1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/vmacache.h> 18 #include <linux/shm.h> 19 #include <linux/mman.h> 20 #include <linux/pagemap.h> 21 #include <linux/swap.h> 22 #include <linux/syscalls.h> 23 #include <linux/capability.h> 24 #include <linux/init.h> 25 #include <linux/file.h> 26 #include <linux/fs.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/profile.h> 32 #include <linux/export.h> 33 #include <linux/mount.h> 34 #include <linux/mempolicy.h> 35 #include <linux/rmap.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/mmdebug.h> 38 #include <linux/perf_event.h> 39 #include <linux/audit.h> 40 #include <linux/khugepaged.h> 41 #include <linux/uprobes.h> 42 #include <linux/rbtree_augmented.h> 43 #include <linux/notifier.h> 44 #include <linux/memory.h> 45 #include <linux/printk.h> 46 #include <linux/userfaultfd_k.h> 47 #include <linux/moduleparam.h> 48 #include <linux/pkeys.h> 49 #include <linux/oom.h> 50 #include <linux/sched/mm.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/cacheflush.h> 54 #include <asm/tlb.h> 55 #include <asm/mmu_context.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/mmap.h> 59 60 #include "internal.h" 61 62 #ifndef arch_mmap_check 63 #define arch_mmap_check(addr, len, flags) (0) 64 #endif 65 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 70 #endif 71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 75 #endif 76 77 static bool ignore_rlimit_data; 78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 79 80 static void unmap_region(struct mm_struct *mm, 81 struct vm_area_struct *vma, struct vm_area_struct *prev, 82 unsigned long start, unsigned long end); 83 84 /* description of effects of mapping type and prot in current implementation. 85 * this is due to the limited x86 page protection hardware. The expected 86 * behavior is in parens: 87 * 88 * map_type prot 89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (yes) yes w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 95 * w: (no) no w: (no) no w: (copy) copy w: (no) no 96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 97 * 98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 99 * MAP_PRIVATE (with Enhanced PAN supported): 100 * r: (no) no 101 * w: (no) no 102 * x: (yes) yes 103 */ 104 pgprot_t protection_map[16] __ro_after_init = { 105 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 106 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 107 }; 108 109 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 110 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 111 { 112 return prot; 113 } 114 #endif 115 116 pgprot_t vm_get_page_prot(unsigned long vm_flags) 117 { 118 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 119 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 120 pgprot_val(arch_vm_get_page_prot(vm_flags))); 121 122 return arch_filter_pgprot(ret); 123 } 124 EXPORT_SYMBOL(vm_get_page_prot); 125 126 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 127 { 128 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 129 } 130 131 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 132 void vma_set_page_prot(struct vm_area_struct *vma) 133 { 134 unsigned long vm_flags = vma->vm_flags; 135 pgprot_t vm_page_prot; 136 137 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 138 if (vma_wants_writenotify(vma, vm_page_prot)) { 139 vm_flags &= ~VM_SHARED; 140 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 141 } 142 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 143 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 144 } 145 146 /* 147 * Requires inode->i_mapping->i_mmap_rwsem 148 */ 149 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 150 struct file *file, struct address_space *mapping) 151 { 152 if (vma->vm_flags & VM_SHARED) 153 mapping_unmap_writable(mapping); 154 155 flush_dcache_mmap_lock(mapping); 156 vma_interval_tree_remove(vma, &mapping->i_mmap); 157 flush_dcache_mmap_unlock(mapping); 158 } 159 160 /* 161 * Unlink a file-based vm structure from its interval tree, to hide 162 * vma from rmap and vmtruncate before freeing its page tables. 163 */ 164 void unlink_file_vma(struct vm_area_struct *vma) 165 { 166 struct file *file = vma->vm_file; 167 168 if (file) { 169 struct address_space *mapping = file->f_mapping; 170 i_mmap_lock_write(mapping); 171 __remove_shared_vm_struct(vma, file, mapping); 172 i_mmap_unlock_write(mapping); 173 } 174 } 175 176 /* 177 * Close a vm structure and free it, returning the next. 178 */ 179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 180 { 181 struct vm_area_struct *next = vma->vm_next; 182 183 might_sleep(); 184 if (vma->vm_ops && vma->vm_ops->close) 185 vma->vm_ops->close(vma); 186 if (vma->vm_file) 187 fput(vma->vm_file); 188 mpol_put(vma_policy(vma)); 189 vm_area_free(vma); 190 return next; 191 } 192 193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 194 struct list_head *uf); 195 SYSCALL_DEFINE1(brk, unsigned long, brk) 196 { 197 unsigned long newbrk, oldbrk, origbrk; 198 struct mm_struct *mm = current->mm; 199 struct vm_area_struct *next; 200 unsigned long min_brk; 201 bool populate; 202 bool downgraded = false; 203 LIST_HEAD(uf); 204 205 if (mmap_write_lock_killable(mm)) 206 return -EINTR; 207 208 origbrk = mm->brk; 209 210 #ifdef CONFIG_COMPAT_BRK 211 /* 212 * CONFIG_COMPAT_BRK can still be overridden by setting 213 * randomize_va_space to 2, which will still cause mm->start_brk 214 * to be arbitrarily shifted 215 */ 216 if (current->brk_randomized) 217 min_brk = mm->start_brk; 218 else 219 min_brk = mm->end_data; 220 #else 221 min_brk = mm->start_brk; 222 #endif 223 if (brk < min_brk) 224 goto out; 225 226 /* 227 * Check against rlimit here. If this check is done later after the test 228 * of oldbrk with newbrk then it can escape the test and let the data 229 * segment grow beyond its set limit the in case where the limit is 230 * not page aligned -Ram Gupta 231 */ 232 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 233 mm->end_data, mm->start_data)) 234 goto out; 235 236 newbrk = PAGE_ALIGN(brk); 237 oldbrk = PAGE_ALIGN(mm->brk); 238 if (oldbrk == newbrk) { 239 mm->brk = brk; 240 goto success; 241 } 242 243 /* 244 * Always allow shrinking brk. 245 * __do_munmap() may downgrade mmap_lock to read. 246 */ 247 if (brk <= mm->brk) { 248 int ret; 249 250 /* 251 * mm->brk must to be protected by write mmap_lock so update it 252 * before downgrading mmap_lock. When __do_munmap() fails, 253 * mm->brk will be restored from origbrk. 254 */ 255 mm->brk = brk; 256 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 257 if (ret < 0) { 258 mm->brk = origbrk; 259 goto out; 260 } else if (ret == 1) { 261 downgraded = true; 262 } 263 goto success; 264 } 265 266 /* Check against existing mmap mappings. */ 267 next = find_vma(mm, oldbrk); 268 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 269 goto out; 270 271 /* Ok, looks good - let it rip. */ 272 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 273 goto out; 274 mm->brk = brk; 275 276 success: 277 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 278 if (downgraded) 279 mmap_read_unlock(mm); 280 else 281 mmap_write_unlock(mm); 282 userfaultfd_unmap_complete(mm, &uf); 283 if (populate) 284 mm_populate(oldbrk, newbrk - oldbrk); 285 return brk; 286 287 out: 288 mmap_write_unlock(mm); 289 return origbrk; 290 } 291 292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 293 { 294 unsigned long gap, prev_end; 295 296 /* 297 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 298 * allow two stack_guard_gaps between them here, and when choosing 299 * an unmapped area; whereas when expanding we only require one. 300 * That's a little inconsistent, but keeps the code here simpler. 301 */ 302 gap = vm_start_gap(vma); 303 if (vma->vm_prev) { 304 prev_end = vm_end_gap(vma->vm_prev); 305 if (gap > prev_end) 306 gap -= prev_end; 307 else 308 gap = 0; 309 } 310 return gap; 311 } 312 313 #ifdef CONFIG_DEBUG_VM_RB 314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 315 { 316 unsigned long max = vma_compute_gap(vma), subtree_gap; 317 if (vma->vm_rb.rb_left) { 318 subtree_gap = rb_entry(vma->vm_rb.rb_left, 319 struct vm_area_struct, vm_rb)->rb_subtree_gap; 320 if (subtree_gap > max) 321 max = subtree_gap; 322 } 323 if (vma->vm_rb.rb_right) { 324 subtree_gap = rb_entry(vma->vm_rb.rb_right, 325 struct vm_area_struct, vm_rb)->rb_subtree_gap; 326 if (subtree_gap > max) 327 max = subtree_gap; 328 } 329 return max; 330 } 331 332 static int browse_rb(struct mm_struct *mm) 333 { 334 struct rb_root *root = &mm->mm_rb; 335 int i = 0, j, bug = 0; 336 struct rb_node *nd, *pn = NULL; 337 unsigned long prev = 0, pend = 0; 338 339 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 340 struct vm_area_struct *vma; 341 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 342 if (vma->vm_start < prev) { 343 pr_emerg("vm_start %lx < prev %lx\n", 344 vma->vm_start, prev); 345 bug = 1; 346 } 347 if (vma->vm_start < pend) { 348 pr_emerg("vm_start %lx < pend %lx\n", 349 vma->vm_start, pend); 350 bug = 1; 351 } 352 if (vma->vm_start > vma->vm_end) { 353 pr_emerg("vm_start %lx > vm_end %lx\n", 354 vma->vm_start, vma->vm_end); 355 bug = 1; 356 } 357 spin_lock(&mm->page_table_lock); 358 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 359 pr_emerg("free gap %lx, correct %lx\n", 360 vma->rb_subtree_gap, 361 vma_compute_subtree_gap(vma)); 362 bug = 1; 363 } 364 spin_unlock(&mm->page_table_lock); 365 i++; 366 pn = nd; 367 prev = vma->vm_start; 368 pend = vma->vm_end; 369 } 370 j = 0; 371 for (nd = pn; nd; nd = rb_prev(nd)) 372 j++; 373 if (i != j) { 374 pr_emerg("backwards %d, forwards %d\n", j, i); 375 bug = 1; 376 } 377 return bug ? -1 : i; 378 } 379 380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 381 { 382 struct rb_node *nd; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 VM_BUG_ON_VMA(vma != ignore && 388 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 389 vma); 390 } 391 } 392 393 static void validate_mm(struct mm_struct *mm) 394 { 395 int bug = 0; 396 int i = 0; 397 unsigned long highest_address = 0; 398 struct vm_area_struct *vma = mm->mmap; 399 400 while (vma) { 401 struct anon_vma *anon_vma = vma->anon_vma; 402 struct anon_vma_chain *avc; 403 404 if (anon_vma) { 405 anon_vma_lock_read(anon_vma); 406 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 407 anon_vma_interval_tree_verify(avc); 408 anon_vma_unlock_read(anon_vma); 409 } 410 411 highest_address = vm_end_gap(vma); 412 vma = vma->vm_next; 413 i++; 414 } 415 if (i != mm->map_count) { 416 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 417 bug = 1; 418 } 419 if (highest_address != mm->highest_vm_end) { 420 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 421 mm->highest_vm_end, highest_address); 422 bug = 1; 423 } 424 i = browse_rb(mm); 425 if (i != mm->map_count) { 426 if (i != -1) 427 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 428 bug = 1; 429 } 430 VM_BUG_ON_MM(bug, mm); 431 } 432 #else 433 #define validate_mm_rb(root, ignore) do { } while (0) 434 #define validate_mm(mm) do { } while (0) 435 #endif 436 437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 438 struct vm_area_struct, vm_rb, 439 unsigned long, rb_subtree_gap, vma_compute_gap) 440 441 /* 442 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 443 * vma->vm_prev->vm_end values changed, without modifying the vma's position 444 * in the rbtree. 