xref: /linux/mm/mmap.c (revision 3cc0c3738cde66a1eadf977fa7b2fdecbbcf5d4f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57 
58 #include "internal.h"
59 
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags)	(0)
62 #endif
63 
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74 
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77 
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 		struct vm_area_struct *vma, struct vm_area_struct *prev,
80 		struct vm_area_struct *next, unsigned long start,
81 		unsigned long end, bool mm_wr_locked);
82 
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87 
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91 	unsigned long vm_flags = vma->vm_flags;
92 	pgprot_t vm_page_prot;
93 
94 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 	if (vma_wants_writenotify(vma, vm_page_prot)) {
96 		vm_flags &= ~VM_SHARED;
97 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98 	}
99 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102 
103 /*
104  * Requires inode->i_mapping->i_mmap_rwsem
105  */
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 		struct file *file, struct address_space *mapping)
108 {
109 	if (vma->vm_flags & VM_SHARED)
110 		mapping_unmap_writable(mapping);
111 
112 	flush_dcache_mmap_lock(mapping);
113 	vma_interval_tree_remove(vma, &mapping->i_mmap);
114 	flush_dcache_mmap_unlock(mapping);
115 }
116 
117 /*
118  * Unlink a file-based vm structure from its interval tree, to hide
119  * vma from rmap and vmtruncate before freeing its page tables.
120  */
121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123 	struct file *file = vma->vm_file;
124 
125 	if (file) {
126 		struct address_space *mapping = file->f_mapping;
127 		i_mmap_lock_write(mapping);
128 		__remove_shared_vm_struct(vma, file, mapping);
129 		i_mmap_unlock_write(mapping);
130 	}
131 }
132 
133 /*
134  * Close a vm structure and free it.
135  */
136 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
137 {
138 	might_sleep();
139 	if (vma->vm_ops && vma->vm_ops->close)
140 		vma->vm_ops->close(vma);
141 	if (vma->vm_file)
142 		fput(vma->vm_file);
143 	mpol_put(vma_policy(vma));
144 	if (unreachable)
145 		__vm_area_free(vma);
146 	else
147 		vm_area_free(vma);
148 }
149 
150 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
151 						    unsigned long min)
152 {
153 	return mas_prev(&vmi->mas, min);
154 }
155 
156 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
157 			unsigned long start, unsigned long end, gfp_t gfp)
158 {
159 	vmi->mas.index = start;
160 	vmi->mas.last = end - 1;
161 	mas_store_gfp(&vmi->mas, NULL, gfp);
162 	if (unlikely(mas_is_err(&vmi->mas)))
163 		return -ENOMEM;
164 
165 	return 0;
166 }
167 
168 /*
169  * check_brk_limits() - Use platform specific check of range & verify mlock
170  * limits.
171  * @addr: The address to check
172  * @len: The size of increase.
173  *
174  * Return: 0 on success.
175  */
176 static int check_brk_limits(unsigned long addr, unsigned long len)
177 {
178 	unsigned long mapped_addr;
179 
180 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
181 	if (IS_ERR_VALUE(mapped_addr))
182 		return mapped_addr;
183 
184 	return mlock_future_check(current->mm, current->mm->def_flags, len);
185 }
186 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
187 		unsigned long addr, unsigned long request, unsigned long flags);
188 SYSCALL_DEFINE1(brk, unsigned long, brk)
189 {
190 	unsigned long newbrk, oldbrk, origbrk;
191 	struct mm_struct *mm = current->mm;
192 	struct vm_area_struct *brkvma, *next = NULL;
193 	unsigned long min_brk;
194 	bool populate;
195 	bool downgraded = false;
196 	LIST_HEAD(uf);
197 	struct vma_iterator vmi;
198 
199 	if (mmap_write_lock_killable(mm))
200 		return -EINTR;
201 
202 	origbrk = mm->brk;
203 
204 #ifdef CONFIG_COMPAT_BRK
205 	/*
206 	 * CONFIG_COMPAT_BRK can still be overridden by setting
207 	 * randomize_va_space to 2, which will still cause mm->start_brk
208 	 * to be arbitrarily shifted
209 	 */
210 	if (current->brk_randomized)
211 		min_brk = mm->start_brk;
212 	else
213 		min_brk = mm->end_data;
214 #else
215 	min_brk = mm->start_brk;
216 #endif
217 	if (brk < min_brk)
218 		goto out;
219 
220 	/*
221 	 * Check against rlimit here. If this check is done later after the test
222 	 * of oldbrk with newbrk then it can escape the test and let the data
223 	 * segment grow beyond its set limit the in case where the limit is
224 	 * not page aligned -Ram Gupta
225 	 */
226 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 			      mm->end_data, mm->start_data))
228 		goto out;
229 
230 	newbrk = PAGE_ALIGN(brk);
231 	oldbrk = PAGE_ALIGN(mm->brk);
232 	if (oldbrk == newbrk) {
233 		mm->brk = brk;
234 		goto success;
235 	}
236 
237 	/*
238 	 * Always allow shrinking brk.
239 	 * do_vma_munmap() may downgrade mmap_lock to read.
240 	 */
241 	if (brk <= mm->brk) {
242 		int ret;
243 
244 		/* Search one past newbrk */
245 		vma_iter_init(&vmi, mm, newbrk);
246 		brkvma = vma_find(&vmi, oldbrk);
247 		if (!brkvma || brkvma->vm_start >= oldbrk)
248 			goto out; /* mapping intersects with an existing non-brk vma. */
249 		/*
250 		 * mm->brk must be protected by write mmap_lock.
251 		 * do_vma_munmap() may downgrade the lock,  so update it
252 		 * before calling do_vma_munmap().
253 		 */
254 		mm->brk = brk;
255 		ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
256 		if (ret == 1)  {
257 			downgraded = true;
258 			goto success;
259 		} else if (!ret)
260 			goto success;
261 
262 		mm->brk = origbrk;
263 		goto out;
264 	}
265 
266 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
267 		goto out;
268 
269 	/*
270 	 * Only check if the next VMA is within the stack_guard_gap of the
271 	 * expansion area
272 	 */
273 	vma_iter_init(&vmi, mm, oldbrk);
274 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
275 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
276 		goto out;
277 
278 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
279 	/* Ok, looks good - let it rip. */
280 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
281 		goto out;
282 
283 	mm->brk = brk;
284 
285 success:
286 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
287 	if (downgraded)
288 		mmap_read_unlock(mm);
289 	else
290 		mmap_write_unlock(mm);
291 	userfaultfd_unmap_complete(mm, &uf);
292 	if (populate)
293 		mm_populate(oldbrk, newbrk - oldbrk);
294 	return brk;
295 
296 out:
297 	mmap_write_unlock(mm);
298 	return origbrk;
299 }
300 
301 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
302 extern void mt_validate(struct maple_tree *mt);
303 extern void mt_dump(const struct maple_tree *mt);
304 
305 /* Validate the maple tree */
306 static void validate_mm_mt(struct mm_struct *mm)
307 {
308 	struct maple_tree *mt = &mm->mm_mt;
309 	struct vm_area_struct *vma_mt;
310 
311 	MA_STATE(mas, mt, 0, 0);
312 
313 	mt_validate(&mm->mm_mt);
314 	mas_for_each(&mas, vma_mt, ULONG_MAX) {
315 		if ((vma_mt->vm_start != mas.index) ||
316 		    (vma_mt->vm_end - 1 != mas.last)) {
317 			pr_emerg("issue in %s\n", current->comm);
318 			dump_stack();
319 			dump_vma(vma_mt);
320 			pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
321 				 mas.index, mas.last);
322 			pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
323 				 vma_mt->vm_start, vma_mt->vm_end);
324 
325 			mt_dump(mas.tree);
326 			if (vma_mt->vm_end != mas.last + 1) {
327 				pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
328 						mm, vma_mt->vm_start, vma_mt->vm_end,
329 						mas.index, mas.last);
330 				mt_dump(mas.tree);
331 			}
332 			VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
333 			if (vma_mt->vm_start != mas.index) {
334 				pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
335 						mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
336 				mt_dump(mas.tree);
337 			}
338 			VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
339 		}
340 	}
341 }
342 
343 static void validate_mm(struct mm_struct *mm)
344 {
345 	int bug = 0;
346 	int i = 0;
347 	struct vm_area_struct *vma;
348 	MA_STATE(mas, &mm->mm_mt, 0, 0);
349 
350 	validate_mm_mt(mm);
351 
352 	mas_for_each(&mas, vma, ULONG_MAX) {
353 #ifdef CONFIG_DEBUG_VM_RB
354 		struct anon_vma *anon_vma = vma->anon_vma;
355 		struct anon_vma_chain *avc;
356 
357 		if (anon_vma) {
358 			anon_vma_lock_read(anon_vma);
359 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
360 				anon_vma_interval_tree_verify(avc);
361 			anon_vma_unlock_read(anon_vma);
362 		}
363 #endif
364 		i++;
365 	}
366 	if (i != mm->map_count) {
367 		pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
368 		bug = 1;
369 	}
370 	VM_BUG_ON_MM(bug, mm);
371 }
372 
373 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
374 #define validate_mm_mt(root) do { } while (0)
375 #define validate_mm(mm) do { } while (0)
376 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
377 
378 /*
379  * vma has some anon_vma assigned, and is already inserted on that
380  * anon_vma's interval trees.
381  *
382  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
383  * vma must be removed from the anon_vma's interval trees using
384  * anon_vma_interval_tree_pre_update_vma().
385  *
386  * After the update, the vma will be reinserted using
387  * anon_vma_interval_tree_post_update_vma().
388  *
389  * The entire update must be protected by exclusive mmap_lock and by
390  * the root anon_vma's mutex.
391  */
392 static inline void
393 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
394 {
395 	struct anon_vma_chain *avc;
396 
397 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
398 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
399 }
400 
401 static inline void
402 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
403 {
404 	struct anon_vma_chain *avc;
405 
406 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
407 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
408 }
409 
410 static unsigned long count_vma_pages_range(struct mm_struct *mm,
411 		unsigned long addr, unsigned long end)
412 {
413 	VMA_ITERATOR(vmi, mm, addr);
414 	struct vm_area_struct *vma;
415 	unsigned long nr_pages = 0;
416 
417 	for_each_vma_range(vmi, vma, end) {
418 		unsigned long vm_start = max(addr, vma->vm_start);
419 		unsigned long vm_end = min(end, vma->vm_end);
420 
421 		nr_pages += PHYS_PFN(vm_end - vm_start);
422 	}
423 
424 	return nr_pages;
425 }
426 
427 static void __vma_link_file(struct vm_area_struct *vma,
428 			    struct address_space *mapping)
429 {
430 	if (vma->vm_flags & VM_SHARED)
431 		mapping_allow_writable(mapping);
432 
433 	flush_dcache_mmap_lock(mapping);
434 	vma_interval_tree_insert(vma, &mapping->i_mmap);
435 	flush_dcache_mmap_unlock(mapping);
436 }
437 
438 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
439 {
440 	VMA_ITERATOR(vmi, mm, 0);
441 	struct address_space *mapping = NULL;
442 
443 	if (vma_iter_prealloc(&vmi))
444 		return -ENOMEM;
445 
446 	if (vma->vm_file) {
447 		mapping = vma->vm_file->f_mapping;
448 		i_mmap_lock_write(mapping);
449 	}
450 
451 	vma_iter_store(&vmi, vma);
452 
453 	if (mapping) {
454 		__vma_link_file(vma, mapping);
455 		i_mmap_unlock_write(mapping);
456 	}
457 
458 	mm->map_count++;
459 	validate_mm(mm);
460 	return 0;
461 }
462 
463 /*
464  * init_multi_vma_prep() - Initializer for struct vma_prepare
465  * @vp: The vma_prepare struct
466  * @vma: The vma that will be altered once locked
467  * @next: The next vma if it is to be adjusted
468  * @remove: The first vma to be removed
469  * @remove2: The second vma to be removed
470  */
471 static inline void init_multi_vma_prep(struct vma_prepare *vp,
472 		struct vm_area_struct *vma, struct vm_area_struct *next,
473 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
474 {
475 	memset(vp, 0, sizeof(struct vma_prepare));
476 	vp->vma = vma;
477 	vp->anon_vma = vma->anon_vma;
478 	vp->remove = remove;
479 	vp->remove2 = remove2;
480 	vp->adj_next = next;
481 	if (!vp->anon_vma && next)
482 		vp->anon_vma = next->anon_vma;
483 
484 	vp->file = vma->vm_file;
485 	if (vp->file)
486 		vp->mapping = vma->vm_file->f_mapping;
487 
488 }
489 
490 /*
491  * init_vma_prep() - Initializer wrapper for vma_prepare struct
492  * @vp: The vma_prepare struct
493  * @vma: The vma that will be altered once locked
494  */
495 static inline void init_vma_prep(struct vma_prepare *vp,
496 				 struct vm_area_struct *vma)
497 {
498 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
499 }
500 
501 
502 /*
503  * vma_prepare() - Helper function for handling locking VMAs prior to altering
504  * @vp: The initialized vma_prepare struct
505  */
506 static inline void vma_prepare(struct vma_prepare *vp)
507 {
508 	vma_start_write(vp->vma);
509 	if (vp->adj_next)
510 		vma_start_write(vp->adj_next);
511 	/* vp->insert is always a newly created VMA, no need for locking */
512 	if (vp->remove)
513 		vma_start_write(vp->remove);
514 	if (vp->remove2)
515 		vma_start_write(vp->remove2);
516 
517 	if (vp->file) {
518 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
519 
520 		if (vp->adj_next)
521 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
522 				      vp->adj_next->vm_end);
523 
524 		i_mmap_lock_write(vp->mapping);
525 		if (vp->insert && vp->insert->vm_file) {
526 			/*
527 			 * Put into interval tree now, so instantiated pages
528 			 * are visible to arm/parisc __flush_dcache_page
529 			 * throughout; but we cannot insert into address
530 			 * space until vma start or end is updated.
531 			 */
532 			__vma_link_file(vp->insert,
533 					vp->insert->vm_file->f_mapping);
534 		}
535 	}
536 
537 	if (vp->anon_vma) {
538 		anon_vma_lock_write(vp->anon_vma);
539 		anon_vma_interval_tree_pre_update_vma(vp->vma);
540 		if (vp->adj_next)
541 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
542 	}
543 
544 	if (vp->file) {
545 		flush_dcache_mmap_lock(vp->mapping);
546 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
547 		if (vp->adj_next)
548 			vma_interval_tree_remove(vp->adj_next,
549 						 &vp->mapping->i_mmap);
550 	}
551 
552 }
553 
554 /*
555  * vma_complete- Helper function for handling the unlocking after altering VMAs,
556  * or for inserting a VMA.
