1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 #include <linux/memfd.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/cacheflush.h> 54 #include <asm/tlb.h> 55 #include <asm/mmu_context.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/mmap.h> 59 60 #include "internal.h" 61 62 #ifndef arch_mmap_check 63 #define arch_mmap_check(addr, len, flags) (0) 64 #endif 65 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 68 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 70 #endif 71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 75 #endif 76 77 static bool ignore_rlimit_data; 78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 79 80 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 81 void vma_set_page_prot(struct vm_area_struct *vma) 82 { 83 unsigned long vm_flags = vma->vm_flags; 84 pgprot_t vm_page_prot; 85 86 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 87 if (vma_wants_writenotify(vma, vm_page_prot)) { 88 vm_flags &= ~VM_SHARED; 89 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 90 } 91 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 92 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 93 } 94 95 /* 96 * check_brk_limits() - Use platform specific check of range & verify mlock 97 * limits. 98 * @addr: The address to check 99 * @len: The size of increase. 100 * 101 * Return: 0 on success. 102 */ 103 static int check_brk_limits(unsigned long addr, unsigned long len) 104 { 105 unsigned long mapped_addr; 106 107 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 108 if (IS_ERR_VALUE(mapped_addr)) 109 return mapped_addr; 110 111 return mlock_future_ok(current->mm, current->mm->def_flags, len) 112 ? 0 : -EAGAIN; 113 } 114 115 SYSCALL_DEFINE1(brk, unsigned long, brk) 116 { 117 unsigned long newbrk, oldbrk, origbrk; 118 struct mm_struct *mm = current->mm; 119 struct vm_area_struct *brkvma, *next = NULL; 120 unsigned long min_brk; 121 bool populate = false; 122 LIST_HEAD(uf); 123 struct vma_iterator vmi; 124 125 if (mmap_write_lock_killable(mm)) 126 return -EINTR; 127 128 origbrk = mm->brk; 129 130 #ifdef CONFIG_COMPAT_BRK 131 /* 132 * CONFIG_COMPAT_BRK can still be overridden by setting 133 * randomize_va_space to 2, which will still cause mm->start_brk 134 * to be arbitrarily shifted 135 */ 136 if (current->brk_randomized) 137 min_brk = mm->start_brk; 138 else 139 min_brk = mm->end_data; 140 #else 141 min_brk = mm->start_brk; 142 #endif 143 if (brk < min_brk) 144 goto out; 145 146 /* 147 * Check against rlimit here. If this check is done later after the test 148 * of oldbrk with newbrk then it can escape the test and let the data 149 * segment grow beyond its set limit the in case where the limit is 150 * not page aligned -Ram Gupta 151 */ 152 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 153 mm->end_data, mm->start_data)) 154 goto out; 155 156 newbrk = PAGE_ALIGN(brk); 157 oldbrk = PAGE_ALIGN(mm->brk); 158 if (oldbrk == newbrk) { 159 mm->brk = brk; 160 goto success; 161 } 162 163 /* Always allow shrinking brk. */ 164 if (brk <= mm->brk) { 165 /* Search one past newbrk */ 166 vma_iter_init(&vmi, mm, newbrk); 167 brkvma = vma_find(&vmi, oldbrk); 168 if (!brkvma || brkvma->vm_start >= oldbrk) 169 goto out; /* mapping intersects with an existing non-brk vma. */ 170 /* 171 * mm->brk must be protected by write mmap_lock. 172 * do_vmi_align_munmap() will drop the lock on success, so 173 * update it before calling do_vma_munmap(). 174 */ 175 mm->brk = brk; 176 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf, 177 /* unlock = */ true)) 178 goto out; 179 180 goto success_unlocked; 181 } 182 183 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 184 goto out; 185 186 /* 187 * Only check if the next VMA is within the stack_guard_gap of the 188 * expansion area 189 */ 190 vma_iter_init(&vmi, mm, oldbrk); 191 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 192 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 193 goto out; 194 195 brkvma = vma_prev_limit(&vmi, mm->start_brk); 196 /* Ok, looks good - let it rip. */ 197 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 198 goto out; 199 200 mm->brk = brk; 201 if (mm->def_flags & VM_LOCKED) 202 populate = true; 203 204 success: 205 mmap_write_unlock(mm); 206 success_unlocked: 207 userfaultfd_unmap_complete(mm, &uf); 208 if (populate) 209 mm_populate(oldbrk, newbrk - oldbrk); 210 return brk; 211 212 out: 213 mm->brk = origbrk; 214 mmap_write_unlock(mm); 215 return origbrk; 216 } 217 218 /* 219 * If a hint addr is less than mmap_min_addr change hint to be as 220 * low as possible but still greater than mmap_min_addr 221 */ 222 static inline unsigned long round_hint_to_min(unsigned long hint) 223 { 224 hint &= PAGE_MASK; 225 if (((void *)hint != NULL) && 226 (hint < mmap_min_addr)) 227 return PAGE_ALIGN(mmap_min_addr); 228 return hint; 229 } 230 231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 232 unsigned long bytes) 233 { 234 unsigned long locked_pages, limit_pages; 235 236 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 237 return true; 238 239 locked_pages = bytes >> PAGE_SHIFT; 240 locked_pages += mm->locked_vm; 241 242 limit_pages = rlimit(RLIMIT_MEMLOCK); 243 limit_pages >>= PAGE_SHIFT; 244 245 return locked_pages <= limit_pages; 246 } 247 248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 249 { 250 if (S_ISREG(inode->i_mode)) 251 return MAX_LFS_FILESIZE; 252 253 if (S_ISBLK(inode->i_mode)) 254 return MAX_LFS_FILESIZE; 255 256 if (S_ISSOCK(inode->i_mode)) 257 return MAX_LFS_FILESIZE; 258 259 /* Special "we do even unsigned file positions" case */ 260 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET) 261 return 0; 262 263 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 264 return ULONG_MAX; 265 } 266 267 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 268 unsigned long pgoff, unsigned long len) 269 { 270 u64 maxsize = file_mmap_size_max(file, inode); 271 272 if (maxsize && len > maxsize) 273 return false; 274 maxsize -= len; 275 if (pgoff > maxsize >> PAGE_SHIFT) 276 return false; 277 return true; 278 } 279 280 /** 281 * do_mmap() - Perform a userland memory mapping into the current process 282 * address space of length @len with protection bits @prot, mmap flags @flags 283 * (from which VMA flags will be inferred), and any additional VMA flags to 284 * apply @vm_flags. If this is a file-backed mapping then the file is specified 285 * in @file and page offset into the file via @pgoff. 