1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 80 void vma_set_page_prot(struct vm_area_struct *vma) 81 { 82 unsigned long vm_flags = vma->vm_flags; 83 pgprot_t vm_page_prot; 84 85 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 86 if (vma_wants_writenotify(vma, vm_page_prot)) { 87 vm_flags &= ~VM_SHARED; 88 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 89 } 90 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 91 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 92 } 93 94 /* 95 * check_brk_limits() - Use platform specific check of range & verify mlock 96 * limits. 97 * @addr: The address to check 98 * @len: The size of increase. 99 * 100 * Return: 0 on success. 101 */ 102 static int check_brk_limits(unsigned long addr, unsigned long len) 103 { 104 unsigned long mapped_addr; 105 106 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 107 if (IS_ERR_VALUE(mapped_addr)) 108 return mapped_addr; 109 110 return mlock_future_ok(current->mm, current->mm->def_flags, len) 111 ? 0 : -EAGAIN; 112 } 113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 114 unsigned long addr, unsigned long request, unsigned long flags); 115 SYSCALL_DEFINE1(brk, unsigned long, brk) 116 { 117 unsigned long newbrk, oldbrk, origbrk; 118 struct mm_struct *mm = current->mm; 119 struct vm_area_struct *brkvma, *next = NULL; 120 unsigned long min_brk; 121 bool populate = false; 122 LIST_HEAD(uf); 123 struct vma_iterator vmi; 124 125 if (mmap_write_lock_killable(mm)) 126 return -EINTR; 127 128 origbrk = mm->brk; 129 130 #ifdef CONFIG_COMPAT_BRK 131 /* 132 * CONFIG_COMPAT_BRK can still be overridden by setting 133 * randomize_va_space to 2, which will still cause mm->start_brk 134 * to be arbitrarily shifted 135 */ 136 if (current->brk_randomized) 137 min_brk = mm->start_brk; 138 else 139 min_brk = mm->end_data; 140 #else 141 min_brk = mm->start_brk; 142 #endif 143 if (brk < min_brk) 144 goto out; 145 146 /* 147 * Check against rlimit here. If this check is done later after the test 148 * of oldbrk with newbrk then it can escape the test and let the data 149 * segment grow beyond its set limit the in case where the limit is 150 * not page aligned -Ram Gupta 151 */ 152 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 153 mm->end_data, mm->start_data)) 154 goto out; 155 156 newbrk = PAGE_ALIGN(brk); 157 oldbrk = PAGE_ALIGN(mm->brk); 158 if (oldbrk == newbrk) { 159 mm->brk = brk; 160 goto success; 161 } 162 163 /* Always allow shrinking brk. */ 164 if (brk <= mm->brk) { 165 /* Search one past newbrk */ 166 vma_iter_init(&vmi, mm, newbrk); 167 brkvma = vma_find(&vmi, oldbrk); 168 if (!brkvma || brkvma->vm_start >= oldbrk) 169 goto out; /* mapping intersects with an existing non-brk vma. */ 170 /* 171 * mm->brk must be protected by write mmap_lock. 172 * do_vma_munmap() will drop the lock on success, so update it 173 * before calling do_vma_munmap(). 174 */ 175 mm->brk = brk; 176 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 177 goto out; 178 179 goto success_unlocked; 180 } 181 182 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 183 goto out; 184 185 /* 186 * Only check if the next VMA is within the stack_guard_gap of the 187 * expansion area 188 */ 189 vma_iter_init(&vmi, mm, oldbrk); 190 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 191 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 192 goto out; 193 194 brkvma = vma_prev_limit(&vmi, mm->start_brk); 195 /* Ok, looks good - let it rip. */ 196 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 197 goto out; 198 199 mm->brk = brk; 200 if (mm->def_flags & VM_LOCKED) 201 populate = true; 202 203 success: 204 mmap_write_unlock(mm); 205 success_unlocked: 206 userfaultfd_unmap_complete(mm, &uf); 207 if (populate) 208 mm_populate(oldbrk, newbrk - oldbrk); 209 return brk; 210 211 out: 212 mm->brk = origbrk; 213 mmap_write_unlock(mm); 214 return origbrk; 215 } 216 217 /* 218 * If a hint addr is less than mmap_min_addr change hint to be as 219 * low as possible but still greater than mmap_min_addr 220 */ 221 static inline unsigned long round_hint_to_min(unsigned long hint) 222 { 223 hint &= PAGE_MASK; 224 if (((void *)hint != NULL) && 225 (hint < mmap_min_addr)) 226 return PAGE_ALIGN(mmap_min_addr); 227 return hint; 228 } 229 230 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 231 unsigned long bytes) 232 { 233 unsigned long locked_pages, limit_pages; 234 235 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 236 return true; 237 238 locked_pages = bytes >> PAGE_SHIFT; 239 locked_pages += mm->locked_vm; 240 241 limit_pages = rlimit(RLIMIT_MEMLOCK); 242 limit_pages >>= PAGE_SHIFT; 243 244 return locked_pages <= limit_pages; 245 } 246 247 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 248 { 249 if (S_ISREG(inode->i_mode)) 250 return MAX_LFS_FILESIZE; 251 252 if (S_ISBLK(inode->i_mode)) 253 return MAX_LFS_FILESIZE; 254 255 if (S_ISSOCK(inode->i_mode)) 256 return MAX_LFS_FILESIZE; 257 258 /* Special "we do even unsigned file positions" case */ 259 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 260 return 0; 261 262 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 263 return ULONG_MAX; 264 } 265 266 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 267 unsigned long pgoff, unsigned long len) 268 { 269 u64 maxsize = file_mmap_size_max(file, inode); 270 271 if (maxsize && len > maxsize) 272 return false; 273 maxsize -= len; 274 if (pgoff > maxsize >> PAGE_SHIFT) 275 return false; 276 return true; 277 } 278 279 /* 280 * The caller must write-lock current->mm->mmap_lock. 281 */ 282 unsigned long do_mmap(struct file *file, unsigned long addr, 283 unsigned long len, unsigned long prot, 284 unsigned long flags, vm_flags_t vm_flags, 285 unsigned long pgoff, unsigned long *populate, 286 struct list_head *uf) 287 { 288 struct mm_struct *mm = current->mm; 289 int pkey = 0; 290 291 *populate = 0; 292 293 if (!len) 294 return -EINVAL; 295 296 /* 297 * Does the application expect PROT_READ to imply PROT_EXEC? 298 * 299 * (the exception is when the underlying filesystem is noexec 300 * mounted, in which case we don't add PROT_EXEC.) 301 */ 302 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 303 if (!(file && path_noexec(&file->f_path))) 304 prot |= PROT_EXEC; 305 306 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 307 if (flags & MAP_FIXED_NOREPLACE) 308 flags |= MAP_FIXED; 309 310 if (!(flags & MAP_FIXED)) 311 addr = round_hint_to_min(addr); 312 313 /* Careful about overflows.. */ 314 len = PAGE_ALIGN(len); 315 if (!len) 316 return -ENOMEM; 317 318 /* offset overflow? */ 319 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 320 return -EOVERFLOW; 321 322 /* Too many mappings? */ 323 if (mm->map_count > sysctl_max_map_count) 324 return -ENOMEM; 325 326 /* 327 * addr is returned from get_unmapped_area, 328 * There are two cases: 329 * 1> MAP_FIXED == false 330 * unallocated memory, no need to check sealing. 331 * 1> MAP_FIXED == true 332 * sealing is checked inside mmap_region when 333 * do_vmi_munmap is called. 334 */ 335 336 if (prot == PROT_EXEC) { 337 pkey = execute_only_pkey(mm); 338 if (pkey < 0) 339 pkey = 0; 340 } 341 342 /* Do simple checking here so the lower-level routines won't have 343 * to. we assume access permissions have been handled by the open 344 * of the memory object, so we don't do any here. 345 */ 346 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 347 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 348 349 /* Obtain the address to map to. we verify (or select) it and ensure 350 * that it represents a valid section of the address space. 351 */ 352 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 353 if (IS_ERR_VALUE(addr)) 354 return addr; 355 356 if (flags & MAP_FIXED_NOREPLACE) { 357 if (find_vma_intersection(mm, addr, addr + len)) 358 return -EEXIST; 359 } 360 361 if (flags & MAP_LOCKED) 362 if (!can_do_mlock()) 363 return -EPERM; 364 365 if (!mlock_future_ok(mm, vm_flags, len)) 366 return -EAGAIN; 367 368 if (file) { 369 struct inode *inode = file_inode(file); 370 unsigned long flags_mask; 371 372 if (!file_mmap_ok(file, inode, pgoff, len)) 373 return -EOVERFLOW; 374 375 flags_mask = LEGACY_MAP_MASK; 376 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 377 flags_mask |= MAP_SYNC; 378 379 switch (flags & MAP_TYPE) { 380 case MAP_SHARED: 381 /* 382 * Force use of MAP_SHARED_VALIDATE with non-legacy 383 * flags. E.g. MAP_SYNC is dangerous to use with 384 * MAP_SHARED as you don't know which consistency model 385 * you will get. We silently ignore unsupported flags 386 * with MAP_SHARED to preserve backward compatibility. 