xref: /linux/mm/mmap.c (revision 3de9c42d02a79a5e09bbee7a4421ddc00cfd5c6d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * mm/mmap.c
4   *
5   * Written by obz.
6   *
7   * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8   */
9  
10  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11  
12  #include <linux/kernel.h>
13  #include <linux/slab.h>
14  #include <linux/backing-dev.h>
15  #include <linux/mm.h>
16  #include <linux/mm_inline.h>
17  #include <linux/shm.h>
18  #include <linux/mman.h>
19  #include <linux/pagemap.h>
20  #include <linux/swap.h>
21  #include <linux/syscalls.h>
22  #include <linux/capability.h>
23  #include <linux/init.h>
24  #include <linux/file.h>
25  #include <linux/fs.h>
26  #include <linux/personality.h>
27  #include <linux/security.h>
28  #include <linux/hugetlb.h>
29  #include <linux/shmem_fs.h>
30  #include <linux/profile.h>
31  #include <linux/export.h>
32  #include <linux/mount.h>
33  #include <linux/mempolicy.h>
34  #include <linux/rmap.h>
35  #include <linux/mmu_notifier.h>
36  #include <linux/mmdebug.h>
37  #include <linux/perf_event.h>
38  #include <linux/audit.h>
39  #include <linux/khugepaged.h>
40  #include <linux/uprobes.h>
41  #include <linux/notifier.h>
42  #include <linux/memory.h>
43  #include <linux/printk.h>
44  #include <linux/userfaultfd_k.h>
45  #include <linux/moduleparam.h>
46  #include <linux/pkeys.h>
47  #include <linux/oom.h>
48  #include <linux/sched/mm.h>
49  #include <linux/ksm.h>
50  
51  #include <linux/uaccess.h>
52  #include <asm/cacheflush.h>
53  #include <asm/tlb.h>
54  #include <asm/mmu_context.h>
55  
56  #define CREATE_TRACE_POINTS
57  #include <trace/events/mmap.h>
58  
59  #include "internal.h"
60  
61  #ifndef arch_mmap_check
62  #define arch_mmap_check(addr, len, flags)	(0)
63  #endif
64  
65  #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66  const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67  int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68  int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69  #endif
70  #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71  const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72  const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73  int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74  #endif
75  
76  static bool ignore_rlimit_data;
77  core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78  
79  static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80  		struct vm_area_struct *vma, struct vm_area_struct *prev,
81  		struct vm_area_struct *next, unsigned long start,
82  		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83  
84  static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85  {
86  	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87  }
88  
89  /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90  void vma_set_page_prot(struct vm_area_struct *vma)
91  {
92  	unsigned long vm_flags = vma->vm_flags;
93  	pgprot_t vm_page_prot;
94  
95  	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96  	if (vma_wants_writenotify(vma, vm_page_prot)) {
97  		vm_flags &= ~VM_SHARED;
98  		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99  	}
100  	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101  	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102  }
103  
104  /*
105   * Requires inode->i_mapping->i_mmap_rwsem
106   */
107  static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108  				      struct address_space *mapping)
109  {
110  	if (vma_is_shared_maywrite(vma))
111  		mapping_unmap_writable(mapping);
112  
113  	flush_dcache_mmap_lock(mapping);
114  	vma_interval_tree_remove(vma, &mapping->i_mmap);
115  	flush_dcache_mmap_unlock(mapping);
116  }
117  
118  /*
119   * Unlink a file-based vm structure from its interval tree, to hide
120   * vma from rmap and vmtruncate before freeing its page tables.
121   */
122  void unlink_file_vma(struct vm_area_struct *vma)
123  {
124  	struct file *file = vma->vm_file;
125  
126  	if (file) {
127  		struct address_space *mapping = file->f_mapping;
128  		i_mmap_lock_write(mapping);
129  		__remove_shared_vm_struct(vma, mapping);
130  		i_mmap_unlock_write(mapping);
131  	}
132  }
133  
134  /*
135   * Close a vm structure and free it.
136   */
137  static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138  {
139  	might_sleep();
140  	if (vma->vm_ops && vma->vm_ops->close)
141  		vma->vm_ops->close(vma);
142  	if (vma->vm_file)
143  		fput(vma->vm_file);
144  	mpol_put(vma_policy(vma));
145  	if (unreachable)
146  		__vm_area_free(vma);
147  	else
148  		vm_area_free(vma);
149  }
150  
151  static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152  						    unsigned long min)
153  {
154  	return mas_prev(&vmi->mas, min);
155  }
156  
157  /*
158   * check_brk_limits() - Use platform specific check of range & verify mlock
159   * limits.
160   * @addr: The address to check
161   * @len: The size of increase.
162   *
163   * Return: 0 on success.
164   */
165  static int check_brk_limits(unsigned long addr, unsigned long len)
166  {
167  	unsigned long mapped_addr;
168  
169  	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170  	if (IS_ERR_VALUE(mapped_addr))
171  		return mapped_addr;
172  
173  	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174  		? 0 : -EAGAIN;
175  }
176  static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177  		unsigned long addr, unsigned long request, unsigned long flags);
178  SYSCALL_DEFINE1(brk, unsigned long, brk)
179  {
180  	unsigned long newbrk, oldbrk, origbrk;
181  	struct mm_struct *mm = current->mm;
182  	struct vm_area_struct *brkvma, *next = NULL;
183  	unsigned long min_brk;
184  	bool populate = false;
185  	LIST_HEAD(uf);
186  	struct vma_iterator vmi;
187  
188  	if (mmap_write_lock_killable(mm))
189  		return -EINTR;
190  
191  	origbrk = mm->brk;
192  
193  #ifdef CONFIG_COMPAT_BRK
194  	/*
195  	 * CONFIG_COMPAT_BRK can still be overridden by setting
196  	 * randomize_va_space to 2, which will still cause mm->start_brk
197  	 * to be arbitrarily shifted
198  	 */
199  	if (current->brk_randomized)
200  		min_brk = mm->start_brk;
201  	else
202  		min_brk = mm->end_data;
203  #else
204  	min_brk = mm->start_brk;
205  #endif
206  	if (brk < min_brk)
207  		goto out;
208  
209  	/*
210  	 * Check against rlimit here. If this check is done later after the test
211  	 * of oldbrk with newbrk then it can escape the test and let the data
212  	 * segment grow beyond its set limit the in case where the limit is
213  	 * not page aligned -Ram Gupta
214  	 */
215  	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216  			      mm->end_data, mm->start_data))
217  		goto out;
218  
219  	newbrk = PAGE_ALIGN(brk);
220  	oldbrk = PAGE_ALIGN(mm->brk);
221  	if (oldbrk == newbrk) {
222  		mm->brk = brk;
223  		goto success;
224  	}
225  
226  	/* Always allow shrinking brk. */
227  	if (brk <= mm->brk) {
228  		/* Search one past newbrk */
229  		vma_iter_init(&vmi, mm, newbrk);
230  		brkvma = vma_find(&vmi, oldbrk);
231  		if (!brkvma || brkvma->vm_start >= oldbrk)
232  			goto out; /* mapping intersects with an existing non-brk vma. */
233  		/*
234  		 * mm->brk must be protected by write mmap_lock.
235  		 * do_vma_munmap() will drop the lock on success,  so update it
236  		 * before calling do_vma_munmap().
237  		 */
238  		mm->brk = brk;
239  		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240  			goto out;
241  
242  		goto success_unlocked;
243  	}
244  
245  	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246  		goto out;
247  
248  	/*
249  	 * Only check if the next VMA is within the stack_guard_gap of the
250  	 * expansion area
251  	 */
252  	vma_iter_init(&vmi, mm, oldbrk);
253  	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254  	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255  		goto out;
256  
257  	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258  	/* Ok, looks good - let it rip. */
259  	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260  		goto out;
261  
262  	mm->brk = brk;
263  	if (mm->def_flags & VM_LOCKED)
264  		populate = true;
265  
266  success:
267  	mmap_write_unlock(mm);
268  success_unlocked:
269  	userfaultfd_unmap_complete(mm, &uf);
270  	if (populate)
271  		mm_populate(oldbrk, newbrk - oldbrk);
272  	return brk;
273  
274  out:
275  	mm->brk = origbrk;
276  	mmap_write_unlock(mm);
277  	return origbrk;
278  }
279  
280  #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281  static void validate_mm(struct mm_struct *mm)
282  {
283  	int bug = 0;
284  	int i = 0;
285  	struct vm_area_struct *vma;
286  	VMA_ITERATOR(vmi, mm, 0);
287  
288  	mt_validate(&mm->mm_mt);
289  	for_each_vma(vmi, vma) {
290  #ifdef CONFIG_DEBUG_VM_RB
291  		struct anon_vma *anon_vma = vma->anon_vma;
292  		struct anon_vma_chain *avc;
293  #endif
294  		unsigned long vmi_start, vmi_end;
295  		bool warn = 0;
296  
297  		vmi_start = vma_iter_addr(&vmi);
298  		vmi_end = vma_iter_end(&vmi);
299  		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300  			warn = 1;
301  
302  		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303  			warn = 1;
304  
305  		if (warn) {
306  			pr_emerg("issue in %s\n", current->comm);
307  			dump_stack();
308  			dump_vma(vma);
309  			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310  				 vmi_start, vmi_end - 1);
311  			vma_iter_dump_tree(&vmi);
312  		}
313  
314  #ifdef CONFIG_DEBUG_VM_RB
315  		if (anon_vma) {
316  			anon_vma_lock_read(anon_vma);
317  			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318  				anon_vma_interval_tree_verify(avc);
319  			anon_vma_unlock_read(anon_vma);
320  		}
321  #endif
322  		i++;
323  	}
324  	if (i != mm->map_count) {
325  		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326  		bug = 1;
327  	}
328  	VM_BUG_ON_MM(bug, mm);
329  }
330  
331  #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332  #define validate_mm(mm) do { } while (0)
333  #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334  
335  /*
336   * vma has some anon_vma assigned, and is already inserted on that
337   * anon_vma's interval trees.
338   *
339   * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340   * vma must be removed from the anon_vma's interval trees using
341   * anon_vma_interval_tree_pre_update_vma().
342   *
343   * After the update, the vma will be reinserted using
344   * anon_vma_interval_tree_post_update_vma().
345   *
346   * The entire update must be protected by exclusive mmap_lock and by
347   * the root anon_vma's mutex.
348   */
349  static inline void
350  anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351  {
352  	struct anon_vma_chain *avc;
353  
354  	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355  		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356  }
357  
358  static inline void
359  anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360  {
361  	struct anon_vma_chain *avc;
362  
363  	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364  		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365  }
366  
367  static unsigned long count_vma_pages_range(struct mm_struct *mm,
368  		unsigned long addr, unsigned long end)
369  {
370  	VMA_ITERATOR(vmi, mm, addr);
371  	struct vm_area_struct *vma;
372  	unsigned long nr_pages = 0;
373  
374  	for_each_vma_range(vmi, vma, end) {
375  		unsigned long vm_start = max(addr, vma->vm_start);
376  		unsigned long vm_end = min(end, vma->vm_end);
377  
378  		nr_pages += PHYS_PFN(vm_end - vm_start);
379  	}
380  
381  	return nr_pages;
382  }
383  
384  static void __vma_link_file(struct vm_area_struct *vma,
385  			    struct address_space *mapping)
386  {
387  	if (vma_is_shared_maywrite(vma))
388  		mapping_allow_writable(mapping);
389  
390  	flush_dcache_mmap_lock(mapping);
391  	vma_interval_tree_insert(vma, &mapping->i_mmap);
392  	flush_dcache_mmap_unlock(mapping);
393  }
394  
395  static void vma_link_file(struct vm_area_struct *vma)
396  {
397  	struct file *file = vma->vm_file;
398  	struct address_space *mapping;
399  
400  	if (file) {
401  		mapping = file->f_mapping;
402  		i_mmap_lock_write(mapping);
403  		__vma_link_file(vma, mapping);
404  		i_mmap_unlock_write(mapping);
405  	}
406  }
407  
408  static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409  {
410  	VMA_ITERATOR(vmi, mm, 0);
411  
412  	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413  	if (vma_iter_prealloc(&vmi, vma))
414  		return -ENOMEM;
415  
416  	vma_start_write(vma);
417  	vma_iter_store(&vmi, vma);
418  	vma_link_file(vma);
419  	mm->map_count++;
420  	validate_mm(mm);
421  	return 0;
422  }
423  
424  /*
425   * init_multi_vma_prep() - Initializer for struct vma_prepare
426   * @vp: The vma_prepare struct
427   * @vma: The vma that will be altered once locked
428   * @next: The next vma if it is to be adjusted
429   * @remove: The first vma to be removed
430   * @remove2: The second vma to be removed
431   */
432  static inline void init_multi_vma_prep(struct vma_prepare *vp,
433  		struct vm_area_struct *vma, struct vm_area_struct *next,
434  		struct vm_area_struct *remove, struct vm_area_struct *remove2)
435  {
436  	memset(vp, 0, sizeof(struct vma_prepare));
437  	vp->vma = vma;
438  	vp->anon_vma = vma->anon_vma;
439  	vp->remove = remove;
440  	vp->remove2 = remove2;
441  	vp->adj_next = next;
442  	if (!vp->anon_vma && next)
443  		vp->anon_vma = next->anon_vma;
444  
445  	vp->file = vma->vm_file;
446  	if (vp->file)
447  		vp->mapping = vma->vm_file->f_mapping;
448  
449  }
450  
451  /*
452   * init_vma_prep() - Initializer wrapper for vma_prepare struct
453   * @vp: The vma_prepare struct
454   * @vma: The vma that will be altered once locked
455   */
456  static inline void init_vma_prep(struct vma_prepare *vp,
457  				 struct vm_area_struct *vma)
458  {
459  	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460  }
461  
462  
463  /*
464   * vma_prepare() - Helper function for handling locking VMAs prior to altering
465   * @vp: The initialized vma_prepare struct
466   */
467  static inline void vma_prepare(struct vma_prepare *vp)
468  {
469  	if (vp->file) {
470  		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471  
472  		if (vp->adj_next)
473  			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474  				      vp->adj_next->vm_end);
475  
476  		i_mmap_lock_write(vp->mapping);
477  		if (vp->insert && vp->insert->vm_file) {
478  			/*
479  			 * Put into interval tree now, so instantiated pages
480  			 * are visible to arm/parisc __flush_dcache_page
481  			 * throughout; but we cannot insert into address
482  			 * space until vma start or end is updated.
483  			 */
484  			__vma_link_file(vp->insert,
485  					vp->insert->vm_file->f_mapping);
486  		}
487  	}
488  
489  	if (vp->anon_vma) {
490  		anon_vma_lock_write(vp->anon_vma);
491  		anon_vma_interval_tree_pre_update_vma(vp->vma);
492  		if (vp->adj_next)
493  			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494  	}
495  
496  	if (vp->file) {
497  		flush_dcache_mmap_lock(vp->mapping);
498  		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499  		if (vp->adj_next)
500  			vma_interval_tree_remove(vp->adj_next,
501  						 &vp->mapping->i_mmap);
502  	}
503  
504  }
505  
506  /*
507   * vma_complete- Helper function for handling the unlocking after altering VMAs,
508   * or for inserting a VMA.
509   *
510   * @vp: The vma_prepare struct
511   * @vmi: The vma iterator
512   * @mm: The mm_struct
513   */
514  static inline void vma_complete(struct vma_prepare *vp,
515  				struct vma_iterator *vmi, struct mm_struct *mm)
516  {
517  	if (vp->file) {
518  		if (vp->adj_next)
519  			vma_interval_tree_insert(vp->adj_next,
520  						 &vp->mapping->i_mmap);
521  		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522  		flush_dcache_mmap_unlock(vp->mapping);
523  	}
524  
525  	if (vp->remove && vp->file) {
526  		__remove_shared_vm_struct(vp->remove, vp->mapping);
527  		if (vp->remove2)
528  			__remove_shared_vm_struct(vp->remove2, vp->mapping);
529  	} else if (vp->insert) {
530  		/*
531  		 * split_vma has split insert from vma, and needs
532  		 * us to insert it before dropping the locks
533  		 * (it may either follow vma or precede it).
