon_vma.
1553 			 */
1554 			pgoff = addr >> PAGE_SHIFT;
1555 			break;
1556 		default:
1557 			return -EINVAL;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Set 'VM_NORESERVE' if we should not account for the
1563 	 * memory use of this mapping.
1564 	 */
1565 	if (flags & MAP_NORESERVE) {
1566 		/* We honor MAP_NORESERVE if allowed to overcommit */
1567 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1568 			vm_flags |= VM_NORESERVE;
1569 
1570 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1571 		if (file && is_file_hugepages(file))
1572 			vm_flags |= VM_NORESERVE;
1573 	}
1574 
1575 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1576 	if (!IS_ERR_VALUE(addr) &&
1577 	    ((vm_flags & VM_LOCKED) ||
1578 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1579 		*populate = len;
1580 	return addr;
1581 }
1582 
1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1584 			      unsigned long prot, unsigned long flags,
1585 			      unsigned long fd, unsigned long pgoff)
1586 {
1587 	struct file *file = NULL;
1588 	unsigned long retval;
1589 
1590 	if (!(flags & MAP_ANONYMOUS)) {
1591 		audit_mmap_fd(fd, flags);
1592 		file = fget(fd);
1593 		if (!file)
1594 			return -EBADF;
1595 		if (is_file_hugepages(file)) {
1596 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1597 		} else if (unlikely(flags & MAP_HUGETLB)) {
1598 			retval = -EINVAL;
1599 			goto out_fput;
1600 		}
1601 	} else if (flags & MAP_HUGETLB) {
1602 		struct ucounts *ucounts = NULL;
1603 		struct hstate *hs;
1604 
1605 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1606 		if (!hs)
1607 			return -EINVAL;
1608 
1609 		len = ALIGN(len, huge_page_size(hs));
1610 		/*
1611 		 * VM_NORESERVE is used because the reservations will be
1612 		 * taken when vm_ops->mmap() is called
1613 		 * A dummy user value is used because we are not locking
1614 		 * memory so no accounting is necessary
1615 		 */
1616 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1617 				VM_NORESERVE,
1618 				&ucounts, HUGETLB_ANONHUGE_INODE,
1619 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1620 		if (IS_ERR(file))
1621 			return PTR_ERR(file);
1622 	}
1623 
1624 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1625 out_fput:
1626 	if (file)
1627 		fput(file);
1628 	return retval;
1629 }
1630 
1631 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1632 		unsigned long, prot, unsigned long, flags,
1633 		unsigned long, fd, unsigned long, pgoff)
1634 {
1635 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1636 }
1637 
1638 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1639 struct mmap_arg_struct {
1640 	unsigned long addr;
1641 	unsigned long len;
1642 	unsigned long prot;
1643 	unsigned long flags;
1644 	unsigned long fd;
1645 	unsigned long offset;
1646 };
1647 
1648 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1649 {
1650 	struct mmap_arg_struct a;
1651 
1652 	if (copy_from_user(&a, arg, sizeof(a)))
1653 		return -EFAULT;
1654 	if (offset_in_page(a.offset))
1655 		return -EINVAL;
1656 
1657 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1658 			       a.offset >> PAGE_SHIFT);
1659 }
1660 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1661 
1662 /*
1663  * Some shared mappings will want the pages marked read-only
1664  * to track write events. If so, we'll downgrade vm_page_prot
1665  * to the private version (using protection_map[] without the
1666  * VM_SHARED bit).
1667  */
1668 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1669 {
1670 	vm_flags_t vm_flags = vma->vm_flags;
1671 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1672 
1673 	/* If it was private or non-writable, the write bit is already clear */
1674 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1675 		return 0;
1676 
1677 	/* The backer wishes to know when pages are first written to? */
1678 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1679 		return 1;
1680 
1681 	/* The open routine did something to the protections that pgprot_modify
1682 	 * won't preserve? */
1683 	if (pgprot_val(vm_page_prot) !=
1684 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1685 		return 0;
1686 
1687 	/* Do we need to track softdirty? */
1688 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1689 		return 1;
1690 
1691 	/* Specialty mapping? */
1692 	if (vm_flags & VM_PFNMAP)
1693 		return 0;
1694 
1695 	/* Can the mapping track the dirty pages? */
1696 	return vma->vm_file && vma->vm_file->f_mapping &&
1697 		mapping_can_writeback(vma->vm_file->f_mapping);
1698 }
1699 
1700 /*
1701  * We account for memory if it's a private writeable mapping,
1702  * not hugepages and VM_NORESERVE wasn't set.
1703  */
1704 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1705 {
1706 	/*
1707 	 * hugetlb has its own accounting separate from the core VM
1708 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1709 	 */
1710 	if (file && is_file_hugepages(file))
1711 		return 0;
1712 
1713 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1714 }
1715 
1716 unsigned long mmap_region(struct file *file, unsigned long addr,
1717 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1718 		struct list_head *uf)
1719 {
1720 	struct mm_struct *mm = current->mm;
1721 	struct vm_area_struct *vma, *prev, *merge;
1722 	int error;
1723 	struct rb_node **rb_link, *rb_parent;
1724 	unsigned long charged = 0;
1725 
1726 	/* Check against address space limit. */
1727 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1728 		unsigned long nr_pages;
1729 
1730 		/*
1731 		 * MAP_FIXED may remove pages of mappings that intersects with
1732 		 * requested mapping. Account for the pages it would unmap.
1733 		 */
1734 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1735 
1736 		if (!may_expand_vm(mm, vm_flags,
1737 					(len >> PAGE_SHIFT) - nr_pages))
1738 			return -ENOMEM;
1739 	}
1740 
1741 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1742 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1743 		return -ENOMEM;
1744 	/*
1745 	 * Private writable mapping: check memory availability
1746 	 */
1747 	if (accountable_mapping(file, vm_flags)) {
1748 		charged = len >> PAGE_SHIFT;
1749 		if (security_vm_enough_memory_mm(mm, charged))
1750 			return -ENOMEM;
1751 		vm_flags |= VM_ACCOUNT;
1752 	}
1753 
1754 	/*
1755 	 * Can we just expand an old mapping?
1756 	 */
1757 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1758 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1759 	if (vma)
1760 		goto out;
1761 
1762 	/*
1763 	 * Determine the object being mapped and call the appropriate
1764 	 * specific mapper. the address has already been validated, but
1765 	 * not unmapped, but the maps are removed from the list.
1766 	 */
1767 	vma = vm_area_alloc(mm);
1768 	if (!vma) {
1769 		error = -ENOMEM;
1770 		goto unacct_error;
1771 	}
1772 
1773 	vma->vm_start = addr;
1774 	vma->vm_end = addr + len;
1775 	vma->vm_flags = vm_flags;
1776 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1777 	vma->vm_pgoff = pgoff;
1778 
1779 	if (file) {
1780 		if (vm_flags & VM_SHARED) {
1781 			error = mapping_map_writable(file->f_mapping);
1782 			if (error)
1783 				goto free_vma;
1784 		}
1785 
1786 		vma->vm_file = get_file(file);
1787 		error = call_mmap(file, vma);
1788 		if (error)
1789 			goto unmap_and_free_vma;
1790 
1791 		/* Can addr have changed??
1792 		 *
1793 		 * Answer: Yes, several device drivers can do it in their
1794 		 *         f_op->mmap method. -DaveM
1795 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1796 		 *      be updated for vma_link()
1797 		 */
1798 		WARN_ON_ONCE(addr != vma->vm_start);
1799 
1800 		addr = vma->vm_start;
1801 
1802 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1803 		 * as we may succeed this time.
1804 		 */
1805 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1806 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1807 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1808 			if (merge) {
1809 				/* ->mmap() can change vma->vm_file and fput the original file. So
1810 				 * fput the vma->vm_file here or we would add an extra fput for file
1811 				 * and cause general protection fault ultimately.
1812 				 */
1813 				fput(vma->vm_file);
1814 				vm_area_free(vma);
1815 				vma = merge;
1816 				/* Update vm_flags to pick up the change. */
1817 				vm_flags = vma->vm_flags;
1818 				goto unmap_writable;
1819 			}
1820 		}
1821 
1822 		vm_flags = vma->vm_flags;
1823 	} else if (vm_flags & VM_SHARED) {
1824 		error = shmem_zero_setup(vma);
1825 		if (error)
1826 			goto free_vma;
1827 	} else {
1828 		vma_set_anonymous(vma);
1829 	}
1830 
1831 	/* Allow architectures to sanity-check the vm_flags */
1832 	if (!arch_validate_flags(vma->vm_flags)) {
1833 		error = -EINVAL;
1834 		if (file)
1835 			goto unmap_and_free_vma;
1836 		else
1837 			goto free_vma;
1838 	}
1839 
1840 	vma_link(mm, vma, prev, rb_link, rb_parent);
1841 	/* Once vma denies write, undo our temporary denial count */
1842 unmap_writable:
1843 	if (file && vm_flags & VM_SHARED)
1844 		mapping_unmap_writable(file->f_mapping);
1845 	file = vma->vm_file;
1846 out:
1847 	perf_event_mmap(vma);
1848 
1849 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1850 	if (vm_flags & VM_LOCKED) {
1851 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1852 					is_vm_hugetlb_page(vma) ||
1853 					vma == get_gate_vma(current->mm))
1854 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1855 		else
1856 			mm->locked_vm += (len >> PAGE_SHIFT);
1857 	}
1858 
1859 	if (file)
1860 		uprobe_mmap(vma);
1861 
1862 	/*
1863 	 * New (or expanded) vma always get soft dirty status.
