xref: /linux/mm/mmap.c (revision 44a2db43eb715b54618bf01520cc5d46376cdbe2)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 
30 #include <asm/uaccess.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlb.h>
33 #include <asm/mmu_context.h>
34 
35 #ifndef arch_mmap_check
36 #define arch_mmap_check(addr, len, flags)	(0)
37 #endif
38 
39 static void unmap_region(struct mm_struct *mm,
40 		struct vm_area_struct *vma, struct vm_area_struct *prev,
41 		unsigned long start, unsigned long end);
42 
43 /*
44  * WARNING: the debugging will use recursive algorithms so never enable this
45  * unless you know what you are doing.
46  */
47 #undef DEBUG_MM_RB
48 
49 /* description of effects of mapping type and prot in current implementation.
50  * this is due to the limited x86 page protection hardware.  The expected
51  * behavior is in parens:
52  *
53  * map_type	prot
54  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
55  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
56  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
57  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
58  *
59  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
60  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
61  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
62  *
63  */
64 pgprot_t protection_map[16] = {
65 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
66 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
67 };
68 
69 pgprot_t vm_get_page_prot(unsigned long vm_flags)
70 {
71 	return protection_map[vm_flags &
72 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
73 }
74 EXPORT_SYMBOL(vm_get_page_prot);
75 
76 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
77 int sysctl_overcommit_ratio = 50;	/* default is 50% */
78 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
79 atomic_t vm_committed_space = ATOMIC_INIT(0);
80 
81 /*
82  * Check that a process has enough memory to allocate a new virtual
83  * mapping. 0 means there is enough memory for the allocation to
84  * succeed and -ENOMEM implies there is not.
85  *
86  * We currently support three overcommit policies, which are set via the
87  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
88  *
89  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
90  * Additional code 2002 Jul 20 by Robert Love.
91  *
92  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
93  *
94  * Note this is a helper function intended to be used by LSMs which
95  * wish to use this logic.
96  */
97 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
98 {
99 	unsigned long free, allowed;
100 
101 	vm_acct_memory(pages);
102 
103 	/*
104 	 * Sometimes we want to use more memory than we have
105 	 */
106 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
107 		return 0;
108 
109 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
110 		unsigned long n;
111 
112 		free = global_page_state(NR_FILE_PAGES);
113 		free += nr_swap_pages;
114 
115 		/*
116 		 * Any slabs which are created with the
117 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
118 		 * which are reclaimable, under pressure.  The dentry
119 		 * cache and most inode caches should fall into this
120 		 */
121 		free += global_page_state(NR_SLAB_RECLAIMABLE);
122 
123 		/*
124 		 * Leave the last 3% for root
125 		 */
126 		if (!cap_sys_admin)
127 			free -= free / 32;
128 
129 		if (free > pages)
130 			return 0;
131 
132 		/*
133 		 * nr_free_pages() is very expensive on large systems,
134 		 * only call if we're about to fail.
135 		 */
136 		n = nr_free_pages();
137 
138 		/*
139 		 * Leave reserved pages. The pages are not for anonymous pages.
140 		 */
141 		if (n <= totalreserve_pages)
142 			goto error;
143 		else
144 			n -= totalreserve_pages;
145 
146 		/*
147 		 * Leave the last 3% for root
148 		 */
149 		if (!cap_sys_admin)
150 			n -= n / 32;
151 		free += n;
152 
153 		if (free > pages)
154 			return 0;
155 
156 		goto error;
157 	}
158 
159 	allowed = (totalram_pages - hugetlb_total_pages())
160 	       	* sysctl_overcommit_ratio / 100;
161 	/*
162 	 * Leave the last 3% for root
163 	 */
164 	if (!cap_sys_admin)
165 		allowed -= allowed / 32;
166 	allowed += total_swap_pages;
167 
168 	/* Don't let a single process grow too big:
169 	   leave 3% of the size of this process for other processes */
170 	allowed -= mm->total_vm / 32;
171 
172 	/*
173 	 * cast `allowed' as a signed long because vm_committed_space
174 	 * sometimes has a negative value
175 	 */
176 	if (atomic_read(&vm_committed_space) < (long)allowed)
177 		return 0;
178 error:
179 	vm_unacct_memory(pages);
180 
181 	return -ENOMEM;
182 }
183 
184 EXPORT_SYMBOL(__vm_enough_memory);
185 
186 /*
187  * Requires inode->i_mapping->i_mmap_lock
188  */
189 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
190 		struct file *file, struct address_space *mapping)
191 {
192 	if (vma->vm_flags & VM_DENYWRITE)
193 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
194 	if (vma->vm_flags & VM_SHARED)
195 		mapping->i_mmap_writable--;
196 
197 	flush_dcache_mmap_lock(mapping);
198 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
199 		list_del_init(&vma->shared.vm_set.list);
200 	else
201 		vma_prio_tree_remove(vma, &mapping->i_mmap);
202 	flush_dcache_mmap_unlock(mapping);
203 }
204 
205 /*
206  * Unlink a file-based vm structure from its prio_tree, to hide
207  * vma from rmap and vmtruncate before freeing its page tables.
208  */
209 void unlink_file_vma(struct vm_area_struct *vma)
210 {
211 	struct file *file = vma->vm_file;
212 
213 	if (file) {
214 		struct address_space *mapping = file->f_mapping;
215 		spin_lock(&mapping->i_mmap_lock);
216 		__remove_shared_vm_struct(vma, file, mapping);
217 		spin_unlock(&mapping->i_mmap_lock);
218 	}
219 }
220 
221 /*
222  * Close a vm structure and free it, returning the next.
223  */
224 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
225 {
226 	struct vm_area_struct *next = vma->vm_next;
227 
228 	might_sleep();
229 	if (vma->vm_ops && vma->vm_ops->close)
230 		vma->vm_ops->close(vma);
231 	if (vma->vm_file)
232 		fput(vma->vm_file);
233 	mpol_free(vma_policy(vma));
234 	kmem_cache_free(vm_area_cachep, vma);
235 	return next;
236 }
237 
238 asmlinkage unsigned long sys_brk(unsigned long brk)
239 {
240 	unsigned long rlim, retval;
241 	unsigned long newbrk, oldbrk;
242 	struct mm_struct *mm = current->mm;
243 
244 	down_write(&mm->mmap_sem);
245 
246 	if (brk < mm->end_code)
247 		goto out;
248 
249 	/*
250 	 * Check against rlimit here. If this check is done later after the test
251 	 * of oldbrk with newbrk then it can escape the test and let the data
252 	 * segment grow beyond its set limit the in case where the limit is
253 	 * not page aligned -Ram Gupta
254 	 */
255 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
256 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
257 		goto out;
258 
259 	newbrk = PAGE_ALIGN(brk);
260 	oldbrk = PAGE_ALIGN(mm->brk);
261 	if (oldbrk == newbrk)
262 		goto set_brk;
263 
264 	/* Always allow shrinking brk. */
265 	if (brk <= mm->brk) {
266 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
267 			goto set_brk;
268 		goto out;
269 	}
270 
271 	/* Check against existing mmap mappings. */
272 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
273 		goto out;
274 
275 	/* Ok, looks good - let it rip. */
276 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
277 		goto out;
278 set_brk:
279 	mm->brk = brk;
280 out:
281 	retval = mm->brk;
282 	up_write(&mm->mmap_sem);
283 	return retval;
284 }
285 
286 #ifdef DEBUG_MM_RB
287 static int browse_rb(struct rb_root *root)
288 {
289 	int i = 0, j;
290 	struct rb_node *nd, *pn = NULL;
291 	unsigned long prev = 0, pend = 0;
292 
293 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294 		struct vm_area_struct *vma;
295 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296 		if (vma->vm_start < prev)
297 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
298 		if (vma->vm_start < pend)
299 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
300 		if (vma->vm_start > vma->vm_end)
301 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
302 		i++;
303 		pn = nd;
304 		prev = vma->vm_start;
305 		pend = vma->vm_end;
306 	}
307 	j = 0;
308 	for (nd = pn; nd; nd = rb_prev(nd)) {
309 		j++;
310 	}
311 	if (i != j)
312 		printk("backwards %d, forwards %d\n", j, i), i = 0;
313 	return i;
314 }
315 
316 void validate_mm(struct mm_struct *mm)