534  		 */
535  		vma_iter_store(vmi, vp->insert);
536  		mm->map_count++;
537  	}
538  
539  	if (vp->anon_vma) {
540  		anon_vma_interval_tree_post_update_vma(vp->vma);
541  		if (vp->adj_next)
542  			anon_vma_interval_tree_post_update_vma(vp->adj_next);
543  		anon_vma_unlock_write(vp->anon_vma);
544  	}
545  
546  	if (vp->file) {
547  		i_mmap_unlock_write(vp->mapping);
548  		uprobe_mmap(vp->vma);
549  
550  		if (vp->adj_next)
551  			uprobe_mmap(vp->adj_next);
552  	}
553  
554  	if (vp->remove) {
555  again:
556  		vma_mark_detached(vp->remove, true);
557  		if (vp->file) {
558  			uprobe_munmap(vp->remove, vp->remove->vm_start,
559  				      vp->remove->vm_end);
560  			fput(vp->file);
561  		}
562  		if (vp->remove->anon_vma)
563  			anon_vma_merge(vp->vma, vp->remove);
564  		mm->map_count--;
565  		mpol_put(vma_policy(vp->remove));
566  		if (!vp->remove2)
567  			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568  		vm_area_free(vp->remove);
569  
570  		/*
571  		 * In mprotect's case 6 (see comments on vma_merge),
572  		 * we are removing both mid and next vmas
573  		 */
574  		if (vp->remove2) {
575  			vp->remove = vp->remove2;
576  			vp->remove2 = NULL;
577  			goto again;
578  		}
579  	}
580  	if (vp->insert && vp->file)
581  		uprobe_mmap(vp->insert);
582  	validate_mm(mm);
583  }
584  
585  /*
586   * dup_anon_vma() - Helper function to duplicate anon_vma
587   * @dst: The destination VMA
588   * @src: The source VMA
589   * @dup: Pointer to the destination VMA when successful.
590   *
591   * Returns: 0 on success.
592   */
593  static inline int dup_anon_vma(struct vm_area_struct *dst,
594  		struct vm_area_struct *src, struct vm_area_struct **dup)
595  {
596  	/*
597  	 * Easily overlooked: when mprotect shifts the boundary, make sure the
598  	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599  	 * anon pages imported.
600  	 */
601  	if (src->anon_vma && !dst->anon_vma) {
602  		int ret;
603  
604  		vma_assert_write_locked(dst);
605  		dst->anon_vma = src->anon_vma;
606  		ret = anon_vma_clone(dst, src);
607  		if (ret)
608  			return ret;
609  
610  		*dup = dst;
611  	}
612  
613  	return 0;
614  }
615  
616  /*
617   * vma_expand - Expand an existing VMA
618   *
619   * @vmi: The vma iterator
620   * @vma: The vma to expand
621   * @start: The start of the vma
622   * @end: The exclusive end of the vma
623   * @pgoff: The page offset of vma
624   * @next: The current of next vma.
625   *
626   * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627   * expand over @next if it's different from @vma and @end == @next->vm_end.
628   * Checking if the @vma can expand and merge with @next needs to be handled by
629   * the caller.
630   *
631   * Returns: 0 on success
632   */
633  int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634  	       unsigned long start, unsigned long end, pgoff_t pgoff,
635  	       struct vm_area_struct *next)
636  {
637  	struct vm_area_struct *anon_dup = NULL;
638  	bool remove_next = false;
639  	struct vma_prepare vp;
640  
641  	vma_start_write(vma);
642  	if (next && (vma != next) && (end == next->vm_end)) {
643  		int ret;
644  
645  		remove_next = true;
646  		vma_start_write(next);
647  		ret = dup_anon_vma(vma, next, &anon_dup);
648  		if (ret)
649  			return ret;
650  	}
651  
652  	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653  	/* Not merging but overwriting any part of next is not handled. */
654  	VM_WARN_ON(next && !vp.remove &&
655  		  next != vma && end > next->vm_start);
656  	/* Only handles expanding */
657  	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658  
659  	/* Note: vma iterator must be pointing to 'start' */
660  	vma_iter_config(vmi, start, end);
661  	if (vma_iter_prealloc(vmi, vma))
662  		goto nomem;
663  
664  	vma_prepare(&vp);
665  	vma_adjust_trans_huge(vma, start, end, 0);
666  	vma_set_range(vma, start, end, pgoff);
667  	vma_iter_store(vmi, vma);
668  
669  	vma_complete(&vp, vmi, vma->vm_mm);
670  	return 0;
671  
672  nomem:
673  	if (anon_dup)
674  		unlink_anon_vmas(anon_dup);
675  	return -ENOMEM;
676  }
677  
678  /*
679   * vma_shrink() - Reduce an existing VMAs memory area
680   * @vmi: The vma iterator
681   * @vma: The VMA to modify
682   * @start: The new start
683   * @end: The new end
684   *
685   * Returns: 0 on success, -ENOMEM otherwise
686   */
687  int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688  	       unsigned long start, unsigned long end, pgoff_t pgoff)
689  {
690  	struct vma_prepare vp;
691  
692  	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693  
694  	if (vma->vm_start < start)
695  		vma_iter_config(vmi, vma->vm_start, start);
696  	else
697  		vma_iter_config(vmi, end, vma->vm_end);
698  
699  	if (vma_iter_prealloc(vmi, NULL))
700  		return -ENOMEM;
701  
702  	vma_start_write(vma);
703  
704  	init_vma_prep(&vp, vma);
705  	vma_prepare(&vp);
706  	vma_adjust_trans_huge(vma, start, end, 0);
707  
708  	vma_iter_clear(vmi);
709  	vma_set_range(vma, start, end, pgoff);
710  	vma_complete(&vp, vmi, vma->vm_mm);
711  	return 0;
712  }
713  
714  /*
715   * If the vma has a ->close operation then the driver probably needs to release
716   * per-vma resources, so we don't attempt to merge those if the caller indicates
717   * the current vma may be removed as part of the merge.
718   */
719  static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720  		struct file *file, unsigned long vm_flags,
721  		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722  		struct anon_vma_name *anon_name, bool may_remove_vma)
723  {
724  	/*
725  	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726  	 * match the flags but dirty bit -- the caller should mark
727  	 * merged VMA as dirty. If dirty bit won't be excluded from
728  	 * comparison, we increase pressure on the memory system forcing
729  	 * the kernel to generate new VMAs when old one could be
730  	 * extended instead.
731  	 */
732  	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733  		return false;
734  	if (vma->vm_file != file)
735  		return false;
736  	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737  		return false;
738  	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739  		return false;
740  	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741  		return false;
742  	return true;
743  }
744  
745  static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746  		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747  {
748  	/*
749  	 * The list_is_singular() test is to avoid merging VMA cloned from
750  	 * parents. This can improve scalability caused by anon_vma lock.
751  	 */
752  	if ((!anon_vma1 || !anon_vma2) && (!vma ||
753  		list_is_singular(&vma->anon_vma_chain)))
754  		return true;
755  	return anon_vma1 == anon_vma2;
756  }
757  
758  /*
759   * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760   * in front of (at a lower virtual address and file offset than) the vma.
761   *
762   * We cannot merge two vmas if they have differently assigned (non-NULL)
763   * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764   *
765   * We don't check here for the merged mmap wrapping around the end of pagecache
766   * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767   * wrap, nor mmaps which cover the final page at index -1UL.
768   *
769   * We assume the vma may be removed as part of the merge.
770   */
771  static bool
772  can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773  		struct anon_vma *anon_vma, struct file *file,
774  		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775  		struct anon_vma_name *anon_name)
776  {
777  	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778  	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779  		if (vma->vm_pgoff == vm_pgoff)
780  			return true;
781  	}
782  	return false;
783  }
784  
785  /*
786   * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787   * beyond (at a higher virtual address and file offset than) the vma.
788   *
789   * We cannot merge two vmas if they have differently assigned (non-NULL)
790   * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791   *
792   * We assume that vma is not removed as part of the merge.
793   */
794  static bool
795  can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796  		struct anon_vma *anon_vma, struct file *file,
797  		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798  		struct anon_vma_name *anon_name)
799  {
800  	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801  	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802  		pgoff_t vm_pglen;
803  		vm_pglen = vma_pages(vma);
804  		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805  			return true;
806  	}
807  	return false;
808  }
809  
810  /*
811   * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812   * figure out whether that can be merged with its predecessor or its
813   * successor.  Or both (it neatly fills a hole).
814   *
815   * In most cases - when called for mmap, brk or mremap - [addr,end) is
816   * certain not to be mapped by the time vma_merge is called; but when
817   * called for mprotect, it is certain to be already mapped (either at
818   * an offset within prev, or at the start of next), and the flags of
819   * this area are about to be changed to vm_flags - and the no-change
820   * case has already been eliminated.
821   *
822   * The following mprotect cases have to be considered, where **** is
823   * the area passed down from mprotect_fixup, never extending beyond one
824   * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825   * at the same address as **** and is of the same or larger span, and
826   * NNNN the next vma after ****:
827   *
828   *     ****             ****                   ****
829   *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830   *    cannot merge    might become       might become
831   *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832   *    mmap, brk or    case 4 below       case 5 below
833   *    mremap move:
834   *                        ****               ****
835   *                    PPPP    NNNN       PPPPCCCCNNNN
836   *                    might become       might become
837   *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838   *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839   *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840   *
841   * It is important for case 8 that the vma CCCC overlapping the
842   * region **** is never going to extended over NNNN. Instead NNNN must
843   * be extended in region **** and CCCC must be removed. This way in
844   * all cases where vma_merge succeeds, the moment vma_merge drops the
845   * rmap_locks, the properties of the merged vma will be already
846   * correct for the whole merged range. Some of those properties like
847   * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848   * be correct for the whole merged range immediately after the
849   * rmap_locks are released. Otherwise if NNNN would be removed and
850   * CCCC would be extended over the NNNN range, remove_migration_ptes
851   * or other rmap walkers (if working on addresses beyond the "end"
852   * parameter) may establish ptes with the wrong permissions of CCCC
853   * instead of the right permissions of NNNN.
854   *
855   * In the code below:
856   * PPPP is represented by *prev
857   * CCCC is represented by *curr or not represented at all (NULL)
858   * NNNN is represented by *next or not represented at all (NULL)
859   * **** is not represented - it will be merged and the vma containing the
860   *      area is returned, or the function will return NULL
861   */
862  static struct vm_area_struct
863  *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864  	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
865  	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866  	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867  	   struct anon_vma_name *anon_name)
868  {
869  	struct mm_struct *mm = src->vm_mm;
870  	struct anon_vma *anon_vma = src->anon_vma;
871  	struct file *file = src->vm_file;
872  	struct vm_area_struct *curr, *next, *res;
873  	struct vm_area_struct *vma, *adjust, *remove, *remove2;
874  	struct vm_area_struct *anon_dup = NULL;
875  	struct vma_prepare vp;
876  	pgoff_t vma_pgoff;
877  	int err = 0;
878  	bool merge_prev = false;
879  	bool merge_next = false;
880  	bool vma_expanded = false;
881  	unsigned long vma_start = addr;
882  	unsigned long vma_end = end;
883  	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884  	long adj_start = 0;
885  
886  	/*
887  	 * We later require that vma->vm_flags == vm_flags,
888  	 * so this tests vma->vm_flags & VM_SPECIAL, too.
889  	 */
890  	if (vm_flags & VM_SPECIAL)
891  		return NULL;
892  
893  	/* Does the input range span an existing VMA? (cases 5 - 8) */
894  	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895  
896  	if (!curr ||			/* cases 1 - 4 */
897  	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
898  		next = vma_lookup(mm, end);
899  	else
900  		next = NULL;		/* case 5 */
901  
902  	if (prev) {
903  		vma_start = prev->vm_start;
904  		vma_pgoff = prev->vm_pgoff;
905  
906  		/* Can we merge the predecessor? */
907  		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908  		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909  					   pgoff, vm_userfaultfd_ctx, anon_name)) {
910  			merge_prev = true;
911  			vma_prev(vmi);
912  		}
913  	}
914  
915  	/* Can we merge the successor? */
916  	if (next && mpol_equal(policy, vma_policy(next)) &&
917  	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918  				 vm_userfaultfd_ctx, anon_name)) {
919  		merge_next = true;
920  	}
921  
922  	/* Verify some invariant that must be enforced by the caller. */
923  	VM_WARN_ON(prev && addr <= prev->vm_start);
924  	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925  	VM_WARN_ON(addr >= end);
926  
927  	if (!merge_prev && !merge_next)
928  		return NULL; /* Not mergeable. */
929  
930  	if (merge_prev)
931  		vma_start_write(prev);
932  
933  	res = vma = prev;
934  	remove = remove2 = adjust = NULL;
935  
936  	/* Can we merge both the predecessor and the successor? */
937  	if (merge_prev && merge_next &&
938  	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939  		vma_start_write(next);
940  		remove = next;				/* case 1 */
941  		vma_end = next->vm_end;
942  		err = dup_anon_vma(prev, next, &anon_dup);
943  		if (curr) {				/* case 6 */
944  			vma_start_write(curr);
945  			remove = curr;
946  			remove2 = next;
947  			/*
948  			 * Note that the dup_anon_vma below cannot overwrite err
949  			 * since the first caller would do nothing unless next
950  			 * has an anon_vma.
951  			 */
952  			if (!next->anon_vma)
953  				err = dup_anon_vma(prev, curr, &anon_dup);
954  		}
955  	} else if (merge_prev) {			/* case 2 */
956  		if (curr) {
957  			vma_start_write(curr);
958  			if (end == curr->vm_end) {	/* case 7 */
959  				/*
960  				 * can_vma_merge_after() assumed we would not be
961  				 * removing prev vma, so it skipped the check
962  				 * for vm_ops->close, but we are removing curr
963  				 */
964  				if (curr->vm_ops && curr->vm_ops->close)
965  					err = -EINVAL;
966  				remove = curr;
967  			} else {			/* case 5 */
968  				adjust = curr;
969  				adj_start = (end - curr->vm_start);
970  			}
971  			if (!err)
972  				err = dup_anon_vma(prev, curr, &anon_dup);
973  		}
974  	} else { /* merge_next */
975  		vma_start_write(next);
976  		res = next;
977  		if (prev && addr < prev->vm_end) {	/* case 4 */
978  			vma_start_write(prev);
979  			vma_end = addr;
980  			adjust = next;
981  			adj_start = -(prev->vm_end - addr);
982  			err = dup_anon_vma(next, prev, &anon_dup);
983  		} else {
984  			/*
985  			 * Note that cases 3 and 8 are the ONLY ones where prev
986  			 * is permitted to be (but is not necessarily) NULL.
987  			 */
988  			vma = next;			/* case 3 */
989  			vma_start = addr;
990  			vma_end = next->vm_end;
991  			vma_pgoff = next->vm_pgoff - pglen;
992  			if (curr) {			/* case 8 */
993  				vma_pgoff = curr->vm_pgoff;
994  				vma_start_write(curr);
995  				remove = curr;
996  				err = dup_anon_vma(next, curr, &anon_dup);
997  			}
998  		}
999  	}
1000  
1001  	/* Error in anon_vma clone. */
1002  	if (err)
1003  		goto anon_vma_fail;
1004  
1005  	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006  		vma_expanded = true;
1007  
1008  	if (vma_expanded) {
1009  		vma_iter_config(vmi, vma_start, vma_end);
1010  	} else {
1011  		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012  				adjust->vm_end);
1013  	}
1014  
1015  	if (vma_iter_prealloc(vmi, vma))
1016  		goto prealloc_fail;
1017  
1018  	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019  	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020  		   vp.anon_vma != adjust->anon_vma);
1021  
1022  	vma_prepare(&vp);
1023  	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024  	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025  
1026  	if (vma_expanded)
1027  		vma_iter_store(vmi, vma);
1028  
1029  	if (adj_start) {
1030  		adjust->vm_start += adj_start;
1031  		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032  		if (adj_start < 0) {
1033  			WARN_ON(vma_expanded);
1034  			vma_iter_store(vmi, next);
1035  		}
1036  	}
1037  
1038  	vma_complete(&vp, vmi, mm);
1039  	khugepaged_enter_vma(res, vm_flags);
1040  	return res;
1041  
1042  prealloc_fail:
1043  	if (anon_dup)
1044  		unlink_anon_vmas(anon_dup);
1045  
1046  anon_vma_fail:
1047  	vma_iter_set(vmi, addr);
1048  	vma_iter_load(vmi);
1049  	return NULL;
1050  }
1051  
1052  /*
1053   * Rough compatibility check to quickly see if it's even worth looking
1054   * at sharing an anon_vma.