387 */ 388 flags &= LEGACY_MAP_MASK; 389 fallthrough; 390 case MAP_SHARED_VALIDATE: 391 if (flags & ~flags_mask) 392 return -EOPNOTSUPP; 393 if (prot & PROT_WRITE) { 394 if (!(file->f_mode & FMODE_WRITE)) 395 return -EACCES; 396 if (IS_SWAPFILE(file->f_mapping->host)) 397 return -ETXTBSY; 398 } 399 400 /* 401 * Make sure we don't allow writing to an append-only 402 * file.. 403 */ 404 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 405 return -EACCES; 406 407 vm_flags |= VM_SHARED | VM_MAYSHARE; 408 if (!(file->f_mode & FMODE_WRITE)) 409 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 410 fallthrough; 411 case MAP_PRIVATE: 412 if (!(file->f_mode & FMODE_READ)) 413 return -EACCES; 414 if (path_noexec(&file->f_path)) { 415 if (vm_flags & VM_EXEC) 416 return -EPERM; 417 vm_flags &= ~VM_MAYEXEC; 418 } 419 420 if (!file->f_op->mmap) 421 return -ENODEV; 422 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 423 return -EINVAL; 424 break; 425 426 default: 427 return -EINVAL; 428 } 429 } else { 430 switch (flags & MAP_TYPE) { 431 case MAP_SHARED: 432 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 433 return -EINVAL; 434 /* 435 * Ignore pgoff. 436 */ 437 pgoff = 0; 438 vm_flags |= VM_SHARED | VM_MAYSHARE; 439 break; 440 case MAP_DROPPABLE: 441 if (VM_DROPPABLE == VM_NONE) 442 return -ENOTSUPP; 443 /* 444 * A locked or stack area makes no sense to be droppable. 445 * 446 * Also, since droppable pages can just go away at any time 447 * it makes no sense to copy them on fork or dump them. 448 * 449 * And don't attempt to combine with hugetlb for now. 450 */ 451 if (flags & (MAP_LOCKED | MAP_HUGETLB)) 452 return -EINVAL; 453 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP)) 454 return -EINVAL; 455 456 vm_flags |= VM_DROPPABLE; 457 458 /* 459 * If the pages can be dropped, then it doesn't make 460 * sense to reserve them. 461 */ 462 vm_flags |= VM_NORESERVE; 463 464 /* 465 * Likewise, they're volatile enough that they 466 * shouldn't survive forks or coredumps. 467 */ 468 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP; 469 fallthrough; 470 case MAP_PRIVATE: 471 /* 472 * Set pgoff according to addr for anon_vma. 473 */ 474 pgoff = addr >> PAGE_SHIFT; 475 break; 476 default: 477 return -EINVAL; 478 } 479 } 480 481 /* 482 * Set 'VM_NORESERVE' if we should not account for the 483 * memory use of this mapping. 484 */ 485 if (flags & MAP_NORESERVE) { 486 /* We honor MAP_NORESERVE if allowed to overcommit */ 487 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 488 vm_flags |= VM_NORESERVE; 489 490 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 491 if (file && is_file_hugepages(file)) 492 vm_flags |= VM_NORESERVE; 493 } 494 495 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 496 if (!IS_ERR_VALUE(addr) && 497 ((vm_flags & VM_LOCKED) || 498 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 499 *populate = len; 500 return addr; 501 } 502 503 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 504 unsigned long prot, unsigned long flags, 505 unsigned long fd, unsigned long pgoff) 506 { 507 struct file *file = NULL; 508 unsigned long retval; 509 510 if (!(flags & MAP_ANONYMOUS)) { 511 audit_mmap_fd(fd, flags); 512 file = fget(fd); 513 if (!file) 514 return -EBADF; 515 if (is_file_hugepages(file)) { 516 len = ALIGN(len, huge_page_size(hstate_file(file))); 517 } else if (unlikely(flags & MAP_HUGETLB)) { 518 retval = -EINVAL; 519 goto out_fput; 520 } 521 } else if (flags & MAP_HUGETLB) { 522 struct hstate *hs; 523 524 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 525 if (!hs) 526 return -EINVAL; 527 528 len = ALIGN(len, huge_page_size(hs)); 529 /* 530 * VM_NORESERVE is used because the reservations will be 531 * taken when vm_ops->mmap() is called 532 */ 533 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 534 VM_NORESERVE, 535 HUGETLB_ANONHUGE_INODE, 536 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 537 if (IS_ERR(file)) 538 return PTR_ERR(file); 539 } 540 541 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 542 out_fput: 543 if (file) 544 fput(file); 545 return retval; 546 } 547 548 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 549 unsigned long, prot, unsigned long, flags, 550 unsigned long, fd, unsigned long, pgoff) 551 { 552 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 553 } 554 555 #ifdef __ARCH_WANT_SYS_OLD_MMAP 556 struct mmap_arg_struct { 557 unsigned long addr; 558 unsigned long len; 559 unsigned long prot; 560 unsigned long flags; 561 unsigned long fd; 562 unsigned long offset; 563 }; 564 565 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 566 { 567 struct mmap_arg_struct a; 568 569 if (copy_from_user(&a, arg, sizeof(a))) 570 return -EFAULT; 571 if (offset_in_page(a.offset)) 572 return -EINVAL; 573 574 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 575 a.offset >> PAGE_SHIFT); 576 } 577 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 578 579 /* 580 * We account for memory if it's a private writeable mapping, 581 * not hugepages and VM_NORESERVE wasn't set. 582 */ 583 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 584 { 585 /* 586 * hugetlb has its own accounting separate from the core VM 587 * VM_HUGETLB may not be set yet so we cannot check for that flag. 588 */ 589 if (file && is_file_hugepages(file)) 590 return false; 591 592 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 593 } 594 595 /** 596 * unmapped_area() - Find an area between the low_limit and the high_limit with 597 * the correct alignment and offset, all from @info. Note: current->mm is used 598 * for the search. 599 * 600 * @info: The unmapped area information including the range [low_limit - 601 * high_limit), the alignment offset and mask. 602 * 603 * Return: A memory address or -ENOMEM. 604 */ 605 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 606 { 607 unsigned long length, gap; 608 unsigned long low_limit, high_limit; 609 struct vm_area_struct *tmp; 610 VMA_ITERATOR(vmi, current->mm, 0); 611 612 /* Adjust search length to account for worst case alignment overhead */ 613 length = info->length + info->align_mask + info->start_gap; 614 if (length < info->length) 615 return -ENOMEM; 616 617 low_limit = info->low_limit; 618 if (low_limit < mmap_min_addr) 619 low_limit = mmap_min_addr; 620 high_limit = info->high_limit; 621 retry: 622 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 623 return -ENOMEM; 624 625 /* 626 * Adjust for the gap first so it doesn't interfere with the 627 * later alignment. The first step is the minimum needed to 628 * fulill the start gap, the next steps is the minimum to align 629 * that. It is the minimum needed to fulill both. 630 */ 631 gap = vma_iter_addr(&vmi) + info->start_gap; 632 gap += (info->align_offset - gap) & info->align_mask; 633 tmp = vma_next(&vmi); 634 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 635 if (vm_start_gap(tmp) < gap + length - 1) { 636 low_limit = tmp->vm_end; 637 vma_iter_reset(&vmi); 638 goto retry; 639 } 640 } else { 641 tmp = vma_prev(&vmi); 642 if (tmp && vm_end_gap(tmp) > gap) { 643 low_limit = vm_end_gap(tmp); 644 vma_iter_reset(&vmi); 645 goto retry; 646 } 647 } 648 649 return gap; 650 } 651 652 /** 653 * unmapped_area_topdown() - Find an area between the low_limit and the 654 * high_limit with the correct alignment and offset at the highest available 655 * address, all from @info. Note: current->mm is used for the search. 656 * 657 * @info: The unmapped area information including the range [low_limit - 658 * high_limit), the alignment offset and mask. 659 * 660 * Return: A memory address or -ENOMEM. 