1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 80 void vma_set_page_prot(struct vm_area_struct *vma) 81 { 82 unsigned long vm_flags = vma->vm_flags; 83 pgprot_t vm_page_prot; 84 85 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 86 if (vma_wants_writenotify(vma, vm_page_prot)) { 87 vm_flags &= ~VM_SHARED; 88 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 89 } 90 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 91 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 92 } 93 94 /* 95 * check_brk_limits() - Use platform specific check of range & verify mlock 96 * limits. 97 * @addr: The address to check 98 * @len: The size of increase. 99 * 100 * Return: 0 on success. 101 */ 102 static int check_brk_limits(unsigned long addr, unsigned long len) 103 { 104 unsigned long mapped_addr; 105 106 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 107 if (IS_ERR_VALUE(mapped_addr)) 108 return mapped_addr; 109 110 return mlock_future_ok(current->mm, current->mm->def_flags, len) 111 ? 0 : -EAGAIN; 112 } 113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 114 unsigned long addr, unsigned long request, unsigned long flags); 115 SYSCALL_DEFINE1(brk, unsigned long, brk) 116 { 117 unsigned long newbrk, oldbrk, origbrk; 118 struct mm_struct *mm = current->mm; 119 struct vm_area_struct *brkvma, *next = NULL; 120 unsigned long min_brk; 121 bool populate = false; 122 LIST_HEAD(uf); 123 struct vma_iterator vmi; 124 125 if (mmap_write_lock_killable(mm)) 126 return -EINTR; 127 128 origbrk = mm->brk; 129 130 #ifdef CONFIG_COMPAT_BRK 131 /* 132 * CONFIG_COMPAT_BRK can still be overridden by setting 133 * randomize_va_space to 2, which will still cause mm->start_brk 134 * to be arbitrarily shifted 135 */ 136 if (current->brk_randomized) 137 min_brk = mm->start_brk; 138 else 139 min_brk = mm->end_data; 140 #else 141 min_brk = mm->start_brk; 142 #endif 143 if (brk < min_brk) 144 goto out; 145 146 /* 147 * Check against rlimit here. If this check is done later after the test 148 * of oldbrk with newbrk then it can escape the test and let the data 149 * segment grow beyond its set limit the in case where the limit is 150 * not page aligned -Ram Gupta 151 */ 152 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 153 mm->end_data, mm->start_data)) 154 goto out; 155 156 newbrk = PAGE_ALIGN(brk); 157 oldbrk = PAGE_ALIGN(mm->brk); 158 if (oldbrk == newbrk) { 159 mm->brk = brk; 160 goto success; 161 } 162 163 /* Always allow shrinking brk. */ 164 if (brk <= mm->brk) { 165 /* Search one past newbrk */ 166 vma_iter_init(&vmi, mm, newbrk); 167 brkvma = vma_find(&vmi, oldbrk); 168 if (!brkvma || brkvma->vm_start >= oldbrk) 169 goto out; /* mapping intersects with an existing non-brk vma. */ 170 /* 171 * mm->brk must be protected by write mmap_lock. 172 * do_vmi_align_munmap() will drop the lock on success, so 173 * update it before calling do_vma_munmap(). 174 */ 175 mm->brk = brk; 176 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf, 177 /* unlock = */ true)) 178 goto out; 179 180 goto success_unlocked; 181 } 182 183 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 184 goto out; 185 186 /* 187 * Only check if the next VMA is within the stack_guard_gap of the 188 * expansion area 189 */ 190 vma_iter_init(&vmi, mm, oldbrk); 191 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 192 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 193 goto out; 194 195 brkvma = vma_prev_limit(&vmi, mm->start_brk); 196 /* Ok, looks good - let it rip. */ 197 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 198 goto out; 199 200 mm->brk = brk; 201 if (mm->def_flags & VM_LOCKED) 202 populate = true; 203 204 success: 205 mmap_write_unlock(mm); 206 success_unlocked: 207 userfaultfd_unmap_complete(mm, &uf); 208 if (populate) 209 mm_populate(oldbrk, newbrk - oldbrk); 210 return brk; 211 212 out: 213 mm->brk = origbrk; 214 mmap_write_unlock(mm); 215 return origbrk; 216 } 217 218 /* 219 * If a hint addr is less than mmap_min_addr change hint to be as 220 * low as possible but still greater than mmap_min_addr 221 */ 222 static inline unsigned long round_hint_to_min(unsigned long hint) 223 { 224 hint &= PAGE_MASK; 225 if (((void *)hint != NULL) && 226 (hint < mmap_min_addr)) 227 return PAGE_ALIGN(mmap_min_addr); 228 return hint; 229 } 230 231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 232 unsigned long bytes) 233 { 234 unsigned long locked_pages, limit_pages; 235 236 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 237 return true; 238 239 locked_pages = bytes >> PAGE_SHIFT; 240 locked_pages += mm->locked_vm; 241 242 limit_pages = rlimit(RLIMIT_MEMLOCK); 243 limit_pages >>= PAGE_SHIFT; 244 245 return locked_pages <= limit_pages; 246 } 247 248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 249 { 250 if (S_ISREG(inode->i_mode)) 251 return MAX_LFS_FILESIZE; 252 253 if (S_ISBLK(inode->i_mode)) 254 return MAX_LFS_FILESIZE; 255 256 if (S_ISSOCK(inode->i_mode)) 257 return MAX_LFS_FILESIZE; 258 259 /* Special "we do even unsigned file positions" case */ 260 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET) 261 return 0; 262 263 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 264 return ULONG_MAX; 265 } 266 267 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 268 unsigned long pgoff, unsigned long len) 269 { 270 u64 maxsize = file_mmap_size_max(file, inode); 271 272 if (maxsize && len > maxsize) 273 return false; 274 maxsize -= len; 275 if (pgoff > maxsize >> PAGE_SHIFT) 276 return false; 277 return true; 278 } 279 280 /* 281 * The caller must write-lock current->mm->mmap_lock. 282 */ 283 unsigned long do_mmap(struct file *file, unsigned long addr, 284 unsigned long len, unsigned long prot, 285 unsigned long flags, vm_flags_t vm_flags, 286 unsigned long pgoff, unsigned long *populate, 287 struct list_head *uf) 288 { 289 struct mm_struct *mm = current->mm; 290 int pkey = 0; 291 292 *populate = 0; 293 294 if (!len) 295 return -EINVAL; 296 297 /* 298 * Does the application expect PROT_READ to imply PROT_EXEC? 299 * 300 * (the exception is when the underlying filesystem is noexec 301 * mounted, in which case we don't add PROT_EXEC.) 302 */ 303 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 304 if (!(file && path_noexec(&file->f_path))) 305 prot |= PROT_EXEC; 306 307 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 308 if (flags & MAP_FIXED_NOREPLACE) 309 flags |= MAP_FIXED; 310 311 if (!(flags & MAP_FIXED)) 312 addr = round_hint_to_min(addr); 313 314 /* Careful about overflows.. */ 315 len = PAGE_ALIGN(len); 316 if (!len) 317 return -ENOMEM; 318 319 /* offset overflow? */ 320 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 321 return -EOVERFLOW; 322 323 /* Too many mappings? */ 324 if (mm->map_count > sysctl_max_map_count) 325 return -ENOMEM; 326 327 /* 328 * addr is returned from get_unmapped_area, 329 * There are two cases: 330 * 1> MAP_FIXED == false 331 * unallocated memory, no need to check sealing. 332 * 1> MAP_FIXED == true 333 * sealing is checked inside mmap_region when 334 * do_vmi_munmap is called. 335 */ 336 337 if (prot == PROT_EXEC) { 338 pkey = execute_only_pkey(mm); 339 if (pkey < 0) 340 pkey = 0; 341 } 342 343 /* Do simple checking here so the lower-level routines won't have 344 * to. we assume access permissions have been handled by the open 345 * of the memory object, so we don't do any here. 346 */ 347 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 348 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 349 350 /* Obtain the address to map to. we verify (or select) it and ensure 351 * that it represents a valid section of the address space. 