317 {
318 	int bug = 0;
319 	int i = 0;
320 	struct vm_area_struct *tmp = mm->mmap;
321 	while (tmp) {
322 		tmp = tmp->vm_next;
323 		i++;
324 	}
325 	if (i != mm->map_count)
326 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
327 	i = browse_rb(&mm->mm_rb);
328 	if (i != mm->map_count)
329 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
330 	BUG_ON(bug);
331 }
332 #else
333 #define validate_mm(mm) do { } while (0)
334 #endif
335 
336 static struct vm_area_struct *
337 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
338 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
339 		struct rb_node ** rb_parent)
340 {
341 	struct vm_area_struct * vma;
342 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
343 
344 	__rb_link = &mm->mm_rb.rb_node;
345 	rb_prev = __rb_parent = NULL;
346 	vma = NULL;
347 
348 	while (*__rb_link) {
349 		struct vm_area_struct *vma_tmp;
350 
351 		__rb_parent = *__rb_link;
352 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
353 
354 		if (vma_tmp->vm_end > addr) {
355 			vma = vma_tmp;
356 			if (vma_tmp->vm_start <= addr)
357 				return vma;
358 			__rb_link = &__rb_parent->rb_left;
359 		} else {
360 			rb_prev = __rb_parent;
361 			__rb_link = &__rb_parent->rb_right;
362 		}
363 	}
364 
365 	*pprev = NULL;
366 	if (rb_prev)
367 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
368 	*rb_link = __rb_link;
369 	*rb_parent = __rb_parent;
370 	return vma;
371 }
372 
373 static inline void
374 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
375 		struct vm_area_struct *prev, struct rb_node *rb_parent)
376 {
377 	if (prev) {
378 		vma->vm_next = prev->vm_next;
379 		prev->vm_next = vma;
380 	} else {
381 		mm->mmap = vma;
382 		if (rb_parent)
383 			vma->vm_next = rb_entry(rb_parent,
384 					struct vm_area_struct, vm_rb);
385 		else
386 			vma->vm_next = NULL;
387 	}
388 }
389 
390 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
391 		struct rb_node **rb_link, struct rb_node *rb_parent)
392 {
393 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
394 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
395 }
396 
397 static inline void __vma_link_file(struct vm_area_struct *vma)
398 {
399 	struct file * file;
400 
401 	file = vma->vm_file;
402 	if (file) {
403 		struct address_space *mapping = file->f_mapping;
404 
405 		if (vma->vm_flags & VM_DENYWRITE)
406 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
407 		if (vma->vm_flags & VM_SHARED)
408 			mapping->i_mmap_writable++;
409 
410 		flush_dcache_mmap_lock(mapping);
411 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
412 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
413 		else
414 			vma_prio_tree_insert(vma, &mapping->i_mmap);
415 		flush_dcache_mmap_unlock(mapping);
416 	}
417 }
418 
419 static void
420 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
421 	struct vm_area_struct *prev, struct rb_node **rb_link,
422 	struct rb_node *rb_parent)
423 {
424 	__vma_link_list(mm, vma, prev, rb_parent);
425 	__vma_link_rb(mm, vma, rb_link, rb_parent);
426 	__anon_vma_link(vma);
427 }
428 
429 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
430 			struct vm_area_struct *prev, struct rb_node **rb_link,
431 			struct rb_node *rb_parent)
432 {
433 	struct address_space *mapping = NULL;
434 
435 	if (vma->vm_file)
436 		mapping = vma->vm_file->f_mapping;
437 
438 	if (mapping) {
439 		spin_lock(&mapping->i_mmap_lock);
440 		vma->vm_truncate_count = mapping->truncate_count;
441 	}
442 	anon_vma_lock(vma);
443 
444 	__vma_link(mm, vma, prev, rb_link, rb_parent);
445 	__vma_link_file(vma);
446 
447 	anon_vma_unlock(vma);
448 	if (mapping)
449 		spin_unlock(&mapping->i_mmap_lock);
450 
451 	mm->map_count++;
452 	validate_mm(mm);
453 }
454 
455 /*
456  * Helper for vma_adjust in the split_vma insert case:
457  * insert vm structure into list and rbtree and anon_vma,
458  * but it has already been inserted into prio_tree earlier.
459  */
460 static void
461 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
462 {
463 	struct vm_area_struct * __vma, * prev;
464 	struct rb_node ** rb_link, * rb_parent;
465 
466 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
467 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
468 	__vma_link(mm, vma, prev, rb_link, rb_parent);
469 	mm->map_count++;
470 }
471 
472 static inline void
473 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
474 		struct vm_area_struct *prev)
475 {
476 	prev->vm_next = vma->vm_next;
477 	rb_erase(&vma->vm_rb, &mm->mm_rb);
478 	if (mm->mmap_cache == vma)
479 		mm->mmap_cache = prev;
480 }
481 
482 /*
483  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484  * is already present in an i_mmap tree without adjusting the tree.
485  * The following helper function should be used when such adjustments
486  * are necessary.  The "insert" vma (if any) is to be inserted
487  * before we drop the necessary locks.
488  */
489 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
490 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491 {
492 	struct mm_struct *mm = vma->vm_mm;
493 	struct vm_area_struct *next = vma->vm_next;
494 	struct vm_area_struct *importer = NULL;
495 	struct address_space *mapping = NULL;
496 	struct prio_tree_root *root = NULL;
497 	struct file *file = vma->vm_file;
498 	struct anon_vma *anon_vma = NULL;
499 	long adjust_next = 0;
500 	int remove_next = 0;
501 
502 	if (next && !insert) {
503 		if (end >= next->vm_end) {
504 			/*
505 			 * vma expands, overlapping all the next, and
506 			 * perhaps the one after too (mprotect case 6).
507 			 */
508 again:			remove_next = 1 + (end > next->vm_end);
509 			end = next->vm_end;
510 			anon_vma = next->anon_vma;
511 			importer = vma;
512 		} else if (end > next->vm_start) {
513 			/*
514 			 * vma expands, overlapping part of the next:
515 			 * mprotect case 5 shifting the boundary up.
516 			 */
517 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
518 			anon_vma = next->anon_vma;
519 			importer = vma;
520 		} else if (end < vma->vm_end) {
521 			/*
522 			 * vma shrinks, and !insert tells it's not
523 			 * split_vma inserting another: so it must be
524 			 * mprotect case 4 shifting the boundary down.
525 			 */
526 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
527 			anon_vma = next->anon_vma;
528 			importer = next;
529 		}
530 	}
531 
532 	if (file) {
533 		mapping = file->f_mapping;
534 		if (!(vma->vm_flags & VM_NONLINEAR))
535 			root = &mapping->i_mmap;
536 		spin_lock(&mapping->i_mmap_lock);
537 		if (importer &&
538 		    vma->vm_truncate_count != next->vm_truncate_count) {
539 			/*
540 			 * unmap_mapping_range might be in progress:
541 			 * ensure that the expanding vma is rescanned.
542 			 */
543 			importer->vm_truncate_count = 0;
544 		}
545 		if (insert) {
546 			insert->vm_truncate_count = vma->vm_truncate_count;
547 			/*
548 			 * Put into prio_tree now, so instantiated pages
549 			 * are visible to arm/parisc __flush_dcache_page
550 			 * throughout; but we cannot insert into address
551 			 * space until vma start or end is updated.
552 			 */
553 			__vma_link_file(insert);
554 		}
555 	}
556 
557 	/*
558 	 * When changing only vma->vm_end, we don't really need
559 	 * anon_vma lock: but is that case worth optimizing out?
560 	 */
561 	if (vma->anon_vma)
562 		anon_vma = vma->anon_vma;
563 	if (anon_vma) {
564 		spin_lock(&anon_vma->lock);
565 		/*
566 		 * Easily overlooked: when mprotect shifts the boundary,
567 		 * make sure the expanding vma has anon_vma set if the
568 		 * shrinking vma had, to cover any anon pages imported.
569 		 */
570 		if (importer && !importer->anon_vma) {
571 			importer->anon_vma = anon_vma;
572 			__anon_vma_link(importer);
573 		}
574 	}
575 
576 	if (root) {
577 		flush_dcache_mmap_lock(mapping);
578 		vma_prio_tree_remove(vma, root);
579 		if (adjust_next)
580 			vma_prio_tree_remove(next, root);
581 	}
582 
583 	vma->vm_start = start;
584 	vma->vm_end = end;
585 	vma->vm_pgoff = pgoff;
586 	if (adjust_next) {
587 		next->vm_start += adjust_next << PAGE_SHIFT;
588 		next->vm_pgoff += adjust_next;
589 	}
590 
591 	if (root) {
592 		if (adjust_next)
593 			vma_prio_tree_insert(next, root);
594 		vma_prio_tree_insert(vma, root);
595 		flush_dcache_mmap_unlock(mapping);
596 	}
597 
598 	if (remove_next) {
599 		/*
600 		 * vma_merge has merged next into vma, and needs
601 		 * us to remove next before dropping the locks.