1055   *
1056   * They need to have the same vm_file, and the flags can only differ
1057   * in things that mprotect may change.
1058   *
1059   * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060   * we can merge the two vma's. For example, we refuse to merge a vma if
1061   * there is a vm_ops->close() function, because that indicates that the
1062   * driver is doing some kind of reference counting. But that doesn't
1063   * really matter for the anon_vma sharing case.
1064   */
1065  static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066  {
1067  	return a->vm_end == b->vm_start &&
1068  		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069  		a->vm_file == b->vm_file &&
1070  		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071  		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072  }
1073  
1074  /*
1075   * Do some basic sanity checking to see if we can re-use the anon_vma
1076   * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077   * the same as 'old', the other will be the new one that is trying
1078   * to share the anon_vma.
1079   *
1080   * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081   * the anon_vma of 'old' is concurrently in the process of being set up
1082   * by another page fault trying to merge _that_. But that's ok: if it
1083   * is being set up, that automatically means that it will be a singleton
1084   * acceptable for merging, so we can do all of this optimistically. But
1085   * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086   *
1087   * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088   * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089   * is to return an anon_vma that is "complex" due to having gone through
1090   * a fork).
1091   *
1092   * We also make sure that the two vma's are compatible (adjacent,
1093   * and with the same memory policies). That's all stable, even with just
1094   * a read lock on the mmap_lock.
1095   */
1096  static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097  {
1098  	if (anon_vma_compatible(a, b)) {
1099  		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100  
1101  		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102  			return anon_vma;
1103  	}
1104  	return NULL;
1105  }
1106  
1107  /*
1108   * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109   * neighbouring vmas for a suitable anon_vma, before it goes off
1110   * to allocate a new anon_vma.  It checks because a repetitive
1111   * sequence of mprotects and faults may otherwise lead to distinct
1112   * anon_vmas being allocated, preventing vma merge in subsequent
1113   * mprotect.
1114   */
1115  struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116  {
1117  	struct anon_vma *anon_vma = NULL;
1118  	struct vm_area_struct *prev, *next;
1119  	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120  
1121  	/* Try next first. */
1122  	next = vma_iter_load(&vmi);
1123  	if (next) {
1124  		anon_vma = reusable_anon_vma(next, vma, next);
1125  		if (anon_vma)
1126  			return anon_vma;
1127  	}
1128  
1129  	prev = vma_prev(&vmi);
1130  	VM_BUG_ON_VMA(prev != vma, vma);
1131  	prev = vma_prev(&vmi);
1132  	/* Try prev next. */
1133  	if (prev)
1134  		anon_vma = reusable_anon_vma(prev, prev, vma);
1135  
1136  	/*
1137  	 * We might reach here with anon_vma == NULL if we can't find
1138  	 * any reusable anon_vma.
1139  	 * There's no absolute need to look only at touching neighbours:
1140  	 * we could search further afield for "compatible" anon_vmas.
1141  	 * But it would probably just be a waste of time searching,
1142  	 * or lead to too many vmas hanging off the same anon_vma.
1143  	 * We're trying to allow mprotect remerging later on,
1144  	 * not trying to minimize memory used for anon_vmas.
1145  	 */
1146  	return anon_vma;
1147  }
1148  
1149  /*
1150   * If a hint addr is less than mmap_min_addr change hint to be as
1151   * low as possible but still greater than mmap_min_addr
1152   */
1153  static inline unsigned long round_hint_to_min(unsigned long hint)
1154  {
1155  	hint &= PAGE_MASK;
1156  	if (((void *)hint != NULL) &&
1157  	    (hint < mmap_min_addr))
1158  		return PAGE_ALIGN(mmap_min_addr);
1159  	return hint;
1160  }
1161  
1162  bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163  			unsigned long bytes)
1164  {
1165  	unsigned long locked_pages, limit_pages;
1166  
1167  	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168  		return true;
1169  
1170  	locked_pages = bytes >> PAGE_SHIFT;
1171  	locked_pages += mm->locked_vm;
1172  
1173  	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174  	limit_pages >>= PAGE_SHIFT;
1175  
1176  	return locked_pages <= limit_pages;
1177  }
1178  
1179  static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180  {
1181  	if (S_ISREG(inode->i_mode))
1182  		return MAX_LFS_FILESIZE;
1183  
1184  	if (S_ISBLK(inode->i_mode))
1185  		return MAX_LFS_FILESIZE;
1186  
1187  	if (S_ISSOCK(inode->i_mode))
1188  		return MAX_LFS_FILESIZE;
1189  
1190  	/* Special "we do even unsigned file positions" case */
1191  	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192  		return 0;
1193  
1194  	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195  	return ULONG_MAX;
1196  }
1197  
1198  static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199  				unsigned long pgoff, unsigned long len)
1200  {
1201  	u64 maxsize = file_mmap_size_max(file, inode);
1202  
1203  	if (maxsize && len > maxsize)
1204  		return false;
1205  	maxsize -= len;
1206  	if (pgoff > maxsize >> PAGE_SHIFT)
1207  		return false;
1208  	return true;
1209  }
1210  
1211  /*
1212   * The caller must write-lock current->mm->mmap_lock.
1213   */
1214  unsigned long do_mmap(struct file *file, unsigned long addr,
1215  			unsigned long len, unsigned long prot,
1216  			unsigned long flags, vm_flags_t vm_flags,
1217  			unsigned long pgoff, unsigned long *populate,
1218  			struct list_head *uf)
1219  {
1220  	struct mm_struct *mm = current->mm;
1221  	int pkey = 0;
1222  
1223  	*populate = 0;
1224  
1225  	if (!len)
1226  		return -EINVAL;
1227  
1228  	/*
1229  	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230  	 *
1231  	 * (the exception is when the underlying filesystem is noexec
1232  	 *  mounted, in which case we don't add PROT_EXEC.)
1233  	 */
1234  	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235  		if (!(file && path_noexec(&file->f_path)))
1236  			prot |= PROT_EXEC;
1237  
1238  	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239  	if (flags & MAP_FIXED_NOREPLACE)
1240  		flags |= MAP_FIXED;
1241  
1242  	if (!(flags & MAP_FIXED))
1243  		addr = round_hint_to_min(addr);
1244  
1245  	/* Careful about overflows.. */
1246  	len = PAGE_ALIGN(len);
1247  	if (!len)
1248  		return -ENOMEM;
1249  
1250  	/* offset overflow? */
1251  	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252  		return -EOVERFLOW;
1253  
1254  	/* Too many mappings? */
1255  	if (mm->map_count > sysctl_max_map_count)
1256  		return -ENOMEM;
1257  
1258  	/*
1259  	 * addr is returned from get_unmapped_area,
1260  	 * There are two cases:
1261  	 * 1> MAP_FIXED == false
1262  	 *	unallocated memory, no need to check sealing.
1263  	 * 1> MAP_FIXED == true
1264  	 *	sealing is checked inside mmap_region when
1265  	 *	do_vmi_munmap is called.
1266  	 */
1267  
1268  	if (prot == PROT_EXEC) {
1269  		pkey = execute_only_pkey(mm);
1270  		if (pkey < 0)
1271  			pkey = 0;
1272  	}
1273  
1274  	/* Do simple checking here so the lower-level routines won't have
1275  	 * to. we assume access permissions have been handled by the open
1276  	 * of the memory object, so we don't do any here.
1277  	 */
1278  	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1279  			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280  
1281  	/* Obtain the address to map to. we verify (or select) it and ensure
1282  	 * that it represents a valid section of the address space.
1283  	 */
1284  	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1285  	if (IS_ERR_VALUE(addr))
1286  		return addr;
1287  
1288  	if (flags & MAP_FIXED_NOREPLACE) {
1289  		if (find_vma_intersection(mm, addr, addr + len))
1290  			return -EEXIST;
1291  	}
1292  
1293  	if (flags & MAP_LOCKED)
1294  		if (!can_do_mlock())
1295  			return -EPERM;
1296  
1297  	if (!mlock_future_ok(mm, vm_flags, len))
1298  		return -EAGAIN;
1299  
1300  	if (file) {
1301  		struct inode *inode = file_inode(file);
1302  		unsigned long flags_mask;
1303  
1304  		if (!file_mmap_ok(file, inode, pgoff, len))
1305  			return -EOVERFLOW;
1306  
1307  		flags_mask = LEGACY_MAP_MASK;
1308  		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1309  			flags_mask |= MAP_SYNC;
1310  
1311  		switch (flags & MAP_TYPE) {
1312  		case MAP_SHARED:
1313  			/*
1314  			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1315  			 * flags. E.g. MAP_SYNC is dangerous to use with
1316  			 * MAP_SHARED as you don't know which consistency model
1317  			 * you will get. We silently ignore unsupported flags
1318  			 * with MAP_SHARED to preserve backward compatibility.
1319  			 */
1320  			flags &= LEGACY_MAP_MASK;
1321  			fallthrough;
1322  		case MAP_SHARED_VALIDATE:
1323  			if (flags & ~flags_mask)
1324  				return -EOPNOTSUPP;
1325  			if (prot & PROT_WRITE) {
1326  				if (!(file->f_mode & FMODE_WRITE))
1327  					return -EACCES;
1328  				if (IS_SWAPFILE(file->f_mapping->host))
1329  					return -ETXTBSY;
1330  			}
1331  
1332  			/*
1333  			 * Make sure we don't allow writing to an append-only
1334  			 * file..
1335  			 */
1336  			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337  				return -EACCES;
1338  
1339  			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340  			if (!(file->f_mode & FMODE_WRITE))
1341  				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1342  			fallthrough;
1343  		case MAP_PRIVATE:
1344  			if (!(file->f_mode & FMODE_READ))
1345  				return -EACCES;
1346  			if (path_noexec(&file->f_path)) {
1347  				if (vm_flags & VM_EXEC)
1348  					return -EPERM;
1349  				vm_flags &= ~VM_MAYEXEC;
1350  			}
1351  
1352  			if (!file->f_op->mmap)
1353  				return -ENODEV;
1354  			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355  				return -EINVAL;
1356  			break;
1357  
1358  		default:
1359  			return -EINVAL;
1360  		}
1361  	} else {
1362  		switch (flags & MAP_TYPE) {
1363  		case MAP_SHARED:
1364  			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365  				return -EINVAL;
1366  			/*
1367  			 * Ignore pgoff.
1368  			 */
1369  			pgoff = 0;
1370  			vm_flags |= VM_SHARED | VM_MAYSHARE;
1371  			break;
1372  		case MAP_PRIVATE:
1373  			/*
1374  			 * Set pgoff according to addr for anon_vma.
1375  			 */
1376  			pgoff = addr >> PAGE_SHIFT;
1377  			break;
1378  		default:
1379  			return -EINVAL;
1380  		}
1381  	}
1382  
1383  	/*
1384  	 * Set 'VM_NORESERVE' if we should not account for the
1385  	 * memory use of this mapping.
1386  	 */
1387  	if (flags & MAP_NORESERVE) {
1388  		/* We honor MAP_NORESERVE if allowed to overcommit */
1389  		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1390  			vm_flags |= VM_NORESERVE;
1391  
1392  		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1393  		if (file && is_file_hugepages(file))
1394  			vm_flags |= VM_NORESERVE;
1395  	}
1396  
1397  	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1398  	if (!IS_ERR_VALUE(addr) &&
1399  	    ((vm_flags & VM_LOCKED) ||
1400  	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1401  		*populate = len;
1402  	return addr;
1403  }
1404  
1405  unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406  			      unsigned long prot, unsigned long flags,
1407  			      unsigned long fd, unsigned long pgoff)
1408  {
1409  	struct file *file = NULL;
1410  	unsigned long retval;
1411  
1412  	if (!(flags & MAP_ANONYMOUS)) {
1413  		audit_mmap_fd(fd, flags);
1414  		file = fget(fd);
1415  		if (!file)
1416  			return -EBADF;
1417  		if (is_file_hugepages(file)) {
1418  			len = ALIGN(len, huge_page_size(hstate_file(file)));
1419  		} else if (unlikely(flags & MAP_HUGETLB)) {
1420  			retval = -EINVAL;
1421  			goto out_fput;
1422  		}
1423  	} else if (flags & MAP_HUGETLB) {
1424  		struct hstate *hs;
1425  
1426  		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427  		if (!hs)
1428  			return -EINVAL;
1429  
1430  		len = ALIGN(len, huge_page_size(hs));
1431  		/*
1432  		 * VM_NORESERVE is used because the reservations will be
1433  		 * taken when vm_ops->mmap() is called
1434  		 */
1435  		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1436  				VM_NORESERVE,
1437  				HUGETLB_ANONHUGE_INODE,
1438  				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1439  		if (IS_ERR(file))
1440  			return PTR_ERR(file);
1441  	}
1442  
1443  	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444  out_fput:
1445  	if (file)
1446  		fput(file);
1447  	return retval;
1448  }
1449  
1450  SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1451  		unsigned long, prot, unsigned long, flags,
1452  		unsigned long, fd, unsigned long, pgoff)
1453  {
1454  	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1455  }
1456  
1457  #ifdef __ARCH_WANT_SYS_OLD_MMAP
1458  struct mmap_arg_struct {
1459  	unsigned long addr;
1460  	unsigned long len;
1461  	unsigned long prot;
1462  	unsigned long flags;
1463  	unsigned long fd;
1464  	unsigned long offset;
1465  };
1466  
1467  SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1468  {
1469  	struct mmap_arg_struct a;
1470  
1471  	if (copy_from_user(&a, arg, sizeof(a)))
1472  		return -EFAULT;
1473  	if (offset_in_page(a.offset))
1474  		return -EINVAL;
1475  
1476  	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1477  			       a.offset >> PAGE_SHIFT);
1478  }
1479  #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1480  
1481  static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1482  {
1483  	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1484  }
1485  
1486  static bool vma_is_shared_writable(struct vm_area_struct *vma)
1487  {
1488  	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1489  		(VM_WRITE | VM_SHARED);
1490  }
1491  
1492  static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1493  {
1494  	/* No managed pages to writeback. */
1495  	if (vma->vm_flags & VM_PFNMAP)
1496  		return false;
1497  
1498  	return vma->vm_file && vma->vm_file->f_mapping &&
1499  		mapping_can_writeback(vma->vm_file->f_mapping);
1500  }
1501  
1502  /*
1503   * Does this VMA require the underlying folios to have their dirty state
1504   * tracked?
1505   */
1506  bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1507  {
1508  	/* Only shared, writable VMAs require dirty tracking. */
1509  	if (!vma_is_shared_writable(vma))
1510  		return false;
1511  
1512  	/* Does the filesystem need to be notified? */
1513  	if (vm_ops_needs_writenotify(vma->vm_ops))
1514  		return true;
1515  
1516  	/*
1517  	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1518  	 * can writeback, dirty tracking is still required.
1519  	 */
1520  	return vma_fs_can_writeback(vma);
1521  }
1522  
1523  /*
1524   * Some shared mappings will want the pages marked read-only
1525   * to track write events. If so, we'll downgrade vm_page_prot
1526   * to the private version (using protection_map[] without the
1527   * VM_SHARED bit).
1528   */
1529  bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1530  {
1531  	/* If it was private or non-writable, the write bit is already clear */
1532  	if (!vma_is_shared_writable(vma))
1533  		return false;
1534  
1535  	/* The backer wishes to know when pages are first written to? */
1536  	if (vm_ops_needs_writenotify(vma->vm_ops))
1537  		return true;
1538  
1539  	/* The open routine did something to the protections that pgprot_modify
1540  	 * won't preserve? */
1541  	if (pgprot_val(vm_page_prot) !=
1542  	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1543  		return false;
1544  
1545  	/*
1546  	 * Do we need to track softdirty? hugetlb does not support softdirty
1547  	 * tracking yet.
1548  	 */
1549  	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1550  		return true;
1551  
1552  	/* Do we need write faults for uffd-wp tracking? */
1553  	if (userfaultfd_wp(vma))
1554  		return true;
1555  
1556  	/* Can the mapping track the dirty pages? */
1557  	return vma_fs_can_writeback(vma);
1558  }
1559  
1560  /*
1561   * We account for memory if it's a private writeable mapping,
1562   * not hugepages and VM_NORESERVE wasn't set.