352 */ 353 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 354 if (IS_ERR_VALUE(addr)) 355 return addr; 356 357 if (flags & MAP_FIXED_NOREPLACE) { 358 if (find_vma_intersection(mm, addr, addr + len)) 359 return -EEXIST; 360 } 361 362 if (flags & MAP_LOCKED) 363 if (!can_do_mlock()) 364 return -EPERM; 365 366 if (!mlock_future_ok(mm, vm_flags, len)) 367 return -EAGAIN; 368 369 if (file) { 370 struct inode *inode = file_inode(file); 371 unsigned long flags_mask; 372 373 if (!file_mmap_ok(file, inode, pgoff, len)) 374 return -EOVERFLOW; 375 376 flags_mask = LEGACY_MAP_MASK; 377 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 378 flags_mask |= MAP_SYNC; 379 380 switch (flags & MAP_TYPE) { 381 case MAP_SHARED: 382 /* 383 * Force use of MAP_SHARED_VALIDATE with non-legacy 384 * flags. E.g. MAP_SYNC is dangerous to use with 385 * MAP_SHARED as you don't know which consistency model 386 * you will get. We silently ignore unsupported flags 387 * with MAP_SHARED to preserve backward compatibility. 388 */ 389 flags &= LEGACY_MAP_MASK; 390 fallthrough; 391 case MAP_SHARED_VALIDATE: 392 if (flags & ~flags_mask) 393 return -EOPNOTSUPP; 394 if (prot & PROT_WRITE) { 395 if (!(file->f_mode & FMODE_WRITE)) 396 return -EACCES; 397 if (IS_SWAPFILE(file->f_mapping->host)) 398 return -ETXTBSY; 399 } 400 401 /* 402 * Make sure we don't allow writing to an append-only 403 * file.. 404 */ 405 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 406 return -EACCES; 407 408 vm_flags |= VM_SHARED | VM_MAYSHARE; 409 if (!(file->f_mode & FMODE_WRITE)) 410 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 411 fallthrough; 412 case MAP_PRIVATE: 413 if (!(file->f_mode & FMODE_READ)) 414 return -EACCES; 415 if (path_noexec(&file->f_path)) { 416 if (vm_flags & VM_EXEC) 417 return -EPERM; 418 vm_flags &= ~VM_MAYEXEC; 419 } 420 421 if (!file->f_op->mmap) 422 return -ENODEV; 423 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 424 return -EINVAL; 425 break; 426 427 default: 428 return -EINVAL; 429 } 430 } else { 431 switch (flags & MAP_TYPE) { 432 case MAP_SHARED: 433 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 434 return -EINVAL; 435 /* 436 * Ignore pgoff. 437 */ 438 pgoff = 0; 439 vm_flags |= VM_SHARED | VM_MAYSHARE; 440 break; 441 case MAP_DROPPABLE: 442 if (VM_DROPPABLE == VM_NONE) 443 return -ENOTSUPP; 444 /* 445 * A locked or stack area makes no sense to be droppable. 446 * 447 * Also, since droppable pages can just go away at any time 448 * it makes no sense to copy them on fork or dump them. 449 * 450 * And don't attempt to combine with hugetlb for now. 451 */ 452 if (flags & (MAP_LOCKED | MAP_HUGETLB)) 453 return -EINVAL; 454 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP)) 455 return -EINVAL; 456 457 vm_flags |= VM_DROPPABLE; 458 459 /* 460 * If the pages can be dropped, then it doesn't make 461 * sense to reserve them. 462 */ 463 vm_flags |= VM_NORESERVE; 464 465 /* 466 * Likewise, they're volatile enough that they 467 * shouldn't survive forks or coredumps. 468 */ 469 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP; 470 fallthrough; 471 case MAP_PRIVATE: 472 /* 473 * Set pgoff according to addr for anon_vma. 474 */ 475 pgoff = addr >> PAGE_SHIFT; 476 break; 477 default: 478 return -EINVAL; 479 } 480 } 481 482 /* 483 * Set 'VM_NORESERVE' if we should not account for the 484 * memory use of this mapping. 485 */ 486 if (flags & MAP_NORESERVE) { 487 /* We honor MAP_NORESERVE if allowed to overcommit */ 488 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 489 vm_flags |= VM_NORESERVE; 490 491 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 492 if (file && is_file_hugepages(file)) 493 vm_flags |= VM_NORESERVE; 494 } 495 496 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 497 if (!IS_ERR_VALUE(addr) && 498 ((vm_flags & VM_LOCKED) || 499 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 500 *populate = len; 501 return addr; 502 } 503 504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 505 unsigned long prot, unsigned long flags, 506 unsigned long fd, unsigned long pgoff) 507 { 508 struct file *file = NULL; 509 unsigned long retval; 510 511 if (!(flags & MAP_ANONYMOUS)) { 512 audit_mmap_fd(fd, flags); 513 file = fget(fd); 514 if (!file) 515 return -EBADF; 516 if (is_file_hugepages(file)) { 517 len = ALIGN(len, huge_page_size(hstate_file(file))); 518 } else if (unlikely(flags & MAP_HUGETLB)) { 519 retval = -EINVAL; 520 goto out_fput; 521 } 522 } else if (flags & MAP_HUGETLB) { 523 struct hstate *hs; 524 525 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 526 if (!hs) 527 return -EINVAL; 528 529 len = ALIGN(len, huge_page_size(hs)); 530 /* 531 * VM_NORESERVE is used because the reservations will be 532 * taken when vm_ops->mmap() is called 533 */ 534 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 535 VM_NORESERVE, 536 HUGETLB_ANONHUGE_INODE, 537 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 538 if (IS_ERR(file)) 539 return PTR_ERR(file); 540 } 541 542 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 543 out_fput: 544 if (file) 545 fput(file); 546 return retval; 547 } 548 549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 550 unsigned long, prot, unsigned long, flags, 551 unsigned long, fd, unsigned long, pgoff) 552 { 553 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 554 } 555 556 #ifdef __ARCH_WANT_SYS_OLD_MMAP 557 struct mmap_arg_struct { 558 unsigned long addr; 559 unsigned long len; 560 unsigned long prot; 561 unsigned long flags; 562 unsigned long fd; 563 unsigned long offset; 564 }; 565 566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 567 { 568 struct mmap_arg_struct a; 569 570 if (copy_from_user(&a, arg, sizeof(a))) 571 return -EFAULT; 572 if (offset_in_page(a.offset)) 573 return -EINVAL; 574 575 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 576 a.offset >> PAGE_SHIFT); 577 } 578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 579 580 /* 581 * We account for memory if it's a private writeable mapping, 582 * not hugepages and VM_NORESERVE wasn't set. 583 */ 584 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 585 { 586 /* 587 * hugetlb has its own accounting separate from the core VM 588 * VM_HUGETLB may not be set yet so we cannot check for that flag. 589 */ 590 if (file && is_file_hugepages(file)) 591 return false; 592 593 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 594 } 595 596 /** 597 * unmapped_area() - Find an area between the low_limit and the high_limit with 598 * the correct alignment and offset, all from @info. Note: current->mm is used 599 * for the search. 600 * 601 * @info: The unmapped area information including the range [low_limit - 602 * high_limit), the alignment offset and mask. 603 * 604 * Return: A memory address or -ENOMEM. 605 */ 606 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 607 { 608 unsigned long length, gap; 609 unsigned long low_limit, high_limit; 610 struct vm_area_struct *tmp; 611 VMA_ITERATOR(vmi, current->mm, 0); 612 613 /* Adjust search length to account for worst case alignment overhead */ 614 length = info->length + info->align_mask + info->start_gap; 615 if (length < info->length) 616 return -ENOMEM; 617 618 low_limit = info->low_limit; 619 if (low_limit < mmap_min_addr) 620 low_limit = mmap_min_addr; 621 high_limit = info->high_limit; 622 retry: 623 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 624 return -ENOMEM; 625 626 /* 627 * Adjust for the gap first so it doesn't interfere with the 628 * later alignment. The first step is the minimum needed to 629 * fulill the start gap, the next steps is the minimum to align 630 * that. It is the minimum needed to fulill both. 631 */ 632 gap = vma_iter_addr(&vmi) + info->start_gap; 633 gap += (info->align_offset - gap) & info->align_mask; 634 tmp = vma_next(&vmi); 635 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 636 if (vm_start_gap(tmp) < gap + length - 1) { 637 low_limit = tmp->vm_end; 638 vma_iter_reset(&vmi); 639 goto retry; 640 } 641 } else { 642 tmp = vma_prev(&vmi); 643 if (tmp && vm_end_gap(tmp) > gap) { 644 low_limit = vm_end_gap(tmp); 645 vma_iter_reset(&vmi); 646 goto retry; 647 } 648 } 649 650 return gap; 651 } 652 653 /** 654 * unmapped_area_topdown() - Find an area between the low_limit and the 655 * high_limit with the correct alignment and offset at the highest available 656 * address, all from @info. Note: current->mm is used for the search. 657 * 658 * @info: The unmapped area information including the range [low_limit - 659 * high_limit), the alignment offset and mask. 660 * 661 * Return: A memory address or -ENOMEM. 