1864 	 * Otherwise user-space soft-dirty page tracker won't
1865 	 * be able to distinguish situation when vma area unmapped,
1866 	 * then new mapped in-place (which must be aimed as
1867 	 * a completely new data area).
1868 	 */
1869 	vma->vm_flags |= VM_SOFTDIRTY;
1870 
1871 	vma_set_page_prot(vma);
1872 
1873 	return addr;
1874 
1875 unmap_and_free_vma:
1876 	fput(vma->vm_file);
1877 	vma->vm_file = NULL;
1878 
1879 	/* Undo any partial mapping done by a device driver. */
1880 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1881 	charged = 0;
1882 	if (vm_flags & VM_SHARED)
1883 		mapping_unmap_writable(file->f_mapping);
1884 free_vma:
1885 	vm_area_free(vma);
1886 unacct_error:
1887 	if (charged)
1888 		vm_unacct_memory(charged);
1889 	return error;
1890 }
1891 
1892 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1893 {
1894 	/*
1895 	 * We implement the search by looking for an rbtree node that
1896 	 * immediately follows a suitable gap. That is,
1897 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1898 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1899 	 * - gap_end - gap_start >= length
1900 	 */
1901 
1902 	struct mm_struct *mm = current->mm;
1903 	struct vm_area_struct *vma;
1904 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1905 
1906 	/* Adjust search length to account for worst case alignment overhead */
1907 	length = info->length + info->align_mask;
1908 	if (length < info->length)
1909 		return -ENOMEM;
1910 
1911 	/* Adjust search limits by the desired length */
1912 	if (info->high_limit < length)
1913 		return -ENOMEM;
1914 	high_limit = info->high_limit - length;
1915 
1916 	if (info->low_limit > high_limit)
1917 		return -ENOMEM;
1918 	low_limit = info->low_limit + length;
1919 
1920 	/* Check if rbtree root looks promising */
1921 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1922 		goto check_highest;
1923 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1924 	if (vma->rb_subtree_gap < length)
1925 		goto check_highest;
1926 
1927 	while (true) {
1928 		/* Visit left subtree if it looks promising */
1929 		gap_end = vm_start_gap(vma);
1930 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1931 			struct vm_area_struct *left =
1932 				rb_entry(vma->vm_rb.rb_left,
1933 					 struct vm_area_struct, vm_rb);
1934 			if (left->rb_subtree_gap >= length) {
1935 				vma = left;
1936 				continue;
1937 			}
1938 		}
1939 
1940 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1941 check_current:
1942 		/* Check if current node has a suitable gap */
1943 		if (gap_start > high_limit)
1944 			return -ENOMEM;
1945 		if (gap_end >= low_limit &&
1946 		    gap_end > gap_start && gap_end - gap_start >= length)
1947 			goto found;
1948 
1949 		/* Visit right subtree if it looks promising */
1950 		if (vma->vm_rb.rb_right) {
1951 			struct vm_area_struct *right =
1952 				rb_entry(vma->vm_rb.rb_right,
1953 					 struct vm_area_struct, vm_rb);
1954 			if (right->rb_subtree_gap >= length) {
1955 				vma = right;
1956 				continue;
1957 			}
1958 		}
1959 
1960 		/* Go back up the rbtree to find next candidate node */
1961 		while (true) {
1962 			struct rb_node *prev = &vma->vm_rb;
1963 			if (!rb_parent(prev))
1964 				goto check_highest;
1965 			vma = rb_entry(rb_parent(prev),
1966 				       struct vm_area_struct, vm_rb);
1967 			if (prev == vma->vm_rb.rb_left) {
1968 				gap_start = vm_end_gap(vma->vm_prev);
1969 				gap_end = vm_start_gap(vma);
1970 				goto check_current;
1971 			}
1972 		}
1973 	}
1974 
1975 check_highest:
1976 	/* Check highest gap, which does not precede any rbtree node */
1977 	gap_start = mm->highest_vm_end;
1978 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1979 	if (gap_start > high_limit)
1980 		return -ENOMEM;
1981 
1982 found:
1983 	/* We found a suitable gap. Clip it with the original low_limit. */
1984 	if (gap_start < info->low_limit)
1985 		gap_start = info->low_limit;
1986 
1987 	/* Adjust gap address to the desired alignment */
1988 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1989 
1990 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1991 	VM_BUG_ON(gap_start + info->length > gap_end);
1992 	return gap_start;
1993 }
1994 
1995 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1996 {
1997 	struct mm_struct *mm = current->mm;
1998 	struct vm_area_struct *vma;
1999 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2000 
2001 	/* Adjust search length to account for worst case alignment overhead */
2002 	length = info->length + info->align_mask;
2003 	if (length < info->length)
2004 		return -ENOMEM;
2005 
2006 	/*
2007 	 * Adjust search limits by the desired length.
2008 	 * See implementation comment at top of unmapped_area().
2009 	 */
2010 	gap_end = info->high_limit;
2011 	if (gap_end < length)
2012 		return -ENOMEM;
2013 	high_limit = gap_end - length;
2014 
2015 	if (info->low_limit > high_limit)
2016 		return -ENOMEM;
2017 	low_limit = info->low_limit + length;
2018 
2019 	/* Check highest gap, which does not precede any rbtree node */
2020 	gap_start = mm->highest_vm_end;
2021 	if (gap_start <= high_limit)
2022 		goto found_highest;
2023 
2024 	/* Check if rbtree root looks promising */
2025 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2026 		return -ENOMEM;
2027 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2028 	if (vma->rb_subtree_gap < length)
2029 		return -ENOMEM;
2030 
2031 	while (true) {
2032 		/* Visit right subtree if it looks promising */
2033 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2034 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2035 			struct vm_area_struct *right =
2036 				rb_entry(vma->vm_rb.rb_right,
2037 					 struct vm_area_struct, vm_rb);
2038 			if (right->rb_subtree_gap >= length) {
2039 				vma = right;
2040 				continue;
2041 			}
2042 		}
2043 
2044 check_current:
2045 		/* Check if current node has a suitable gap */
2046 		gap_end = vm_start_gap(vma);
2047 		if (gap_end < low_limit)
2048 			return -ENOMEM;
2049 		if (gap_start <= high_limit &&
2050 		    gap_end > gap_start && gap_end - gap_start >= length)
2051 			goto found;
2052 
2053 		/* Visit left subtree if it looks promising */
2054 		if (vma->vm_rb.rb_left) {
2055 			struct vm_area_struct *left =
2056 				rb_entry(vma->vm_rb.rb_left,
2057 					 struct vm_area_struct, vm_rb);
2058 			if (left->rb_subtree_gap >= length) {
2059 				vma = left;
2060 				continue;
2061 			}
2062 		}
2063 
2064 		/* Go back up the rbtree to find next candidate node */
2065 		while (true) {
2066 			struct rb_node *prev = &vma->vm_rb;
2067 			if (!rb_parent(prev))
2068 				return -ENOMEM;
2069 			vma = rb_entry(rb_parent(prev),
2070 				       struct vm_area_struct, vm_rb);
2071 			if (prev == vma->vm_rb.rb_right) {
2072 				gap_start = vma->vm_prev ?
2073 					vm_end_gap(vma->vm_prev) : 0;
2074 				goto check_current;
2075 			}
2076 		}
2077 	}
2078 
2079 found:
2080 	/* We found a suitable gap. Clip it with the original high_limit. */
2081 	if (gap_end > info->high_limit)
2082 		gap_end = info->high_limit;
2083 
2084 found_highest:
2085 	/* Compute highest gap address at the desired alignment */
2086 	gap_end -= info->length;
2087 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2088 
2089 	VM_BUG_ON(gap_end < info->low_limit);
2090 	VM_BUG_ON(gap_end < gap_start);
2091 	return gap_end;
2092 }
2093 
2094 /*
2095  * Search for an unmapped address range.
2096  *
2097  * We are looking for a range that:
2098  * - does not intersect with any VMA;
2099  * - is contained within the [low_limit, high_limit) interval;
2100  * - is at least the desired size.
2101  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2102  */
2103 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2104 {
2105 	unsigned long addr;
2106 
2107 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2108 		addr = unmapped_area_topdown(info);
2109 	else
2110 		addr = unmapped_area(info);
2111 
2112 	trace_vm_unmapped_area(addr, info);
2113 	return addr;
2114 }
2115 
2116 #ifndef arch_get_mmap_end
2117 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2118 #endif
2119 
2120 #ifndef arch_get_mmap_base
2121 #define arch_get_mmap_base(addr, base) (base)
2122 #endif
2123 
2124 /* Get an address range which is currently unmapped.
