1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/shm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/syscalls.h> 16 #include <linux/init.h> 17 #include <linux/file.h> 18 #include <linux/fs.h> 19 #include <linux/personality.h> 20 #include <linux/security.h> 21 #include <linux/hugetlb.h> 22 #include <linux/profile.h> 23 #include <linux/module.h> 24 #include <linux/mount.h> 25 #include <linux/mempolicy.h> 26 #include <linux/rmap.h> 27 28 #include <asm/uaccess.h> 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 32 static void unmap_region(struct mm_struct *mm, 33 struct vm_area_struct *vma, struct vm_area_struct *prev, 34 unsigned long start, unsigned long end); 35 36 /* 37 * WARNING: the debugging will use recursive algorithms so never enable this 38 * unless you know what you are doing. 39 */ 40 #undef DEBUG_MM_RB 41 42 /* description of effects of mapping type and prot in current implementation. 43 * this is due to the limited x86 page protection hardware. The expected 44 * behavior is in parens: 45 * 46 * map_type prot 47 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 48 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 49 * w: (no) no w: (no) no w: (yes) yes w: (no) no 50 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 51 * 52 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 53 * w: (no) no w: (no) no w: (copy) copy w: (no) no 54 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 55 * 56 */ 57 pgprot_t protection_map[16] = { 58 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 59 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 60 }; 61 62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 63 int sysctl_overcommit_ratio = 50; /* default is 50% */ 64 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 65 atomic_t vm_committed_space = ATOMIC_INIT(0); 66 67 /* 68 * Check that a process has enough memory to allocate a new virtual 69 * mapping. 0 means there is enough memory for the allocation to 70 * succeed and -ENOMEM implies there is not. 71 * 72 * We currently support three overcommit policies, which are set via the 73 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 74 * 75 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 76 * Additional code 2002 Jul 20 by Robert Love. 77 * 78 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 79 * 80 * Note this is a helper function intended to be used by LSMs which 81 * wish to use this logic. 82 */ 83 int __vm_enough_memory(long pages, int cap_sys_admin) 84 { 85 unsigned long free, allowed; 86 87 vm_acct_memory(pages); 88 89 /* 90 * Sometimes we want to use more memory than we have 91 */ 92 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 93 return 0; 94 95 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 96 unsigned long n; 97 98 free = get_page_cache_size(); 99 free += nr_swap_pages; 100 101 /* 102 * Any slabs which are created with the 103 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 104 * which are reclaimable, under pressure. The dentry 105 * cache and most inode caches should fall into this 106 */ 107 free += atomic_read(&slab_reclaim_pages); 108 109 /* 110 * Leave the last 3% for root 111 */ 112 if (!cap_sys_admin) 113 free -= free / 32; 114 115 if (free > pages) 116 return 0; 117 118 /* 119 * nr_free_pages() is very expensive on large systems, 120 * only call if we're about to fail. 121 */ 122 n = nr_free_pages(); 123 if (!cap_sys_admin) 124 n -= n / 32; 125 free += n; 126 127 if (free > pages) 128 return 0; 129 vm_unacct_memory(pages); 130 return -ENOMEM; 131 } 132 133 allowed = (totalram_pages - hugetlb_total_pages()) 134 * sysctl_overcommit_ratio / 100; 135 /* 136 * Leave the last 3% for root 137 */ 138 if (!cap_sys_admin) 139 allowed -= allowed / 32; 140 allowed += total_swap_pages; 141 142 /* Don't let a single process grow too big: 143 leave 3% of the size of this process for other processes */ 144 allowed -= current->mm->total_vm / 32; 145 146 /* 147 * cast `allowed' as a signed long because vm_committed_space 148 * sometimes has a negative value 149 */ 150 if (atomic_read(&vm_committed_space) < (long)allowed) 151 return 0; 152 153 vm_unacct_memory(pages); 154 155 return -ENOMEM; 156 } 157 158 EXPORT_SYMBOL(sysctl_overcommit_memory); 159 EXPORT_SYMBOL(sysctl_overcommit_ratio); 160 EXPORT_SYMBOL(sysctl_max_map_count); 161 EXPORT_SYMBOL(vm_committed_space); 162 EXPORT_SYMBOL(__vm_enough_memory); 163 164 /* 165 * Requires inode->i_mapping->i_mmap_lock 166 */ 167 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 168 struct file *file, struct address_space *mapping) 169 { 170 if (vma->vm_flags & VM_DENYWRITE) 171 atomic_inc(&file->f_dentry->d_inode->i_writecount); 172 if (vma->vm_flags & VM_SHARED) 173 mapping->i_mmap_writable--; 174 175 flush_dcache_mmap_lock(mapping); 176 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 177 list_del_init(&vma->shared.vm_set.list); 178 else 179 vma_prio_tree_remove(vma, &mapping->i_mmap); 180 flush_dcache_mmap_unlock(mapping); 181 } 182 183 /* 184 * Remove one vm structure and free it. 185 */ 186 static void remove_vm_struct(struct vm_area_struct *vma) 187 { 188 struct file *file = vma->vm_file; 189 190 might_sleep(); 191 if (file) { 192 struct address_space *mapping = file->f_mapping; 193 spin_lock(&mapping->i_mmap_lock); 194 __remove_shared_vm_struct(vma, file, mapping); 195 spin_unlock(&mapping->i_mmap_lock); 196 } 197 if (vma->vm_ops && vma->vm_ops->close) 198 vma->vm_ops->close(vma); 199 if (file) 200 fput(file); 201 anon_vma_unlink(vma); 202 mpol_free(vma_policy(vma)); 203 kmem_cache_free(vm_area_cachep, vma); 204 } 205 206 asmlinkage unsigned long sys_brk(unsigned long brk) 207 { 208 unsigned long rlim, retval; 209 unsigned long newbrk, oldbrk; 210 struct mm_struct *mm = current->mm; 211 212 down_write(&mm->mmap_sem); 213 214 if (brk < mm->end_code) 215 goto out; 216 newbrk = PAGE_ALIGN(brk); 217 oldbrk = PAGE_ALIGN(mm->brk); 218 if (oldbrk == newbrk) 219 goto set_brk; 220 221 /* Always allow shrinking brk. */ 222 if (brk <= mm->brk) { 223 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 224 goto set_brk; 225 goto out; 226 } 227 228 /* Check against rlimit.. */ 229 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 230 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim) 231 goto out; 232 233 /* Check against existing mmap mappings. */ 234 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 235 goto out; 236 237 /* Ok, looks good - let it rip. */ 238 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 239 goto out; 240 set_brk: 241 mm->brk = brk; 242 out: 243 retval = mm->brk; 244 up_write(&mm->mmap_sem); 245 return retval; 246 } 247 248 #ifdef DEBUG_MM_RB 249 static int browse_rb(struct rb_root *root) 250 { 251 int i = 0, j; 252 struct rb_node *nd, *pn = NULL; 253 unsigned long prev = 0, pend = 0; 254 255 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 256 struct vm_area_struct *vma; 257 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 258 if (vma->vm_start < prev) 259 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 260 if (vma->vm_start < pend) 261 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 262 if (vma->vm_start > vma->vm_end) 263 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 264 i++; 265 pn = nd; 266 } 267 j = 0; 268 for (nd = pn; nd; nd = rb_prev(nd)) { 269 j++; 270 } 271 if (i != j) 272 printk("backwards %d, forwards %d\n", j, i), i = 0; 273 return i; 274 } 