661 */ 662 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 663 { 664 unsigned long length, gap, gap_end; 665 unsigned long low_limit, high_limit; 666 struct vm_area_struct *tmp; 667 VMA_ITERATOR(vmi, current->mm, 0); 668 669 /* Adjust search length to account for worst case alignment overhead */ 670 length = info->length + info->align_mask + info->start_gap; 671 if (length < info->length) 672 return -ENOMEM; 673 674 low_limit = info->low_limit; 675 if (low_limit < mmap_min_addr) 676 low_limit = mmap_min_addr; 677 high_limit = info->high_limit; 678 retry: 679 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 680 return -ENOMEM; 681 682 gap = vma_iter_end(&vmi) - info->length; 683 gap -= (gap - info->align_offset) & info->align_mask; 684 gap_end = vma_iter_end(&vmi); 685 tmp = vma_next(&vmi); 686 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 687 if (vm_start_gap(tmp) < gap_end) { 688 high_limit = vm_start_gap(tmp); 689 vma_iter_reset(&vmi); 690 goto retry; 691 } 692 } else { 693 tmp = vma_prev(&vmi); 694 if (tmp && vm_end_gap(tmp) > gap) { 695 high_limit = tmp->vm_start; 696 vma_iter_reset(&vmi); 697 goto retry; 698 } 699 } 700 701 return gap; 702 } 703 704 /* 705 * Search for an unmapped address range. 706 * 707 * We are looking for a range that: 708 * - does not intersect with any VMA; 709 * - is contained within the [low_limit, high_limit) interval; 710 * - is at least the desired size. 711 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 712 */ 713 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 714 { 715 unsigned long addr; 716 717 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 718 addr = unmapped_area_topdown(info); 719 else 720 addr = unmapped_area(info); 721 722 trace_vm_unmapped_area(addr, info); 723 return addr; 724 } 725 726 /* Get an address range which is currently unmapped. 727 * For shmat() with addr=0. 728 * 729 * Ugly calling convention alert: 730 * Return value with the low bits set means error value, 731 * ie 732 * if (ret & ~PAGE_MASK) 733 * error = ret; 734 * 735 * This function "knows" that -ENOMEM has the bits set. 736 */ 737 unsigned long 738 generic_get_unmapped_area(struct file *filp, unsigned long addr, 739 unsigned long len, unsigned long pgoff, 740 unsigned long flags) 741 { 742 struct mm_struct *mm = current->mm; 743 struct vm_area_struct *vma, *prev; 744 struct vm_unmapped_area_info info = {}; 745 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 746 747 if (len > mmap_end - mmap_min_addr) 748 return -ENOMEM; 749 750 if (flags & MAP_FIXED) 751 return addr; 752 753 if (addr) { 754 addr = PAGE_ALIGN(addr); 755 vma = find_vma_prev(mm, addr, &prev); 756 if (mmap_end - len >= addr && addr >= mmap_min_addr && 757 (!vma || addr + len <= vm_start_gap(vma)) && 758 (!prev || addr >= vm_end_gap(prev))) 759 return addr; 760 } 761 762 info.length = len; 763 info.low_limit = mm->mmap_base; 764 info.high_limit = mmap_end; 765 return vm_unmapped_area(&info); 766 } 767 768 #ifndef HAVE_ARCH_UNMAPPED_AREA 769 unsigned long 770 arch_get_unmapped_area(struct file *filp, unsigned long addr, 771 unsigned long len, unsigned long pgoff, 772 unsigned long flags) 773 { 774 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 775 } 776 #endif 777 778 /* 779 * This mmap-allocator allocates new areas top-down from below the 780 * stack's low limit (the base): 781 */ 782 unsigned long 783 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 784 unsigned long len, unsigned long pgoff, 785 unsigned long flags) 786 { 787 struct vm_area_struct *vma, *prev; 788 struct mm_struct *mm = current->mm; 789 struct vm_unmapped_area_info info = {}; 790 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 791 792 /* requested length too big for entire address space */ 793 if (len > mmap_end - mmap_min_addr) 794 return -ENOMEM; 795 796 if (flags & MAP_FIXED) 797 return addr; 798 799 /* requesting a specific address */ 800 if (addr) { 801 addr = PAGE_ALIGN(addr); 802 vma = find_vma_prev(mm, addr, &prev); 803 if (mmap_end - len >= addr && addr >= mmap_min_addr && 804 (!vma || addr + len <= vm_start_gap(vma)) && 805 (!prev || addr >= vm_end_gap(prev))) 806 return addr; 807 } 808 809 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 810 info.length = len; 811 info.low_limit = PAGE_SIZE; 812 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 813 addr = vm_unmapped_area(&info); 814 815 /* 816 * A failed mmap() very likely causes application failure, 817 * so fall back to the bottom-up function here. This scenario 818 * can happen with large stack limits and large mmap() 819 * allocations. 820 */ 821 if (offset_in_page(addr)) { 822 VM_BUG_ON(addr != -ENOMEM); 823 info.flags = 0; 824 info.low_limit = TASK_UNMAPPED_BASE; 825 info.high_limit = mmap_end; 826 addr = vm_unmapped_area(&info); 827 } 828 829 return addr; 830 } 831 832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 833 unsigned long 834 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 835 unsigned long len, unsigned long pgoff, 836 unsigned long flags) 837 { 838 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 839 } 840 #endif 841 842 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS 843 unsigned long 844 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len, 845 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 846 { 847 return arch_get_unmapped_area(filp, addr, len, pgoff, flags); 848 } 849 850 unsigned long 851 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr, 852 unsigned long len, unsigned long pgoff, 853 unsigned long flags, vm_flags_t vm_flags) 854 { 855 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 856 } 857 #endif 858 859 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 860 unsigned long addr, unsigned long len, 861 unsigned long pgoff, unsigned long flags, 862 vm_flags_t vm_flags) 863 { 864 if (test_bit(MMF_TOPDOWN, &mm->flags)) 865 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff, 866 flags, vm_flags); 867 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags); 868 } 869 870 unsigned long 871 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 872 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 873 { 874 unsigned long (*get_area)(struct file *, unsigned long, 875 unsigned long, unsigned long, unsigned long) 876 = NULL; 877 878 unsigned long error = arch_mmap_check(addr, len, flags); 879 if (error) 880 return error; 881 882 /* Careful about overflows.. */ 883 if (len > TASK_SIZE) 884 return -ENOMEM; 885 886 if (file) { 887 if (file->f_op->get_unmapped_area) 888 get_area = file->f_op->get_unmapped_area; 889 } else if (flags & MAP_SHARED) { 890 /* 891 * mmap_region() will call shmem_zero_setup() to create a file, 892 * so use shmem's get_unmapped_area in case it can be huge. 893 */ 894 get_area = shmem_get_unmapped_area; 895 } 896 897 /* Always treat pgoff as zero for anonymous memory. */ 898 if (!file) 899 pgoff = 0; 900 901 if (get_area) { 902 addr = get_area(file, addr, len, pgoff, flags); 903 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 904 /* Ensures that larger anonymous mappings are THP aligned. */ 905 addr = thp_get_unmapped_area_vmflags(file, addr, len, 906 pgoff, flags, vm_flags); 907 } else { 908 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 909 pgoff, flags, vm_flags); 910 } 911 if (IS_ERR_VALUE(addr)) 912 return addr; 913 914 if (addr > TASK_SIZE - len) 915 return -ENOMEM; 916 if (offset_in_page(addr)) 917 return -EINVAL; 918 919 error = security_mmap_addr(addr); 920 return error ? error : addr; 921 } 922 923 unsigned long 924 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 925 unsigned long addr, unsigned long len, 926 unsigned long pgoff, unsigned long flags) 927 { 928 if (test_bit(MMF_TOPDOWN, &mm->flags)) 929 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags); 930 return arch_get_unmapped_area(file, addr, len, pgoff, flags); 931 } 932 EXPORT_SYMBOL(mm_get_unmapped_area); 933 934 /** 935 * find_vma_intersection() - Look up the first VMA which intersects the interval 936 * @mm: The process address space. 937 * @start_addr: The inclusive start user address. 938 * @end_addr: The exclusive end user address. 939 * 940 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 941 * start_addr < end_addr. 942 */ 943 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 944 unsigned long start_addr, 945 unsigned long end_addr) 946 { 947 unsigned long index = start_addr; 948 949 mmap_assert_locked(mm); 950 return mt_find(&mm->mm_mt, &index, end_addr - 1); 951 } 952 EXPORT_SYMBOL(find_vma_intersection); 953 954 /** 955 * find_vma() - Find the VMA for a given address, or the next VMA. 956 * @mm: The mm_struct to check 957 * @addr: The address 958 * 959 * Returns: The VMA associated with addr, or the next VMA. 960 * May return %NULL in the case of no VMA at addr or above. 