2125  * For shmat() with addr=0.
2126  *
2127  * Ugly calling convention alert:
2128  * Return value with the low bits set means error value,
2129  * ie
2130  *	if (ret & ~PAGE_MASK)
2131  *		error = ret;
2132  *
2133  * This function "knows" that -ENOMEM has the bits set.
2134  */
2135 #ifndef HAVE_ARCH_UNMAPPED_AREA
2136 unsigned long
2137 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2138 		unsigned long len, unsigned long pgoff, unsigned long flags)
2139 {
2140 	struct mm_struct *mm = current->mm;
2141 	struct vm_area_struct *vma, *prev;
2142 	struct vm_unmapped_area_info info;
2143 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2144 
2145 	if (len > mmap_end - mmap_min_addr)
2146 		return -ENOMEM;
2147 
2148 	if (flags & MAP_FIXED)
2149 		return addr;
2150 
2151 	if (addr) {
2152 		addr = PAGE_ALIGN(addr);
2153 		vma = find_vma_prev(mm, addr, &prev);
2154 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2155 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2156 		    (!prev || addr >= vm_end_gap(prev)))
2157 			return addr;
2158 	}
2159 
2160 	info.flags = 0;
2161 	info.length = len;
2162 	info.low_limit = mm->mmap_base;
2163 	info.high_limit = mmap_end;
2164 	info.align_mask = 0;
2165 	info.align_offset = 0;
2166 	return vm_unmapped_area(&info);
2167 }
2168 #endif
2169 
2170 /*
2171  * This mmap-allocator allocates new areas top-down from below the
2172  * stack's low limit (the base):
2173  */
2174 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2175 unsigned long
2176 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2177 			  unsigned long len, unsigned long pgoff,
2178 			  unsigned long flags)
2179 {
2180 	struct vm_area_struct *vma, *prev;
2181 	struct mm_struct *mm = current->mm;
2182 	struct vm_unmapped_area_info info;
2183 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2184 
2185 	/* requested length too big for entire address space */
2186 	if (len > mmap_end - mmap_min_addr)
2187 		return -ENOMEM;
2188 
2189 	if (flags & MAP_FIXED)
2190 		return addr;
2191 
2192 	/* requesting a specific address */
2193 	if (addr) {
2194 		addr = PAGE_ALIGN(addr);
2195 		vma = find_vma_prev(mm, addr, &prev);
2196 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2197 				(!vma || addr + len <= vm_start_gap(vma)) &&
2198 				(!prev || addr >= vm_end_gap(prev)))
2199 			return addr;
2200 	}
2201 
2202 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2203 	info.length = len;
2204 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2205 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2206 	info.align_mask = 0;
2207 	info.align_offset = 0;
2208 	addr = vm_unmapped_area(&info);
2209 
2210 	/*
2211 	 * A failed mmap() very likely causes application failure,
2212 	 * so fall back to the bottom-up function here. This scenario
2213 	 * can happen with large stack limits and large mmap()
2214 	 * allocations.
2215 	 */
2216 	if (offset_in_page(addr)) {
2217 		VM_BUG_ON(addr != -ENOMEM);
2218 		info.flags = 0;
2219 		info.low_limit = TASK_UNMAPPED_BASE;
2220 		info.high_limit = mmap_end;
2221 		addr = vm_unmapped_area(&info);
2222 	}
2223 
2224 	return addr;
2225 }
2226 #endif
2227 
2228 unsigned long
2229 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2230 		unsigned long pgoff, unsigned long flags)
2231 {
2232 	unsigned long (*get_area)(struct file *, unsigned long,
2233 				  unsigned long, unsigned long, unsigned long);
2234 
2235 	unsigned long error = arch_mmap_check(addr, len, flags);
2236 	if (error)
2237 		return error;
2238 
2239 	/* Careful about overflows.. */
2240 	if (len > TASK_SIZE)
2241 		return -ENOMEM;
2242 
2243 	get_area = current->mm->get_unmapped_area;
2244 	if (file) {
2245 		if (file->f_op->get_unmapped_area)
2246 			get_area = file->f_op->get_unmapped_area;
2247 	} else if (flags & MAP_SHARED) {
2248 		/*
2249 		 * mmap_region() will call shmem_zero_setup() to create a file,
2250 		 * so use shmem's get_unmapped_area in case it can be huge.
2251 		 * do_mmap() will clear pgoff, so match alignment.
2252 		 */
2253 		pgoff = 0;
2254 		get_area = shmem_get_unmapped_area;
2255 	}
2256 
2257 	addr = get_area(file, addr, len, pgoff, flags);
2258 	if (IS_ERR_VALUE(addr))
2259 		return addr;
2260 
2261 	if (addr > TASK_SIZE - len)
2262 		return -ENOMEM;
2263 	if (offset_in_page(addr))
2264 		return -EINVAL;
2265 
2266 	error = security_mmap_addr(addr);
2267 	return error ? error : addr;
2268 }
2269 
2270 EXPORT_SYMBOL(get_unmapped_area);
2271 
2272 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2273 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2274 {
2275 	struct rb_node *rb_node;
2276 	struct vm_area_struct *vma;
2277 
2278 	mmap_assert_locked(mm);
2279 	/* Check the cache first. */
2280 	vma = vmacache_find(mm, addr);
2281 	if (likely(vma))
2282 		return vma;
2283 
2284 	rb_node = mm->mm_rb.rb_node;
2285 
2286 	while (rb_node) {
2287 		struct vm_area_struct *tmp;
2288 
2289 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2290 
2291 		if (tmp->vm_end > addr) {
2292 			vma = tmp;
2293 			if (tmp->vm_start <= addr)
2294 				break;
2295 			rb_node = rb_node->rb_left;
2296 		} else
2297 			rb_node = rb_node->rb_right;
2298 	}
2299 
2300 	if (vma)
2301 		vmacache_update(addr, vma);
2302 	return vma;
2303 }
2304 
2305 EXPORT_SYMBOL(find_vma);
2306 
2307 /*
2308  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2309  */
2310 struct vm_area_struct *
2311 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2312 			struct vm_area_struct **pprev)
2313 {
2314 	struct vm_area_struct *vma;
2315 
2316 	vma = find_vma(mm, addr);
2317 	if (vma) {
2318 		*pprev = vma->vm_prev;
2319 	} else {
2320 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2321 
2322 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2323 	}
2324 	return vma;
2325 }
2326 
2327 /*
2328  * Verify that the stack growth is acceptable and
2329  * update accounting. This is shared with both the
2330  * grow-up and grow-down cases.
2331  */
2332 static int acct_stack_growth(struct vm_area_struct *vma,
2333 			     unsigned long size, unsigned long grow)
2334 {
2335 	struct mm_struct *mm = vma->vm_mm;
2336 	unsigned long new_start;
2337 
2338 	/* address space limit tests */
2339 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2340 		return -ENOMEM;
2341 
2342 	/* Stack limit test */
2343 	if (size > rlimit(RLIMIT_STACK))
2344 		return -ENOMEM;
2345 
2346 	/* mlock limit tests */
2347 	if (vma->vm_flags & VM_LOCKED) {
2348 		unsigned long locked;
2349 		unsigned long limit;
2350 		locked = mm->locked_vm + grow;
2351 		limit = rlimit(RLIMIT_MEMLOCK);
2352 		limit >>= PAGE_SHIFT;
2353 		if (locked > limit && !capable(CAP_IPC_LOCK))
2354 			return -ENOMEM;
2355 	}
2356 
2357 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2358 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2359 			vma->vm_end - size;
2360 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2361 		return -EFAULT;
2362 
2363 	/*
2364 	 * Overcommit..  This must be the final test, as it will
2365 	 * update security statistics.
2366 	 */
2367 	if (security_vm_enough_memory_mm(mm, grow))
2368 		return -ENOMEM;
2369 
2370 	return 0;
2371 }
2372 
2373 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2374 /*
2375  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2376  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2377  */
2378 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2379 {
2380 	struct mm_struct *mm = vma->vm_mm;
2381 	struct vm_area_struct *next;
2382 	unsigned long gap_addr;
2383 	int error = 0;
2384 
2385 	if (!(vma->vm_flags & VM_GROWSUP))
2386 		return -EFAULT;
2387 
2388 	/* Guard against exceeding limits of the address space. */
2389 	address &= PAGE_MASK;
2390 	if (address >= (TASK_SIZE & PAGE_MASK))
2391 		return -ENOMEM;
2392 	address += PAGE_SIZE;
2393 
2394 	/* Enforce stack_guard_gap */
2395 	gap_addr = address + stack_guard_gap;
2396 
2397 	/* Guard against overflow */
2398 	if (gap_addr < address || gap_addr > TASK_SIZE)
2399 		gap_addr = TASK_SIZE;
2400 
2401 	next = vma->vm_next;
2402 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2403 		if (!(next->vm_flags & VM_GROWSUP))
2404 			return -ENOMEM;
2405 		/* Check that both stack segments have the same anon_vma? */
2406 	}
2407 
2408 	/* We must make sure the anon_vma is allocated. */
2409 	if (unlikely(anon_vma_prepare(vma)))
2410 		return -ENOMEM;
2411 
2412 	/*
2413 	 * vma->vm_start/vm_end cannot change under us because the caller
2414 	 * is required to hold the mmap_lock in read mode.  We need the
2415 	 * anon_vma lock to serialize against concurrent expand_stacks.