602 		 */
603 		__vma_unlink(mm, next, vma);
604 		if (file)
605 			__remove_shared_vm_struct(next, file, mapping);
606 		if (next->anon_vma)
607 			__anon_vma_merge(vma, next);
608 	} else if (insert) {
609 		/*
610 		 * split_vma has split insert from vma, and needs
611 		 * us to insert it before dropping the locks
612 		 * (it may either follow vma or precede it).
613 		 */
614 		__insert_vm_struct(mm, insert);
615 	}
616 
617 	if (anon_vma)
618 		spin_unlock(&anon_vma->lock);
619 	if (mapping)
620 		spin_unlock(&mapping->i_mmap_lock);
621 
622 	if (remove_next) {
623 		if (file)
624 			fput(file);
625 		mm->map_count--;
626 		mpol_free(vma_policy(next));
627 		kmem_cache_free(vm_area_cachep, next);
628 		/*
629 		 * In mprotect's case 6 (see comments on vma_merge),
630 		 * we must remove another next too. It would clutter
631 		 * up the code too much to do both in one go.
632 		 */
633 		if (remove_next == 2) {
634 			next = vma->vm_next;
635 			goto again;
636 		}
637 	}
638 
639 	validate_mm(mm);
640 }
641 
642 /*
643  * If the vma has a ->close operation then the driver probably needs to release
644  * per-vma resources, so we don't attempt to merge those.
645  */
646 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
647 
648 static inline int is_mergeable_vma(struct vm_area_struct *vma,
649 			struct file *file, unsigned long vm_flags)
650 {
651 	if (vma->vm_flags != vm_flags)
652 		return 0;
653 	if (vma->vm_file != file)
654 		return 0;
655 	if (vma->vm_ops && vma->vm_ops->close)
656 		return 0;
657 	return 1;
658 }
659 
660 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
661 					struct anon_vma *anon_vma2)
662 {
663 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
664 }
665 
666 /*
667  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
668  * in front of (at a lower virtual address and file offset than) the vma.
669  *
670  * We cannot merge two vmas if they have differently assigned (non-NULL)
671  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
672  *
673  * We don't check here for the merged mmap wrapping around the end of pagecache
674  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
675  * wrap, nor mmaps which cover the final page at index -1UL.
676  */
677 static int
678 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
679 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
680 {
681 	if (is_mergeable_vma(vma, file, vm_flags) &&
682 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
683 		if (vma->vm_pgoff == vm_pgoff)
684 			return 1;
685 	}
686 	return 0;
687 }
688 
689 /*
690  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
691  * beyond (at a higher virtual address and file offset than) the vma.
692  *
693  * We cannot merge two vmas if they have differently assigned (non-NULL)
694  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695  */
696 static int
697 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
698 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 {
700 	if (is_mergeable_vma(vma, file, vm_flags) &&
701 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
702 		pgoff_t vm_pglen;
703 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
704 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
705 			return 1;
706 	}
707 	return 0;
708 }
709 
710 /*
711  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
712  * whether that can be merged with its predecessor or its successor.
713  * Or both (it neatly fills a hole).
714  *
715  * In most cases - when called for mmap, brk or mremap - [addr,end) is
716  * certain not to be mapped by the time vma_merge is called; but when
717  * called for mprotect, it is certain to be already mapped (either at
718  * an offset within prev, or at the start of next), and the flags of
719  * this area are about to be changed to vm_flags - and the no-change
720  * case has already been eliminated.
721  *
722  * The following mprotect cases have to be considered, where AAAA is
723  * the area passed down from mprotect_fixup, never extending beyond one
724  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
725  *
726  *     AAAA             AAAA                AAAA          AAAA
727  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
728  *    cannot merge    might become    might become    might become
729  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
730  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
731  *    mremap move:                                    PPPPNNNNNNNN 8
732  *        AAAA
733  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
734  *    might become    case 1 below    case 2 below    case 3 below
735  *
736  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
737  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
738  */
739 struct vm_area_struct *vma_merge(struct mm_struct *mm,
740 			struct vm_area_struct *prev, unsigned long addr,
741 			unsigned long end, unsigned long vm_flags,
742 		     	struct anon_vma *anon_vma, struct file *file,
743 			pgoff_t pgoff, struct mempolicy *policy)
744 {
745 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
746 	struct vm_area_struct *area, *next;
747 
748 	/*
749 	 * We later require that vma->vm_flags == vm_flags,
750 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
751 	 */
752 	if (vm_flags & VM_SPECIAL)
753 		return NULL;
754 
755 	if (prev)
756 		next = prev->vm_next;
757 	else
758 		next = mm->mmap;
759 	area = next;
760 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
761 		next = next->vm_next;
762 
763 	/*
764 	 * Can it merge with the predecessor?
765 	 */
766 	if (prev && prev->vm_end == addr &&
767   			mpol_equal(vma_policy(prev), policy) &&
768 			can_vma_merge_after(prev, vm_flags,
769 						anon_vma, file, pgoff)) {
770 		/*
771 		 * OK, it can.  Can we now merge in the successor as well?
772 		 */
773 		if (next && end == next->vm_start &&
774 				mpol_equal(policy, vma_policy(next)) &&
775 				can_vma_merge_before(next, vm_flags,
776 					anon_vma, file, pgoff+pglen) &&
777 				is_mergeable_anon_vma(prev->anon_vma,
778 						      next->anon_vma)) {
779 							/* cases 1, 6 */
780 			vma_adjust(prev, prev->vm_start,
781 				next->vm_end, prev->vm_pgoff, NULL);
782 		} else					/* cases 2, 5, 7 */
783 			vma_adjust(prev, prev->vm_start,
784 				end, prev->vm_pgoff, NULL);
785 		return prev;
786 	}
787 
788 	/*
789 	 * Can this new request be merged in front of next?
790 	 */
791 	if (next && end == next->vm_start &&
792  			mpol_equal(policy, vma_policy(next)) &&
793 			can_vma_merge_before(next, vm_flags,
794 					anon_vma, file, pgoff+pglen)) {
795 		if (prev && addr < prev->vm_end)	/* case 4 */
796 			vma_adjust(prev, prev->vm_start,
797 				addr, prev->vm_pgoff, NULL);
798 		else					/* cases 3, 8 */
799 			vma_adjust(area, addr, next->vm_end,
800 				next->vm_pgoff - pglen, NULL);
801 		return area;
802 	}
803 
804 	return NULL;
805 }
806 
807 /*
808  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
809  * neighbouring vmas for a suitable anon_vma, before it goes off
810  * to allocate a new anon_vma.  It checks because a repetitive
811  * sequence of mprotects and faults may otherwise lead to distinct
812  * anon_vmas being allocated, preventing vma merge in subsequent
813  * mprotect.
814  */
815 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
816 {
817 	struct vm_area_struct *near;
818 	unsigned long vm_flags;
819 
820 	near = vma->vm_next;
821 	if (!near)
822 		goto try_prev;
823 
824 	/*
825 	 * Since only mprotect tries to remerge vmas, match flags
826 	 * which might be mprotected into each other later on.
827 	 * Neither mlock nor madvise tries to remerge at present,
828 	 * so leave their flags as obstructing a merge.
829 	 */
830 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
831 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
832 
833 	if (near->anon_vma && vma->vm_end == near->vm_start &&
834  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
835 			can_vma_merge_before(near, vm_flags,
836 				NULL, vma->vm_file, vma->vm_pgoff +
837 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
838 		return near->anon_vma;
839 try_prev:
840 	/*
841 	 * It is potentially slow to have to call find_vma_prev here.
842 	 * But it's only on the first write fault on the vma, not
843 	 * every time, and we could devise a way to avoid it later
844 	 * (e.g. stash info in next's anon_vma_node when assigning
845 	 * an anon_vma, or when trying vma_merge).  Another time.
846 	 */
847 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
848 	if (!near)
849 		goto none;
850 
851 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
852 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
853 
854 	if (near->anon_vma && near->vm_end == vma->vm_start &&
855   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
856 			can_vma_merge_after(near, vm_flags,
857 				NULL, vma->vm_file, vma->vm_pgoff))
858 		return near->anon_vma;
859 none:
860 	/*
861 	 * There's no absolute need to look only at touching neighbours:
862 	 * we could search further afield for "compatible" anon_vmas.
863 	 * But it would probably just be a waste of time searching,
864 	 * or lead to too many vmas hanging off the same anon_vma.
865 	 * We're trying to allow mprotect remerging later on,
866 	 * not trying to minimize memory used for anon_vmas.