557  *
558  * @vp: The vma_prepare struct
559  * @vmi: The vma iterator
560  * @mm: The mm_struct
561  */
562 static inline void vma_complete(struct vma_prepare *vp,
563 				struct vma_iterator *vmi, struct mm_struct *mm)
564 {
565 	if (vp->file) {
566 		if (vp->adj_next)
567 			vma_interval_tree_insert(vp->adj_next,
568 						 &vp->mapping->i_mmap);
569 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
570 		flush_dcache_mmap_unlock(vp->mapping);
571 	}
572 
573 	if (vp->remove && vp->file) {
574 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
575 		if (vp->remove2)
576 			__remove_shared_vm_struct(vp->remove2, vp->file,
577 						  vp->mapping);
578 	} else if (vp->insert) {
579 		/*
580 		 * split_vma has split insert from vma, and needs
581 		 * us to insert it before dropping the locks
582 		 * (it may either follow vma or precede it).
583 		 */
584 		vma_iter_store(vmi, vp->insert);
585 		mm->map_count++;
586 	}
587 
588 	if (vp->anon_vma) {
589 		anon_vma_interval_tree_post_update_vma(vp->vma);
590 		if (vp->adj_next)
591 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
592 		anon_vma_unlock_write(vp->anon_vma);
593 	}
594 
595 	if (vp->file) {
596 		i_mmap_unlock_write(vp->mapping);
597 		uprobe_mmap(vp->vma);
598 
599 		if (vp->adj_next)
600 			uprobe_mmap(vp->adj_next);
601 	}
602 
603 	if (vp->remove) {
604 again:
605 		vma_mark_detached(vp->remove, true);
606 		if (vp->file) {
607 			uprobe_munmap(vp->remove, vp->remove->vm_start,
608 				      vp->remove->vm_end);
609 			fput(vp->file);
610 		}
611 		if (vp->remove->anon_vma)
612 			anon_vma_merge(vp->vma, vp->remove);
613 		mm->map_count--;
614 		mpol_put(vma_policy(vp->remove));
615 		if (!vp->remove2)
616 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
617 		vm_area_free(vp->remove);
618 
619 		/*
620 		 * In mprotect's case 6 (see comments on vma_merge),
621 		 * we are removing both mid and next vmas
622 		 */
623 		if (vp->remove2) {
624 			vp->remove = vp->remove2;
625 			vp->remove2 = NULL;
626 			goto again;
627 		}
628 	}
629 	if (vp->insert && vp->file)
630 		uprobe_mmap(vp->insert);
631 }
632 
633 /*
634  * dup_anon_vma() - Helper function to duplicate anon_vma
635  * @dst: The destination VMA
636  * @src: The source VMA
637  *
638  * Returns: 0 on success.
639  */
640 static inline int dup_anon_vma(struct vm_area_struct *dst,
641 			       struct vm_area_struct *src)
642 {
643 	/*
644 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
645 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
646 	 * anon pages imported.
647 	 */
648 	if (src->anon_vma && !dst->anon_vma) {
649 		dst->anon_vma = src->anon_vma;
650 		return anon_vma_clone(dst, src);
651 	}
652 
653 	return 0;
654 }
655 
656 /*
657  * vma_expand - Expand an existing VMA
658  *
659  * @vmi: The vma iterator
660  * @vma: The vma to expand
661  * @start: The start of the vma
662  * @end: The exclusive end of the vma
663  * @pgoff: The page offset of vma
664  * @next: The current of next vma.
665  *
666  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
667  * expand over @next if it's different from @vma and @end == @next->vm_end.
668  * Checking if the @vma can expand and merge with @next needs to be handled by
669  * the caller.
670  *
671  * Returns: 0 on success
672  */
673 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
674 	       unsigned long start, unsigned long end, pgoff_t pgoff,
675 	       struct vm_area_struct *next)
676 {
677 	bool remove_next = false;
678 	struct vma_prepare vp;
679 
680 	if (next && (vma != next) && (end == next->vm_end)) {
681 		int ret;
682 
683 		remove_next = true;
684 		ret = dup_anon_vma(vma, next);
685 		if (ret)
686 			return ret;
687 	}
688 
689 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
690 	/* Not merging but overwriting any part of next is not handled. */
691 	VM_WARN_ON(next && !vp.remove &&
692 		  next != vma && end > next->vm_start);
693 	/* Only handles expanding */
694 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
695 
696 	if (vma_iter_prealloc(vmi))
697 		goto nomem;
698 
699 	vma_prepare(&vp);
700 	vma_adjust_trans_huge(vma, start, end, 0);
701 	/* VMA iterator points to previous, so set to start if necessary */
702 	if (vma_iter_addr(vmi) != start)
703 		vma_iter_set(vmi, start);
704 
705 	vma->vm_start = start;
706 	vma->vm_end = end;
707 	vma->vm_pgoff = pgoff;
708 	/* Note: mas must be pointing to the expanding VMA */
709 	vma_iter_store(vmi, vma);
710 
711 	vma_complete(&vp, vmi, vma->vm_mm);
712 	validate_mm(vma->vm_mm);
713 	return 0;
714 
715 nomem:
716 	return -ENOMEM;
717 }
718 
719 /*
720  * vma_shrink() - Reduce an existing VMAs memory area
721  * @vmi: The vma iterator
722  * @vma: The VMA to modify
723  * @start: The new start
724  * @end: The new end
725  *
726  * Returns: 0 on success, -ENOMEM otherwise
727  */
728 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
729 	       unsigned long start, unsigned long end, pgoff_t pgoff)
730 {
731 	struct vma_prepare vp;
732 
733 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
734 
735 	if (vma_iter_prealloc(vmi))
736 		return -ENOMEM;
737 
738 	init_vma_prep(&vp, vma);
739 	vma_prepare(&vp);
740 	vma_adjust_trans_huge(vma, start, end, 0);
741 
742 	if (vma->vm_start < start)
743 		vma_iter_clear(vmi, vma->vm_start, start);
744 
745 	if (vma->vm_end > end)
746 		vma_iter_clear(vmi, end, vma->vm_end);
747 
748 	vma->vm_start = start;
749 	vma->vm_end = end;
750 	vma->vm_pgoff = pgoff;
751 	vma_complete(&vp, vmi, vma->vm_mm);
752 	validate_mm(vma->vm_mm);
753 	return 0;
754 }
755 
756 /*
757  * If the vma has a ->close operation then the driver probably needs to release
758  * per-vma resources, so we don't attempt to merge those if the caller indicates
759  * the current vma may be removed as part of the merge.
760  */
761 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
762 		struct file *file, unsigned long vm_flags,
763 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
764 		struct anon_vma_name *anon_name, bool may_remove_vma)
765 {
766 	/*
767 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
768 	 * match the flags but dirty bit -- the caller should mark
769 	 * merged VMA as dirty. If dirty bit won't be excluded from
770 	 * comparison, we increase pressure on the memory system forcing
771 	 * the kernel to generate new VMAs when old one could be
772 	 * extended instead.
773 	 */
774 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
775 		return false;
776 	if (vma->vm_file != file)
777 		return false;
778 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
779 		return false;
780 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
781 		return false;
782 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
783 		return false;
784 	return true;
785 }
786 
787 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
788 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
789 {
790 	/*
791 	 * The list_is_singular() test is to avoid merging VMA cloned from
792 	 * parents. This can improve scalability caused by anon_vma lock.
793 	 */
794 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
795 		list_is_singular(&vma->anon_vma_chain)))
796 		return true;
797 	return anon_vma1 == anon_vma2;
798 }
799 
800 /*
801  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
802  * in front of (at a lower virtual address and file offset than) the vma.
803  *
804  * We cannot merge two vmas if they have differently assigned (non-NULL)
805  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
806  *
807  * We don't check here for the merged mmap wrapping around the end of pagecache
808  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
809  * wrap, nor mmaps which cover the final page at index -1UL.
810  *
811  * We assume the vma may be removed as part of the merge.
812  */
813 static bool
814 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
815 		struct anon_vma *anon_vma, struct file *file,
816 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
817 		struct anon_vma_name *anon_name)
818 {
819 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
820 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
821 		if (vma->vm_pgoff == vm_pgoff)
822 			return true;
823 	}
824 	return false;
825 }
826 
827 /*
828  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
829  * beyond (at a higher virtual address and file offset than) the vma.
830  *
831  * We cannot merge two vmas if they have differently assigned (non-NULL)
832  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
833  *
834  * We assume that vma is not removed as part of the merge.
835  */
836 static bool
837 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
838 		struct anon_vma *anon_vma, struct file *file,
839 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
840 		struct anon_vma_name *anon_name)
841 {
842 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
843 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
844 		pgoff_t vm_pglen;
845 		vm_pglen = vma_pages(vma);
846 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
847 			return true;
848 	}
849 	return false;
850 }
851 
852 /*
853  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
854  * figure out whether that can be merged with its predecessor or its
855  * successor.  Or both (it neatly fills a hole).
856  *
857  * In most cases - when called for mmap, brk or mremap - [addr,end) is
858  * certain not to be mapped by the time vma_merge is called; but when
859  * called for mprotect, it is certain to be already mapped (either at
860  * an offset within prev, or at the start of next), and the flags of
861  * this area are about to be changed to vm_flags - and the no-change
862  * case has already been eliminated.
863  *
864  * The following mprotect cases have to be considered, where **** is
865  * the area passed down from mprotect_fixup, never extending beyond one
866  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
867  * at the same address as **** and is of the same or larger span, and
868  * NNNN the next vma after ****:
869  *
870  *     ****             ****                   ****
871  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
872  *    cannot merge    might become       might become
873  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
874  *    mmap, brk or    case 4 below       case 5 below
875  *    mremap move:
876  *                        ****               ****
877  *                    PPPP    NNNN       PPPPCCCCNNNN
878  *                    might become       might become
879  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
880  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
881  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
882  *
883  * It is important for case 8 that the vma CCCC overlapping the
884  * region **** is never going to extended over NNNN. Instead NNNN must
885  * be extended in region **** and CCCC must be removed. This way in
886  * all cases where vma_merge succeeds, the moment vma_merge drops the
887  * rmap_locks, the properties of the merged vma will be already
888  * correct for the whole merged range. Some of those properties like
889  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
890  * be correct for the whole merged range immediately after the
891  * rmap_locks are released. Otherwise if NNNN would be removed and
892  * CCCC would be extended over the NNNN range, remove_migration_ptes
893  * or other rmap walkers (if working on addresses beyond the "end"
894  * parameter) may establish ptes with the wrong permissions of CCCC
895  * instead of the right permissions of NNNN.
896  *
897  * In the code below:
898  * PPPP is represented by *prev
899  * CCCC is represented by *curr or not represented at all (NULL)
900  * NNNN is represented by *next or not represented at all (NULL)
901  * **** is not represented - it will be merged and the vma containing the
902  *      area is returned, or the function will return NULL
903  */
904 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
905 			struct vm_area_struct *prev, unsigned long addr,
906 			unsigned long end, unsigned long vm_flags,
907 			struct anon_vma *anon_vma, struct file *file,
908 			pgoff_t pgoff, struct mempolicy *policy,
909 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
910 			struct anon_vma_name *anon_name)
911 {
912 	struct vm_area_struct *curr, *next, *res;
913 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
914 	struct vma_prepare vp;
915 	pgoff_t vma_pgoff;
916 	int err = 0;
917 	bool merge_prev = false;
918 	bool merge_next = false;
919 	bool vma_expanded = false;
920 	unsigned long vma_start = addr;
921 	unsigned long vma_end = end;
922 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
923 	long adj_start = 0;
924 
925 	validate_mm(mm);
926 	/*
927 	 * We later require that vma->vm_flags == vm_flags,
928 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
929 	 */
930 	if (vm_flags & VM_SPECIAL)
931 		return NULL;
932 
933 	/* Does the input range span an existing VMA? (cases 5 - 8) */
934 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
935 
936 	if (!curr ||			/* cases 1 - 4 */
937 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
938 		next = vma_lookup(mm, end);
939 	else
940 		next = NULL;		/* case 5 */
941 
942 	if (prev) {
943 		vma_start = prev->vm_start;
944 		vma_pgoff = prev->vm_pgoff;
945 
946 		/* Can we merge the predecessor? */
947 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
948 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
949 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
950 			merge_prev = true;
951 			vma_prev(vmi);
952 		}
953 	}
954 
955 	/* Can we merge the successor? */
956 	if (next && mpol_equal(policy, vma_policy(next)) &&
957 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
958 				 vm_userfaultfd_ctx, anon_name)) {
959 		merge_next = true;
960 	}
961 
962 	if (!merge_prev && !merge_next)
963 		return NULL; /* Not mergeable. */
964 
965 	res = vma = prev;
966 	remove = remove2 = adjust = NULL;
967 
968 	/* Verify some invariant that must be enforced by the caller. */
969 	VM_WARN_ON(prev && addr <= prev->vm_start);
970 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
971 	VM_WARN_ON(addr >= end);
972 
973 	/* Can we merge both the predecessor and the successor? */
974 	if (merge_prev && merge_next &&
975 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
976 		remove = next;				/* case 1 */
977 		vma_end = next->vm_end;
978 		err = dup_anon_vma(prev, next);
979 		if (curr) {				/* case 6 */
980 			remove = curr;
981 			remove2 = next;
982 			if (!next->anon_vma)
983 				err = dup_anon_vma(prev, curr);
984 		}
985 	} else if (merge_prev) {			/* case 2 */
986 		if (curr) {
987 			err = dup_anon_vma(prev, curr);
988 			if (end == curr->vm_end) {	/* case 7 */
989 				remove = curr;
990 			} else {			/* case 5 */
991 				adjust = curr;
992 				adj_start = (end - curr->vm_start);
993 			}
994 		}
995 	} else { /* merge_next */
996 		res = next;
997 		if (prev && addr < prev->vm_end) {	/* case 4 */
998 			vma_end = addr;
999 			adjust = next;
1000 			adj_start = -(prev->vm_end - addr);
1001 			err = dup_anon_vma(next, prev);
1002 		} else {
1003 			/*
1004 			 * Note that cases 3 and 8 are the ONLY ones where prev
1005 			 * is permitted to be (but is not necessarily) NULL.