275 276 void validate_mm(struct mm_struct *mm) 277 { 278 int bug = 0; 279 int i = 0; 280 struct vm_area_struct *tmp = mm->mmap; 281 while (tmp) { 282 tmp = tmp->vm_next; 283 i++; 284 } 285 if (i != mm->map_count) 286 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 287 i = browse_rb(&mm->mm_rb); 288 if (i != mm->map_count) 289 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 290 if (bug) 291 BUG(); 292 } 293 #else 294 #define validate_mm(mm) do { } while (0) 295 #endif 296 297 static struct vm_area_struct * 298 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 299 struct vm_area_struct **pprev, struct rb_node ***rb_link, 300 struct rb_node ** rb_parent) 301 { 302 struct vm_area_struct * vma; 303 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 304 305 __rb_link = &mm->mm_rb.rb_node; 306 rb_prev = __rb_parent = NULL; 307 vma = NULL; 308 309 while (*__rb_link) { 310 struct vm_area_struct *vma_tmp; 311 312 __rb_parent = *__rb_link; 313 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 314 315 if (vma_tmp->vm_end > addr) { 316 vma = vma_tmp; 317 if (vma_tmp->vm_start <= addr) 318 return vma; 319 __rb_link = &__rb_parent->rb_left; 320 } else { 321 rb_prev = __rb_parent; 322 __rb_link = &__rb_parent->rb_right; 323 } 324 } 325 326 *pprev = NULL; 327 if (rb_prev) 328 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 329 *rb_link = __rb_link; 330 *rb_parent = __rb_parent; 331 return vma; 332 } 333 334 static inline void 335 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 336 struct vm_area_struct *prev, struct rb_node *rb_parent) 337 { 338 if (prev) { 339 vma->vm_next = prev->vm_next; 340 prev->vm_next = vma; 341 } else { 342 mm->mmap = vma; 343 if (rb_parent) 344 vma->vm_next = rb_entry(rb_parent, 345 struct vm_area_struct, vm_rb); 346 else 347 vma->vm_next = NULL; 348 } 349 } 350 351 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 352 struct rb_node **rb_link, struct rb_node *rb_parent) 353 { 354 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 355 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 356 } 357 358 static inline void __vma_link_file(struct vm_area_struct *vma) 359 { 360 struct file * file; 361 362 file = vma->vm_file; 363 if (file) { 364 struct address_space *mapping = file->f_mapping; 365 366 if (vma->vm_flags & VM_DENYWRITE) 367 atomic_dec(&file->f_dentry->d_inode->i_writecount); 368 if (vma->vm_flags & VM_SHARED) 369 mapping->i_mmap_writable++; 370 371 flush_dcache_mmap_lock(mapping); 372 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 373 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 374 else 375 vma_prio_tree_insert(vma, &mapping->i_mmap); 376 flush_dcache_mmap_unlock(mapping); 377 } 378 } 379 380 static void 381 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 382 struct vm_area_struct *prev, struct rb_node **rb_link, 383 struct rb_node *rb_parent) 384 { 385 __vma_link_list(mm, vma, prev, rb_parent); 386 __vma_link_rb(mm, vma, rb_link, rb_parent); 387 __anon_vma_link(vma); 388 } 389 390 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 391 struct vm_area_struct *prev, struct rb_node **rb_link, 392 struct rb_node *rb_parent) 393 { 394 struct address_space *mapping = NULL; 395 396 if (vma->vm_file) 397 mapping = vma->vm_file->f_mapping; 398 399 if (mapping) { 400 spin_lock(&mapping->i_mmap_lock); 401 vma->vm_truncate_count = mapping->truncate_count; 402 } 403 anon_vma_lock(vma); 404 405 __vma_link(mm, vma, prev, rb_link, rb_parent); 406 __vma_link_file(vma); 407 408 anon_vma_unlock(vma); 409 if (mapping) 410 spin_unlock(&mapping->i_mmap_lock); 411 412 mm->map_count++; 413 validate_mm(mm); 414 } 415 416 /* 417 * Helper for vma_adjust in the split_vma insert case: 418 * insert vm structure into list and rbtree and anon_vma, 419 * but it has already been inserted into prio_tree earlier. 420 */ 421 static void 422 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 423 { 424 struct vm_area_struct * __vma, * prev; 425 struct rb_node ** rb_link, * rb_parent; 426 427 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 428 if (__vma && __vma->vm_start < vma->vm_end) 429 BUG(); 430 __vma_link(mm, vma, prev, rb_link, rb_parent); 431 mm->map_count++; 432 } 433 434 static inline void 435 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 436 struct vm_area_struct *prev) 437 { 438 prev->vm_next = vma->vm_next; 439 rb_erase(&vma->vm_rb, &mm->mm_rb); 440 if (mm->mmap_cache == vma) 441 mm->mmap_cache = prev; 442 } 443 444 /* 445 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 446 * is already present in an i_mmap tree without adjusting the tree. 447 * The following helper function should be used when such adjustments 448 * are necessary. The "insert" vma (if any) is to be inserted 449 * before we drop the necessary locks. 450 */ 451 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 452 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 453 { 454 struct mm_struct *mm = vma->vm_mm; 455 struct vm_area_struct *next = vma->vm_next; 456 struct vm_area_struct *importer = NULL; 457 struct address_space *mapping = NULL; 458 struct prio_tree_root *root = NULL; 459 struct file *file = vma->vm_file; 460 struct anon_vma *anon_vma = NULL; 461 long adjust_next = 0; 462 int remove_next = 0; 463 464 if (next && !insert) { 465 if (end >= next->vm_end) { 466 /* 467 * vma expands, overlapping all the next, and 468 * perhaps the one after too (mprotect case 6). 469 */ 470 again: remove_next = 1 + (end > next->vm_end); 471 end = next->vm_end; 472 anon_vma = next->anon_vma; 473 importer = vma; 474 } else if (end > next->vm_start) { 475 /* 476 * vma expands, overlapping part of the next: 477 * mprotect case 5 shifting the boundary up. 478 */ 479 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 480 anon_vma = next->anon_vma; 481 importer = vma; 482 } else if (end < vma->vm_end) { 483 /* 484 * vma shrinks, and !insert tells it's not 485 * split_vma inserting another: so it must be 486 * mprotect case 4 shifting the boundary down. 487 */ 488 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 489 anon_vma = next->anon_vma; 490 importer = next; 491 } 492 } 493 494 if (file) { 495 mapping = file->f_mapping; 496 if (!(vma->vm_flags & VM_NONLINEAR)) 497 root = &mapping->i_mmap; 498 spin_lock(&mapping->i_mmap_lock); 499 if (importer && 500 vma->vm_truncate_count != next->vm_truncate_count) { 501 /* 502 * unmap_mapping_range might be in progress: 503 * ensure that the expanding vma is rescanned. 504 */ 505 importer->vm_truncate_count = 0; 506 } 507 if (insert) { 508 insert->vm_truncate_count = vma->vm_truncate_count; 509 /* 510 * Put into prio_tree now, so instantiated pages 511 * are visible to arm/parisc __flush_dcache_page 512 * throughout; but we cannot insert into address 513 * space until vma start or end is updated. 514 */ 515 __vma_link_file(insert); 516 } 517 } 518 519 /* 520 * When changing only vma->vm_end, we don't really need 521 * anon_vma lock: but is that case worth optimizing out? 522 */ 523 if (vma->anon_vma) 524 anon_vma = vma->anon_vma; 525 if (anon_vma) { 526 spin_lock(&anon_vma->lock); 527 /* 528 * Easily overlooked: when mprotect shifts the boundary, 529 * make sure the expanding vma has anon_vma set if the 530 * shrinking vma had, to cover any anon pages imported. 