867 	 */
868 	return NULL;
869 }
870 
871 #ifdef CONFIG_PROC_FS
872 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
873 						struct file *file, long pages)
874 {
875 	const unsigned long stack_flags
876 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
877 
878 	if (file) {
879 		mm->shared_vm += pages;
880 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
881 			mm->exec_vm += pages;
882 	} else if (flags & stack_flags)
883 		mm->stack_vm += pages;
884 	if (flags & (VM_RESERVED|VM_IO))
885 		mm->reserved_vm += pages;
886 }
887 #endif /* CONFIG_PROC_FS */
888 
889 /*
890  * The caller must hold down_write(current->mm->mmap_sem).
891  */
892 
893 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
894 			unsigned long len, unsigned long prot,
895 			unsigned long flags, unsigned long pgoff)
896 {
897 	struct mm_struct * mm = current->mm;
898 	struct inode *inode;
899 	unsigned int vm_flags;
900 	int error;
901 	int accountable = 1;
902 	unsigned long reqprot = prot;
903 
904 	/*
905 	 * Does the application expect PROT_READ to imply PROT_EXEC?
906 	 *
907 	 * (the exception is when the underlying filesystem is noexec
908 	 *  mounted, in which case we dont add PROT_EXEC.)
909 	 */
910 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
911 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
912 			prot |= PROT_EXEC;
913 
914 	if (!len)
915 		return -EINVAL;
916 
917 	error = arch_mmap_check(addr, len, flags);
918 	if (error)
919 		return error;
920 
921 	/* Careful about overflows.. */
922 	len = PAGE_ALIGN(len);
923 	if (!len || len > TASK_SIZE)
924 		return -ENOMEM;
925 
926 	/* offset overflow? */
927 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
928                return -EOVERFLOW;
929 
930 	/* Too many mappings? */
931 	if (mm->map_count > sysctl_max_map_count)
932 		return -ENOMEM;
933 
934 	/* Obtain the address to map to. we verify (or select) it and ensure
935 	 * that it represents a valid section of the address space.
936 	 */
937 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
938 	if (addr & ~PAGE_MASK)
939 		return addr;
940 
941 	/* Do simple checking here so the lower-level routines won't have
942 	 * to. we assume access permissions have been handled by the open
943 	 * of the memory object, so we don't do any here.
944 	 */
945 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
946 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
947 
948 	if (flags & MAP_LOCKED) {
949 		if (!can_do_mlock())
950 			return -EPERM;
951 		vm_flags |= VM_LOCKED;
952 	}
953 	/* mlock MCL_FUTURE? */
954 	if (vm_flags & VM_LOCKED) {
955 		unsigned long locked, lock_limit;
956 		locked = len >> PAGE_SHIFT;
957 		locked += mm->locked_vm;
958 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
959 		lock_limit >>= PAGE_SHIFT;
960 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
961 			return -EAGAIN;
962 	}
963 
964 	inode = file ? file->f_path.dentry->d_inode : NULL;
965 
966 	if (file) {
967 		switch (flags & MAP_TYPE) {
968 		case MAP_SHARED:
969 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
970 				return -EACCES;
971 
972 			/*
973 			 * Make sure we don't allow writing to an append-only
974 			 * file..
975 			 */
976 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
977 				return -EACCES;
978 
979 			/*
980 			 * Make sure there are no mandatory locks on the file.
981 			 */
982 			if (locks_verify_locked(inode))
983 				return -EAGAIN;
984 
985 			vm_flags |= VM_SHARED | VM_MAYSHARE;
986 			if (!(file->f_mode & FMODE_WRITE))
987 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
988 
989 			/* fall through */
990 		case MAP_PRIVATE:
991 			if (!(file->f_mode & FMODE_READ))
992 				return -EACCES;
993 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
994 				if (vm_flags & VM_EXEC)
995 					return -EPERM;
996 				vm_flags &= ~VM_MAYEXEC;
997 			}
998 			if (is_file_hugepages(file))
999 				accountable = 0;
1000 
1001 			if (!file->f_op || !file->f_op->mmap)
1002 				return -ENODEV;
1003 			break;
1004 
1005 		default:
1006 			return -EINVAL;
1007 		}
1008 	} else {
1009 		switch (flags & MAP_TYPE) {
1010 		case MAP_SHARED:
1011 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1012 			break;
1013 		case MAP_PRIVATE:
1014 			/*
1015 			 * Set pgoff according to addr for anon_vma.
1016 			 */
1017 			pgoff = addr >> PAGE_SHIFT;
1018 			break;
1019 		default:
1020 			return -EINVAL;
1021 		}
1022 	}
1023 
1024 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1025 	if (error)
1026 		return error;
1027 
1028 	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1029 			   accountable);
1030 }
1031 EXPORT_SYMBOL(do_mmap_pgoff);
1032 
1033 /*
1034  * Some shared mappigns will want the pages marked read-only
1035  * to track write events. If so, we'll downgrade vm_page_prot
1036  * to the private version (using protection_map[] without the
1037  * VM_SHARED bit).
1038  */
1039 int vma_wants_writenotify(struct vm_area_struct *vma)
1040 {
1041 	unsigned int vm_flags = vma->vm_flags;
1042 
1043 	/* If it was private or non-writable, the write bit is already clear */
1044 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1045 		return 0;
1046 
1047 	/* The backer wishes to know when pages are first written to? */
1048 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1049 		return 1;
1050 
1051 	/* The open routine did something to the protections already? */
1052 	if (pgprot_val(vma->vm_page_prot) !=
1053 	    pgprot_val(protection_map[vm_flags &
1054 		    (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
1055 		return 0;
1056 
1057 	/* Specialty mapping? */
1058 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1059 		return 0;
1060 
1061 	/* Can the mapping track the dirty pages? */
1062 	return vma->vm_file && vma->vm_file->f_mapping &&
1063 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1064 }
1065 
1066 
1067 unsigned long mmap_region(struct file *file, unsigned long addr,
1068 			  unsigned long len, unsigned long flags,
1069 			  unsigned int vm_flags, unsigned long pgoff,
1070 			  int accountable)
1071 {
1072 	struct mm_struct *mm = current->mm;
1073 	struct vm_area_struct *vma, *prev;
1074 	int correct_wcount = 0;
1075 	int error;
1076 	struct rb_node **rb_link, *rb_parent;
1077 	unsigned long charged = 0;
1078 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1079 
1080 	/* Clear old maps */
1081 	error = -ENOMEM;
1082 munmap_back:
1083 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1084 	if (vma && vma->vm_start < addr + len) {
1085 		if (do_munmap(mm, addr, len))
1086 			return -ENOMEM;
1087 		goto munmap_back;
1088 	}
1089 
1090 	/* Check against address space limit. */
1091 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1092 		return -ENOMEM;
1093 
1094 	if (accountable && (!(flags & MAP_NORESERVE) ||
1095 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1096 		if (vm_flags & VM_SHARED) {
1097 			/* Check memory availability in shmem_file_setup? */
1098 			vm_flags |= VM_ACCOUNT;
1099 		} else if (vm_flags & VM_WRITE) {
1100 			/*
1101 			 * Private writable mapping: check memory availability
1102 			 */
1103 			charged = len >> PAGE_SHIFT;
1104 			if (security_vm_enough_memory(charged))
1105 				return -ENOMEM;
1106 			vm_flags |= VM_ACCOUNT;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Can we just expand an old private anonymous mapping?
1112 	 * The VM_SHARED test is necessary because shmem_zero_setup
1113 	 * will create the file object for a shared anonymous map below.
1114 	 */
1115 	if (!file && !(vm_flags & VM_SHARED) &&
1116 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1117 					NULL, NULL, pgoff, NULL))
1118 		goto out;
1119 
1120 	/*
1121 	 * Determine the object being mapped and call the appropriate
1122 	 * specific mapper. the address has already been validated, but
1123 	 * not unmapped, but the maps are removed from the list.
1124 	 */
1125 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1126 	if (!vma) {
1127 		error = -ENOMEM;
1128 		goto unacct_error;
1129 	}
1130 
1131 	vma->vm_mm = mm;
1132 	vma->vm_start = addr;
1133 	vma->vm_end = addr + len;
1134 	vma->vm_flags = vm_flags;
1135 	vma->vm_page_prot = protection_map[vm_flags &
1136 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1137 	vma->vm_pgoff = pgoff;
1138 
1139 	if (file) {
1140 		error = -EINVAL;
1141 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1142 			goto free_vma;
1143 		if (vm_flags & VM_DENYWRITE) {
1144 			error = deny_write_access(file);
1145 			if (error)
1146 				goto free_vma;
1147 			correct_wcount = 1;
1148 		}
1149 		vma->vm_file = file;
1150 		get_file(file);
1151 		error = file->f_op->mmap(file, vma);
1152 		if (error)
1153 			goto unmap_and_free_vma;
1154 	} else if (vm_flags & VM_SHARED) {
1155 		error = shmem_zero_setup(vma);
1156 		if (error)
1157 			goto free_vma;
1158 	}
1159 
1160 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1161 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1162 	 * that memory reservation must be checked; but that reservation
1163 	 * belongs to shared memory object, not to vma: so now clear it.