445 */ 446 static void vma_gap_update(struct vm_area_struct *vma) 447 { 448 /* 449 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 450 * a callback function that does exactly what we want. 451 */ 452 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 453 } 454 455 static inline void vma_rb_insert(struct vm_area_struct *vma, 456 struct rb_root *root) 457 { 458 /* All rb_subtree_gap values must be consistent prior to insertion */ 459 validate_mm_rb(root, NULL); 460 461 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 462 } 463 464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 465 { 466 /* 467 * Note rb_erase_augmented is a fairly large inline function, 468 * so make sure we instantiate it only once with our desired 469 * augmented rbtree callbacks. 470 */ 471 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 472 } 473 474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 475 struct rb_root *root, 476 struct vm_area_struct *ignore) 477 { 478 /* 479 * All rb_subtree_gap values must be consistent prior to erase, 480 * with the possible exception of 481 * 482 * a. the "next" vma being erased if next->vm_start was reduced in 483 * __vma_adjust() -> __vma_unlink() 484 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 485 * vma_rb_erase() 486 */ 487 validate_mm_rb(root, ignore); 488 489 __vma_rb_erase(vma, root); 490 } 491 492 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 493 struct rb_root *root) 494 { 495 vma_rb_erase_ignore(vma, root, vma); 496 } 497 498 /* 499 * vma has some anon_vma assigned, and is already inserted on that 500 * anon_vma's interval trees. 501 * 502 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 503 * vma must be removed from the anon_vma's interval trees using 504 * anon_vma_interval_tree_pre_update_vma(). 505 * 506 * After the update, the vma will be reinserted using 507 * anon_vma_interval_tree_post_update_vma(). 508 * 509 * The entire update must be protected by exclusive mmap_lock and by 510 * the root anon_vma's mutex. 511 */ 512 static inline void 513 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 514 { 515 struct anon_vma_chain *avc; 516 517 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 518 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 519 } 520 521 static inline void 522 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 523 { 524 struct anon_vma_chain *avc; 525 526 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 527 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 528 } 529 530 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 531 unsigned long end, struct vm_area_struct **pprev, 532 struct rb_node ***rb_link, struct rb_node **rb_parent) 533 { 534 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 535 536 mmap_assert_locked(mm); 537 __rb_link = &mm->mm_rb.rb_node; 538 rb_prev = __rb_parent = NULL; 539 540 while (*__rb_link) { 541 struct vm_area_struct *vma_tmp; 542 543 __rb_parent = *__rb_link; 544 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 545 546 if (vma_tmp->vm_end > addr) { 547 /* Fail if an existing vma overlaps the area */ 548 if (vma_tmp->vm_start < end) 549 return -ENOMEM; 550 __rb_link = &__rb_parent->rb_left; 551 } else { 552 rb_prev = __rb_parent; 553 __rb_link = &__rb_parent->rb_right; 554 } 555 } 556 557 *pprev = NULL; 558 if (rb_prev) 559 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 560 *rb_link = __rb_link; 561 *rb_parent = __rb_parent; 562 return 0; 563 } 564 565 /* 566 * vma_next() - Get the next VMA. 567 * @mm: The mm_struct. 568 * @vma: The current vma. 569 * 570 * If @vma is NULL, return the first vma in the mm. 571 * 572 * Returns: The next VMA after @vma. 573 */ 574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 575 struct vm_area_struct *vma) 576 { 577 if (!vma) 578 return mm->mmap; 579 580 return vma->vm_next; 581 } 582 583 /* 584 * munmap_vma_range() - munmap VMAs that overlap a range. 585 * @mm: The mm struct 586 * @start: The start of the range. 587 * @len: The length of the range. 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 589 * @rb_link: the rb_node 590 * @rb_parent: the parent rb_node 591 * 592 * Find all the vm_area_struct that overlap from @start to 593 * @end and munmap them. Set @pprev to the previous vm_area_struct. 594 * 595 * Returns: -ENOMEM on munmap failure or 0 on success. 596 */ 597 static inline int 598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 599 struct vm_area_struct **pprev, struct rb_node ***link, 600 struct rb_node **parent, struct list_head *uf) 601 { 602 603 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 604 if (do_munmap(mm, start, len, uf)) 605 return -ENOMEM; 606 607 return 0; 608 } 609 static unsigned long count_vma_pages_range(struct mm_struct *mm, 610 unsigned long addr, unsigned long end) 611 { 612 unsigned long nr_pages = 0; 613 struct vm_area_struct *vma; 614 615 /* Find first overlapping mapping */ 616 vma = find_vma_intersection(mm, addr, end); 617 if (!vma) 618 return 0; 619 620 nr_pages = (min(end, vma->vm_end) - 621 max(addr, vma->vm_start)) >> PAGE_SHIFT; 622 623 /* Iterate over the rest of the overlaps */ 624 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 625 unsigned long overlap_len; 626 627 if (vma->vm_start > end) 628 break; 629 630 overlap_len = min(end, vma->vm_end) - vma->vm_start; 631 nr_pages += overlap_len >> PAGE_SHIFT; 632 } 633 634 return nr_pages; 635 } 636 637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct rb_node **rb_link, struct rb_node *rb_parent) 639 { 640 /* Update tracking information for the gap following the new vma. */ 641 if (vma->vm_next) 642 vma_gap_update(vma->vm_next); 643 else 644 mm->highest_vm_end = vm_end_gap(vma); 645 646 /* 647 * vma->vm_prev wasn't known when we followed the rbtree to find the 648 * correct insertion point for that vma. As a result, we could not 649 * update the vma vm_rb parents rb_subtree_gap values on the way down. 650 * So, we first insert the vma with a zero rb_subtree_gap value 651 * (to be consistent with what we did on the way down), and then 652 * immediately update the gap to the correct value. Finally we 653 * rebalance the rbtree after all augmented values have been set. 654 */ 655 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 656 vma->rb_subtree_gap = 0; 657 vma_gap_update(vma); 658 vma_rb_insert(vma, &mm->mm_rb); 659 } 660 661 static void __vma_link_file(struct vm_area_struct *vma) 662 { 663 struct file *file; 664 665 file = vma->vm_file; 666 if (file) { 667 struct address_space *mapping = file->f_mapping; 668 669 if (vma->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 672 flush_dcache_mmap_lock(mapping); 673 vma_interval_tree_insert(vma, &mapping->i_mmap); 674 flush_dcache_mmap_unlock(mapping); 675 } 676 } 677 678 static void 679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 680 struct vm_area_struct *prev, struct rb_node **rb_link, 681 struct rb_node *rb_parent) 682 { 683 __vma_link_list(mm, vma, prev); 684 __vma_link_rb(mm, vma, rb_link, rb_parent); 685 } 686 687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 688 struct vm_area_struct *prev, struct rb_node **rb_link, 689 struct rb_node *rb_parent) 690 { 691 struct address_space *mapping = NULL; 692 693 if (vma->vm_file) { 694 mapping = vma->vm_file->f_mapping; 695 i_mmap_lock_write(mapping); 696 } 697 698 __vma_link(mm, vma, prev, rb_link, rb_parent); 699 __vma_link_file(vma); 700 701 if (mapping) 702 i_mmap_unlock_write(mapping); 703 704 mm->map_count++; 705 validate_mm(mm); 706 } 707 708 /* 709 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 710 * mm's list and rbtree. It has already been inserted into the interval tree. 711 */ 712 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 713 { 714 struct vm_area_struct *prev; 715 struct rb_node **rb_link, *rb_parent; 716 717 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 718 &prev, &rb_link, &rb_parent)) 719 BUG(); 720 __vma_link(mm, vma, prev, rb_link, rb_parent); 721 mm->map_count++; 722 } 723 724 static __always_inline void __vma_unlink(struct mm_struct *mm, 725 struct vm_area_struct *vma, 726 struct vm_area_struct *ignore) 727 { 728 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 729 __vma_unlink_list(mm, vma); 730 /* Kill the cache */ 731 vmacache_invalidate(mm); 732 } 733 734 /* 735 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 736 * is already present in an i_mmap tree without adjusting the tree. 737 * The following helper function should be used when such adjustments 738 * are necessary. The "insert" vma (if any) is to be inserted 739 * before we drop the necessary locks. 740 */ 741 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 742 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 743 struct vm_area_struct *expand) 744 { 745 struct mm_struct *mm = vma->vm_mm; 746 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 747 struct address_space *mapping = NULL; 748 struct rb_root_cached *root = NULL; 749 struct anon_vma *anon_vma = NULL; 750 struct file *file = vma->vm_file; 751 bool start_changed = false, end_changed = false; 752 long adjust_next = 0; 753 int remove_next = 0; 754 755 if (next && !insert) { 756 struct vm_area_struct *exporter = NULL, *importer = NULL; 757 758 if (end >= next->vm_end) { 759 /* 760 * vma expands, overlapping all the next, and 761 * perhaps the one after too (mprotect case 6). 762 * The only other cases that gets here are 763 * case 1, case 7 and case 8. 764 */ 765 if (next == expand) { 766 /* 767 * The only case where we don't expand "vma" 768 * and we expand "next" instead is case 8. 769 */ 770 VM_WARN_ON(end != next->vm_end); 771 /* 772 * remove_next == 3 means we're 773 * removing "vma" and that to do so we 774 * swapped "vma" and "next". 775 */ 776 remove_next = 3; 777 VM_WARN_ON(file != next->vm_file); 778 swap(vma, next); 779 } else { 780 VM_WARN_ON(expand != vma); 781 /* 782 * case 1, 6, 7, remove_next == 2 is case 6, 783 * remove_next == 1 is case 1 or 7. 784 */ 785 remove_next = 1 + (end > next->vm_end); 786 VM_WARN_ON(remove_next == 2 && 787 end != next->vm_next->vm_end); 788 /* trim end to next, for case 6 first pass */ 789 end = next->vm_end; 790 } 791 792 exporter = next; 793 importer = vma; 794 795 /* 796 * If next doesn't have anon_vma, import from vma after 797 * next, if the vma overlaps with it. 798 */ 799 if (remove_next == 2 && !next->anon_vma) 800 exporter = next->vm_next; 801 802 } else if (end > next->vm_start) { 803 /* 804 * vma expands, overlapping part of the next: 805 * mprotect case 5 shifting the boundary up. 806 */ 807 adjust_next = (end - next->vm_start); 808 exporter = next; 809 importer = vma; 810 VM_WARN_ON(expand != importer); 811 } else if (end < vma->vm_end) { 812 /* 813 * vma shrinks, and !insert tells it's not 814 * split_vma inserting another: so it must be 815 * mprotect case 4 shifting the boundary down. 816 */ 817 adjust_next = -(vma->vm_end - end); 818 exporter = vma; 819 importer = next; 820 VM_WARN_ON(expand != importer); 821 } 822 823 /* 824 * Easily overlooked: when mprotect shifts the boundary, 825 * make sure the expanding vma has anon_vma set if the 826 * shrinking vma had, to cover any anon pages imported. 