531 */ 532 if (importer && !importer->anon_vma) { 533 importer->anon_vma = anon_vma; 534 __anon_vma_link(importer); 535 } 536 } 537 538 if (root) { 539 flush_dcache_mmap_lock(mapping); 540 vma_prio_tree_remove(vma, root); 541 if (adjust_next) 542 vma_prio_tree_remove(next, root); 543 } 544 545 vma->vm_start = start; 546 vma->vm_end = end; 547 vma->vm_pgoff = pgoff; 548 if (adjust_next) { 549 next->vm_start += adjust_next << PAGE_SHIFT; 550 next->vm_pgoff += adjust_next; 551 } 552 553 if (root) { 554 if (adjust_next) 555 vma_prio_tree_insert(next, root); 556 vma_prio_tree_insert(vma, root); 557 flush_dcache_mmap_unlock(mapping); 558 } 559 560 if (remove_next) { 561 /* 562 * vma_merge has merged next into vma, and needs 563 * us to remove next before dropping the locks. 564 */ 565 __vma_unlink(mm, next, vma); 566 if (file) 567 __remove_shared_vm_struct(next, file, mapping); 568 if (next->anon_vma) 569 __anon_vma_merge(vma, next); 570 } else if (insert) { 571 /* 572 * split_vma has split insert from vma, and needs 573 * us to insert it before dropping the locks 574 * (it may either follow vma or precede it). 575 */ 576 __insert_vm_struct(mm, insert); 577 } 578 579 if (anon_vma) 580 spin_unlock(&anon_vma->lock); 581 if (mapping) 582 spin_unlock(&mapping->i_mmap_lock); 583 584 if (remove_next) { 585 if (file) 586 fput(file); 587 mm->map_count--; 588 mpol_free(vma_policy(next)); 589 kmem_cache_free(vm_area_cachep, next); 590 /* 591 * In mprotect's case 6 (see comments on vma_merge), 592 * we must remove another next too. It would clutter 593 * up the code too much to do both in one go. 594 */ 595 if (remove_next == 2) { 596 next = vma->vm_next; 597 goto again; 598 } 599 } 600 601 validate_mm(mm); 602 } 603 604 /* 605 * If the vma has a ->close operation then the driver probably needs to release 606 * per-vma resources, so we don't attempt to merge those. 607 */ 608 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED) 609 610 static inline int is_mergeable_vma(struct vm_area_struct *vma, 611 struct file *file, unsigned long vm_flags) 612 { 613 if (vma->vm_flags != vm_flags) 614 return 0; 615 if (vma->vm_file != file) 616 return 0; 617 if (vma->vm_ops && vma->vm_ops->close) 618 return 0; 619 return 1; 620 } 621 622 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 623 struct anon_vma *anon_vma2) 624 { 625 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 626 } 627 628 /* 629 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 630 * in front of (at a lower virtual address and file offset than) the vma. 631 * 632 * We cannot merge two vmas if they have differently assigned (non-NULL) 633 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 634 * 635 * We don't check here for the merged mmap wrapping around the end of pagecache 636 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 637 * wrap, nor mmaps which cover the final page at index -1UL. 638 */ 639 static int 640 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 641 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 642 { 643 if (is_mergeable_vma(vma, file, vm_flags) && 644 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 645 if (vma->vm_pgoff == vm_pgoff) 646 return 1; 647 } 648 return 0; 649 } 650 651 /* 652 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 653 * beyond (at a higher virtual address and file offset than) the vma. 654 * 655 * We cannot merge two vmas if they have differently assigned (non-NULL) 656 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 657 */ 658 static int 659 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 660 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 661 { 662 if (is_mergeable_vma(vma, file, vm_flags) && 663 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 664 pgoff_t vm_pglen; 665 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 666 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 667 return 1; 668 } 669 return 0; 670 } 671 672 /* 673 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 674 * whether that can be merged with its predecessor or its successor. 675 * Or both (it neatly fills a hole). 676 * 677 * In most cases - when called for mmap, brk or mremap - [addr,end) is 678 * certain not to be mapped by the time vma_merge is called; but when 679 * called for mprotect, it is certain to be already mapped (either at 680 * an offset within prev, or at the start of next), and the flags of 681 * this area are about to be changed to vm_flags - and the no-change 682 * case has already been eliminated. 683 * 684 * The following mprotect cases have to be considered, where AAAA is 685 * the area passed down from mprotect_fixup, never extending beyond one 686 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 687 * 688 * AAAA AAAA AAAA AAAA 689 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 690 * cannot merge might become might become might become 691 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 692 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 693 * mremap move: PPPPNNNNNNNN 8 694 * AAAA 695 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 696 * might become case 1 below case 2 below case 3 below 697 * 698 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 699 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 700 */ 701 struct vm_area_struct *vma_merge(struct mm_struct *mm, 702 struct vm_area_struct *prev, unsigned long addr, 703 unsigned long end, unsigned long vm_flags, 704 struct anon_vma *anon_vma, struct file *file, 705 pgoff_t pgoff, struct mempolicy *policy) 706 { 707 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 708 struct vm_area_struct *area, *next; 709 710 /* 711 * We later require that vma->vm_flags == vm_flags, 712 * so this tests vma->vm_flags & VM_SPECIAL, too. 713 */ 714 if (vm_flags & VM_SPECIAL) 715 return NULL; 716 717 if (prev) 718 next = prev->vm_next; 719 else 720 next = mm->mmap; 721 area = next; 722 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 723 next = next->vm_next; 724 725 /* 726 * Can it merge with the predecessor? 727 */ 728 if (prev && prev->vm_end == addr && 729 mpol_equal(vma_policy(prev), policy) && 730 can_vma_merge_after(prev, vm_flags, 731 anon_vma, file, pgoff)) { 732 /* 733 * OK, it can. Can we now merge in the successor as well? 734 */ 735 if (next && end == next->vm_start && 736 mpol_equal(policy, vma_policy(next)) && 737 can_vma_merge_before(next, vm_flags, 738 anon_vma, file, pgoff+pglen) && 739 is_mergeable_anon_vma(prev->anon_vma, 740 next->anon_vma)) { 741 /* cases 1, 6 */ 742 vma_adjust(prev, prev->vm_start, 743 next->vm_end, prev->vm_pgoff, NULL); 744 } else /* cases 2, 5, 7 */ 745 vma_adjust(prev, prev->vm_start, 746 end, prev->vm_pgoff, NULL); 747 return prev; 748 } 749 750 /* 751 * Can this new request be merged in front of next? 752 */ 753 if (next && end == next->vm_start && 754 mpol_equal(policy, vma_policy(next)) && 755 can_vma_merge_before(next, vm_flags, 756 anon_vma, file, pgoff+pglen)) { 757 if (prev && addr < prev->vm_end) /* case 4 */ 758 vma_adjust(prev, prev->vm_start, 759 addr, prev->vm_pgoff, NULL); 760 else /* cases 3, 8 */ 761 vma_adjust(area, addr, next->vm_end, 762 next->vm_pgoff - pglen, NULL); 763 return area; 764 } 765 766 return NULL; 767 } 768 769 /* 770 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 771 * neighbouring vmas for a suitable anon_vma, before it goes off 772 * to allocate a new anon_vma. It checks because a repetitive 773 * sequence of mprotects and faults may otherwise lead to distinct 774 * anon_vmas being allocated, preventing vma merge in subsequent 775 * mprotect. 