961 */ 962 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 963 { 964 unsigned long index = addr; 965 966 mmap_assert_locked(mm); 967 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 968 } 969 EXPORT_SYMBOL(find_vma); 970 971 /** 972 * find_vma_prev() - Find the VMA for a given address, or the next vma and 973 * set %pprev to the previous VMA, if any. 974 * @mm: The mm_struct to check 975 * @addr: The address 976 * @pprev: The pointer to set to the previous VMA 977 * 978 * Note that RCU lock is missing here since the external mmap_lock() is used 979 * instead. 980 * 981 * Returns: The VMA associated with @addr, or the next vma. 982 * May return %NULL in the case of no vma at addr or above. 983 */ 984 struct vm_area_struct * 985 find_vma_prev(struct mm_struct *mm, unsigned long addr, 986 struct vm_area_struct **pprev) 987 { 988 struct vm_area_struct *vma; 989 VMA_ITERATOR(vmi, mm, addr); 990 991 vma = vma_iter_load(&vmi); 992 *pprev = vma_prev(&vmi); 993 if (!vma) 994 vma = vma_next(&vmi); 995 return vma; 996 } 997 998 /* 999 * Verify that the stack growth is acceptable and 1000 * update accounting. This is shared with both the 1001 * grow-up and grow-down cases. 1002 */ 1003 static int acct_stack_growth(struct vm_area_struct *vma, 1004 unsigned long size, unsigned long grow) 1005 { 1006 struct mm_struct *mm = vma->vm_mm; 1007 unsigned long new_start; 1008 1009 /* address space limit tests */ 1010 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1011 return -ENOMEM; 1012 1013 /* Stack limit test */ 1014 if (size > rlimit(RLIMIT_STACK)) 1015 return -ENOMEM; 1016 1017 /* mlock limit tests */ 1018 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1019 return -ENOMEM; 1020 1021 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1022 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1023 vma->vm_end - size; 1024 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1025 return -EFAULT; 1026 1027 /* 1028 * Overcommit.. This must be the final test, as it will 1029 * update security statistics. 1030 */ 1031 if (security_vm_enough_memory_mm(mm, grow)) 1032 return -ENOMEM; 1033 1034 return 0; 1035 } 1036 1037 #if defined(CONFIG_STACK_GROWSUP) 1038 /* 1039 * PA-RISC uses this for its stack. 1040 * vma is the last one with address > vma->vm_end. Have to extend vma. 1041 */ 1042 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1043 { 1044 struct mm_struct *mm = vma->vm_mm; 1045 struct vm_area_struct *next; 1046 unsigned long gap_addr; 1047 int error = 0; 1048 VMA_ITERATOR(vmi, mm, vma->vm_start); 1049 1050 if (!(vma->vm_flags & VM_GROWSUP)) 1051 return -EFAULT; 1052 1053 /* Guard against exceeding limits of the address space. */ 1054 address &= PAGE_MASK; 1055 if (address >= (TASK_SIZE & PAGE_MASK)) 1056 return -ENOMEM; 1057 address += PAGE_SIZE; 1058 1059 /* Enforce stack_guard_gap */ 1060 gap_addr = address + stack_guard_gap; 1061 1062 /* Guard against overflow */ 1063 if (gap_addr < address || gap_addr > TASK_SIZE) 1064 gap_addr = TASK_SIZE; 1065 1066 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1067 if (next && vma_is_accessible(next)) { 1068 if (!(next->vm_flags & VM_GROWSUP)) 1069 return -ENOMEM; 1070 /* Check that both stack segments have the same anon_vma? */ 1071 } 1072 1073 if (next) 1074 vma_iter_prev_range_limit(&vmi, address); 1075 1076 vma_iter_config(&vmi, vma->vm_start, address); 1077 if (vma_iter_prealloc(&vmi, vma)) 1078 return -ENOMEM; 1079 1080 /* We must make sure the anon_vma is allocated. */ 1081 if (unlikely(anon_vma_prepare(vma))) { 1082 vma_iter_free(&vmi); 1083 return -ENOMEM; 1084 } 1085 1086 /* Lock the VMA before expanding to prevent concurrent page faults */ 1087 vma_start_write(vma); 1088 /* 1089 * vma->vm_start/vm_end cannot change under us because the caller 1090 * is required to hold the mmap_lock in read mode. We need the 1091 * anon_vma lock to serialize against concurrent expand_stacks. 1092 */ 1093 anon_vma_lock_write(vma->anon_vma); 1094 1095 /* Somebody else might have raced and expanded it already */ 1096 if (address > vma->vm_end) { 1097 unsigned long size, grow; 1098 1099 size = address - vma->vm_start; 1100 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1101 1102 error = -ENOMEM; 1103 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1104 error = acct_stack_growth(vma, size, grow); 1105 if (!error) { 1106 /* 1107 * We only hold a shared mmap_lock lock here, so 1108 * we need to protect against concurrent vma 1109 * expansions. anon_vma_lock_write() doesn't 1110 * help here, as we don't guarantee that all 1111 * growable vmas in a mm share the same root 1112 * anon vma. So, we reuse mm->page_table_lock 1113 * to guard against concurrent vma expansions. 1114 */ 1115 spin_lock(&mm->page_table_lock); 1116 if (vma->vm_flags & VM_LOCKED) 1117 mm->locked_vm += grow; 1118 vm_stat_account(mm, vma->vm_flags, grow); 1119 anon_vma_interval_tree_pre_update_vma(vma); 1120 vma->vm_end = address; 1121 /* Overwrite old entry in mtree. */ 1122 vma_iter_store(&vmi, vma); 1123 anon_vma_interval_tree_post_update_vma(vma); 1124 spin_unlock(&mm->page_table_lock); 1125 1126 perf_event_mmap(vma); 1127 } 1128 } 1129 } 1130 anon_vma_unlock_write(vma->anon_vma); 1131 vma_iter_free(&vmi); 1132 validate_mm(mm); 1133 return error; 1134 } 1135 #endif /* CONFIG_STACK_GROWSUP */ 1136 1137 /* 1138 * vma is the first one with address < vma->vm_start. Have to extend vma. 1139 * mmap_lock held for writing. 1140 */ 1141 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 1142 { 1143 struct mm_struct *mm = vma->vm_mm; 1144 struct vm_area_struct *prev; 1145 int error = 0; 1146 VMA_ITERATOR(vmi, mm, vma->vm_start); 1147 1148 if (!(vma->vm_flags & VM_GROWSDOWN)) 1149 return -EFAULT; 1150 1151 address &= PAGE_MASK; 1152 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 1153 return -EPERM; 1154 1155 /* Enforce stack_guard_gap */ 1156 prev = vma_prev(&vmi); 1157 /* Check that both stack segments have the same anon_vma? */ 1158 if (prev) { 1159 if (!(prev->vm_flags & VM_GROWSDOWN) && 1160 vma_is_accessible(prev) && 1161 (address - prev->vm_end < stack_guard_gap)) 1162 return -ENOMEM; 1163 } 1164 1165 if (prev) 1166 vma_iter_next_range_limit(&vmi, vma->vm_start); 1167 1168 vma_iter_config(&vmi, address, vma->vm_end); 1169 if (vma_iter_prealloc(&vmi, vma)) 1170 return -ENOMEM; 1171 1172 /* We must make sure the anon_vma is allocated. */ 1173 if (unlikely(anon_vma_prepare(vma))) { 1174 vma_iter_free(&vmi); 1175 return -ENOMEM; 1176 } 1177 1178 /* Lock the VMA before expanding to prevent concurrent page faults */ 1179 vma_start_write(vma); 1180 /* 1181 * vma->vm_start/vm_end cannot change under us because the caller 1182 * is required to hold the mmap_lock in read mode. We need the 1183 * anon_vma lock to serialize against concurrent expand_stacks. 1184 */ 1185 anon_vma_lock_write(vma->anon_vma); 1186 1187 /* Somebody else might have raced and expanded it already */ 1188 if (address < vma->vm_start) { 1189 unsigned long size, grow; 1190 1191 size = vma->vm_end - address; 1192 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1193 1194 error = -ENOMEM; 1195 if (grow <= vma->vm_pgoff) { 1196 error = acct_stack_growth(vma, size, grow); 1197 if (!error) { 1198 /* 1199 * We only hold a shared mmap_lock lock here, so 1200 * we need to protect against concurrent vma 1201 * expansions. anon_vma_lock_write() doesn't 1202 * help here, as we don't guarantee that all 1203 * growable vmas in a mm share the same root 1204 * anon vma. So, we reuse mm->page_table_lock 1205 * to guard against concurrent vma expansions. 1206 */ 1207 spin_lock(&mm->page_table_lock); 1208 if (vma->vm_flags & VM_LOCKED) 1209 mm->locked_vm += grow; 1210 vm_stat_account(mm, vma->vm_flags, grow); 1211 anon_vma_interval_tree_pre_update_vma(vma); 1212 vma->vm_start = address; 1213 vma->vm_pgoff -= grow; 1214 /* Overwrite old entry in mtree. */ 1215 vma_iter_store(&vmi, vma); 1216 anon_vma_interval_tree_post_update_vma(vma); 1217 spin_unlock(&mm->page_table_lock); 1218 1219 perf_event_mmap(vma); 1220 } 1221 } 1222 } 1223 anon_vma_unlock_write(vma->anon_vma); 1224 vma_iter_free(&vmi); 1225 validate_mm(mm); 1226 return error; 1227 } 1228 1229 /* enforced gap between the expanding stack and other mappings. */ 1230 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 1231 1232 static int __init cmdline_parse_stack_guard_gap(char *p) 1233 { 1234 unsigned long val; 1235 char *endptr; 1236 1237 val = simple_strtoul(p, &endptr, 10); 1238 if (!