827 */ 828 if (exporter && exporter->anon_vma && !importer->anon_vma) { 829 int error; 830 831 importer->anon_vma = exporter->anon_vma; 832 error = anon_vma_clone(importer, exporter); 833 if (error) 834 return error; 835 } 836 } 837 again: 838 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 839 840 if (file) { 841 mapping = file->f_mapping; 842 root = &mapping->i_mmap; 843 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 844 845 if (adjust_next) 846 uprobe_munmap(next, next->vm_start, next->vm_end); 847 848 i_mmap_lock_write(mapping); 849 if (insert) { 850 /* 851 * Put into interval tree now, so instantiated pages 852 * are visible to arm/parisc __flush_dcache_page 853 * throughout; but we cannot insert into address 854 * space until vma start or end is updated. 855 */ 856 __vma_link_file(insert); 857 } 858 } 859 860 anon_vma = vma->anon_vma; 861 if (!anon_vma && adjust_next) 862 anon_vma = next->anon_vma; 863 if (anon_vma) { 864 VM_WARN_ON(adjust_next && next->anon_vma && 865 anon_vma != next->anon_vma); 866 anon_vma_lock_write(anon_vma); 867 anon_vma_interval_tree_pre_update_vma(vma); 868 if (adjust_next) 869 anon_vma_interval_tree_pre_update_vma(next); 870 } 871 872 if (file) { 873 flush_dcache_mmap_lock(mapping); 874 vma_interval_tree_remove(vma, root); 875 if (adjust_next) 876 vma_interval_tree_remove(next, root); 877 } 878 879 if (start != vma->vm_start) { 880 vma->vm_start = start; 881 start_changed = true; 882 } 883 if (end != vma->vm_end) { 884 vma->vm_end = end; 885 end_changed = true; 886 } 887 vma->vm_pgoff = pgoff; 888 if (adjust_next) { 889 next->vm_start += adjust_next; 890 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 891 } 892 893 if (file) { 894 if (adjust_next) 895 vma_interval_tree_insert(next, root); 896 vma_interval_tree_insert(vma, root); 897 flush_dcache_mmap_unlock(mapping); 898 } 899 900 if (remove_next) { 901 /* 902 * vma_merge has merged next into vma, and needs 903 * us to remove next before dropping the locks. 904 */ 905 if (remove_next != 3) 906 __vma_unlink(mm, next, next); 907 else 908 /* 909 * vma is not before next if they've been 910 * swapped. 911 * 912 * pre-swap() next->vm_start was reduced so 913 * tell validate_mm_rb to ignore pre-swap() 914 * "next" (which is stored in post-swap() 915 * "vma"). 916 */ 917 __vma_unlink(mm, next, vma); 918 if (file) 919 __remove_shared_vm_struct(next, file, mapping); 920 } else if (insert) { 921 /* 922 * split_vma has split insert from vma, and needs 923 * us to insert it before dropping the locks 924 * (it may either follow vma or precede it). 925 */ 926 __insert_vm_struct(mm, insert); 927 } else { 928 if (start_changed) 929 vma_gap_update(vma); 930 if (end_changed) { 931 if (!next) 932 mm->highest_vm_end = vm_end_gap(vma); 933 else if (!adjust_next) 934 vma_gap_update(next); 935 } 936 } 937 938 if (anon_vma) { 939 anon_vma_interval_tree_post_update_vma(vma); 940 if (adjust_next) 941 anon_vma_interval_tree_post_update_vma(next); 942 anon_vma_unlock_write(anon_vma); 943 } 944 945 if (file) { 946 i_mmap_unlock_write(mapping); 947 uprobe_mmap(vma); 948 949 if (adjust_next) 950 uprobe_mmap(next); 951 } 952 953 if (remove_next) { 954 if (file) { 955 uprobe_munmap(next, next->vm_start, next->vm_end); 956 fput(file); 957 } 958 if (next->anon_vma) 959 anon_vma_merge(vma, next); 960 mm->map_count--; 961 mpol_put(vma_policy(next)); 962 vm_area_free(next); 963 /* 964 * In mprotect's case 6 (see comments on vma_merge), 965 * we must remove another next too. It would clutter 966 * up the code too much to do both in one go. 967 */ 968 if (remove_next != 3) { 969 /* 970 * If "next" was removed and vma->vm_end was 971 * expanded (up) over it, in turn 972 * "next->vm_prev->vm_end" changed and the 973 * "vma->vm_next" gap must be updated. 974 */ 975 next = vma->vm_next; 976 } else { 977 /* 978 * For the scope of the comment "next" and 979 * "vma" considered pre-swap(): if "vma" was 980 * removed, next->vm_start was expanded (down) 981 * over it and the "next" gap must be updated. 982 * Because of the swap() the post-swap() "vma" 983 * actually points to pre-swap() "next" 984 * (post-swap() "next" as opposed is now a 985 * dangling pointer). 986 */ 987 next = vma; 988 } 989 if (remove_next == 2) { 990 remove_next = 1; 991 end = next->vm_end; 992 goto again; 993 } 994 else if (next) 995 vma_gap_update(next); 996 else { 997 /* 998 * If remove_next == 2 we obviously can't 999 * reach this path. 1000 * 1001 * If remove_next == 3 we can't reach this 1002 * path because pre-swap() next is always not 1003 * NULL. pre-swap() "next" is not being 1004 * removed and its next->vm_end is not altered 1005 * (and furthermore "end" already matches 1006 * next->vm_end in remove_next == 3). 1007 * 1008 * We reach this only in the remove_next == 1 1009 * case if the "next" vma that was removed was 1010 * the highest vma of the mm. However in such 1011 * case next->vm_end == "end" and the extended 1012 * "vma" has vma->vm_end == next->vm_end so 1013 * mm->highest_vm_end doesn't need any update 1014 * in remove_next == 1 case. 1015 */ 1016 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1017 } 1018 } 1019 if (insert && file) 1020 uprobe_mmap(insert); 1021 1022 validate_mm(mm); 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * If the vma has a ->close operation then the driver probably needs to release 1029 * per-vma resources, so we don't attempt to merge those. 1030 */ 1031 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1032 struct file *file, unsigned long vm_flags, 1033 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1034 struct anon_vma_name *anon_name) 1035 { 1036 /* 1037 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1038 * match the flags but dirty bit -- the caller should mark 1039 * merged VMA as dirty. If dirty bit won't be excluded from 1040 * comparison, we increase pressure on the memory system forcing 1041 * the kernel to generate new VMAs when old one could be 1042 * extended instead. 1043 */ 1044 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1045 return 0; 1046 if (vma->vm_file != file) 1047 return 0; 1048 if (vma->vm_ops && vma->vm_ops->close) 1049 return 0; 1050 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1051 return 0; 1052 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 1053 return 0; 1054 return 1; 1055 } 1056 1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1058 struct anon_vma *anon_vma2, 1059 struct vm_area_struct *vma) 1060 { 1061 /* 1062 * The list_is_singular() test is to avoid merging VMA cloned from 1063 * parents. This can improve scalability caused by anon_vma lock. 1064 */ 1065 if ((!anon_vma1 || !anon_vma2) && (!vma || 1066 list_is_singular(&vma->anon_vma_chain))) 1067 return 1; 1068 return anon_vma1 == anon_vma2; 1069 } 1070 1071 /* 1072 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1073 * in front of (at a lower virtual address and file offset than) the vma. 1074 * 1075 * We cannot merge two vmas if they have differently assigned (non-NULL) 1076 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1077 * 1078 * We don't check here for the merged mmap wrapping around the end of pagecache 1079 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1080 * wrap, nor mmaps which cover the final page at index -1UL. 1081 */ 1082 static int 1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1084 struct anon_vma *anon_vma, struct file *file, 1085 pgoff_t vm_pgoff, 1086 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1087 struct anon_vma_name *anon_name) 1088 { 1089 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1090 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1091 if (vma->vm_pgoff == vm_pgoff) 1092 return 1; 1093 } 1094 return 0; 1095 } 1096 1097 /* 1098 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1099 * beyond (at a higher virtual address and file offset than) the vma. 1100 * 1101 * We cannot merge two vmas if they have differently assigned (non-NULL) 1102 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1103 */ 1104 static int 1105 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1106 struct anon_vma *anon_vma, struct file *file, 1107 pgoff_t vm_pgoff, 1108 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1109 struct anon_vma_name *anon_name) 1110 { 1111 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1112 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1113 pgoff_t vm_pglen; 1114 vm_pglen = vma_pages(vma); 1115 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1116 return 1; 1117 } 1118 return 0; 1119 } 1120 1121 /* 1122 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 1123 * figure out whether that can be merged with its predecessor or its 1124 * successor. Or both (it neatly fills a hole). 1125 * 1126 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1127 * certain not to be mapped by the time vma_merge is called; but when 1128 * called for mprotect, it is certain to be already mapped (either at 1129 * an offset within prev, or at the start of next), and the flags of 1130 * this area are about to be changed to vm_flags - and the no-change 1131 * case has already been eliminated. 1132 * 1133 * The following mprotect cases have to be considered, where AAAA is 1134 * the area passed down from mprotect_fixup, never extending beyond one 1135 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1136 * 1137 * AAAA AAAA AAAA 1138 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1139 * cannot merge might become might become 1140 * PPNNNNNNNNNN PPPPPPPPPPNN 1141 * mmap, brk or case 4 below case 5 below 1142 * mremap move: 1143 * AAAA AAAA 1144 * PPPP NNNN PPPPNNNNXXXX 1145 * might become might become 1146 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1147 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1148 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1149 * 1150 * It is important for case 8 that the vma NNNN overlapping the 1151 * region AAAA is never going to extended over XXXX. Instead XXXX must 1152 * be extended in region AAAA and NNNN must be removed. This way in 1153 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1154 * rmap_locks, the properties of the merged vma will be already 1155 * correct for the whole merged range. Some of those properties like 1156 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1157 * be correct for the whole merged range immediately after the 1158 * rmap_locks are released. Otherwise if XXXX would be removed and 1159 * NNNN would be extended over the XXXX range, remove_migration_ptes 1160 * or other rmap walkers (if working on addresses beyond the "end" 1161 * parameter) may establish ptes with the wrong permissions of NNNN 1162 * instead of the right permissions of XXXX. 1163 */ 1164 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1165 struct vm_area_struct *prev, unsigned long addr, 1166 unsigned long end, unsigned long vm_flags, 1167 struct anon_vma *anon_vma, struct file *file, 1168 pgoff_t pgoff, struct mempolicy *policy, 1169 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1170 struct anon_vma_name *anon_name) 1171 { 1172 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1173 struct vm_area_struct *area, *next; 1174 int err; 1175 1176 /* 1177 * We later require that vma->vm_flags == vm_flags, 1178 * so this tests vma->vm_flags & VM_SPECIAL, too. 1179 */ 1180 if (vm_flags & VM_SPECIAL) 1181 return NULL; 1182 1183 next = vma_next(mm, prev); 1184 area = next; 1185 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1186 next = next->vm_next; 1187 1188 /* verify some invariant that must be enforced by the caller */ 1189 VM_WARN_ON(prev && addr <= prev->vm_start); 1190 VM_WARN_ON(area && end > area->vm_end); 1191 VM_WARN_ON(addr >= end); 1192 1193 /* 1194 * Can it merge with the predecessor? 