1006 			 */
1007 			vma = next;			/* case 3 */
1008 			vma_start = addr;
1009 			vma_end = next->vm_end;
1010 			vma_pgoff = next->vm_pgoff;
1011 			if (curr) {			/* case 8 */
1012 				vma_pgoff = curr->vm_pgoff;
1013 				remove = curr;
1014 				err = dup_anon_vma(next, curr);
1015 			}
1016 		}
1017 	}
1018 
1019 	/* Error in anon_vma clone. */
1020 	if (err)
1021 		return NULL;
1022 
1023 	if (vma_iter_prealloc(vmi))
1024 		return NULL;
1025 
1026 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1027 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1028 		   vp.anon_vma != adjust->anon_vma);
1029 
1030 	vma_prepare(&vp);
1031 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1032 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1033 		vma_expanded = true;
1034 
1035 	vma->vm_start = vma_start;
1036 	vma->vm_end = vma_end;
1037 	vma->vm_pgoff = vma_pgoff;
1038 
1039 	if (vma_expanded)
1040 		vma_iter_store(vmi, vma);
1041 
1042 	if (adj_start) {
1043 		adjust->vm_start += adj_start;
1044 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1045 		if (adj_start < 0) {
1046 			WARN_ON(vma_expanded);
1047 			vma_iter_store(vmi, next);
1048 		}
1049 	}
1050 
1051 	vma_complete(&vp, vmi, mm);
1052 	vma_iter_free(vmi);
1053 	validate_mm(mm);
1054 	khugepaged_enter_vma(res, vm_flags);
1055 
1056 	return res;
1057 }
1058 
1059 /*
1060  * Rough compatibility check to quickly see if it's even worth looking
1061  * at sharing an anon_vma.
1062  *
1063  * They need to have the same vm_file, and the flags can only differ
1064  * in things that mprotect may change.
1065  *
1066  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1067  * we can merge the two vma's. For example, we refuse to merge a vma if
1068  * there is a vm_ops->close() function, because that indicates that the
1069  * driver is doing some kind of reference counting. But that doesn't
1070  * really matter for the anon_vma sharing case.
1071  */
1072 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1073 {
1074 	return a->vm_end == b->vm_start &&
1075 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1076 		a->vm_file == b->vm_file &&
1077 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1078 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1079 }
1080 
1081 /*
1082  * Do some basic sanity checking to see if we can re-use the anon_vma
1083  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1084  * the same as 'old', the other will be the new one that is trying
1085  * to share the anon_vma.
1086  *
1087  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1088  * the anon_vma of 'old' is concurrently in the process of being set up
1089  * by another page fault trying to merge _that_. But that's ok: if it
1090  * is being set up, that automatically means that it will be a singleton
1091  * acceptable for merging, so we can do all of this optimistically. But
1092  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1093  *
1094  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1095  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1096  * is to return an anon_vma that is "complex" due to having gone through
1097  * a fork).
1098  *
1099  * We also make sure that the two vma's are compatible (adjacent,
1100  * and with the same memory policies). That's all stable, even with just
1101  * a read lock on the mmap_lock.
1102  */
1103 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1104 {
1105 	if (anon_vma_compatible(a, b)) {
1106 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1107 
1108 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1109 			return anon_vma;
1110 	}
1111 	return NULL;
1112 }
1113 
1114 /*
1115  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1116  * neighbouring vmas for a suitable anon_vma, before it goes off
1117  * to allocate a new anon_vma.  It checks because a repetitive
1118  * sequence of mprotects and faults may otherwise lead to distinct
1119  * anon_vmas being allocated, preventing vma merge in subsequent
1120  * mprotect.
1121  */
1122 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1123 {
1124 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1125 	struct anon_vma *anon_vma = NULL;
1126 	struct vm_area_struct *prev, *next;
1127 
1128 	/* Try next first. */
1129 	next = mas_walk(&mas);
1130 	if (next) {
1131 		anon_vma = reusable_anon_vma(next, vma, next);
1132 		if (anon_vma)
1133 			return anon_vma;
1134 	}
1135 
1136 	prev = mas_prev(&mas, 0);
1137 	VM_BUG_ON_VMA(prev != vma, vma);
1138 	prev = mas_prev(&mas, 0);
1139 	/* Try prev next. */
1140 	if (prev)
1141 		anon_vma = reusable_anon_vma(prev, prev, vma);
1142 
1143 	/*
1144 	 * We might reach here with anon_vma == NULL if we can't find
1145 	 * any reusable anon_vma.
1146 	 * There's no absolute need to look only at touching neighbours:
1147 	 * we could search further afield for "compatible" anon_vmas.
1148 	 * But it would probably just be a waste of time searching,
1149 	 * or lead to too many vmas hanging off the same anon_vma.
1150 	 * We're trying to allow mprotect remerging later on,
1151 	 * not trying to minimize memory used for anon_vmas.
1152 	 */
1153 	return anon_vma;
1154 }
1155 
1156 /*
1157  * If a hint addr is less than mmap_min_addr change hint to be as
1158  * low as possible but still greater than mmap_min_addr
1159  */
1160 static inline unsigned long round_hint_to_min(unsigned long hint)
1161 {
1162 	hint &= PAGE_MASK;
1163 	if (((void *)hint != NULL) &&
1164 	    (hint < mmap_min_addr))
1165 		return PAGE_ALIGN(mmap_min_addr);
1166 	return hint;
1167 }
1168 
1169 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1170 		       unsigned long len)
1171 {
1172 	unsigned long locked, lock_limit;
1173 
1174 	/*  mlock MCL_FUTURE? */
1175 	if (flags & VM_LOCKED) {
1176 		locked = len >> PAGE_SHIFT;
1177 		locked += mm->locked_vm;
1178 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1179 		lock_limit >>= PAGE_SHIFT;
1180 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1181 			return -EAGAIN;
1182 	}
1183 	return 0;
1184 }
1185 
1186 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1187 {
1188 	if (S_ISREG(inode->i_mode))
1189 		return MAX_LFS_FILESIZE;
1190 
1191 	if (S_ISBLK(inode->i_mode))
1192 		return MAX_LFS_FILESIZE;
1193 
1194 	if (S_ISSOCK(inode->i_mode))
1195 		return MAX_LFS_FILESIZE;
1196 
1197 	/* Special "we do even unsigned file positions" case */
1198 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1199 		return 0;
1200 
1201 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1202 	return ULONG_MAX;
1203 }
1204 
1205 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1206 				unsigned long pgoff, unsigned long len)
1207 {
1208 	u64 maxsize = file_mmap_size_max(file, inode);
1209 
1210 	if (maxsize && len > maxsize)
1211 		return false;
1212 	maxsize -= len;
1213 	if (pgoff > maxsize >> PAGE_SHIFT)
1214 		return false;
1215 	return true;
1216 }
1217 
1218 /*
1219  * The caller must write-lock current->mm->mmap_lock.
1220  */
1221 unsigned long do_mmap(struct file *file, unsigned long addr,
1222 			unsigned long len, unsigned long prot,
1223 			unsigned long flags, unsigned long pgoff,
1224 			unsigned long *populate, struct list_head *uf)
1225 {
1226 	struct mm_struct *mm = current->mm;
1227 	vm_flags_t vm_flags;
1228 	int pkey = 0;
1229 
1230 	validate_mm(mm);
1231 	*populate = 0;
1232 
1233 	if (!len)
1234 		return -EINVAL;
1235 
1236 	/*
1237 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238 	 *
1239 	 * (the exception is when the underlying filesystem is noexec
1240 	 *  mounted, in which case we dont add PROT_EXEC.)
1241 	 */
1242 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243 		if (!(file && path_noexec(&file->f_path)))
1244 			prot |= PROT_EXEC;
1245 
1246 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1247 	if (flags & MAP_FIXED_NOREPLACE)
1248 		flags |= MAP_FIXED;
1249 
1250 	if (!(flags & MAP_FIXED))
1251 		addr = round_hint_to_min(addr);
1252 
1253 	/* Careful about overflows.. */
1254 	len = PAGE_ALIGN(len);
1255 	if (!len)
1256 		return -ENOMEM;
1257 
1258 	/* offset overflow? */
1259 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1260 		return -EOVERFLOW;
1261 
1262 	/* Too many mappings? */
1263 	if (mm->map_count > sysctl_max_map_count)
1264 		return -ENOMEM;
1265 
1266 	/* Obtain the address to map to. we verify (or select) it and ensure
1267 	 * that it represents a valid section of the address space.
1268 	 */
1269 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1270 	if (IS_ERR_VALUE(addr))
1271 		return addr;
1272 
1273 	if (flags & MAP_FIXED_NOREPLACE) {
1274 		if (find_vma_intersection(mm, addr, addr + len))
1275 			return -EEXIST;
1276 	}
1277 
1278 	if (prot == PROT_EXEC) {
1279 		pkey = execute_only_pkey(mm);
1280 		if (pkey < 0)
1281 			pkey = 0;
1282 	}
1283 
1284 	/* Do simple checking here so the lower-level routines won't have
1285 	 * to. we assume access permissions have been handled by the open
1286 	 * of the memory object, so we don't do any here.
1287 	 */
1288 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1289 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1290 
1291 	if (flags & MAP_LOCKED)
1292 		if (!can_do_mlock())
1293 			return -EPERM;
1294 
1295 	if (mlock_future_check(mm, vm_flags, len))
1296 		return -EAGAIN;
1297 
1298 	if (file) {
1299 		struct inode *inode = file_inode(file);
1300 		unsigned long flags_mask;
1301 
1302 		if (!file_mmap_ok(file, inode, pgoff, len))
1303 			return -EOVERFLOW;
1304 
1305 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1306 
1307 		switch (flags & MAP_TYPE) {
1308 		case MAP_SHARED:
1309 			/*
1310 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1311 			 * flags. E.g. MAP_SYNC is dangerous to use with
1312 			 * MAP_SHARED as you don't know which consistency model
1313 			 * you will get. We silently ignore unsupported flags
1314 			 * with MAP_SHARED to preserve backward compatibility.
1315 			 */
1316 			flags &= LEGACY_MAP_MASK;
1317 			fallthrough;
1318 		case MAP_SHARED_VALIDATE:
1319 			if (flags & ~flags_mask)
1320 				return -EOPNOTSUPP;
1321 			if (prot & PROT_WRITE) {
1322 				if (!(file->f_mode & FMODE_WRITE))
1323 					return -EACCES;
1324 				if (IS_SWAPFILE(file->f_mapping->host))
1325 					return -ETXTBSY;
1326 			}
1327 
1328 			/*
1329 			 * Make sure we don't allow writing to an append-only
1330 			 * file..
1331 			 */
1332 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1333 				return -EACCES;
1334 
1335 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1336 			if (!(file->f_mode & FMODE_WRITE))
1337 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1338 			fallthrough;
1339 		case MAP_PRIVATE:
1340 			if (!(file->f_mode & FMODE_READ))
1341 				return -EACCES;
1342 			if (path_noexec(&file->f_path)) {
1343 				if (vm_flags & VM_EXEC)
1344 					return -EPERM;
1345 				vm_flags &= ~VM_MAYEXEC;
1346 			}
1347 
1348 			if (!file->f_op->mmap)
1349 				return -ENODEV;
1350 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1351 				return -EINVAL;
1352 			break;
1353 
1354 		default:
1355 			return -EINVAL;
1356 		}
1357 	} else {
1358 		switch (flags & MAP_TYPE) {
1359 		case MAP_SHARED:
1360 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1361 				return -EINVAL;
1362 			/*
1363 			 * Ignore pgoff.
1364 			 */
1365 			pgoff = 0;
1366 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1367 			break;
1368 		case MAP_PRIVATE:
1369 			/*
1370 			 * Set pgoff according to addr for anon_vma.
1371 			 */
1372 			pgoff = addr >> PAGE_SHIFT;
1373 			break;
1374 		default:
1375 			return -EINVAL;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * Set 'VM_NORESERVE' if we should not account for the
1381 	 * memory use of this mapping.
1382 	 */
1383 	if (flags & MAP_NORESERVE) {
1384 		/* We honor MAP_NORESERVE if allowed to overcommit */
1385 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1386 			vm_flags |= VM_NORESERVE;
1387 
1388 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1389 		if (file && is_file_hugepages(file))
1390 			vm_flags |= VM_NORESERVE;
1391 	}
1392 
1393 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1394 	if (!IS_ERR_VALUE(addr) &&
1395 	    ((vm_flags & VM_LOCKED) ||
1396 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1397 		*populate = len;
1398 	return addr;
1399 }
1400 
1401 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1402 			      unsigned long prot, unsigned long flags,
1403 			      unsigned long fd, unsigned long pgoff)
1404 {
1405 	struct file *file = NULL;
1406 	unsigned long retval;
1407 
1408 	if (!(flags & MAP_ANONYMOUS)) {
1409 		audit_mmap_fd(fd, flags);
1410 		file = fget(fd);
1411 		if (!file)
1412 			return -EBADF;
1413 		if (is_file_hugepages(file)) {
1414 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1415 		} else if (unlikely(flags & MAP_HUGETLB)) {
1416 			retval = -EINVAL;
1417 			goto out_fput;
1418 		}
1419 	} else if (flags & MAP_HUGETLB) {
1420 		struct hstate *hs;
1421 
1422 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1423 		if (!hs)
1424 			return -EINVAL;
1425 
1426 		len = ALIGN(len, huge_page_size(hs));
1427 		/*
1428 		 * VM_NORESERVE is used because the reservations will be
1429 		 * taken when vm_ops->mmap() is called
1430 		 */
1431 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1432 				VM_NORESERVE,
1433 				HUGETLB_ANONHUGE_INODE,
1434 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1435 		if (IS_ERR(file))
1436 			return PTR_ERR(file);
1437 	}
1438 
1439 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1440 out_fput:
1441 	if (file)
1442 		fput(file);
1443 	return retval;
1444 }
1445 
1446 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1447 		unsigned long, prot, unsigned long, flags,
1448 		unsigned long, fd, unsigned long, pgoff)
1449 {
1450 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1451 }
1452 
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1455 	unsigned long addr;
1456 	unsigned long len;
1457 	unsigned long prot;
1458 	unsigned long flags;
1459 	unsigned long fd;
1460 	unsigned long offset;
1461 };
1462 
1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1464 {
1465 	struct mmap_arg_struct a;
1466 
1467 	if (copy_from_user(&a, arg, sizeof(a)))
1468 		return -EFAULT;
1469 	if (offset_in_page(a.offset))
1470 		return -EINVAL;
1471 
1472 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473 			       a.offset >> PAGE_SHIFT);
1474 }
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1476 
1477 /*
1478  * Some shared mappings will want the pages marked read-only
1479  * to track write events. If so, we'll downgrade vm_page_prot
1480  * to the private version (using protection_map[] without the
1481  * VM_SHARED bit).