*endptr) 1239 stack_guard_gap = val << PAGE_SHIFT; 1240 1241 return 1; 1242 } 1243 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 1244 1245 #ifdef CONFIG_STACK_GROWSUP 1246 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 1247 { 1248 return expand_upwards(vma, address); 1249 } 1250 1251 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 1252 { 1253 struct vm_area_struct *vma, *prev; 1254 1255 addr &= PAGE_MASK; 1256 vma = find_vma_prev(mm, addr, &prev); 1257 if (vma && (vma->vm_start <= addr)) 1258 return vma; 1259 if (!prev) 1260 return NULL; 1261 if (expand_stack_locked(prev, addr)) 1262 return NULL; 1263 if (prev->vm_flags & VM_LOCKED) 1264 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 1265 return prev; 1266 } 1267 #else 1268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 1269 { 1270 return expand_downwards(vma, address); 1271 } 1272 1273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 1274 { 1275 struct vm_area_struct *vma; 1276 unsigned long start; 1277 1278 addr &= PAGE_MASK; 1279 vma = find_vma(mm, addr); 1280 if (!vma) 1281 return NULL; 1282 if (vma->vm_start <= addr) 1283 return vma; 1284 start = vma->vm_start; 1285 if (expand_stack_locked(vma, addr)) 1286 return NULL; 1287 if (vma->vm_flags & VM_LOCKED) 1288 populate_vma_page_range(vma, addr, start, NULL); 1289 return vma; 1290 } 1291 #endif 1292 1293 #if defined(CONFIG_STACK_GROWSUP) 1294 1295 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 1296 #define vma_expand_down(vma, addr) (-EFAULT) 1297 1298 #else 1299 1300 #define vma_expand_up(vma,addr) (-EFAULT) 1301 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 1302 1303 #endif 1304 1305 /* 1306 * expand_stack(): legacy interface for page faulting. Don't use unless 1307 * you have to. 1308 * 1309 * This is called with the mm locked for reading, drops the lock, takes 1310 * the lock for writing, tries to look up a vma again, expands it if 1311 * necessary, and downgrades the lock to reading again. 1312 * 1313 * If no vma is found or it can't be expanded, it returns NULL and has 1314 * dropped the lock. 1315 */ 1316 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 1317 { 1318 struct vm_area_struct *vma, *prev; 1319 1320 mmap_read_unlock(mm); 1321 if (mmap_write_lock_killable(mm)) 1322 return NULL; 1323 1324 vma = find_vma_prev(mm, addr, &prev); 1325 if (vma && vma->vm_start <= addr) 1326 goto success; 1327 1328 if (prev && !vma_expand_up(prev, addr)) { 1329 vma = prev; 1330 goto success; 1331 } 1332 1333 if (vma && !vma_expand_down(vma, addr)) 1334 goto success; 1335 1336 mmap_write_unlock(mm); 1337 return NULL; 1338 1339 success: 1340 mmap_write_downgrade(mm); 1341 return vma; 1342 } 1343 1344 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 1345 * @mm: The mm_struct 1346 * @start: The start address to munmap 1347 * @len: The length to be munmapped. 1348 * @uf: The userfaultfd list_head 1349 * 1350 * Return: 0 on success, error otherwise. 1351 */ 1352 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 1353 struct list_head *uf) 1354 { 1355 VMA_ITERATOR(vmi, mm, start); 1356 1357 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 1358 } 1359 1360 unsigned long mmap_region(struct file *file, unsigned long addr, 1361 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1362 struct list_head *uf) 1363 { 1364 struct mm_struct *mm = current->mm; 1365 struct vm_area_struct *vma = NULL; 1366 struct vm_area_struct *next, *prev, *merge; 1367 pgoff_t pglen = len >> PAGE_SHIFT; 1368 unsigned long charged = 0; 1369 unsigned long end = addr + len; 1370 unsigned long merge_start = addr, merge_end = end; 1371 bool writable_file_mapping = false; 1372 pgoff_t vm_pgoff; 1373 int error; 1374 VMA_ITERATOR(vmi, mm, addr); 1375 1376 /* Check against address space limit. */ 1377 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1378 unsigned long nr_pages; 1379 1380 /* 1381 * MAP_FIXED may remove pages of mappings that intersects with 1382 * requested mapping. Account for the pages it would unmap. 1383 */ 1384 nr_pages = count_vma_pages_range(mm, addr, end); 1385 1386 if (!may_expand_vm(mm, vm_flags, 1387 (len >> PAGE_SHIFT) - nr_pages)) 1388 return -ENOMEM; 1389 } 1390 1391 /* Unmap any existing mapping in the area */ 1392 error = do_vmi_munmap(&vmi, mm, addr, len, uf, false); 1393 if (error == -EPERM) 1394 return error; 1395 else if (error) 1396 return -ENOMEM; 1397 1398 /* 1399 * Private writable mapping: check memory availability 1400 */ 1401 if (accountable_mapping(file, vm_flags)) { 1402 charged = len >> PAGE_SHIFT; 1403 if (security_vm_enough_memory_mm(mm, charged)) 1404 return -ENOMEM; 1405 vm_flags |= VM_ACCOUNT; 1406 } 1407 1408 next = vma_next(&vmi); 1409 prev = vma_prev(&vmi); 1410 if (vm_flags & VM_SPECIAL) { 1411 if (prev) 1412 vma_iter_next_range(&vmi); 1413 goto cannot_expand; 1414 } 1415 1416 /* Attempt to expand an old mapping */ 1417 /* Check next */ 1418 if (next && next->vm_start == end && !vma_policy(next) && 1419 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 1420 NULL_VM_UFFD_CTX, NULL)) { 1421 merge_end = next->vm_end; 1422 vma = next; 1423 vm_pgoff = next->vm_pgoff - pglen; 1424 } 1425 1426 /* Check prev */ 1427 if (prev && prev->vm_end == addr && !vma_policy(prev) && 1428 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 1429 pgoff, vma->vm_userfaultfd_ctx, NULL) : 1430 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 1431 NULL_VM_UFFD_CTX, NULL))) { 1432 merge_start = prev->vm_start; 1433 vma = prev; 1434 vm_pgoff = prev->vm_pgoff; 1435 } else if (prev) { 1436 vma_iter_next_range(&vmi); 1437 } 1438 1439 /* Actually expand, if possible */ 1440 if (vma && 1441 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 1442 khugepaged_enter_vma(vma, vm_flags); 1443 goto expanded; 1444 } 1445 1446 if (vma == prev) 1447 vma_iter_set(&vmi, addr); 1448 cannot_expand: 1449 1450 /* 1451 * Determine the object being mapped and call the appropriate 1452 * specific mapper. the address has already been validated, but 1453 * not unmapped, but the maps are removed from the list. 1454 */ 1455 vma = vm_area_alloc(mm); 1456 if (!vma) { 1457 error = -ENOMEM; 1458 goto unacct_error; 1459 } 1460 1461 vma_iter_config(&vmi, addr, end); 1462 vma_set_range(vma, addr, end, pgoff); 1463 vm_flags_init(vma, vm_flags); 1464 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1465 1466 if (file) { 1467 vma->vm_file = get_file(file); 1468 error = call_mmap(file, vma); 1469 if (error) 1470 goto unmap_and_free_vma; 1471 1472 if (vma_is_shared_maywrite(vma)) { 1473 error = mapping_map_writable(file->f_mapping); 1474 if (error) 1475 goto close_and_free_vma; 1476 1477 writable_file_mapping = true; 1478 } 1479 1480 /* 1481 * Expansion is handled above, merging is handled below. 1482 * Drivers should not alter the address of the VMA. 1483 */ 1484 error = -EINVAL; 1485 if (WARN_ON((addr != vma->vm_start))) 1486 goto close_and_free_vma; 1487 1488 vma_iter_config(&vmi, addr, end); 1489 /* 1490 * If vm_flags changed after call_mmap(), we should try merge 1491 * vma again as we may succeed this time. 1492 */ 1493 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1494 merge = vma_merge_new_vma(&vmi, prev, vma, 1495 vma->vm_start, vma->vm_end, 1496 vma->vm_pgoff); 1497 if (merge) { 1498 /* 1499 * ->mmap() can change vma->vm_file and fput 1500 * the original file. So fput the vma->vm_file 1501 * here or we would add an extra fput for file 1502 * and cause general protection fault 1503 * ultimately. 