2416 	 */
2417 	anon_vma_lock_write(vma->anon_vma);
2418 
2419 	/* Somebody else might have raced and expanded it already */
2420 	if (address > vma->vm_end) {
2421 		unsigned long size, grow;
2422 
2423 		size = address - vma->vm_start;
2424 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2425 
2426 		error = -ENOMEM;
2427 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2428 			error = acct_stack_growth(vma, size, grow);
2429 			if (!error) {
2430 				/*
2431 				 * vma_gap_update() doesn't support concurrent
2432 				 * updates, but we only hold a shared mmap_lock
2433 				 * lock here, so we need to protect against
2434 				 * concurrent vma expansions.
2435 				 * anon_vma_lock_write() doesn't help here, as
2436 				 * we don't guarantee that all growable vmas
2437 				 * in a mm share the same root anon vma.
2438 				 * So, we reuse mm->page_table_lock to guard
2439 				 * against concurrent vma expansions.
2440 				 */
2441 				spin_lock(&mm->page_table_lock);
2442 				if (vma->vm_flags & VM_LOCKED)
2443 					mm->locked_vm += grow;
2444 				vm_stat_account(mm, vma->vm_flags, grow);
2445 				anon_vma_interval_tree_pre_update_vma(vma);
2446 				vma->vm_end = address;
2447 				anon_vma_interval_tree_post_update_vma(vma);
2448 				if (vma->vm_next)
2449 					vma_gap_update(vma->vm_next);
2450 				else
2451 					mm->highest_vm_end = vm_end_gap(vma);
2452 				spin_unlock(&mm->page_table_lock);
2453 
2454 				perf_event_mmap(vma);
2455 			}
2456 		}
2457 	}
2458 	anon_vma_unlock_write(vma->anon_vma);
2459 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2460 	validate_mm(mm);
2461 	return error;
2462 }
2463 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2464 
2465 /*
2466  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2467  */
2468 int expand_downwards(struct vm_area_struct *vma,
2469 				   unsigned long address)
2470 {
2471 	struct mm_struct *mm = vma->vm_mm;
2472 	struct vm_area_struct *prev;
2473 	int error = 0;
2474 
2475 	address &= PAGE_MASK;
2476 	if (address < mmap_min_addr)
2477 		return -EPERM;
2478 
2479 	/* Enforce stack_guard_gap */
2480 	prev = vma->vm_prev;
2481 	/* Check that both stack segments have the same anon_vma? */
2482 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2483 			vma_is_accessible(prev)) {
2484 		if (address - prev->vm_end < stack_guard_gap)
2485 			return -ENOMEM;
2486 	}
2487 
2488 	/* We must make sure the anon_vma is allocated. */
2489 	if (unlikely(anon_vma_prepare(vma)))
2490 		return -ENOMEM;
2491 
2492 	/*
2493 	 * vma->vm_start/vm_end cannot change under us because the caller
2494 	 * is required to hold the mmap_lock in read mode.  We need the
2495 	 * anon_vma lock to serialize against concurrent expand_stacks.
2496 	 */
2497 	anon_vma_lock_write(vma->anon_vma);
2498 
2499 	/* Somebody else might have raced and expanded it already */
2500 	if (address < vma->vm_start) {
2501 		unsigned long size, grow;
2502 
2503 		size = vma->vm_end - address;
2504 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2505 
2506 		error = -ENOMEM;
2507 		if (grow <= vma->vm_pgoff) {
2508 			error = acct_stack_growth(vma, size, grow);
2509 			if (!error) {
2510 				/*
2511 				 * vma_gap_update() doesn't support concurrent
2512 				 * updates, but we only hold a shared mmap_lock
2513 				 * lock here, so we need to protect against
2514 				 * concurrent vma expansions.
2515 				 * anon_vma_lock_write() doesn't help here, as
2516 				 * we don't guarantee that all growable vmas
2517 				 * in a mm share the same root anon vma.
2518 				 * So, we reuse mm->page_table_lock to guard
2519 				 * against concurrent vma expansions.
2520 				 */
2521 				spin_lock(&mm->page_table_lock);
2522 				if (vma->vm_flags & VM_LOCKED)
2523 					mm->locked_vm += grow;
2524 				vm_stat_account(mm, vma->vm_flags, grow);
2525 				anon_vma_interval_tree_pre_update_vma(vma);
2526 				vma->vm_start = address;
2527 				vma->vm_pgoff -= grow;
2528 				anon_vma_interval_tree_post_update_vma(vma);
2529 				vma_gap_update(vma);
2530 				spin_unlock(&mm->page_table_lock);
2531 
2532 				perf_event_mmap(vma);
2533 			}
2534 		}
2535 	}
2536 	anon_vma_unlock_write(vma->anon_vma);
2537 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2538 	validate_mm(mm);
2539 	return error;
2540 }
2541 
2542 /* enforced gap between the expanding stack and other mappings. */
2543 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2544 
2545 static int __init cmdline_parse_stack_guard_gap(char *p)
2546 {
2547 	unsigned long val;
2548 	char *endptr;
2549 
2550 	val = simple_strtoul(p, &endptr, 10);
2551 	if (!*endptr)
2552 		stack_guard_gap = val << PAGE_SHIFT;
2553 
2554 	return 0;
2555 }
2556 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2557 
2558 #ifdef CONFIG_STACK_GROWSUP
2559 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2560 {
2561 	return expand_upwards(vma, address);
2562 }
2563 
2564 struct vm_area_struct *
2565 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2566 {
2567 	struct vm_area_struct *vma, *prev;
2568 
2569 	addr &= PAGE_MASK;
2570 	vma = find_vma_prev(mm, addr, &prev);
2571 	if (vma && (vma->vm_start <= addr))
2572 		return vma;
2573 	/* don't alter vm_end if the coredump is running */
2574 	if (!prev || expand_stack(prev, addr))
2575 		return NULL;
2576 	if (prev->vm_flags & VM_LOCKED)
2577 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2578 	return prev;
2579 }
2580 #else
2581 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2582 {
2583 	return expand_downwards(vma, address);
2584 }
2585 
2586 struct vm_area_struct *
2587 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2588 {
2589 	struct vm_area_struct *vma;
2590 	unsigned long start;
2591 
2592 	addr &= PAGE_MASK;
2593 	vma = find_vma(mm, addr);
2594 	if (!vma)
2595 		return NULL;
2596 	if (vma->vm_start <= addr)
2597 		return vma;
2598 	if (!(vma->vm_flags & VM_GROWSDOWN))
2599 		return NULL;
2600 	start = vma->vm_start;
2601 	if (expand_stack(vma, addr))
2602 		return NULL;
2603 	if (vma->vm_flags & VM_LOCKED)
2604 		populate_vma_page_range(vma, addr, start, NULL);
2605 	return vma;
2606 }
2607 #endif
2608 
2609 EXPORT_SYMBOL_GPL(find_extend_vma);
2610 
2611 /*
2612  * Ok - we have the memory areas we should free on the vma list,
2613  * so release them, and do the vma updates.
2614  *
2615  * Called with the mm semaphore held.
2616  */
2617 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2618 {
2619 	unsigned long nr_accounted = 0;
2620 
2621 	/* Update high watermark before we lower total_vm */
2622 	update_hiwater_vm(mm);
2623 	do {
2624 		long nrpages = vma_pages(vma);
2625 
2626 		if (vma->vm_flags & VM_ACCOUNT)
2627 			nr_accounted += nrpages;
2628 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2629 		vma = remove_vma(vma);
2630 	} while (vma);
2631 	vm_unacct_memory(nr_accounted);
2632 	validate_mm(mm);
2633 }
2634 
2635 /*
2636  * Get rid of page table information in the indicated region.
2637  *
2638  * Called with the mm semaphore held.
2639  */
2640 static void unmap_region(struct mm_struct *mm,
2641 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2642 		unsigned long start, unsigned long end)
2643 {
2644 	struct vm_area_struct *next = vma_next(mm, prev);
2645 	struct mmu_gather tlb;
2646 
2647 	lru_add_drain();
2648 	tlb_gather_mmu(&tlb, mm);
2649 	update_hiwater_rss(mm);
2650 	unmap_vmas(&tlb, vma, start, end);
2651 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2652 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2653 	tlb_finish_mmu(&tlb);
2654 }
2655 
2656 /*
2657  * Create a list of vma's touched by the unmap, removing them from the mm's
2658  * vma list as we go..