1482  */
1483 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1484 {
1485 	vm_flags_t vm_flags = vma->vm_flags;
1486 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1487 
1488 	/* If it was private or non-writable, the write bit is already clear */
1489 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1490 		return 0;
1491 
1492 	/* The backer wishes to know when pages are first written to? */
1493 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1494 		return 1;
1495 
1496 	/* The open routine did something to the protections that pgprot_modify
1497 	 * won't preserve? */
1498 	if (pgprot_val(vm_page_prot) !=
1499 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1500 		return 0;
1501 
1502 	/*
1503 	 * Do we need to track softdirty? hugetlb does not support softdirty
1504 	 * tracking yet.
1505 	 */
1506 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1507 		return 1;
1508 
1509 	/* Do we need write faults for uffd-wp tracking? */
1510 	if (userfaultfd_wp(vma))
1511 		return 1;
1512 
1513 	/* Specialty mapping? */
1514 	if (vm_flags & VM_PFNMAP)
1515 		return 0;
1516 
1517 	/* Can the mapping track the dirty pages? */
1518 	return vma->vm_file && vma->vm_file->f_mapping &&
1519 		mapping_can_writeback(vma->vm_file->f_mapping);
1520 }
1521 
1522 /*
1523  * We account for memory if it's a private writeable mapping,
1524  * not hugepages and VM_NORESERVE wasn't set.
1525  */
1526 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1527 {
1528 	/*
1529 	 * hugetlb has its own accounting separate from the core VM
1530 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1531 	 */
1532 	if (file && is_file_hugepages(file))
1533 		return 0;
1534 
1535 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1536 }
1537 
1538 /**
1539  * unmapped_area() - Find an area between the low_limit and the high_limit with
1540  * the correct alignment and offset, all from @info. Note: current->mm is used
1541  * for the search.
1542  *
1543  * @info: The unmapped area information including the range [low_limit -
1544  * high_limit), the alignment offset and mask.
1545  *
1546  * Return: A memory address or -ENOMEM.
1547  */
1548 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1549 {
1550 	unsigned long length, gap, low_limit;
1551 	struct vm_area_struct *tmp;
1552 
1553 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1554 
1555 	/* Adjust search length to account for worst case alignment overhead */
1556 	length = info->length + info->align_mask;
1557 	if (length < info->length)
1558 		return -ENOMEM;
1559 
1560 	low_limit = info->low_limit;
1561 retry:
1562 	if (mas_empty_area(&mas, low_limit, info->high_limit - 1, length))
1563 		return -ENOMEM;
1564 
1565 	gap = mas.index;
1566 	gap += (info->align_offset - gap) & info->align_mask;
1567 	tmp = mas_next(&mas, ULONG_MAX);
1568 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1569 		if (vm_start_gap(tmp) < gap + length - 1) {
1570 			low_limit = tmp->vm_end;
1571 			mas_reset(&mas);
1572 			goto retry;
1573 		}
1574 	} else {
1575 		tmp = mas_prev(&mas, 0);
1576 		if (tmp && vm_end_gap(tmp) > gap) {
1577 			low_limit = vm_end_gap(tmp);
1578 			mas_reset(&mas);
1579 			goto retry;
1580 		}
1581 	}
1582 
1583 	return gap;
1584 }
1585 
1586 /**
1587  * unmapped_area_topdown() - Find an area between the low_limit and the
1588  * high_limit with the correct alignment and offset at the highest available
1589  * address, all from @info. Note: current->mm is used for the search.
1590  *
1591  * @info: The unmapped area information including the range [low_limit -
1592  * high_limit), the alignment offset and mask.
1593  *
1594  * Return: A memory address or -ENOMEM.
1595  */
1596 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1597 {
1598 	unsigned long length, gap, high_limit, gap_end;
1599 	struct vm_area_struct *tmp;
1600 
1601 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1602 	/* Adjust search length to account for worst case alignment overhead */
1603 	length = info->length + info->align_mask;
1604 	if (length < info->length)
1605 		return -ENOMEM;
1606 
1607 	high_limit = info->high_limit;
1608 retry:
1609 	if (mas_empty_area_rev(&mas, info->low_limit, high_limit - 1,
1610 				length))
1611 		return -ENOMEM;
1612 
1613 	gap = mas.last + 1 - info->length;
1614 	gap -= (gap - info->align_offset) & info->align_mask;
1615 	gap_end = mas.last;
1616 	tmp = mas_next(&mas, ULONG_MAX);
1617 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1618 		if (vm_start_gap(tmp) <= gap_end) {
1619 			high_limit = vm_start_gap(tmp);
1620 			mas_reset(&mas);
1621 			goto retry;
1622 		}
1623 	} else {
1624 		tmp = mas_prev(&mas, 0);
1625 		if (tmp && vm_end_gap(tmp) > gap) {
1626 			high_limit = tmp->vm_start;
1627 			mas_reset(&mas);
1628 			goto retry;
1629 		}
1630 	}
1631 
1632 	return gap;
1633 }
1634 
1635 /*
1636  * Search for an unmapped address range.
1637  *
1638  * We are looking for a range that:
1639  * - does not intersect with any VMA;
1640  * - is contained within the [low_limit, high_limit) interval;
1641  * - is at least the desired size.
1642  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1643  */
1644 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1645 {
1646 	unsigned long addr;
1647 
1648 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1649 		addr = unmapped_area_topdown(info);
1650 	else
1651 		addr = unmapped_area(info);
1652 
1653 	trace_vm_unmapped_area(addr, info);
1654 	return addr;
1655 }
1656 
1657 /* Get an address range which is currently unmapped.
1658  * For shmat() with addr=0.
1659  *
1660  * Ugly calling convention alert:
1661  * Return value with the low bits set means error value,
1662  * ie
1663  *	if (ret & ~PAGE_MASK)
1664  *		error = ret;
1665  *
1666  * This function "knows" that -ENOMEM has the bits set.
1667  */
1668 unsigned long
1669 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1670 			  unsigned long len, unsigned long pgoff,
1671 			  unsigned long flags)
1672 {
1673 	struct mm_struct *mm = current->mm;
1674 	struct vm_area_struct *vma, *prev;
1675 	struct vm_unmapped_area_info info;
1676 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1677 
1678 	if (len > mmap_end - mmap_min_addr)
1679 		return -ENOMEM;
1680 
1681 	if (flags & MAP_FIXED)
1682 		return addr;
1683 
1684 	if (addr) {
1685 		addr = PAGE_ALIGN(addr);
1686 		vma = find_vma_prev(mm, addr, &prev);
1687 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1688 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1689 		    (!prev || addr >= vm_end_gap(prev)))
1690 			return addr;
1691 	}
1692 
1693 	info.flags = 0;
1694 	info.length = len;
1695 	info.low_limit = mm->mmap_base;
1696 	info.high_limit = mmap_end;
1697 	info.align_mask = 0;
1698 	info.align_offset = 0;
1699 	return vm_unmapped_area(&info);
1700 }
1701 
1702 #ifndef HAVE_ARCH_UNMAPPED_AREA
1703 unsigned long
1704 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1705 		       unsigned long len, unsigned long pgoff,
1706 		       unsigned long flags)
1707 {
1708 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1709 }
1710 #endif
1711 
1712 /*
1713  * This mmap-allocator allocates new areas top-down from below the
1714  * stack's low limit (the base):
1715  */
1716 unsigned long
1717 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1718 				  unsigned long len, unsigned long pgoff,
1719 				  unsigned long flags)
1720 {
1721 	struct vm_area_struct *vma, *prev;
1722 	struct mm_struct *mm = current->mm;
1723 	struct vm_unmapped_area_info info;
1724 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1725 
1726 	/* requested length too big for entire address space */
1727 	if (len > mmap_end - mmap_min_addr)
1728 		return -ENOMEM;
1729 
1730 	if (flags & MAP_FIXED)
1731 		return addr;
1732 
1733 	/* requesting a specific address */
1734 	if (addr) {
1735 		addr = PAGE_ALIGN(addr);
1736 		vma = find_vma_prev(mm, addr, &prev);
1737 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1738 				(!vma || addr + len <= vm_start_gap(vma)) &&
1739 				(!prev || addr >= vm_end_gap(prev)))
1740 			return addr;
1741 	}
1742 
1743 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1744 	info.length = len;
1745 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1746 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1747 	info.align_mask = 0;
1748 	info.align_offset = 0;
1749 	addr = vm_unmapped_area(&info);
1750 
1751 	/*
1752 	 * A failed mmap() very likely causes application failure,
1753 	 * so fall back to the bottom-up function here. This scenario
1754 	 * can happen with large stack limits and large mmap()
1755 	 * allocations.
1756 	 */
1757 	if (offset_in_page(addr)) {
1758 		VM_BUG_ON(addr != -ENOMEM);
1759 		info.flags = 0;
1760 		info.low_limit = TASK_UNMAPPED_BASE;
1761 		info.high_limit = mmap_end;
1762 		addr = vm_unmapped_area(&info);
1763 	}
1764 
1765 	return addr;
1766 }
1767 
1768 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1769 unsigned long
1770 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1771 			       unsigned long len, unsigned long pgoff,
1772 			       unsigned long flags)
1773 {
1774 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1775 }
1776 #endif
1777 
1778 unsigned long
1779 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1780 		unsigned long pgoff, unsigned long flags)
1781 {
1782 	unsigned long (*get_area)(struct file *, unsigned long,
1783 				  unsigned long, unsigned long, unsigned long);
1784 
1785 	unsigned long error = arch_mmap_check(addr, len, flags);
1786 	if (error)
1787 		return error;
1788 
1789 	/* Careful about overflows.. */
1790 	if (len > TASK_SIZE)
1791 		return -ENOMEM;
1792 
1793 	get_area = current->mm->get_unmapped_area;
1794 	if (file) {
1795 		if (file->f_op->get_unmapped_area)
1796 			get_area = file->f_op->get_unmapped_area;
1797 	} else if (flags & MAP_SHARED) {
1798 		/*
1799 		 * mmap_region() will call shmem_zero_setup() to create a file,
1800 		 * so use shmem's get_unmapped_area in case it can be huge.
1801 		 * do_mmap() will clear pgoff, so match alignment.
1802 		 */
1803 		pgoff = 0;
1804 		get_area = shmem_get_unmapped_area;
1805 	}
1806 
1807 	addr = get_area(file, addr, len, pgoff, flags);
1808 	if (IS_ERR_VALUE(addr))
1809 		return addr;
1810 
1811 	if (addr > TASK_SIZE - len)
1812 		return -ENOMEM;
1813 	if (offset_in_page(addr))
1814 		return -EINVAL;
1815 
1816 	error = security_mmap_addr(addr);
1817 	return error ? error : addr;
1818 }
1819 
1820 EXPORT_SYMBOL(get_unmapped_area);
1821 
1822 /**
1823  * find_vma_intersection() - Look up the first VMA which intersects the interval
1824  * @mm: The process address space.
1825  * @start_addr: The inclusive start user address.
1826  * @end_addr: The exclusive end user address.
1827  *
1828  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1829  * start_addr < end_addr.
1830  */
1831 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1832 					     unsigned long start_addr,
1833 					     unsigned long end_addr)
1834 {
1835 	unsigned long index = start_addr;
1836 
1837 	mmap_assert_locked(mm);
1838 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1839 }
1840 EXPORT_SYMBOL(find_vma_intersection);
1841 
1842 /**
1843  * find_vma() - Find the VMA for a given address, or the next VMA.
1844  * @mm: The mm_struct to check
1845  * @addr: The address
1846  *
1847  * Returns: The VMA associated with addr, or the next VMA.
1848  * May return %NULL in the case of no VMA at addr or above.
1849  */
1850 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1851 {
1852 	unsigned long index = addr;
1853 
1854 	mmap_assert_locked(mm);
1855 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1856 }
1857 EXPORT_SYMBOL(find_vma);
1858 
1859 /**
1860  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1861  * set %pprev to the previous VMA, if any.
1862  * @mm: The mm_struct to check
1863  * @addr: The address
1864  * @pprev: The pointer to set to the previous VMA
1865  *
1866  * Note that RCU lock is missing here since the external mmap_lock() is used
1867  * instead.
1868  *
1869  * Returns: The VMA associated with @addr, or the next vma.
1870  * May return %NULL in the case of no vma at addr or above.
1871  */
1872 struct vm_area_struct *
1873 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1874 			struct vm_area_struct **pprev)
1875 {
1876 	struct vm_area_struct *vma;
1877 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1878 
1879 	vma = mas_walk(&mas);
1880 	*pprev = mas_prev(&mas, 0);
1881 	if (!vma)
1882 		vma = mas_next(&mas, ULONG_MAX);
1883 	return vma;
1884 }
1885 
1886 /*
1887  * Verify that the stack growth is acceptable and
1888  * update accounting. This is shared with both the
1889  * grow-up and grow-down cases.
1890  */
1891 static int acct_stack_growth(struct vm_area_struct *vma,
1892 			     unsigned long size, unsigned long grow)
1893 {
1894 	struct mm_struct *mm = vma->vm_mm;
1895 	unsigned long new_start;
1896 
1897 	/* address space limit tests */
1898 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1899 		return -ENOMEM;
1900 
1901 	/* Stack limit test */
1902 	if (size > rlimit(RLIMIT_STACK))
1903 		return -ENOMEM;
1904 
1905 	/* mlock limit tests */
1906 	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1907 		return -ENOMEM;
1908 
1909 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1910 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1911 			vma->vm_end - size;
1912 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1913 		return -EFAULT;
1914 
1915 	/*
1916 	 * Overcommit..  This must be the final test, as it will
1917 	 * update security statistics.
1918 	 */
1919 	if (security_vm_enough_memory_mm(mm, grow))
1920 		return -ENOMEM;
1921 
1922 	return 0;
1923 }
1924 
1925 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1926 /*
1927  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1928  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1929  */
1930 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1931 {
1932 	struct mm_struct *mm = vma->vm_mm;
1933 	struct vm_area_struct *next;
1934 	unsigned long gap_addr;
1935 	int error = 0;
1936 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1937 
1938 	if (!(vma->vm_flags & VM_GROWSUP))
1939 		return -EFAULT;
1940 
1941 	/* Guard against exceeding limits of the address space. */
1942 	address &= PAGE_MASK;
1943 	if (address >= (TASK_SIZE & PAGE_MASK))
1944 		return -ENOMEM;
1945 	address += PAGE_SIZE;
1946 
1947 	/* Enforce stack_guard_gap */
1948 	gap_addr = address + stack_guard_gap;
1949 
1950 	/* Guard against overflow */
1951 	if (gap_addr < address || gap_addr > TASK_SIZE)
1952 		gap_addr = TASK_SIZE;
1953 
1954 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1955 	if (next && vma_is_accessible(next)) {
1956 		if (!(next->vm_flags & VM_GROWSUP))
1957 			return -ENOMEM;
1958 		/* Check that both stack segments have the same anon_vma? */
1959 	}
1960 
1961 	if (mas_preallocate(&mas, GFP_KERNEL))
1962 		return -ENOMEM;
1963 
1964 	/* We must make sure the anon_vma is allocated. */
1965 	if (unlikely(anon_vma_prepare(vma))) {
1966 		mas_destroy(&mas);
1967 		return -ENOMEM;
1968 	}
1969 
1970 	/*
1971 	 * vma->vm_start/vm_end cannot change under us because the caller
1972 	 * is required to hold the mmap_lock in read mode.  We need the
1973 	 * anon_vma lock to serialize against concurrent expand_stacks.