1504 */ 1505 fput(vma->vm_file); 1506 vm_area_free(vma); 1507 vma = merge; 1508 /* Update vm_flags to pick up the change. */ 1509 vm_flags = vma->vm_flags; 1510 goto unmap_writable; 1511 } 1512 } 1513 1514 vm_flags = vma->vm_flags; 1515 } else if (vm_flags & VM_SHARED) { 1516 error = shmem_zero_setup(vma); 1517 if (error) 1518 goto free_vma; 1519 } else { 1520 vma_set_anonymous(vma); 1521 } 1522 1523 if (map_deny_write_exec(vma, vma->vm_flags)) { 1524 error = -EACCES; 1525 goto close_and_free_vma; 1526 } 1527 1528 /* Allow architectures to sanity-check the vm_flags */ 1529 error = -EINVAL; 1530 if (!arch_validate_flags(vma->vm_flags)) 1531 goto close_and_free_vma; 1532 1533 error = -ENOMEM; 1534 if (vma_iter_prealloc(&vmi, vma)) 1535 goto close_and_free_vma; 1536 1537 /* Lock the VMA since it is modified after insertion into VMA tree */ 1538 vma_start_write(vma); 1539 vma_iter_store(&vmi, vma); 1540 mm->map_count++; 1541 vma_link_file(vma); 1542 1543 /* 1544 * vma_merge() calls khugepaged_enter_vma() either, the below 1545 * call covers the non-merge case. 1546 */ 1547 khugepaged_enter_vma(vma, vma->vm_flags); 1548 1549 /* Once vma denies write, undo our temporary denial count */ 1550 unmap_writable: 1551 if (writable_file_mapping) 1552 mapping_unmap_writable(file->f_mapping); 1553 file = vma->vm_file; 1554 ksm_add_vma(vma); 1555 expanded: 1556 perf_event_mmap(vma); 1557 1558 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1559 if (vm_flags & VM_LOCKED) { 1560 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1561 is_vm_hugetlb_page(vma) || 1562 vma == get_gate_vma(current->mm)) 1563 vm_flags_clear(vma, VM_LOCKED_MASK); 1564 else 1565 mm->locked_vm += (len >> PAGE_SHIFT); 1566 } 1567 1568 if (file) 1569 uprobe_mmap(vma); 1570 1571 /* 1572 * New (or expanded) vma always get soft dirty status. 1573 * Otherwise user-space soft-dirty page tracker won't 1574 * be able to distinguish situation when vma area unmapped, 1575 * then new mapped in-place (which must be aimed as 1576 * a completely new data area). 1577 */ 1578 vm_flags_set(vma, VM_SOFTDIRTY); 1579 1580 vma_set_page_prot(vma); 1581 1582 validate_mm(mm); 1583 return addr; 1584 1585 close_and_free_vma: 1586 if (file && vma->vm_ops && vma->vm_ops->close) 1587 vma->vm_ops->close(vma); 1588 1589 if (file || vma->vm_file) { 1590 unmap_and_free_vma: 1591 fput(vma->vm_file); 1592 vma->vm_file = NULL; 1593 1594 vma_iter_set(&vmi, vma->vm_end); 1595 /* Undo any partial mapping done by a device driver. */ 1596 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 1597 vma->vm_end, vma->vm_end, true); 1598 } 1599 if (writable_file_mapping) 1600 mapping_unmap_writable(file->f_mapping); 1601 free_vma: 1602 vm_area_free(vma); 1603 unacct_error: 1604 if (charged) 1605 vm_unacct_memory(charged); 1606 validate_mm(mm); 1607 return error; 1608 } 1609 1610 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 1611 { 1612 int ret; 1613 struct mm_struct *mm = current->mm; 1614 LIST_HEAD(uf); 1615 VMA_ITERATOR(vmi, mm, start); 1616 1617 if (mmap_write_lock_killable(mm)) 1618 return -EINTR; 1619 1620 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 1621 if (ret || !unlock) 1622 mmap_write_unlock(mm); 1623 1624 userfaultfd_unmap_complete(mm, &uf); 1625 return ret; 1626 } 1627 1628 int vm_munmap(unsigned long start, size_t len) 1629 { 1630 return __vm_munmap(start, len, false); 1631 } 1632 EXPORT_SYMBOL(vm_munmap); 1633 1634 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1635 { 1636 addr = untagged_addr(addr); 1637 return __vm_munmap(addr, len, true); 1638 } 1639 1640 1641 /* 1642 * Emulation of deprecated remap_file_pages() syscall. 1643 */ 1644 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 1645 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 1646 { 1647 1648 struct mm_struct *mm = current->mm; 1649 struct vm_area_struct *vma; 1650 unsigned long populate = 0; 1651 unsigned long ret = -EINVAL; 1652 struct file *file; 1653 1654 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 1655 current->comm, current->pid); 1656 1657 if (prot) 1658 return ret; 1659 start = start & PAGE_MASK; 1660 size = size & PAGE_MASK; 1661 1662 if (start + size <= start) 1663 return ret; 1664 1665 /* Does pgoff wrap? */ 1666 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 1667 return ret; 1668 1669 if (mmap_write_lock_killable(mm)) 1670 return -EINTR; 1671 1672 vma = vma_lookup(mm, start); 1673 1674 if (!vma || !(vma->vm_flags & VM_SHARED)) 1675 goto out; 1676 1677 if (start + size > vma->vm_end) { 1678 VMA_ITERATOR(vmi, mm, vma->vm_end); 1679 struct vm_area_struct *next, *prev = vma; 1680 1681 for_each_vma_range(vmi, next, start + size) { 1682 /* hole between vmas ? */ 1683 if (next->vm_start != prev->vm_end) 1684 goto out; 1685 1686 if (next->vm_file != vma->vm_file) 1687 goto out; 1688 1689 if (next->vm_flags != vma->vm_flags) 1690 goto out; 1691 1692 if (start + size <= next->vm_end) 1693 break; 1694 1695 prev = next; 1696 } 1697 1698 if (!next) 1699 goto out; 1700 } 1701 1702 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 1703 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 1704 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 1705 1706 flags &= MAP_NONBLOCK; 1707 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 1708 if (vma->vm_flags & VM_LOCKED) 1709 flags |= MAP_LOCKED; 1710 1711 file = get_file(vma->vm_file); 1712 ret = do_mmap(vma->vm_file, start, size, 1713 prot, flags, 0, pgoff, &populate, NULL); 1714 fput(file); 1715 out: 1716 mmap_write_unlock(mm); 1717 if (populate) 1718 mm_populate(ret, populate); 1719 if (!IS_ERR_VALUE(ret)) 1720 ret = 0; 1721 return ret; 1722 } 1723 1724 /* 1725 * do_vma_munmap() - Unmap a full or partial vma. 1726 * @vmi: The vma iterator pointing at the vma 1727 * @vma: The first vma to be munmapped 1728 * @start: the start of the address to unmap 1729 * @end: The end of the address to unmap 1730 * @uf: The userfaultfd list_head 1731 * @unlock: Drop the lock on success 1732 * 1733 * unmaps a VMA mapping when the vma iterator is already in position. 1734 * Does not handle alignment. 1735 * 1736 * Return: 0 on success drops the lock of so directed, error on failure and will 1737 * still hold the lock. 1738 */ 1739 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1740 unsigned long start, unsigned long end, struct list_head *uf, 1741 bool unlock) 1742 { 1743 struct mm_struct *mm = vma->vm_mm; 1744 1745 /* 1746 * Check if memory is sealed, prevent unmapping a sealed VMA. 1747 * can_modify_mm assumes we have acquired the lock on MM. 1748 */ 1749 if (unlikely(!can_modify_mm(mm, start, end))) 1750 return -EPERM; 1751 1752 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1753 } 1754 1755 /* 1756 * do_brk_flags() - Increase the brk vma if the flags match. 1757 * @vmi: The vma iterator 1758 * @addr: The start address 1759 * @len: The length of the increase 1760 * @vma: The vma, 1761 * @flags: The VMA Flags 1762 * 1763 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 1764 * do not match then create a new anonymous VMA. Eventually we may be able to 1765 * do some brk-specific accounting here. 1766 */ 1767 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 1768 unsigned long addr, unsigned long len, unsigned long flags) 1769 { 1770 struct mm_struct *mm = current->mm; 1771 struct vma_prepare vp; 1772 1773 /* 1774 * Check against address space limits by the changed size 1775 * Note: This happens *after* clearing old mappings in some code paths. 1776 */ 1777 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1778 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 1779 return -ENOMEM; 1780 1781 if (mm->map_count > sysctl_max_map_count) 1782 return -ENOMEM; 1783 1784 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 1785 return -ENOMEM; 1786 1787 /* 1788 * Expand the existing vma if possible; Note that singular lists do not 1789 * occur after forking, so the expand will only happen on new VMAs. 1790 */ 1791 if (vma && vma->vm_end == addr && !vma_policy(vma) && 1792 can_vma_merge_after(vma, flags, NULL, NULL, 1793 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 1794 vma_iter_config(vmi, vma->vm_start, addr + len); 1795 if (vma_iter_prealloc(vmi, vma)) 1796 goto unacct_fail; 1797 1798 vma_start_write(vma); 1799 1800 init_vma_prep(&vp, vma); 1801 vma_prepare(&vp); 1802 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 1803 vma->vm_end = addr + len; 1804 vm_flags_set(vma, VM_SOFTDIRTY); 1805 vma_iter_store(vmi, vma); 1806 1807 vma_complete(&vp, vmi, mm); 1808 khugepaged_enter_vma(vma, flags); 1809 goto out; 1810 } 1811 1812 if (vma) 1813 vma_iter_next_range(vmi); 1814 /* create a vma struct for an anonymous mapping */ 1815 vma = vm_area_alloc(mm); 1816 if (!vma) 1817 goto unacct_fail; 1818 1819 vma_set_anonymous(vma); 1820 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 1821 vm_flags_init(vma, flags); 1822 vma->vm_page_prot = vm_get_page_prot(flags); 1823 