1164 	 */
1165 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1166 		vma->vm_flags &= ~VM_ACCOUNT;
1167 
1168 	/* Can addr have changed??
1169 	 *
1170 	 * Answer: Yes, several device drivers can do it in their
1171 	 *         f_op->mmap method. -DaveM
1172 	 */
1173 	addr = vma->vm_start;
1174 	pgoff = vma->vm_pgoff;
1175 	vm_flags = vma->vm_flags;
1176 
1177 	if (vma_wants_writenotify(vma))
1178 		vma->vm_page_prot =
1179 			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1180 
1181 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1182 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1183 		file = vma->vm_file;
1184 		vma_link(mm, vma, prev, rb_link, rb_parent);
1185 		if (correct_wcount)
1186 			atomic_inc(&inode->i_writecount);
1187 	} else {
1188 		if (file) {
1189 			if (correct_wcount)
1190 				atomic_inc(&inode->i_writecount);
1191 			fput(file);
1192 		}
1193 		mpol_free(vma_policy(vma));
1194 		kmem_cache_free(vm_area_cachep, vma);
1195 	}
1196 out:
1197 	mm->total_vm += len >> PAGE_SHIFT;
1198 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1199 	if (vm_flags & VM_LOCKED) {
1200 		mm->locked_vm += len >> PAGE_SHIFT;
1201 		make_pages_present(addr, addr + len);
1202 	}
1203 	if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1204 		make_pages_present(addr, addr + len);
1205 	return addr;
1206 
1207 unmap_and_free_vma:
1208 	if (correct_wcount)
1209 		atomic_inc(&inode->i_writecount);
1210 	vma->vm_file = NULL;
1211 	fput(file);
1212 
1213 	/* Undo any partial mapping done by a device driver. */
1214 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1215 	charged = 0;
1216 free_vma:
1217 	kmem_cache_free(vm_area_cachep, vma);
1218 unacct_error:
1219 	if (charged)
1220 		vm_unacct_memory(charged);
1221 	return error;
1222 }
1223 
1224 /* Get an address range which is currently unmapped.
1225  * For shmat() with addr=0.
1226  *
1227  * Ugly calling convention alert:
1228  * Return value with the low bits set means error value,
1229  * ie
1230  *	if (ret & ~PAGE_MASK)
1231  *		error = ret;
1232  *
1233  * This function "knows" that -ENOMEM has the bits set.
1234  */
1235 #ifndef HAVE_ARCH_UNMAPPED_AREA
1236 unsigned long
1237 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1238 		unsigned long len, unsigned long pgoff, unsigned long flags)
1239 {
1240 	struct mm_struct *mm = current->mm;
1241 	struct vm_area_struct *vma;
1242 	unsigned long start_addr;
1243 
1244 	if (len > TASK_SIZE)
1245 		return -ENOMEM;
1246 
1247 	if (flags & MAP_FIXED)
1248 		return addr;
1249 
1250 	if (addr) {
1251 		addr = PAGE_ALIGN(addr);
1252 		vma = find_vma(mm, addr);
1253 		if (TASK_SIZE - len >= addr &&
1254 		    (!vma || addr + len <= vma->vm_start))
1255 			return addr;
1256 	}
1257 	if (len > mm->cached_hole_size) {
1258 	        start_addr = addr = mm->free_area_cache;
1259 	} else {
1260 	        start_addr = addr = TASK_UNMAPPED_BASE;
1261 	        mm->cached_hole_size = 0;
1262 	}
1263 
1264 full_search:
1265 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1266 		/* At this point:  (!vma || addr < vma->vm_end). */
1267 		if (TASK_SIZE - len < addr) {
1268 			/*
1269 			 * Start a new search - just in case we missed
1270 			 * some holes.
1271 			 */
1272 			if (start_addr != TASK_UNMAPPED_BASE) {
1273 				addr = TASK_UNMAPPED_BASE;
1274 			        start_addr = addr;
1275 				mm->cached_hole_size = 0;
1276 				goto full_search;
1277 			}
1278 			return -ENOMEM;
1279 		}
1280 		if (!vma || addr + len <= vma->vm_start) {
1281 			/*
1282 			 * Remember the place where we stopped the search:
1283 			 */
1284 			mm->free_area_cache = addr + len;
1285 			return addr;
1286 		}
1287 		if (addr + mm->cached_hole_size < vma->vm_start)
1288 		        mm->cached_hole_size = vma->vm_start - addr;
1289 		addr = vma->vm_end;
1290 	}
1291 }
1292 #endif
1293 
1294 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1295 {
1296 	/*
1297 	 * Is this a new hole at the lowest possible address?
1298 	 */
1299 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1300 		mm->free_area_cache = addr;
1301 		mm->cached_hole_size = ~0UL;
1302 	}
1303 }
1304 
1305 /*
1306  * This mmap-allocator allocates new areas top-down from below the
1307  * stack's low limit (the base):
1308  */
1309 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1310 unsigned long
1311 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1312 			  const unsigned long len, const unsigned long pgoff,
1313 			  const unsigned long flags)
1314 {
1315 	struct vm_area_struct *vma;
1316 	struct mm_struct *mm = current->mm;
1317 	unsigned long addr = addr0;
1318 
1319 	/* requested length too big for entire address space */
1320 	if (len > TASK_SIZE)
1321 		return -ENOMEM;
1322 
1323 	if (flags & MAP_FIXED)
1324 		return addr;
1325 
1326 	/* requesting a specific address */
1327 	if (addr) {
1328 		addr = PAGE_ALIGN(addr);
1329 		vma = find_vma(mm, addr);
1330 		if (TASK_SIZE - len >= addr &&
1331 				(!vma || addr + len <= vma->vm_start))
1332 			return addr;
1333 	}
1334 
1335 	/* check if free_area_cache is useful for us */
1336 	if (len <= mm->cached_hole_size) {
1337  	        mm->cached_hole_size = 0;
1338  		mm->free_area_cache = mm->mmap_base;
1339  	}
1340 
1341 	/* either no address requested or can't fit in requested address hole */
1342 	addr = mm->free_area_cache;
1343 
1344 	/* make sure it can fit in the remaining address space */
1345 	if (addr > len) {
1346 		vma = find_vma(mm, addr-len);
1347 		if (!vma || addr <= vma->vm_start)
1348 			/* remember the address as a hint for next time */
1349 			return (mm->free_area_cache = addr-len);
1350 	}
1351 
1352 	if (mm->mmap_base < len)
1353 		goto bottomup;
1354 
1355 	addr = mm->mmap_base-len;
1356 
1357 	do {
1358 		/*
1359 		 * Lookup failure means no vma is above this address,
1360 		 * else if new region fits below vma->vm_start,
1361 		 * return with success:
1362 		 */
1363 		vma = find_vma(mm, addr);
1364 		if (!vma || addr+len <= vma->vm_start)
1365 			/* remember the address as a hint for next time */
1366 			return (mm->free_area_cache = addr);
1367 
1368  		/* remember the largest hole we saw so far */
1369  		if (addr + mm->cached_hole_size < vma->vm_start)
1370  		        mm->cached_hole_size = vma->vm_start - addr;
1371 
1372 		/* try just below the current vma->vm_start */
1373 		addr = vma->vm_start-len;
1374 	} while (len < vma->vm_start);
1375 
1376 bottomup:
1377 	/*
1378 	 * A failed mmap() very likely causes application failure,
1379 	 * so fall back to the bottom-up function here. This scenario
1380 	 * can happen with large stack limits and large mmap()
1381 	 * allocations.
1382 	 */
1383 	mm->cached_hole_size = ~0UL;
1384   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1385 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1386 	/*
1387 	 * Restore the topdown base:
1388 	 */
1389 	mm->free_area_cache = mm->mmap_base;
1390 	mm->cached_hole_size = ~0UL;
1391 
1392 	return addr;
1393 }
1394 #endif
1395 
1396 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1397 {
1398 	/*
1399 	 * Is this a new hole at the highest possible address?