1563   */
1564  static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1565  {
1566  	/*
1567  	 * hugetlb has its own accounting separate from the core VM
1568  	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1569  	 */
1570  	if (file && is_file_hugepages(file))
1571  		return false;
1572  
1573  	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1574  }
1575  
1576  /**
1577   * unmapped_area() - Find an area between the low_limit and the high_limit with
1578   * the correct alignment and offset, all from @info. Note: current->mm is used
1579   * for the search.
1580   *
1581   * @info: The unmapped area information including the range [low_limit -
1582   * high_limit), the alignment offset and mask.
1583   *
1584   * Return: A memory address or -ENOMEM.
1585   */
1586  static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1587  {
1588  	unsigned long length, gap;
1589  	unsigned long low_limit, high_limit;
1590  	struct vm_area_struct *tmp;
1591  	VMA_ITERATOR(vmi, current->mm, 0);
1592  
1593  	/* Adjust search length to account for worst case alignment overhead */
1594  	length = info->length + info->align_mask + info->start_gap;
1595  	if (length < info->length)
1596  		return -ENOMEM;
1597  
1598  	low_limit = info->low_limit;
1599  	if (low_limit < mmap_min_addr)
1600  		low_limit = mmap_min_addr;
1601  	high_limit = info->high_limit;
1602  retry:
1603  	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1604  		return -ENOMEM;
1605  
1606  	/*
1607  	 * Adjust for the gap first so it doesn't interfere with the
1608  	 * later alignment. The first step is the minimum needed to
1609  	 * fulill the start gap, the next steps is the minimum to align
1610  	 * that. It is the minimum needed to fulill both.
1611  	 */
1612  	gap = vma_iter_addr(&vmi) + info->start_gap;
1613  	gap += (info->align_offset - gap) & info->align_mask;
1614  	tmp = vma_next(&vmi);
1615  	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1616  		if (vm_start_gap(tmp) < gap + length - 1) {
1617  			low_limit = tmp->vm_end;
1618  			vma_iter_reset(&vmi);
1619  			goto retry;
1620  		}
1621  	} else {
1622  		tmp = vma_prev(&vmi);
1623  		if (tmp && vm_end_gap(tmp) > gap) {
1624  			low_limit = vm_end_gap(tmp);
1625  			vma_iter_reset(&vmi);
1626  			goto retry;
1627  		}
1628  	}
1629  
1630  	return gap;
1631  }
1632  
1633  /**
1634   * unmapped_area_topdown() - Find an area between the low_limit and the
1635   * high_limit with the correct alignment and offset at the highest available
1636   * address, all from @info. Note: current->mm is used for the search.
1637   *
1638   * @info: The unmapped area information including the range [low_limit -
1639   * high_limit), the alignment offset and mask.
1640   *
1641   * Return: A memory address or -ENOMEM.
1642   */
1643  static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1644  {
1645  	unsigned long length, gap, gap_end;
1646  	unsigned long low_limit, high_limit;
1647  	struct vm_area_struct *tmp;
1648  	VMA_ITERATOR(vmi, current->mm, 0);
1649  
1650  	/* Adjust search length to account for worst case alignment overhead */
1651  	length = info->length + info->align_mask + info->start_gap;
1652  	if (length < info->length)
1653  		return -ENOMEM;
1654  
1655  	low_limit = info->low_limit;
1656  	if (low_limit < mmap_min_addr)
1657  		low_limit = mmap_min_addr;
1658  	high_limit = info->high_limit;
1659  retry:
1660  	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1661  		return -ENOMEM;
1662  
1663  	gap = vma_iter_end(&vmi) - info->length;
1664  	gap -= (gap - info->align_offset) & info->align_mask;
1665  	gap_end = vma_iter_end(&vmi);
1666  	tmp = vma_next(&vmi);
1667  	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1668  		if (vm_start_gap(tmp) < gap_end) {
1669  			high_limit = vm_start_gap(tmp);
1670  			vma_iter_reset(&vmi);
1671  			goto retry;
1672  		}
1673  	} else {
1674  		tmp = vma_prev(&vmi);
1675  		if (tmp && vm_end_gap(tmp) > gap) {
1676  			high_limit = tmp->vm_start;
1677  			vma_iter_reset(&vmi);
1678  			goto retry;
1679  		}
1680  	}
1681  
1682  	return gap;
1683  }
1684  
1685  /*
1686   * Search for an unmapped address range.
1687   *
1688   * We are looking for a range that:
1689   * - does not intersect with any VMA;
1690   * - is contained within the [low_limit, high_limit) interval;
1691   * - is at least the desired size.
1692   * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1693   */
1694  unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1695  {
1696  	unsigned long addr;
1697  
1698  	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1699  		addr = unmapped_area_topdown(info);
1700  	else
1701  		addr = unmapped_area(info);
1702  
1703  	trace_vm_unmapped_area(addr, info);
1704  	return addr;
1705  }
1706  
1707  /* Get an address range which is currently unmapped.
1708   * For shmat() with addr=0.
1709   *
1710   * Ugly calling convention alert:
1711   * Return value with the low bits set means error value,
1712   * ie
1713   *	if (ret & ~PAGE_MASK)
1714   *		error = ret;
1715   *
1716   * This function "knows" that -ENOMEM has the bits set.
1717   */
1718  unsigned long
1719  generic_get_unmapped_area(struct file *filp, unsigned long addr,
1720  			  unsigned long len, unsigned long pgoff,
1721  			  unsigned long flags)
1722  {
1723  	struct mm_struct *mm = current->mm;
1724  	struct vm_area_struct *vma, *prev;
1725  	struct vm_unmapped_area_info info = {};
1726  	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1727  
1728  	if (len > mmap_end - mmap_min_addr)
1729  		return -ENOMEM;
1730  
1731  	if (flags & MAP_FIXED)
1732  		return addr;
1733  
1734  	if (addr) {
1735  		addr = PAGE_ALIGN(addr);
1736  		vma = find_vma_prev(mm, addr, &prev);
1737  		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1738  		    (!vma || addr + len <= vm_start_gap(vma)) &&
1739  		    (!prev || addr >= vm_end_gap(prev)))
1740  			return addr;
1741  	}
1742  
1743  	info.length = len;
1744  	info.low_limit = mm->mmap_base;
1745  	info.high_limit = mmap_end;
1746  	return vm_unmapped_area(&info);
1747  }
1748  
1749  #ifndef HAVE_ARCH_UNMAPPED_AREA
1750  unsigned long
1751  arch_get_unmapped_area(struct file *filp, unsigned long addr,
1752  		       unsigned long len, unsigned long pgoff,
1753  		       unsigned long flags)
1754  {
1755  	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1756  }
1757  #endif
1758  
1759  /*
1760   * This mmap-allocator allocates new areas top-down from below the
1761   * stack's low limit (the base):
1762   */
1763  unsigned long
1764  generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1765  				  unsigned long len, unsigned long pgoff,
1766  				  unsigned long flags)
1767  {
1768  	struct vm_area_struct *vma, *prev;
1769  	struct mm_struct *mm = current->mm;
1770  	struct vm_unmapped_area_info info = {};
1771  	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1772  
1773  	/* requested length too big for entire address space */
1774  	if (len > mmap_end - mmap_min_addr)
1775  		return -ENOMEM;
1776  
1777  	if (flags & MAP_FIXED)
1778  		return addr;
1779  
1780  	/* requesting a specific address */
1781  	if (addr) {
1782  		addr = PAGE_ALIGN(addr);
1783  		vma = find_vma_prev(mm, addr, &prev);
1784  		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1785  				(!vma || addr + len <= vm_start_gap(vma)) &&
1786  				(!prev || addr >= vm_end_gap(prev)))
1787  			return addr;
1788  	}
1789  
1790  	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1791  	info.length = len;
1792  	info.low_limit = PAGE_SIZE;
1793  	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1794  	addr = vm_unmapped_area(&info);
1795  
1796  	/*
1797  	 * A failed mmap() very likely causes application failure,
1798  	 * so fall back to the bottom-up function here. This scenario
1799  	 * can happen with large stack limits and large mmap()
1800  	 * allocations.
1801  	 */
1802  	if (offset_in_page(addr)) {
1803  		VM_BUG_ON(addr != -ENOMEM);
1804  		info.flags = 0;
1805  		info.low_limit = TASK_UNMAPPED_BASE;
1806  		info.high_limit = mmap_end;
1807  		addr = vm_unmapped_area(&info);
1808  	}
1809  
1810  	return addr;
1811  }
1812  
1813  #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1814  unsigned long
1815  arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1816  			       unsigned long len, unsigned long pgoff,
1817  			       unsigned long flags)
1818  {
1819  	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1820  }
1821  #endif
1822  
1823  #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1824  unsigned long
1825  arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1826  			       unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1827  {
1828  	return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1829  }
1830  
1831  unsigned long
1832  arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1833  				       unsigned long len, unsigned long pgoff,
1834  				       unsigned long flags, vm_flags_t vm_flags)
1835  {
1836  	return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1837  }
1838  #endif
1839  
1840  unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1841  					   unsigned long addr, unsigned long len,
1842  					   unsigned long pgoff, unsigned long flags,
1843  					   vm_flags_t vm_flags)
1844  {
1845  	if (test_bit(MMF_TOPDOWN, &mm->flags))
1846  		return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1847  							      flags, vm_flags);
1848  	return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1849  }
1850  
1851  unsigned long
1852  __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1853  		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1854  {
1855  	unsigned long (*get_area)(struct file *, unsigned long,
1856  				  unsigned long, unsigned long, unsigned long)
1857  				  = NULL;
1858  
1859  	unsigned long error = arch_mmap_check(addr, len, flags);
1860  	if (error)
1861  		return error;
1862  
1863  	/* Careful about overflows.. */
1864  	if (len > TASK_SIZE)
1865  		return -ENOMEM;
1866  
1867  	if (file) {
1868  		if (file->f_op->get_unmapped_area)
1869  			get_area = file->f_op->get_unmapped_area;
1870  	} else if (flags & MAP_SHARED) {
1871  		/*
1872  		 * mmap_region() will call shmem_zero_setup() to create a file,
1873  		 * so use shmem's get_unmapped_area in case it can be huge.
1874  		 */
1875  		get_area = shmem_get_unmapped_area;
1876  	}
1877  
1878  	/* Always treat pgoff as zero for anonymous memory. */
1879  	if (!file)
1880  		pgoff = 0;
1881  
1882  	if (get_area) {
1883  		addr = get_area(file, addr, len, pgoff, flags);
1884  	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1885  		/* Ensures that larger anonymous mappings are THP aligned. */
1886  		addr = thp_get_unmapped_area_vmflags(file, addr, len,
1887  						     pgoff, flags, vm_flags);
1888  	} else {
1889  		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1890  						    pgoff, flags, vm_flags);
1891  	}
1892  	if (IS_ERR_VALUE(addr))
1893  		return addr;
1894  
1895  	if (addr > TASK_SIZE - len)
1896  		return -ENOMEM;
1897  	if (offset_in_page(addr))
1898  		return -EINVAL;
1899  
1900  	error = security_mmap_addr(addr);
1901  	return error ? error : addr;
1902  }
1903  
1904  unsigned long
1905  mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1906  		     unsigned long addr, unsigned long len,
1907  		     unsigned long pgoff, unsigned long flags)
1908  {
1909  	if (test_bit(MMF_TOPDOWN, &mm->flags))
1910  		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1911  	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1912  }
1913  EXPORT_SYMBOL(mm_get_unmapped_area);
1914  
1915  /**
1916   * find_vma_intersection() - Look up the first VMA which intersects the interval
1917   * @mm: The process address space.
1918   * @start_addr: The inclusive start user address.
1919   * @end_addr: The exclusive end user address.
1920   *
1921   * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1922   * start_addr < end_addr.
1923   */
1924  struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1925  					     unsigned long start_addr,
1926  					     unsigned long end_addr)
1927  {
1928  	unsigned long index = start_addr;
1929  
1930  	mmap_assert_locked(mm);
1931  	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1932  }
1933  EXPORT_SYMBOL(find_vma_intersection);
1934  
1935  /**
1936   * find_vma() - Find the VMA for a given address, or the next VMA.
1937   * @mm: The mm_struct to check
1938   * @addr: The address
1939   *
1940   * Returns: The VMA associated with addr, or the next VMA.
1941   * May return %NULL in the case of no VMA at addr or above.
1942   */
1943  struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1944  {
1945  	unsigned long index = addr;
1946  
1947  	mmap_assert_locked(mm);
1948  	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1949  }
1950  EXPORT_SYMBOL(find_vma);
1951  
1952  /**
1953   * find_vma_prev() - Find the VMA for a given address, or the next vma and
1954   * set %pprev to the previous VMA, if any.
1955   * @mm: The mm_struct to check
1956   * @addr: The address
1957   * @pprev: The pointer to set to the previous VMA
1958   *
1959   * Note that RCU lock is missing here since the external mmap_lock() is used
1960   * instead.
1961   *
1962   * Returns: The VMA associated with @addr, or the next vma.
1963   * May return %NULL in the case of no vma at addr or above.
1964   */
1965  struct vm_area_struct *
1966  find_vma_prev(struct mm_struct *mm, unsigned long addr,
1967  			struct vm_area_struct **pprev)
1968  {
1969  	struct vm_area_struct *vma;
1970  	VMA_ITERATOR(vmi, mm, addr);
1971  
1972  	vma = vma_iter_load(&vmi);
1973  	*pprev = vma_prev(&vmi);
1974  	if (!vma)
1975  		vma = vma_next(&vmi);
1976  	return vma;
1977  }
1978  
1979  /*
1980   * Verify that the stack growth is acceptable and
1981   * update accounting. This is shared with both the
1982   * grow-up and grow-down cases.
1983   */
1984  static int acct_stack_growth(struct vm_area_struct *vma,
1985  			     unsigned long size, unsigned long grow)
1986  {
1987  	struct mm_struct *mm = vma->vm_mm;
1988  	unsigned long new_start;
1989  
1990  	/* address space limit tests */
1991  	if (!may_expand_vm(mm, vma->vm_flags, grow))
1992  		return -ENOMEM;
1993  
1994  	/* Stack limit test */
1995  	if (size > rlimit(RLIMIT_STACK))
1996  		return -ENOMEM;
1997  
1998  	/* mlock limit tests */
1999  	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2000  		return -ENOMEM;
2001  
2002  	/* Check to ensure the stack will not grow into a hugetlb-only region */
2003  	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2004  			vma->vm_end - size;
2005  	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2006  		return -EFAULT;
2007  
2008  	/*
2009  	 * Overcommit..  This must be the final test, as it will
2010  	 * update security statistics.
2011  	 */
2012  	if (security_vm_enough_memory_mm(mm, grow))
2013  		return -ENOMEM;
2014  
2015  	return 0;
2016  }
2017  
2018  #if defined(CONFIG_STACK_GROWSUP)
2019  /*
2020   * PA-RISC uses this for its stack.
2021   * vma is the last one with address > vma->vm_end.  Have to extend vma.
2022   */
2023  static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2024  {
2025  	struct mm_struct *mm = vma->vm_mm;
2026  	struct vm_area_struct *next;
2027  	unsigned long gap_addr;
2028  	int error = 0;
2029  	VMA_ITERATOR(vmi, mm, vma->vm_start);
2030  
2031  	if (!(vma->vm_flags & VM_GROWSUP))
2032  		return -EFAULT;
2033  
2034  	/* Guard against exceeding limits of the address space. */
2035  	address &= PAGE_MASK;
2036  	if (address >= (TASK_SIZE & PAGE_MASK))
2037  		return -ENOMEM;
2038  	address += PAGE_SIZE;
2039  
2040  	/* Enforce stack_guard_gap */
2041  	gap_addr = address + stack_guard_gap;
2042  
2043  	/* Guard against overflow */
2044  	if (gap_addr < address || gap_addr > TASK_SIZE)
2045  		gap_addr = TASK_SIZE;
2046  
2047  	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2048  	if (next && vma_is_accessible(next)) {
2049  		if (!(next->vm_flags & VM_GROWSUP))
2050  			return -ENOMEM;
2051  		/* Check that both stack segments have the same anon_vma? */
2052  	}
2053  
2054  	if (next)
2055  		vma_iter_prev_range_limit(&vmi, address);
2056  
2057  	vma_iter_config(&vmi, vma->vm_start, address);
2058  	if (vma_iter_prealloc(&vmi, vma))
2059  		return -ENOMEM;
2060  
2061  	/* We must make sure the anon_vma is allocated. */
2062  	if (unlikely(anon_vma_prepare(vma))) {
2063  		vma_iter_free(&vmi);
2064  		return -ENOMEM;
2065  	}
2066  
2067  	/* Lock the VMA before expanding to prevent concurrent page faults */
2068  	vma_start_write(vma);
2069  	/*
2070  	 * vma->vm_start/vm_end cannot change under us because the caller
2071  	 * is required to hold the mmap_lock in read mode.  We need the
2072  	 * anon_vma lock to serialize against concurrent expand_stacks.