286 * 287 * This function does not perform security checks on the file and assumes, if 288 * @uf is non-NULL, the caller has provided a list head to track unmap events 289 * for userfaultfd @uf. 290 * 291 * It also simply indicates whether memory population is required by setting 292 * @populate, which must be non-NULL, expecting the caller to actually perform 293 * this task itself if appropriate. 294 * 295 * This function will invoke architecture-specific (and if provided and 296 * relevant, file system-specific) logic to determine the most appropriate 297 * unmapped area in which to place the mapping if not MAP_FIXED. 298 * 299 * Callers which require userland mmap() behaviour should invoke vm_mmap(), 300 * which is also exported for module use. 301 * 302 * Those which require this behaviour less security checks, userfaultfd and 303 * populate behaviour, and who handle the mmap write lock themselves, should 304 * call this function. 305 * 306 * Note that the returned address may reside within a merged VMA if an 307 * appropriate merge were to take place, so it doesn't necessarily specify the 308 * start of a VMA, rather only the start of a valid mapped range of length 309 * @len bytes, rounded down to the nearest page size. 310 * 311 * The caller must write-lock current->mm->mmap_lock. 312 * 313 * @file: An optional struct file pointer describing the file which is to be 314 * mapped, if a file-backed mapping. 315 * @addr: If non-zero, hints at (or if @flags has MAP_FIXED set, specifies) the 316 * address at which to perform this mapping. See mmap (2) for details. Must be 317 * page-aligned. 318 * @len: The length of the mapping. Will be page-aligned and must be at least 1 319 * page in size. 320 * @prot: Protection bits describing access required to the mapping. See mmap 321 * (2) for details. 322 * @flags: Flags specifying how the mapping should be performed, see mmap (2) 323 * for details. 324 * @vm_flags: VMA flags which should be set by default, or 0 otherwise. 325 * @pgoff: Page offset into the @file if file-backed, should be 0 otherwise. 326 * @populate: A pointer to a value which will be set to 0 if no population of 327 * the range is required, or the number of bytes to populate if it is. Must be 328 * non-NULL. See mmap (2) for details as to under what circumstances population 329 * of the range occurs. 330 * @uf: An optional pointer to a list head to track userfaultfd unmap events 331 * should unmapping events arise. If provided, it is up to the caller to manage 332 * this. 333 * 334 * Returns: Either an error, or the address at which the requested mapping has 335 * been performed. 336 */ 337 unsigned long do_mmap(struct file *file, unsigned long addr, 338 unsigned long len, unsigned long prot, 339 unsigned long flags, vm_flags_t vm_flags, 340 unsigned long pgoff, unsigned long *populate, 341 struct list_head *uf) 342 { 343 struct mm_struct *mm = current->mm; 344 int pkey = 0; 345 346 *populate = 0; 347 348 mmap_assert_write_locked(mm); 349 350 if (!len) 351 return -EINVAL; 352 353 /* 354 * Does the application expect PROT_READ to imply PROT_EXEC? 355 * 356 * (the exception is when the underlying filesystem is noexec 357 * mounted, in which case we don't add PROT_EXEC.) 358 */ 359 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 360 if (!(file && path_noexec(&file->f_path))) 361 prot |= PROT_EXEC; 362 363 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 364 if (flags & MAP_FIXED_NOREPLACE) 365 flags |= MAP_FIXED; 366 367 if (!(flags & MAP_FIXED)) 368 addr = round_hint_to_min(addr); 369 370 /* Careful about overflows.. */ 371 len = PAGE_ALIGN(len); 372 if (!len) 373 return -ENOMEM; 374 375 /* offset overflow? */ 376 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 377 return -EOVERFLOW; 378 379 /* Too many mappings? */ 380 if (mm->map_count > sysctl_max_map_count) 381 return -ENOMEM; 382 383 /* 384 * addr is returned from get_unmapped_area, 385 * There are two cases: 386 * 1> MAP_FIXED == false 387 * unallocated memory, no need to check sealing. 388 * 1> MAP_FIXED == true 389 * sealing is checked inside mmap_region when 390 * do_vmi_munmap is called. 391 */ 392 393 if (prot == PROT_EXEC) { 394 pkey = execute_only_pkey(mm); 395 if (pkey < 0) 396 pkey = 0; 397 } 398 399 /* Do simple checking here so the lower-level routines won't have 400 * to. we assume access permissions have been handled by the open 401 * of the memory object, so we don't do any here. 402 */ 403 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) | 404 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 405 406 /* Obtain the address to map to. we verify (or select) it and ensure 407 * that it represents a valid section of the address space. 408 */ 409 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 410 if (IS_ERR_VALUE(addr)) 411 return addr; 412 413 if (flags & MAP_FIXED_NOREPLACE) { 414 if (find_vma_intersection(mm, addr, addr + len)) 415 return -EEXIST; 416 } 417 418 if (flags & MAP_LOCKED) 419 if (!can_do_mlock()) 420 return -EPERM; 421 422 if (!mlock_future_ok(mm, vm_flags, len)) 423 return -EAGAIN; 424 425 if (file) { 426 struct inode *inode = file_inode(file); 427 unsigned long flags_mask; 428 int err; 429 430 if (!file_mmap_ok(file, inode, pgoff, len)) 431 return -EOVERFLOW; 432 433 flags_mask = LEGACY_MAP_MASK; 434 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 435 flags_mask |= MAP_SYNC; 436 437 switch (flags & MAP_TYPE) { 438 case MAP_SHARED: 439 /* 440 * Force use of MAP_SHARED_VALIDATE with non-legacy 441 * flags. E.g. MAP_SYNC is dangerous to use with 442 * MAP_SHARED as you don't know which consistency model 443 * you will get. We silently ignore unsupported flags 444 * with MAP_SHARED to preserve backward compatibility. 445 */ 446 flags &= LEGACY_MAP_MASK; 447 fallthrough; 448 case MAP_SHARED_VALIDATE: 449 if (flags & ~flags_mask) 450 return -EOPNOTSUPP; 451 if (prot & PROT_WRITE) { 452 if (!(file->f_mode & FMODE_WRITE)) 453 return -EACCES; 454 if (IS_SWAPFILE(file->f_mapping->host)) 455 return -ETXTBSY; 456 } 457 458 /* 459 * Make sure we don't allow writing to an append-only 460 * file.. 461 */ 462 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 463 return -EACCES; 464 465 vm_flags |= VM_SHARED | VM_MAYSHARE; 466 if (!(file->f_mode & FMODE_WRITE)) 467 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 468 fallthrough; 469 case MAP_PRIVATE: 470 if (!(file->f_mode & FMODE_READ)) 471 return -EACCES; 472 if (path_noexec(&file->f_path)) { 473 if (vm_flags & VM_EXEC) 474 return -EPERM; 475 vm_flags &= ~VM_MAYEXEC; 476 } 477 478 if (!file->f_op->mmap) 479 return -ENODEV; 480 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 481 return -EINVAL; 482 break; 483 484 default: 485 return -EINVAL; 486 } 487 488 /* 489 * Check to see if we are violating any seals and update VMA 490 * flags if necessary to avoid future seal violations. 