1195 */ 1196 if (prev && prev->vm_end == addr && 1197 mpol_equal(vma_policy(prev), policy) && 1198 can_vma_merge_after(prev, vm_flags, 1199 anon_vma, file, pgoff, 1200 vm_userfaultfd_ctx, anon_name)) { 1201 /* 1202 * OK, it can. Can we now merge in the successor as well? 1203 */ 1204 if (next && end == next->vm_start && 1205 mpol_equal(policy, vma_policy(next)) && 1206 can_vma_merge_before(next, vm_flags, 1207 anon_vma, file, 1208 pgoff+pglen, 1209 vm_userfaultfd_ctx, anon_name) && 1210 is_mergeable_anon_vma(prev->anon_vma, 1211 next->anon_vma, NULL)) { 1212 /* cases 1, 6 */ 1213 err = __vma_adjust(prev, prev->vm_start, 1214 next->vm_end, prev->vm_pgoff, NULL, 1215 prev); 1216 } else /* cases 2, 5, 7 */ 1217 err = __vma_adjust(prev, prev->vm_start, 1218 end, prev->vm_pgoff, NULL, prev); 1219 if (err) 1220 return NULL; 1221 khugepaged_enter_vma_merge(prev, vm_flags); 1222 return prev; 1223 } 1224 1225 /* 1226 * Can this new request be merged in front of next? 1227 */ 1228 if (next && end == next->vm_start && 1229 mpol_equal(policy, vma_policy(next)) && 1230 can_vma_merge_before(next, vm_flags, 1231 anon_vma, file, pgoff+pglen, 1232 vm_userfaultfd_ctx, anon_name)) { 1233 if (prev && addr < prev->vm_end) /* case 4 */ 1234 err = __vma_adjust(prev, prev->vm_start, 1235 addr, prev->vm_pgoff, NULL, next); 1236 else { /* cases 3, 8 */ 1237 err = __vma_adjust(area, addr, next->vm_end, 1238 next->vm_pgoff - pglen, NULL, next); 1239 /* 1240 * In case 3 area is already equal to next and 1241 * this is a noop, but in case 8 "area" has 1242 * been removed and next was expanded over it. 1243 */ 1244 area = next; 1245 } 1246 if (err) 1247 return NULL; 1248 khugepaged_enter_vma_merge(area, vm_flags); 1249 return area; 1250 } 1251 1252 return NULL; 1253 } 1254 1255 /* 1256 * Rough compatibility check to quickly see if it's even worth looking 1257 * at sharing an anon_vma. 1258 * 1259 * They need to have the same vm_file, and the flags can only differ 1260 * in things that mprotect may change. 1261 * 1262 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1263 * we can merge the two vma's. For example, we refuse to merge a vma if 1264 * there is a vm_ops->close() function, because that indicates that the 1265 * driver is doing some kind of reference counting. But that doesn't 1266 * really matter for the anon_vma sharing case. 1267 */ 1268 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1269 { 1270 return a->vm_end == b->vm_start && 1271 mpol_equal(vma_policy(a), vma_policy(b)) && 1272 a->vm_file == b->vm_file && 1273 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1274 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1275 } 1276 1277 /* 1278 * Do some basic sanity checking to see if we can re-use the anon_vma 1279 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1280 * the same as 'old', the other will be the new one that is trying 1281 * to share the anon_vma. 1282 * 1283 * NOTE! This runs with mm_sem held for reading, so it is possible that 1284 * the anon_vma of 'old' is concurrently in the process of being set up 1285 * by another page fault trying to merge _that_. But that's ok: if it 1286 * is being set up, that automatically means that it will be a singleton 1287 * acceptable for merging, so we can do all of this optimistically. But 1288 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1289 * 1290 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1291 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1292 * is to return an anon_vma that is "complex" due to having gone through 1293 * a fork). 1294 * 1295 * We also make sure that the two vma's are compatible (adjacent, 1296 * and with the same memory policies). That's all stable, even with just 1297 * a read lock on the mm_sem. 1298 */ 1299 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1300 { 1301 if (anon_vma_compatible(a, b)) { 1302 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1303 1304 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1305 return anon_vma; 1306 } 1307 return NULL; 1308 } 1309 1310 /* 1311 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1312 * neighbouring vmas for a suitable anon_vma, before it goes off 1313 * to allocate a new anon_vma. It checks because a repetitive 1314 * sequence of mprotects and faults may otherwise lead to distinct 1315 * anon_vmas being allocated, preventing vma merge in subsequent 1316 * mprotect. 1317 */ 1318 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1319 { 1320 struct anon_vma *anon_vma = NULL; 1321 1322 /* Try next first. */ 1323 if (vma->vm_next) { 1324 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1325 if (anon_vma) 1326 return anon_vma; 1327 } 1328 1329 /* Try prev next. */ 1330 if (vma->vm_prev) 1331 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1332 1333 /* 1334 * We might reach here with anon_vma == NULL if we can't find 1335 * any reusable anon_vma. 1336 * There's no absolute need to look only at touching neighbours: 1337 * we could search further afield for "compatible" anon_vmas. 1338 * But it would probably just be a waste of time searching, 1339 * or lead to too many vmas hanging off the same anon_vma. 1340 * We're trying to allow mprotect remerging later on, 1341 * not trying to minimize memory used for anon_vmas. 1342 */ 1343 return anon_vma; 1344 } 1345 1346 /* 1347 * If a hint addr is less than mmap_min_addr change hint to be as 1348 * low as possible but still greater than mmap_min_addr 1349 */ 1350 static inline unsigned long round_hint_to_min(unsigned long hint) 1351 { 1352 hint &= PAGE_MASK; 1353 if (((void *)hint != NULL) && 1354 (hint < mmap_min_addr)) 1355 return PAGE_ALIGN(mmap_min_addr); 1356 return hint; 1357 } 1358 1359 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1360 unsigned long len) 1361 { 1362 unsigned long locked, lock_limit; 1363 1364 /* mlock MCL_FUTURE? */ 1365 if (flags & VM_LOCKED) { 1366 locked = len >> PAGE_SHIFT; 1367 locked += mm->locked_vm; 1368 lock_limit = rlimit(RLIMIT_MEMLOCK); 1369 lock_limit >>= PAGE_SHIFT; 1370 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1371 return -EAGAIN; 1372 } 1373 return 0; 1374 } 1375 1376 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1377 { 1378 if (S_ISREG(inode->i_mode)) 1379 return MAX_LFS_FILESIZE; 1380 1381 if (S_ISBLK(inode->i_mode)) 1382 return MAX_LFS_FILESIZE; 1383 1384 if (S_ISSOCK(inode->i_mode)) 1385 return MAX_LFS_FILESIZE; 1386 1387 /* Special "we do even unsigned file positions" case */ 1388 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1389 return 0; 1390 1391 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1392 return ULONG_MAX; 1393 } 1394 1395 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1396 unsigned long pgoff, unsigned long len) 1397 { 1398 u64 maxsize = file_mmap_size_max(file, inode); 1399 1400 if (maxsize && len > maxsize) 1401 return false; 1402 maxsize -= len; 1403 if (pgoff > maxsize >> PAGE_SHIFT) 1404 return false; 1405 return true; 1406 } 1407 1408 /* 1409 * The caller must write-lock current->mm->mmap_lock. 1410 */ 1411 unsigned long do_mmap(struct file *file, unsigned long addr, 1412 unsigned long len, unsigned long prot, 1413 unsigned long flags, unsigned long pgoff, 1414 unsigned long *populate, struct list_head *uf) 1415 { 1416 struct mm_struct *mm = current->mm; 1417 vm_flags_t vm_flags; 1418 int pkey = 0; 1419 1420 *populate = 0; 1421 1422 if (!len) 1423 return -EINVAL; 1424 1425 /* 1426 * Does the application expect PROT_READ to imply PROT_EXEC? 1427 * 1428 * (the exception is when the underlying filesystem is noexec 1429 * mounted, in which case we dont add PROT_EXEC.) 1430 */ 1431 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1432 if (!(file && path_noexec(&file->f_path))) 1433 prot |= PROT_EXEC; 1434 1435 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1436 if (flags & MAP_FIXED_NOREPLACE) 1437 flags |= MAP_FIXED; 1438 1439 if (!(flags & MAP_FIXED)) 1440 addr = round_hint_to_min(addr); 1441 1442 /* Careful about overflows.. */ 1443 len = PAGE_ALIGN(len); 1444 if (!len) 1445 return -ENOMEM; 1446 1447 /* offset overflow? */ 1448 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1449 return -EOVERFLOW; 1450 1451 /* Too many mappings? */ 1452 if (mm->map_count > sysctl_max_map_count) 1453 return -ENOMEM; 1454 1455 /* Obtain the address to map to. we verify (or select) it and ensure 1456 * that it represents a valid section of the address space. 1457 */ 1458 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1459 if (IS_ERR_VALUE(addr)) 1460 return addr; 1461 1462 if (flags & MAP_FIXED_NOREPLACE) { 1463 if (find_vma_intersection(mm, addr, addr + len)) 1464 return -EEXIST; 1465 } 1466 1467 if (prot == PROT_EXEC) { 1468 pkey = execute_only_pkey(mm); 1469 if (pkey < 0) 1470 pkey = 0; 1471 } 1472 1473 /* Do simple checking here so the lower-level routines won't have 1474 * to. we assume access permissions have been handled by the open 1475 * of the memory object, so we don't do any here. 1476 */ 1477 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1478 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1479 1480 if (flags & MAP_LOCKED) 1481 if (!can_do_mlock()) 1482 return -EPERM; 1483 1484 if (mlock_future_check(mm, vm_flags, len)) 1485 return -EAGAIN; 1486 1487 if (file) { 1488 struct inode *inode = file_inode(file); 1489 unsigned long flags_mask; 1490 1491 if (!file_mmap_ok(file, inode, pgoff, len)) 1492 return -EOVERFLOW; 1493 1494 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1495 1496 switch (flags & MAP_TYPE) { 1497 case MAP_SHARED: 1498 /* 1499 * Force use of MAP_SHARED_VALIDATE with non-legacy 1500 * flags. E.g. MAP_SYNC is dangerous to use with 1501 * MAP_SHARED as you don't know which consistency model 1502 * you will get. We silently ignore unsupported flags 1503 * with MAP_SHARED to preserve backward compatibility. 1504 */ 1505 flags &= LEGACY_MAP_MASK; 1506 fallthrough; 1507 case MAP_SHARED_VALIDATE: 1508 if (flags & ~flags_mask) 1509 return -EOPNOTSUPP; 1510 if (prot & PROT_WRITE) { 1511 if (!(file->f_mode & FMODE_WRITE)) 1512 return -EACCES; 1513 if (IS_SWAPFILE(file->f_mapping->host)) 1514 return -ETXTBSY; 1515 } 1516 1517 /* 1518 * Make sure we don't allow writing to an append-only 1519 * file.. 1520 */ 1521 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1522 return -EACCES; 1523 1524 vm_flags |= VM_SHARED | VM_MAYSHARE; 1525 if (!(file->f_mode & FMODE_WRITE)) 1526 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1527 fallthrough; 1528 case MAP_PRIVATE: 1529 if (!(file->f_mode & FMODE_READ)) 1530 return -EACCES; 1531 if (path_noexec(&file->f_path)) { 1532 if (vm_flags & VM_EXEC) 1533 return -EPERM; 1534 vm_flags &= ~VM_MAYEXEC; 1535 } 1536 1537 if (!file->f_op->mmap) 1538 return -ENODEV; 1539 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1540 return -EINVAL; 1541 break; 1542 1543 default: 1544 return -EINVAL; 1545 } 1546 } else { 1547 switch (flags & MAP_TYPE) { 1548 case MAP_SHARED: 1549 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1550 return -EINVAL; 1551 /* 1552 * Ignore pgoff. 1553 */ 1554 pgoff = 0; 1555 vm_flags |= VM_SHARED | VM_MAYSHARE; 1556 break; 1557 case MAP_PRIVATE: 1558 /* 1559 * Set pgoff according to addr for anon_vma. 1560 */ 1561 pgoff = addr >> PAGE_SHIFT; 1562 break; 1563 default: 1564 return -EINVAL; 1565 } 1566 } 1567 1568 /* 1569 * Set 'VM_NORESERVE' if we should not account for the 1570 * memory use of this mapping. 