662 */ 663 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 664 { 665 unsigned long length, gap, gap_end; 666 unsigned long low_limit, high_limit; 667 struct vm_area_struct *tmp; 668 VMA_ITERATOR(vmi, current->mm, 0); 669 670 /* Adjust search length to account for worst case alignment overhead */ 671 length = info->length + info->align_mask + info->start_gap; 672 if (length < info->length) 673 return -ENOMEM; 674 675 low_limit = info->low_limit; 676 if (low_limit < mmap_min_addr) 677 low_limit = mmap_min_addr; 678 high_limit = info->high_limit; 679 retry: 680 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 681 return -ENOMEM; 682 683 gap = vma_iter_end(&vmi) - info->length; 684 gap -= (gap - info->align_offset) & info->align_mask; 685 gap_end = vma_iter_end(&vmi); 686 tmp = vma_next(&vmi); 687 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 688 if (vm_start_gap(tmp) < gap_end) { 689 high_limit = vm_start_gap(tmp); 690 vma_iter_reset(&vmi); 691 goto retry; 692 } 693 } else { 694 tmp = vma_prev(&vmi); 695 if (tmp && vm_end_gap(tmp) > gap) { 696 high_limit = tmp->vm_start; 697 vma_iter_reset(&vmi); 698 goto retry; 699 } 700 } 701 702 return gap; 703 } 704 705 /* 706 * Determine if the allocation needs to ensure that there is no 707 * existing mapping within it's guard gaps, for use as start_gap. 708 */ 709 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags) 710 { 711 if (vm_flags & VM_SHADOW_STACK) 712 return PAGE_SIZE; 713 714 return 0; 715 } 716 717 /* 718 * Search for an unmapped address range. 719 * 720 * We are looking for a range that: 721 * - does not intersect with any VMA; 722 * - is contained within the [low_limit, high_limit) interval; 723 * - is at least the desired size. 724 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 725 */ 726 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 727 { 728 unsigned long addr; 729 730 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 731 addr = unmapped_area_topdown(info); 732 else 733 addr = unmapped_area(info); 734 735 trace_vm_unmapped_area(addr, info); 736 return addr; 737 } 738 739 /* Get an address range which is currently unmapped. 740 * For shmat() with addr=0. 741 * 742 * Ugly calling convention alert: 743 * Return value with the low bits set means error value, 744 * ie 745 * if (ret & ~PAGE_MASK) 746 * error = ret; 747 * 748 * This function "knows" that -ENOMEM has the bits set. 749 */ 750 unsigned long 751 generic_get_unmapped_area(struct file *filp, unsigned long addr, 752 unsigned long len, unsigned long pgoff, 753 unsigned long flags, vm_flags_t vm_flags) 754 { 755 struct mm_struct *mm = current->mm; 756 struct vm_area_struct *vma, *prev; 757 struct vm_unmapped_area_info info = {}; 758 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 759 760 if (len > mmap_end - mmap_min_addr) 761 return -ENOMEM; 762 763 if (flags & MAP_FIXED) 764 return addr; 765 766 if (addr) { 767 addr = PAGE_ALIGN(addr); 768 vma = find_vma_prev(mm, addr, &prev); 769 if (mmap_end - len >= addr && addr >= mmap_min_addr && 770 (!vma || addr + len <= vm_start_gap(vma)) && 771 (!prev || addr >= vm_end_gap(prev))) 772 return addr; 773 } 774 775 info.length = len; 776 info.low_limit = mm->mmap_base; 777 info.high_limit = mmap_end; 778 info.start_gap = stack_guard_placement(vm_flags); 779 return vm_unmapped_area(&info); 780 } 781 782 #ifndef HAVE_ARCH_UNMAPPED_AREA 783 unsigned long 784 arch_get_unmapped_area(struct file *filp, unsigned long addr, 785 unsigned long len, unsigned long pgoff, 786 unsigned long flags, vm_flags_t vm_flags) 787 { 788 return generic_get_unmapped_area(filp, addr, len, pgoff, flags, 789 vm_flags); 790 } 791 #endif 792 793 /* 794 * This mmap-allocator allocates new areas top-down from below the 795 * stack's low limit (the base): 796 */ 797 unsigned long 798 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 799 unsigned long len, unsigned long pgoff, 800 unsigned long flags, vm_flags_t vm_flags) 801 { 802 struct vm_area_struct *vma, *prev; 803 struct mm_struct *mm = current->mm; 804 struct vm_unmapped_area_info info = {}; 805 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 806 807 /* requested length too big for entire address space */ 808 if (len > mmap_end - mmap_min_addr) 809 return -ENOMEM; 810 811 if (flags & MAP_FIXED) 812 return addr; 813 814 /* requesting a specific address */ 815 if (addr) { 816 addr = PAGE_ALIGN(addr); 817 vma = find_vma_prev(mm, addr, &prev); 818 if (mmap_end - len >= addr && addr >= mmap_min_addr && 819 (!vma || addr + len <= vm_start_gap(vma)) && 820 (!prev || addr >= vm_end_gap(prev))) 821 return addr; 822 } 823 824 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 825 info.length = len; 826 info.low_limit = PAGE_SIZE; 827 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 828 info.start_gap = stack_guard_placement(vm_flags); 829 addr = vm_unmapped_area(&info); 830 831 /* 832 * A failed mmap() very likely causes application failure, 833 * so fall back to the bottom-up function here. This scenario 834 * can happen with large stack limits and large mmap() 835 * allocations. 836 */ 837 if (offset_in_page(addr)) { 838 VM_BUG_ON(addr != -ENOMEM); 839 info.flags = 0; 840 info.low_limit = TASK_UNMAPPED_BASE; 841 info.high_limit = mmap_end; 842 addr = vm_unmapped_area(&info); 843 } 844 845 return addr; 846 } 847 848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 849 unsigned long 850 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 851 unsigned long len, unsigned long pgoff, 852 unsigned long flags, vm_flags_t vm_flags) 853 { 854 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags, 855 vm_flags); 856 } 857 #endif 858 859 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 860 unsigned long addr, unsigned long len, 861 unsigned long pgoff, unsigned long flags, 862 vm_flags_t vm_flags) 863 { 864 if (test_bit(MMF_TOPDOWN, &mm->flags)) 865 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, 866 flags, vm_flags); 867 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags); 868 } 869 870 unsigned long 871 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 872 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 873 { 874 unsigned long (*get_area)(struct file *, unsigned long, 875 unsigned long, unsigned long, unsigned long) 876 = NULL; 877 878 unsigned long error = arch_mmap_check(addr, len, flags); 879 if (error) 880 return error; 881 882 /* Careful about overflows.. */ 883 if (len > TASK_SIZE) 884 return -ENOMEM; 885 886 if (file) { 887 if (file->f_op->get_unmapped_area) 888 get_area = file->f_op->get_unmapped_area; 889 } else if (flags & MAP_SHARED) { 890 /* 891 * mmap_region() will call shmem_zero_setup() to create a file, 892 * so use shmem's get_unmapped_area in case it can be huge. 893 */ 894 get_area = shmem_get_unmapped_area; 895 } 896 897 /* Always treat pgoff as zero for anonymous memory. */ 898 if (!file) 899 pgoff = 0; 900 901 if (get_area) { 902 addr = get_area(file, addr, len, pgoff, flags); 903 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 904 /* Ensures that larger anonymous mappings are THP aligned. */ 905 addr = thp_get_unmapped_area_vmflags(file, addr, len, 906 pgoff, flags, vm_flags); 907 } else { 908 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 909 pgoff, flags, vm_flags); 910 } 911 if (IS_ERR_VALUE(addr)) 912 return addr; 913 914 if (addr > TASK_SIZE - len) 915 return -ENOMEM; 916 if (offset_in_page(addr)) 917 return -EINVAL; 918 919 error = security_mmap_addr(addr); 920 return error ? error : addr; 921 } 922 923 unsigned long 924 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 925 unsigned long addr, unsigned long len, 926 unsigned long pgoff, unsigned long flags) 927 { 928 if (test_bit(MMF_TOPDOWN, &mm->flags)) 929 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0); 930 return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0); 931 } 932 EXPORT_SYMBOL(mm_get_unmapped_area); 933 934 /** 935 * find_vma_intersection() - Look up the first VMA which intersects the interval 936 * @mm: The process address space. 