491 */ 492 err = memfd_check_seals_mmap(file, &vm_flags); 493 if (err) 494 return (unsigned long)err; 495 } else { 496 switch (flags & MAP_TYPE) { 497 case MAP_SHARED: 498 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 499 return -EINVAL; 500 /* 501 * Ignore pgoff. 502 */ 503 pgoff = 0; 504 vm_flags |= VM_SHARED | VM_MAYSHARE; 505 break; 506 case MAP_DROPPABLE: 507 if (VM_DROPPABLE == VM_NONE) 508 return -ENOTSUPP; 509 /* 510 * A locked or stack area makes no sense to be droppable. 511 * 512 * Also, since droppable pages can just go away at any time 513 * it makes no sense to copy them on fork or dump them. 514 * 515 * And don't attempt to combine with hugetlb for now. 516 */ 517 if (flags & (MAP_LOCKED | MAP_HUGETLB)) 518 return -EINVAL; 519 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP)) 520 return -EINVAL; 521 522 vm_flags |= VM_DROPPABLE; 523 524 /* 525 * If the pages can be dropped, then it doesn't make 526 * sense to reserve them. 527 */ 528 vm_flags |= VM_NORESERVE; 529 530 /* 531 * Likewise, they're volatile enough that they 532 * shouldn't survive forks or coredumps. 533 */ 534 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP; 535 fallthrough; 536 case MAP_PRIVATE: 537 /* 538 * Set pgoff according to addr for anon_vma. 539 */ 540 pgoff = addr >> PAGE_SHIFT; 541 break; 542 default: 543 return -EINVAL; 544 } 545 } 546 547 /* 548 * Set 'VM_NORESERVE' if we should not account for the 549 * memory use of this mapping. 550 */ 551 if (flags & MAP_NORESERVE) { 552 /* We honor MAP_NORESERVE if allowed to overcommit */ 553 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 554 vm_flags |= VM_NORESERVE; 555 556 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 557 if (file && is_file_hugepages(file)) 558 vm_flags |= VM_NORESERVE; 559 } 560 561 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 562 if (!IS_ERR_VALUE(addr) && 563 ((vm_flags & VM_LOCKED) || 564 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 565 *populate = len; 566 return addr; 567 } 568 569 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 570 unsigned long prot, unsigned long flags, 571 unsigned long fd, unsigned long pgoff) 572 { 573 struct file *file = NULL; 574 unsigned long retval; 575 576 if (!(flags & MAP_ANONYMOUS)) { 577 audit_mmap_fd(fd, flags); 578 file = fget(fd); 579 if (!file) 580 return -EBADF; 581 if (is_file_hugepages(file)) { 582 len = ALIGN(len, huge_page_size(hstate_file(file))); 583 } else if (unlikely(flags & MAP_HUGETLB)) { 584 retval = -EINVAL; 585 goto out_fput; 586 } 587 } else if (flags & MAP_HUGETLB) { 588 struct hstate *hs; 589 590 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 591 if (!hs) 592 return -EINVAL; 593 594 len = ALIGN(len, huge_page_size(hs)); 595 /* 596 * VM_NORESERVE is used because the reservations will be 597 * taken when vm_ops->mmap() is called 598 */ 599 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 600 VM_NORESERVE, 601 HUGETLB_ANONHUGE_INODE, 602 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 603 if (IS_ERR(file)) 604 return PTR_ERR(file); 605 } 606 607 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 608 out_fput: 609 if (file) 610 fput(file); 611 return retval; 612 } 613 614 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 615 unsigned long, prot, unsigned long, flags, 616 unsigned long, fd, unsigned long, pgoff) 617 { 618 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 619 } 620 621 #ifdef __ARCH_WANT_SYS_OLD_MMAP 622 struct mmap_arg_struct { 623 unsigned long addr; 624 unsigned long len; 625 unsigned long prot; 626 unsigned long flags; 627 unsigned long fd; 628 unsigned long offset; 629 }; 630 631 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 632 { 633 struct mmap_arg_struct a; 634 635 if (copy_from_user(&a, arg, sizeof(a))) 636 return -EFAULT; 637 if (offset_in_page(a.offset)) 638 return -EINVAL; 639 640 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 641 a.offset >> PAGE_SHIFT); 642 } 643 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 644 645 /* 646 * Determine if the allocation needs to ensure that there is no 647 * existing mapping within it's guard gaps, for use as start_gap. 648 */ 649 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags) 650 { 651 if (vm_flags & VM_SHADOW_STACK) 652 return PAGE_SIZE; 653 654 return 0; 655 } 656 657 /* 658 * Search for an unmapped address range. 659 * 660 * We are looking for a range that: 661 * - does not intersect with any VMA; 662 * - is contained within the [low_limit, high_limit) interval; 663 * - is at least the desired size. 664 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 665 */ 666 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 667 { 668 unsigned long addr; 669 670 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 671 addr = unmapped_area_topdown(info); 672 else 673 addr = unmapped_area(info); 674 675 trace_vm_unmapped_area(addr, info); 676 return addr; 677 } 678 679 /* Get an address range which is currently unmapped. 680 * For shmat() with addr=0. 681 * 682 * Ugly calling convention alert: 683 * Return value with the low bits set means error value, 684 * ie 685 * if (ret & ~PAGE_MASK) 686 * error = ret; 687 * 688 * This function "knows" that -ENOMEM has the bits set. 689 */ 690 unsigned long 691 generic_get_unmapped_area(struct file *filp, unsigned long addr, 692 unsigned long len, unsigned long pgoff, 693 unsigned long flags, vm_flags_t vm_flags) 694 { 695 struct mm_struct *mm = current->mm; 696 struct vm_area_struct *vma, *prev; 697 struct vm_unmapped_area_info info = {}; 698 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 699 700 if (len > mmap_end - mmap_min_addr) 701 return -ENOMEM; 702 703 if (flags & MAP_FIXED) 704 return addr; 705 706 if (addr) { 707 addr = PAGE_ALIGN(addr); 708 vma = find_vma_prev(mm, addr, &prev); 709 if (mmap_end - len >= addr && addr >= mmap_min_addr && 710 (!vma || addr + len <= vm_start_gap(vma)) && 711 (!prev || addr >= vm_end_gap(prev))) 712 return addr; 713 } 714 715 info.length = len; 716 info.low_limit = mm->mmap_base; 717 info.high_limit = mmap_end; 718 info.start_gap = stack_guard_placement(vm_flags); 719 if (filp && is_file_hugepages(filp)) 720 info.align_mask = huge_page_mask_align(filp); 721 return vm_unmapped_area(&info); 722 } 723 724 #ifndef HAVE_ARCH_UNMAPPED_AREA 725 unsigned long 726 arch_get_unmapped_area(struct file *filp, unsigned long addr, 727 unsigned long len, unsigned long pgoff, 728 unsigned long flags, vm_flags_t vm_flags) 729 { 730 return generic_get_unmapped_area(filp, addr, len, pgoff, flags, 