2659  */
2660 static bool
2661 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2662 	struct vm_area_struct *prev, unsigned long end)
2663 {
2664 	struct vm_area_struct **insertion_point;
2665 	struct vm_area_struct *tail_vma = NULL;
2666 
2667 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2668 	vma->vm_prev = NULL;
2669 	do {
2670 		vma_rb_erase(vma, &mm->mm_rb);
2671 		mm->map_count--;
2672 		tail_vma = vma;
2673 		vma = vma->vm_next;
2674 	} while (vma && vma->vm_start < end);
2675 	*insertion_point = vma;
2676 	if (vma) {
2677 		vma->vm_prev = prev;
2678 		vma_gap_update(vma);
2679 	} else
2680 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2681 	tail_vma->vm_next = NULL;
2682 
2683 	/* Kill the cache */
2684 	vmacache_invalidate(mm);
2685 
2686 	/*
2687 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2688 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2689 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2690 	 */
2691 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2692 		return false;
2693 	if (prev && (prev->vm_flags & VM_GROWSUP))
2694 		return false;
2695 	return true;
2696 }
2697 
2698 /*
2699  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2700  * has already been checked or doesn't make sense to fail.
2701  */
2702 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2703 		unsigned long addr, int new_below)
2704 {
2705 	struct vm_area_struct *new;
2706 	int err;
2707 
2708 	if (vma->vm_ops && vma->vm_ops->may_split) {
2709 		err = vma->vm_ops->may_split(vma, addr);
2710 		if (err)
2711 			return err;
2712 	}
2713 
2714 	new = vm_area_dup(vma);
2715 	if (!new)
2716 		return -ENOMEM;
2717 
2718 	if (new_below)
2719 		new->vm_end = addr;
2720 	else {
2721 		new->vm_start = addr;
2722 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2723 	}
2724 
2725 	err = vma_dup_policy(vma, new);
2726 	if (err)
2727 		goto out_free_vma;
2728 
2729 	err = anon_vma_clone(new, vma);
2730 	if (err)
2731 		goto out_free_mpol;
2732 
2733 	if (new->vm_file)
2734 		get_file(new->vm_file);
2735 
2736 	if (new->vm_ops && new->vm_ops->open)
2737 		new->vm_ops->open(new);
2738 
2739 	if (new_below)
2740 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2741 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2742 	else
2743 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2744 
2745 	/* Success. */
2746 	if (!err)
2747 		return 0;
2748 
2749 	/* Clean everything up if vma_adjust failed. */
2750 	if (new->vm_ops && new->vm_ops->close)
2751 		new->vm_ops->close(new);
2752 	if (new->vm_file)
2753 		fput(new->vm_file);
2754 	unlink_anon_vmas(new);
2755  out_free_mpol:
2756 	mpol_put(vma_policy(new));
2757  out_free_vma:
2758 	vm_area_free(new);
2759 	return err;
2760 }
2761 
2762 /*
2763  * Split a vma into two pieces at address 'addr', a new vma is allocated
2764  * either for the first part or the tail.
2765  */
2766 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2767 	      unsigned long addr, int new_below)
2768 {
2769 	if (mm->map_count >= sysctl_max_map_count)
2770 		return -ENOMEM;
2771 
2772 	return __split_vma(mm, vma, addr, new_below);
2773 }
2774 
2775 static inline void
2776 unlock_range(struct vm_area_struct *start, unsigned long limit)
2777 {
2778 	struct mm_struct *mm = start->vm_mm;
2779 	struct vm_area_struct *tmp = start;
2780 
2781 	while (tmp && tmp->vm_start < limit) {
2782 		if (tmp->vm_flags & VM_LOCKED) {
2783 			mm->locked_vm -= vma_pages(tmp);
2784 			munlock_vma_pages_all(tmp);
2785 		}
2786 
2787 		tmp = tmp->vm_next;
2788 	}
2789 }
2790 
2791 /* Munmap is split into 2 main parts -- this part which finds
2792  * what needs doing, and the areas themselves, which do the
2793  * work.  This now handles partial unmappings.
2794  * Jeremy Fitzhardinge <jeremy@goop.org>
2795  */
2796 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2797 		struct list_head *uf, bool downgrade)
2798 {
2799 	unsigned long end;
2800 	struct vm_area_struct *vma, *prev, *last;
2801 
2802 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2803 		return -EINVAL;
2804 
2805 	len = PAGE_ALIGN(len);
2806 	end = start + len;
2807 	if (len == 0)
2808 		return -EINVAL;
2809 
2810 	/*
2811 	 * arch_unmap() might do unmaps itself.  It must be called
2812 	 * and finish any rbtree manipulation before this code
2813 	 * runs and also starts to manipulate the rbtree.
2814 	 */
2815 	arch_unmap(mm, start, end);
2816 
2817 	/* Find the first overlapping VMA where start < vma->vm_end */
2818 	vma = find_vma_intersection(mm, start, end);
2819 	if (!vma)
2820 		return 0;
2821 	prev = vma->vm_prev;
2822 
2823 	/*
2824 	 * If we need to split any vma, do it now to save pain later.
2825 	 *
2826 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2827 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2828 	 * places tmp vma above, and higher split_vma places tmp vma below.
2829 	 */
2830 	if (start > vma->vm_start) {
2831 		int error;
2832 
2833 		/*
2834 		 * Make sure that map_count on return from munmap() will
2835 		 * not exceed its limit; but let map_count go just above
2836 		 * its limit temporarily, to help free resources as expected.
2837 		 */
2838 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2839 			return -ENOMEM;
2840 
2841 		error = __split_vma(mm, vma, start, 0);
2842 		if (error)
2843 			return error;
2844 		prev = vma;
2845 	}
2846 
2847 	/* Does it split the last one? */
2848 	last = find_vma(mm, end);
2849 	if (last && end > last->vm_start) {
2850 		int error = __split_vma(mm, last, end, 1);
2851 		if (error)
2852 			return error;
2853 	}
2854 	vma = vma_next(mm, prev);
2855 
2856 	if (unlikely(uf)) {
2857 		/*
2858 		 * If userfaultfd_unmap_prep returns an error the vmas
2859 		 * will remain split, but userland will get a
2860 		 * highly unexpected error anyway. This is no
2861 		 * different than the case where the first of the two
2862 		 * __split_vma fails, but we don't undo the first
2863 		 * split, despite we could. This is unlikely enough
2864 		 * failure that it's not worth optimizing it for.
2865 		 */
2866 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2867 		if (error)
2868 			return error;
2869 	}
2870 
2871 	/*
2872 	 * unlock any mlock()ed ranges before detaching vmas
2873 	 */
2874 	if (mm->locked_vm)
2875 		unlock_range(vma, end);
2876 
2877 	/* Detach vmas from rbtree */
2878 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2879 		downgrade = false;
2880 
2881 	if (downgrade)
2882 		mmap_write_downgrade(mm);
2883 
2884 	unmap_region(mm, vma, prev, start, end);
2885 
2886 	/* Fix up all other VM information */
2887 	remove_vma_list(mm, vma);
2888 
2889 	return downgrade ? 1 : 0;
2890 }
2891 
2892 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2893 	      struct list_head *uf)
2894 {
2895 	return __do_munmap(mm, start, len, uf, false);
2896 }
2897 
2898 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2899 {
2900 	int ret;
2901 	struct mm_struct *mm = current->mm;
2902 	LIST_HEAD(uf);
2903 
2904 	if (mmap_write_lock_killable(mm))
2905 		return -EINTR;
2906 
2907 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2908 	/*
2909 	 * Returning 1 indicates mmap_lock is downgraded.
2910 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2911 	 * it to 0 before return.
2912 	 */
2913 	if (ret == 1) {
2914 		mmap_read_unlock(mm);
2915 		ret = 0;
2916 	} else
2917 		mmap_write_unlock(mm);
2918 
2919 	userfaultfd_unmap_complete(mm, &uf);
2920 	return ret;
2921 }
2922 
2923 int vm_munmap(unsigned long start, size_t len)
2924 {
2925 	return __vm_munmap(start, len, false);
2926 }
2927 EXPORT_SYMBOL(vm_munmap);
2928 
2929 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2930 {
2931 	addr = untagged_addr(addr);
2932 	profile_munmap(addr);
2933 	return __vm_munmap(addr, len, true);
2934 }
2935 
2936 
2937 /*
2938  * Emulation of deprecated remap_file_pages() syscall.