937 * @start_addr: The inclusive start user address. 938 * @end_addr: The exclusive end user address. 939 * 940 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 941 * start_addr < end_addr. 942 */ 943 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 944 unsigned long start_addr, 945 unsigned long end_addr) 946 { 947 unsigned long index = start_addr; 948 949 mmap_assert_locked(mm); 950 return mt_find(&mm->mm_mt, &index, end_addr - 1); 951 } 952 EXPORT_SYMBOL(find_vma_intersection); 953 954 /** 955 * find_vma() - Find the VMA for a given address, or the next VMA. 956 * @mm: The mm_struct to check 957 * @addr: The address 958 * 959 * Returns: The VMA associated with addr, or the next VMA. 960 * May return %NULL in the case of no VMA at addr or above. 961 */ 962 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 963 { 964 unsigned long index = addr; 965 966 mmap_assert_locked(mm); 967 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 968 } 969 EXPORT_SYMBOL(find_vma); 970 971 /** 972 * find_vma_prev() - Find the VMA for a given address, or the next vma and 973 * set %pprev to the previous VMA, if any. 974 * @mm: The mm_struct to check 975 * @addr: The address 976 * @pprev: The pointer to set to the previous VMA 977 * 978 * Note that RCU lock is missing here since the external mmap_lock() is used 979 * instead. 980 * 981 * Returns: The VMA associated with @addr, or the next vma. 982 * May return %NULL in the case of no vma at addr or above. 983 */ 984 struct vm_area_struct * 985 find_vma_prev(struct mm_struct *mm, unsigned long addr, 986 struct vm_area_struct **pprev) 987 { 988 struct vm_area_struct *vma; 989 VMA_ITERATOR(vmi, mm, addr); 990 991 vma = vma_iter_load(&vmi); 992 *pprev = vma_prev(&vmi); 993 if (!vma) 994 vma = vma_next(&vmi); 995 return vma; 996 } 997 998 /* 999 * Verify that the stack growth is acceptable and 1000 * update accounting. This is shared with both the 1001 * grow-up and grow-down cases. 1002 */ 1003 static int acct_stack_growth(struct vm_area_struct *vma, 1004 unsigned long size, unsigned long grow) 1005 { 1006 struct mm_struct *mm = vma->vm_mm; 1007 unsigned long new_start; 1008 1009 /* address space limit tests */ 1010 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1011 return -ENOMEM; 1012 1013 /* Stack limit test */ 1014 if (size > rlimit(RLIMIT_STACK)) 1015 return -ENOMEM; 1016 1017 /* mlock limit tests */ 1018 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1019 return -ENOMEM; 1020 1021 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1022 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1023 vma->vm_end - size; 1024 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1025 return -EFAULT; 1026 1027 /* 1028 * Overcommit.. This must be the final test, as it will 1029 * update security statistics. 1030 */ 1031 if (security_vm_enough_memory_mm(mm, grow)) 1032 return -ENOMEM; 1033 1034 return 0; 1035 } 1036 1037 #if defined(CONFIG_STACK_GROWSUP) 1038 /* 1039 * PA-RISC uses this for its stack. 1040 * vma is the last one with address > vma->vm_end. Have to extend vma. 1041 */ 1042 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1043 { 1044 struct mm_struct *mm = vma->vm_mm; 1045 struct vm_area_struct *next; 1046 unsigned long gap_addr; 1047 int error = 0; 1048 VMA_ITERATOR(vmi, mm, vma->vm_start); 1049 1050 if (!(vma->vm_flags & VM_GROWSUP)) 1051 return -EFAULT; 1052 1053 /* Guard against exceeding limits of the address space. */ 1054 address &= PAGE_MASK; 1055 if (address >= (TASK_SIZE & PAGE_MASK)) 1056 return -ENOMEM; 1057 address += PAGE_SIZE; 1058 1059 /* Enforce stack_guard_gap */ 1060 gap_addr = address + stack_guard_gap; 1061 1062 /* Guard against overflow */ 1063 if (gap_addr < address || gap_addr > TASK_SIZE) 1064 gap_addr = TASK_SIZE; 1065 1066 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1067 if (next && vma_is_accessible(next)) { 1068 if (!(next->vm_flags & VM_GROWSUP)) 1069 return -ENOMEM; 1070 /* Check that both stack segments have the same anon_vma? */ 1071 } 1072 1073 if (next) 1074 vma_iter_prev_range_limit(&vmi, address); 1075 1076 vma_iter_config(&vmi, vma->vm_start, address); 1077 if (vma_iter_prealloc(&vmi, vma)) 1078 return -ENOMEM; 1079 1080 /* We must make sure the anon_vma is allocated. */ 1081 if (unlikely(anon_vma_prepare(vma))) { 1082 vma_iter_free(&vmi); 1083 return -ENOMEM; 1084 } 1085 1086 /* Lock the VMA before expanding to prevent concurrent page faults */ 1087 vma_start_write(vma); 1088 /* 1089 * vma->vm_start/vm_end cannot change under us because the caller 1090 * is required to hold the mmap_lock in read mode. We need the 1091 * anon_vma lock to serialize against concurrent expand_stacks. 1092 */ 1093 anon_vma_lock_write(vma->anon_vma); 1094 1095 /* Somebody else might have raced and expanded it already */ 1096 if (address > vma->vm_end) { 1097 unsigned long size, grow; 1098 1099 size = address - vma->vm_start; 1100 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1101 1102 error = -ENOMEM; 1103 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1104 error = acct_stack_growth(vma, size, grow); 1105 if (!error) { 1106 /* 1107 * We only hold a shared mmap_lock lock here, so 1108 * we need to protect against concurrent vma 1109 * expansions. anon_vma_lock_write() doesn't 1110 * help here, as we don't guarantee that all 1111 * growable vmas in a mm share the same root 1112 * anon vma. So, we reuse mm->page_table_lock 1113 * to guard against concurrent vma expansions. 1114 */ 1115 spin_lock(&mm->page_table_lock); 1116 if (vma->vm_flags & VM_LOCKED) 1117 mm->locked_vm += grow; 1118 vm_stat_account(mm, vma->vm_flags, grow); 1119 anon_vma_interval_tree_pre_update_vma(vma); 1120 vma->vm_end = address; 1121 /* Overwrite old entry in mtree. */ 1122 vma_iter_store(&vmi, vma); 1123 anon_vma_interval_tree_post_update_vma(vma); 1124 spin_unlock(&mm->page_table_lock); 1125 1126 perf_event_mmap(vma); 1127 } 1128 } 1129 } 1130 anon_vma_unlock_write(vma->anon_vma); 1131 vma_iter_free(&vmi); 1132 validate_mm(mm); 1133 return error; 1134 } 1135 #endif /* CONFIG_STACK_GROWSUP */ 1136 1137 /* 1138 * vma is the first one with address < vma->vm_start. Have to extend vma. 1139 * mmap_lock held for writing. 1140 */ 1141 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 1142 { 1143 struct mm_struct *mm = vma->vm_mm; 1144 struct vm_area_struct *prev; 1145 int error = 0; 1146 VMA_ITERATOR(vmi, mm, vma->vm_start); 1147 1148 if (!(vma->vm_flags & VM_GROWSDOWN)) 1149 return -EFAULT; 1150 1151 address &= PAGE_MASK; 1152 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 1153 return -EPERM; 1154 1155 /* Enforce stack_guard_gap */ 1156 prev = vma_prev(&vmi); 1157 /* Check that both stack segments have the same anon_vma? */ 1158 if (prev) { 1159 if (!(prev->vm_flags & VM_GROWSDOWN) && 1160 vma_is_accessible(prev) && 1161 (address - prev->vm_end < stack_guard_gap)) 1162 return -ENOMEM; 1163 } 1164 1165 if (prev) 1166 vma_iter_next_range_limit(&vmi, vma->vm_start); 1167 1168 vma_iter_config(&vmi, address, vma->vm_end); 1169 if (vma_iter_prealloc(&vmi, vma)) 1170 return -ENOMEM; 1171 1172 /* We must make sure the anon_vma is allocated. */ 1173 if (unlikely(anon_vma_prepare(vma))) { 1174 vma_iter_free(&vmi); 1175 return -ENOMEM; 1176 } 1177 1178 /* Lock the VMA before expanding to prevent concurrent page faults */ 1179 vma_start_write(vma); 1180 /* 1181 * vma->vm_start/vm_end cannot change under us because the caller 1182 * is required to hold the mmap_lock in read mode. We need the 1183 * anon_vma lock to serialize against concurrent expand_stacks. 1184 */ 1185 anon_vma_lock_write(vma->anon_vma); 1186 1187 /* Somebody else might have raced and expanded it already */ 1188 if (address < vma->vm_start) { 1189 unsigned long size, grow; 1190 1191 size = vma->vm_end - address; 1192 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1193 1194 error = -ENOMEM; 1195 if (grow <= vma->vm_pgoff) { 1196 error = acct_stack_growth(vma, size, grow); 1197 if (!error) { 1198 /* 1199 * We only hold a shared mmap_lock lock here, so 1200 * we need to protect against concurrent vma 1201 * expansions. anon_vma_lock_write() doesn't 1202 * help here, as we don't guarantee that all 1203 * growable vmas in a mm share the same root 1204 * anon vma. So, we reuse mm->page_table_lock 1205 * to guard against concurrent vma expansions. 