2073  	 */
2074  	anon_vma_lock_write(vma->anon_vma);
2075  
2076  	/* Somebody else might have raced and expanded it already */
2077  	if (address > vma->vm_end) {
2078  		unsigned long size, grow;
2079  
2080  		size = address - vma->vm_start;
2081  		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2082  
2083  		error = -ENOMEM;
2084  		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2085  			error = acct_stack_growth(vma, size, grow);
2086  			if (!error) {
2087  				/*
2088  				 * We only hold a shared mmap_lock lock here, so
2089  				 * we need to protect against concurrent vma
2090  				 * expansions.  anon_vma_lock_write() doesn't
2091  				 * help here, as we don't guarantee that all
2092  				 * growable vmas in a mm share the same root
2093  				 * anon vma.  So, we reuse mm->page_table_lock
2094  				 * to guard against concurrent vma expansions.
2095  				 */
2096  				spin_lock(&mm->page_table_lock);
2097  				if (vma->vm_flags & VM_LOCKED)
2098  					mm->locked_vm += grow;
2099  				vm_stat_account(mm, vma->vm_flags, grow);
2100  				anon_vma_interval_tree_pre_update_vma(vma);
2101  				vma->vm_end = address;
2102  				/* Overwrite old entry in mtree. */
2103  				vma_iter_store(&vmi, vma);
2104  				anon_vma_interval_tree_post_update_vma(vma);
2105  				spin_unlock(&mm->page_table_lock);
2106  
2107  				perf_event_mmap(vma);
2108  			}
2109  		}
2110  	}
2111  	anon_vma_unlock_write(vma->anon_vma);
2112  	vma_iter_free(&vmi);
2113  	validate_mm(mm);
2114  	return error;
2115  }
2116  #endif /* CONFIG_STACK_GROWSUP */
2117  
2118  /*
2119   * vma is the first one with address < vma->vm_start.  Have to extend vma.
2120   * mmap_lock held for writing.
2121   */
2122  int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2123  {
2124  	struct mm_struct *mm = vma->vm_mm;
2125  	struct vm_area_struct *prev;
2126  	int error = 0;
2127  	VMA_ITERATOR(vmi, mm, vma->vm_start);
2128  
2129  	if (!(vma->vm_flags & VM_GROWSDOWN))
2130  		return -EFAULT;
2131  
2132  	address &= PAGE_MASK;
2133  	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2134  		return -EPERM;
2135  
2136  	/* Enforce stack_guard_gap */
2137  	prev = vma_prev(&vmi);
2138  	/* Check that both stack segments have the same anon_vma? */
2139  	if (prev) {
2140  		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2141  		    vma_is_accessible(prev) &&
2142  		    (address - prev->vm_end < stack_guard_gap))
2143  			return -ENOMEM;
2144  	}
2145  
2146  	if (prev)
2147  		vma_iter_next_range_limit(&vmi, vma->vm_start);
2148  
2149  	vma_iter_config(&vmi, address, vma->vm_end);
2150  	if (vma_iter_prealloc(&vmi, vma))
2151  		return -ENOMEM;
2152  
2153  	/* We must make sure the anon_vma is allocated. */
2154  	if (unlikely(anon_vma_prepare(vma))) {
2155  		vma_iter_free(&vmi);
2156  		return -ENOMEM;
2157  	}
2158  
2159  	/* Lock the VMA before expanding to prevent concurrent page faults */
2160  	vma_start_write(vma);
2161  	/*
2162  	 * vma->vm_start/vm_end cannot change under us because the caller
2163  	 * is required to hold the mmap_lock in read mode.  We need the
2164  	 * anon_vma lock to serialize against concurrent expand_stacks.
2165  	 */
2166  	anon_vma_lock_write(vma->anon_vma);
2167  
2168  	/* Somebody else might have raced and expanded it already */
2169  	if (address < vma->vm_start) {
2170  		unsigned long size, grow;
2171  
2172  		size = vma->vm_end - address;
2173  		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2174  
2175  		error = -ENOMEM;
2176  		if (grow <= vma->vm_pgoff) {
2177  			error = acct_stack_growth(vma, size, grow);
2178  			if (!error) {
2179  				/*
2180  				 * We only hold a shared mmap_lock lock here, so
2181  				 * we need to protect against concurrent vma
2182  				 * expansions.  anon_vma_lock_write() doesn't
2183  				 * help here, as we don't guarantee that all
2184  				 * growable vmas in a mm share the same root
2185  				 * anon vma.  So, we reuse mm->page_table_lock
2186  				 * to guard against concurrent vma expansions.
2187  				 */
2188  				spin_lock(&mm->page_table_lock);
2189  				if (vma->vm_flags & VM_LOCKED)
2190  					mm->locked_vm += grow;
2191  				vm_stat_account(mm, vma->vm_flags, grow);
2192  				anon_vma_interval_tree_pre_update_vma(vma);
2193  				vma->vm_start = address;
2194  				vma->vm_pgoff -= grow;
2195  				/* Overwrite old entry in mtree. */
2196  				vma_iter_store(&vmi, vma);
2197  				anon_vma_interval_tree_post_update_vma(vma);
2198  				spin_unlock(&mm->page_table_lock);
2199  
2200  				perf_event_mmap(vma);
2201  			}
2202  		}
2203  	}
2204  	anon_vma_unlock_write(vma->anon_vma);
2205  	vma_iter_free(&vmi);
2206  	validate_mm(mm);
2207  	return error;
2208  }
2209  
2210  /* enforced gap between the expanding stack and other mappings. */
2211  unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2212  
2213  static int __init cmdline_parse_stack_guard_gap(char *p)
2214  {
2215  	unsigned long val;
2216  	char *endptr;
2217  
2218  	val = simple_strtoul(p, &endptr, 10);
2219  	if (!*endptr)
2220  		stack_guard_gap = val << PAGE_SHIFT;
2221  
2222  	return 1;
2223  }
2224  __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2225  
2226  #ifdef CONFIG_STACK_GROWSUP
2227  int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2228  {
2229  	return expand_upwards(vma, address);
2230  }
2231  
2232  struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2233  {
2234  	struct vm_area_struct *vma, *prev;
2235  
2236  	addr &= PAGE_MASK;
2237  	vma = find_vma_prev(mm, addr, &prev);
2238  	if (vma && (vma->vm_start <= addr))
2239  		return vma;
2240  	if (!prev)
2241  		return NULL;
2242  	if (expand_stack_locked(prev, addr))
2243  		return NULL;
2244  	if (prev->vm_flags & VM_LOCKED)
2245  		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2246  	return prev;
2247  }
2248  #else
2249  int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2250  {
2251  	return expand_downwards(vma, address);
2252  }
2253  
2254  struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2255  {
2256  	struct vm_area_struct *vma;
2257  	unsigned long start;
2258  
2259  	addr &= PAGE_MASK;
2260  	vma = find_vma(mm, addr);
2261  	if (!vma)
2262  		return NULL;
2263  	if (vma->vm_start <= addr)
2264  		return vma;
2265  	start = vma->vm_start;
2266  	if (expand_stack_locked(vma, addr))
2267  		return NULL;
2268  	if (vma->vm_flags & VM_LOCKED)
2269  		populate_vma_page_range(vma, addr, start, NULL);
2270  	return vma;
2271  }
2272  #endif
2273  
2274  #if defined(CONFIG_STACK_GROWSUP)
2275  
2276  #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2277  #define vma_expand_down(vma, addr) (-EFAULT)
2278  
2279  #else
2280  
2281  #define vma_expand_up(vma,addr) (-EFAULT)
2282  #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2283  
2284  #endif
2285  
2286  /*
2287   * expand_stack(): legacy interface for page faulting. Don't use unless
2288   * you have to.
2289   *
2290   * This is called with the mm locked for reading, drops the lock, takes
2291   * the lock for writing, tries to look up a vma again, expands it if
2292   * necessary, and downgrades the lock to reading again.
2293   *
2294   * If no vma is found or it can't be expanded, it returns NULL and has
2295   * dropped the lock.
2296   */
2297  struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2298  {
2299  	struct vm_area_struct *vma, *prev;
2300  
2301  	mmap_read_unlock(mm);
2302  	if (mmap_write_lock_killable(mm))
2303  		return NULL;
2304  
2305  	vma = find_vma_prev(mm, addr, &prev);
2306  	if (vma && vma->vm_start <= addr)
2307  		goto success;
2308  
2309  	if (prev && !vma_expand_up(prev, addr)) {
2310  		vma = prev;
2311  		goto success;
2312  	}
2313  
2314  	if (vma && !vma_expand_down(vma, addr))
2315  		goto success;
2316  
2317  	mmap_write_unlock(mm);
2318  	return NULL;
2319  
2320  success:
2321  	mmap_write_downgrade(mm);
2322  	return vma;
2323  }
2324  
2325  /*
2326   * Ok - we have the memory areas we should free on a maple tree so release them,
2327   * and do the vma updates.
2328   *
2329   * Called with the mm semaphore held.
2330   */
2331  static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2332  {
2333  	unsigned long nr_accounted = 0;
2334  	struct vm_area_struct *vma;
2335  
2336  	/* Update high watermark before we lower total_vm */
2337  	update_hiwater_vm(mm);
2338  	mas_for_each(mas, vma, ULONG_MAX) {
2339  		long nrpages = vma_pages(vma);
2340  
2341  		if (vma->vm_flags & VM_ACCOUNT)
2342  			nr_accounted += nrpages;
2343  		vm_stat_account(mm, vma->vm_flags, -nrpages);
2344  		remove_vma(vma, false);
2345  	}
2346  	vm_unacct_memory(nr_accounted);
2347  }
2348  
2349  /*
2350   * Get rid of page table information in the indicated region.
2351   *
2352   * Called with the mm semaphore held.
2353   */
2354  static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2355  		struct vm_area_struct *vma, struct vm_area_struct *prev,
2356  		struct vm_area_struct *next, unsigned long start,
2357  		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2358  {
2359  	struct mmu_gather tlb;
2360  	unsigned long mt_start = mas->index;
2361  
2362  	lru_add_drain();
2363  	tlb_gather_mmu(&tlb, mm);
2364  	update_hiwater_rss(mm);
2365  	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2366  	mas_set(mas, mt_start);
2367  	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2368  				 next ? next->vm_start : USER_PGTABLES_CEILING,
2369  				 mm_wr_locked);
2370  	tlb_finish_mmu(&tlb);
2371  }
2372  
2373  /*
2374   * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2375   * has already been checked or doesn't make sense to fail.
2376   * VMA Iterator will point to the end VMA.
2377   */
2378  static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2379  		       unsigned long addr, int new_below)
2380  {
2381  	struct vma_prepare vp;
2382  	struct vm_area_struct *new;
2383  	int err;
2384  
2385  	WARN_ON(vma->vm_start >= addr);
2386  	WARN_ON(vma->vm_end <= addr);
2387  
2388  	if (vma->vm_ops && vma->vm_ops->may_split) {
2389  		err = vma->vm_ops->may_split(vma, addr);
2390  		if (err)
2391  			return err;
2392  	}
2393  
2394  	new = vm_area_dup(vma);
2395  	if (!new)
2396  		return -ENOMEM;
2397  
2398  	if (new_below) {
2399  		new->vm_end = addr;
2400  	} else {
2401  		new->vm_start = addr;
2402  		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2403  	}
2404  
2405  	err = -ENOMEM;
2406  	vma_iter_config(vmi, new->vm_start, new->vm_end);
2407  	if (vma_iter_prealloc(vmi, new))
2408  		goto out_free_vma;
2409  
2410  	err = vma_dup_policy(vma, new);
2411  	if (err)
2412  		goto out_free_vmi;
2413  
2414  	err = anon_vma_clone(new, vma);
2415  	if (err)
2416  		goto out_free_mpol;
2417  
2418  	if (new->vm_file)
2419  		get_file(new->vm_file);
2420  
2421  	if (new->vm_ops && new->vm_ops->open)
2422  		new->vm_ops->open(new);
2423  
2424  	vma_start_write(vma);
2425  	vma_start_write(new);
2426  
2427  	init_vma_prep(&vp, vma);
2428  	vp.insert = new;
2429  	vma_prepare(&vp);
2430  	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2431  
2432  	if (new_below) {
2433  		vma->vm_start = addr;
2434  		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2435  	} else {
2436  		vma->vm_end = addr;
2437  	}
2438  
2439  	/* vma_complete stores the new vma */
2440  	vma_complete(&vp, vmi, vma->vm_mm);
2441  
2442  	/* Success. */
2443  	if (new_below)
2444  		vma_next(vmi);
2445  	return 0;
2446  
2447  out_free_mpol:
2448  	mpol_put(vma_policy(new));
2449  out_free_vmi:
2450  	vma_iter_free(vmi);
2451  out_free_vma:
2452  	vm_area_free(new);
2453  	return err;
2454  }
2455  
2456  /*
2457   * Split a vma into two pieces at address 'addr', a new vma is allocated
2458   * either for the first part or the tail.
2459   */
2460  static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2461  		     unsigned long addr, int new_below)
2462  {
2463  	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2464  		return -ENOMEM;
2465  
2466  	return __split_vma(vmi, vma, addr, new_below);
2467  }
2468  
2469  /*
2470   * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2471   * context and anonymous VMA name within the range [start, end).
2472   *
2473   * As a result, we might be able to merge the newly modified VMA range with an
2474   * adjacent VMA with identical properties.
2475   *
2476   * If no merge is possible and the range does not span the entirety of the VMA,
2477   * we then need to split the VMA to accommodate the change.
2478   *
2479   * The function returns either the merged VMA, the original VMA if a split was
2480   * required instead, or an error if the split failed.
2481   */
2482  struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2483  				  struct vm_area_struct *prev,
2484  				  struct vm_area_struct *vma,
2485  				  unsigned long start, unsigned long end,
2486  				  unsigned long vm_flags,
2487  				  struct mempolicy *policy,
2488  				  struct vm_userfaultfd_ctx uffd_ctx,
2489  				  struct anon_vma_name *anon_name)
2490  {
2491  	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2492  	struct vm_area_struct *merged;
2493  
2494  	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2495  			   pgoff, policy, uffd_ctx, anon_name);
2496  	if (merged)
2497  		return merged;
2498  
2499  	if (vma->vm_start < start) {
2500  		int err = split_vma(vmi, vma, start, 1);
2501  
2502  		if (err)
2503  			return ERR_PTR(err);
2504  	}
2505  
2506  	if (vma->vm_end > end) {
2507  		int err = split_vma(vmi, vma, end, 0);
2508  
2509  		if (err)
2510  			return ERR_PTR(err);
2511  	}
2512  
2513  	return vma;
2514  }
2515  
2516  /*
2517   * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2518   * must ensure that [start, end) does not overlap any existing VMA.
2519   */
2520  static struct vm_area_struct
2521  *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2522  		   struct vm_area_struct *vma, unsigned long start,
2523  		   unsigned long end, pgoff_t pgoff)
2524  {
2525  	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2526  			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2527  }
2528  
2529  /*
2530   * Expand vma by delta bytes, potentially merging with an immediately adjacent
2531   * VMA with identical properties.
2532   */
2533  struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2534  					struct vm_area_struct *vma,
2535  					unsigned long delta)
2536  {
2537  	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2538  
2539  	/* vma is specified as prev, so case 1 or 2 will apply. */
2540  	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2541  			 vma->vm_flags, pgoff, vma_policy(vma),
2542  			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2543  }
2544  
2545  /*
2546   * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2547   * @vmi: The vma iterator
2548   * @vma: The starting vm_area_struct
2549   * @mm: The mm_struct
2550   * @start: The aligned start address to munmap.
2551   * @end: The aligned end address to munmap.
2552   * @uf: The userfaultfd list_head
2553   * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2554   * success.