1571 */ 1572 if (flags & MAP_NORESERVE) { 1573 /* We honor MAP_NORESERVE if allowed to overcommit */ 1574 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1575 vm_flags |= VM_NORESERVE; 1576 1577 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1578 if (file && is_file_hugepages(file)) 1579 vm_flags |= VM_NORESERVE; 1580 } 1581 1582 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1583 if (!IS_ERR_VALUE(addr) && 1584 ((vm_flags & VM_LOCKED) || 1585 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1586 *populate = len; 1587 return addr; 1588 } 1589 1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1591 unsigned long prot, unsigned long flags, 1592 unsigned long fd, unsigned long pgoff) 1593 { 1594 struct file *file = NULL; 1595 unsigned long retval; 1596 1597 if (!(flags & MAP_ANONYMOUS)) { 1598 audit_mmap_fd(fd, flags); 1599 file = fget(fd); 1600 if (!file) 1601 return -EBADF; 1602 if (is_file_hugepages(file)) { 1603 len = ALIGN(len, huge_page_size(hstate_file(file))); 1604 } else if (unlikely(flags & MAP_HUGETLB)) { 1605 retval = -EINVAL; 1606 goto out_fput; 1607 } 1608 } else if (flags & MAP_HUGETLB) { 1609 struct hstate *hs; 1610 1611 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1612 if (!hs) 1613 return -EINVAL; 1614 1615 len = ALIGN(len, huge_page_size(hs)); 1616 /* 1617 * VM_NORESERVE is used because the reservations will be 1618 * taken when vm_ops->mmap() is called 1619 */ 1620 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1621 VM_NORESERVE, 1622 HUGETLB_ANONHUGE_INODE, 1623 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1624 if (IS_ERR(file)) 1625 return PTR_ERR(file); 1626 } 1627 1628 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1629 out_fput: 1630 if (file) 1631 fput(file); 1632 return retval; 1633 } 1634 1635 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1636 unsigned long, prot, unsigned long, flags, 1637 unsigned long, fd, unsigned long, pgoff) 1638 { 1639 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1640 } 1641 1642 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1643 struct mmap_arg_struct { 1644 unsigned long addr; 1645 unsigned long len; 1646 unsigned long prot; 1647 unsigned long flags; 1648 unsigned long fd; 1649 unsigned long offset; 1650 }; 1651 1652 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1653 { 1654 struct mmap_arg_struct a; 1655 1656 if (copy_from_user(&a, arg, sizeof(a))) 1657 return -EFAULT; 1658 if (offset_in_page(a.offset)) 1659 return -EINVAL; 1660 1661 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1662 a.offset >> PAGE_SHIFT); 1663 } 1664 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1665 1666 /* 1667 * Some shared mappings will want the pages marked read-only 1668 * to track write events. If so, we'll downgrade vm_page_prot 1669 * to the private version (using protection_map[] without the 1670 * VM_SHARED bit). 1671 */ 1672 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1673 { 1674 vm_flags_t vm_flags = vma->vm_flags; 1675 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1676 1677 /* If it was private or non-writable, the write bit is already clear */ 1678 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1679 return 0; 1680 1681 /* The backer wishes to know when pages are first written to? */ 1682 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1683 return 1; 1684 1685 /* The open routine did something to the protections that pgprot_modify 1686 * won't preserve? */ 1687 if (pgprot_val(vm_page_prot) != 1688 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1689 return 0; 1690 1691 /* Do we need to track softdirty? */ 1692 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1693 return 1; 1694 1695 /* Specialty mapping? */ 1696 if (vm_flags & VM_PFNMAP) 1697 return 0; 1698 1699 /* Can the mapping track the dirty pages? */ 1700 return vma->vm_file && vma->vm_file->f_mapping && 1701 mapping_can_writeback(vma->vm_file->f_mapping); 1702 } 1703 1704 /* 1705 * We account for memory if it's a private writeable mapping, 1706 * not hugepages and VM_NORESERVE wasn't set. 1707 */ 1708 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1709 { 1710 /* 1711 * hugetlb has its own accounting separate from the core VM 1712 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1713 */ 1714 if (file && is_file_hugepages(file)) 1715 return 0; 1716 1717 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1718 } 1719 1720 unsigned long mmap_region(struct file *file, unsigned long addr, 1721 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1722 struct list_head *uf) 1723 { 1724 struct mm_struct *mm = current->mm; 1725 struct vm_area_struct *vma, *prev, *merge; 1726 int error; 1727 struct rb_node **rb_link, *rb_parent; 1728 unsigned long charged = 0; 1729 1730 /* Check against address space limit. */ 1731 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1732 unsigned long nr_pages; 1733 1734 /* 1735 * MAP_FIXED may remove pages of mappings that intersects with 1736 * requested mapping. Account for the pages it would unmap. 1737 */ 1738 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1739 1740 if (!may_expand_vm(mm, vm_flags, 1741 (len >> PAGE_SHIFT) - nr_pages)) 1742 return -ENOMEM; 1743 } 1744 1745 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1746 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1747 return -ENOMEM; 1748 /* 1749 * Private writable mapping: check memory availability 1750 */ 1751 if (accountable_mapping(file, vm_flags)) { 1752 charged = len >> PAGE_SHIFT; 1753 if (security_vm_enough_memory_mm(mm, charged)) 1754 return -ENOMEM; 1755 vm_flags |= VM_ACCOUNT; 1756 } 1757 1758 /* 1759 * Can we just expand an old mapping? 1760 */ 1761 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1762 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1763 if (vma) 1764 goto out; 1765 1766 /* 1767 * Determine the object being mapped and call the appropriate 1768 * specific mapper. the address has already been validated, but 1769 * not unmapped, but the maps are removed from the list. 1770 */ 1771 vma = vm_area_alloc(mm); 1772 if (!vma) { 1773 error = -ENOMEM; 1774 goto unacct_error; 1775 } 1776 1777 vma->vm_start = addr; 1778 vma->vm_end = addr + len; 1779 vma->vm_flags = vm_flags; 1780 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1781 vma->vm_pgoff = pgoff; 1782 1783 if (file) { 1784 if (vm_flags & VM_SHARED) { 1785 error = mapping_map_writable(file->f_mapping); 1786 if (error) 1787 goto free_vma; 1788 } 1789 1790 vma->vm_file = get_file(file); 1791 error = call_mmap(file, vma); 1792 if (error) 1793 goto unmap_and_free_vma; 1794 1795 /* Can addr have changed?? 1796 * 1797 * Answer: Yes, several device drivers can do it in their 1798 * f_op->mmap method. -DaveM 1799 * Bug: If addr is changed, prev, rb_link, rb_parent should 1800 * be updated for vma_link() 1801 */ 1802 WARN_ON_ONCE(addr != vma->vm_start); 1803 1804 addr = vma->vm_start; 1805 1806 /* If vm_flags changed after call_mmap(), we should try merge vma again 1807 * as we may succeed this time. 1808 */ 1809 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1810 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1811 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1812 if (merge) { 1813 /* ->mmap() can change vma->vm_file and fput the original file. So 1814 * fput the vma->vm_file here or we would add an extra fput for file 1815 * and cause general protection fault ultimately. 1816 */ 1817 fput(vma->vm_file); 1818 vm_area_free(vma); 1819 vma = merge; 1820 /* Update vm_flags to pick up the change. */ 1821 vm_flags = vma->vm_flags; 1822 goto unmap_writable; 1823 } 1824 } 1825 1826 vm_flags = vma->vm_flags; 1827 } else if (vm_flags & VM_SHARED) { 1828 error = shmem_zero_setup(vma); 1829 if (error) 1830 goto free_vma; 1831 } else { 1832 vma_set_anonymous(vma); 1833 } 1834 1835 /* Allow architectures to sanity-check the vm_flags */ 1836 if (!arch_validate_flags(vma->vm_flags)) { 1837 error = -EINVAL; 1838 if (file) 1839 goto unmap_and_free_vma; 1840 else 1841 goto free_vma; 1842 } 1843 1844 vma_link(mm, vma, prev, rb_link, rb_parent); 1845 /* Once vma denies write, undo our temporary denial count */ 1846 unmap_writable: 1847 if (file && vm_flags & VM_SHARED) 1848 mapping_unmap_writable(file->f_mapping); 1849 file = vma->vm_file; 1850 out: 1851 perf_event_mmap(vma); 1852 1853 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1854 if (vm_flags & VM_LOCKED) { 1855 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1856 is_vm_hugetlb_page(vma) || 1857 vma == get_gate_vma(current->mm)) 1858 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1859 else 1860 mm->locked_vm += (len >> PAGE_SHIFT); 1861 } 1862 1863 if (file) 1864 uprobe_mmap(vma); 1865 1866 /* 1867 * New (or expanded) vma always get soft dirty status. 1868 * Otherwise user-space soft-dirty page tracker won't 1869 * be able to distinguish situation when vma area unmapped, 1870 * then new mapped in-place (which must be aimed as 1871 * a completely new data area). 1872 */ 1873 vma->vm_flags |= VM_SOFTDIRTY; 1874 1875 vma_set_page_prot(vma); 1876 1877 return addr; 1878 1879 unmap_and_free_vma: 1880 fput(vma->vm_file); 1881 vma->vm_file = NULL; 1882 1883 /* Undo any partial mapping done by a device driver. */ 1884 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1885 charged = 0; 1886 if (vm_flags & VM_SHARED) 1887 mapping_unmap_writable(file->f_mapping); 1888 free_vma: 1889 vm_area_free(vma); 1890 unacct_error: 1891 if (charged) 1892 vm_unacct_memory(charged); 1893 return error; 1894 } 1895 1896 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1897 { 1898 /* 1899 * We implement the search by looking for an rbtree node that 1900 * immediately follows a suitable gap. That is, 1901 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1902 * - gap_end = vma->vm_start >= info->low_limit + length; 1903 * - gap_end - gap_start >= length 1904 */ 1905 1906 struct mm_struct *mm = current->mm; 1907 struct vm_area_struct *vma; 1908 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1909 1910 /* Adjust search length to account for worst case alignment overhead */ 1911 length = info->length + info->align_mask; 1912 if (length < info->length) 1913 return -ENOMEM; 1914 1915 /* Adjust search limits by the desired length */ 1916 if (info->high_limit < length) 1917 return -ENOMEM; 1918 high_limit = info->high_limit - length; 1919 1920 if (info->low_limit > high_limit) 1921 return -ENOMEM; 1922 low_limit = info->low_limit + length; 1923 1924 /* Check if rbtree root looks promising */ 1925 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1926 goto check_highest; 1927 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1928 if (vma->rb_subtree_gap < length) 1929 goto check_highest; 1930 1931 while (true) { 1932 /* Visit left subtree if it looks promising */ 1933 gap_end = vm_start_gap(vma); 1934 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1935 struct vm_area_struct *left = 1936 rb_entry(vma->vm_rb.rb_left, 1937 struct vm_area_struct, vm_rb); 1938 if (left->rb_subtree_gap >= length) { 1939 vma = left; 1940 continue; 1941 } 1942 } 1943 1944 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1945 check_current: 1946 /* Check if current node has a suitable gap */ 1947 if (gap_start > high_limit) 1948 return -ENOMEM; 1949 if (gap_end >= low_limit && 1950 gap_end > gap_start && gap_end - gap_start >= length) 1951 goto found; 1952 1953 /* Visit right subtree if it looks promising */ 1954 if (vma->vm_rb.rb_right) { 1955 struct vm_area_struct *right = 1956 rb_entry(vma->vm_rb.rb_right, 1957 struct vm_area_struct, vm_rb); 1958 if (right->rb_subtree_gap >= length) { 1959 vma = right; 1960 continue; 1961 } 1962 } 1963 1964 /* Go back up the rbtree to find next candidate node */ 1965 while (true) { 1966 struct rb_node *prev = &vma->vm_rb; 1967 if (!rb_parent(prev)) 1968 goto check_highest; 1969 vma = rb_entry(rb_parent(prev), 1970 struct vm_area_struct, vm_rb); 1971 if (prev == vma->vm_rb.rb_left) { 1972 gap_start = vm_end_gap(vma->vm_prev); 1973 gap_end = vm_start_gap(vma); 1974 goto check_current; 1975 } 1976 } 1977 } 1978 1979 check_highest: 1980 /* Check highest gap, which does not precede any rbtree node */ 1981 gap_start = mm->highest_vm_end; 1982 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1983 if (gap_start > high_limit) 1984 return -ENOMEM; 1985 1986 found: 1987 /* We found a suitable gap. Clip it with the original low_limit. */ 1988 if (gap_start < info->low_limit) 1989 gap_start = info->low_limit; 1990 1991 /* Adjust gap address to the desired alignment */ 1992 gap_start += (info->align_offset - gap_start) & info->align_mask; 1993 1994 VM_BUG_ON(gap_start + info->length > info->high_limit); 1995 VM_BUG_ON(gap_start + info->length > gap_end); 1996 return gap_start; 1997 } 1998 1999 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2000 { 2001 struct mm_struct *mm = current->mm; 2002 struct vm_area_struct *vma; 2003 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2004 2005 /* Adjust search length to account for worst case alignment overhead */ 2006 length = info->length + info->align_mask; 2007 if (length < info->length) 2008 return -ENOMEM; 2009 2010 /* 2011 * Adjust search limits by the desired length. 2012 * See implementation comment at top of unmapped_area(). 2013 */ 2014 gap_end = info->high_limit; 2015 if (gap_end < length) 2016 return -ENOMEM; 2017 high_limit = gap_end - length; 2018 2019 if (info->low_limit > high_limit) 2020 return -ENOMEM; 2021 low_limit = info->low_limit + length; 2022 2023 /* Check highest gap, which does not precede any rbtree node */ 2024 gap_start = mm->highest_vm_end; 2025 if (gap_start <= high_limit) 2026 goto found_highest; 2027 2028 /* Check if rbtree root looks promising */ 2029 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2030 return -ENOMEM; 2031 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2032 if (vma->rb_subtree_gap < length) 2033 return -ENOMEM; 2034 2035 while (true) { 2036 /* Visit right subtree if it looks promising */ 2037 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2038 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2039 struct vm_area_struct *right = 2040 rb_entry(vma->vm_rb.rb_right, 2041 struct vm_area_struct, vm_rb); 2042 if (right->rb_subtree_gap >= length) { 2043 vma = right; 2044 continue; 2045 } 2046 } 2047 2048 check_current: 2049 /* Check if current node has a suitable gap */ 2050 gap_end = vm_start_gap(vma); 2051 if (gap_end < low_limit) 2052 return -ENOMEM; 2053 if (gap_start <= high_limit && 2054 gap_end > gap_start && gap_end - gap_start >= length) 2055 goto found; 2056 2057 /* Visit left subtree if it looks promising */ 2058 if (vma->vm_rb.rb_left) { 2059 struct vm_area_struct *left = 2060 rb_entry(vma->vm_rb.rb_left, 2061 struct vm_area_struct, vm_rb); 2062 if (left->rb_subtree_gap >= length) { 2063 vma = left; 2064 continue; 2065 } 2066 } 2067 2068 /* Go back up the rbtree to find next candidate node */ 2069 while (true) { 2070 struct rb_node *prev = &vma->vm_rb; 2071 if (!rb_parent(prev)) 2072 return -ENOMEM; 2073 vma = rb_entry(rb_parent(prev), 2074 struct vm_area_struct, vm_rb); 2075 if (prev == vma->vm_rb.rb_right) { 2076 gap_start = vma->vm_prev ? 2077 vm_end_gap(vma->vm_prev) : 0; 2078 goto check_current; 2079 } 2080 } 2081 } 2082 2083 found: 2084 /* We found a suitable gap. Clip it with the original high_limit. */ 2085 if (gap_end > info->high_limit) 2086 gap_end = info->high_limit; 2087 2088 found_highest: 2089 /* Compute highest gap address at the desired alignment */ 2090 gap_end -= info->length; 2091 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2092 2093 VM_BUG_ON(gap_end < info->low_limit); 2094 VM_BUG_ON(gap_end < gap_start); 2095 return gap_end; 2096 } 2097 2098 /* 2099 * Search for an unmapped address range. 2100 * 2101 * We are looking for a range that: 2102 * - does not intersect with any VMA; 2103 * - is contained within the [low_limit, high_limit) interval; 2104 * - is at least the desired size. 2105 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2106 */ 2107 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2108 { 2109 unsigned long addr; 2110 2111 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2112 addr = unmapped_area_topdown(info); 2113 else 2114 addr = unmapped_area(info); 2115 2116 trace_vm_unmapped_area(addr, info); 2117 return addr; 2118 } 2119 2120 /* Get an address range which is currently unmapped. 2121 * For shmat() with addr=0. 2122 * 2123 * Ugly calling convention alert: 2124 * Return value with the low bits set means error value, 2125 * ie 2126 * if (ret & ~PAGE_MASK) 2127 * error = ret; 2128 * 2129 * This function "knows" that -ENOMEM has the bits set. 2130 */ 2131 #ifndef HAVE_ARCH_UNMAPPED_AREA 2132 unsigned long 2133 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2134 unsigned long len, unsigned long pgoff, unsigned long flags) 2135 { 2136 struct mm_struct *mm = current->mm; 2137 struct vm_area_struct *vma, *prev; 2138 struct vm_unmapped_area_info info; 2139 const unsigned long mmap_end = arch_get_mmap_end(addr); 2140 2141 if (len > mmap_end - mmap_min_addr) 2142 return -ENOMEM; 2143 2144 if (flags & MAP_FIXED) 2145 return addr; 2146 2147 if (addr) { 2148 addr = PAGE_ALIGN(addr); 2149 vma = find_vma_prev(mm, addr, &prev); 2150 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2151 (!vma || addr + len <= vm_start_gap(vma)) && 2152 (!prev || addr >= vm_end_gap(prev))) 2153 return addr; 2154 } 2155 2156 info.flags = 0; 2157 info.length = len; 2158 info.low_limit = mm->mmap_base; 2159 info.high_limit = mmap_end; 2160 info.align_mask = 0; 2161 info.align_offset = 0; 2162 return vm_unmapped_area(&info); 2163 } 2164 #endif 2165 2166 /* 2167 * This mmap-allocator allocates new areas top-down from below the 2168 * stack's low limit (the base): 2169 */ 2170 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2171 unsigned long 2172 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2173 unsigned long len, unsigned long pgoff, 2174 unsigned long flags) 2175 { 2176 struct vm_area_struct *vma, *prev; 2177 struct mm_struct *mm = current->mm; 2178 struct vm_unmapped_area_info info; 2179 const unsigned long mmap_end = arch_get_mmap_end(addr); 2180 2181 /* requested length too big for entire address space */ 2182 if (len > mmap_end - mmap_min_addr) 2183 return -ENOMEM; 2184 2185 if (flags & MAP_FIXED) 2186 return addr; 2187 2188 /* requesting a specific address */ 2189 if (addr) { 2190 addr = PAGE_ALIGN(addr); 2191 vma = find_vma_prev(mm, addr, &prev); 2192 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2193 (!vma || addr + len <= vm_start_gap(vma)) && 2194 (!prev || addr >= vm_end_gap(prev))) 2195 return addr; 2196 } 2197 2198 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2199 info.length = len; 2200 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2201 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2202 info.align_mask = 0; 2203 info.align_offset = 0; 2204 addr = vm_unmapped_area(&info); 2205 2206 /* 2207 * A failed mmap() very likely causes application failure, 2208 * so fall back to the bottom-up function here. This scenario 2209 * can happen with large stack limits and large mmap() 2210 * allocations. 2211 */ 2212 if (offset_in_page(addr)) { 2213 VM_BUG_ON(addr != -ENOMEM); 2214 info.flags = 0; 2215 info.low_limit = TASK_UNMAPPED_BASE; 2216 info.high_limit = mmap_end; 2217 addr = vm_unmapped_area(&info); 2218 } 2219 2220 return addr; 2221 } 2222 #endif 2223 2224 unsigned long 2225 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2226 unsigned long pgoff, unsigned long flags) 2227 { 2228 unsigned long (*get_area)(struct file *, unsigned long, 2229 unsigned long, unsigned long, unsigned long); 2230 2231 unsigned long error = arch_mmap_check(addr, len, flags); 2232 if (error) 2233 return error; 2234 2235 /* Careful about overflows.. */ 2236 if (len > TASK_SIZE) 2237 return -ENOMEM; 2238 2239 get_area = current->mm->get_unmapped_area; 2240 if (file) { 2241 if (file->f_op->get_unmapped_area) 2242 get_area = file->f_op->get_unmapped_area; 2243 } else if (flags & MAP_SHARED) { 2244 /* 2245 * mmap_region() will call shmem_zero_setup() to create a file, 2246 * so use shmem's get_unmapped_area in case it can be huge. 2247 * do_mmap() will clear pgoff, so match alignment. 2248 */ 2249 pgoff = 0; 2250 get_area = shmem_get_unmapped_area; 2251 } 2252 2253 addr = get_area(file, addr, len, pgoff, flags); 2254 if (IS_ERR_VALUE(addr)) 2255 return addr; 2256 2257 if (addr > TASK_SIZE - len) 2258 return -ENOMEM; 2259 if (offset_in_page(addr)) 2260 return -EINVAL; 2261 2262 error = security_mmap_addr(addr); 2263 return error ? error : addr; 2264 } 2265 2266 EXPORT_SYMBOL(get_unmapped_area); 2267 2268 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2269 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2270 { 2271 struct rb_node *rb_node; 2272 struct vm_area_struct *vma; 2273 2274 mmap_assert_locked(mm); 2275 /* Check the cache first. */ 2276 vma = vmacache_find(mm, addr); 2277 if (likely(vma)) 2278 return vma; 2279 2280 rb_node = mm->mm_rb.rb_node; 2281 2282 while (rb_node) { 2283 struct vm_area_struct *tmp; 2284 2285 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2286 2287 if (tmp->vm_end > addr) { 2288 vma = tmp; 2289 if (tmp->vm_start <= addr) 2290 break; 2291 rb_node = rb_node->rb_left; 2292 } else 2293 rb_node = rb_node->rb_right; 2294 } 2295 2296 if (vma) 2297 vmacache_update(addr, vma); 2298 return vma; 2299 } 2300 2301 EXPORT_SYMBOL(find_vma); 2302 2303 /* 2304 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2305 */ 2306 struct vm_area_struct * 2307 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2308 struct vm_area_struct **pprev) 2309 { 2310 struct vm_area_struct *vma; 2311 2312 vma = find_vma(mm, addr); 2313 if (vma) { 2314 *pprev = vma->vm_prev; 2315 } else { 2316 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2317 2318 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2319 } 2320 return vma; 2321 } 2322 2323 /* 2324 * Verify that the stack growth is acceptable and 2325 * update accounting. This is shared with both the 2326 * grow-up and grow-down cases. 2327 */ 2328 static int acct_stack_growth(struct vm_area_struct *vma, 2329 unsigned long size, unsigned long grow) 2330 { 2331 struct mm_struct *mm = vma->vm_mm; 2332 unsigned long new_start; 2333 2334 /* address space limit tests */ 2335 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2336 return -ENOMEM; 2337 2338 /* Stack limit test */ 2339 if (size > rlimit(RLIMIT_STACK)) 2340 return -ENOMEM; 2341 2342 /* mlock limit tests */ 2343 if (vma->vm_flags & VM_LOCKED) { 2344 unsigned long locked; 2345 unsigned long limit; 2346 locked = mm->locked_vm + grow; 2347 limit = rlimit(RLIMIT_MEMLOCK); 2348 limit >>= PAGE_SHIFT; 2349 if (locked > limit && !capable(CAP_IPC_LOCK)) 2350 return -ENOMEM; 2351 } 2352 2353 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2354 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2355 vma->vm_end - size; 2356 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2357 return -EFAULT; 2358 2359 /* 2360 * Overcommit.. This must be the final test, as it will 2361 * update security statistics. 