1206 */ 1207 spin_lock(&mm->page_table_lock); 1208 if (vma->vm_flags & VM_LOCKED) 1209 mm->locked_vm += grow; 1210 vm_stat_account(mm, vma->vm_flags, grow); 1211 anon_vma_interval_tree_pre_update_vma(vma); 1212 vma->vm_start = address; 1213 vma->vm_pgoff -= grow; 1214 /* Overwrite old entry in mtree. */ 1215 vma_iter_store(&vmi, vma); 1216 anon_vma_interval_tree_post_update_vma(vma); 1217 spin_unlock(&mm->page_table_lock); 1218 1219 perf_event_mmap(vma); 1220 } 1221 } 1222 } 1223 anon_vma_unlock_write(vma->anon_vma); 1224 vma_iter_free(&vmi); 1225 validate_mm(mm); 1226 return error; 1227 } 1228 1229 /* enforced gap between the expanding stack and other mappings. */ 1230 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 1231 1232 static int __init cmdline_parse_stack_guard_gap(char *p) 1233 { 1234 unsigned long val; 1235 char *endptr; 1236 1237 val = simple_strtoul(p, &endptr, 10); 1238 if (!*endptr) 1239 stack_guard_gap = val << PAGE_SHIFT; 1240 1241 return 1; 1242 } 1243 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 1244 1245 #ifdef CONFIG_STACK_GROWSUP 1246 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 1247 { 1248 return expand_upwards(vma, address); 1249 } 1250 1251 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 1252 { 1253 struct vm_area_struct *vma, *prev; 1254 1255 addr &= PAGE_MASK; 1256 vma = find_vma_prev(mm, addr, &prev); 1257 if (vma && (vma->vm_start <= addr)) 1258 return vma; 1259 if (!prev) 1260 return NULL; 1261 if (expand_stack_locked(prev, addr)) 1262 return NULL; 1263 if (prev->vm_flags & VM_LOCKED) 1264 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 1265 return prev; 1266 } 1267 #else 1268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 1269 { 1270 return expand_downwards(vma, address); 1271 } 1272 1273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 1274 { 1275 struct vm_area_struct *vma; 1276 unsigned long start; 1277 1278 addr &= PAGE_MASK; 1279 vma = find_vma(mm, addr); 1280 if (!vma) 1281 return NULL; 1282 if (vma->vm_start <= addr) 1283 return vma; 1284 start = vma->vm_start; 1285 if (expand_stack_locked(vma, addr)) 1286 return NULL; 1287 if (vma->vm_flags & VM_LOCKED) 1288 populate_vma_page_range(vma, addr, start, NULL); 1289 return vma; 1290 } 1291 #endif 1292 1293 #if defined(CONFIG_STACK_GROWSUP) 1294 1295 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 1296 #define vma_expand_down(vma, addr) (-EFAULT) 1297 1298 #else 1299 1300 #define vma_expand_up(vma,addr) (-EFAULT) 1301 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 1302 1303 #endif 1304 1305 /* 1306 * expand_stack(): legacy interface for page faulting. Don't use unless 1307 * you have to. 1308 * 1309 * This is called with the mm locked for reading, drops the lock, takes 1310 * the lock for writing, tries to look up a vma again, expands it if 1311 * necessary, and downgrades the lock to reading again. 1312 * 1313 * If no vma is found or it can't be expanded, it returns NULL and has 1314 * dropped the lock. 1315 */ 1316 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 1317 { 1318 struct vm_area_struct *vma, *prev; 1319 1320 mmap_read_unlock(mm); 1321 if (mmap_write_lock_killable(mm)) 1322 return NULL; 1323 1324 vma = find_vma_prev(mm, addr, &prev); 1325 if (vma && vma->vm_start <= addr) 1326 goto success; 1327 1328 if (prev && !vma_expand_up(prev, addr)) { 1329 vma = prev; 1330 goto success; 1331 } 1332 1333 if (vma && !vma_expand_down(vma, addr)) 1334 goto success; 1335 1336 mmap_write_unlock(mm); 1337 return NULL; 1338 1339 success: 1340 mmap_write_downgrade(mm); 1341 return vma; 1342 } 1343 1344 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 1345 * @mm: The mm_struct 1346 * @start: The start address to munmap 1347 * @len: The length to be munmapped. 1348 * @uf: The userfaultfd list_head 1349 * 1350 * Return: 0 on success, error otherwise. 1351 */ 1352 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 1353 struct list_head *uf) 1354 { 1355 VMA_ITERATOR(vmi, mm, start); 1356 1357 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 1358 } 1359 1360 unsigned long mmap_region(struct file *file, unsigned long addr, 1361 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1362 struct list_head *uf) 1363 { 1364 struct mm_struct *mm = current->mm; 1365 struct vm_area_struct *vma = NULL; 1366 pgoff_t pglen = PHYS_PFN(len); 1367 struct vm_area_struct *merge; 1368 unsigned long charged = 0; 1369 struct vma_munmap_struct vms; 1370 struct ma_state mas_detach; 1371 struct maple_tree mt_detach; 1372 unsigned long end = addr + len; 1373 bool writable_file_mapping = false; 1374 int error = -ENOMEM; 1375 VMA_ITERATOR(vmi, mm, addr); 1376 VMG_STATE(vmg, mm, &vmi, addr, end, vm_flags, pgoff); 1377 1378 vmg.file = file; 1379 /* Find the first overlapping VMA */ 1380 vma = vma_find(&vmi, end); 1381 init_vma_munmap(&vms, &vmi, vma, addr, end, uf, /* unlock = */ false); 1382 if (vma) { 1383 mt_init_flags(&mt_detach, vmi.mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1384 mt_on_stack(mt_detach); 1385 mas_init(&mas_detach, &mt_detach, /* addr = */ 0); 1386 /* Prepare to unmap any existing mapping in the area */ 1387 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1388 if (error) 1389 goto gather_failed; 1390 1391 vmg.next = vms.next; 1392 vmg.prev = vms.prev; 1393 vma = NULL; 1394 } else { 1395 vmg.next = vma_iter_next_rewind(&vmi, &vmg.prev); 1396 } 1397 1398 /* Check against address space limit. */ 1399 if (!may_expand_vm(mm, vm_flags, pglen - vms.nr_pages)) 1400 goto abort_munmap; 1401 1402 /* 1403 * Private writable mapping: check memory availability 1404 */ 1405 if (accountable_mapping(file, vm_flags)) { 1406 charged = pglen; 1407 charged -= vms.nr_accounted; 1408 if (charged && security_vm_enough_memory_mm(mm, charged)) 1409 goto abort_munmap; 1410 1411 vms.nr_accounted = 0; 1412 vm_flags |= VM_ACCOUNT; 1413 vmg.flags = vm_flags; 1414 } 1415 1416 vma = vma_merge_new_range(&vmg); 1417 if (vma) 1418 goto expanded; 1419 /* 1420 * Determine the object being mapped and call the appropriate 1421 * specific mapper. the address has already been validated, but 1422 * not unmapped, but the maps are removed from the list. 1423 */ 1424 vma = vm_area_alloc(mm); 1425 if (!vma) 1426 goto unacct_error; 1427 1428 vma_iter_config(&vmi, addr, end); 1429 vma_set_range(vma, addr, end, pgoff); 1430 vm_flags_init(vma, vm_flags); 1431 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1432 1433 if (file) { 1434 vma->vm_file = get_file(file); 1435 /* 1436 * call_mmap() may map PTE, so ensure there are no existing PTEs 1437 * and call the vm_ops close function if one exists. 1438 */ 1439 vms_clean_up_area(&vms, &mas_detach); 1440 error = call_mmap(file, vma); 1441 if (error) 1442 goto unmap_and_free_vma; 1443 1444 if (vma_is_shared_maywrite(vma)) { 1445 error = mapping_map_writable(file->f_mapping); 1446 if (error) 1447 goto close_and_free_vma; 1448 1449 writable_file_mapping = true; 1450 } 1451 1452 /* 1453 * Expansion is handled above, merging is handled below. 1454 * Drivers should not alter the address of the VMA. 1455 */ 1456 error = -EINVAL; 1457 if (WARN_ON((addr != vma->vm_start))) 1458 goto close_and_free_vma; 1459 1460 vma_iter_config(&vmi, addr, end); 1461 /* 1462 * If vm_flags changed after call_mmap(), we should try merge 1463 * vma again as we may succeed this time. 1464 */ 1465 if (unlikely(vm_flags != vma->vm_flags && vmg.prev)) { 1466 vmg.flags = vma->vm_flags; 1467 /* If this fails, state is reset ready for a reattempt. */ 1468 merge = vma_merge_new_range(&vmg); 1469 1470 if (merge) { 1471 /* 1472 * ->mmap() can change vma->vm_file and fput 1473 * the original file. So fput the vma->vm_file 1474 * here or we would add an extra fput for file 1475 * and cause general protection fault 1476 * ultimately. 