2939  */
2940 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2941 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2942 {
2943 
2944 	struct mm_struct *mm = current->mm;
2945 	struct vm_area_struct *vma;
2946 	unsigned long populate = 0;
2947 	unsigned long ret = -EINVAL;
2948 	struct file *file;
2949 
2950 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2951 		     current->comm, current->pid);
2952 
2953 	if (prot)
2954 		return ret;
2955 	start = start & PAGE_MASK;
2956 	size = size & PAGE_MASK;
2957 
2958 	if (start + size <= start)
2959 		return ret;
2960 
2961 	/* Does pgoff wrap? */
2962 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2963 		return ret;
2964 
2965 	if (mmap_write_lock_killable(mm))
2966 		return -EINTR;
2967 
2968 	vma = vma_lookup(mm, start);
2969 
2970 	if (!vma || !(vma->vm_flags & VM_SHARED))
2971 		goto out;
2972 
2973 	if (start + size > vma->vm_end) {
2974 		struct vm_area_struct *next;
2975 
2976 		for (next = vma->vm_next; next; next = next->vm_next) {
2977 			/* hole between vmas ? */
2978 			if (next->vm_start != next->vm_prev->vm_end)
2979 				goto out;
2980 
2981 			if (next->vm_file != vma->vm_file)
2982 				goto out;
2983 
2984 			if (next->vm_flags != vma->vm_flags)
2985 				goto out;
2986 
2987 			if (start + size <= next->vm_end)
2988 				break;
2989 		}
2990 
2991 		if (!next)
2992 			goto out;
2993 	}
2994 
2995 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2996 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2997 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2998 
2999 	flags &= MAP_NONBLOCK;
3000 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3001 	if (vma->vm_flags & VM_LOCKED)
3002 		flags |= MAP_LOCKED;
3003 
3004 	file = get_file(vma->vm_file);
3005 	ret = do_mmap(vma->vm_file, start, size,
3006 			prot, flags, pgoff, &populate, NULL);
3007 	fput(file);
3008 out:
3009 	mmap_write_unlock(mm);
3010 	if (populate)
3011 		mm_populate(ret, populate);
3012 	if (!IS_ERR_VALUE(ret))
3013 		ret = 0;
3014 	return ret;
3015 }
3016 
3017 /*
3018  *  this is really a simplified "do_mmap".  it only handles
3019  *  anonymous maps.  eventually we may be able to do some
3020  *  brk-specific accounting here.
3021  */
3022 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3023 {
3024 	struct mm_struct *mm = current->mm;
3025 	struct vm_area_struct *vma, *prev;
3026 	struct rb_node **rb_link, *rb_parent;
3027 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3028 	int error;
3029 	unsigned long mapped_addr;
3030 
3031 	/* Until we need other flags, refuse anything except VM_EXEC. */
3032 	if ((flags & (~VM_EXEC)) != 0)
3033 		return -EINVAL;
3034 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3035 
3036 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3037 	if (IS_ERR_VALUE(mapped_addr))
3038 		return mapped_addr;
3039 
3040 	error = mlock_future_check(mm, mm->def_flags, len);
3041 	if (error)
3042 		return error;
3043 
3044 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3045 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3046 		return -ENOMEM;
3047 
3048 	/* Check against address space limits *after* clearing old maps... */
3049 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3050 		return -ENOMEM;
3051 
3052 	if (mm->map_count > sysctl_max_map_count)
3053 		return -ENOMEM;
3054 
3055 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3056 		return -ENOMEM;
3057 
3058 	/* Can we just expand an old private anonymous mapping? */
3059 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3060 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3061 	if (vma)
3062 		goto out;
3063 
3064 	/*
3065 	 * create a vma struct for an anonymous mapping
3066 	 */
3067 	vma = vm_area_alloc(mm);
3068 	if (!vma) {
3069 		vm_unacct_memory(len >> PAGE_SHIFT);
3070 		return -ENOMEM;
3071 	}
3072 
3073 	vma_set_anonymous(vma);
3074 	vma->vm_start = addr;
3075 	vma->vm_end = addr + len;
3076 	vma->vm_pgoff = pgoff;
3077 	vma->vm_flags = flags;
3078 	vma->vm_page_prot = vm_get_page_prot(flags);
3079 	vma_link(mm, vma, prev, rb_link, rb_parent);
3080 out:
3081 	perf_event_mmap(vma);
3082 	mm->total_vm += len >> PAGE_SHIFT;
3083 	mm->data_vm += len >> PAGE_SHIFT;
3084 	if (flags & VM_LOCKED)
3085 		mm->locked_vm += (len >> PAGE_SHIFT);
3086 	vma->vm_flags |= VM_SOFTDIRTY;
3087 	return 0;
3088 }
3089 
3090 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3091 {
3092 	struct mm_struct *mm = current->mm;
3093 	unsigned long len;
3094 	int ret;
3095 	bool populate;
3096 	LIST_HEAD(uf);
3097 
3098 	len = PAGE_ALIGN(request);
3099 	if (len < request)
3100 		return -ENOMEM;
3101 	if (!len)
3102 		return 0;
3103 
3104 	if (mmap_write_lock_killable(mm))
3105 		return -EINTR;
3106 
3107 	ret = do_brk_flags(addr, len, flags, &uf);
3108 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3109 	mmap_write_unlock(mm);
3110 	userfaultfd_unmap_complete(mm, &uf);
3111 	if (populate && !ret)
3112 		mm_populate(addr, len);
3113 	return ret;
3114 }
3115 EXPORT_SYMBOL(vm_brk_flags);
3116 
3117 int vm_brk(unsigned long addr, unsigned long len)
3118 {
3119 	return vm_brk_flags(addr, len, 0);
3120 }
3121 EXPORT_SYMBOL(vm_brk);
3122 
3123 /* Release all mmaps. */
3124 void exit_mmap(struct mm_struct *mm)
3125 {
3126 	struct mmu_gather tlb;
3127 	struct vm_area_struct *vma;
3128 	unsigned long nr_accounted = 0;
3129 
3130 	/* mm's last user has gone, and its about to be pulled down */
3131 	mmu_notifier_release(mm);
3132 
3133 	if (unlikely(mm_is_oom_victim(mm))) {
3134 		/*
3135 		 * Manually reap the mm to free as much memory as possible.
3136 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3137 		 * this mm from further consideration.  Taking mm->mmap_lock for
3138 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3139 		 * reaper will not run on this mm again after mmap_lock is
3140 		 * dropped.
3141 		 *
3142 		 * Nothing can be holding mm->mmap_lock here and the above call
3143 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3144 		 * __oom_reap_task_mm() will not block.
3145 		 *
3146 		 * This needs to be done before calling munlock_vma_pages_all(),
3147 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3148 		 * reliably test it.
3149 		 */
3150 		(void)__oom_reap_task_mm(mm);
3151 
3152 		set_bit(MMF_OOM_SKIP, &mm->flags);
3153 		mmap_write_lock(mm);
3154 		mmap_write_unlock(mm);
3155 	}
3156 
3157 	if (mm->locked_vm)
3158 		unlock_range(mm->mmap, ULONG_MAX);
3159 
3160 	arch_exit_mmap(mm);
3161 
3162 	vma = mm->mmap;
3163 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3164 		return;
3165 
3166 	lru_add_drain();
3167 	flush_cache_mm(mm);
3168 	tlb_gather_mmu_fullmm(&tlb, mm);
3169 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3170 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3171 	unmap_vmas(&tlb, vma, 0, -1);
3172 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3173 	tlb_finish_mmu(&tlb);
3174 
3175 	/*
3176 	 * Walk the list again, actually closing and freeing it,
3177 	 * with preemption enabled, without holding any MM locks.
3178 	 */
3179 	while (vma) {
3180 		if (vma->vm_flags & VM_ACCOUNT)
3181 			nr_accounted += vma_pages(vma);
3182 		vma = remove_vma(vma);
3183 		cond_resched();
3184 	}
3185 	vm_unacct_memory(nr_accounted);
3186 }
3187 
3188 /* Insert vm structure into process list sorted by address
3189  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3190  * then i_mmap_rwsem is taken here.
3191  */
3192 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3193 {
3194 	struct vm_area_struct *prev;
3195 	struct rb_node **rb_link, *rb_parent;
3196 
3197 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3198 			   &prev, &rb_link, &rb_parent))
3199 		return -ENOMEM;
3200 	if ((vma->vm_flags & VM_ACCOUNT) &&
3201 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3202 		return -ENOMEM;
3203 
3204 	/*
3205 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3206 	 * until its first write fault, when page's anon_vma and index
3207 	 * are set.  But now set the vm_pgoff it will almost certainly
3208 	 * end up with (unless mremap moves it elsewhere before that
3209 	 * first wfault), so /proc/pid/maps tells a consistent story.
3210 	 *
3211 	 * By setting it to reflect the virtual start address of the
3212 	 * vma, merges and splits can happen in a seamless way, just
3213 	 * using the existing file pgoff checks and manipulations.
3214 	 * Similarly in do_mmap and in do_brk_flags.
3215 	 */
3216 	if (vma_is_anonymous(vma)) {
3217 		BUG_ON(vma->anon_vma);
3218 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3219 	}
3220 
3221 	vma_link(mm, vma, prev, rb_link, rb_parent);
3222 	return 0;
3223 }
3224 
3225 /*
3226  * Copy the vma structure to a new location in the same mm,
3227  * prior to moving page table entries, to effect an mremap move.