1974 	 */
1975 	anon_vma_lock_write(vma->anon_vma);
1976 
1977 	/* Somebody else might have raced and expanded it already */
1978 	if (address > vma->vm_end) {
1979 		unsigned long size, grow;
1980 
1981 		size = address - vma->vm_start;
1982 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1983 
1984 		error = -ENOMEM;
1985 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1986 			error = acct_stack_growth(vma, size, grow);
1987 			if (!error) {
1988 				/*
1989 				 * We only hold a shared mmap_lock lock here, so
1990 				 * we need to protect against concurrent vma
1991 				 * expansions.  anon_vma_lock_write() doesn't
1992 				 * help here, as we don't guarantee that all
1993 				 * growable vmas in a mm share the same root
1994 				 * anon vma.  So, we reuse mm->page_table_lock
1995 				 * to guard against concurrent vma expansions.
1996 				 */
1997 				spin_lock(&mm->page_table_lock);
1998 				if (vma->vm_flags & VM_LOCKED)
1999 					mm->locked_vm += grow;
2000 				vm_stat_account(mm, vma->vm_flags, grow);
2001 				anon_vma_interval_tree_pre_update_vma(vma);
2002 				vma->vm_end = address;
2003 				/* Overwrite old entry in mtree. */
2004 				mas_set_range(&mas, vma->vm_start, address - 1);
2005 				mas_store_prealloc(&mas, vma);
2006 				anon_vma_interval_tree_post_update_vma(vma);
2007 				spin_unlock(&mm->page_table_lock);
2008 
2009 				perf_event_mmap(vma);
2010 			}
2011 		}
2012 	}
2013 	anon_vma_unlock_write(vma->anon_vma);
2014 	khugepaged_enter_vma(vma, vma->vm_flags);
2015 	mas_destroy(&mas);
2016 	return error;
2017 }
2018 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2019 
2020 /*
2021  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2022  */
2023 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2024 {
2025 	struct mm_struct *mm = vma->vm_mm;
2026 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2027 	struct vm_area_struct *prev;
2028 	int error = 0;
2029 
2030 	address &= PAGE_MASK;
2031 	if (address < mmap_min_addr)
2032 		return -EPERM;
2033 
2034 	/* Enforce stack_guard_gap */
2035 	prev = mas_prev(&mas, 0);
2036 	/* Check that both stack segments have the same anon_vma? */
2037 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2038 			vma_is_accessible(prev)) {
2039 		if (address - prev->vm_end < stack_guard_gap)
2040 			return -ENOMEM;
2041 	}
2042 
2043 	if (mas_preallocate(&mas, GFP_KERNEL))
2044 		return -ENOMEM;
2045 
2046 	/* We must make sure the anon_vma is allocated. */
2047 	if (unlikely(anon_vma_prepare(vma))) {
2048 		mas_destroy(&mas);
2049 		return -ENOMEM;
2050 	}
2051 
2052 	/*
2053 	 * vma->vm_start/vm_end cannot change under us because the caller
2054 	 * is required to hold the mmap_lock in read mode.  We need the
2055 	 * anon_vma lock to serialize against concurrent expand_stacks.
2056 	 */
2057 	anon_vma_lock_write(vma->anon_vma);
2058 
2059 	/* Somebody else might have raced and expanded it already */
2060 	if (address < vma->vm_start) {
2061 		unsigned long size, grow;
2062 
2063 		size = vma->vm_end - address;
2064 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2065 
2066 		error = -ENOMEM;
2067 		if (grow <= vma->vm_pgoff) {
2068 			error = acct_stack_growth(vma, size, grow);
2069 			if (!error) {
2070 				/*
2071 				 * We only hold a shared mmap_lock lock here, so
2072 				 * we need to protect against concurrent vma
2073 				 * expansions.  anon_vma_lock_write() doesn't
2074 				 * help here, as we don't guarantee that all
2075 				 * growable vmas in a mm share the same root
2076 				 * anon vma.  So, we reuse mm->page_table_lock
2077 				 * to guard against concurrent vma expansions.
2078 				 */
2079 				spin_lock(&mm->page_table_lock);
2080 				if (vma->vm_flags & VM_LOCKED)
2081 					mm->locked_vm += grow;
2082 				vm_stat_account(mm, vma->vm_flags, grow);
2083 				anon_vma_interval_tree_pre_update_vma(vma);
2084 				vma->vm_start = address;
2085 				vma->vm_pgoff -= grow;
2086 				/* Overwrite old entry in mtree. */
2087 				mas_set_range(&mas, address, vma->vm_end - 1);
2088 				mas_store_prealloc(&mas, vma);
2089 				anon_vma_interval_tree_post_update_vma(vma);
2090 				spin_unlock(&mm->page_table_lock);
2091 
2092 				perf_event_mmap(vma);
2093 			}
2094 		}
2095 	}
2096 	anon_vma_unlock_write(vma->anon_vma);
2097 	khugepaged_enter_vma(vma, vma->vm_flags);
2098 	mas_destroy(&mas);
2099 	return error;
2100 }
2101 
2102 /* enforced gap between the expanding stack and other mappings. */
2103 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2104 
2105 static int __init cmdline_parse_stack_guard_gap(char *p)
2106 {
2107 	unsigned long val;
2108 	char *endptr;
2109 
2110 	val = simple_strtoul(p, &endptr, 10);
2111 	if (!*endptr)
2112 		stack_guard_gap = val << PAGE_SHIFT;
2113 
2114 	return 1;
2115 }
2116 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2117 
2118 #ifdef CONFIG_STACK_GROWSUP
2119 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2120 {
2121 	return expand_upwards(vma, address);
2122 }
2123 
2124 struct vm_area_struct *
2125 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2126 {
2127 	struct vm_area_struct *vma, *prev;
2128 
2129 	addr &= PAGE_MASK;
2130 	vma = find_vma_prev(mm, addr, &prev);
2131 	if (vma && (vma->vm_start <= addr))
2132 		return vma;
2133 	if (!prev || expand_stack(prev, addr))
2134 		return NULL;
2135 	if (prev->vm_flags & VM_LOCKED)
2136 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2137 	return prev;
2138 }
2139 #else
2140 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2141 {
2142 	return expand_downwards(vma, address);
2143 }
2144 
2145 struct vm_area_struct *
2146 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2147 {
2148 	struct vm_area_struct *vma;
2149 	unsigned long start;
2150 
2151 	addr &= PAGE_MASK;
2152 	vma = find_vma(mm, addr);
2153 	if (!vma)
2154 		return NULL;
2155 	if (vma->vm_start <= addr)
2156 		return vma;
2157 	if (!(vma->vm_flags & VM_GROWSDOWN))
2158 		return NULL;
2159 	start = vma->vm_start;
2160 	if (expand_stack(vma, addr))
2161 		return NULL;
2162 	if (vma->vm_flags & VM_LOCKED)
2163 		populate_vma_page_range(vma, addr, start, NULL);
2164 	return vma;
2165 }
2166 #endif
2167 
2168 EXPORT_SYMBOL_GPL(find_extend_vma);
2169 
2170 /*
2171  * Ok - we have the memory areas we should free on a maple tree so release them,
2172  * and do the vma updates.
2173  *
2174  * Called with the mm semaphore held.
2175  */
2176 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2177 {
2178 	unsigned long nr_accounted = 0;
2179 	struct vm_area_struct *vma;
2180 
2181 	/* Update high watermark before we lower total_vm */
2182 	update_hiwater_vm(mm);
2183 	mas_for_each(mas, vma, ULONG_MAX) {
2184 		long nrpages = vma_pages(vma);
2185 
2186 		if (vma->vm_flags & VM_ACCOUNT)
2187 			nr_accounted += nrpages;
2188 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2189 		remove_vma(vma, false);
2190 	}
2191 	vm_unacct_memory(nr_accounted);
2192 	validate_mm(mm);
2193 }
2194 
2195 /*
2196  * Get rid of page table information in the indicated region.
2197  *
2198  * Called with the mm semaphore held.
2199  */
2200 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2201 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2202 		struct vm_area_struct *next,
2203 		unsigned long start, unsigned long end, bool mm_wr_locked)
2204 {
2205 	struct mmu_gather tlb;
2206 
2207 	lru_add_drain();
2208 	tlb_gather_mmu(&tlb, mm);
2209 	update_hiwater_rss(mm);
2210 	unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2211 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2212 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2213 				 mm_wr_locked);
2214 	tlb_finish_mmu(&tlb);
2215 }
2216 
2217 /*
2218  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2219  * has already been checked or doesn't make sense to fail.
2220  * VMA Iterator will point to the end VMA.
2221  */
2222 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2223 		unsigned long addr, int new_below)
2224 {
2225 	struct vma_prepare vp;
2226 	struct vm_area_struct *new;
2227 	int err;
2228 
2229 	validate_mm_mt(vma->vm_mm);
2230 
2231 	WARN_ON(vma->vm_start >= addr);
2232 	WARN_ON(vma->vm_end <= addr);
2233 
2234 	if (vma->vm_ops && vma->vm_ops->may_split) {
2235 		err = vma->vm_ops->may_split(vma, addr);
2236 		if (err)
2237 			return err;
2238 	}
2239 
2240 	new = vm_area_dup(vma);
2241 	if (!new)
2242 		return -ENOMEM;
2243 
2244 	err = -ENOMEM;
2245 	if (vma_iter_prealloc(vmi))
2246 		goto out_free_vma;
2247 
2248 	if (new_below) {
2249 		new->vm_end = addr;
2250 	} else {
2251 		new->vm_start = addr;
2252 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2253 	}
2254 
2255 	err = vma_dup_policy(vma, new);
2256 	if (err)
2257 		goto out_free_vmi;
2258 
2259 	err = anon_vma_clone(new, vma);
2260 	if (err)
2261 		goto out_free_mpol;
2262 
2263 	if (new->vm_file)
2264 		get_file(new->vm_file);
2265 
2266 	if (new->vm_ops && new->vm_ops->open)
2267 		new->vm_ops->open(new);
2268 
2269 	init_vma_prep(&vp, vma);
2270 	vp.insert = new;
2271 	vma_prepare(&vp);
2272 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2273 
2274 	if (new_below) {
2275 		vma->vm_start = addr;
2276 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2277 	} else {
2278 		vma->vm_end = addr;
2279 	}
2280 
2281 	/* vma_complete stores the new vma */
2282 	vma_complete(&vp, vmi, vma->vm_mm);
2283 
2284 	/* Success. */
2285 	if (new_below)
2286 		vma_next(vmi);
2287 	validate_mm_mt(vma->vm_mm);
2288 	return 0;
2289 
2290 out_free_mpol:
2291 	mpol_put(vma_policy(new));
2292 out_free_vmi:
2293 	vma_iter_free(vmi);
2294 out_free_vma:
2295 	vm_area_free(new);
2296 	validate_mm_mt(vma->vm_mm);
2297 	return err;
2298 }
2299 
2300 /*
2301  * Split a vma into two pieces at address 'addr', a new vma is allocated
2302  * either for the first part or the tail.
2303  */
2304 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2305 	      unsigned long addr, int new_below)
2306 {
2307 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2308 		return -ENOMEM;
2309 
2310 	return __split_vma(vmi, vma, addr, new_below);
2311 }
2312 
2313 static inline int munmap_sidetree(struct vm_area_struct *vma,
2314 				   struct ma_state *mas_detach)
2315 {
2316 	vma_start_write(vma);
2317 	mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2318 	if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2319 		return -ENOMEM;
2320 
2321 	vma_mark_detached(vma, true);
2322 	if (vma->vm_flags & VM_LOCKED)
2323 		vma->vm_mm->locked_vm -= vma_pages(vma);
2324 
2325 	return 0;
2326 }
2327 
2328 /*
2329  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2330  * @vmi: The vma iterator
2331  * @vma: The starting vm_area_struct
2332  * @mm: The mm_struct
2333  * @start: The aligned start address to munmap.
2334  * @end: The aligned end address to munmap.
2335  * @uf: The userfaultfd list_head
2336  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2337  *
2338  * If @downgrade is true, check return code for potential release of the lock.
2339  */
2340 static int
2341 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2342 		    struct mm_struct *mm, unsigned long start,
2343 		    unsigned long end, struct list_head *uf, bool downgrade)
2344 {
2345 	struct vm_area_struct *prev, *next = NULL;
2346 	struct maple_tree mt_detach;
2347 	int count = 0;
2348 	int error = -ENOMEM;
2349 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2350 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2351 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2352 
2353 	/*
2354 	 * If we need to split any vma, do it now to save pain later.
2355 	 *
2356 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2357 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2358 	 * places tmp vma above, and higher split_vma places tmp vma below.
2359 	 */
2360 
2361 	/* Does it split the first one? */
2362 	if (start > vma->vm_start) {
2363 
2364 		/*
2365 		 * Make sure that map_count on return from munmap() will
2366 		 * not exceed its limit; but let map_count go just above
2367 		 * its limit temporarily, to help free resources as expected.
2368 		 */
2369 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2370 			goto map_count_exceeded;
2371 
2372 		error = __split_vma(vmi, vma, start, 0);
2373 		if (error)
2374 			goto start_split_failed;
2375 
2376 		vma = vma_iter_load(vmi);
2377 	}
2378 
2379 	prev = vma_prev(vmi);
2380 	if (unlikely((!prev)))
2381 		vma_iter_set(vmi, start);
2382 
2383 	/*
2384 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2385 	 * it is always overwritten.
2386 	 */
2387 	for_each_vma_range(*vmi, next, end) {
2388 		/* Does it split the end? */
2389 		if (next->vm_end > end) {
2390 			error = __split_vma(vmi, next, end, 0);
2391 			if (error)
2392 				goto end_split_failed;
2393 		}
2394 		error = munmap_sidetree(next, &mas_detach);
2395 		if (error)
2396 			goto munmap_sidetree_failed;
2397 
2398 		count++;
2399 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2400 		BUG_ON(next->vm_start < start);
2401 		BUG_ON(next->vm_start > end);
2402 #endif
2403 	}
2404 
2405 	next = vma_next(vmi);
2406 	if (unlikely(uf)) {
2407 		/*
2408 		 * If userfaultfd_unmap_prep returns an error the vmas
2409 		 * will remain split, but userland will get a
2410 		 * highly unexpected error anyway. This is no
2411 		 * different than the case where the first of the two
2412 		 * __split_vma fails, but we don't undo the first
2413 		 * split, despite we could. This is unlikely enough
2414 		 * failure that it's not worth optimizing it for.