1477 */ 1478 fput(vma->vm_file); 1479 vm_area_free(vma); 1480 vma = merge; 1481 /* Update vm_flags to pick up the change. */ 1482 vm_flags = vma->vm_flags; 1483 goto unmap_writable; 1484 } 1485 vma_iter_config(&vmi, addr, end); 1486 } 1487 1488 vm_flags = vma->vm_flags; 1489 } else if (vm_flags & VM_SHARED) { 1490 error = shmem_zero_setup(vma); 1491 if (error) 1492 goto free_vma; 1493 } else { 1494 vma_set_anonymous(vma); 1495 } 1496 1497 if (map_deny_write_exec(vma, vma->vm_flags)) { 1498 error = -EACCES; 1499 goto close_and_free_vma; 1500 } 1501 1502 /* Allow architectures to sanity-check the vm_flags */ 1503 error = -EINVAL; 1504 if (!arch_validate_flags(vma->vm_flags)) 1505 goto close_and_free_vma; 1506 1507 error = -ENOMEM; 1508 if (vma_iter_prealloc(&vmi, vma)) 1509 goto close_and_free_vma; 1510 1511 /* Lock the VMA since it is modified after insertion into VMA tree */ 1512 vma_start_write(vma); 1513 vma_iter_store(&vmi, vma); 1514 mm->map_count++; 1515 vma_link_file(vma); 1516 1517 /* 1518 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 1519 * call covers the non-merge case. 1520 */ 1521 khugepaged_enter_vma(vma, vma->vm_flags); 1522 1523 /* Once vma denies write, undo our temporary denial count */ 1524 unmap_writable: 1525 if (writable_file_mapping) 1526 mapping_unmap_writable(file->f_mapping); 1527 file = vma->vm_file; 1528 ksm_add_vma(vma); 1529 expanded: 1530 perf_event_mmap(vma); 1531 1532 /* Unmap any existing mapping in the area */ 1533 vms_complete_munmap_vmas(&vms, &mas_detach); 1534 1535 vm_stat_account(mm, vm_flags, pglen); 1536 if (vm_flags & VM_LOCKED) { 1537 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1538 is_vm_hugetlb_page(vma) || 1539 vma == get_gate_vma(current->mm)) 1540 vm_flags_clear(vma, VM_LOCKED_MASK); 1541 else 1542 mm->locked_vm += pglen; 1543 } 1544 1545 if (file) 1546 uprobe_mmap(vma); 1547 1548 /* 1549 * New (or expanded) vma always get soft dirty status. 1550 * Otherwise user-space soft-dirty page tracker won't 1551 * be able to distinguish situation when vma area unmapped, 1552 * then new mapped in-place (which must be aimed as 1553 * a completely new data area). 1554 */ 1555 vm_flags_set(vma, VM_SOFTDIRTY); 1556 1557 vma_set_page_prot(vma); 1558 1559 validate_mm(mm); 1560 return addr; 1561 1562 close_and_free_vma: 1563 if (file && !vms.closed_vm_ops && vma->vm_ops && vma->vm_ops->close) 1564 vma->vm_ops->close(vma); 1565 1566 if (file || vma->vm_file) { 1567 unmap_and_free_vma: 1568 fput(vma->vm_file); 1569 vma->vm_file = NULL; 1570 1571 vma_iter_set(&vmi, vma->vm_end); 1572 /* Undo any partial mapping done by a device driver. */ 1573 unmap_region(&vmi.mas, vma, vmg.prev, vmg.next); 1574 } 1575 if (writable_file_mapping) 1576 mapping_unmap_writable(file->f_mapping); 1577 free_vma: 1578 vm_area_free(vma); 1579 unacct_error: 1580 if (charged) 1581 vm_unacct_memory(charged); 1582 1583 abort_munmap: 1584 vms_abort_munmap_vmas(&vms, &mas_detach); 1585 gather_failed: 1586 validate_mm(mm); 1587 return error; 1588 } 1589 1590 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 1591 { 1592 int ret; 1593 struct mm_struct *mm = current->mm; 1594 LIST_HEAD(uf); 1595 VMA_ITERATOR(vmi, mm, start); 1596 1597 if (mmap_write_lock_killable(mm)) 1598 return -EINTR; 1599 1600 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 1601 if (ret || !unlock) 1602 mmap_write_unlock(mm); 1603 1604 userfaultfd_unmap_complete(mm, &uf); 1605 return ret; 1606 } 1607 1608 int vm_munmap(unsigned long start, size_t len) 1609 { 1610 return __vm_munmap(start, len, false); 1611 } 1612 EXPORT_SYMBOL(vm_munmap); 1613 1614 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1615 { 1616 addr = untagged_addr(addr); 1617 return __vm_munmap(addr, len, true); 1618 } 1619 1620 1621 /* 1622 * Emulation of deprecated remap_file_pages() syscall. 1623 */ 1624 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 1625 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 1626 { 1627 1628 struct mm_struct *mm = current->mm; 1629 struct vm_area_struct *vma; 1630 unsigned long populate = 0; 1631 unsigned long ret = -EINVAL; 1632 struct file *file; 1633 1634 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 1635 current->comm, current->pid); 1636 1637 if (prot) 1638 return ret; 1639 start = start & PAGE_MASK; 1640 size = size & PAGE_MASK; 1641 1642 if (start + size <= start) 1643 return ret; 1644 1645 /* Does pgoff wrap? */ 1646 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 1647 return ret; 1648 1649 if (mmap_write_lock_killable(mm)) 1650 return -EINTR; 1651 1652 vma = vma_lookup(mm, start); 1653 1654 if (!vma || !(vma->vm_flags & VM_SHARED)) 1655 goto out; 1656 1657 if (start + size > vma->vm_end) { 1658 VMA_ITERATOR(vmi, mm, vma->vm_end); 1659 struct vm_area_struct *next, *prev = vma; 1660 1661 for_each_vma_range(vmi, next, start + size) { 1662 /* hole between vmas ? */ 1663 if (next->vm_start != prev->vm_end) 1664 goto out; 1665 1666 if (next->vm_file != vma->vm_file) 1667 goto out; 1668 1669 if (next->vm_flags != vma->vm_flags) 1670 goto out; 1671 1672 if (start + size <= next->vm_end) 1673 break; 1674 1675 prev = next; 1676 } 1677 1678 if (!next) 1679 goto out; 1680 } 1681 1682 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 1683 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 1684 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 1685 1686 flags &= MAP_NONBLOCK; 1687 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 1688 if (vma->vm_flags & VM_LOCKED) 1689 flags |= MAP_LOCKED; 1690 1691 file = get_file(vma->vm_file); 1692 ret = security_mmap_file(vma->vm_file, prot, flags); 1693 if (ret) 1694 goto out_fput; 1695 ret = do_mmap(vma->vm_file, start, size, 1696 prot, flags, 0, pgoff, &populate, NULL); 1697 out_fput: 1698 fput(file); 1699 out: 1700 mmap_write_unlock(mm); 1701 if (populate) 1702 mm_populate(ret, populate); 1703 if (!IS_ERR_VALUE(ret)) 1704 ret = 0; 1705 return ret; 1706 } 1707 1708 /* 1709 * do_brk_flags() - Increase the brk vma if the flags match. 1710 * @vmi: The vma iterator 1711 * @addr: The start address 1712 * @len: The length of the increase 1713 * @vma: The vma, 1714 * @flags: The VMA Flags 1715 * 1716 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 1717 * do not match then create a new anonymous VMA. Eventually we may be able to 1718 * do some brk-specific accounting here. 1719 */ 1720 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 1721 unsigned long addr, unsigned long len, unsigned long flags) 1722 { 1723 struct mm_struct *mm = current->mm; 1724 1725 /* 1726 * Check against address space limits by the changed size 1727 * Note: This happens *after* clearing old mappings in some code paths. 1728 */ 1729 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1730 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 1731 return -ENOMEM; 1732 1733 if (mm->map_count > sysctl_max_map_count) 1734 return -ENOMEM; 1735 1736 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 1737 return -ENOMEM; 1738 1739 /* 1740 * Expand the existing vma if possible; Note that singular lists do not 1741 * occur after forking, so the expand will only happen on new VMAs. 1742 */ 1743 if (vma && vma->vm_end == addr) { 1744 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 1745 1746 vmg.prev = vma; 1747 vma_iter_next_range(vmi); 1748 1749 if (vma_merge_new_range(&vmg)) 1750 goto out; 1751 else if (vmg_nomem(&vmg)) 1752 goto unacct_fail; 1753 } 1754 1755 if (vma) 1756 vma_iter_next_range(vmi); 1757 /* create a vma struct for an anonymous mapping */ 1758 vma = vm_area_alloc(mm); 1759 if (!vma) 1760 goto unacct_fail; 1761 1762 vma_set_anonymous(vma); 1763 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 1764 vm_flags_init(vma, flags); 1765 vma->vm_page_prot = vm_get_page_prot(flags); 1766 vma_start_write(vma); 1767 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 1768 goto mas_store_fail; 1769 1770 mm->map_count++; 1771 validate_mm(mm); 1772 ksm_add_vma(vma); 1773 out: 1774 perf_event_mmap(vma); 1775 mm->total_vm += len >> PAGE_SHIFT; 1776 mm->data_vm += len >> PAGE_SHIFT; 1777 if (flags & VM_LOCKED) 1778 mm->locked_vm += (len >> PAGE_SHIFT); 1779 vm_flags_set(vma, VM_SOFTDIRTY); 1780 return 0; 1781 1782 mas_store_fail: 1783 