1400 	 */
1401 	if (addr > mm->free_area_cache)
1402 		mm->free_area_cache = addr;
1403 
1404 	/* dont allow allocations above current base */
1405 	if (mm->free_area_cache > mm->mmap_base)
1406 		mm->free_area_cache = mm->mmap_base;
1407 }
1408 
1409 unsigned long
1410 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1411 		unsigned long pgoff, unsigned long flags)
1412 {
1413 	unsigned long (*get_area)(struct file *, unsigned long,
1414 				  unsigned long, unsigned long, unsigned long);
1415 
1416 	get_area = current->mm->get_unmapped_area;
1417 	if (file && file->f_op && file->f_op->get_unmapped_area)
1418 		get_area = file->f_op->get_unmapped_area;
1419 	addr = get_area(file, addr, len, pgoff, flags);
1420 	if (IS_ERR_VALUE(addr))
1421 		return addr;
1422 
1423 	if (addr > TASK_SIZE - len)
1424 		return -ENOMEM;
1425 	if (addr & ~PAGE_MASK)
1426 		return -EINVAL;
1427 
1428 	return addr;
1429 }
1430 
1431 EXPORT_SYMBOL(get_unmapped_area);
1432 
1433 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1434 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1435 {
1436 	struct vm_area_struct *vma = NULL;
1437 
1438 	if (mm) {
1439 		/* Check the cache first. */
1440 		/* (Cache hit rate is typically around 35%.) */
1441 		vma = mm->mmap_cache;
1442 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1443 			struct rb_node * rb_node;
1444 
1445 			rb_node = mm->mm_rb.rb_node;
1446 			vma = NULL;
1447 
1448 			while (rb_node) {
1449 				struct vm_area_struct * vma_tmp;
1450 
1451 				vma_tmp = rb_entry(rb_node,
1452 						struct vm_area_struct, vm_rb);
1453 
1454 				if (vma_tmp->vm_end > addr) {
1455 					vma = vma_tmp;
1456 					if (vma_tmp->vm_start <= addr)
1457 						break;
1458 					rb_node = rb_node->rb_left;
1459 				} else
1460 					rb_node = rb_node->rb_right;
1461 			}
1462 			if (vma)
1463 				mm->mmap_cache = vma;
1464 		}
1465 	}
1466 	return vma;
1467 }
1468 
1469 EXPORT_SYMBOL(find_vma);
1470 
1471 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1472 struct vm_area_struct *
1473 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1474 			struct vm_area_struct **pprev)
1475 {
1476 	struct vm_area_struct *vma = NULL, *prev = NULL;
1477 	struct rb_node * rb_node;
1478 	if (!mm)
1479 		goto out;
1480 
1481 	/* Guard against addr being lower than the first VMA */
1482 	vma = mm->mmap;
1483 
1484 	/* Go through the RB tree quickly. */
1485 	rb_node = mm->mm_rb.rb_node;
1486 
1487 	while (rb_node) {
1488 		struct vm_area_struct *vma_tmp;
1489 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1490 
1491 		if (addr < vma_tmp->vm_end) {
1492 			rb_node = rb_node->rb_left;
1493 		} else {
1494 			prev = vma_tmp;
1495 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1496 				break;
1497 			rb_node = rb_node->rb_right;
1498 		}
1499 	}
1500 
1501 out:
1502 	*pprev = prev;
1503 	return prev ? prev->vm_next : vma;
1504 }
1505 
1506 /*
1507  * Verify that the stack growth is acceptable and
1508  * update accounting. This is shared with both the
1509  * grow-up and grow-down cases.
1510  */
1511 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1512 {
1513 	struct mm_struct *mm = vma->vm_mm;
1514 	struct rlimit *rlim = current->signal->rlim;
1515 	unsigned long new_start;
1516 
1517 	/* address space limit tests */
1518 	if (!may_expand_vm(mm, grow))
1519 		return -ENOMEM;
1520 
1521 	/* Stack limit test */
1522 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1523 		return -ENOMEM;
1524 
1525 	/* mlock limit tests */
1526 	if (vma->vm_flags & VM_LOCKED) {
1527 		unsigned long locked;
1528 		unsigned long limit;
1529 		locked = mm->locked_vm + grow;
1530 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1531 		if (locked > limit && !capable(CAP_IPC_LOCK))
1532 			return -ENOMEM;
1533 	}
1534 
1535 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1536 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1537 			vma->vm_end - size;
1538 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1539 		return -EFAULT;
1540 
1541 	/*
1542 	 * Overcommit..  This must be the final test, as it will
1543 	 * update security statistics.
1544 	 */
1545 	if (security_vm_enough_memory(grow))
1546 		return -ENOMEM;
1547 
1548 	/* Ok, everything looks good - let it rip */
1549 	mm->total_vm += grow;
1550 	if (vma->vm_flags & VM_LOCKED)
1551 		mm->locked_vm += grow;
1552 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1553 	return 0;
1554 }
1555 
1556 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1557 /*
1558  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1559  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1560  */
1561 #ifndef CONFIG_IA64
1562 static inline
1563 #endif
1564 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1565 {
1566 	int error;
1567 
1568 	if (!(vma->vm_flags & VM_GROWSUP))
1569 		return -EFAULT;
1570 
1571 	/*
1572 	 * We must make sure the anon_vma is allocated
1573 	 * so that the anon_vma locking is not a noop.
1574 	 */
1575 	if (unlikely(anon_vma_prepare(vma)))
1576 		return -ENOMEM;
1577 	anon_vma_lock(vma);
1578 
1579 	/*
1580 	 * vma->vm_start/vm_end cannot change under us because the caller
1581 	 * is required to hold the mmap_sem in read mode.  We need the
1582 	 * anon_vma lock to serialize against concurrent expand_stacks.
1583 	 * Also guard against wrapping around to address 0.
1584 	 */
1585 	if (address < PAGE_ALIGN(address+4))
1586 		address = PAGE_ALIGN(address+4);
1587 	else {
1588 		anon_vma_unlock(vma);
1589 		return -ENOMEM;
1590 	}
1591 	error = 0;
1592 
1593 	/* Somebody else might have raced and expanded it already */
1594 	if (address > vma->vm_end) {
1595 		unsigned long size, grow;
1596 
1597 		size = address - vma->vm_start;
1598 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1599 
1600 		error = acct_stack_growth(vma, size, grow);
1601 		if (!error)
1602 			vma->vm_end = address;
1603 	}
1604 	anon_vma_unlock(vma);
1605 	return error;
1606 }
1607 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1608 
1609 /*
1610  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1611  */
1612 static inline int expand_downwards(struct vm_area_struct *vma,
1613 				   unsigned long address)
1614 {
1615 	int error;
1616 
1617 	/*
1618 	 * We must make sure the anon_vma is allocated
1619 	 * so that the anon_vma locking is not a noop.
1620 	 */
1621 	if (unlikely(anon_vma_prepare(vma)))
1622 		return -ENOMEM;
1623 	anon_vma_lock(vma);
1624 
1625 	/*
1626 	 * vma->vm_start/vm_end cannot change under us because the caller
1627 	 * is required to hold the mmap_sem in read mode.  We need the
1628 	 * anon_vma lock to serialize against concurrent expand_stacks.
1629 	 */
1630 	address &= PAGE_MASK;
1631 	error = 0;
1632 
1633 	/* Somebody else might have raced and expanded it already */
1634 	if (address < vma->vm_start) {
1635 		unsigned long size, grow;
1636 
1637 		size = vma->vm_end - address;
1638 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1639 
1640 		error = acct_stack_growth(vma, size, grow);
1641 		if (!error) {
1642 			vma->vm_start = address;
1643 			vma->vm_pgoff -= grow;
1644 		}
1645 	}
1646 	anon_vma_unlock(vma);
1647 	return error;
1648 }
1649 
1650 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1651 {
1652 	return expand_downwards(vma, address);
1653 }
1654 
1655 #ifdef CONFIG_STACK_GROWSUP
1656 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1657 {
1658 	return expand_upwards(vma, address);
1659 }
1660 
1661 struct vm_area_struct *
1662 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1663 {
1664 	struct vm_area_struct *vma, *prev;
1665 
1666 	addr &= PAGE_MASK;
1667 	vma = find_vma_prev(mm, addr, &prev);
1668 	if (vma && (vma->vm_start <= addr))
1669 		return vma;
1670 	if (!prev || expand_stack(prev, addr))
1671 		return NULL;
1672 	if (prev->vm_flags & VM_LOCKED)
1673 		make_pages_present(addr, prev->vm_end);
1674 	return prev;
1675 }
1676 #else
1677 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1678 {
1679 	return expand_downwards(vma, address);
1680 }
1681 
1682 struct vm_area_struct *
1683 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1684 {
1685 	struct vm_area_struct * vma;
1686 	unsigned long start;
1687 
1688 	addr &= PAGE_MASK;
1689 	vma = find_vma(mm,addr);
1690 	if (!vma)
1691 		return NULL;
1692 	if (vma->vm_start <= addr)
1693 		return vma;
1694 	if (!(vma->vm_flags & VM_GROWSDOWN))
1695 		return NULL;
1696 	start = vma->vm_start;
1697 	if (expand_stack(vma, addr))
1698 		return NULL;
1699 	if (vma->vm_flags & VM_LOCKED)
1700 		make_pages_present(addr, start);
1701 	return vma;
1702 }
1703 #endif
1704 
1705 /*
1706  * Ok - we have the memory areas we should free on the vma list,
1707  * so release them, and do the vma updates.