2555   *
2556   * Return: 0 on success and drops the lock if so directed, error and leaves the
2557   * lock held otherwise.
2558   */
2559  static int
2560  do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2561  		    struct mm_struct *mm, unsigned long start,
2562  		    unsigned long end, struct list_head *uf, bool unlock)
2563  {
2564  	struct vm_area_struct *prev, *next = NULL;
2565  	struct maple_tree mt_detach;
2566  	int count = 0;
2567  	int error = -ENOMEM;
2568  	unsigned long locked_vm = 0;
2569  	MA_STATE(mas_detach, &mt_detach, 0, 0);
2570  	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2571  	mt_on_stack(mt_detach);
2572  
2573  	/*
2574  	 * If we need to split any vma, do it now to save pain later.
2575  	 *
2576  	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2577  	 * unmapped vm_area_struct will remain in use: so lower split_vma
2578  	 * places tmp vma above, and higher split_vma places tmp vma below.
2579  	 */
2580  
2581  	/* Does it split the first one? */
2582  	if (start > vma->vm_start) {
2583  
2584  		/*
2585  		 * Make sure that map_count on return from munmap() will
2586  		 * not exceed its limit; but let map_count go just above
2587  		 * its limit temporarily, to help free resources as expected.
2588  		 */
2589  		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2590  			goto map_count_exceeded;
2591  
2592  		error = __split_vma(vmi, vma, start, 1);
2593  		if (error)
2594  			goto start_split_failed;
2595  	}
2596  
2597  	/*
2598  	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2599  	 * it is always overwritten.
2600  	 */
2601  	next = vma;
2602  	do {
2603  		/* Does it split the end? */
2604  		if (next->vm_end > end) {
2605  			error = __split_vma(vmi, next, end, 0);
2606  			if (error)
2607  				goto end_split_failed;
2608  		}
2609  		vma_start_write(next);
2610  		mas_set(&mas_detach, count);
2611  		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2612  		if (error)
2613  			goto munmap_gather_failed;
2614  		vma_mark_detached(next, true);
2615  		if (next->vm_flags & VM_LOCKED)
2616  			locked_vm += vma_pages(next);
2617  
2618  		count++;
2619  		if (unlikely(uf)) {
2620  			/*
2621  			 * If userfaultfd_unmap_prep returns an error the vmas
2622  			 * will remain split, but userland will get a
2623  			 * highly unexpected error anyway. This is no
2624  			 * different than the case where the first of the two
2625  			 * __split_vma fails, but we don't undo the first
2626  			 * split, despite we could. This is unlikely enough
2627  			 * failure that it's not worth optimizing it for.
2628  			 */
2629  			error = userfaultfd_unmap_prep(next, start, end, uf);
2630  
2631  			if (error)
2632  				goto userfaultfd_error;
2633  		}
2634  #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2635  		BUG_ON(next->vm_start < start);
2636  		BUG_ON(next->vm_start > end);
2637  #endif
2638  	} for_each_vma_range(*vmi, next, end);
2639  
2640  #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2641  	/* Make sure no VMAs are about to be lost. */
2642  	{
2643  		MA_STATE(test, &mt_detach, 0, 0);
2644  		struct vm_area_struct *vma_mas, *vma_test;
2645  		int test_count = 0;
2646  
2647  		vma_iter_set(vmi, start);
2648  		rcu_read_lock();
2649  		vma_test = mas_find(&test, count - 1);
2650  		for_each_vma_range(*vmi, vma_mas, end) {
2651  			BUG_ON(vma_mas != vma_test);
2652  			test_count++;
2653  			vma_test = mas_next(&test, count - 1);
2654  		}
2655  		rcu_read_unlock();
2656  		BUG_ON(count != test_count);
2657  	}
2658  #endif
2659  
2660  	while (vma_iter_addr(vmi) > start)
2661  		vma_iter_prev_range(vmi);
2662  
2663  	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2664  	if (error)
2665  		goto clear_tree_failed;
2666  
2667  	/* Point of no return */
2668  	mm->locked_vm -= locked_vm;
2669  	mm->map_count -= count;
2670  	if (unlock)
2671  		mmap_write_downgrade(mm);
2672  
2673  	prev = vma_iter_prev_range(vmi);
2674  	next = vma_next(vmi);
2675  	if (next)
2676  		vma_iter_prev_range(vmi);
2677  
2678  	/*
2679  	 * We can free page tables without write-locking mmap_lock because VMAs
2680  	 * were isolated before we downgraded mmap_lock.
2681  	 */
2682  	mas_set(&mas_detach, 1);
2683  	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2684  		     !unlock);
2685  	/* Statistics and freeing VMAs */
2686  	mas_set(&mas_detach, 0);
2687  	remove_mt(mm, &mas_detach);
2688  	validate_mm(mm);
2689  	if (unlock)
2690  		mmap_read_unlock(mm);
2691  
2692  	__mt_destroy(&mt_detach);
2693  	return 0;
2694  
2695  clear_tree_failed:
2696  userfaultfd_error:
2697  munmap_gather_failed:
2698  end_split_failed:
2699  	mas_set(&mas_detach, 0);
2700  	mas_for_each(&mas_detach, next, end)
2701  		vma_mark_detached(next, false);
2702  
2703  	__mt_destroy(&mt_detach);
2704  start_split_failed:
2705  map_count_exceeded:
2706  	validate_mm(mm);
2707  	return error;
2708  }
2709  
2710  /*
2711   * do_vmi_munmap() - munmap a given range.
2712   * @vmi: The vma iterator
2713   * @mm: The mm_struct
2714   * @start: The start address to munmap
2715   * @len: The length of the range to munmap
2716   * @uf: The userfaultfd list_head
2717   * @unlock: set to true if the user wants to drop the mmap_lock on success
2718   *
2719   * This function takes a @mas that is either pointing to the previous VMA or set
2720   * to MA_START and sets it up to remove the mapping(s).  The @len will be
2721   * aligned and any arch_unmap work will be preformed.
2722   *
2723   * Return: 0 on success and drops the lock if so directed, error and leaves the
2724   * lock held otherwise.
2725   */
2726  int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2727  		  unsigned long start, size_t len, struct list_head *uf,
2728  		  bool unlock)
2729  {
2730  	unsigned long end;
2731  	struct vm_area_struct *vma;
2732  
2733  	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2734  		return -EINVAL;
2735  
2736  	end = start + PAGE_ALIGN(len);
2737  	if (end == start)
2738  		return -EINVAL;
2739  
2740  	/*
2741  	 * Check if memory is sealed before arch_unmap.
2742  	 * Prevent unmapping a sealed VMA.
2743  	 * can_modify_mm assumes we have acquired the lock on MM.
2744  	 */
2745  	if (unlikely(!can_modify_mm(mm, start, end)))
2746  		return -EPERM;
2747  
2748  	 /* arch_unmap() might do unmaps itself.  */
2749  	arch_unmap(mm, start, end);
2750  
2751  	/* Find the first overlapping VMA */
2752  	vma = vma_find(vmi, end);
2753  	if (!vma) {
2754  		if (unlock)
2755  			mmap_write_unlock(mm);
2756  		return 0;
2757  	}
2758  
2759  	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2760  }
2761  
2762  /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2763   * @mm: The mm_struct
2764   * @start: The start address to munmap
2765   * @len: The length to be munmapped.
2766   * @uf: The userfaultfd list_head
2767   *
2768   * Return: 0 on success, error otherwise.
2769   */
2770  int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2771  	      struct list_head *uf)
2772  {
2773  	VMA_ITERATOR(vmi, mm, start);
2774  
2775  	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2776  }
2777  
2778  unsigned long mmap_region(struct file *file, unsigned long addr,
2779  		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2780  		struct list_head *uf)
2781  {
2782  	struct mm_struct *mm = current->mm;
2783  	struct vm_area_struct *vma = NULL;
2784  	struct vm_area_struct *next, *prev, *merge;
2785  	pgoff_t pglen = len >> PAGE_SHIFT;
2786  	unsigned long charged = 0;
2787  	unsigned long end = addr + len;
2788  	unsigned long merge_start = addr, merge_end = end;
2789  	bool writable_file_mapping = false;
2790  	pgoff_t vm_pgoff;
2791  	int error;
2792  	VMA_ITERATOR(vmi, mm, addr);
2793  
2794  	/* Check against address space limit. */
2795  	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2796  		unsigned long nr_pages;
2797  
2798  		/*
2799  		 * MAP_FIXED may remove pages of mappings that intersects with
2800  		 * requested mapping. Account for the pages it would unmap.
2801  		 */
2802  		nr_pages = count_vma_pages_range(mm, addr, end);
2803  
2804  		if (!may_expand_vm(mm, vm_flags,
2805  					(len >> PAGE_SHIFT) - nr_pages))
2806  			return -ENOMEM;
2807  	}
2808  
2809  	/* Unmap any existing mapping in the area */
2810  	error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2811  	if (error == -EPERM)
2812  		return error;
2813  	else if (error)
2814  		return -ENOMEM;
2815  
2816  	/*
2817  	 * Private writable mapping: check memory availability
2818  	 */
2819  	if (accountable_mapping(file, vm_flags)) {
2820  		charged = len >> PAGE_SHIFT;
2821  		if (security_vm_enough_memory_mm(mm, charged))
2822  			return -ENOMEM;
2823  		vm_flags |= VM_ACCOUNT;
2824  	}
2825  
2826  	next = vma_next(&vmi);
2827  	prev = vma_prev(&vmi);
2828  	if (vm_flags & VM_SPECIAL) {
2829  		if (prev)
2830  			vma_iter_next_range(&vmi);
2831  		goto cannot_expand;
2832  	}
2833  
2834  	/* Attempt to expand an old mapping */
2835  	/* Check next */
2836  	if (next && next->vm_start == end && !vma_policy(next) &&
2837  	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2838  				 NULL_VM_UFFD_CTX, NULL)) {
2839  		merge_end = next->vm_end;
2840  		vma = next;
2841  		vm_pgoff = next->vm_pgoff - pglen;
2842  	}
2843  
2844  	/* Check prev */
2845  	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2846  	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2847  				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2848  		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2849  				       NULL_VM_UFFD_CTX, NULL))) {
2850  		merge_start = prev->vm_start;
2851  		vma = prev;
2852  		vm_pgoff = prev->vm_pgoff;
2853  	} else if (prev) {
2854  		vma_iter_next_range(&vmi);
2855  	}
2856  
2857  	/* Actually expand, if possible */
2858  	if (vma &&
2859  	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2860  		khugepaged_enter_vma(vma, vm_flags);
2861  		goto expanded;
2862  	}
2863  
2864  	if (vma == prev)
2865  		vma_iter_set(&vmi, addr);
2866  cannot_expand:
2867  
2868  	/*
2869  	 * Determine the object being mapped and call the appropriate
2870  	 * specific mapper. the address has already been validated, but
2871  	 * not unmapped, but the maps are removed from the list.
2872  	 */
2873  	vma = vm_area_alloc(mm);
2874  	if (!vma) {
2875  		error = -ENOMEM;
2876  		goto unacct_error;
2877  	}
2878  
2879  	vma_iter_config(&vmi, addr, end);
2880  	vma_set_range(vma, addr, end, pgoff);
2881  	vm_flags_init(vma, vm_flags);
2882  	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2883  
2884  	if (file) {
2885  		vma->vm_file = get_file(file);
2886  		error = call_mmap(file, vma);
2887  		if (error)
2888  			goto unmap_and_free_vma;
2889  
2890  		if (vma_is_shared_maywrite(vma)) {
2891  			error = mapping_map_writable(file->f_mapping);
2892  			if (error)
2893  				goto close_and_free_vma;
2894  
2895  			writable_file_mapping = true;
2896  		}
2897  
2898  		/*
2899  		 * Expansion is handled above, merging is handled below.
2900  		 * Drivers should not alter the address of the VMA.
2901  		 */
2902  		error = -EINVAL;
2903  		if (WARN_ON((addr != vma->vm_start)))
2904  			goto close_and_free_vma;
2905  
2906  		vma_iter_config(&vmi, addr, end);
2907  		/*
2908  		 * If vm_flags changed after call_mmap(), we should try merge
2909  		 * vma again as we may succeed this time.
2910  		 */
2911  		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2912  			merge = vma_merge_new_vma(&vmi, prev, vma,
2913  						  vma->vm_start, vma->vm_end,
2914  						  vma->vm_pgoff);
2915  			if (merge) {
2916  				/*
2917  				 * ->mmap() can change vma->vm_file and fput
2918  				 * the original file. So fput the vma->vm_file
2919  				 * here or we would add an extra fput for file
2920  				 * and cause general protection fault
2921  				 * ultimately.
2922  				 */
2923  				fput(vma->vm_file);
2924  				vm_area_free(vma);
2925  				vma = merge;
2926  				/* Update vm_flags to pick up the change. */
2927  				vm_flags = vma->vm_flags;
2928  				goto unmap_writable;
2929  			}
2930  		}
2931  
2932  		vm_flags = vma->vm_flags;
2933  	} else if (vm_flags & VM_SHARED) {
2934  		error = shmem_zero_setup(vma);
2935  		if (error)
2936  			goto free_vma;
2937  	} else {
2938  		vma_set_anonymous(vma);
2939  	}
2940  
2941  	if (map_deny_write_exec(vma, vma->vm_flags)) {
2942  		error = -EACCES;
2943  		goto close_and_free_vma;
2944  	}
2945  
2946  	/* Allow architectures to sanity-check the vm_flags */
2947  	error = -EINVAL;
2948  	if (!arch_validate_flags(vma->vm_flags))
2949  		goto close_and_free_vma;
2950  
2951  	error = -ENOMEM;
2952  	if (vma_iter_prealloc(&vmi, vma))
2953  		goto close_and_free_vma;
2954  
2955  	/* Lock the VMA since it is modified after insertion into VMA tree */
2956  	vma_start_write(vma);
2957  	vma_iter_store(&vmi, vma);
2958  	mm->map_count++;
2959  	vma_link_file(vma);
2960  
2961  	/*
2962  	 * vma_merge() calls khugepaged_enter_vma() either, the below
2963  	 * call covers the non-merge case.
2964  	 */
2965  	khugepaged_enter_vma(vma, vma->vm_flags);
2966  
2967  	/* Once vma denies write, undo our temporary denial count */
2968  unmap_writable:
2969  	if (writable_file_mapping)
2970  		mapping_unmap_writable(file->f_mapping);
2971  	file = vma->vm_file;
2972  	ksm_add_vma(vma);
2973  expanded:
2974  	perf_event_mmap(vma);
2975  
2976  	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2977  	if (vm_flags & VM_LOCKED) {
2978  		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2979  					is_vm_hugetlb_page(vma) ||
2980  					vma == get_gate_vma(current->mm))
2981  			vm_flags_clear(vma, VM_LOCKED_MASK);
2982  		else
2983  			mm->locked_vm += (len >> PAGE_SHIFT);
2984  	}
2985  
2986  	if (file)
2987  		uprobe_mmap(vma);
2988  
2989  	/*
2990  	 * New (or expanded) vma always get soft dirty status.
2991  	 * Otherwise user-space soft-dirty page tracker won't
2992  	 * be able to distinguish situation when vma area unmapped,
2993  	 * then new mapped in-place (which must be aimed as
2994  	 * a completely new data area).
2995  	 */
2996  	vm_flags_set(vma, VM_SOFTDIRTY);
2997  
2998  	vma_set_page_prot(vma);
2999  
3000  	validate_mm(mm);
3001  	return addr;
3002  
3003  close_and_free_vma:
3004  	if (file && vma->vm_ops && vma->vm_ops->close)
3005  		vma->vm_ops->close(vma);
3006  
3007  	if (file || vma->vm_file) {
3008  unmap_and_free_vma:
3009  		fput(vma->vm_file);
3010  		vma->vm_file = NULL;
3011  
3012  		vma_iter_set(&vmi, vma->vm_end);
3013  		/* Undo any partial mapping done by a device driver. */
3014  		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3015  			     vma->vm_end, vma->vm_end, true);
3016  	}
3017  	if (writable_file_mapping)
3018  		mapping_unmap_writable(file->f_mapping);
3019  free_vma:
3020  	vm_area_free(vma);
3021  unacct_error:
3022  	if (charged)
3023  		vm_unacct_memory(charged);
3024  	validate_mm(mm);
3025  	return error;
3026  }
3027  
3028  static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3029  {
3030  	int ret;
3031  	struct mm_struct *mm = current->mm;
3032  	LIST_HEAD(uf);
3033  	VMA_ITERATOR(vmi, mm, start);
3034  
3035  	if (mmap_write_lock_killable(mm))
3036  		return -EINTR;
3037  
3038  	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3039  	if (ret || !unlock)
3040  		mmap_write_unlock(mm);
3041  
3042  	userfaultfd_unmap_complete(mm, &uf);
3043  	return ret;
3044  }
3045  
3046  int vm_munmap(unsigned long start, size_t len)
3047  {
3048  	return __vm_munmap(start, len, false);
3049  }
3050  EXPORT_SYMBOL(vm_munmap);
3051  
3052  SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3053  {
3054  	addr = untagged_addr(addr);
3055  	return __vm_munmap(addr, len, true);
3056  }
3057  
3058  
3059  /*
3060   * Emulation of deprecated remap_file_pages() syscall.