776 */ 777 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 778 { 779 struct vm_area_struct *near; 780 unsigned long vm_flags; 781 782 near = vma->vm_next; 783 if (!near) 784 goto try_prev; 785 786 /* 787 * Since only mprotect tries to remerge vmas, match flags 788 * which might be mprotected into each other later on. 789 * Neither mlock nor madvise tries to remerge at present, 790 * so leave their flags as obstructing a merge. 791 */ 792 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 793 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 794 795 if (near->anon_vma && vma->vm_end == near->vm_start && 796 mpol_equal(vma_policy(vma), vma_policy(near)) && 797 can_vma_merge_before(near, vm_flags, 798 NULL, vma->vm_file, vma->vm_pgoff + 799 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 800 return near->anon_vma; 801 try_prev: 802 /* 803 * It is potentially slow to have to call find_vma_prev here. 804 * But it's only on the first write fault on the vma, not 805 * every time, and we could devise a way to avoid it later 806 * (e.g. stash info in next's anon_vma_node when assigning 807 * an anon_vma, or when trying vma_merge). Another time. 808 */ 809 if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma) 810 BUG(); 811 if (!near) 812 goto none; 813 814 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 815 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 816 817 if (near->anon_vma && near->vm_end == vma->vm_start && 818 mpol_equal(vma_policy(near), vma_policy(vma)) && 819 can_vma_merge_after(near, vm_flags, 820 NULL, vma->vm_file, vma->vm_pgoff)) 821 return near->anon_vma; 822 none: 823 /* 824 * There's no absolute need to look only at touching neighbours: 825 * we could search further afield for "compatible" anon_vmas. 826 * But it would probably just be a waste of time searching, 827 * or lead to too many vmas hanging off the same anon_vma. 828 * We're trying to allow mprotect remerging later on, 829 * not trying to minimize memory used for anon_vmas. 830 */ 831 return NULL; 832 } 833 834 #ifdef CONFIG_PROC_FS 835 void __vm_stat_account(struct mm_struct *mm, unsigned long flags, 836 struct file *file, long pages) 837 { 838 const unsigned long stack_flags 839 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 840 841 #ifdef CONFIG_HUGETLB 842 if (flags & VM_HUGETLB) { 843 if (!(flags & VM_DONTCOPY)) 844 mm->shared_vm += pages; 845 return; 846 } 847 #endif /* CONFIG_HUGETLB */ 848 849 if (file) { 850 mm->shared_vm += pages; 851 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 852 mm->exec_vm += pages; 853 } else if (flags & stack_flags) 854 mm->stack_vm += pages; 855 if (flags & (VM_RESERVED|VM_IO)) 856 mm->reserved_vm += pages; 857 } 858 #endif /* CONFIG_PROC_FS */ 859 860 /* 861 * The caller must hold down_write(current->mm->mmap_sem). 862 */ 863 864 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 865 unsigned long len, unsigned long prot, 866 unsigned long flags, unsigned long pgoff) 867 { 868 struct mm_struct * mm = current->mm; 869 struct vm_area_struct * vma, * prev; 870 struct inode *inode; 871 unsigned int vm_flags; 872 int correct_wcount = 0; 873 int error; 874 struct rb_node ** rb_link, * rb_parent; 875 int accountable = 1; 876 unsigned long charged = 0, reqprot = prot; 877 878 if (file) { 879 if (is_file_hugepages(file)) 880 accountable = 0; 881 882 if (!file->f_op || !file->f_op->mmap) 883 return -ENODEV; 884 885 if ((prot & PROT_EXEC) && 886 (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)) 887 return -EPERM; 888 } 889 /* 890 * Does the application expect PROT_READ to imply PROT_EXEC? 891 * 892 * (the exception is when the underlying filesystem is noexec 893 * mounted, in which case we dont add PROT_EXEC.) 894 */ 895 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 896 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))) 897 prot |= PROT_EXEC; 898 899 if (!len) 900 return -EINVAL; 901 902 /* Careful about overflows.. */ 903 len = PAGE_ALIGN(len); 904 if (!len || len > TASK_SIZE) 905 return -ENOMEM; 906 907 /* offset overflow? */ 908 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 909 return -EOVERFLOW; 910 911 /* Too many mappings? */ 912 if (mm->map_count > sysctl_max_map_count) 913 return -ENOMEM; 914 915 /* Obtain the address to map to. we verify (or select) it and ensure 916 * that it represents a valid section of the address space. 917 */ 918 addr = get_unmapped_area(file, addr, len, pgoff, flags); 919 if (addr & ~PAGE_MASK) 920 return addr; 921 922 /* Do simple checking here so the lower-level routines won't have 923 * to. we assume access permissions have been handled by the open 924 * of the memory object, so we don't do any here. 925 */ 926 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 927 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 928 929 if (flags & MAP_LOCKED) { 930 if (!can_do_mlock()) 931 return -EPERM; 932 vm_flags |= VM_LOCKED; 933 } 934 /* mlock MCL_FUTURE? */ 935 if (vm_flags & VM_LOCKED) { 936 unsigned long locked, lock_limit; 937 locked = len >> PAGE_SHIFT; 938 locked += mm->locked_vm; 939 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 940 lock_limit >>= PAGE_SHIFT; 941 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 942 return -EAGAIN; 943 } 944 945 inode = file ? file->f_dentry->d_inode : NULL; 946 947 if (file) { 948 switch (flags & MAP_TYPE) { 949 case MAP_SHARED: 950 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 951 return -EACCES; 952 953 /* 954 * Make sure we don't allow writing to an append-only 955 * file.. 956 */ 957 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 958 return -EACCES; 959 960 /* 961 * Make sure there are no mandatory locks on the file. 962 */ 963 if (locks_verify_locked(inode)) 964 return -EAGAIN; 965 966 vm_flags |= VM_SHARED | VM_MAYSHARE; 967 if (!(file->f_mode & FMODE_WRITE)) 968 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 969 970 /* fall through */ 971 case MAP_PRIVATE: 972 if (!(file->f_mode & FMODE_READ)) 973 return -EACCES; 974 break; 975 976 default: 977 return -EINVAL; 978 } 979 } else { 980 switch (flags & MAP_TYPE) { 981 case MAP_SHARED: 982 vm_flags |= VM_SHARED | VM_MAYSHARE; 983 break; 984 case MAP_PRIVATE: 985 /* 986 * Set pgoff according to addr for anon_vma. 987 */ 988 pgoff = addr >> PAGE_SHIFT; 989 break; 990 default: 991 return -EINVAL; 992 } 993 } 994 995 error = security_file_mmap(file, reqprot, prot, flags); 996 if (error) 997 return error; 998 999 /* Clear old maps */ 1000 error = -ENOMEM; 1001 munmap_back: 1002 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1003 if (vma && vma->vm_start < addr + len) { 1004 if (do_munmap(mm, addr, len)) 1005 return -ENOMEM; 1006 goto munmap_back; 1007 } 1008 1009 /* Check against address space limit. */ 1010 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1011 return -ENOMEM; 1012 1013 if (accountable && (!(flags & MAP_NORESERVE) || 1014 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1015 if (vm_flags & VM_SHARED) { 1016 /* Check memory availability in shmem_file_setup? */ 1017 vm_flags |= VM_ACCOUNT; 1018 } else if (vm_flags & VM_WRITE) { 1019 /* 1020 * Private writable mapping: check memory availability 1021 */ 1022 charged = len >> PAGE_SHIFT; 1023 if (security_vm_enough_memory(charged)) 1024 return -ENOMEM; 1025 vm_flags |= VM_ACCOUNT; 1026 } 1027 } 1028 1029 /* 1030 * Can we just expand an old private anonymous mapping? 