1708  *
1709  * Called with the mm semaphore held.
1710  */
1711 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1712 {
1713 	/* Update high watermark before we lower total_vm */
1714 	update_hiwater_vm(mm);
1715 	do {
1716 		long nrpages = vma_pages(vma);
1717 
1718 		mm->total_vm -= nrpages;
1719 		if (vma->vm_flags & VM_LOCKED)
1720 			mm->locked_vm -= nrpages;
1721 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1722 		vma = remove_vma(vma);
1723 	} while (vma);
1724 	validate_mm(mm);
1725 }
1726 
1727 /*
1728  * Get rid of page table information in the indicated region.
1729  *
1730  * Called with the mm semaphore held.
1731  */
1732 static void unmap_region(struct mm_struct *mm,
1733 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1734 		unsigned long start, unsigned long end)
1735 {
1736 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1737 	struct mmu_gather *tlb;
1738 	unsigned long nr_accounted = 0;
1739 
1740 	lru_add_drain();
1741 	tlb = tlb_gather_mmu(mm, 0);
1742 	update_hiwater_rss(mm);
1743 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1744 	vm_unacct_memory(nr_accounted);
1745 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1746 				 next? next->vm_start: 0);
1747 	tlb_finish_mmu(tlb, start, end);
1748 }
1749 
1750 /*
1751  * Create a list of vma's touched by the unmap, removing them from the mm's
1752  * vma list as we go..
1753  */
1754 static void
1755 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1756 	struct vm_area_struct *prev, unsigned long end)
1757 {
1758 	struct vm_area_struct **insertion_point;
1759 	struct vm_area_struct *tail_vma = NULL;
1760 	unsigned long addr;
1761 
1762 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1763 	do {
1764 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1765 		mm->map_count--;
1766 		tail_vma = vma;
1767 		vma = vma->vm_next;
1768 	} while (vma && vma->vm_start < end);
1769 	*insertion_point = vma;
1770 	tail_vma->vm_next = NULL;
1771 	if (mm->unmap_area == arch_unmap_area)
1772 		addr = prev ? prev->vm_end : mm->mmap_base;
1773 	else
1774 		addr = vma ?  vma->vm_start : mm->mmap_base;
1775 	mm->unmap_area(mm, addr);
1776 	mm->mmap_cache = NULL;		/* Kill the cache. */
1777 }
1778 
1779 /*
1780  * Split a vma into two pieces at address 'addr', a new vma is allocated
1781  * either for the first part or the tail.
1782  */
1783 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1784 	      unsigned long addr, int new_below)
1785 {
1786 	struct mempolicy *pol;
1787 	struct vm_area_struct *new;
1788 
1789 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1790 		return -EINVAL;
1791 
1792 	if (mm->map_count >= sysctl_max_map_count)
1793 		return -ENOMEM;
1794 
1795 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1796 	if (!new)
1797 		return -ENOMEM;
1798 
1799 	/* most fields are the same, copy all, and then fixup */
1800 	*new = *vma;
1801 
1802 	if (new_below)
1803 		new->vm_end = addr;
1804 	else {
1805 		new->vm_start = addr;
1806 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1807 	}
1808 
1809 	pol = mpol_copy(vma_policy(vma));
1810 	if (IS_ERR(pol)) {
1811 		kmem_cache_free(vm_area_cachep, new);
1812 		return PTR_ERR(pol);
1813 	}
1814 	vma_set_policy(new, pol);
1815 
1816 	if (new->vm_file)
1817 		get_file(new->vm_file);
1818 
1819 	if (new->vm_ops && new->vm_ops->open)
1820 		new->vm_ops->open(new);
1821 
1822 	if (new_below)
1823 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1824 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1825 	else
1826 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1827 
1828 	return 0;
1829 }
1830 
1831 /* Munmap is split into 2 main parts -- this part which finds
1832  * what needs doing, and the areas themselves, which do the
1833  * work.  This now handles partial unmappings.
1834  * Jeremy Fitzhardinge <jeremy@goop.org>
1835  */
1836 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1837 {
1838 	unsigned long end;
1839 	struct vm_area_struct *vma, *prev, *last;
1840 
1841 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1842 		return -EINVAL;
1843 
1844 	if ((len = PAGE_ALIGN(len)) == 0)
1845 		return -EINVAL;
1846 
1847 	/* Find the first overlapping VMA */
1848 	vma = find_vma_prev(mm, start, &prev);
1849 	if (!vma)
1850 		return 0;
1851 	/* we have  start < vma->vm_end  */
1852 
1853 	/* if it doesn't overlap, we have nothing.. */
1854 	end = start + len;
1855 	if (vma->vm_start >= end)
1856 		return 0;
1857 
1858 	/*
1859 	 * If we need to split any vma, do it now to save pain later.
1860 	 *
1861 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1862 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1863 	 * places tmp vma above, and higher split_vma places tmp vma below.
1864 	 */
1865 	if (start > vma->vm_start) {
1866 		int error = split_vma(mm, vma, start, 0);
1867 		if (error)
1868 			return error;
1869 		prev = vma;
1870 	}
1871 
1872 	/* Does it split the last one? */
1873 	last = find_vma(mm, end);
1874 	if (last && end > last->vm_start) {
1875 		int error = split_vma(mm, last, end, 1);
1876 		if (error)
1877 			return error;
1878 	}
1879 	vma = prev? prev->vm_next: mm->mmap;
1880 
1881 	/*
1882 	 * Remove the vma's, and unmap the actual pages
1883 	 */
1884 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1885 	unmap_region(mm, vma, prev, start, end);
1886 
1887 	/* Fix up all other VM information */
1888 	remove_vma_list(mm, vma);
1889 
1890 	return 0;
1891 }
1892 
1893 EXPORT_SYMBOL(do_munmap);
1894 
1895 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1896 {
1897 	int ret;
1898 	struct mm_struct *mm = current->mm;
1899 
1900 	profile_munmap(addr);
1901 
1902 	down_write(&mm->mmap_sem);
1903 	ret = do_munmap(mm, addr, len);
1904 	up_write(&mm->mmap_sem);
1905 	return ret;
1906 }
1907 
1908 static inline void verify_mm_writelocked(struct mm_struct *mm)
1909 {
1910 #ifdef CONFIG_DEBUG_VM
1911 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1912 		WARN_ON(1);
1913 		up_read(&mm->mmap_sem);
1914 	}
1915 #endif
1916 }
1917 
1918 /*
1919  *  this is really a simplified "do_mmap".  it only handles
1920  *  anonymous maps.  eventually we may be able to do some
1921  *  brk-specific accounting here.
1922  */
1923 unsigned long do_brk(unsigned long addr, unsigned long len)
1924 {
1925 	struct mm_struct * mm = current->mm;
1926 	struct vm_area_struct * vma, * prev;
1927 	unsigned long flags;
1928 	struct rb_node ** rb_link, * rb_parent;
1929 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1930 	int error;
1931 
1932 	len = PAGE_ALIGN(len);
1933 	if (!len)
1934 		return addr;
1935 
1936 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1937 		return -EINVAL;
1938 
1939 	if (is_hugepage_only_range(mm, addr, len))
1940 		return -EINVAL;
1941 
1942 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1943 
1944 	error = arch_mmap_check(addr, len, flags);
1945 	if (error)
1946 		return error;
1947 
1948 	/*
1949 	 * mlock MCL_FUTURE?
1950 	 */
1951 	if (mm->def_flags & VM_LOCKED) {
1952 		unsigned long locked, lock_limit;
1953 		locked = len >> PAGE_SHIFT;
1954 		locked += mm->locked_vm;
1955 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1956 		lock_limit >>= PAGE_SHIFT;
1957 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1958 			return -EAGAIN;
1959 	}
1960 
1961 	/*
1962 	 * mm->mmap_sem is required to protect against another thread
1963 	 * changing the mappings in case we sleep.