vm_area_free(vma); 1784 unacct_fail: 1785 vm_unacct_memory(len >> PAGE_SHIFT); 1786 return -ENOMEM; 1787 } 1788 1789 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 1790 { 1791 struct mm_struct *mm = current->mm; 1792 struct vm_area_struct *vma = NULL; 1793 unsigned long len; 1794 int ret; 1795 bool populate; 1796 LIST_HEAD(uf); 1797 VMA_ITERATOR(vmi, mm, addr); 1798 1799 len = PAGE_ALIGN(request); 1800 if (len < request) 1801 return -ENOMEM; 1802 if (!len) 1803 return 0; 1804 1805 /* Until we need other flags, refuse anything except VM_EXEC. */ 1806 if ((flags & (~VM_EXEC)) != 0) 1807 return -EINVAL; 1808 1809 if (mmap_write_lock_killable(mm)) 1810 return -EINTR; 1811 1812 ret = check_brk_limits(addr, len); 1813 if (ret) 1814 goto limits_failed; 1815 1816 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 1817 if (ret) 1818 goto munmap_failed; 1819 1820 vma = vma_prev(&vmi); 1821 ret = do_brk_flags(&vmi, vma, addr, len, flags); 1822 populate = ((mm->def_flags & VM_LOCKED) != 0); 1823 mmap_write_unlock(mm); 1824 userfaultfd_unmap_complete(mm, &uf); 1825 if (populate && !ret) 1826 mm_populate(addr, len); 1827 return ret; 1828 1829 munmap_failed: 1830 limits_failed: 1831 mmap_write_unlock(mm); 1832 return ret; 1833 } 1834 EXPORT_SYMBOL(vm_brk_flags); 1835 1836 /* Release all mmaps. */ 1837 void exit_mmap(struct mm_struct *mm) 1838 { 1839 struct mmu_gather tlb; 1840 struct vm_area_struct *vma; 1841 unsigned long nr_accounted = 0; 1842 VMA_ITERATOR(vmi, mm, 0); 1843 int count = 0; 1844 1845 /* mm's last user has gone, and its about to be pulled down */ 1846 mmu_notifier_release(mm); 1847 1848 mmap_read_lock(mm); 1849 arch_exit_mmap(mm); 1850 1851 vma = vma_next(&vmi); 1852 if (!vma || unlikely(xa_is_zero(vma))) { 1853 /* Can happen if dup_mmap() received an OOM */ 1854 mmap_read_unlock(mm); 1855 mmap_write_lock(mm); 1856 goto destroy; 1857 } 1858 1859 lru_add_drain(); 1860 flush_cache_mm(mm); 1861 tlb_gather_mmu_fullmm(&tlb, mm); 1862 /* update_hiwater_rss(mm) here? but nobody should be looking */ 1863 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 1864 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 1865 mmap_read_unlock(mm); 1866 1867 /* 1868 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 1869 * because the memory has been already freed. 1870 */ 1871 set_bit(MMF_OOM_SKIP, &mm->flags); 1872 mmap_write_lock(mm); 1873 mt_clear_in_rcu(&mm->mm_mt); 1874 vma_iter_set(&vmi, vma->vm_end); 1875 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 1876 USER_PGTABLES_CEILING, true); 1877 tlb_finish_mmu(&tlb); 1878 1879 /* 1880 * Walk the list again, actually closing and freeing it, with preemption 1881 * enabled, without holding any MM locks besides the unreachable 1882 * mmap_write_lock. 1883 */ 1884 vma_iter_set(&vmi, vma->vm_end); 1885 do { 1886 if (vma->vm_flags & VM_ACCOUNT) 1887 nr_accounted += vma_pages(vma); 1888 remove_vma(vma, /* unreachable = */ true, /* closed = */ false); 1889 count++; 1890 cond_resched(); 1891 vma = vma_next(&vmi); 1892 } while (vma && likely(!xa_is_zero(vma))); 1893 1894 BUG_ON(count != mm->map_count); 1895 1896 trace_exit_mmap(mm); 1897 destroy: 1898 __mt_destroy(&mm->mm_mt); 1899 mmap_write_unlock(mm); 1900 vm_unacct_memory(nr_accounted); 1901 } 1902 1903 /* Insert vm structure into process list sorted by address 1904 * and into the inode's i_mmap tree. If vm_file is non-NULL 1905 * then i_mmap_rwsem is taken here. 1906 */ 1907 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 1908 { 1909 unsigned long charged = vma_pages(vma); 1910 1911 1912 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 1913 return -ENOMEM; 1914 1915 if ((vma->vm_flags & VM_ACCOUNT) && 1916 security_vm_enough_memory_mm(mm, charged)) 1917 return -ENOMEM; 1918 1919 /* 1920 * The vm_pgoff of a purely anonymous vma should be irrelevant 1921 * until its first write fault, when page's anon_vma and index 1922 * are set. But now set the vm_pgoff it will almost certainly 1923 * end up with (unless mremap moves it elsewhere before that 1924 * first wfault), so /proc/pid/maps tells a consistent story. 1925 * 1926 * By setting it to reflect the virtual start address of the 1927 * vma, merges and splits can happen in a seamless way, just 1928 * using the existing file pgoff checks and manipulations. 1929 * Similarly in do_mmap and in do_brk_flags. 1930 */ 1931 if (vma_is_anonymous(vma)) { 1932 BUG_ON(vma->anon_vma); 1933 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1934 } 1935 1936 if (vma_link(mm, vma)) { 1937 if (vma->vm_flags & VM_ACCOUNT) 1938 vm_unacct_memory(charged); 1939 return -ENOMEM; 1940 } 1941 1942 return 0; 1943 } 1944 1945 /* 1946 * Return true if the calling process may expand its vm space by the passed 1947 * number of pages 1948 */ 1949 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 1950 { 1951 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 1952 return false; 1953 1954 if (is_data_mapping(flags) && 1955 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 1956 /* Workaround for Valgrind */ 1957 if (rlimit(RLIMIT_DATA) == 0 && 1958 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 1959 return true; 1960 1961 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 1962 current->comm, current->pid, 1963 (mm->data_vm + npages) << PAGE_SHIFT, 1964 rlimit(RLIMIT_DATA), 1965 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 1966 1967 if (!ignore_rlimit_data) 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 1975 { 1976 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 1977 1978 if (is_exec_mapping(flags)) 1979 mm->exec_vm += npages; 1980 else if (is_stack_mapping(flags)) 1981 mm->stack_vm += npages; 1982 else if (is_data_mapping(flags)) 1983 mm->data_vm += npages; 1984 } 1985 1986 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 1987 1988 /* 1989 * Close hook, called for unmap() and on the old vma for mremap(). 1990 * 1991 * Having a close hook prevents vma merging regardless of flags. 1992 */ 1993 static void special_mapping_close(struct vm_area_struct *vma) 1994 { 1995 const struct vm_special_mapping *sm = vma->vm_private_data; 1996 1997 if (sm->close) 1998 sm->close(sm, vma); 1999 } 2000 2001 static const char *special_mapping_name(struct vm_area_struct *vma) 2002 { 2003 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2004 } 2005 2006 static int special_mapping_mremap(struct vm_area_struct *new_vma) 2007 { 2008 struct vm_special_mapping *sm = new_vma->vm_private_data; 2009 2010 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 2011 return -EFAULT; 2012 2013 if (sm->mremap) 2014 return sm->mremap(sm, new_vma); 2015 2016 return 0; 2017 } 2018 2019 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 2020 { 2021 /* 2022 * Forbid splitting special mappings - kernel has expectations over 2023 * the number of pages in mapping. Together with VM_DONTEXPAND 2024 * the size of vma should stay the same over the special mapping's 2025 * lifetime. 2026 */ 2027 return -EINVAL; 2028 } 2029 2030 static const struct vm_operations_struct special_mapping_vmops = { 2031 .close = special_mapping_close, 2032 .fault = special_mapping_fault, 2033 .mremap = special_mapping_mremap, 2034 .name = special_mapping_name, 2035 /* vDSO code relies that VVAR can't be accessed remotely */ 2036 .access = NULL, 2037 .may_split = special_mapping_split, 2038 }; 2039 2040 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 2041 { 2042 struct vm_area_struct *vma = vmf->vma; 2043 pgoff_t pgoff; 2044 struct page **pages; 2045 struct vm_special_mapping *sm = vma->vm_private_data; 2046 2047 if (sm->fault) 2048 return sm->fault(sm, vmf->vma, vmf); 2049 2050 pages = sm->pages; 2051 2052 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 2053 pgoff--; 2054 2055 if (*pages) { 2056 struct page *page = *pages; 2057 get_page(page); 2058 vmf->page = page; 2059 return 0; 2060 } 2061 2062 return VM_FAULT_SIGBUS; 2063 } 2064 2065 static struct vm_area_struct *__install_special_mapping( 2066 struct mm_struct *mm, 2067 unsigned long addr, unsigned long len, 2068 unsigned long vm_flags, void *priv, 2069 const struct vm_operations_struct *ops) 2070 { 2071 int ret; 2072 struct vm_area_struct *vma; 2073 2074 vma = vm_area_alloc(mm); 2075 if (unlikely(vma == NULL)) 2076 return ERR_PTR(-ENOMEM); 2077 2078 vma_set_range(vma, addr, addr + len, 0); 2079 vm_flags_init(vma, (vm_flags | mm->def_flags | 2080 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 2081 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2082 2083 vma->vm_ops = ops; 2084 vma->vm_private_data = priv; 2085 2086 ret = insert_vm_struct(mm, vma); 2087 if (ret) 2088 goto out; 2089 2090 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 2091 2092 perf_event_mmap(vma); 2093 2094 return vma; 2095 2096 out: 2097 vm_area_free(vma); 2098 return ERR_PTR(ret); 2099 } 2100 2101 bool vma_is_special_mapping(const struct vm_area_struct *vma, 2102 const struct vm_special_mapping *sm) 2103 { 2104 return vma->vm_private_data == sm && 2105 vma->vm_ops == &special_mapping_vmops; 2106 } 2107 2108 /* 2109 * Called with mm->mmap_lock held for writing. 