731 vm_flags); 732 } 733 #endif 734 735 /* 736 * This mmap-allocator allocates new areas top-down from below the 737 * stack's low limit (the base): 738 */ 739 unsigned long 740 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 741 unsigned long len, unsigned long pgoff, 742 unsigned long flags, vm_flags_t vm_flags) 743 { 744 struct vm_area_struct *vma, *prev; 745 struct mm_struct *mm = current->mm; 746 struct vm_unmapped_area_info info = {}; 747 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 748 749 /* requested length too big for entire address space */ 750 if (len > mmap_end - mmap_min_addr) 751 return -ENOMEM; 752 753 if (flags & MAP_FIXED) 754 return addr; 755 756 /* requesting a specific address */ 757 if (addr) { 758 addr = PAGE_ALIGN(addr); 759 vma = find_vma_prev(mm, addr, &prev); 760 if (mmap_end - len >= addr && addr >= mmap_min_addr && 761 (!vma || addr + len <= vm_start_gap(vma)) && 762 (!prev || addr >= vm_end_gap(prev))) 763 return addr; 764 } 765 766 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 767 info.length = len; 768 info.low_limit = PAGE_SIZE; 769 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 770 info.start_gap = stack_guard_placement(vm_flags); 771 if (filp && is_file_hugepages(filp)) 772 info.align_mask = huge_page_mask_align(filp); 773 addr = vm_unmapped_area(&info); 774 775 /* 776 * A failed mmap() very likely causes application failure, 777 * so fall back to the bottom-up function here. This scenario 778 * can happen with large stack limits and large mmap() 779 * allocations. 780 */ 781 if (offset_in_page(addr)) { 782 VM_BUG_ON(addr != -ENOMEM); 783 info.flags = 0; 784 info.low_limit = TASK_UNMAPPED_BASE; 785 info.high_limit = mmap_end; 786 addr = vm_unmapped_area(&info); 787 } 788 789 return addr; 790 } 791 792 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 793 unsigned long 794 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 795 unsigned long len, unsigned long pgoff, 796 unsigned long flags, vm_flags_t vm_flags) 797 { 798 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags, 799 vm_flags); 800 } 801 #endif 802 803 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 804 unsigned long addr, unsigned long len, 805 unsigned long pgoff, unsigned long flags, 806 vm_flags_t vm_flags) 807 { 808 if (test_bit(MMF_TOPDOWN, &mm->flags)) 809 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, 810 flags, vm_flags); 811 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags); 812 } 813 814 unsigned long 815 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 816 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 817 { 818 unsigned long (*get_area)(struct file *, unsigned long, 819 unsigned long, unsigned long, unsigned long) 820 = NULL; 821 822 unsigned long error = arch_mmap_check(addr, len, flags); 823 if (error) 824 return error; 825 826 /* Careful about overflows.. */ 827 if (len > TASK_SIZE) 828 return -ENOMEM; 829 830 if (file) { 831 if (file->f_op->get_unmapped_area) 832 get_area = file->f_op->get_unmapped_area; 833 } else if (flags & MAP_SHARED) { 834 /* 835 * mmap_region() will call shmem_zero_setup() to create a file, 836 * so use shmem's get_unmapped_area in case it can be huge. 837 */ 838 get_area = shmem_get_unmapped_area; 839 } 840 841 /* Always treat pgoff as zero for anonymous memory. */ 842 if (!file) 843 pgoff = 0; 844 845 if (get_area) { 846 addr = get_area(file, addr, len, pgoff, flags); 847 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file 848 && !addr /* no hint */ 849 && IS_ALIGNED(len, PMD_SIZE)) { 850 /* Ensures that larger anonymous mappings are THP aligned. */ 851 addr = thp_get_unmapped_area_vmflags(file, addr, len, 852 pgoff, flags, vm_flags); 853 } else { 854 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 855 pgoff, flags, vm_flags); 856 } 857 if (IS_ERR_VALUE(addr)) 858 return addr; 859 860 if (addr > TASK_SIZE - len) 861 return -ENOMEM; 862 if (offset_in_page(addr)) 863 return -EINVAL; 864 865 error = security_mmap_addr(addr); 866 return error ? error : addr; 867 } 868 869 unsigned long 870 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 871 unsigned long addr, unsigned long len, 872 unsigned long pgoff, unsigned long flags) 873 { 874 if (test_bit(MMF_TOPDOWN, &mm->flags)) 875 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0); 876 return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0); 877 } 878 EXPORT_SYMBOL(mm_get_unmapped_area); 879 880 /** 881 * find_vma_intersection() - Look up the first VMA which intersects the interval 882 * @mm: The process address space. 883 * @start_addr: The inclusive start user address. 884 * @end_addr: The exclusive end user address. 885 * 886 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 887 * start_addr < end_addr. 888 */ 889 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 890 unsigned long start_addr, 891 unsigned long end_addr) 892 { 893 unsigned long index = start_addr; 894 895 mmap_assert_locked(mm); 896 return mt_find(&mm->mm_mt, &index, end_addr - 1); 897 } 898 EXPORT_SYMBOL(find_vma_intersection); 899 900 /** 901 * find_vma() - Find the VMA for a given address, or the next VMA. 902 * @mm: The mm_struct to check 903 * @addr: The address 904 * 905 * Returns: The VMA associated with addr, or the next VMA. 906 * May return %NULL in the case of no VMA at addr or above. 907 */ 908 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 909 { 910 unsigned long index = addr; 911 912 mmap_assert_locked(mm); 913 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 914 } 915 EXPORT_SYMBOL(find_vma); 916 917 /** 918 * find_vma_prev() - Find the VMA for a given address, or the next vma and 919 * set %pprev to the previous VMA, if any. 920 * @mm: The mm_struct to check 921 * @addr: The address 922 * @pprev: The pointer to set to the previous VMA 923 * 924 * Note that RCU lock is missing here since the external mmap_lock() is used 925 * instead. 926 * 927 * Returns: The VMA associated with @addr, or the next vma. 928 * May return %NULL in the case of no vma at addr or above. 929 */ 930 struct vm_area_struct * 931 find_vma_prev(struct mm_struct *mm, unsigned long addr, 932 struct vm_area_struct **pprev) 933 { 934 struct vm_area_struct *vma; 935 VMA_ITERATOR(vmi, mm, addr); 936 937 vma = vma_iter_load(&vmi); 938 *pprev = vma_prev(&vmi); 939 if (!vma) 940 vma = vma_next(&vmi); 941 return vma; 942 } 943 944 /* enforced gap between the expanding stack and other mappings. */ 945 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 946 947 static int __init cmdline_parse_stack_guard_gap(char *p) 948 { 949 unsigned long val; 950 char *endptr; 951 952 val = simple_strtoul(p, &endptr, 10); 953 if (!