2362 */ 2363 if (security_vm_enough_memory_mm(mm, grow)) 2364 return -ENOMEM; 2365 2366 return 0; 2367 } 2368 2369 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2370 /* 2371 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2372 * vma is the last one with address > vma->vm_end. Have to extend vma. 2373 */ 2374 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2375 { 2376 struct mm_struct *mm = vma->vm_mm; 2377 struct vm_area_struct *next; 2378 unsigned long gap_addr; 2379 int error = 0; 2380 2381 if (!(vma->vm_flags & VM_GROWSUP)) 2382 return -EFAULT; 2383 2384 /* Guard against exceeding limits of the address space. */ 2385 address &= PAGE_MASK; 2386 if (address >= (TASK_SIZE & PAGE_MASK)) 2387 return -ENOMEM; 2388 address += PAGE_SIZE; 2389 2390 /* Enforce stack_guard_gap */ 2391 gap_addr = address + stack_guard_gap; 2392 2393 /* Guard against overflow */ 2394 if (gap_addr < address || gap_addr > TASK_SIZE) 2395 gap_addr = TASK_SIZE; 2396 2397 next = vma->vm_next; 2398 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2399 if (!(next->vm_flags & VM_GROWSUP)) 2400 return -ENOMEM; 2401 /* Check that both stack segments have the same anon_vma? */ 2402 } 2403 2404 /* We must make sure the anon_vma is allocated. */ 2405 if (unlikely(anon_vma_prepare(vma))) 2406 return -ENOMEM; 2407 2408 /* 2409 * vma->vm_start/vm_end cannot change under us because the caller 2410 * is required to hold the mmap_lock in read mode. We need the 2411 * anon_vma lock to serialize against concurrent expand_stacks. 2412 */ 2413 anon_vma_lock_write(vma->anon_vma); 2414 2415 /* Somebody else might have raced and expanded it already */ 2416 if (address > vma->vm_end) { 2417 unsigned long size, grow; 2418 2419 size = address - vma->vm_start; 2420 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2421 2422 error = -ENOMEM; 2423 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2424 error = acct_stack_growth(vma, size, grow); 2425 if (!error) { 2426 /* 2427 * vma_gap_update() doesn't support concurrent 2428 * updates, but we only hold a shared mmap_lock 2429 * lock here, so we need to protect against 2430 * concurrent vma expansions. 2431 * anon_vma_lock_write() doesn't help here, as 2432 * we don't guarantee that all growable vmas 2433 * in a mm share the same root anon vma. 2434 * So, we reuse mm->page_table_lock to guard 2435 * against concurrent vma expansions. 2436 */ 2437 spin_lock(&mm->page_table_lock); 2438 if (vma->vm_flags & VM_LOCKED) 2439 mm->locked_vm += grow; 2440 vm_stat_account(mm, vma->vm_flags, grow); 2441 anon_vma_interval_tree_pre_update_vma(vma); 2442 vma->vm_end = address; 2443 anon_vma_interval_tree_post_update_vma(vma); 2444 if (vma->vm_next) 2445 vma_gap_update(vma->vm_next); 2446 else 2447 mm->highest_vm_end = vm_end_gap(vma); 2448 spin_unlock(&mm->page_table_lock); 2449 2450 perf_event_mmap(vma); 2451 } 2452 } 2453 } 2454 anon_vma_unlock_write(vma->anon_vma); 2455 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2456 validate_mm(mm); 2457 return error; 2458 } 2459 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2460 2461 /* 2462 * vma is the first one with address < vma->vm_start. Have to extend vma. 2463 */ 2464 int expand_downwards(struct vm_area_struct *vma, 2465 unsigned long address) 2466 { 2467 struct mm_struct *mm = vma->vm_mm; 2468 struct vm_area_struct *prev; 2469 int error = 0; 2470 2471 address &= PAGE_MASK; 2472 if (address < mmap_min_addr) 2473 return -EPERM; 2474 2475 /* Enforce stack_guard_gap */ 2476 prev = vma->vm_prev; 2477 /* Check that both stack segments have the same anon_vma? */ 2478 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2479 vma_is_accessible(prev)) { 2480 if (address - prev->vm_end < stack_guard_gap) 2481 return -ENOMEM; 2482 } 2483 2484 /* We must make sure the anon_vma is allocated. */ 2485 if (unlikely(anon_vma_prepare(vma))) 2486 return -ENOMEM; 2487 2488 /* 2489 * vma->vm_start/vm_end cannot change under us because the caller 2490 * is required to hold the mmap_lock in read mode. We need the 2491 * anon_vma lock to serialize against concurrent expand_stacks. 2492 */ 2493 anon_vma_lock_write(vma->anon_vma); 2494 2495 /* Somebody else might have raced and expanded it already */ 2496 if (address < vma->vm_start) { 2497 unsigned long size, grow; 2498 2499 size = vma->vm_end - address; 2500 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2501 2502 error = -ENOMEM; 2503 if (grow <= vma->vm_pgoff) { 2504 error = acct_stack_growth(vma, size, grow); 2505 if (!error) { 2506 /* 2507 * vma_gap_update() doesn't support concurrent 2508 * updates, but we only hold a shared mmap_lock 2509 * lock here, so we need to protect against 2510 * concurrent vma expansions. 2511 * anon_vma_lock_write() doesn't help here, as 2512 * we don't guarantee that all growable vmas 2513 * in a mm share the same root anon vma. 2514 * So, we reuse mm->page_table_lock to guard 2515 * against concurrent vma expansions. 2516 */ 2517 spin_lock(&mm->page_table_lock); 2518 if (vma->vm_flags & VM_LOCKED) 2519 mm->locked_vm += grow; 2520 vm_stat_account(mm, vma->vm_flags, grow); 2521 anon_vma_interval_tree_pre_update_vma(vma); 2522 vma->vm_start = address; 2523 vma->vm_pgoff -= grow; 2524 anon_vma_interval_tree_post_update_vma(vma); 2525 vma_gap_update(vma); 2526 spin_unlock(&mm->page_table_lock); 2527 2528 perf_event_mmap(vma); 2529 } 2530 } 2531 } 2532 anon_vma_unlock_write(vma->anon_vma); 2533 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2534 validate_mm(mm); 2535 return error; 2536 } 2537 2538 /* enforced gap between the expanding stack and other mappings. */ 2539 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2540 2541 static int __init cmdline_parse_stack_guard_gap(char *p) 2542 { 2543 unsigned long val; 2544 char *endptr; 2545 2546 val = simple_strtoul(p, &endptr, 10); 2547 if (!*endptr) 2548 stack_guard_gap = val << PAGE_SHIFT; 2549 2550 return 1; 2551 } 2552 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2553 2554 #ifdef CONFIG_STACK_GROWSUP 2555 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2556 { 2557 return expand_upwards(vma, address); 2558 } 2559 2560 struct vm_area_struct * 2561 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2562 { 2563 struct vm_area_struct *vma, *prev; 2564 2565 addr &= PAGE_MASK; 2566 vma = find_vma_prev(mm, addr, &prev); 2567 if (vma && (vma->vm_start <= addr)) 2568 return vma; 2569 /* don't alter vm_end if the coredump is running */ 2570 if (!prev || expand_stack(prev, addr)) 2571 return NULL; 2572 if (prev->vm_flags & VM_LOCKED) 2573 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2574 return prev; 2575 } 2576 #else 2577 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2578 { 2579 return expand_downwards(vma, address); 2580 } 2581 2582 struct vm_area_struct * 2583 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2584 { 2585 struct vm_area_struct *vma; 2586 unsigned long start; 2587 2588 addr &= PAGE_MASK; 2589 vma = find_vma(mm, addr); 2590 if (!vma) 2591 return NULL; 2592 if (vma->vm_start <= addr) 2593 return vma; 2594 if (!(vma->vm_flags & VM_GROWSDOWN)) 2595 return NULL; 2596 start = vma->vm_start; 2597 if (expand_stack(vma, addr)) 2598 return NULL; 2599 if (vma->vm_flags & VM_LOCKED) 2600 populate_vma_page_range(vma, addr, start, NULL); 2601 return vma; 2602 } 2603 #endif 2604 2605 EXPORT_SYMBOL_GPL(find_extend_vma); 2606 2607 /* 2608 * Ok - we have the memory areas we should free on the vma list, 2609 * so release them, and do the vma updates. 2610 * 2611 * Called with the mm semaphore held. 2612 */ 2613 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2614 { 2615 unsigned long nr_accounted = 0; 2616 2617 /* Update high watermark before we lower total_vm */ 2618 update_hiwater_vm(mm); 2619 do { 2620 long nrpages = vma_pages(vma); 2621 2622 if (vma->vm_flags & VM_ACCOUNT) 2623 nr_accounted += nrpages; 2624 vm_stat_account(mm, vma->vm_flags, -nrpages); 2625 vma = remove_vma(vma); 2626 } while (vma); 2627 vm_unacct_memory(nr_accounted); 2628 validate_mm(mm); 2629 } 2630 2631 /* 2632 * Get rid of page table information in the indicated region. 2633 * 2634 * Called with the mm semaphore held. 2635 */ 2636 static void unmap_region(struct mm_struct *mm, 2637 struct vm_area_struct *vma, struct vm_area_struct *prev, 2638 unsigned long start, unsigned long end) 2639 { 2640 struct vm_area_struct *next = vma_next(mm, prev); 2641 struct mmu_gather tlb; 2642 2643 lru_add_drain(); 2644 tlb_gather_mmu(&tlb, mm); 2645 update_hiwater_rss(mm); 2646 unmap_vmas(&tlb, vma, start, end); 2647 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2648 next ? next->vm_start : USER_PGTABLES_CEILING); 2649 tlb_finish_mmu(&tlb); 2650 } 2651 2652 /* 2653 * Create a list of vma's touched by the unmap, removing them from the mm's 2654 * vma list as we go.. 2655 */ 2656 static bool 2657 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2658 struct vm_area_struct *prev, unsigned long end) 2659 { 2660 struct vm_area_struct **insertion_point; 2661 struct vm_area_struct *tail_vma = NULL; 2662 2663 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2664 vma->vm_prev = NULL; 2665 do { 2666 vma_rb_erase(vma, &mm->mm_rb); 2667 if (vma->vm_flags & VM_LOCKED) 2668 mm->locked_vm -= vma_pages(vma); 2669 mm->map_count--; 2670 tail_vma = vma; 2671 vma = vma->vm_next; 2672 } while (vma && vma->vm_start < end); 2673 *insertion_point = vma; 2674 if (vma) { 2675 vma->vm_prev = prev; 2676 vma_gap_update(vma); 2677 } else 2678 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2679 tail_vma->vm_next = NULL; 2680 2681 /* Kill the cache */ 2682 vmacache_invalidate(mm); 2683 2684 /* 2685 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2686 * VM_GROWSUP VMA. Such VMAs can change their size under 2687 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2688 */ 2689 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2690 return false; 2691 if (prev && (prev->vm_flags & VM_GROWSUP)) 2692 return false; 2693 return true; 2694 } 2695 2696 /* 2697 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2698 * has already been checked or doesn't make sense to fail. 2699 */ 2700 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2701 unsigned long addr, int new_below) 2702 { 2703 struct vm_area_struct *new; 2704 int err; 2705 2706 if (vma->vm_ops && vma->vm_ops->may_split) { 2707 err = vma->vm_ops->may_split(vma, addr); 2708 if (err) 2709 return err; 2710 } 2711 2712 new = vm_area_dup(vma); 2713 if (!new) 2714 return -ENOMEM; 2715 2716 if (new_below) 2717 new->vm_end = addr; 2718 else { 2719 new->vm_start = addr; 2720 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2721 } 2722 2723 err = vma_dup_policy(vma, new); 2724 if (err) 2725 goto out_free_vma; 2726 2727 err = anon_vma_clone(new, vma); 2728 if (err) 2729 goto out_free_mpol; 2730 2731 if (new->vm_file) 2732 get_file(new->vm_file); 2733 2734 if (new->vm_ops && new->vm_ops->open) 2735 new->vm_ops->open(new); 2736 2737 if (new_below) 2738 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2739 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2740 else 2741 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2742 2743 /* Success. */ 2744 if (!err) 2745 return 0; 2746 2747 /* Clean everything up if vma_adjust failed. */ 2748 if (new->vm_ops && new->vm_ops->close) 2749 new->vm_ops->close(new); 2750 if (new->vm_file) 2751 fput(new->vm_file); 2752 unlink_anon_vmas(new); 2753 out_free_mpol: 2754 mpol_put(vma_policy(new)); 2755 out_free_vma: 2756 vm_area_free(new); 2757 return err; 2758 } 2759 2760 /* 2761 * Split a vma into two pieces at address 'addr', a new vma is allocated 2762 * either for the first part or the tail. 2763 */ 2764 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2765 unsigned long addr, int new_below) 2766 { 2767 if (mm->map_count >= sysctl_max_map_count) 2768 return -ENOMEM; 2769 2770 return __split_vma(mm, vma, addr, new_below); 2771 } 2772 2773 /* Munmap is split into 2 main parts -- this part which finds 2774 * what needs doing, and the areas themselves, which do the 2775 * work. This now handles partial unmappings. 