1964 	 */
1965 	verify_mm_writelocked(mm);
1966 
1967 	/*
1968 	 * Clear old maps.  this also does some error checking for us
1969 	 */
1970  munmap_back:
1971 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1972 	if (vma && vma->vm_start < addr + len) {
1973 		if (do_munmap(mm, addr, len))
1974 			return -ENOMEM;
1975 		goto munmap_back;
1976 	}
1977 
1978 	/* Check against address space limits *after* clearing old maps... */
1979 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1980 		return -ENOMEM;
1981 
1982 	if (mm->map_count > sysctl_max_map_count)
1983 		return -ENOMEM;
1984 
1985 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1986 		return -ENOMEM;
1987 
1988 	/* Can we just expand an old private anonymous mapping? */
1989 	if (vma_merge(mm, prev, addr, addr + len, flags,
1990 					NULL, NULL, pgoff, NULL))
1991 		goto out;
1992 
1993 	/*
1994 	 * create a vma struct for an anonymous mapping
1995 	 */
1996 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1997 	if (!vma) {
1998 		vm_unacct_memory(len >> PAGE_SHIFT);
1999 		return -ENOMEM;
2000 	}
2001 
2002 	vma->vm_mm = mm;
2003 	vma->vm_start = addr;
2004 	vma->vm_end = addr + len;
2005 	vma->vm_pgoff = pgoff;
2006 	vma->vm_flags = flags;
2007 	vma->vm_page_prot = protection_map[flags &
2008 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
2009 	vma_link(mm, vma, prev, rb_link, rb_parent);
2010 out:
2011 	mm->total_vm += len >> PAGE_SHIFT;
2012 	if (flags & VM_LOCKED) {
2013 		mm->locked_vm += len >> PAGE_SHIFT;
2014 		make_pages_present(addr, addr + len);
2015 	}
2016 	return addr;
2017 }
2018 
2019 EXPORT_SYMBOL(do_brk);
2020 
2021 /* Release all mmaps. */
2022 void exit_mmap(struct mm_struct *mm)
2023 {
2024 	struct mmu_gather *tlb;
2025 	struct vm_area_struct *vma = mm->mmap;
2026 	unsigned long nr_accounted = 0;
2027 	unsigned long end;
2028 
2029 	/* mm's last user has gone, and its about to be pulled down */
2030 	arch_exit_mmap(mm);
2031 
2032 	lru_add_drain();
2033 	flush_cache_mm(mm);
2034 	tlb = tlb_gather_mmu(mm, 1);
2035 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
2036 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2037 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2038 	vm_unacct_memory(nr_accounted);
2039 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2040 	tlb_finish_mmu(tlb, 0, end);
2041 
2042 	/*
2043 	 * Walk the list again, actually closing and freeing it,
2044 	 * with preemption enabled, without holding any MM locks.
2045 	 */
2046 	while (vma)
2047 		vma = remove_vma(vma);
2048 
2049 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2050 }
2051 
2052 /* Insert vm structure into process list sorted by address
2053  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2054  * then i_mmap_lock is taken here.
2055  */
2056 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2057 {
2058 	struct vm_area_struct * __vma, * prev;
2059 	struct rb_node ** rb_link, * rb_parent;
2060 
2061 	/*
2062 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2063 	 * until its first write fault, when page's anon_vma and index
2064 	 * are set.  But now set the vm_pgoff it will almost certainly
2065 	 * end up with (unless mremap moves it elsewhere before that
2066 	 * first wfault), so /proc/pid/maps tells a consistent story.
2067 	 *
2068 	 * By setting it to reflect the virtual start address of the
2069 	 * vma, merges and splits can happen in a seamless way, just
2070 	 * using the existing file pgoff checks and manipulations.
2071 	 * Similarly in do_mmap_pgoff and in do_brk.
2072 	 */
2073 	if (!vma->vm_file) {
2074 		BUG_ON(vma->anon_vma);
2075 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2076 	}
2077 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2078 	if (__vma && __vma->vm_start < vma->vm_end)
2079 		return -ENOMEM;
2080 	if ((vma->vm_flags & VM_ACCOUNT) &&
2081 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2082 		return -ENOMEM;
2083 	vma_link(mm, vma, prev, rb_link, rb_parent);
2084 	return 0;
2085 }
2086 
2087 /*
2088  * Copy the vma structure to a new location in the same mm,
2089  * prior to moving page table entries, to effect an mremap move.
2090  */
2091 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2092 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2093 {
2094 	struct vm_area_struct *vma = *vmap;
2095 	unsigned long vma_start = vma->vm_start;
2096 	struct mm_struct *mm = vma->vm_mm;
2097 	struct vm_area_struct *new_vma, *prev;
2098 	struct rb_node **rb_link, *rb_parent;
2099 	struct mempolicy *pol;
2100 
2101 	/*
2102 	 * If anonymous vma has not yet been faulted, update new pgoff
2103 	 * to match new location, to increase its chance of merging.
2104 	 */
2105 	if (!vma->vm_file && !vma->anon_vma)
2106 		pgoff = addr >> PAGE_SHIFT;
2107 
2108 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2109 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2110 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2111 	if (new_vma) {
2112 		/*
2113 		 * Source vma may have been merged into new_vma
2114 		 */
2115 		if (vma_start >= new_vma->vm_start &&
2116 		    vma_start < new_vma->vm_end)
2117 			*vmap = new_vma;
2118 	} else {
2119 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2120 		if (new_vma) {
2121 			*new_vma = *vma;
2122 			pol = mpol_copy(vma_policy(vma));
2123 			if (IS_ERR(pol)) {
2124 				kmem_cache_free(vm_area_cachep, new_vma);
2125 				return NULL;
2126 			}
2127 			vma_set_policy(new_vma, pol);
2128 			new_vma->vm_start = addr;
2129 			new_vma->vm_end = addr + len;
2130 			new_vma->vm_pgoff = pgoff;
2131 			if (new_vma->vm_file)
2132 				get_file(new_vma->vm_file);
2133 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2134 				new_vma->vm_ops->open(new_vma);
2135 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2136 		}
2137 	}
2138 	return new_vma;
2139 }
2140 
2141 /*
2142  * Return true if the calling process may expand its vm space by the passed
2143  * number of pages
2144  */
2145 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2146 {
2147 	unsigned long cur = mm->total_vm;	/* pages */
2148 	unsigned long lim;
2149 
2150 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2151 
2152 	if (cur + npages > lim)
2153 		return 0;
2154 	return 1;
2155 }
2156 
2157 
2158 static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2159 					   unsigned long address, int *type)
2160 {
2161 	struct page **pages;
2162 
2163 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2164 
2165 	address -= vma->vm_start;
2166 	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2167 		address -= PAGE_SIZE;
2168 
2169 	if (*pages) {
2170 		struct page *page = *pages;
2171 		get_page(page);
2172 		return page;
2173 	}
2174 
2175 	return NOPAGE_SIGBUS;
2176 }
2177 
2178 /*
2179  * Having a close hook prevents vma merging regardless of flags.
2180  */
2181 static void special_mapping_close(struct vm_area_struct *vma)
2182 {
2183 }
2184 
2185 static struct vm_operations_struct special_mapping_vmops = {
2186 	.close = special_mapping_close,
2187 	.nopage	= special_mapping_nopage,
2188 };
2189 
2190 /*
2191  * Called with mm->mmap_sem held for writing.
2192  * Insert a new vma covering the given region, with the given flags.
2193  * Its pages are supplied by the given array of struct page *.
2194  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2195  * The region past the last page supplied will always produce SIGBUS.
2196  * The array pointer and the pages it points to are assumed to stay alive
2197  * for as long as this mapping might exist.
2198  */
2199 int install_special_mapping(struct mm_struct *mm,
2200 			    unsigned long addr, unsigned long len,
2201 			    unsigned long vm_flags, struct page **pages)
2202 {
2203 	struct vm_area_struct *vma;
2204 
2205 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2206 	if (unlikely(vma == NULL))
2207 		return -ENOMEM;
2208 
2209 	vma->vm_mm = mm;
2210 	vma->vm_start = addr;
2211 	vma->vm_end = addr + len;
2212 
2213 	vma->vm_flags = vm_flags | mm->def_flags;
2214 	vma->vm_page_prot = protection_map[vma->vm_flags & 7];
2215 
2216 	vma->vm_ops = &special_mapping_vmops;
2217 	vma->vm_private_data = pages;
2218 
2219 	if (unlikely(insert_vm_struct(mm, vma))) {
2220 		kmem_cache_free(vm_area_cachep, vma);
2221 		return -ENOMEM;
2222 	}
2223 
2224 	mm->total_vm += len >> PAGE_SHIFT;
2225 
2226 	return 0;
2227 }
2228