*endptr) 954 stack_guard_gap = val << PAGE_SHIFT; 955 956 return 1; 957 } 958 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 959 960 #ifdef CONFIG_STACK_GROWSUP 961 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 962 { 963 return expand_upwards(vma, address); 964 } 965 966 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 967 { 968 struct vm_area_struct *vma, *prev; 969 970 addr &= PAGE_MASK; 971 vma = find_vma_prev(mm, addr, &prev); 972 if (vma && (vma->vm_start <= addr)) 973 return vma; 974 if (!prev) 975 return NULL; 976 if (expand_stack_locked(prev, addr)) 977 return NULL; 978 if (prev->vm_flags & VM_LOCKED) 979 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 980 return prev; 981 } 982 #else 983 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 984 { 985 return expand_downwards(vma, address); 986 } 987 988 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 989 { 990 struct vm_area_struct *vma; 991 unsigned long start; 992 993 addr &= PAGE_MASK; 994 vma = find_vma(mm, addr); 995 if (!vma) 996 return NULL; 997 if (vma->vm_start <= addr) 998 return vma; 999 start = vma->vm_start; 1000 if (expand_stack_locked(vma, addr)) 1001 return NULL; 1002 if (vma->vm_flags & VM_LOCKED) 1003 populate_vma_page_range(vma, addr, start, NULL); 1004 return vma; 1005 } 1006 #endif 1007 1008 #if defined(CONFIG_STACK_GROWSUP) 1009 1010 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 1011 #define vma_expand_down(vma, addr) (-EFAULT) 1012 1013 #else 1014 1015 #define vma_expand_up(vma,addr) (-EFAULT) 1016 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 1017 1018 #endif 1019 1020 /* 1021 * expand_stack(): legacy interface for page faulting. Don't use unless 1022 * you have to. 1023 * 1024 * This is called with the mm locked for reading, drops the lock, takes 1025 * the lock for writing, tries to look up a vma again, expands it if 1026 * necessary, and downgrades the lock to reading again. 1027 * 1028 * If no vma is found or it can't be expanded, it returns NULL and has 1029 * dropped the lock. 1030 */ 1031 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 1032 { 1033 struct vm_area_struct *vma, *prev; 1034 1035 mmap_read_unlock(mm); 1036 if (mmap_write_lock_killable(mm)) 1037 return NULL; 1038 1039 vma = find_vma_prev(mm, addr, &prev); 1040 if (vma && vma->vm_start <= addr) 1041 goto success; 1042 1043 if (prev && !vma_expand_up(prev, addr)) { 1044 vma = prev; 1045 goto success; 1046 } 1047 1048 if (vma && !vma_expand_down(vma, addr)) 1049 goto success; 1050 1051 mmap_write_unlock(mm); 1052 return NULL; 1053 1054 success: 1055 mmap_write_downgrade(mm); 1056 return vma; 1057 } 1058 1059 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 1060 * @mm: The mm_struct 1061 * @start: The start address to munmap 1062 * @len: The length to be munmapped. 1063 * @uf: The userfaultfd list_head 1064 * 1065 * Return: 0 on success, error otherwise. 1066 */ 1067 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 1068 struct list_head *uf) 1069 { 1070 VMA_ITERATOR(vmi, mm, start); 1071 1072 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 1073 } 1074 1075 /** 1076 * mmap_region() - Actually perform the userland mapping of a VMA into 1077 * current->mm with known, aligned and overflow-checked @addr and @len, and 1078 * correctly determined VMA flags @vm_flags and page offset @pgoff. 1079 * 1080 * This is an internal memory management function, and should not be used 1081 * directly. 1082 * 1083 * The caller must write-lock current->mm->mmap_lock. 1084 * 1085 * @file: If a file-backed mapping, a pointer to the struct file describing the 1086 * file to be mapped, otherwise NULL. 1087 * @addr: The page-aligned address at which to perform the mapping. 1088 * @len: The page-aligned, non-zero, length of the mapping. 1089 * @vm_flags: The VMA flags which should be applied to the mapping. 1090 * @pgoff: If @file is specified, the page offset into the file, if not then 1091 * the virtual page offset in memory of the anonymous mapping. 1092 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 1093 * events. 1094 * 1095 * Returns: Either an error, or the address at which the requested mapping has 1096 * been performed. 1097 */ 1098 unsigned long mmap_region(struct file *file, unsigned long addr, 1099 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1100 struct list_head *uf) 1101 { 1102 unsigned long ret; 1103 bool writable_file_mapping = false; 1104 1105 mmap_assert_write_locked(current->mm); 1106 1107 /* Check to see if MDWE is applicable. */ 1108 if (map_deny_write_exec(vm_flags, vm_flags)) 1109 return -EACCES; 1110 1111 /* Allow architectures to sanity-check the vm_flags. */ 1112 if (!arch_validate_flags(vm_flags)) 1113 return -EINVAL; 1114 1115 /* Map writable and ensure this isn't a sealed memfd. */ 1116 if (file && is_shared_maywrite(vm_flags)) { 1117 int error = mapping_map_writable(file->f_mapping); 1118 1119 if (error) 1120 return error; 1121 writable_file_mapping = true; 1122 } 1123 1124 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 1125 1126 /* Clear our write mapping regardless of error. */ 1127 if (writable_file_mapping) 1128 mapping_unmap_writable(file->f_mapping); 1129 1130 validate_mm(current->mm); 1131 return ret; 1132 } 1133 1134 int vm_munmap(unsigned long start, size_t len) 1135 { 1136 return __vm_munmap(start, len, false); 1137 } 1138 EXPORT_SYMBOL(vm_munmap); 1139 1140 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1141 { 1142 addr = untagged_addr(addr); 1143 return __vm_munmap(addr, len, true); 1144 } 1145 1146 1147 /* 1148 * Emulation of deprecated remap_file_pages() syscall. 1149 */ 1150 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 1151 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 1152 { 1153 1154 struct mm_struct *mm = current->mm; 1155 struct vm_area_struct *vma; 1156 unsigned long populate = 0; 1157 unsigned long ret = -EINVAL; 1158 struct file *file; 1159 vm_flags_t vm_flags; 1160 1161 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 1162 current->comm, current->pid); 1163 1164 if (prot) 1165 return ret; 1166 start = start & PAGE_MASK; 1167 size = size & PAGE_MASK; 1168 1169 if (start + size <= start) 1170 return ret; 1171 1172 /* Does pgoff wrap? */ 1173 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 1174 return ret; 1175 1176 if (mmap_read_lock_killable(mm)) 1177 return -EINTR; 1178 1179 /* 1180 * Look up VMA under read lock first so we can perform the security 1181 * without holding locks (which can be problematic). We reacquire a 1182 * write lock later and check nothing changed underneath us. 1183 */ 1184 vma = vma_lookup(mm, start); 1185 1186 if (!vma || !