vma_start_write(vma); 1824 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 1825 goto mas_store_fail; 1826 1827 mm->map_count++; 1828 validate_mm(mm); 1829 ksm_add_vma(vma); 1830 out: 1831 perf_event_mmap(vma); 1832 mm->total_vm += len >> PAGE_SHIFT; 1833 mm->data_vm += len >> PAGE_SHIFT; 1834 if (flags & VM_LOCKED) 1835 mm->locked_vm += (len >> PAGE_SHIFT); 1836 vm_flags_set(vma, VM_SOFTDIRTY); 1837 return 0; 1838 1839 mas_store_fail: 1840 vm_area_free(vma); 1841 unacct_fail: 1842 vm_unacct_memory(len >> PAGE_SHIFT); 1843 return -ENOMEM; 1844 } 1845 1846 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 1847 { 1848 struct mm_struct *mm = current->mm; 1849 struct vm_area_struct *vma = NULL; 1850 unsigned long len; 1851 int ret; 1852 bool populate; 1853 LIST_HEAD(uf); 1854 VMA_ITERATOR(vmi, mm, addr); 1855 1856 len = PAGE_ALIGN(request); 1857 if (len < request) 1858 return -ENOMEM; 1859 if (!len) 1860 return 0; 1861 1862 /* Until we need other flags, refuse anything except VM_EXEC. */ 1863 if ((flags & (~VM_EXEC)) != 0) 1864 return -EINVAL; 1865 1866 if (mmap_write_lock_killable(mm)) 1867 return -EINTR; 1868 1869 ret = check_brk_limits(addr, len); 1870 if (ret) 1871 goto limits_failed; 1872 1873 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 1874 if (ret) 1875 goto munmap_failed; 1876 1877 vma = vma_prev(&vmi); 1878 ret = do_brk_flags(&vmi, vma, addr, len, flags); 1879 populate = ((mm->def_flags & VM_LOCKED) != 0); 1880 mmap_write_unlock(mm); 1881 userfaultfd_unmap_complete(mm, &uf); 1882 if (populate && !ret) 1883 mm_populate(addr, len); 1884 return ret; 1885 1886 munmap_failed: 1887 limits_failed: 1888 mmap_write_unlock(mm); 1889 return ret; 1890 } 1891 EXPORT_SYMBOL(vm_brk_flags); 1892 1893 /* Release all mmaps. */ 1894 void exit_mmap(struct mm_struct *mm) 1895 { 1896 struct mmu_gather tlb; 1897 struct vm_area_struct *vma; 1898 unsigned long nr_accounted = 0; 1899 VMA_ITERATOR(vmi, mm, 0); 1900 int count = 0; 1901 1902 /* mm's last user has gone, and its about to be pulled down */ 1903 mmu_notifier_release(mm); 1904 1905 mmap_read_lock(mm); 1906 arch_exit_mmap(mm); 1907 1908 vma = vma_next(&vmi); 1909 if (!vma || unlikely(xa_is_zero(vma))) { 1910 /* Can happen if dup_mmap() received an OOM */ 1911 mmap_read_unlock(mm); 1912 mmap_write_lock(mm); 1913 goto destroy; 1914 } 1915 1916 lru_add_drain(); 1917 flush_cache_mm(mm); 1918 tlb_gather_mmu_fullmm(&tlb, mm); 1919 /* update_hiwater_rss(mm) here? but nobody should be looking */ 1920 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 1921 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 1922 mmap_read_unlock(mm); 1923 1924 /* 1925 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 1926 * because the memory has been already freed. 1927 */ 1928 set_bit(MMF_OOM_SKIP, &mm->flags); 1929 mmap_write_lock(mm); 1930 mt_clear_in_rcu(&mm->mm_mt); 1931 vma_iter_set(&vmi, vma->vm_end); 1932 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 1933 USER_PGTABLES_CEILING, true); 1934 tlb_finish_mmu(&tlb); 1935 1936 /* 1937 * Walk the list again, actually closing and freeing it, with preemption 1938 * enabled, without holding any MM locks besides the unreachable 1939 * mmap_write_lock. 1940 */ 1941 vma_iter_set(&vmi, vma->vm_end); 1942 do { 1943 if (vma->vm_flags & VM_ACCOUNT) 1944 nr_accounted += vma_pages(vma); 1945 remove_vma(vma, true); 1946 count++; 1947 cond_resched(); 1948 vma = vma_next(&vmi); 1949 } while (vma && likely(!xa_is_zero(vma))); 1950 1951 BUG_ON(count != mm->map_count); 1952 1953 trace_exit_mmap(mm); 1954 destroy: 1955 __mt_destroy(&mm->mm_mt); 1956 mmap_write_unlock(mm); 1957 vm_unacct_memory(nr_accounted); 1958 } 1959 1960 /* Insert vm structure into process list sorted by address 1961 * and into the inode's i_mmap tree. If vm_file is non-NULL 1962 * then i_mmap_rwsem is taken here. 1963 */ 1964 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 1965 { 1966 unsigned long charged = vma_pages(vma); 1967 1968 1969 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 1970 return -ENOMEM; 1971 1972 if ((vma->vm_flags & VM_ACCOUNT) && 1973 security_vm_enough_memory_mm(mm, charged)) 1974 return -ENOMEM; 1975 1976 /* 1977 * The vm_pgoff of a purely anonymous vma should be irrelevant 1978 * until its first write fault, when page's anon_vma and index 1979 * are set. But now set the vm_pgoff it will almost certainly 1980 * end up with (unless mremap moves it elsewhere before that 1981 * first wfault), so /proc/pid/maps tells a consistent story. 1982 * 1983 * By setting it to reflect the virtual start address of the 1984 * vma, merges and splits can happen in a seamless way, just 1985 * using the existing file pgoff checks and manipulations. 1986 * Similarly in do_mmap and in do_brk_flags. 1987 */ 1988 if (vma_is_anonymous(vma)) { 1989 BUG_ON(vma->anon_vma); 1990 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1991 } 1992 1993 if (vma_link(mm, vma)) { 1994 if (vma->vm_flags & VM_ACCOUNT) 1995 vm_unacct_memory(charged); 1996 return -ENOMEM; 1997 } 1998 1999 return 0; 2000 } 2001 2002 /* 2003 * Return true if the calling process may expand its vm space by the passed 2004 * number of pages 2005 */ 2006 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2007 { 2008 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2009 return false; 2010 2011 if (is_data_mapping(flags) && 2012 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 2013 /* Workaround for Valgrind */ 2014 if (rlimit(RLIMIT_DATA) == 0 && 2015 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 2016 return true; 2017 2018 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 2019 current->comm, current->pid, 2020 (mm->data_vm + npages) << PAGE_SHIFT, 2021 rlimit(RLIMIT_DATA), 2022 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 2023 2024 if (!ignore_rlimit_data) 2025 return false; 2026 } 2027 2028 return true; 2029 } 2030 2031 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 2032 { 2033 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 2034 2035 if (is_exec_mapping(flags)) 2036 mm->exec_vm += npages; 2037 else if (is_stack_mapping(flags)) 2038 mm->stack_vm += npages; 2039 else if (is_data_mapping(flags)) 2040 mm->data_vm += npages; 2041 } 2042 2043 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 2044 2045 /* 2046 * Close hook, called for unmap() and on the old vma for mremap(). 2047 * 2048 * Having a close hook prevents vma merging regardless of flags. 2049 */ 2050 static void special_mapping_close(struct vm_area_struct *vma) 2051 { 2052 const struct vm_special_mapping *sm = vma->vm_private_data; 2053 2054 if (sm->close) 2055 sm->close(sm, vma); 2056 } 2057 2058 static const char *special_mapping_name(struct vm_area_struct *vma) 2059 { 2060 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2061 } 2062 2063 static int special_mapping_mremap(struct vm_area_struct *new_vma) 2064 { 2065 struct vm_special_mapping *sm = new_vma->vm_private_data; 2066 2067 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 2068 return -EFAULT; 2069 2070 if (sm->mremap) 2071 return sm->mremap(sm, new_vma); 2072 2073 return 0; 2074 } 2075 2076 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 2077 { 2078 /* 2079 * Forbid splitting special mappings - kernel has expectations over 2080 * the number of pages in mapping. Together with VM_DONTEXPAND 2081 * the size of vma should stay the same over the special mapping's 2082 * lifetime. 