2415 		 */
2416 		error = userfaultfd_unmap_prep(mm, start, end, uf);
2417 
2418 		if (error)
2419 			goto userfaultfd_error;
2420 	}
2421 
2422 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2423 	/* Make sure no VMAs are about to be lost. */
2424 	{
2425 		MA_STATE(test, &mt_detach, start, end - 1);
2426 		struct vm_area_struct *vma_mas, *vma_test;
2427 		int test_count = 0;
2428 
2429 		vma_iter_set(vmi, start);
2430 		rcu_read_lock();
2431 		vma_test = mas_find(&test, end - 1);
2432 		for_each_vma_range(*vmi, vma_mas, end) {
2433 			BUG_ON(vma_mas != vma_test);
2434 			test_count++;
2435 			vma_test = mas_next(&test, end - 1);
2436 		}
2437 		rcu_read_unlock();
2438 		BUG_ON(count != test_count);
2439 	}
2440 #endif
2441 	/* Point of no return */
2442 	vma_iter_set(vmi, start);
2443 	if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2444 		return -ENOMEM;
2445 
2446 	mm->map_count -= count;
2447 	/*
2448 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2449 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2450 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2451 	 */
2452 	if (downgrade) {
2453 		if (next && (next->vm_flags & VM_GROWSDOWN))
2454 			downgrade = false;
2455 		else if (prev && (prev->vm_flags & VM_GROWSUP))
2456 			downgrade = false;
2457 		else
2458 			mmap_write_downgrade(mm);
2459 	}
2460 
2461 	/*
2462 	 * We can free page tables without write-locking mmap_lock because VMAs
2463 	 * were isolated before we downgraded mmap_lock.
2464 	 */
2465 	unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2466 	/* Statistics and freeing VMAs */
2467 	mas_set(&mas_detach, start);
2468 	remove_mt(mm, &mas_detach);
2469 	__mt_destroy(&mt_detach);
2470 
2471 
2472 	validate_mm(mm);
2473 	return downgrade ? 1 : 0;
2474 
2475 userfaultfd_error:
2476 munmap_sidetree_failed:
2477 end_split_failed:
2478 	__mt_destroy(&mt_detach);
2479 start_split_failed:
2480 map_count_exceeded:
2481 	return error;
2482 }
2483 
2484 /*
2485  * do_vmi_munmap() - munmap a given range.
2486  * @vmi: The vma iterator
2487  * @mm: The mm_struct
2488  * @start: The start address to munmap
2489  * @len: The length of the range to munmap
2490  * @uf: The userfaultfd list_head
2491  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2492  * mmap_lock
2493  *
2494  * This function takes a @mas that is either pointing to the previous VMA or set
2495  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2496  * aligned and any arch_unmap work will be preformed.
2497  *
2498  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2499  */
2500 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2501 		  unsigned long start, size_t len, struct list_head *uf,
2502 		  bool downgrade)
2503 {
2504 	unsigned long end;
2505 	struct vm_area_struct *vma;
2506 
2507 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2508 		return -EINVAL;
2509 
2510 	end = start + PAGE_ALIGN(len);
2511 	if (end == start)
2512 		return -EINVAL;
2513 
2514 	 /* arch_unmap() might do unmaps itself.  */
2515 	arch_unmap(mm, start, end);
2516 
2517 	/* Find the first overlapping VMA */
2518 	vma = vma_find(vmi, end);
2519 	if (!vma)
2520 		return 0;
2521 
2522 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2523 }
2524 
2525 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2526  * @mm: The mm_struct
2527  * @start: The start address to munmap
2528  * @len: The length to be munmapped.
2529  * @uf: The userfaultfd list_head
2530  */
2531 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2532 	      struct list_head *uf)
2533 {
2534 	VMA_ITERATOR(vmi, mm, start);
2535 
2536 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2537 }
2538 
2539 unsigned long mmap_region(struct file *file, unsigned long addr,
2540 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2541 		struct list_head *uf)
2542 {
2543 	struct mm_struct *mm = current->mm;
2544 	struct vm_area_struct *vma = NULL;
2545 	struct vm_area_struct *next, *prev, *merge;
2546 	pgoff_t pglen = len >> PAGE_SHIFT;
2547 	unsigned long charged = 0;
2548 	unsigned long end = addr + len;
2549 	unsigned long merge_start = addr, merge_end = end;
2550 	pgoff_t vm_pgoff;
2551 	int error;
2552 	VMA_ITERATOR(vmi, mm, addr);
2553 
2554 	/* Check against address space limit. */
2555 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2556 		unsigned long nr_pages;
2557 
2558 		/*
2559 		 * MAP_FIXED may remove pages of mappings that intersects with
2560 		 * requested mapping. Account for the pages it would unmap.
2561 		 */
2562 		nr_pages = count_vma_pages_range(mm, addr, end);
2563 
2564 		if (!may_expand_vm(mm, vm_flags,
2565 					(len >> PAGE_SHIFT) - nr_pages))
2566 			return -ENOMEM;
2567 	}
2568 
2569 	/* Unmap any existing mapping in the area */
2570 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2571 		return -ENOMEM;
2572 
2573 	/*
2574 	 * Private writable mapping: check memory availability
2575 	 */
2576 	if (accountable_mapping(file, vm_flags)) {
2577 		charged = len >> PAGE_SHIFT;
2578 		if (security_vm_enough_memory_mm(mm, charged))
2579 			return -ENOMEM;
2580 		vm_flags |= VM_ACCOUNT;
2581 	}
2582 
2583 	next = vma_next(&vmi);
2584 	prev = vma_prev(&vmi);
2585 	if (vm_flags & VM_SPECIAL)
2586 		goto cannot_expand;
2587 
2588 	/* Attempt to expand an old mapping */
2589 	/* Check next */
2590 	if (next && next->vm_start == end && !vma_policy(next) &&
2591 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2592 				 NULL_VM_UFFD_CTX, NULL)) {
2593 		merge_end = next->vm_end;
2594 		vma = next;
2595 		vm_pgoff = next->vm_pgoff - pglen;
2596 	}
2597 
2598 	/* Check prev */
2599 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2600 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2601 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2602 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2603 				       NULL_VM_UFFD_CTX, NULL))) {
2604 		merge_start = prev->vm_start;
2605 		vma = prev;
2606 		vm_pgoff = prev->vm_pgoff;
2607 	}
2608 
2609 
2610 	/* Actually expand, if possible */
2611 	if (vma &&
2612 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2613 		khugepaged_enter_vma(vma, vm_flags);
2614 		goto expanded;
2615 	}
2616 
2617 cannot_expand:
2618 	/*
2619 	 * Determine the object being mapped and call the appropriate
2620 	 * specific mapper. the address has already been validated, but
2621 	 * not unmapped, but the maps are removed from the list.
2622 	 */
2623 	vma = vm_area_alloc(mm);
2624 	if (!vma) {
2625 		error = -ENOMEM;
2626 		goto unacct_error;
2627 	}
2628 
2629 	vma_iter_set(&vmi, addr);
2630 	vma->vm_start = addr;
2631 	vma->vm_end = end;
2632 	vm_flags_init(vma, vm_flags);
2633 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2634 	vma->vm_pgoff = pgoff;
2635 
2636 	if (file) {
2637 		if (vm_flags & VM_SHARED) {
2638 			error = mapping_map_writable(file->f_mapping);
2639 			if (error)
2640 				goto free_vma;
2641 		}
2642 
2643 		vma->vm_file = get_file(file);
2644 		error = call_mmap(file, vma);
2645 		if (error)
2646 			goto unmap_and_free_vma;
2647 
2648 		/*
2649 		 * Expansion is handled above, merging is handled below.
2650 		 * Drivers should not alter the address of the VMA.
2651 		 */
2652 		error = -EINVAL;
2653 		if (WARN_ON((addr != vma->vm_start)))
2654 			goto close_and_free_vma;
2655 
2656 		vma_iter_set(&vmi, addr);
2657 		/*
2658 		 * If vm_flags changed after call_mmap(), we should try merge
2659 		 * vma again as we may succeed this time.
2660 		 */
2661 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2662 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2663 				    vma->vm_end, vma->vm_flags, NULL,
2664 				    vma->vm_file, vma->vm_pgoff, NULL,
2665 				    NULL_VM_UFFD_CTX, NULL);
2666 			if (merge) {
2667 				/*
2668 				 * ->mmap() can change vma->vm_file and fput
2669 				 * the original file. So fput the vma->vm_file
2670 				 * here or we would add an extra fput for file
2671 				 * and cause general protection fault
2672 				 * ultimately.
2673 				 */
2674 				fput(vma->vm_file);
2675 				vm_area_free(vma);
2676 				vma = merge;
2677 				/* Update vm_flags to pick up the change. */
2678 				vm_flags = vma->vm_flags;
2679 				goto unmap_writable;
2680 			}
2681 		}
2682 
2683 		vm_flags = vma->vm_flags;
2684 	} else if (vm_flags & VM_SHARED) {
2685 		error = shmem_zero_setup(vma);
2686 		if (error)
2687 			goto free_vma;
2688 	} else {
2689 		vma_set_anonymous(vma);
2690 	}
2691 
2692 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2693 		error = -EACCES;
2694 		goto close_and_free_vma;
2695 	}
2696 
2697 	/* Allow architectures to sanity-check the vm_flags */
2698 	error = -EINVAL;
2699 	if (!arch_validate_flags(vma->vm_flags))
2700 		goto close_and_free_vma;
2701 
2702 	error = -ENOMEM;
2703 	if (vma_iter_prealloc(&vmi))
2704 		goto close_and_free_vma;
2705 
2706 	if (vma->vm_file)
2707 		i_mmap_lock_write(vma->vm_file->f_mapping);
2708 
2709 	vma_iter_store(&vmi, vma);
2710 	mm->map_count++;
2711 	if (vma->vm_file) {
2712 		if (vma->vm_flags & VM_SHARED)
2713 			mapping_allow_writable(vma->vm_file->f_mapping);
2714 
2715 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2716 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2717 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2718 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2719 	}
2720 
2721 	/*
2722 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2723 	 * call covers the non-merge case.
2724 	 */
2725 	khugepaged_enter_vma(vma, vma->vm_flags);
2726 
2727 	/* Once vma denies write, undo our temporary denial count */
2728 unmap_writable:
2729 	if (file && vm_flags & VM_SHARED)
2730 		mapping_unmap_writable(file->f_mapping);
2731 	file = vma->vm_file;
2732 expanded:
2733 	perf_event_mmap(vma);
2734 
2735 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2736 	if (vm_flags & VM_LOCKED) {
2737 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2738 					is_vm_hugetlb_page(vma) ||
2739 					vma == get_gate_vma(current->mm))
2740 			vm_flags_clear(vma, VM_LOCKED_MASK);
2741 		else
2742 			mm->locked_vm += (len >> PAGE_SHIFT);
2743 	}
2744 
2745 	if (file)
2746 		uprobe_mmap(vma);
2747 
2748 	/*
2749 	 * New (or expanded) vma always get soft dirty status.
2750 	 * Otherwise user-space soft-dirty page tracker won't
2751 	 * be able to distinguish situation when vma area unmapped,
2752 	 * then new mapped in-place (which must be aimed as
2753 	 * a completely new data area).
2754 	 */
2755 	vm_flags_set(vma, VM_SOFTDIRTY);
2756 
2757 	vma_set_page_prot(vma);
2758 
2759 	validate_mm(mm);
2760 	return addr;
2761 
2762 close_and_free_vma:
2763 	if (file && vma->vm_ops && vma->vm_ops->close)
2764 		vma->vm_ops->close(vma);
2765 
2766 	if (file || vma->vm_file) {
2767 unmap_and_free_vma:
2768 		fput(vma->vm_file);
2769 		vma->vm_file = NULL;
2770 
2771 		/* Undo any partial mapping done by a device driver. */
2772 		unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2773 			     vma->vm_end, true);
2774 	}
2775 	if (file && (vm_flags & VM_SHARED))
2776 		mapping_unmap_writable(file->f_mapping);
2777 free_vma:
2778 	vm_area_free(vma);
2779 unacct_error:
2780 	if (charged)
2781 		vm_unacct_memory(charged);
2782 	validate_mm(mm);
2783 	return error;
2784 }
2785 
2786 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2787 {
2788 	int ret;
2789 	struct mm_struct *mm = current->mm;
2790 	LIST_HEAD(uf);
2791 	VMA_ITERATOR(vmi, mm, start);
2792 
2793 	if (mmap_write_lock_killable(mm))
2794 		return -EINTR;
2795 
2796 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2797 	/*
2798 	 * Returning 1 indicates mmap_lock is downgraded.
2799 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2800 	 * it to 0 before return.
2801 	 */
2802 	if (ret == 1) {
2803 		mmap_read_unlock(mm);
2804 		ret = 0;
2805 	} else
2806 		mmap_write_unlock(mm);
2807 
2808 	userfaultfd_unmap_complete(mm, &uf);
2809 	return ret;
2810 }
2811 
2812 int vm_munmap(unsigned long start, size_t len)
2813 {
2814 	return __vm_munmap(start, len, false);
2815 }
2816 EXPORT_SYMBOL(vm_munmap);
2817 
2818 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2819 {
2820 	addr = untagged_addr(addr);
2821 	return __vm_munmap(addr, len, true);
2822 }
2823 
2824 
2825 /*
2826  * Emulation of deprecated remap_file_pages() syscall.