3228  */
3229 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3230 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3231 	bool *need_rmap_locks)
3232 {
3233 	struct vm_area_struct *vma = *vmap;
3234 	unsigned long vma_start = vma->vm_start;
3235 	struct mm_struct *mm = vma->vm_mm;
3236 	struct vm_area_struct *new_vma, *prev;
3237 	struct rb_node **rb_link, *rb_parent;
3238 	bool faulted_in_anon_vma = true;
3239 
3240 	/*
3241 	 * If anonymous vma has not yet been faulted, update new pgoff
3242 	 * to match new location, to increase its chance of merging.
3243 	 */
3244 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3245 		pgoff = addr >> PAGE_SHIFT;
3246 		faulted_in_anon_vma = false;
3247 	}
3248 
3249 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3250 		return NULL;	/* should never get here */
3251 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3252 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3253 			    vma->vm_userfaultfd_ctx);
3254 	if (new_vma) {
3255 		/*
3256 		 * Source vma may have been merged into new_vma
3257 		 */
3258 		if (unlikely(vma_start >= new_vma->vm_start &&
3259 			     vma_start < new_vma->vm_end)) {
3260 			/*
3261 			 * The only way we can get a vma_merge with
3262 			 * self during an mremap is if the vma hasn't
3263 			 * been faulted in yet and we were allowed to
3264 			 * reset the dst vma->vm_pgoff to the
3265 			 * destination address of the mremap to allow
3266 			 * the merge to happen. mremap must change the
3267 			 * vm_pgoff linearity between src and dst vmas
3268 			 * (in turn preventing a vma_merge) to be
3269 			 * safe. It is only safe to keep the vm_pgoff
3270 			 * linear if there are no pages mapped yet.
3271 			 */
3272 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3273 			*vmap = vma = new_vma;
3274 		}
3275 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3276 	} else {
3277 		new_vma = vm_area_dup(vma);
3278 		if (!new_vma)
3279 			goto out;
3280 		new_vma->vm_start = addr;
3281 		new_vma->vm_end = addr + len;
3282 		new_vma->vm_pgoff = pgoff;
3283 		if (vma_dup_policy(vma, new_vma))
3284 			goto out_free_vma;
3285 		if (anon_vma_clone(new_vma, vma))
3286 			goto out_free_mempol;
3287 		if (new_vma->vm_file)
3288 			get_file(new_vma->vm_file);
3289 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3290 			new_vma->vm_ops->open(new_vma);
3291 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3292 		*need_rmap_locks = false;
3293 	}
3294 	return new_vma;
3295 
3296 out_free_mempol:
3297 	mpol_put(vma_policy(new_vma));
3298 out_free_vma:
3299 	vm_area_free(new_vma);
3300 out:
3301 	return NULL;
3302 }
3303 
3304 /*
3305  * Return true if the calling process may expand its vm space by the passed
3306  * number of pages
3307  */
3308 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3309 {
3310 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3311 		return false;
3312 
3313 	if (is_data_mapping(flags) &&
3314 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3315 		/* Workaround for Valgrind */
3316 		if (rlimit(RLIMIT_DATA) == 0 &&
3317 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3318 			return true;
3319 
3320 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3321 			     current->comm, current->pid,
3322 			     (mm->data_vm + npages) << PAGE_SHIFT,
3323 			     rlimit(RLIMIT_DATA),
3324 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3325 
3326 		if (!ignore_rlimit_data)
3327 			return false;
3328 	}
3329 
3330 	return true;
3331 }
3332 
3333 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3334 {
3335 	mm->total_vm += npages;
3336 
3337 	if (is_exec_mapping(flags))
3338 		mm->exec_vm += npages;
3339 	else if (is_stack_mapping(flags))
3340 		mm->stack_vm += npages;
3341 	else if (is_data_mapping(flags))
3342 		mm->data_vm += npages;
3343 }
3344 
3345 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3346 
3347 /*
3348  * Having a close hook prevents vma merging regardless of flags.
3349  */
3350 static void special_mapping_close(struct vm_area_struct *vma)
3351 {
3352 }
3353 
3354 static const char *special_mapping_name(struct vm_area_struct *vma)
3355 {
3356 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3357 }
3358 
3359 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3360 {
3361 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3362 
3363 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3364 		return -EFAULT;
3365 
3366 	if (sm->mremap)
3367 		return sm->mremap(sm, new_vma);
3368 
3369 	return 0;
3370 }
3371 
3372 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3373 {
3374 	/*
3375 	 * Forbid splitting special mappings - kernel has expectations over
3376 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3377 	 * the size of vma should stay the same over the special mapping's
3378 	 * lifetime.
3379 	 */
3380 	return -EINVAL;
3381 }
3382 
3383 static const struct vm_operations_struct special_mapping_vmops = {
3384 	.close = special_mapping_close,
3385 	.fault = special_mapping_fault,
3386 	.mremap = special_mapping_mremap,
3387 	.name = special_mapping_name,
3388 	/* vDSO code relies that VVAR can't be accessed remotely */
3389 	.access = NULL,
3390 	.may_split = special_mapping_split,
3391 };
3392 
3393 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3394 	.close = special_mapping_close,
3395 	.fault = special_mapping_fault,
3396 };
3397 
3398 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3399 {
3400 	struct vm_area_struct *vma = vmf->vma;
3401 	pgoff_t pgoff;
3402 	struct page **pages;
3403 
3404 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3405 		pages = vma->vm_private_data;
3406 	} else {
3407 		struct vm_special_mapping *sm = vma->vm_private_data;
3408 
3409 		if (sm->fault)
3410 			return sm->fault(sm, vmf->vma, vmf);
3411 
3412 		pages = sm->pages;
3413 	}
3414 
3415 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3416 		pgoff--;
3417 
3418 	if (*pages) {
3419 		struct page *page = *pages;
3420 		get_page(page);
3421 		vmf->page = page;
3422 		return 0;
3423 	}
3424 
3425 	return VM_FAULT_SIGBUS;
3426 }
3427 
3428 static struct vm_area_struct *__install_special_mapping(
3429 	struct mm_struct *mm,
3430 	unsigned long addr, unsigned long len,
3431 	unsigned long vm_flags, void *priv,
3432 	const struct vm_operations_struct *ops)
3433 {
3434 	int ret;
3435 	struct vm_area_struct *vma;
3436 
3437 	vma = vm_area_alloc(mm);
3438 	if (unlikely(vma == NULL))
3439 		return ERR_PTR(-ENOMEM);
3440 
3441 	vma->vm_start = addr;
3442 	vma->vm_end = addr + len;
3443 
3444 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3445 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3446 
3447 	vma->vm_ops = ops;
3448 	vma->vm_private_data = priv;
3449 
3450 	ret = insert_vm_struct(mm, vma);
3451 	if (ret)
3452 		goto out;
3453 
3454 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3455 
3456 	perf_event_mmap(vma);
3457 
3458 	return vma;
3459 
3460 out:
3461 	vm_area_free(vma);
3462 	return ERR_PTR(ret);
3463 }
3464 
3465 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3466 	const struct vm_special_mapping *sm)
3467 {
3468 	return vma->vm_private_data == sm &&
3469 		(vma->vm_ops == &special_mapping_vmops ||
3470 		 vma->vm_ops == &legacy_special_mapping_vmops);
3471 }
3472 
3473 /*
3474  * Called with mm->mmap_lock held for writing.
3475  * Insert a new vma covering the given region, with the given flags.
3476  * Its pages are supplied by the given array of struct page *.
3477  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3478  * The region past the last page supplied will always produce SIGBUS.
3479  * The array pointer and the pages it points to are assumed to stay alive
3480  * for as long as this mapping might exist.
3481  */
3482 struct vm_area_struct *_install_special_mapping(
3483 	struct mm_struct *mm,
3484 	unsigned long addr, unsigned long len,
3485 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3486 {
3487 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3488 					&special_mapping_vmops);
3489 }
3490 
3491 int install_special_mapping(struct mm_struct *mm,
3492 			    unsigned long addr, unsigned long len,
3493 			    unsigned long vm_flags, struct page **pages)
3494 {
3495 	struct vm_area_struct *vma = __install_special_mapping(
3496 		mm, addr, len, vm_flags, (void *)pages,
3497 		&legacy_special_mapping_vmops);
3498 
3499 	return PTR_ERR_OR_ZERO(vma);
3500 }
3501 
3502 static DEFINE_MUTEX(mm_all_locks_mutex);
3503 
3504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3505 {
3506 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3507 		/*
3508 		 * The LSB of head.next can't change from under us
3509 		 * because we hold the mm_all_locks_mutex.
3510 		 */
3511 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3512 		/*
3513 		 * We can safely modify head.next after taking the
3514 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3515 		 * the same anon_vma we won't take it again.