1031 * The VM_SHARED test is necessary because shmem_zero_setup 1032 * will create the file object for a shared anonymous map below. 1033 */ 1034 if (!file && !(vm_flags & VM_SHARED) && 1035 vma_merge(mm, prev, addr, addr + len, vm_flags, 1036 NULL, NULL, pgoff, NULL)) 1037 goto out; 1038 1039 /* 1040 * Determine the object being mapped and call the appropriate 1041 * specific mapper. the address has already been validated, but 1042 * not unmapped, but the maps are removed from the list. 1043 */ 1044 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1045 if (!vma) { 1046 error = -ENOMEM; 1047 goto unacct_error; 1048 } 1049 memset(vma, 0, sizeof(*vma)); 1050 1051 vma->vm_mm = mm; 1052 vma->vm_start = addr; 1053 vma->vm_end = addr + len; 1054 vma->vm_flags = vm_flags; 1055 vma->vm_page_prot = protection_map[vm_flags & 0x0f]; 1056 vma->vm_pgoff = pgoff; 1057 1058 if (file) { 1059 error = -EINVAL; 1060 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1061 goto free_vma; 1062 if (vm_flags & VM_DENYWRITE) { 1063 error = deny_write_access(file); 1064 if (error) 1065 goto free_vma; 1066 correct_wcount = 1; 1067 } 1068 vma->vm_file = file; 1069 get_file(file); 1070 error = file->f_op->mmap(file, vma); 1071 if (error) 1072 goto unmap_and_free_vma; 1073 } else if (vm_flags & VM_SHARED) { 1074 error = shmem_zero_setup(vma); 1075 if (error) 1076 goto free_vma; 1077 } 1078 1079 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1080 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1081 * that memory reservation must be checked; but that reservation 1082 * belongs to shared memory object, not to vma: so now clear it. 1083 */ 1084 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1085 vma->vm_flags &= ~VM_ACCOUNT; 1086 1087 /* Can addr have changed?? 1088 * 1089 * Answer: Yes, several device drivers can do it in their 1090 * f_op->mmap method. -DaveM 1091 */ 1092 addr = vma->vm_start; 1093 pgoff = vma->vm_pgoff; 1094 vm_flags = vma->vm_flags; 1095 1096 if (!file || !vma_merge(mm, prev, addr, vma->vm_end, 1097 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1098 file = vma->vm_file; 1099 vma_link(mm, vma, prev, rb_link, rb_parent); 1100 if (correct_wcount) 1101 atomic_inc(&inode->i_writecount); 1102 } else { 1103 if (file) { 1104 if (correct_wcount) 1105 atomic_inc(&inode->i_writecount); 1106 fput(file); 1107 } 1108 mpol_free(vma_policy(vma)); 1109 kmem_cache_free(vm_area_cachep, vma); 1110 } 1111 out: 1112 mm->total_vm += len >> PAGE_SHIFT; 1113 __vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1114 if (vm_flags & VM_LOCKED) { 1115 mm->locked_vm += len >> PAGE_SHIFT; 1116 make_pages_present(addr, addr + len); 1117 } 1118 if (flags & MAP_POPULATE) { 1119 up_write(&mm->mmap_sem); 1120 sys_remap_file_pages(addr, len, 0, 1121 pgoff, flags & MAP_NONBLOCK); 1122 down_write(&mm->mmap_sem); 1123 } 1124 return addr; 1125 1126 unmap_and_free_vma: 1127 if (correct_wcount) 1128 atomic_inc(&inode->i_writecount); 1129 vma->vm_file = NULL; 1130 fput(file); 1131 1132 /* Undo any partial mapping done by a device driver. */ 1133 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1134 charged = 0; 1135 free_vma: 1136 kmem_cache_free(vm_area_cachep, vma); 1137 unacct_error: 1138 if (charged) 1139 vm_unacct_memory(charged); 1140 return error; 1141 } 1142 1143 EXPORT_SYMBOL(do_mmap_pgoff); 1144 1145 /* Get an address range which is currently unmapped. 1146 * For shmat() with addr=0. 1147 * 1148 * Ugly calling convention alert: 1149 * Return value with the low bits set means error value, 1150 * ie 1151 * if (ret & ~PAGE_MASK) 1152 * error = ret; 1153 * 1154 * This function "knows" that -ENOMEM has the bits set. 1155 */ 1156 #ifndef HAVE_ARCH_UNMAPPED_AREA 1157 unsigned long 1158 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1159 unsigned long len, unsigned long pgoff, unsigned long flags) 1160 { 1161 struct mm_struct *mm = current->mm; 1162 struct vm_area_struct *vma; 1163 unsigned long start_addr; 1164 1165 if (len > TASK_SIZE) 1166 return -ENOMEM; 1167 1168 if (addr) { 1169 addr = PAGE_ALIGN(addr); 1170 vma = find_vma(mm, addr); 1171 if (TASK_SIZE - len >= addr && 1172 (!vma || addr + len <= vma->vm_start)) 1173 return addr; 1174 } 1175 if (len > mm->cached_hole_size) { 1176 start_addr = addr = mm->free_area_cache; 1177 } else { 1178 start_addr = addr = TASK_UNMAPPED_BASE; 1179 mm->cached_hole_size = 0; 1180 } 1181 1182 full_search: 1183 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1184 /* At this point: (!vma || addr < vma->vm_end). */ 1185 if (TASK_SIZE - len < addr) { 1186 /* 1187 * Start a new search - just in case we missed 1188 * some holes. 1189 */ 1190 if (start_addr != TASK_UNMAPPED_BASE) { 1191 addr = TASK_UNMAPPED_BASE; 1192 start_addr = addr; 1193 mm->cached_hole_size = 0; 1194 goto full_search; 1195 } 1196 return -ENOMEM; 1197 } 1198 if (!vma || addr + len <= vma->vm_start) { 1199 /* 1200 * Remember the place where we stopped the search: 1201 */ 1202 mm->free_area_cache = addr + len; 1203 return addr; 1204 } 1205 if (addr + mm->cached_hole_size < vma->vm_start) 1206 mm->cached_hole_size = vma->vm_start - addr; 1207 addr = vma->vm_end; 1208 } 1209 } 1210 #endif 1211 1212 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1213 { 1214 /* 1215 * Is this a new hole at the lowest possible address? 1216 */ 1217 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1218 mm->free_area_cache = addr; 1219 mm->cached_hole_size = ~0UL; 1220 } 1221 } 1222 1223 /* 1224 * This mmap-allocator allocates new areas top-down from below the 1225 * stack's low limit (the base): 1226 */ 1227 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1228 unsigned long 1229 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1230 const unsigned long len, const unsigned long pgoff, 1231 const unsigned long flags) 1232 { 1233 struct vm_area_struct *vma; 1234 struct mm_struct *mm = current->mm; 1235 unsigned long addr = addr0; 1236 1237 /* requested length too big for entire address space */ 1238 if (len > TASK_SIZE) 1239 return -ENOMEM; 1240 1241 /* requesting a specific address */ 1242 if (addr) { 1243 addr = PAGE_ALIGN(addr); 1244 vma = find_vma(mm, addr); 1245 if (TASK_SIZE - len >= addr && 1246 (!vma || addr + len <= vma->vm_start)) 1247 return addr; 1248 } 1249 1250 /* check if free_area_cache is useful for us */ 1251 if (len <= mm->cached_hole_size) { 1252 mm->cached_hole_size = 0; 1253 mm->free_area_cache = mm->mmap_base; 1254 } 1255 1256 /* either no address requested or can't fit in requested address hole */ 1257 addr = mm->free_area_cache; 1258 1259 /* make sure it can fit in the remaining address space */ 1260 if (addr > len) { 1261 vma = find_vma(mm, addr-len); 1262 if (!vma || addr <= vma->vm_start) 1263 /* remember the address as a hint for next time */ 1264 return (mm->free_area_cache = addr-len); 1265 } 1266 1267 if (mm->mmap_base < len) 1268 goto bottomup; 1269 1270 addr = mm->mmap_base-len; 1271 1272 do { 1273 /* 1274 * Lookup failure means no vma is above this address, 1275 * else if new region fits below vma->vm_start, 1276 * return with success: 1277 */ 1278 vma = find_vma(mm, addr); 1279 if (!vma || addr+len <= vma->vm_start) 1280 /* remember the address as a hint for next time */ 1281 return (mm->free_area_cache = addr); 1282 1283 /* remember the largest hole we saw so far */ 1284 if (addr + mm->cached_hole_size < vma->vm_start) 1285 mm->cached_hole_size = vma->vm_start - addr; 1286 1287 /* try just below the current vma->vm_start */ 1288 addr = vma->vm_start-len; 1289 } while (len < vma->vm_start); 1290 1291 bottomup: 1292 /* 1293 * A failed mmap() very likely causes application failure, 1294 * so fall back to the bottom-up function here. This scenario 1295 * can happen with large stack limits and large mmap() 1296 * allocations. 