(vma->vm_flags & VM_SHARED)) { 1187 mmap_read_unlock(mm); 1188 return -EINVAL; 1189 } 1190 1191 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 1192 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 1193 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 1194 1195 flags &= MAP_NONBLOCK; 1196 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 1197 if (vma->vm_flags & VM_LOCKED) 1198 flags |= MAP_LOCKED; 1199 1200 /* Save vm_flags used to calculate prot and flags, and recheck later. */ 1201 vm_flags = vma->vm_flags; 1202 file = get_file(vma->vm_file); 1203 1204 mmap_read_unlock(mm); 1205 1206 /* Call outside mmap_lock to be consistent with other callers. */ 1207 ret = security_mmap_file(file, prot, flags); 1208 if (ret) { 1209 fput(file); 1210 return ret; 1211 } 1212 1213 ret = -EINVAL; 1214 1215 /* OK security check passed, take write lock + let it rip. */ 1216 if (mmap_write_lock_killable(mm)) { 1217 fput(file); 1218 return -EINTR; 1219 } 1220 1221 vma = vma_lookup(mm, start); 1222 1223 if (!vma) 1224 goto out; 1225 1226 /* Make sure things didn't change under us. */ 1227 if (vma->vm_flags != vm_flags) 1228 goto out; 1229 if (vma->vm_file != file) 1230 goto out; 1231 1232 if (start + size > vma->vm_end) { 1233 VMA_ITERATOR(vmi, mm, vma->vm_end); 1234 struct vm_area_struct *next, *prev = vma; 1235 1236 for_each_vma_range(vmi, next, start + size) { 1237 /* hole between vmas ? */ 1238 if (next->vm_start != prev->vm_end) 1239 goto out; 1240 1241 if (next->vm_file != vma->vm_file) 1242 goto out; 1243 1244 if (next->vm_flags != vma->vm_flags) 1245 goto out; 1246 1247 if (start + size <= next->vm_end) 1248 break; 1249 1250 prev = next; 1251 } 1252 1253 if (!next) 1254 goto out; 1255 } 1256 1257 ret = do_mmap(vma->vm_file, start, size, 1258 prot, flags, 0, pgoff, &populate, NULL); 1259 out: 1260 mmap_write_unlock(mm); 1261 fput(file); 1262 if (populate) 1263 mm_populate(ret, populate); 1264 if (!IS_ERR_VALUE(ret)) 1265 ret = 0; 1266 return ret; 1267 } 1268 1269 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 1270 { 1271 struct mm_struct *mm = current->mm; 1272 struct vm_area_struct *vma = NULL; 1273 unsigned long len; 1274 int ret; 1275 bool populate; 1276 LIST_HEAD(uf); 1277 VMA_ITERATOR(vmi, mm, addr); 1278 1279 len = PAGE_ALIGN(request); 1280 if (len < request) 1281 return -ENOMEM; 1282 if (!len) 1283 return 0; 1284 1285 /* Until we need other flags, refuse anything except VM_EXEC. */ 1286 if ((flags & (~VM_EXEC)) != 0) 1287 return -EINVAL; 1288 1289 if (mmap_write_lock_killable(mm)) 1290 return -EINTR; 1291 1292 ret = check_brk_limits(addr, len); 1293 if (ret) 1294 goto limits_failed; 1295 1296 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 1297 if (ret) 1298 goto munmap_failed; 1299 1300 vma = vma_prev(&vmi); 1301 ret = do_brk_flags(&vmi, vma, addr, len, flags); 1302 populate = ((mm->def_flags & VM_LOCKED) != 0); 1303 mmap_write_unlock(mm); 1304 userfaultfd_unmap_complete(mm, &uf); 1305 if (populate && !ret) 1306 mm_populate(addr, len); 1307 return ret; 1308 1309 munmap_failed: 1310 limits_failed: 1311 mmap_write_unlock(mm); 1312 return ret; 1313 } 1314 EXPORT_SYMBOL(vm_brk_flags); 1315 1316 /* Release all mmaps. */ 1317 void exit_mmap(struct mm_struct *mm) 1318 { 1319 struct mmu_gather tlb; 1320 struct vm_area_struct *vma; 1321 unsigned long nr_accounted = 0; 1322 VMA_ITERATOR(vmi, mm, 0); 1323 int count = 0; 1324 1325 /* mm's last user has gone, and its about to be pulled down */ 1326 mmu_notifier_release(mm); 1327 1328 mmap_read_lock(mm); 1329 arch_exit_mmap(mm); 1330 1331 vma = vma_next(&vmi); 1332 if (!vma || unlikely(xa_is_zero(vma))) { 1333 /* Can happen if dup_mmap() received an OOM */ 1334 mmap_read_unlock(mm); 1335 mmap_write_lock(mm); 1336 goto destroy; 1337 } 1338 1339 flush_cache_mm(mm); 1340 tlb_gather_mmu_fullmm(&tlb, mm); 1341 /* update_hiwater_rss(mm) here? but nobody should be looking */ 1342 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 1343 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 1344 mmap_read_unlock(mm); 1345 1346 /* 1347 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 1348 * because the memory has been already freed. 1349 */ 1350 set_bit(MMF_OOM_SKIP, &mm->flags); 1351 mmap_write_lock(mm); 1352 mt_clear_in_rcu(&mm->mm_mt); 1353 vma_iter_set(&vmi, vma->vm_end); 1354 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 1355 USER_PGTABLES_CEILING, true); 1356 tlb_finish_mmu(&tlb); 1357 1358 /* 1359 * Walk the list again, actually closing and freeing it, with preemption 1360 * enabled, without holding any MM locks besides the unreachable 1361 * mmap_write_lock. 1362 */ 1363 vma_iter_set(&vmi, vma->vm_end); 1364 do { 1365 if (vma->vm_flags & VM_ACCOUNT) 1366 nr_accounted += vma_pages(vma); 1367 remove_vma(vma, /* unreachable = */ true); 1368 count++; 1369 cond_resched(); 1370 vma = vma_next(&vmi); 1371 } while (vma && likely(!xa_is_zero(vma))); 1372 1373 BUG_ON(count != mm->map_count); 1374 1375 trace_exit_mmap(mm); 1376 destroy: 1377 __mt_destroy(&mm->mm_mt); 1378 mmap_write_unlock(mm); 1379 vm_unacct_memory(nr_accounted); 1380 } 1381 1382 /* Insert vm structure into process list sorted by address 1383 * and into the inode's i_mmap tree. If vm_file is non-NULL 1384 * then i_mmap_rwsem is taken here. 1385 */ 1386 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 1387 { 1388 unsigned long charged = vma_pages(vma); 1389 1390 1391 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 1392 return -ENOMEM; 1393 1394 if ((vma->vm_flags & VM_ACCOUNT) && 1395 security_vm_enough_memory_mm(mm, charged)) 1396 return -ENOMEM; 1397 1398 /* 1399 * The vm_pgoff of a purely anonymous vma should be irrelevant 1400 * until its first write fault, when page's anon_vma and index 1401 * are set. But now set the vm_pgoff it will almost certainly 1402 * end up with (unless mremap moves it elsewhere before that 1403 * first wfault), so /proc/pid/maps tells a consistent story. 1404 * 1405 * By setting it to reflect the virtual start address of the 1406 * vma, merges and splits can happen in a seamless way, just 1407 * using the existing file pgoff checks and manipulations. 1408 * Similarly in do_mmap and in do_brk_flags. 