3061   */
3062  SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3063  		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3064  {
3065  
3066  	struct mm_struct *mm = current->mm;
3067  	struct vm_area_struct *vma;
3068  	unsigned long populate = 0;
3069  	unsigned long ret = -EINVAL;
3070  	struct file *file;
3071  
3072  	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3073  		     current->comm, current->pid);
3074  
3075  	if (prot)
3076  		return ret;
3077  	start = start & PAGE_MASK;
3078  	size = size & PAGE_MASK;
3079  
3080  	if (start + size <= start)
3081  		return ret;
3082  
3083  	/* Does pgoff wrap? */
3084  	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3085  		return ret;
3086  
3087  	if (mmap_write_lock_killable(mm))
3088  		return -EINTR;
3089  
3090  	vma = vma_lookup(mm, start);
3091  
3092  	if (!vma || !(vma->vm_flags & VM_SHARED))
3093  		goto out;
3094  
3095  	if (start + size > vma->vm_end) {
3096  		VMA_ITERATOR(vmi, mm, vma->vm_end);
3097  		struct vm_area_struct *next, *prev = vma;
3098  
3099  		for_each_vma_range(vmi, next, start + size) {
3100  			/* hole between vmas ? */
3101  			if (next->vm_start != prev->vm_end)
3102  				goto out;
3103  
3104  			if (next->vm_file != vma->vm_file)
3105  				goto out;
3106  
3107  			if (next->vm_flags != vma->vm_flags)
3108  				goto out;
3109  
3110  			if (start + size <= next->vm_end)
3111  				break;
3112  
3113  			prev = next;
3114  		}
3115  
3116  		if (!next)
3117  			goto out;
3118  	}
3119  
3120  	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3121  	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3122  	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3123  
3124  	flags &= MAP_NONBLOCK;
3125  	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3126  	if (vma->vm_flags & VM_LOCKED)
3127  		flags |= MAP_LOCKED;
3128  
3129  	file = get_file(vma->vm_file);
3130  	ret = do_mmap(vma->vm_file, start, size,
3131  			prot, flags, 0, pgoff, &populate, NULL);
3132  	fput(file);
3133  out:
3134  	mmap_write_unlock(mm);
3135  	if (populate)
3136  		mm_populate(ret, populate);
3137  	if (!IS_ERR_VALUE(ret))
3138  		ret = 0;
3139  	return ret;
3140  }
3141  
3142  /*
3143   * do_vma_munmap() - Unmap a full or partial vma.
3144   * @vmi: The vma iterator pointing at the vma
3145   * @vma: The first vma to be munmapped
3146   * @start: the start of the address to unmap
3147   * @end: The end of the address to unmap
3148   * @uf: The userfaultfd list_head
3149   * @unlock: Drop the lock on success
3150   *
3151   * unmaps a VMA mapping when the vma iterator is already in position.
3152   * Does not handle alignment.
3153   *
3154   * Return: 0 on success drops the lock of so directed, error on failure and will
3155   * still hold the lock.
3156   */
3157  int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3158  		unsigned long start, unsigned long end, struct list_head *uf,
3159  		bool unlock)
3160  {
3161  	struct mm_struct *mm = vma->vm_mm;
3162  
3163  	/*
3164  	 * Check if memory is sealed before arch_unmap.
3165  	 * Prevent unmapping a sealed VMA.
3166  	 * can_modify_mm assumes we have acquired the lock on MM.
3167  	 */
3168  	if (unlikely(!can_modify_mm(mm, start, end)))
3169  		return -EPERM;
3170  
3171  	arch_unmap(mm, start, end);
3172  	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3173  }
3174  
3175  /*
3176   * do_brk_flags() - Increase the brk vma if the flags match.
3177   * @vmi: The vma iterator
3178   * @addr: The start address
3179   * @len: The length of the increase
3180   * @vma: The vma,
3181   * @flags: The VMA Flags
3182   *
3183   * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3184   * do not match then create a new anonymous VMA.  Eventually we may be able to
3185   * do some brk-specific accounting here.
3186   */
3187  static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3188  		unsigned long addr, unsigned long len, unsigned long flags)
3189  {
3190  	struct mm_struct *mm = current->mm;
3191  	struct vma_prepare vp;
3192  
3193  	/*
3194  	 * Check against address space limits by the changed size
3195  	 * Note: This happens *after* clearing old mappings in some code paths.
3196  	 */
3197  	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3198  	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3199  		return -ENOMEM;
3200  
3201  	if (mm->map_count > sysctl_max_map_count)
3202  		return -ENOMEM;
3203  
3204  	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3205  		return -ENOMEM;
3206  
3207  	/*
3208  	 * Expand the existing vma if possible; Note that singular lists do not
3209  	 * occur after forking, so the expand will only happen on new VMAs.
3210  	 */
3211  	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3212  	    can_vma_merge_after(vma, flags, NULL, NULL,
3213  				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3214  		vma_iter_config(vmi, vma->vm_start, addr + len);
3215  		if (vma_iter_prealloc(vmi, vma))
3216  			goto unacct_fail;
3217  
3218  		vma_start_write(vma);
3219  
3220  		init_vma_prep(&vp, vma);
3221  		vma_prepare(&vp);
3222  		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3223  		vma->vm_end = addr + len;
3224  		vm_flags_set(vma, VM_SOFTDIRTY);
3225  		vma_iter_store(vmi, vma);
3226  
3227  		vma_complete(&vp, vmi, mm);
3228  		khugepaged_enter_vma(vma, flags);
3229  		goto out;
3230  	}
3231  
3232  	if (vma)
3233  		vma_iter_next_range(vmi);
3234  	/* create a vma struct for an anonymous mapping */
3235  	vma = vm_area_alloc(mm);
3236  	if (!vma)
3237  		goto unacct_fail;
3238  
3239  	vma_set_anonymous(vma);
3240  	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3241  	vm_flags_init(vma, flags);
3242  	vma->vm_page_prot = vm_get_page_prot(flags);
3243  	vma_start_write(vma);
3244  	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3245  		goto mas_store_fail;
3246  
3247  	mm->map_count++;
3248  	validate_mm(mm);
3249  	ksm_add_vma(vma);
3250  out:
3251  	perf_event_mmap(vma);
3252  	mm->total_vm += len >> PAGE_SHIFT;
3253  	mm->data_vm += len >> PAGE_SHIFT;
3254  	if (flags & VM_LOCKED)
3255  		mm->locked_vm += (len >> PAGE_SHIFT);
3256  	vm_flags_set(vma, VM_SOFTDIRTY);
3257  	return 0;
3258  
3259  mas_store_fail:
3260  	vm_area_free(vma);
3261  unacct_fail:
3262  	vm_unacct_memory(len >> PAGE_SHIFT);
3263  	return -ENOMEM;
3264  }
3265  
3266  int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3267  {
3268  	struct mm_struct *mm = current->mm;
3269  	struct vm_area_struct *vma = NULL;
3270  	unsigned long len;
3271  	int ret;
3272  	bool populate;
3273  	LIST_HEAD(uf);
3274  	VMA_ITERATOR(vmi, mm, addr);
3275  
3276  	len = PAGE_ALIGN(request);
3277  	if (len < request)
3278  		return -ENOMEM;
3279  	if (!len)
3280  		return 0;
3281  
3282  	/* Until we need other flags, refuse anything except VM_EXEC. */
3283  	if ((flags & (~VM_EXEC)) != 0)
3284  		return -EINVAL;
3285  
3286  	if (mmap_write_lock_killable(mm))
3287  		return -EINTR;
3288  
3289  	ret = check_brk_limits(addr, len);
3290  	if (ret)
3291  		goto limits_failed;
3292  
3293  	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3294  	if (ret)
3295  		goto munmap_failed;
3296  
3297  	vma = vma_prev(&vmi);
3298  	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3299  	populate = ((mm->def_flags & VM_LOCKED) != 0);
3300  	mmap_write_unlock(mm);
3301  	userfaultfd_unmap_complete(mm, &uf);
3302  	if (populate && !ret)
3303  		mm_populate(addr, len);
3304  	return ret;
3305  
3306  munmap_failed:
3307  limits_failed:
3308  	mmap_write_unlock(mm);
3309  	return ret;
3310  }
3311  EXPORT_SYMBOL(vm_brk_flags);
3312  
3313  /* Release all mmaps. */
3314  void exit_mmap(struct mm_struct *mm)
3315  {
3316  	struct mmu_gather tlb;
3317  	struct vm_area_struct *vma;
3318  	unsigned long nr_accounted = 0;
3319  	VMA_ITERATOR(vmi, mm, 0);
3320  	int count = 0;
3321  
3322  	/* mm's last user has gone, and its about to be pulled down */
3323  	mmu_notifier_release(mm);
3324  
3325  	mmap_read_lock(mm);
3326  	arch_exit_mmap(mm);
3327  
3328  	vma = vma_next(&vmi);
3329  	if (!vma || unlikely(xa_is_zero(vma))) {
3330  		/* Can happen if dup_mmap() received an OOM */
3331  		mmap_read_unlock(mm);
3332  		mmap_write_lock(mm);
3333  		goto destroy;
3334  	}
3335  
3336  	lru_add_drain();
3337  	flush_cache_mm(mm);
3338  	tlb_gather_mmu_fullmm(&tlb, mm);
3339  	/* update_hiwater_rss(mm) here? but nobody should be looking */
3340  	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3341  	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3342  	mmap_read_unlock(mm);
3343  
3344  	/*
3345  	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3346  	 * because the memory has been already freed.
3347  	 */
3348  	set_bit(MMF_OOM_SKIP, &mm->flags);
3349  	mmap_write_lock(mm);
3350  	mt_clear_in_rcu(&mm->mm_mt);
3351  	vma_iter_set(&vmi, vma->vm_end);
3352  	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3353  		      USER_PGTABLES_CEILING, true);
3354  	tlb_finish_mmu(&tlb);
3355  
3356  	/*
3357  	 * Walk the list again, actually closing and freeing it, with preemption
3358  	 * enabled, without holding any MM locks besides the unreachable
3359  	 * mmap_write_lock.
3360  	 */
3361  	vma_iter_set(&vmi, vma->vm_end);
3362  	do {
3363  		if (vma->vm_flags & VM_ACCOUNT)
3364  			nr_accounted += vma_pages(vma);
3365  		remove_vma(vma, true);
3366  		count++;
3367  		cond_resched();
3368  		vma = vma_next(&vmi);
3369  	} while (vma && likely(!xa_is_zero(vma)));
3370  
3371  	BUG_ON(count != mm->map_count);
3372  
3373  	trace_exit_mmap(mm);
3374  destroy:
3375  	__mt_destroy(&mm->mm_mt);
3376  	mmap_write_unlock(mm);
3377  	vm_unacct_memory(nr_accounted);
3378  }
3379  
3380  /* Insert vm structure into process list sorted by address
3381   * and into the inode's i_mmap tree.  If vm_file is non-NULL
3382   * then i_mmap_rwsem is taken here.
3383   */
3384  int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3385  {
3386  	unsigned long charged = vma_pages(vma);
3387  
3388  
3389  	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3390  		return -ENOMEM;
3391  
3392  	if ((vma->vm_flags & VM_ACCOUNT) &&
3393  	     security_vm_enough_memory_mm(mm, charged))
3394  		return -ENOMEM;
3395  
3396  	/*
3397  	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3398  	 * until its first write fault, when page's anon_vma and index
3399  	 * are set.  But now set the vm_pgoff it will almost certainly
3400  	 * end up with (unless mremap moves it elsewhere before that
3401  	 * first wfault), so /proc/pid/maps tells a consistent story.
3402  	 *
3403  	 * By setting it to reflect the virtual start address of the
3404  	 * vma, merges and splits can happen in a seamless way, just
3405  	 * using the existing file pgoff checks and manipulations.
3406  	 * Similarly in do_mmap and in do_brk_flags.
3407  	 */
3408  	if (vma_is_anonymous(vma)) {
3409  		BUG_ON(vma->anon_vma);
3410  		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3411  	}
3412  
3413  	if (vma_link(mm, vma)) {
3414  		if (vma->vm_flags & VM_ACCOUNT)
3415  			vm_unacct_memory(charged);
3416  		return -ENOMEM;
3417  	}
3418  
3419  	return 0;
3420  }
3421  
3422  /*
3423   * Copy the vma structure to a new location in the same mm,
3424   * prior to moving page table entries, to effect an mremap move.
3425   */
3426  struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3427  	unsigned long addr, unsigned long len, pgoff_t pgoff,
3428  	bool *need_rmap_locks)
3429  {
3430  	struct vm_area_struct *vma = *vmap;
3431  	unsigned long vma_start = vma->vm_start;
3432  	struct mm_struct *mm = vma->vm_mm;
3433  	struct vm_area_struct *new_vma, *prev;
3434  	bool faulted_in_anon_vma = true;
3435  	VMA_ITERATOR(vmi, mm, addr);
3436  
3437  	/*
3438  	 * If anonymous vma has not yet been faulted, update new pgoff
3439  	 * to match new location, to increase its chance of merging.
3440  	 */
3441  	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3442  		pgoff = addr >> PAGE_SHIFT;
3443  		faulted_in_anon_vma = false;
3444  	}
3445  
3446  	new_vma = find_vma_prev(mm, addr, &prev);
3447  	if (new_vma && new_vma->vm_start < addr + len)
3448  		return NULL;	/* should never get here */
3449  
3450  	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3451  	if (new_vma) {
3452  		/*
3453  		 * Source vma may have been merged into new_vma
3454  		 */
3455  		if (unlikely(vma_start >= new_vma->vm_start &&
3456  			     vma_start < new_vma->vm_end)) {
3457  			/*
3458  			 * The only way we can get a vma_merge with
3459  			 * self during an mremap is if the vma hasn't
3460  			 * been faulted in yet and we were allowed to
3461  			 * reset the dst vma->vm_pgoff to the
3462  			 * destination address of the mremap to allow
3463  			 * the merge to happen. mremap must change the
3464  			 * vm_pgoff linearity between src and dst vmas
3465  			 * (in turn preventing a vma_merge) to be
3466  			 * safe. It is only safe to keep the vm_pgoff
3467  			 * linear if there are no pages mapped yet.
3468  			 */
3469  			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3470  			*vmap = vma = new_vma;
3471  		}
3472  		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3473  	} else {
3474  		new_vma = vm_area_dup(vma);
3475  		if (!new_vma)
3476  			goto out;
3477  		vma_set_range(new_vma, addr, addr + len, pgoff);
3478  		if (vma_dup_policy(vma, new_vma))
3479  			goto out_free_vma;
3480  		if (anon_vma_clone(new_vma, vma))
3481  			goto out_free_mempol;
3482  		if (new_vma->vm_file)
3483  			get_file(new_vma->vm_file);
3484  		if (new_vma->vm_ops && new_vma->vm_ops->open)
3485  			new_vma->vm_ops->open(new_vma);
3486  		if (vma_link(mm, new_vma))
3487  			goto out_vma_link;
3488  		*need_rmap_locks = false;
3489  	}
3490  	return new_vma;
3491  
3492  out_vma_link:
3493  	if (new_vma->vm_ops && new_vma->vm_ops->close)
3494  		new_vma->vm_ops->close(new_vma);
3495  
3496  	if (new_vma->vm_file)
3497  		fput(new_vma->vm_file);
3498  
3499  	unlink_anon_vmas(new_vma);
3500  out_free_mempol:
3501  	mpol_put(vma_policy(new_vma));
3502  out_free_vma:
3503  	vm_area_free(new_vma);
3504  out:
3505  	return NULL;
3506  }
3507  
3508  /*
3509   * Return true if the calling process may expand its vm space by the passed
3510   * number of pages
3511   */
3512  bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3513  {
3514  	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3515  		return false;
3516  
3517  	if (is_data_mapping(flags) &&
3518  	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3519  		/* Workaround for Valgrind */
3520  		if (rlimit(RLIMIT_DATA) == 0 &&
3521  		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3522  			return true;
3523  
3524  		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3525  			     current->comm, current->pid,
3526  			     (mm->data_vm + npages) << PAGE_SHIFT,
3527  			     rlimit(RLIMIT_DATA),
3528  			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3529  
3530  		if (!ignore_rlimit_data)
3531  			return false;
3532  	}
3533  
3534  	return true;
3535  }
3536  
3537  void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3538  {
3539  	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3540  
3541  	if (is_exec_mapping(flags))
3542  		mm->exec_vm += npages;
3543  	else if (is_stack_mapping(flags))
3544  		mm->stack_vm += npages;
3545  	else if (is_data_mapping(flags))
3546  		mm->data_vm += npages;
3547  }
3548  
3549  static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3550  
3551  /*
3552   * Having a close hook prevents vma merging regardless of flags.