1297 */ 1298 mm->cached_hole_size = ~0UL; 1299 mm->free_area_cache = TASK_UNMAPPED_BASE; 1300 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1301 /* 1302 * Restore the topdown base: 1303 */ 1304 mm->free_area_cache = mm->mmap_base; 1305 mm->cached_hole_size = ~0UL; 1306 1307 return addr; 1308 } 1309 #endif 1310 1311 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1312 { 1313 /* 1314 * Is this a new hole at the highest possible address? 1315 */ 1316 if (addr > mm->free_area_cache) 1317 mm->free_area_cache = addr; 1318 1319 /* dont allow allocations above current base */ 1320 if (mm->free_area_cache > mm->mmap_base) 1321 mm->free_area_cache = mm->mmap_base; 1322 } 1323 1324 unsigned long 1325 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1326 unsigned long pgoff, unsigned long flags) 1327 { 1328 unsigned long ret; 1329 1330 if (!(flags & MAP_FIXED)) { 1331 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1332 1333 get_area = current->mm->get_unmapped_area; 1334 if (file && file->f_op && file->f_op->get_unmapped_area) 1335 get_area = file->f_op->get_unmapped_area; 1336 addr = get_area(file, addr, len, pgoff, flags); 1337 if (IS_ERR_VALUE(addr)) 1338 return addr; 1339 } 1340 1341 if (addr > TASK_SIZE - len) 1342 return -ENOMEM; 1343 if (addr & ~PAGE_MASK) 1344 return -EINVAL; 1345 if (file && is_file_hugepages(file)) { 1346 /* 1347 * Check if the given range is hugepage aligned, and 1348 * can be made suitable for hugepages. 1349 */ 1350 ret = prepare_hugepage_range(addr, len); 1351 } else { 1352 /* 1353 * Ensure that a normal request is not falling in a 1354 * reserved hugepage range. For some archs like IA-64, 1355 * there is a separate region for hugepages. 1356 */ 1357 ret = is_hugepage_only_range(current->mm, addr, len); 1358 } 1359 if (ret) 1360 return -EINVAL; 1361 return addr; 1362 } 1363 1364 EXPORT_SYMBOL(get_unmapped_area); 1365 1366 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1367 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1368 { 1369 struct vm_area_struct *vma = NULL; 1370 1371 if (mm) { 1372 /* Check the cache first. */ 1373 /* (Cache hit rate is typically around 35%.) */ 1374 vma = mm->mmap_cache; 1375 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1376 struct rb_node * rb_node; 1377 1378 rb_node = mm->mm_rb.rb_node; 1379 vma = NULL; 1380 1381 while (rb_node) { 1382 struct vm_area_struct * vma_tmp; 1383 1384 vma_tmp = rb_entry(rb_node, 1385 struct vm_area_struct, vm_rb); 1386 1387 if (vma_tmp->vm_end > addr) { 1388 vma = vma_tmp; 1389 if (vma_tmp->vm_start <= addr) 1390 break; 1391 rb_node = rb_node->rb_left; 1392 } else 1393 rb_node = rb_node->rb_right; 1394 } 1395 if (vma) 1396 mm->mmap_cache = vma; 1397 } 1398 } 1399 return vma; 1400 } 1401 1402 EXPORT_SYMBOL(find_vma); 1403 1404 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1405 struct vm_area_struct * 1406 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1407 struct vm_area_struct **pprev) 1408 { 1409 struct vm_area_struct *vma = NULL, *prev = NULL; 1410 struct rb_node * rb_node; 1411 if (!mm) 1412 goto out; 1413 1414 /* Guard against addr being lower than the first VMA */ 1415 vma = mm->mmap; 1416 1417 /* Go through the RB tree quickly. */ 1418 rb_node = mm->mm_rb.rb_node; 1419 1420 while (rb_node) { 1421 struct vm_area_struct *vma_tmp; 1422 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1423 1424 if (addr < vma_tmp->vm_end) { 1425 rb_node = rb_node->rb_left; 1426 } else { 1427 prev = vma_tmp; 1428 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1429 break; 1430 rb_node = rb_node->rb_right; 1431 } 1432 } 1433 1434 out: 1435 *pprev = prev; 1436 return prev ? prev->vm_next : vma; 1437 } 1438 1439 /* 1440 * Verify that the stack growth is acceptable and 1441 * update accounting. This is shared with both the 1442 * grow-up and grow-down cases. 1443 */ 1444 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1445 { 1446 struct mm_struct *mm = vma->vm_mm; 1447 struct rlimit *rlim = current->signal->rlim; 1448 1449 /* address space limit tests */ 1450 if (!may_expand_vm(mm, grow)) 1451 return -ENOMEM; 1452 1453 /* Stack limit test */ 1454 if (size > rlim[RLIMIT_STACK].rlim_cur) 1455 return -ENOMEM; 1456 1457 /* mlock limit tests */ 1458 if (vma->vm_flags & VM_LOCKED) { 1459 unsigned long locked; 1460 unsigned long limit; 1461 locked = mm->locked_vm + grow; 1462 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1463 if (locked > limit && !capable(CAP_IPC_LOCK)) 1464 return -ENOMEM; 1465 } 1466 1467 /* 1468 * Overcommit.. This must be the final test, as it will 1469 * update security statistics. 1470 */ 1471 if (security_vm_enough_memory(grow)) 1472 return -ENOMEM; 1473 1474 /* Ok, everything looks good - let it rip */ 1475 mm->total_vm += grow; 1476 if (vma->vm_flags & VM_LOCKED) 1477 mm->locked_vm += grow; 1478 __vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1479 return 0; 1480 } 1481 1482 #ifdef CONFIG_STACK_GROWSUP 1483 /* 1484 * vma is the first one with address > vma->vm_end. Have to extend vma. 1485 */ 1486 int expand_stack(struct vm_area_struct * vma, unsigned long address) 1487 { 1488 int error; 1489 1490 if (!(vma->vm_flags & VM_GROWSUP)) 1491 return -EFAULT; 1492 1493 /* 1494 * We must make sure the anon_vma is allocated 1495 * so that the anon_vma locking is not a noop. 1496 */ 1497 if (unlikely(anon_vma_prepare(vma))) 1498 return -ENOMEM; 1499 anon_vma_lock(vma); 1500 1501 /* 1502 * vma->vm_start/vm_end cannot change under us because the caller 1503 * is required to hold the mmap_sem in read mode. We need the 1504 * anon_vma lock to serialize against concurrent expand_stacks. 1505 */ 1506 address += 4 + PAGE_SIZE - 1; 1507 address &= PAGE_MASK; 1508 error = 0; 1509 1510 /* Somebody else might have raced and expanded it already */ 1511 if (address > vma->vm_end) { 1512 unsigned long size, grow; 1513 1514 size = address - vma->vm_start; 1515 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1516 1517 error = acct_stack_growth(vma, size, grow); 1518 if (!error) 1519 vma->vm_end = address; 1520 } 1521 anon_vma_unlock(vma); 1522 return error; 1523 } 1524 1525 struct vm_area_struct * 1526 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1527 { 1528 struct vm_area_struct *vma, *prev; 1529 1530 addr &= PAGE_MASK; 1531 vma = find_vma_prev(mm, addr, &prev); 1532 if (vma && (vma->vm_start <= addr)) 1533 return vma; 1534 if (!prev || expand_stack(prev, addr)) 1535 return NULL; 1536 if (prev->vm_flags & VM_LOCKED) { 1537 make_pages_present(addr, prev->vm_end); 1538 } 1539 return prev; 1540 } 1541 #else 1542 /* 1543 * vma is the first one with address < vma->vm_start. Have to extend vma. 1544 */ 1545 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1546 { 1547 int error; 1548 1549 /* 1550 * We must make sure the anon_vma is allocated 1551 * so that the anon_vma locking is not a noop. 1552 */ 1553 if (unlikely(anon_vma_prepare(vma))) 1554 return -ENOMEM; 1555 anon_vma_lock(vma); 1556 1557 /* 1558 * vma->vm_start/vm_end cannot change under us because the caller 1559 * is required to hold the mmap_sem in read mode. We need the 1560 * anon_vma lock to serialize against concurrent expand_stacks. 