1409 */ 1410 if (vma_is_anonymous(vma)) { 1411 BUG_ON(vma->anon_vma); 1412 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1413 } 1414 1415 if (vma_link(mm, vma)) { 1416 if (vma->vm_flags & VM_ACCOUNT) 1417 vm_unacct_memory(charged); 1418 return -ENOMEM; 1419 } 1420 1421 return 0; 1422 } 1423 1424 /* 1425 * Return true if the calling process may expand its vm space by the passed 1426 * number of pages 1427 */ 1428 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 1429 { 1430 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 1431 return false; 1432 1433 if (is_data_mapping(flags) && 1434 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 1435 /* Workaround for Valgrind */ 1436 if (rlimit(RLIMIT_DATA) == 0 && 1437 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 1438 return true; 1439 1440 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 1441 current->comm, current->pid, 1442 (mm->data_vm + npages) << PAGE_SHIFT, 1443 rlimit(RLIMIT_DATA), 1444 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 1445 1446 if (!ignore_rlimit_data) 1447 return false; 1448 } 1449 1450 return true; 1451 } 1452 1453 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 1454 { 1455 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 1456 1457 if (is_exec_mapping(flags)) 1458 mm->exec_vm += npages; 1459 else if (is_stack_mapping(flags)) 1460 mm->stack_vm += npages; 1461 else if (is_data_mapping(flags)) 1462 mm->data_vm += npages; 1463 } 1464 1465 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 1466 1467 /* 1468 * Close hook, called for unmap() and on the old vma for mremap(). 1469 * 1470 * Having a close hook prevents vma merging regardless of flags. 1471 */ 1472 static void special_mapping_close(struct vm_area_struct *vma) 1473 { 1474 const struct vm_special_mapping *sm = vma->vm_private_data; 1475 1476 if (sm->close) 1477 sm->close(sm, vma); 1478 } 1479 1480 static const char *special_mapping_name(struct vm_area_struct *vma) 1481 { 1482 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 1483 } 1484 1485 static int special_mapping_mremap(struct vm_area_struct *new_vma) 1486 { 1487 struct vm_special_mapping *sm = new_vma->vm_private_data; 1488 1489 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 1490 return -EFAULT; 1491 1492 if (sm->mremap) 1493 return sm->mremap(sm, new_vma); 1494 1495 return 0; 1496 } 1497 1498 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 1499 { 1500 /* 1501 * Forbid splitting special mappings - kernel has expectations over 1502 * the number of pages in mapping. Together with VM_DONTEXPAND 1503 * the size of vma should stay the same over the special mapping's 1504 * lifetime. 1505 */ 1506 return -EINVAL; 1507 } 1508 1509 static const struct vm_operations_struct special_mapping_vmops = { 1510 .close = special_mapping_close, 1511 .fault = special_mapping_fault, 1512 .mremap = special_mapping_mremap, 1513 .name = special_mapping_name, 1514 /* vDSO code relies that VVAR can't be accessed remotely */ 1515 .access = NULL, 1516 .may_split = special_mapping_split, 1517 }; 1518 1519 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 1520 { 1521 struct vm_area_struct *vma = vmf->vma; 1522 pgoff_t pgoff; 1523 struct page **pages; 1524 struct vm_special_mapping *sm = vma->vm_private_data; 1525 1526 if (sm->fault) 1527 return sm->fault(sm, vmf->vma, vmf); 1528 1529 pages = sm->pages; 1530 1531 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 1532 pgoff--; 1533 1534 if (*pages) { 1535 struct page *page = *pages; 1536 get_page(page); 1537 vmf->page = page; 1538 return 0; 1539 } 1540 1541 return VM_FAULT_SIGBUS; 1542 } 1543 1544 static struct vm_area_struct *__install_special_mapping( 1545 struct mm_struct *mm, 1546 unsigned long addr, unsigned long len, 1547 unsigned long vm_flags, void *priv, 1548 const struct vm_operations_struct *ops) 1549 { 1550 int ret; 1551 struct vm_area_struct *vma; 1552 1553 vma = vm_area_alloc(mm); 1554 if (unlikely(vma == NULL)) 1555 return ERR_PTR(-ENOMEM); 1556 1557 vma_set_range(vma, addr, addr + len, 0); 1558 vm_flags_init(vma, (vm_flags | mm->def_flags | 1559 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 1560 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 1561 1562 vma->vm_ops = ops; 1563 vma->vm_private_data = priv; 1564 1565 ret = insert_vm_struct(mm, vma); 1566 if (ret) 1567 goto out; 1568 1569 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 1570 1571 perf_event_mmap(vma); 1572 1573 return vma; 1574 1575 out: 1576 vm_area_free(vma); 1577 return ERR_PTR(ret); 1578 } 1579 1580 bool vma_is_special_mapping(const struct vm_area_struct *vma, 1581 const struct vm_special_mapping *sm) 1582 { 1583 return vma->vm_private_data == sm && 1584 vma->vm_ops == &special_mapping_vmops; 1585 } 1586 1587 /* 1588 * Called with mm->mmap_lock held for writing. 1589 * Insert a new vma covering the given region, with the given flags. 1590 * Its pages are supplied by the given array of struct page *. 1591 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 1592 * The region past the last page supplied will always produce SIGBUS. 1593 * The array pointer and the pages it points to are assumed to stay alive 1594 * for as long as this mapping might exist. 1595 */ 1596 struct vm_area_struct *_install_special_mapping( 1597 struct mm_struct *mm, 1598 unsigned long addr, unsigned long len, 1599 unsigned long vm_flags, const struct vm_special_mapping *spec) 1600 { 1601 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 1602 &special_mapping_vmops); 1603 } 1604 1605 /* 1606 * initialise the percpu counter for VM 1607 */ 1608 void __init mmap_init(void) 1609 { 1610 int ret; 1611 1612 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 1613 VM_BUG_ON(ret); 1614 } 1615 1616 /* 1617 * Initialise sysctl_user_reserve_kbytes. 1618 * 1619 * This is intended to prevent a user from starting a single memory hogging 1620 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1621 * mode. 1622 * 1623 * The default value is min(3% of free memory, 128MB) 1624 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1625 */ 1626 static int init_user_reserve(void) 1627 { 1628 unsigned long free_kbytes; 1629 1630 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1631 1632 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 1633 return 0; 1634 } 1635 subsys_initcall(init_user_reserve); 1636 1637 /* 1638 * Initialise sysctl_admin_reserve_kbytes. 1639 * 1640 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1641 * to log in and kill a memory hogging process. 1642 * 1643 * Systems with more than 256MB will reserve 8MB, enough to recover 1644 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1645 * only reserve 3% of free pages by default. 1646 */ 1647 static int init_admin_reserve(void) 1648 { 1649 unsigned long free_kbytes; 1650 1651 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1652 1653 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 1654 return 0; 1655 } 1656 subsys_initcall(init_admin_reserve); 1657 1658 /* 1659 * Reinititalise user and admin reserves if memory is added or removed. 