2827  */
2828 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2829 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2830 {
2831 
2832 	struct mm_struct *mm = current->mm;
2833 	struct vm_area_struct *vma;
2834 	unsigned long populate = 0;
2835 	unsigned long ret = -EINVAL;
2836 	struct file *file;
2837 
2838 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2839 		     current->comm, current->pid);
2840 
2841 	if (prot)
2842 		return ret;
2843 	start = start & PAGE_MASK;
2844 	size = size & PAGE_MASK;
2845 
2846 	if (start + size <= start)
2847 		return ret;
2848 
2849 	/* Does pgoff wrap? */
2850 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2851 		return ret;
2852 
2853 	if (mmap_write_lock_killable(mm))
2854 		return -EINTR;
2855 
2856 	vma = vma_lookup(mm, start);
2857 
2858 	if (!vma || !(vma->vm_flags & VM_SHARED))
2859 		goto out;
2860 
2861 	if (start + size > vma->vm_end) {
2862 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2863 		struct vm_area_struct *next, *prev = vma;
2864 
2865 		for_each_vma_range(vmi, next, start + size) {
2866 			/* hole between vmas ? */
2867 			if (next->vm_start != prev->vm_end)
2868 				goto out;
2869 
2870 			if (next->vm_file != vma->vm_file)
2871 				goto out;
2872 
2873 			if (next->vm_flags != vma->vm_flags)
2874 				goto out;
2875 
2876 			if (start + size <= next->vm_end)
2877 				break;
2878 
2879 			prev = next;
2880 		}
2881 
2882 		if (!next)
2883 			goto out;
2884 	}
2885 
2886 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2887 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2888 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2889 
2890 	flags &= MAP_NONBLOCK;
2891 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2892 	if (vma->vm_flags & VM_LOCKED)
2893 		flags |= MAP_LOCKED;
2894 
2895 	file = get_file(vma->vm_file);
2896 	ret = do_mmap(vma->vm_file, start, size,
2897 			prot, flags, pgoff, &populate, NULL);
2898 	fput(file);
2899 out:
2900 	mmap_write_unlock(mm);
2901 	if (populate)
2902 		mm_populate(ret, populate);
2903 	if (!IS_ERR_VALUE(ret))
2904 		ret = 0;
2905 	return ret;
2906 }
2907 
2908 /*
2909  * do_vma_munmap() - Unmap a full or partial vma.
2910  * @vmi: The vma iterator pointing at the vma
2911  * @vma: The first vma to be munmapped
2912  * @start: the start of the address to unmap
2913  * @end: The end of the address to unmap
2914  * @uf: The userfaultfd list_head
2915  * @downgrade: Attempt to downgrade or not
2916  *
2917  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2918  * unmaps a VMA mapping when the vma iterator is already in position.
2919  * Does not handle alignment.
2920  */
2921 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2922 		  unsigned long start, unsigned long end,
2923 		  struct list_head *uf, bool downgrade)
2924 {
2925 	struct mm_struct *mm = vma->vm_mm;
2926 	int ret;
2927 
2928 	arch_unmap(mm, start, end);
2929 	ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2930 	validate_mm_mt(mm);
2931 	return ret;
2932 }
2933 
2934 /*
2935  * do_brk_flags() - Increase the brk vma if the flags match.
2936  * @vmi: The vma iterator
2937  * @addr: The start address
2938  * @len: The length of the increase
2939  * @vma: The vma,
2940  * @flags: The VMA Flags
2941  *
2942  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2943  * do not match then create a new anonymous VMA.  Eventually we may be able to
2944  * do some brk-specific accounting here.
2945  */
2946 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2947 		unsigned long addr, unsigned long len, unsigned long flags)
2948 {
2949 	struct mm_struct *mm = current->mm;
2950 	struct vma_prepare vp;
2951 
2952 	validate_mm_mt(mm);
2953 	/*
2954 	 * Check against address space limits by the changed size
2955 	 * Note: This happens *after* clearing old mappings in some code paths.
2956 	 */
2957 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2958 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2959 		return -ENOMEM;
2960 
2961 	if (mm->map_count > sysctl_max_map_count)
2962 		return -ENOMEM;
2963 
2964 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2965 		return -ENOMEM;
2966 
2967 	/*
2968 	 * Expand the existing vma if possible; Note that singular lists do not
2969 	 * occur after forking, so the expand will only happen on new VMAs.
2970 	 */
2971 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2972 	    can_vma_merge_after(vma, flags, NULL, NULL,
2973 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2974 		if (vma_iter_prealloc(vmi))
2975 			goto unacct_fail;
2976 
2977 		init_vma_prep(&vp, vma);
2978 		vma_prepare(&vp);
2979 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2980 		vma->vm_end = addr + len;
2981 		vm_flags_set(vma, VM_SOFTDIRTY);
2982 		vma_iter_store(vmi, vma);
2983 
2984 		vma_complete(&vp, vmi, mm);
2985 		khugepaged_enter_vma(vma, flags);
2986 		goto out;
2987 	}
2988 
2989 	/* create a vma struct for an anonymous mapping */
2990 	vma = vm_area_alloc(mm);
2991 	if (!vma)
2992 		goto unacct_fail;
2993 
2994 	vma_set_anonymous(vma);
2995 	vma->vm_start = addr;
2996 	vma->vm_end = addr + len;
2997 	vma->vm_pgoff = addr >> PAGE_SHIFT;
2998 	vm_flags_init(vma, flags);
2999 	vma->vm_page_prot = vm_get_page_prot(flags);
3000 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3001 		goto mas_store_fail;
3002 
3003 	mm->map_count++;
3004 out:
3005 	perf_event_mmap(vma);
3006 	mm->total_vm += len >> PAGE_SHIFT;
3007 	mm->data_vm += len >> PAGE_SHIFT;
3008 	if (flags & VM_LOCKED)
3009 		mm->locked_vm += (len >> PAGE_SHIFT);
3010 	vm_flags_set(vma, VM_SOFTDIRTY);
3011 	validate_mm(mm);
3012 	return 0;
3013 
3014 mas_store_fail:
3015 	vm_area_free(vma);
3016 unacct_fail:
3017 	vm_unacct_memory(len >> PAGE_SHIFT);
3018 	return -ENOMEM;
3019 }
3020 
3021 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3022 {
3023 	struct mm_struct *mm = current->mm;
3024 	struct vm_area_struct *vma = NULL;
3025 	unsigned long len;
3026 	int ret;
3027 	bool populate;
3028 	LIST_HEAD(uf);
3029 	VMA_ITERATOR(vmi, mm, addr);
3030 
3031 	len = PAGE_ALIGN(request);
3032 	if (len < request)
3033 		return -ENOMEM;
3034 	if (!len)
3035 		return 0;
3036 
3037 	if (mmap_write_lock_killable(mm))
3038 		return -EINTR;
3039 
3040 	/* Until we need other flags, refuse anything except VM_EXEC. */
3041 	if ((flags & (~VM_EXEC)) != 0)
3042 		return -EINVAL;
3043 
3044 	ret = check_brk_limits(addr, len);
3045 	if (ret)
3046 		goto limits_failed;
3047 
3048 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3049 	if (ret)
3050 		goto munmap_failed;
3051 
3052 	vma = vma_prev(&vmi);
3053 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3054 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3055 	mmap_write_unlock(mm);
3056 	userfaultfd_unmap_complete(mm, &uf);
3057 	if (populate && !ret)
3058 		mm_populate(addr, len);
3059 	return ret;
3060 
3061 munmap_failed:
3062 limits_failed:
3063 	mmap_write_unlock(mm);
3064 	return ret;
3065 }
3066 EXPORT_SYMBOL(vm_brk_flags);
3067 
3068 int vm_brk(unsigned long addr, unsigned long len)
3069 {
3070 	return vm_brk_flags(addr, len, 0);
3071 }
3072 EXPORT_SYMBOL(vm_brk);
3073 
3074 /* Release all mmaps. */
3075 void exit_mmap(struct mm_struct *mm)
3076 {
3077 	struct mmu_gather tlb;
3078 	struct vm_area_struct *vma;
3079 	unsigned long nr_accounted = 0;
3080 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3081 	int count = 0;
3082 
3083 	/* mm's last user has gone, and its about to be pulled down */
3084 	mmu_notifier_release(mm);
3085 
3086 	mmap_read_lock(mm);
3087 	arch_exit_mmap(mm);
3088 
3089 	vma = mas_find(&mas, ULONG_MAX);
3090 	if (!vma) {
3091 		/* Can happen if dup_mmap() received an OOM */
3092 		mmap_read_unlock(mm);
3093 		return;
3094 	}
3095 
3096 	lru_add_drain();
3097 	flush_cache_mm(mm);
3098 	tlb_gather_mmu_fullmm(&tlb, mm);
3099 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3100 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3101 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3102 	mmap_read_unlock(mm);
3103 
3104 	/*
3105 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3106 	 * because the memory has been already freed.
3107 	 */
3108 	set_bit(MMF_OOM_SKIP, &mm->flags);
3109 	mmap_write_lock(mm);
3110 	mt_clear_in_rcu(&mm->mm_mt);
3111 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3112 		      USER_PGTABLES_CEILING, true);
3113 	tlb_finish_mmu(&tlb);
3114 
3115 	/*
3116 	 * Walk the list again, actually closing and freeing it, with preemption
3117 	 * enabled, without holding any MM locks besides the unreachable
3118 	 * mmap_write_lock.
3119 	 */
3120 	do {
3121 		if (vma->vm_flags & VM_ACCOUNT)
3122 			nr_accounted += vma_pages(vma);
3123 		remove_vma(vma, true);
3124 		count++;
3125 		cond_resched();
3126 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3127 
3128 	BUG_ON(count != mm->map_count);
3129 
3130 	trace_exit_mmap(mm);
3131 	__mt_destroy(&mm->mm_mt);
3132 	mmap_write_unlock(mm);
3133 	vm_unacct_memory(nr_accounted);
3134 }
3135 
3136 /* Insert vm structure into process list sorted by address
3137  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3138  * then i_mmap_rwsem is taken here.
3139  */
3140 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3141 {
3142 	unsigned long charged = vma_pages(vma);
3143 
3144 
3145 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3146 		return -ENOMEM;
3147 
3148 	if ((vma->vm_flags & VM_ACCOUNT) &&
3149 	     security_vm_enough_memory_mm(mm, charged))
3150 		return -ENOMEM;
3151 
3152 	/*
3153 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3154 	 * until its first write fault, when page's anon_vma and index
3155 	 * are set.  But now set the vm_pgoff it will almost certainly
3156 	 * end up with (unless mremap moves it elsewhere before that
3157 	 * first wfault), so /proc/pid/maps tells a consistent story.
3158 	 *
3159 	 * By setting it to reflect the virtual start address of the
3160 	 * vma, merges and splits can happen in a seamless way, just
3161 	 * using the existing file pgoff checks and manipulations.
3162 	 * Similarly in do_mmap and in do_brk_flags.
3163 	 */
3164 	if (vma_is_anonymous(vma)) {
3165 		BUG_ON(vma->anon_vma);
3166 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3167 	}
3168 
3169 	if (vma_link(mm, vma)) {
3170 		vm_unacct_memory(charged);
3171 		return -ENOMEM;
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 /*
3178  * Copy the vma structure to a new location in the same mm,
3179  * prior to moving page table entries, to effect an mremap move.
3180  */
3181 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3182 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3183 	bool *need_rmap_locks)
3184 {
3185 	struct vm_area_struct *vma = *vmap;
3186 	unsigned long vma_start = vma->vm_start;
3187 	struct mm_struct *mm = vma->vm_mm;
3188 	struct vm_area_struct *new_vma, *prev;
3189 	bool faulted_in_anon_vma = true;
3190 	VMA_ITERATOR(vmi, mm, addr);
3191 
3192 	validate_mm_mt(mm);
3193 	/*
3194 	 * If anonymous vma has not yet been faulted, update new pgoff
3195 	 * to match new location, to increase its chance of merging.
3196 	 */
3197 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3198 		pgoff = addr >> PAGE_SHIFT;
3199 		faulted_in_anon_vma = false;
3200 	}
3201 
3202 	new_vma = find_vma_prev(mm, addr, &prev);
3203 	if (new_vma && new_vma->vm_start < addr + len)
3204 		return NULL;	/* should never get here */
3205 
3206 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3207 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3208 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3209 	if (new_vma) {
3210 		/*
3211 		 * Source vma may have been merged into new_vma
3212 		 */
3213 		if (unlikely(vma_start >= new_vma->vm_start &&
3214 			     vma_start < new_vma->vm_end)) {
3215 			/*
3216 			 * The only way we can get a vma_merge with
3217 			 * self during an mremap is if the vma hasn't
3218 			 * been faulted in yet and we were allowed to
3219 			 * reset the dst vma->vm_pgoff to the
3220 			 * destination address of the mremap to allow
3221 			 * the merge to happen. mremap must change the
3222 			 * vm_pgoff linearity between src and dst vmas
3223 			 * (in turn preventing a vma_merge) to be
3224 			 * safe. It is only safe to keep the vm_pgoff
3225 			 * linear if there are no pages mapped yet.
3226 			 */
3227 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3228 			*vmap = vma = new_vma;
3229 		}
3230 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3231 	} else {
3232 		new_vma = vm_area_dup(vma);
3233 		if (!new_vma)
3234 			goto out;
3235 		new_vma->vm_start = addr;
3236 		new_vma->vm_end = addr + len;
3237 		new_vma->vm_pgoff = pgoff;
3238 		if (vma_dup_policy(vma, new_vma))
3239 			goto out_free_vma;
3240 		if (anon_vma_clone(new_vma, vma))
3241 			goto out_free_mempol;
3242 		if (new_vma->vm_file)
3243 			get_file(new_vma->vm_file);
3244 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3245 			new_vma->vm_ops->open(new_vma);
3246 		vma_start_write(new_vma);
3247 		if (vma_link(mm, new_vma))
3248 			goto out_vma_link;
3249 		*need_rmap_locks = false;
3250 	}
3251 	validate_mm_mt(mm);
3252 	return new_vma;
3253 
3254 out_vma_link:
3255 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3256 		new_vma->vm_ops->close(new_vma);
3257 
3258 	if (new_vma->vm_file)
3259 		fput(new_vma->vm_file);
3260 
3261 	unlink_anon_vmas(new_vma);
3262 out_free_mempol:
3263 	mpol_put(vma_policy(new_vma));
3264 out_free_vma:
3265 	vm_area_free(new_vma);
3266 out:
3267 	validate_mm_mt(mm);
3268 	return NULL;
3269 }
3270 
3271 /*
3272  * Return true if the calling process may expand its vm space by the passed
3273  * number of pages
3274  */
3275 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3276 {
3277 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3278 		return false;
3279 
3280 	if (is_data_mapping(flags) &&
3281 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3282 		/* Workaround for Valgrind */
3283 		if (rlimit(RLIMIT_DATA) == 0 &&
3284 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3285 			return true;
3286 
3287 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3288 			     current->comm, current->pid,
3289 			     (mm->data_vm + npages) << PAGE_SHIFT,
3290 			     rlimit(RLIMIT_DATA),
3291 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3292 
3293 		if (!ignore_rlimit_data)
3294 			return false;
3295 	}
3296 
3297 	return true;
3298 }
3299 
3300 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3301 {
3302 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3303 
3304 	if (is_exec_mapping(flags))
3305 		mm->exec_vm += npages;
3306 	else if (is_stack_mapping(flags))
3307 		mm->stack_vm += npages;
3308 	else if (is_data_mapping(flags))
3309 		mm->data_vm += npages;
3310 }
3311 
3312 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3313 
3314 /*
3315  * Having a close hook prevents vma merging regardless of flags.