1561 */ 1562 address &= PAGE_MASK; 1563 error = 0; 1564 1565 /* Somebody else might have raced and expanded it already */ 1566 if (address < vma->vm_start) { 1567 unsigned long size, grow; 1568 1569 size = vma->vm_end - address; 1570 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1571 1572 error = acct_stack_growth(vma, size, grow); 1573 if (!error) { 1574 vma->vm_start = address; 1575 vma->vm_pgoff -= grow; 1576 } 1577 } 1578 anon_vma_unlock(vma); 1579 return error; 1580 } 1581 1582 struct vm_area_struct * 1583 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1584 { 1585 struct vm_area_struct * vma; 1586 unsigned long start; 1587 1588 addr &= PAGE_MASK; 1589 vma = find_vma(mm,addr); 1590 if (!vma) 1591 return NULL; 1592 if (vma->vm_start <= addr) 1593 return vma; 1594 if (!(vma->vm_flags & VM_GROWSDOWN)) 1595 return NULL; 1596 start = vma->vm_start; 1597 if (expand_stack(vma, addr)) 1598 return NULL; 1599 if (vma->vm_flags & VM_LOCKED) { 1600 make_pages_present(addr, start); 1601 } 1602 return vma; 1603 } 1604 #endif 1605 1606 /* Normal function to fix up a mapping 1607 * This function is the default for when an area has no specific 1608 * function. This may be used as part of a more specific routine. 1609 * 1610 * By the time this function is called, the area struct has been 1611 * removed from the process mapping list. 1612 */ 1613 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area) 1614 { 1615 size_t len = area->vm_end - area->vm_start; 1616 1617 area->vm_mm->total_vm -= len >> PAGE_SHIFT; 1618 if (area->vm_flags & VM_LOCKED) 1619 area->vm_mm->locked_vm -= len >> PAGE_SHIFT; 1620 vm_stat_unaccount(area); 1621 remove_vm_struct(area); 1622 } 1623 1624 /* 1625 * Update the VMA and inode share lists. 1626 * 1627 * Ok - we have the memory areas we should free on the 'free' list, 1628 * so release them, and do the vma updates. 1629 */ 1630 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1631 { 1632 do { 1633 struct vm_area_struct *next = vma->vm_next; 1634 unmap_vma(mm, vma); 1635 vma = next; 1636 } while (vma); 1637 validate_mm(mm); 1638 } 1639 1640 /* 1641 * Get rid of page table information in the indicated region. 1642 * 1643 * Called with the mm semaphore held. 1644 */ 1645 static void unmap_region(struct mm_struct *mm, 1646 struct vm_area_struct *vma, struct vm_area_struct *prev, 1647 unsigned long start, unsigned long end) 1648 { 1649 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1650 struct mmu_gather *tlb; 1651 unsigned long nr_accounted = 0; 1652 1653 lru_add_drain(); 1654 spin_lock(&mm->page_table_lock); 1655 tlb = tlb_gather_mmu(mm, 0); 1656 unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL); 1657 vm_unacct_memory(nr_accounted); 1658 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1659 next? next->vm_start: 0); 1660 tlb_finish_mmu(tlb, start, end); 1661 spin_unlock(&mm->page_table_lock); 1662 } 1663 1664 /* 1665 * Create a list of vma's touched by the unmap, removing them from the mm's 1666 * vma list as we go.. 1667 */ 1668 static void 1669 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1670 struct vm_area_struct *prev, unsigned long end) 1671 { 1672 struct vm_area_struct **insertion_point; 1673 struct vm_area_struct *tail_vma = NULL; 1674 unsigned long addr; 1675 1676 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1677 do { 1678 rb_erase(&vma->vm_rb, &mm->mm_rb); 1679 mm->map_count--; 1680 tail_vma = vma; 1681 vma = vma->vm_next; 1682 } while (vma && vma->vm_start < end); 1683 *insertion_point = vma; 1684 tail_vma->vm_next = NULL; 1685 if (mm->unmap_area == arch_unmap_area) 1686 addr = prev ? prev->vm_end : mm->mmap_base; 1687 else 1688 addr = vma ? vma->vm_start : mm->mmap_base; 1689 mm->unmap_area(mm, addr); 1690 mm->mmap_cache = NULL; /* Kill the cache. */ 1691 } 1692 1693 /* 1694 * Split a vma into two pieces at address 'addr', a new vma is allocated 1695 * either for the first part or the the tail. 1696 */ 1697 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1698 unsigned long addr, int new_below) 1699 { 1700 struct mempolicy *pol; 1701 struct vm_area_struct *new; 1702 1703 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1704 return -EINVAL; 1705 1706 if (mm->map_count >= sysctl_max_map_count) 1707 return -ENOMEM; 1708 1709 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1710 if (!new) 1711 return -ENOMEM; 1712 1713 /* most fields are the same, copy all, and then fixup */ 1714 *new = *vma; 1715 1716 if (new_below) 1717 new->vm_end = addr; 1718 else { 1719 new->vm_start = addr; 1720 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1721 } 1722 1723 pol = mpol_copy(vma_policy(vma)); 1724 if (IS_ERR(pol)) { 1725 kmem_cache_free(vm_area_cachep, new); 1726 return PTR_ERR(pol); 1727 } 1728 vma_set_policy(new, pol); 1729 1730 if (new->vm_file) 1731 get_file(new->vm_file); 1732 1733 if (new->vm_ops && new->vm_ops->open) 1734 new->vm_ops->open(new); 1735 1736 if (new_below) 1737 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1738 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1739 else 1740 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1741 1742 return 0; 1743 } 1744 1745 /* Munmap is split into 2 main parts -- this part which finds 1746 * what needs doing, and the areas themselves, which do the 1747 * work. This now handles partial unmappings. 1748 * Jeremy Fitzhardinge <jeremy@goop.org> 1749 */ 1750 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1751 { 1752 unsigned long end; 1753 struct vm_area_struct *vma, *prev, *last; 1754 1755 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1756 return -EINVAL; 1757 1758 if ((len = PAGE_ALIGN(len)) == 0) 1759 return -EINVAL; 1760 1761 /* Find the first overlapping VMA */ 1762 vma = find_vma_prev(mm, start, &prev); 1763 if (!vma) 1764 return 0; 1765 /* we have start < vma->vm_end */ 1766 1767 /* if it doesn't overlap, we have nothing.. */ 1768 end = start + len; 1769 if (vma->vm_start >= end) 1770 return 0; 1771 1772 /* 1773 * If we need to split any vma, do it now to save pain later. 1774 * 1775 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1776 * unmapped vm_area_struct will remain in use: so lower split_vma 1777 * places tmp vma above, and higher split_vma places tmp vma below. 1778 */ 1779 if (start > vma->vm_start) { 1780 int error = split_vma(mm, vma, start, 0); 1781 if (error) 1782 return error; 1783 prev = vma; 1784 } 1785 1786 /* Does it split the last one? */ 1787 last = find_vma(mm, end); 1788 if (last && end > last->vm_start) { 1789 int error = split_vma(mm, last, end, 1); 1790 if (error) 1791 return error; 1792 } 1793 vma = prev? prev->vm_next: mm->mmap; 1794 1795 /* 1796 * Remove the vma's, and unmap the actual pages 1797 */ 1798 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1799 unmap_region(mm, vma, prev, start, end); 1800 1801 /* Fix up all other VM information */ 1802 unmap_vma_list(mm, vma); 1803 1804 return 0; 1805 } 1806 1807 EXPORT_SYMBOL(do_munmap); 1808 1809 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1810 { 1811 int ret; 1812 struct mm_struct *mm = current->mm; 1813 1814 profile_munmap(addr); 1815 1816 down_write(&mm->mmap_sem); 1817 ret = do_munmap(mm, addr, len); 1818 up_write(&mm->mmap_sem); 1819 return ret; 1820 } 1821 1822 static inline void verify_mm_writelocked(struct mm_struct *mm) 1823 { 1824 #ifdef CONFIG_DEBUG_KERNEL 1825 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1826 WARN_ON(1); 1827 up_read(&mm->mmap_sem); 1828 } 1829 #endif 1830 } 1831 1832 /* 1833 * this is really a simplified "do_mmap". it only handles 1834 * anonymous maps. eventually we may be able to do some 1835 * brk-specific accounting here. 1836 */ 1837 unsigned long do_brk(unsigned long addr, unsigned long len) 1838 { 1839 struct mm_struct * mm = current->mm; 1840 struct vm_area_struct * vma, * prev; 1841 unsigned long flags; 1842 struct rb_node ** rb_link, * rb_parent; 1843 pgoff_t pgoff = addr >> PAGE_SHIFT; 1844 1845 len = PAGE_ALIGN(len); 1846 if (!len) 1847 return addr; 1848 1849 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1850 return -EINVAL; 1851 1852 /* 1853 * mlock MCL_FUTURE? 