1660 * 1661 * The default user reserve max is 128MB, and the default max for the 1662 * admin reserve is 8MB. These are usually, but not always, enough to 1663 * enable recovery from a memory hogging process using login/sshd, a shell, 1664 * and tools like top. It may make sense to increase or even disable the 1665 * reserve depending on the existence of swap or variations in the recovery 1666 * tools. So, the admin may have changed them. 1667 * 1668 * If memory is added and the reserves have been eliminated or increased above 1669 * the default max, then we'll trust the admin. 1670 * 1671 * If memory is removed and there isn't enough free memory, then we 1672 * need to reset the reserves. 1673 * 1674 * Otherwise keep the reserve set by the admin. 1675 */ 1676 static int reserve_mem_notifier(struct notifier_block *nb, 1677 unsigned long action, void *data) 1678 { 1679 unsigned long tmp, free_kbytes; 1680 1681 switch (action) { 1682 case MEM_ONLINE: 1683 /* Default max is 128MB. Leave alone if modified by operator. */ 1684 tmp = sysctl_user_reserve_kbytes; 1685 if (tmp > 0 && tmp < SZ_128K) 1686 init_user_reserve(); 1687 1688 /* Default max is 8MB. Leave alone if modified by operator. */ 1689 tmp = sysctl_admin_reserve_kbytes; 1690 if (tmp > 0 && tmp < SZ_8K) 1691 init_admin_reserve(); 1692 1693 break; 1694 case MEM_OFFLINE: 1695 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1696 1697 if (sysctl_user_reserve_kbytes > free_kbytes) { 1698 init_user_reserve(); 1699 pr_info("vm.user_reserve_kbytes reset to %lu\n", 1700 sysctl_user_reserve_kbytes); 1701 } 1702 1703 if (sysctl_admin_reserve_kbytes > free_kbytes) { 1704 init_admin_reserve(); 1705 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 1706 sysctl_admin_reserve_kbytes); 1707 } 1708 break; 1709 default: 1710 break; 1711 } 1712 return NOTIFY_OK; 1713 } 1714 1715 static int __meminit init_reserve_notifier(void) 1716 { 1717 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 1718 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 1719 1720 return 0; 1721 } 1722 subsys_initcall(init_reserve_notifier); 1723 1724 /* 1725 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between 1726 * this VMA and its relocated range, which will now reside at [vma->vm_start - 1727 * shift, vma->vm_end - shift). 1728 * 1729 * This function is almost certainly NOT what you want for anything other than 1730 * early executable temporary stack relocation. 1731 */ 1732 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift) 1733 { 1734 /* 1735 * The process proceeds as follows: 1736 * 1737 * 1) Use shift to calculate the new vma endpoints. 1738 * 2) Extend vma to cover both the old and new ranges. This ensures the 1739 * arguments passed to subsequent functions are consistent. 1740 * 3) Move vma's page tables to the new range. 1741 * 4) Free up any cleared pgd range. 1742 * 5) Shrink the vma to cover only the new range. 1743 */ 1744 1745 struct mm_struct *mm = vma->vm_mm; 1746 unsigned long old_start = vma->vm_start; 1747 unsigned long old_end = vma->vm_end; 1748 unsigned long length = old_end - old_start; 1749 unsigned long new_start = old_start - shift; 1750 unsigned long new_end = old_end - shift; 1751 VMA_ITERATOR(vmi, mm, new_start); 1752 VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff); 1753 struct vm_area_struct *next; 1754 struct mmu_gather tlb; 1755 1756 BUG_ON(new_start > new_end); 1757 1758 /* 1759 * ensure there are no vmas between where we want to go 1760 * and where we are 1761 */ 1762 if (vma != vma_next(&vmi)) 1763 return -EFAULT; 1764 1765 vma_iter_prev_range(&vmi); 1766 /* 1767 * cover the whole range: [new_start, old_end) 1768 */ 1769 vmg.vma = vma; 1770 if (vma_expand(&vmg)) 1771 return -ENOMEM; 1772 1773 /* 1774 * move the page tables downwards, on failure we rely on 1775 * process cleanup to remove whatever mess we made. 1776 */ 1777 if (length != move_page_tables(vma, old_start, 1778 vma, new_start, length, false, true)) 1779 return -ENOMEM; 1780 1781 tlb_gather_mmu(&tlb, mm); 1782 next = vma_next(&vmi); 1783 if (new_end > old_start) { 1784 /* 1785 * when the old and new regions overlap clear from new_end. 1786 */ 1787 free_pgd_range(&tlb, new_end, old_end, new_end, 1788 next ? next->vm_start : USER_PGTABLES_CEILING); 1789 } else { 1790 /* 1791 * otherwise, clean from old_start; this is done to not touch 1792 * the address space in [new_end, old_start) some architectures 1793 * have constraints on va-space that make this illegal (IA64) - 1794 * for the others its just a little faster. 1795 */ 1796 free_pgd_range(&tlb, old_start, old_end, new_end, 1797 next ? next->vm_start : USER_PGTABLES_CEILING); 1798 } 1799 tlb_finish_mmu(&tlb); 1800 1801 vma_prev(&vmi); 1802 /* Shrink the vma to just the new range */ 1803 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 1804 } 1805 1806 #ifdef CONFIG_MMU 1807 /* 1808 * Obtain a read lock on mm->mmap_lock, if the specified address is below the 1809 * start of the VMA, the intent is to perform a write, and it is a 1810 * downward-growing stack, then attempt to expand the stack to contain it. 1811 * 1812 * This function is intended only for obtaining an argument page from an ELF 1813 * image, and is almost certainly NOT what you want to use for any other 1814 * purpose. 1815 * 1816 * IMPORTANT - VMA fields are accessed without an mmap lock being held, so the 1817 * VMA referenced must not be linked in any user-visible tree, i.e. it must be a 1818 * new VMA being mapped. 1819 * 1820 * The function assumes that addr is either contained within the VMA or below 1821 * it, and makes no attempt to validate this value beyond that. 1822 * 1823 * Returns true if the read lock was obtained and a stack was perhaps expanded, 1824 * false if the stack expansion failed. 1825 * 1826 * On stack expansion the function temporarily acquires an mmap write lock 1827 * before downgrading it. 1828 */ 1829 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, 1830 struct vm_area_struct *new_vma, 1831 unsigned long addr, bool write) 1832 { 1833 if (!write || addr >= new_vma->vm_start) { 1834 mmap_read_lock(mm); 1835 return true; 1836 } 1837 1838 if (!(new_vma->vm_flags & VM_GROWSDOWN)) 1839 return false; 1840 1841 mmap_write_lock(mm); 1842 if (expand_downwards(new_vma, addr)) { 1843 mmap_write_unlock(mm); 1844 return false; 1845 } 1846 1847 mmap_write_downgrade(mm); 1848 return true; 1849 } 1850 #else 1851 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 1852 unsigned long addr, bool write) 1853 { 1854 return false; 1855 } 1856 #endif 1857