3553   */
3554  static void special_mapping_close(struct vm_area_struct *vma)
3555  {
3556  }
3557  
3558  static const char *special_mapping_name(struct vm_area_struct *vma)
3559  {
3560  	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3561  }
3562  
3563  static int special_mapping_mremap(struct vm_area_struct *new_vma)
3564  {
3565  	struct vm_special_mapping *sm = new_vma->vm_private_data;
3566  
3567  	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3568  		return -EFAULT;
3569  
3570  	if (sm->mremap)
3571  		return sm->mremap(sm, new_vma);
3572  
3573  	return 0;
3574  }
3575  
3576  static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3577  {
3578  	/*
3579  	 * Forbid splitting special mappings - kernel has expectations over
3580  	 * the number of pages in mapping. Together with VM_DONTEXPAND
3581  	 * the size of vma should stay the same over the special mapping's
3582  	 * lifetime.
3583  	 */
3584  	return -EINVAL;
3585  }
3586  
3587  static const struct vm_operations_struct special_mapping_vmops = {
3588  	.close = special_mapping_close,
3589  	.fault = special_mapping_fault,
3590  	.mremap = special_mapping_mremap,
3591  	.name = special_mapping_name,
3592  	/* vDSO code relies that VVAR can't be accessed remotely */
3593  	.access = NULL,
3594  	.may_split = special_mapping_split,
3595  };
3596  
3597  static const struct vm_operations_struct legacy_special_mapping_vmops = {
3598  	.close = special_mapping_close,
3599  	.fault = special_mapping_fault,
3600  };
3601  
3602  static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3603  {
3604  	struct vm_area_struct *vma = vmf->vma;
3605  	pgoff_t pgoff;
3606  	struct page **pages;
3607  
3608  	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3609  		pages = vma->vm_private_data;
3610  	} else {
3611  		struct vm_special_mapping *sm = vma->vm_private_data;
3612  
3613  		if (sm->fault)
3614  			return sm->fault(sm, vmf->vma, vmf);
3615  
3616  		pages = sm->pages;
3617  	}
3618  
3619  	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3620  		pgoff--;
3621  
3622  	if (*pages) {
3623  		struct page *page = *pages;
3624  		get_page(page);
3625  		vmf->page = page;
3626  		return 0;
3627  	}
3628  
3629  	return VM_FAULT_SIGBUS;
3630  }
3631  
3632  static struct vm_area_struct *__install_special_mapping(
3633  	struct mm_struct *mm,
3634  	unsigned long addr, unsigned long len,
3635  	unsigned long vm_flags, void *priv,
3636  	const struct vm_operations_struct *ops)
3637  {
3638  	int ret;
3639  	struct vm_area_struct *vma;
3640  
3641  	vma = vm_area_alloc(mm);
3642  	if (unlikely(vma == NULL))
3643  		return ERR_PTR(-ENOMEM);
3644  
3645  	vma_set_range(vma, addr, addr + len, 0);
3646  	vm_flags_init(vma, (vm_flags | mm->def_flags |
3647  		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3648  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3649  
3650  	vma->vm_ops = ops;
3651  	vma->vm_private_data = priv;
3652  
3653  	ret = insert_vm_struct(mm, vma);
3654  	if (ret)
3655  		goto out;
3656  
3657  	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3658  
3659  	perf_event_mmap(vma);
3660  
3661  	return vma;
3662  
3663  out:
3664  	vm_area_free(vma);
3665  	return ERR_PTR(ret);
3666  }
3667  
3668  bool vma_is_special_mapping(const struct vm_area_struct *vma,
3669  	const struct vm_special_mapping *sm)
3670  {
3671  	return vma->vm_private_data == sm &&
3672  		(vma->vm_ops == &special_mapping_vmops ||
3673  		 vma->vm_ops == &legacy_special_mapping_vmops);
3674  }
3675  
3676  /*
3677   * Called with mm->mmap_lock held for writing.
3678   * Insert a new vma covering the given region, with the given flags.
3679   * Its pages are supplied by the given array of struct page *.
3680   * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3681   * The region past the last page supplied will always produce SIGBUS.
3682   * The array pointer and the pages it points to are assumed to stay alive
3683   * for as long as this mapping might exist.
3684   */
3685  struct vm_area_struct *_install_special_mapping(
3686  	struct mm_struct *mm,
3687  	unsigned long addr, unsigned long len,
3688  	unsigned long vm_flags, const struct vm_special_mapping *spec)
3689  {
3690  	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3691  					&special_mapping_vmops);
3692  }
3693  
3694  int install_special_mapping(struct mm_struct *mm,
3695  			    unsigned long addr, unsigned long len,
3696  			    unsigned long vm_flags, struct page **pages)
3697  {
3698  	struct vm_area_struct *vma = __install_special_mapping(
3699  		mm, addr, len, vm_flags, (void *)pages,
3700  		&legacy_special_mapping_vmops);
3701  
3702  	return PTR_ERR_OR_ZERO(vma);
3703  }
3704  
3705  static DEFINE_MUTEX(mm_all_locks_mutex);
3706  
3707  static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3708  {
3709  	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3710  		/*
3711  		 * The LSB of head.next can't change from under us
3712  		 * because we hold the mm_all_locks_mutex.
3713  		 */
3714  		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3715  		/*
3716  		 * We can safely modify head.next after taking the
3717  		 * anon_vma->root->rwsem. If some other vma in this mm shares
3718  		 * the same anon_vma we won't take it again.
3719  		 *
3720  		 * No need of atomic instructions here, head.next
3721  		 * can't change from under us thanks to the
3722  		 * anon_vma->root->rwsem.
3723  		 */
3724  		if (__test_and_set_bit(0, (unsigned long *)
3725  				       &anon_vma->root->rb_root.rb_root.rb_node))
3726  			BUG();
3727  	}
3728  }
3729  
3730  static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3731  {
3732  	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3733  		/*
3734  		 * AS_MM_ALL_LOCKS can't change from under us because
3735  		 * we hold the mm_all_locks_mutex.
3736  		 *
3737  		 * Operations on ->flags have to be atomic because
3738  		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3739  		 * mm_all_locks_mutex, there may be other cpus
3740  		 * changing other bitflags in parallel to us.
3741  		 */
3742  		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3743  			BUG();
3744  		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3745  	}
3746  }
3747  
3748  /*
3749   * This operation locks against the VM for all pte/vma/mm related
3750   * operations that could ever happen on a certain mm. This includes
3751   * vmtruncate, try_to_unmap, and all page faults.
3752   *
3753   * The caller must take the mmap_lock in write mode before calling
3754   * mm_take_all_locks(). The caller isn't allowed to release the
3755   * mmap_lock until mm_drop_all_locks() returns.
3756   *
3757   * mmap_lock in write mode is required in order to block all operations
3758   * that could modify pagetables and free pages without need of
3759   * altering the vma layout. It's also needed in write mode to avoid new
3760   * anon_vmas to be associated with existing vmas.
3761   *
3762   * A single task can't take more than one mm_take_all_locks() in a row
3763   * or it would deadlock.
3764   *
3765   * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3766   * mapping->flags avoid to take the same lock twice, if more than one
3767   * vma in this mm is backed by the same anon_vma or address_space.
3768   *
3769   * We take locks in following order, accordingly to comment at beginning
3770   * of mm/rmap.c:
3771   *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3772   *     hugetlb mapping);
3773   *   - all vmas marked locked
3774   *   - all i_mmap_rwsem locks;
3775   *   - all anon_vma->rwseml
3776   *
3777   * We can take all locks within these types randomly because the VM code
3778   * doesn't nest them and we protected from parallel mm_take_all_locks() by
3779   * mm_all_locks_mutex.
3780   *
3781   * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3782   * that may have to take thousand of locks.
3783   *
3784   * mm_take_all_locks() can fail if it's interrupted by signals.
3785   */
3786  int mm_take_all_locks(struct mm_struct *mm)
3787  {
3788  	struct vm_area_struct *vma;
3789  	struct anon_vma_chain *avc;
3790  	VMA_ITERATOR(vmi, mm, 0);
3791  
3792  	mmap_assert_write_locked(mm);
3793  
3794  	mutex_lock(&mm_all_locks_mutex);
3795  
3796  	/*
3797  	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3798  	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3799  	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3800  	 * is reached.
3801  	 */
3802  	for_each_vma(vmi, vma) {
3803  		if (signal_pending(current))
3804  			goto out_unlock;
3805  		vma_start_write(vma);
3806  	}
3807  
3808  	vma_iter_init(&vmi, mm, 0);
3809  	for_each_vma(vmi, vma) {
3810  		if (signal_pending(current))
3811  			goto out_unlock;
3812  		if (vma->vm_file && vma->vm_file->f_mapping &&
3813  				is_vm_hugetlb_page(vma))
3814  			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3815  	}
3816  
3817  	vma_iter_init(&vmi, mm, 0);
3818  	for_each_vma(vmi, vma) {
3819  		if (signal_pending(current))
3820  			goto out_unlock;
3821  		if (vma->vm_file && vma->vm_file->f_mapping &&
3822  				!is_vm_hugetlb_page(vma))
3823  			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3824  	}
3825  
3826  	vma_iter_init(&vmi, mm, 0);
3827  	for_each_vma(vmi, vma) {
3828  		if (signal_pending(current))
3829  			goto out_unlock;
3830  		if (vma->anon_vma)
3831  			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3832  				vm_lock_anon_vma(mm, avc->anon_vma);
3833  	}
3834  
3835  	return 0;
3836  
3837  out_unlock:
3838  	mm_drop_all_locks(mm);
3839  	return -EINTR;
3840  }
3841  
3842  static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3843  {
3844  	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3845  		/*
3846  		 * The LSB of head.next can't change to 0 from under
3847  		 * us because we hold the mm_all_locks_mutex.
3848  		 *
3849  		 * We must however clear the bitflag before unlocking
3850  		 * the vma so the users using the anon_vma->rb_root will
3851  		 * never see our bitflag.
3852  		 *
3853  		 * No need of atomic instructions here, head.next
3854  		 * can't change from under us until we release the
3855  		 * anon_vma->root->rwsem.
3856  		 */
3857  		if (!__test_and_clear_bit(0, (unsigned long *)
3858  					  &anon_vma->root->rb_root.rb_root.rb_node))
3859  			BUG();
3860  		anon_vma_unlock_write(anon_vma);
3861  	}
3862  }
3863  
3864  static void vm_unlock_mapping(struct address_space *mapping)
3865  {
3866  	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3867  		/*
3868  		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3869  		 * because we hold the mm_all_locks_mutex.
3870  		 */
3871  		i_mmap_unlock_write(mapping);
3872  		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3873  					&mapping->flags))
3874  			BUG();
3875  	}
3876  }
3877  
3878  /*
3879   * The mmap_lock cannot be released by the caller until
3880   * mm_drop_all_locks() returns.
3881   */
3882  void mm_drop_all_locks(struct mm_struct *mm)
3883  {
3884  	struct vm_area_struct *vma;
3885  	struct anon_vma_chain *avc;
3886  	VMA_ITERATOR(vmi, mm, 0);
3887  
3888  	mmap_assert_write_locked(mm);
3889  	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3890  
3891  	for_each_vma(vmi, vma) {
3892  		if (vma->anon_vma)
3893  			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3894  				vm_unlock_anon_vma(avc->anon_vma);
3895  		if (vma->vm_file && vma->vm_file->f_mapping)
3896  			vm_unlock_mapping(vma->vm_file->f_mapping);
3897  	}
3898  
3899  	mutex_unlock(&mm_all_locks_mutex);
3900  }
3901  
3902  /*
3903   * initialise the percpu counter for VM
3904   */
3905  void __init mmap_init(void)
3906  {
3907  	int ret;
3908  
3909  	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3910  	VM_BUG_ON(ret);
3911  }
3912  
3913  /*
3914   * Initialise sysctl_user_reserve_kbytes.
3915   *
3916   * This is intended to prevent a user from starting a single memory hogging
3917   * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3918   * mode.
3919   *
3920   * The default value is min(3% of free memory, 128MB)
3921   * 128MB is enough to recover with sshd/login, bash, and top/kill.
3922   */
3923  static int init_user_reserve(void)
3924  {
3925  	unsigned long free_kbytes;
3926  
3927  	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3928  
3929  	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3930  	return 0;
3931  }
3932  subsys_initcall(init_user_reserve);
3933  
3934  /*
3935   * Initialise sysctl_admin_reserve_kbytes.
3936   *
3937   * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3938   * to log in and kill a memory hogging process.
3939   *
3940   * Systems with more than 256MB will reserve 8MB, enough to recover
3941   * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3942   * only reserve 3% of free pages by default.
3943   */
3944  static int init_admin_reserve(void)
3945  {
3946  	unsigned long free_kbytes;
3947  
3948  	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3949  
3950  	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3951  	return 0;
3952  }
3953  subsys_initcall(init_admin_reserve);
3954  
3955  /*
3956   * Reinititalise user and admin reserves if memory is added or removed.
3957   *
3958   * The default user reserve max is 128MB, and the default max for the
3959   * admin reserve is 8MB. These are usually, but not always, enough to
3960   * enable recovery from a memory hogging process using login/sshd, a shell,
3961   * and tools like top. It may make sense to increase or even disable the
3962   * reserve depending on the existence of swap or variations in the recovery
3963   * tools. So, the admin may have changed them.
3964   *
3965   * If memory is added and the reserves have been eliminated or increased above
3966   * the default max, then we'll trust the admin.
3967   *
3968   * If memory is removed and there isn't enough free memory, then we
3969   * need to reset the reserves.
3970   *
3971   * Otherwise keep the reserve set by the admin.
3972   */
3973  static int reserve_mem_notifier(struct notifier_block *nb,
3974  			     unsigned long action, void *data)
3975  {
3976  	unsigned long tmp, free_kbytes;
3977  
3978  	switch (action) {
3979  	case MEM_ONLINE:
3980  		/* Default max is 128MB. Leave alone if modified by operator. */
3981  		tmp = sysctl_user_reserve_kbytes;
3982  		if (tmp > 0 && tmp < SZ_128K)
3983  			init_user_reserve();
3984  
3985  		/* Default max is 8MB.  Leave alone if modified by operator. */
3986  		tmp = sysctl_admin_reserve_kbytes;
3987  		if (tmp > 0 && tmp < SZ_8K)
3988  			init_admin_reserve();
3989  
3990  		break;
3991  	case MEM_OFFLINE:
3992  		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3993  
3994  		if (sysctl_user_reserve_kbytes > free_kbytes) {
3995  			init_user_reserve();
3996  			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3997  				sysctl_user_reserve_kbytes);
3998  		}
3999  
4000  		if (sysctl_admin_reserve_kbytes > free_kbytes) {
4001  			init_admin_reserve();
4002  			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4003  				sysctl_admin_reserve_kbytes);
4004  		}
4005  		break;
4006  	default:
4007  		break;
4008  	}
4009  	return NOTIFY_OK;
4010  }
4011  
4012  static int __meminit init_reserve_notifier(void)
4013  {
4014  	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4015  		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4016  
4017  	return 0;
4018  }
4019  subsys_initcall(init_reserve_notifier);
4020