1854 */ 1855 if (mm->def_flags & VM_LOCKED) { 1856 unsigned long locked, lock_limit; 1857 locked = len >> PAGE_SHIFT; 1858 locked += mm->locked_vm; 1859 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1860 lock_limit >>= PAGE_SHIFT; 1861 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1862 return -EAGAIN; 1863 } 1864 1865 /* 1866 * mm->mmap_sem is required to protect against another thread 1867 * changing the mappings in case we sleep. 1868 */ 1869 verify_mm_writelocked(mm); 1870 1871 /* 1872 * Clear old maps. this also does some error checking for us 1873 */ 1874 munmap_back: 1875 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1876 if (vma && vma->vm_start < addr + len) { 1877 if (do_munmap(mm, addr, len)) 1878 return -ENOMEM; 1879 goto munmap_back; 1880 } 1881 1882 /* Check against address space limits *after* clearing old maps... */ 1883 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1884 return -ENOMEM; 1885 1886 if (mm->map_count > sysctl_max_map_count) 1887 return -ENOMEM; 1888 1889 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 1890 return -ENOMEM; 1891 1892 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1893 1894 /* Can we just expand an old private anonymous mapping? */ 1895 if (vma_merge(mm, prev, addr, addr + len, flags, 1896 NULL, NULL, pgoff, NULL)) 1897 goto out; 1898 1899 /* 1900 * create a vma struct for an anonymous mapping 1901 */ 1902 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1903 if (!vma) { 1904 vm_unacct_memory(len >> PAGE_SHIFT); 1905 return -ENOMEM; 1906 } 1907 memset(vma, 0, sizeof(*vma)); 1908 1909 vma->vm_mm = mm; 1910 vma->vm_start = addr; 1911 vma->vm_end = addr + len; 1912 vma->vm_pgoff = pgoff; 1913 vma->vm_flags = flags; 1914 vma->vm_page_prot = protection_map[flags & 0x0f]; 1915 vma_link(mm, vma, prev, rb_link, rb_parent); 1916 out: 1917 mm->total_vm += len >> PAGE_SHIFT; 1918 if (flags & VM_LOCKED) { 1919 mm->locked_vm += len >> PAGE_SHIFT; 1920 make_pages_present(addr, addr + len); 1921 } 1922 return addr; 1923 } 1924 1925 EXPORT_SYMBOL(do_brk); 1926 1927 /* Release all mmaps. */ 1928 void exit_mmap(struct mm_struct *mm) 1929 { 1930 struct mmu_gather *tlb; 1931 struct vm_area_struct *vma = mm->mmap; 1932 unsigned long nr_accounted = 0; 1933 unsigned long end; 1934 1935 lru_add_drain(); 1936 1937 spin_lock(&mm->page_table_lock); 1938 1939 flush_cache_mm(mm); 1940 tlb = tlb_gather_mmu(mm, 1); 1941 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 1942 end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL); 1943 vm_unacct_memory(nr_accounted); 1944 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 1945 tlb_finish_mmu(tlb, 0, end); 1946 1947 mm->mmap = mm->mmap_cache = NULL; 1948 mm->mm_rb = RB_ROOT; 1949 set_mm_counter(mm, rss, 0); 1950 mm->total_vm = 0; 1951 mm->locked_vm = 0; 1952 1953 spin_unlock(&mm->page_table_lock); 1954 1955 /* 1956 * Walk the list again, actually closing and freeing it 1957 * without holding any MM locks. 1958 */ 1959 while (vma) { 1960 struct vm_area_struct *next = vma->vm_next; 1961 remove_vm_struct(vma); 1962 vma = next; 1963 } 1964 1965 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 1966 } 1967 1968 /* Insert vm structure into process list sorted by address 1969 * and into the inode's i_mmap tree. If vm_file is non-NULL 1970 * then i_mmap_lock is taken here. 1971 */ 1972 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 1973 { 1974 struct vm_area_struct * __vma, * prev; 1975 struct rb_node ** rb_link, * rb_parent; 1976 1977 /* 1978 * The vm_pgoff of a purely anonymous vma should be irrelevant 1979 * until its first write fault, when page's anon_vma and index 1980 * are set. But now set the vm_pgoff it will almost certainly 1981 * end up with (unless mremap moves it elsewhere before that 1982 * first wfault), so /proc/pid/maps tells a consistent story. 1983 * 1984 * By setting it to reflect the virtual start address of the 1985 * vma, merges and splits can happen in a seamless way, just 1986 * using the existing file pgoff checks and manipulations. 1987 * Similarly in do_mmap_pgoff and in do_brk. 1988 */ 1989 if (!vma->vm_file) { 1990 BUG_ON(vma->anon_vma); 1991 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1992 } 1993 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 1994 if (__vma && __vma->vm_start < vma->vm_end) 1995 return -ENOMEM; 1996 if ((vma->vm_flags & VM_ACCOUNT) && 1997 security_vm_enough_memory(vma_pages(vma))) 1998 return -ENOMEM; 1999 vma_link(mm, vma, prev, rb_link, rb_parent); 2000 return 0; 2001 } 2002 2003 /* 2004 * Copy the vma structure to a new location in the same mm, 2005 * prior to moving page table entries, to effect an mremap move. 2006 */ 2007 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2008 unsigned long addr, unsigned long len, pgoff_t pgoff) 2009 { 2010 struct vm_area_struct *vma = *vmap; 2011 unsigned long vma_start = vma->vm_start; 2012 struct mm_struct *mm = vma->vm_mm; 2013 struct vm_area_struct *new_vma, *prev; 2014 struct rb_node **rb_link, *rb_parent; 2015 struct mempolicy *pol; 2016 2017 /* 2018 * If anonymous vma has not yet been faulted, update new pgoff 2019 * to match new location, to increase its chance of merging. 2020 */ 2021 if (!vma->vm_file && !vma->anon_vma) 2022 pgoff = addr >> PAGE_SHIFT; 2023 2024 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2025 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2026 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2027 if (new_vma) { 2028 /* 2029 * Source vma may have been merged into new_vma 2030 */ 2031 if (vma_start >= new_vma->vm_start && 2032 vma_start < new_vma->vm_end) 2033 *vmap = new_vma; 2034 } else { 2035 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 2036 if (new_vma) { 2037 *new_vma = *vma; 2038 pol = mpol_copy(vma_policy(vma)); 2039 if (IS_ERR(pol)) { 2040 kmem_cache_free(vm_area_cachep, new_vma); 2041 return NULL; 2042 } 2043 vma_set_policy(new_vma, pol); 2044 new_vma->vm_start = addr; 2045 new_vma->vm_end = addr + len; 2046 new_vma->vm_pgoff = pgoff; 2047 if (new_vma->vm_file) 2048 get_file(new_vma->vm_file); 2049 if (new_vma->vm_ops && new_vma->vm_ops->open) 2050 new_vma->vm_ops->open(new_vma); 2051 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2052 } 2053 } 2054 return new_vma; 2055 } 2056 2057 /* 2058 * Return true if the calling process may expand its vm space by the passed 2059 * number of pages 2060 */ 2061 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2062 { 2063 unsigned long cur = mm->total_vm; /* pages */ 2064 unsigned long lim; 2065 2066 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2067 2068 if (cur + npages > lim) 2069 return 0; 2070 return 1; 2071 } 2072