2083 */ 2084 return -EINVAL; 2085 } 2086 2087 static const struct vm_operations_struct special_mapping_vmops = { 2088 .close = special_mapping_close, 2089 .fault = special_mapping_fault, 2090 .mremap = special_mapping_mremap, 2091 .name = special_mapping_name, 2092 /* vDSO code relies that VVAR can't be accessed remotely */ 2093 .access = NULL, 2094 .may_split = special_mapping_split, 2095 }; 2096 2097 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 2098 { 2099 struct vm_area_struct *vma = vmf->vma; 2100 pgoff_t pgoff; 2101 struct page **pages; 2102 struct vm_special_mapping *sm = vma->vm_private_data; 2103 2104 if (sm->fault) 2105 return sm->fault(sm, vmf->vma, vmf); 2106 2107 pages = sm->pages; 2108 2109 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 2110 pgoff--; 2111 2112 if (*pages) { 2113 struct page *page = *pages; 2114 get_page(page); 2115 vmf->page = page; 2116 return 0; 2117 } 2118 2119 return VM_FAULT_SIGBUS; 2120 } 2121 2122 static struct vm_area_struct *__install_special_mapping( 2123 struct mm_struct *mm, 2124 unsigned long addr, unsigned long len, 2125 unsigned long vm_flags, void *priv, 2126 const struct vm_operations_struct *ops) 2127 { 2128 int ret; 2129 struct vm_area_struct *vma; 2130 2131 vma = vm_area_alloc(mm); 2132 if (unlikely(vma == NULL)) 2133 return ERR_PTR(-ENOMEM); 2134 2135 vma_set_range(vma, addr, addr + len, 0); 2136 vm_flags_init(vma, (vm_flags | mm->def_flags | 2137 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 2138 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2139 2140 vma->vm_ops = ops; 2141 vma->vm_private_data = priv; 2142 2143 ret = insert_vm_struct(mm, vma); 2144 if (ret) 2145 goto out; 2146 2147 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 2148 2149 perf_event_mmap(vma); 2150 2151 return vma; 2152 2153 out: 2154 vm_area_free(vma); 2155 return ERR_PTR(ret); 2156 } 2157 2158 bool vma_is_special_mapping(const struct vm_area_struct *vma, 2159 const struct vm_special_mapping *sm) 2160 { 2161 return vma->vm_private_data == sm && 2162 vma->vm_ops == &special_mapping_vmops; 2163 } 2164 2165 /* 2166 * Called with mm->mmap_lock held for writing. 2167 * Insert a new vma covering the given region, with the given flags. 2168 * Its pages are supplied by the given array of struct page *. 2169 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2170 * The region past the last page supplied will always produce SIGBUS. 2171 * The array pointer and the pages it points to are assumed to stay alive 2172 * for as long as this mapping might exist. 2173 */ 2174 struct vm_area_struct *_install_special_mapping( 2175 struct mm_struct *mm, 2176 unsigned long addr, unsigned long len, 2177 unsigned long vm_flags, const struct vm_special_mapping *spec) 2178 { 2179 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 2180 &special_mapping_vmops); 2181 } 2182 2183 /* 2184 * initialise the percpu counter for VM 2185 */ 2186 void __init mmap_init(void) 2187 { 2188 int ret; 2189 2190 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 2191 VM_BUG_ON(ret); 2192 } 2193 2194 /* 2195 * Initialise sysctl_user_reserve_kbytes. 2196 * 2197 * This is intended to prevent a user from starting a single memory hogging 2198 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 2199 * mode. 2200 * 2201 * The default value is min(3% of free memory, 128MB) 2202 * 128MB is enough to recover with sshd/login, bash, and top/kill. 2203 */ 2204 static int init_user_reserve(void) 2205 { 2206 unsigned long free_kbytes; 2207 2208 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2209 2210 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 2211 return 0; 2212 } 2213 subsys_initcall(init_user_reserve); 2214 2215 /* 2216 * Initialise sysctl_admin_reserve_kbytes. 2217 * 2218 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 2219 * to log in and kill a memory hogging process. 2220 * 2221 * Systems with more than 256MB will reserve 8MB, enough to recover 2222 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 2223 * only reserve 3% of free pages by default. 2224 */ 2225 static int init_admin_reserve(void) 2226 { 2227 unsigned long free_kbytes; 2228 2229 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2230 2231 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 2232 return 0; 2233 } 2234 subsys_initcall(init_admin_reserve); 2235 2236 /* 2237 * Reinititalise user and admin reserves if memory is added or removed. 2238 * 2239 * The default user reserve max is 128MB, and the default max for the 2240 * admin reserve is 8MB. These are usually, but not always, enough to 2241 * enable recovery from a memory hogging process using login/sshd, a shell, 2242 * and tools like top. It may make sense to increase or even disable the 2243 * reserve depending on the existence of swap or variations in the recovery 2244 * tools. So, the admin may have changed them. 2245 * 2246 * If memory is added and the reserves have been eliminated or increased above 2247 * the default max, then we'll trust the admin. 2248 * 2249 * If memory is removed and there isn't enough free memory, then we 2250 * need to reset the reserves. 2251 * 2252 * Otherwise keep the reserve set by the admin. 2253 */ 2254 static int reserve_mem_notifier(struct notifier_block *nb, 2255 unsigned long action, void *data) 2256 { 2257 unsigned long tmp, free_kbytes; 2258 2259 switch (action) { 2260 case MEM_ONLINE: 2261 /* Default max is 128MB. Leave alone if modified by operator. */ 2262 tmp = sysctl_user_reserve_kbytes; 2263 if (tmp > 0 && tmp < SZ_128K) 2264 init_user_reserve(); 2265 2266 /* Default max is 8MB. Leave alone if modified by operator. */ 2267 tmp = sysctl_admin_reserve_kbytes; 2268 if (tmp > 0 && tmp < SZ_8K) 2269 init_admin_reserve(); 2270 2271 break; 2272 case MEM_OFFLINE: 2273 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 2274 2275 if (sysctl_user_reserve_kbytes > free_kbytes) { 2276 init_user_reserve(); 2277 pr_info("vm.user_reserve_kbytes reset to %lu\n", 2278 sysctl_user_reserve_kbytes); 2279 } 2280 2281 if (sysctl_admin_reserve_kbytes > free_kbytes) { 2282 init_admin_reserve(); 2283 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 2284 sysctl_admin_reserve_kbytes); 2285 } 2286 break; 2287 default: 2288 break; 2289 } 2290 return NOTIFY_OK; 2291 } 2292 2293 static int __meminit init_reserve_notifier(void) 2294 { 2295 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 2296 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 2297 2298 return 0; 2299 } 2300 subsys_initcall(init_reserve_notifier); 2301 2302 /* 2303 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between 2304 * this VMA and its relocated range, which will now reside at [vma->vm_start - 2305 * shift, vma->vm_end - shift). 2306 * 2307 * This function is almost certainly NOT what you want for anything other than 2308 * early executable temporary stack relocation. 2309 */ 2310 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift) 2311 { 2312 /* 2313 * The process proceeds as follows: 2314 * 2315 * 1) Use shift to calculate the new vma endpoints. 2316 * 2) Extend vma to cover both the old and new ranges. This ensures the 2317 * arguments passed to subsequent functions are consistent. 2318 * 3) Move vma's page tables to the new range. 2319 * 4) Free up any cleared pgd range. 2320 * 5) Shrink the vma to cover only the new range. 2321 */ 2322 2323 struct mm_struct *mm = vma->vm_mm; 2324 unsigned long old_start = vma->vm_start; 2325 unsigned long old_end = vma->vm_end; 2326 unsigned long length = old_end - old_start; 2327 unsigned long new_start = old_start - shift; 2328 unsigned long new_end = old_end - shift; 2329 VMA_ITERATOR(vmi, mm, new_start); 2330 struct vm_area_struct *next; 2331 struct mmu_gather tlb; 2332 2333 BUG_ON(new_start > new_end); 2334 2335 /* 2336 * ensure there are no vmas between where we want to go 2337 * and where we are 2338 */ 2339 if (vma != vma_next(&vmi)) 2340 return -EFAULT; 2341 2342 vma_iter_prev_range(&vmi); 2343 /* 2344 * cover the whole range: [new_start, old_end) 2345 */ 2346 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 2347 return -ENOMEM; 2348 2349 /* 2350 * move the page tables downwards, on failure we rely on 2351 * process cleanup to remove whatever mess we made. 2352 */ 2353 if (length != move_page_tables(vma, old_start, 2354 vma, new_start, length, false, true)) 2355 return -ENOMEM; 2356 2357 lru_add_drain(); 2358 tlb_gather_mmu(&tlb, mm); 2359 next = vma_next(&vmi); 2360 if (new_end > old_start) { 2361 /* 2362 * when the old and new regions overlap clear from new_end. 2363 */ 2364 free_pgd_range(&tlb, new_end, old_end, new_end, 2365 next ? next->vm_start : USER_PGTABLES_CEILING); 2366 } else { 2367 /* 2368 * otherwise, clean from old_start; this is done to not touch 2369 * the address space in [new_end, old_start) some architectures 2370 * have constraints on va-space that make this illegal (IA64) - 2371 * for the others its just a little faster. 2372 */ 2373 free_pgd_range(&tlb, old_start, old_end, new_end, 2374 next ? next->vm_start : USER_PGTABLES_CEILING); 2375 } 2376 tlb_finish_mmu(&tlb); 2377 2378 vma_prev(&vmi); 2379 /* Shrink the vma to just the new range */ 2380 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 2381 } 2382