2110 * Insert a new vma covering the given region, with the given flags. 2111 * Its pages are supplied by the given array of struct page *. 2112 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2113 * The region past the last page supplied will always produce SIGBUS. 2114 * The array pointer and the pages it points to are assumed to stay alive 2115 * for as long as this mapping might exist. 2116 */ 2117 struct vm_area_struct *_install_special_mapping( 2118 struct mm_struct *mm, 2119 unsigned long addr, unsigned long len, 2120 unsigned long vm_flags, const struct vm_special_mapping *spec) 2121 { 2122 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 2123 &special_mapping_vmops); 2124 } 2125 2126 /* 2127 * initialise the percpu counter for VM 2128 */ 2129 void __init mmap_init(void) 2130 { 2131 int ret; 2132 2133 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 2134 VM_BUG_ON(ret); 2135 } 2136 2137 /* 2138 * Initialise sysctl_user_reserve_kbytes. 2139 * 2140 * This is intended to prevent a user from starting a single memory hogging 2141 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 2142 * mode. 2143 * 2144 * The default value is min(3% of free memory, 128MB) 2145 * 128MB is enough to recover with sshd/login, bash, and top/kill. 2146 */ 2147 static int init_user_reserve(void) 2148 { 2149 unsigned long free_kbytes; 2150 2151 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2152 2153 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 2154 return 0; 2155 } 2156 subsys_initcall(init_user_reserve); 2157 2158 /* 2159 * Initialise sysctl_admin_reserve_kbytes. 2160 * 2161 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 2162 * to log in and kill a memory hogging process. 2163 * 2164 * Systems with more than 256MB will reserve 8MB, enough to recover 2165 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 2166 * only reserve 3% of free pages by default. 2167 */ 2168 static int init_admin_reserve(void) 2169 { 2170 unsigned long free_kbytes; 2171 2172 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2173 2174 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 2175 return 0; 2176 } 2177 subsys_initcall(init_admin_reserve); 2178 2179 /* 2180 * Reinititalise user and admin reserves if memory is added or removed. 2181 * 2182 * The default user reserve max is 128MB, and the default max for the 2183 * admin reserve is 8MB. These are usually, but not always, enough to 2184 * enable recovery from a memory hogging process using login/sshd, a shell, 2185 * and tools like top. It may make sense to increase or even disable the 2186 * reserve depending on the existence of swap or variations in the recovery 2187 * tools. So, the admin may have changed them. 2188 * 2189 * If memory is added and the reserves have been eliminated or increased above 2190 * the default max, then we'll trust the admin. 2191 * 2192 * If memory is removed and there isn't enough free memory, then we 2193 * need to reset the reserves. 2194 * 2195 * Otherwise keep the reserve set by the admin. 2196 */ 2197 static int reserve_mem_notifier(struct notifier_block *nb, 2198 unsigned long action, void *data) 2199 { 2200 unsigned long tmp, free_kbytes; 2201 2202 switch (action) { 2203 case MEM_ONLINE: 2204 /* Default max is 128MB. Leave alone if modified by operator. */ 2205 tmp = sysctl_user_reserve_kbytes; 2206 if (tmp > 0 && tmp < SZ_128K) 2207 init_user_reserve(); 2208 2209 /* Default max is 8MB. Leave alone if modified by operator. */ 2210 tmp = sysctl_admin_reserve_kbytes; 2211 if (tmp > 0 && tmp < SZ_8K) 2212 init_admin_reserve(); 2213 2214 break; 2215 case MEM_OFFLINE: 2216 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2217 2218 if (sysctl_user_reserve_kbytes > free_kbytes) { 2219 init_user_reserve(); 2220 pr_info("vm.user_reserve_kbytes reset to %lu\n", 2221 sysctl_user_reserve_kbytes); 2222 } 2223 2224 if (sysctl_admin_reserve_kbytes > free_kbytes) { 2225 init_admin_reserve(); 2226 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 2227 sysctl_admin_reserve_kbytes); 2228 } 2229 break; 2230 default: 2231 break; 2232 } 2233 return NOTIFY_OK; 2234 } 2235 2236 static int __meminit init_reserve_notifier(void) 2237 { 2238 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 2239 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 2240 2241 return 0; 2242 } 2243 subsys_initcall(init_reserve_notifier); 2244 2245 /* 2246 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between 2247 * this VMA and its relocated range, which will now reside at [vma->vm_start - 2248 * shift, vma->vm_end - shift). 2249 * 2250 * This function is almost certainly NOT what you want for anything other than 2251 * early executable temporary stack relocation. 2252 */ 2253 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift) 2254 { 2255 /* 2256 * The process proceeds as follows: 2257 * 2258 * 1) Use shift to calculate the new vma endpoints. 2259 * 2) Extend vma to cover both the old and new ranges. This ensures the 2260 * arguments passed to subsequent functions are consistent. 2261 * 3) Move vma's page tables to the new range. 2262 * 4) Free up any cleared pgd range. 2263 * 5) Shrink the vma to cover only the new range. 2264 */ 2265 2266 struct mm_struct *mm = vma->vm_mm; 2267 unsigned long old_start = vma->vm_start; 2268 unsigned long old_end = vma->vm_end; 2269 unsigned long length = old_end - old_start; 2270 unsigned long new_start = old_start - shift; 2271 unsigned long new_end = old_end - shift; 2272 VMA_ITERATOR(vmi, mm, new_start); 2273 VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff); 2274 struct vm_area_struct *next; 2275 struct mmu_gather tlb; 2276 2277 BUG_ON(new_start > new_end); 2278 2279 /* 2280 * ensure there are no vmas between where we want to go 2281 * and where we are 2282 */ 2283 if (vma != vma_next(&vmi)) 2284 return -EFAULT; 2285 2286 vma_iter_prev_range(&vmi); 2287 /* 2288 * cover the whole range: [new_start, old_end) 2289 */ 2290 vmg.vma = vma; 2291 if (vma_expand(&vmg)) 2292 return -ENOMEM; 2293 2294 /* 2295 * move the page tables downwards, on failure we rely on 2296 * process cleanup to remove whatever mess we made. 2297 */ 2298 if (length != move_page_tables(vma, old_start, 2299 vma, new_start, length, false, true)) 2300 return -ENOMEM; 2301 2302 lru_add_drain(); 2303 tlb_gather_mmu(&tlb, mm); 2304 next = vma_next(&vmi); 2305 if (new_end > old_start) { 2306 /* 2307 * when the old and new regions overlap clear from new_end. 2308 */ 2309 free_pgd_range(&tlb, new_end, old_end, new_end, 2310 next ? next->vm_start : USER_PGTABLES_CEILING); 2311 } else { 2312 /* 2313 * otherwise, clean from old_start; this is done to not touch 2314 * the address space in [new_end, old_start) some architectures 2315 * have constraints on va-space that make this illegal (IA64) - 2316 * for the others its just a little faster. 2317 */ 2318 free_pgd_range(&tlb, old_start, old_end, new_end, 2319 next ? next->vm_start : USER_PGTABLES_CEILING); 2320 } 2321 tlb_finish_mmu(&tlb); 2322 2323 vma_prev(&vmi); 2324 /* Shrink the vma to just the new range */ 2325 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 2326 } 2327