3316  */
3317 static void special_mapping_close(struct vm_area_struct *vma)
3318 {
3319 }
3320 
3321 static const char *special_mapping_name(struct vm_area_struct *vma)
3322 {
3323 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3324 }
3325 
3326 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3327 {
3328 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3329 
3330 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3331 		return -EFAULT;
3332 
3333 	if (sm->mremap)
3334 		return sm->mremap(sm, new_vma);
3335 
3336 	return 0;
3337 }
3338 
3339 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3340 {
3341 	/*
3342 	 * Forbid splitting special mappings - kernel has expectations over
3343 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3344 	 * the size of vma should stay the same over the special mapping's
3345 	 * lifetime.
3346 	 */
3347 	return -EINVAL;
3348 }
3349 
3350 static const struct vm_operations_struct special_mapping_vmops = {
3351 	.close = special_mapping_close,
3352 	.fault = special_mapping_fault,
3353 	.mremap = special_mapping_mremap,
3354 	.name = special_mapping_name,
3355 	/* vDSO code relies that VVAR can't be accessed remotely */
3356 	.access = NULL,
3357 	.may_split = special_mapping_split,
3358 };
3359 
3360 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3361 	.close = special_mapping_close,
3362 	.fault = special_mapping_fault,
3363 };
3364 
3365 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3366 {
3367 	struct vm_area_struct *vma = vmf->vma;
3368 	pgoff_t pgoff;
3369 	struct page **pages;
3370 
3371 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3372 		pages = vma->vm_private_data;
3373 	} else {
3374 		struct vm_special_mapping *sm = vma->vm_private_data;
3375 
3376 		if (sm->fault)
3377 			return sm->fault(sm, vmf->vma, vmf);
3378 
3379 		pages = sm->pages;
3380 	}
3381 
3382 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3383 		pgoff--;
3384 
3385 	if (*pages) {
3386 		struct page *page = *pages;
3387 		get_page(page);
3388 		vmf->page = page;
3389 		return 0;
3390 	}
3391 
3392 	return VM_FAULT_SIGBUS;
3393 }
3394 
3395 static struct vm_area_struct *__install_special_mapping(
3396 	struct mm_struct *mm,
3397 	unsigned long addr, unsigned long len,
3398 	unsigned long vm_flags, void *priv,
3399 	const struct vm_operations_struct *ops)
3400 {
3401 	int ret;
3402 	struct vm_area_struct *vma;
3403 
3404 	validate_mm_mt(mm);
3405 	vma = vm_area_alloc(mm);
3406 	if (unlikely(vma == NULL))
3407 		return ERR_PTR(-ENOMEM);
3408 
3409 	vma->vm_start = addr;
3410 	vma->vm_end = addr + len;
3411 
3412 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3413 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3414 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3415 
3416 	vma->vm_ops = ops;
3417 	vma->vm_private_data = priv;
3418 
3419 	ret = insert_vm_struct(mm, vma);
3420 	if (ret)
3421 		goto out;
3422 
3423 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3424 
3425 	perf_event_mmap(vma);
3426 
3427 	validate_mm_mt(mm);
3428 	return vma;
3429 
3430 out:
3431 	vm_area_free(vma);
3432 	validate_mm_mt(mm);
3433 	return ERR_PTR(ret);
3434 }
3435 
3436 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3437 	const struct vm_special_mapping *sm)
3438 {
3439 	return vma->vm_private_data == sm &&
3440 		(vma->vm_ops == &special_mapping_vmops ||
3441 		 vma->vm_ops == &legacy_special_mapping_vmops);
3442 }
3443 
3444 /*
3445  * Called with mm->mmap_lock held for writing.
3446  * Insert a new vma covering the given region, with the given flags.
3447  * Its pages are supplied by the given array of struct page *.
3448  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3449  * The region past the last page supplied will always produce SIGBUS.
3450  * The array pointer and the pages it points to are assumed to stay alive
3451  * for as long as this mapping might exist.
3452  */
3453 struct vm_area_struct *_install_special_mapping(
3454 	struct mm_struct *mm,
3455 	unsigned long addr, unsigned long len,
3456 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3457 {
3458 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3459 					&special_mapping_vmops);
3460 }
3461 
3462 int install_special_mapping(struct mm_struct *mm,
3463 			    unsigned long addr, unsigned long len,
3464 			    unsigned long vm_flags, struct page **pages)
3465 {
3466 	struct vm_area_struct *vma = __install_special_mapping(
3467 		mm, addr, len, vm_flags, (void *)pages,
3468 		&legacy_special_mapping_vmops);
3469 
3470 	return PTR_ERR_OR_ZERO(vma);
3471 }
3472 
3473 static DEFINE_MUTEX(mm_all_locks_mutex);
3474 
3475 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3476 {
3477 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3478 		/*
3479 		 * The LSB of head.next can't change from under us
3480 		 * because we hold the mm_all_locks_mutex.
3481 		 */
3482 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3483 		/*
3484 		 * We can safely modify head.next after taking the
3485 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3486 		 * the same anon_vma we won't take it again.
3487 		 *
3488 		 * No need of atomic instructions here, head.next
3489 		 * can't change from under us thanks to the
3490 		 * anon_vma->root->rwsem.
3491 		 */
3492 		if (__test_and_set_bit(0, (unsigned long *)
3493 				       &anon_vma->root->rb_root.rb_root.rb_node))
3494 			BUG();
3495 	}
3496 }
3497 
3498 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3499 {
3500 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3501 		/*
3502 		 * AS_MM_ALL_LOCKS can't change from under us because
3503 		 * we hold the mm_all_locks_mutex.
3504 		 *
3505 		 * Operations on ->flags have to be atomic because
3506 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3507 		 * mm_all_locks_mutex, there may be other cpus
3508 		 * changing other bitflags in parallel to us.
3509 		 */
3510 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3511 			BUG();
3512 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3513 	}
3514 }
3515 
3516 /*
3517  * This operation locks against the VM for all pte/vma/mm related
3518  * operations that could ever happen on a certain mm. This includes
3519  * vmtruncate, try_to_unmap, and all page faults.
3520  *
3521  * The caller must take the mmap_lock in write mode before calling
3522  * mm_take_all_locks(). The caller isn't allowed to release the
3523  * mmap_lock until mm_drop_all_locks() returns.
3524  *
3525  * mmap_lock in write mode is required in order to block all operations
3526  * that could modify pagetables and free pages without need of
3527  * altering the vma layout. It's also needed in write mode to avoid new
3528  * anon_vmas to be associated with existing vmas.
3529  *
3530  * A single task can't take more than one mm_take_all_locks() in a row
3531  * or it would deadlock.
3532  *
3533  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3534  * mapping->flags avoid to take the same lock twice, if more than one
3535  * vma in this mm is backed by the same anon_vma or address_space.
3536  *
3537  * We take locks in following order, accordingly to comment at beginning
3538  * of mm/rmap.c:
3539  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3540  *     hugetlb mapping);
3541  *   - all vmas marked locked
3542  *   - all i_mmap_rwsem locks;
3543  *   - all anon_vma->rwseml
3544  *
3545  * We can take all locks within these types randomly because the VM code
3546  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3547  * mm_all_locks_mutex.
3548  *
3549  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3550  * that may have to take thousand of locks.
3551  *
3552  * mm_take_all_locks() can fail if it's interrupted by signals.
3553  */
3554 int mm_take_all_locks(struct mm_struct *mm)
3555 {
3556 	struct vm_area_struct *vma;
3557 	struct anon_vma_chain *avc;
3558 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3559 
3560 	mmap_assert_write_locked(mm);
3561 
3562 	mutex_lock(&mm_all_locks_mutex);
3563 
3564 	mas_for_each(&mas, vma, ULONG_MAX) {
3565 		if (signal_pending(current))
3566 			goto out_unlock;
3567 		vma_start_write(vma);
3568 	}
3569 
3570 	mas_set(&mas, 0);
3571 	mas_for_each(&mas, vma, ULONG_MAX) {
3572 		if (signal_pending(current))
3573 			goto out_unlock;
3574 		if (vma->vm_file && vma->vm_file->f_mapping &&
3575 				is_vm_hugetlb_page(vma))
3576 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3577 	}
3578 
3579 	mas_set(&mas, 0);
3580 	mas_for_each(&mas, vma, ULONG_MAX) {
3581 		if (signal_pending(current))
3582 			goto out_unlock;
3583 		if (vma->vm_file && vma->vm_file->f_mapping &&
3584 				!is_vm_hugetlb_page(vma))
3585 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3586 	}
3587 
3588 	mas_set(&mas, 0);
3589 	mas_for_each(&mas, vma, ULONG_MAX) {
3590 		if (signal_pending(current))
3591 			goto out_unlock;
3592 		if (vma->anon_vma)
3593 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3594 				vm_lock_anon_vma(mm, avc->anon_vma);
3595 	}
3596 
3597 	return 0;
3598 
3599 out_unlock:
3600 	mm_drop_all_locks(mm);
3601 	return -EINTR;
3602 }
3603 
3604 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3605 {
3606 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3607 		/*
3608 		 * The LSB of head.next can't change to 0 from under
3609 		 * us because we hold the mm_all_locks_mutex.
3610 		 *
3611 		 * We must however clear the bitflag before unlocking
3612 		 * the vma so the users using the anon_vma->rb_root will
3613 		 * never see our bitflag.
3614 		 *
3615 		 * No need of atomic instructions here, head.next
3616 		 * can't change from under us until we release the
3617 		 * anon_vma->root->rwsem.
3618 		 */
3619 		if (!__test_and_clear_bit(0, (unsigned long *)
3620 					  &anon_vma->root->rb_root.rb_root.rb_node))
3621 			BUG();
3622 		anon_vma_unlock_write(anon_vma);
3623 	}
3624 }
3625 
3626 static void vm_unlock_mapping(struct address_space *mapping)
3627 {
3628 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3629 		/*
3630 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3631 		 * because we hold the mm_all_locks_mutex.
3632 		 */
3633 		i_mmap_unlock_write(mapping);
3634 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3635 					&mapping->flags))
3636 			BUG();
3637 	}
3638 }
3639 
3640 /*
3641  * The mmap_lock cannot be released by the caller until
3642  * mm_drop_all_locks() returns.
3643  */
3644 void mm_drop_all_locks(struct mm_struct *mm)
3645 {
3646 	struct vm_area_struct *vma;
3647 	struct anon_vma_chain *avc;
3648 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3649 
3650 	mmap_assert_write_locked(mm);
3651 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3652 
3653 	mas_for_each(&mas, vma, ULONG_MAX) {
3654 		if (vma->anon_vma)
3655 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3656 				vm_unlock_anon_vma(avc->anon_vma);
3657 		if (vma->vm_file && vma->vm_file->f_mapping)
3658 			vm_unlock_mapping(vma->vm_file->f_mapping);
3659 	}
3660 	vma_end_write_all(mm);
3661 
3662 	mutex_unlock(&mm_all_locks_mutex);
3663 }
3664 
3665 /*
3666  * initialise the percpu counter for VM
3667  */
3668 void __init mmap_init(void)
3669 {
3670 	int ret;
3671 
3672 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3673 	VM_BUG_ON(ret);
3674 }
3675 
3676 /*
3677  * Initialise sysctl_user_reserve_kbytes.
3678  *
3679  * This is intended to prevent a user from starting a single memory hogging
3680  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3681  * mode.
3682  *
3683  * The default value is min(3% of free memory, 128MB)
3684  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3685  */
3686 static int init_user_reserve(void)
3687 {
3688 	unsigned long free_kbytes;
3689 
3690 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3691 
3692 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3693 	return 0;
3694 }
3695 subsys_initcall(init_user_reserve);
3696 
3697 /*
3698  * Initialise sysctl_admin_reserve_kbytes.
3699  *
3700  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3701  * to log in and kill a memory hogging process.
3702  *
3703  * Systems with more than 256MB will reserve 8MB, enough to recover
3704  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3705  * only reserve 3% of free pages by default.
3706  */
3707 static int init_admin_reserve(void)
3708 {
3709 	unsigned long free_kbytes;
3710 
3711 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3712 
3713 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3714 	return 0;
3715 }
3716 subsys_initcall(init_admin_reserve);
3717 
3718 /*
3719  * Reinititalise user and admin reserves if memory is added or removed.
3720  *
3721  * The default user reserve max is 128MB, and the default max for the
3722  * admin reserve is 8MB. These are usually, but not always, enough to
3723  * enable recovery from a memory hogging process using login/sshd, a shell,
3724  * and tools like top. It may make sense to increase or even disable the
3725  * reserve depending on the existence of swap or variations in the recovery
3726  * tools. So, the admin may have changed them.
3727  *
3728  * If memory is added and the reserves have been eliminated or increased above
3729  * the default max, then we'll trust the admin.
3730  *
3731  * If memory is removed and there isn't enough free memory, then we
3732  * need to reset the reserves.
3733  *
3734  * Otherwise keep the reserve set by the admin.
3735  */
3736 static int reserve_mem_notifier(struct notifier_block *nb,
3737 			     unsigned long action, void *data)
3738 {
3739 	unsigned long tmp, free_kbytes;
3740 
3741 	switch (action) {
3742 	case MEM_ONLINE:
3743 		/* Default max is 128MB. Leave alone if modified by operator. */
3744 		tmp = sysctl_user_reserve_kbytes;
3745 		if (0 < tmp && tmp < (1UL << 17))
3746 			init_user_reserve();
3747 
3748 		/* Default max is 8MB.  Leave alone if modified by operator. */
3749 		tmp = sysctl_admin_reserve_kbytes;
3750 		if (0 < tmp && tmp < (1UL << 13))
3751 			init_admin_reserve();
3752 
3753 		break;
3754 	case MEM_OFFLINE:
3755 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3756 
3757 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3758 			init_user_reserve();
3759 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3760 				sysctl_user_reserve_kbytes);
3761 		}
3762 
3763 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3764 			init_admin_reserve();
3765 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3766 				sysctl_admin_reserve_kbytes);
3767 		}
3768 		break;
3769 	default:
3770 		break;
3771 	}
3772 	return NOTIFY_OK;
3773 }
3774 
3775 static int __meminit init_reserve_notifier(void)
3776 {
3777 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3778 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3779 
3780 	return 0;
3781 }
3782 subsys_initcall(init_reserve_notifier);
3783