3516 		 *
3517 		 * No need of atomic instructions here, head.next
3518 		 * can't change from under us thanks to the
3519 		 * anon_vma->root->rwsem.
3520 		 */
3521 		if (__test_and_set_bit(0, (unsigned long *)
3522 				       &anon_vma->root->rb_root.rb_root.rb_node))
3523 			BUG();
3524 	}
3525 }
3526 
3527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3528 {
3529 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3530 		/*
3531 		 * AS_MM_ALL_LOCKS can't change from under us because
3532 		 * we hold the mm_all_locks_mutex.
3533 		 *
3534 		 * Operations on ->flags have to be atomic because
3535 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3536 		 * mm_all_locks_mutex, there may be other cpus
3537 		 * changing other bitflags in parallel to us.
3538 		 */
3539 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3540 			BUG();
3541 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3542 	}
3543 }
3544 
3545 /*
3546  * This operation locks against the VM for all pte/vma/mm related
3547  * operations that could ever happen on a certain mm. This includes
3548  * vmtruncate, try_to_unmap, and all page faults.
3549  *
3550  * The caller must take the mmap_lock in write mode before calling
3551  * mm_take_all_locks(). The caller isn't allowed to release the
3552  * mmap_lock until mm_drop_all_locks() returns.
3553  *
3554  * mmap_lock in write mode is required in order to block all operations
3555  * that could modify pagetables and free pages without need of
3556  * altering the vma layout. It's also needed in write mode to avoid new
3557  * anon_vmas to be associated with existing vmas.
3558  *
3559  * A single task can't take more than one mm_take_all_locks() in a row
3560  * or it would deadlock.
3561  *
3562  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3563  * mapping->flags avoid to take the same lock twice, if more than one
3564  * vma in this mm is backed by the same anon_vma or address_space.
3565  *
3566  * We take locks in following order, accordingly to comment at beginning
3567  * of mm/rmap.c:
3568  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3569  *     hugetlb mapping);
3570  *   - all i_mmap_rwsem locks;
3571  *   - all anon_vma->rwseml
3572  *
3573  * We can take all locks within these types randomly because the VM code
3574  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3575  * mm_all_locks_mutex.
3576  *
3577  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3578  * that may have to take thousand of locks.
3579  *
3580  * mm_take_all_locks() can fail if it's interrupted by signals.
3581  */
3582 int mm_take_all_locks(struct mm_struct *mm)
3583 {
3584 	struct vm_area_struct *vma;
3585 	struct anon_vma_chain *avc;
3586 
3587 	BUG_ON(mmap_read_trylock(mm));
3588 
3589 	mutex_lock(&mm_all_locks_mutex);
3590 
3591 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3592 		if (signal_pending(current))
3593 			goto out_unlock;
3594 		if (vma->vm_file && vma->vm_file->f_mapping &&
3595 				is_vm_hugetlb_page(vma))
3596 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3597 	}
3598 
3599 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3600 		if (signal_pending(current))
3601 			goto out_unlock;
3602 		if (vma->vm_file && vma->vm_file->f_mapping &&
3603 				!is_vm_hugetlb_page(vma))
3604 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3605 	}
3606 
3607 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3608 		if (signal_pending(current))
3609 			goto out_unlock;
3610 		if (vma->anon_vma)
3611 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3612 				vm_lock_anon_vma(mm, avc->anon_vma);
3613 	}
3614 
3615 	return 0;
3616 
3617 out_unlock:
3618 	mm_drop_all_locks(mm);
3619 	return -EINTR;
3620 }
3621 
3622 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3623 {
3624 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3625 		/*
3626 		 * The LSB of head.next can't change to 0 from under
3627 		 * us because we hold the mm_all_locks_mutex.
3628 		 *
3629 		 * We must however clear the bitflag before unlocking
3630 		 * the vma so the users using the anon_vma->rb_root will
3631 		 * never see our bitflag.
3632 		 *
3633 		 * No need of atomic instructions here, head.next
3634 		 * can't change from under us until we release the
3635 		 * anon_vma->root->rwsem.
3636 		 */
3637 		if (!__test_and_clear_bit(0, (unsigned long *)
3638 					  &anon_vma->root->rb_root.rb_root.rb_node))
3639 			BUG();
3640 		anon_vma_unlock_write(anon_vma);
3641 	}
3642 }
3643 
3644 static void vm_unlock_mapping(struct address_space *mapping)
3645 {
3646 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3647 		/*
3648 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3649 		 * because we hold the mm_all_locks_mutex.
3650 		 */
3651 		i_mmap_unlock_write(mapping);
3652 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3653 					&mapping->flags))
3654 			BUG();
3655 	}
3656 }
3657 
3658 /*
3659  * The mmap_lock cannot be released by the caller until
3660  * mm_drop_all_locks() returns.
3661  */
3662 void mm_drop_all_locks(struct mm_struct *mm)
3663 {
3664 	struct vm_area_struct *vma;
3665 	struct anon_vma_chain *avc;
3666 
3667 	BUG_ON(mmap_read_trylock(mm));
3668 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3669 
3670 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3671 		if (vma->anon_vma)
3672 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3673 				vm_unlock_anon_vma(avc->anon_vma);
3674 		if (vma->vm_file && vma->vm_file->f_mapping)
3675 			vm_unlock_mapping(vma->vm_file->f_mapping);
3676 	}
3677 
3678 	mutex_unlock(&mm_all_locks_mutex);
3679 }
3680 
3681 /*
3682  * initialise the percpu counter for VM
3683  */
3684 void __init mmap_init(void)
3685 {
3686 	int ret;
3687 
3688 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3689 	VM_BUG_ON(ret);
3690 }
3691 
3692 /*
3693  * Initialise sysctl_user_reserve_kbytes.
3694  *
3695  * This is intended to prevent a user from starting a single memory hogging
3696  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3697  * mode.
3698  *
3699  * The default value is min(3% of free memory, 128MB)
3700  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3701  */
3702 static int init_user_reserve(void)
3703 {
3704 	unsigned long free_kbytes;
3705 
3706 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3707 
3708 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3709 	return 0;
3710 }
3711 subsys_initcall(init_user_reserve);
3712 
3713 /*
3714  * Initialise sysctl_admin_reserve_kbytes.
3715  *
3716  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3717  * to log in and kill a memory hogging process.
3718  *
3719  * Systems with more than 256MB will reserve 8MB, enough to recover
3720  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3721  * only reserve 3% of free pages by default.
3722  */
3723 static int init_admin_reserve(void)
3724 {
3725 	unsigned long free_kbytes;
3726 
3727 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3728 
3729 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3730 	return 0;
3731 }
3732 subsys_initcall(init_admin_reserve);
3733 
3734 /*
3735  * Reinititalise user and admin reserves if memory is added or removed.
3736  *
3737  * The default user reserve max is 128MB, and the default max for the
3738  * admin reserve is 8MB. These are usually, but not always, enough to
3739  * enable recovery from a memory hogging process using login/sshd, a shell,
3740  * and tools like top. It may make sense to increase or even disable the
3741  * reserve depending on the existence of swap or variations in the recovery
3742  * tools. So, the admin may have changed them.
3743  *
3744  * If memory is added and the reserves have been eliminated or increased above
3745  * the default max, then we'll trust the admin.
3746  *
3747  * If memory is removed and there isn't enough free memory, then we
3748  * need to reset the reserves.
3749  *
3750  * Otherwise keep the reserve set by the admin.
3751  */
3752 static int reserve_mem_notifier(struct notifier_block *nb,
3753 			     unsigned long action, void *data)
3754 {
3755 	unsigned long tmp, free_kbytes;
3756 
3757 	switch (action) {
3758 	case MEM_ONLINE:
3759 		/* Default max is 128MB. Leave alone if modified by operator. */
3760 		tmp = sysctl_user_reserve_kbytes;
3761 		if (0 < tmp && tmp < (1UL << 17))
3762 			init_user_reserve();
3763 
3764 		/* Default max is 8MB.  Leave alone if modified by operator. */
3765 		tmp = sysctl_admin_reserve_kbytes;
3766 		if (0 < tmp && tmp < (1UL << 13))
3767 			init_admin_reserve();
3768 
3769 		break;
3770 	case MEM_OFFLINE:
3771 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3772 
3773 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3774 			init_user_reserve();
3775 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3776 				sysctl_user_reserve_kbytes);
3777 		}
3778 
3779 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3780 			init_admin_reserve();
3781 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3782 				sysctl_admin_reserve_kbytes);
3783 		}
3784 		break;
3785 	default:
3786 		break;
3787 	}
3788 	return NOTIFY_OK;
3789 }
3790 
3791 static struct notifier_block reserve_mem_nb = {
3792 	.notifier_call = reserve_mem_notifier,
3793 };
3794 
3795 static int __meminit init_reserve_notifier(void)
3796 {
3797 	if (register_hotmemory_notifier(&reserve_mem_nb))
3798 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3799 
3800 	return 0;
3801 }
3802 subsys_initcall(init_reserve_notifier);
3803