2776 * Jeremy Fitzhardinge <jeremy@goop.org> 2777 */ 2778 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2779 struct list_head *uf, bool downgrade) 2780 { 2781 unsigned long end; 2782 struct vm_area_struct *vma, *prev, *last; 2783 2784 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2785 return -EINVAL; 2786 2787 len = PAGE_ALIGN(len); 2788 end = start + len; 2789 if (len == 0) 2790 return -EINVAL; 2791 2792 /* 2793 * arch_unmap() might do unmaps itself. It must be called 2794 * and finish any rbtree manipulation before this code 2795 * runs and also starts to manipulate the rbtree. 2796 */ 2797 arch_unmap(mm, start, end); 2798 2799 /* Find the first overlapping VMA where start < vma->vm_end */ 2800 vma = find_vma_intersection(mm, start, end); 2801 if (!vma) 2802 return 0; 2803 prev = vma->vm_prev; 2804 2805 /* 2806 * If we need to split any vma, do it now to save pain later. 2807 * 2808 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2809 * unmapped vm_area_struct will remain in use: so lower split_vma 2810 * places tmp vma above, and higher split_vma places tmp vma below. 2811 */ 2812 if (start > vma->vm_start) { 2813 int error; 2814 2815 /* 2816 * Make sure that map_count on return from munmap() will 2817 * not exceed its limit; but let map_count go just above 2818 * its limit temporarily, to help free resources as expected. 2819 */ 2820 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2821 return -ENOMEM; 2822 2823 error = __split_vma(mm, vma, start, 0); 2824 if (error) 2825 return error; 2826 prev = vma; 2827 } 2828 2829 /* Does it split the last one? */ 2830 last = find_vma(mm, end); 2831 if (last && end > last->vm_start) { 2832 int error = __split_vma(mm, last, end, 1); 2833 if (error) 2834 return error; 2835 } 2836 vma = vma_next(mm, prev); 2837 2838 if (unlikely(uf)) { 2839 /* 2840 * If userfaultfd_unmap_prep returns an error the vmas 2841 * will remain split, but userland will get a 2842 * highly unexpected error anyway. This is no 2843 * different than the case where the first of the two 2844 * __split_vma fails, but we don't undo the first 2845 * split, despite we could. This is unlikely enough 2846 * failure that it's not worth optimizing it for. 2847 */ 2848 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2849 if (error) 2850 return error; 2851 } 2852 2853 /* Detach vmas from rbtree */ 2854 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2855 downgrade = false; 2856 2857 if (downgrade) 2858 mmap_write_downgrade(mm); 2859 2860 unmap_region(mm, vma, prev, start, end); 2861 2862 /* Fix up all other VM information */ 2863 remove_vma_list(mm, vma); 2864 2865 return downgrade ? 1 : 0; 2866 } 2867 2868 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2869 struct list_head *uf) 2870 { 2871 return __do_munmap(mm, start, len, uf, false); 2872 } 2873 2874 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2875 { 2876 int ret; 2877 struct mm_struct *mm = current->mm; 2878 LIST_HEAD(uf); 2879 2880 if (mmap_write_lock_killable(mm)) 2881 return -EINTR; 2882 2883 ret = __do_munmap(mm, start, len, &uf, downgrade); 2884 /* 2885 * Returning 1 indicates mmap_lock is downgraded. 2886 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2887 * it to 0 before return. 2888 */ 2889 if (ret == 1) { 2890 mmap_read_unlock(mm); 2891 ret = 0; 2892 } else 2893 mmap_write_unlock(mm); 2894 2895 userfaultfd_unmap_complete(mm, &uf); 2896 return ret; 2897 } 2898 2899 int vm_munmap(unsigned long start, size_t len) 2900 { 2901 return __vm_munmap(start, len, false); 2902 } 2903 EXPORT_SYMBOL(vm_munmap); 2904 2905 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2906 { 2907 addr = untagged_addr(addr); 2908 return __vm_munmap(addr, len, true); 2909 } 2910 2911 2912 /* 2913 * Emulation of deprecated remap_file_pages() syscall. 2914 */ 2915 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2916 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2917 { 2918 2919 struct mm_struct *mm = current->mm; 2920 struct vm_area_struct *vma; 2921 unsigned long populate = 0; 2922 unsigned long ret = -EINVAL; 2923 struct file *file; 2924 2925 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2926 current->comm, current->pid); 2927 2928 if (prot) 2929 return ret; 2930 start = start & PAGE_MASK; 2931 size = size & PAGE_MASK; 2932 2933 if (start + size <= start) 2934 return ret; 2935 2936 /* Does pgoff wrap? */ 2937 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2938 return ret; 2939 2940 if (mmap_write_lock_killable(mm)) 2941 return -EINTR; 2942 2943 vma = vma_lookup(mm, start); 2944 2945 if (!vma || !(vma->vm_flags & VM_SHARED)) 2946 goto out; 2947 2948 if (start + size > vma->vm_end) { 2949 struct vm_area_struct *next; 2950 2951 for (next = vma->vm_next; next; next = next->vm_next) { 2952 /* hole between vmas ? */ 2953 if (next->vm_start != next->vm_prev->vm_end) 2954 goto out; 2955 2956 if (next->vm_file != vma->vm_file) 2957 goto out; 2958 2959 if (next->vm_flags != vma->vm_flags) 2960 goto out; 2961 2962 if (start + size <= next->vm_end) 2963 break; 2964 } 2965 2966 if (!next) 2967 goto out; 2968 } 2969 2970 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2971 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2972 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2973 2974 flags &= MAP_NONBLOCK; 2975 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2976 if (vma->vm_flags & VM_LOCKED) 2977 flags |= MAP_LOCKED; 2978 2979 file = get_file(vma->vm_file); 2980 ret = do_mmap(vma->vm_file, start, size, 2981 prot, flags, pgoff, &populate, NULL); 2982 fput(file); 2983 out: 2984 mmap_write_unlock(mm); 2985 if (populate) 2986 mm_populate(ret, populate); 2987 if (!IS_ERR_VALUE(ret)) 2988 ret = 0; 2989 return ret; 2990 } 2991 2992 /* 2993 * this is really a simplified "do_mmap". it only handles 2994 * anonymous maps. eventually we may be able to do some 2995 * brk-specific accounting here. 2996 */ 2997 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2998 { 2999 struct mm_struct *mm = current->mm; 3000 struct vm_area_struct *vma, *prev; 3001 struct rb_node **rb_link, *rb_parent; 3002 pgoff_t pgoff = addr >> PAGE_SHIFT; 3003 int error; 3004 unsigned long mapped_addr; 3005 3006 /* Until we need other flags, refuse anything except VM_EXEC. */ 3007 if ((flags & (~VM_EXEC)) != 0) 3008 return -EINVAL; 3009 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3010 3011 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3012 if (IS_ERR_VALUE(mapped_addr)) 3013 return mapped_addr; 3014 3015 error = mlock_future_check(mm, mm->def_flags, len); 3016 if (error) 3017 return error; 3018 3019 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3020 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3021 return -ENOMEM; 3022 3023 /* Check against address space limits *after* clearing old maps... */ 3024 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3025 return -ENOMEM; 3026 3027 if (mm->map_count > sysctl_max_map_count) 3028 return -ENOMEM; 3029 3030 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3031 return -ENOMEM; 3032 3033 /* Can we just expand an old private anonymous mapping? */ 3034 vma = vma_merge(mm, prev, addr, addr + len, flags, 3035 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 3036 if (vma) 3037 goto out; 3038 3039 /* 3040 * create a vma struct for an anonymous mapping 3041 */ 3042 vma = vm_area_alloc(mm); 3043 if (!vma) { 3044 vm_unacct_memory(len >> PAGE_SHIFT); 3045 return -ENOMEM; 3046 } 3047 3048 vma_set_anonymous(vma); 3049 vma->vm_start = addr; 3050 vma->vm_end = addr + len; 3051 vma->vm_pgoff = pgoff; 3052 vma->vm_flags = flags; 3053 vma->vm_page_prot = vm_get_page_prot(flags); 3054 vma_link(mm, vma, prev, rb_link, rb_parent); 3055 out: 3056 perf_event_mmap(vma); 3057 mm->total_vm += len >> PAGE_SHIFT; 3058 mm->data_vm += len >> PAGE_SHIFT; 3059 if (flags & VM_LOCKED) 3060 mm->locked_vm += (len >> PAGE_SHIFT); 3061 vma->vm_flags |= VM_SOFTDIRTY; 3062 return 0; 3063 } 3064 3065 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3066 { 3067 struct mm_struct *mm = current->mm; 3068 unsigned long len; 3069 int ret; 3070 bool populate; 3071 LIST_HEAD(uf); 3072 3073 len = PAGE_ALIGN(request); 3074 if (len < request) 3075 return -ENOMEM; 3076 if (!len) 3077 return 0; 3078 3079 if (mmap_write_lock_killable(mm)) 3080 return -EINTR; 3081 3082 ret = do_brk_flags(addr, len, flags, &uf); 3083 populate = ((mm->def_flags & VM_LOCKED) != 0); 3084 mmap_write_unlock(mm); 3085 userfaultfd_unmap_complete(mm, &uf); 3086 if (populate && !ret) 3087 mm_populate(addr, len); 3088 return ret; 3089 } 3090 EXPORT_SYMBOL(vm_brk_flags); 3091 3092 int vm_brk(unsigned long addr, unsigned long len) 3093 { 3094 return vm_brk_flags(addr, len, 0); 3095 } 3096 EXPORT_SYMBOL(vm_brk); 3097 3098 /* Release all mmaps. */ 3099 void exit_mmap(struct mm_struct *mm) 3100 { 3101 struct mmu_gather tlb; 3102 struct vm_area_struct *vma; 3103 unsigned long nr_accounted = 0; 3104 3105 /* mm's last user has gone, and its about to be pulled down */ 3106 mmu_notifier_release(mm); 3107 3108 if (unlikely(mm_is_oom_victim(mm))) { 3109 /* 3110 * Manually reap the mm to free as much memory as possible. 3111 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3112 * this mm from further consideration. Taking mm->mmap_lock for 3113 * write after setting MMF_OOM_SKIP will guarantee that the oom 3114 * reaper will not run on this mm again after mmap_lock is 3115 * dropped. 3116 * 3117 * Nothing can be holding mm->mmap_lock here and the above call 3118 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3119 * __oom_reap_task_mm() will not block. 3120 */ 3121 (void)__oom_reap_task_mm(mm); 3122 set_bit(MMF_OOM_SKIP, &mm->flags); 3123 } 3124 3125 mmap_write_lock(mm); 3126 arch_exit_mmap(mm); 3127 3128 vma = mm->mmap; 3129 if (!vma) { 3130 /* Can happen if dup_mmap() received an OOM */ 3131 mmap_write_unlock(mm); 3132 return; 3133 } 3134 3135 lru_add_drain(); 3136 flush_cache_mm(mm); 3137 tlb_gather_mmu_fullmm(&tlb, mm); 3138 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3139 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3140 unmap_vmas(&tlb, vma, 0, -1); 3141 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3142 tlb_finish_mmu(&tlb); 3143 3144 /* Walk the list again, actually closing and freeing it. */ 3145 while (vma) { 3146 if (vma->vm_flags & VM_ACCOUNT) 3147 nr_accounted += vma_pages(vma); 3148 vma = remove_vma(vma); 3149 cond_resched(); 3150 } 3151 mm->mmap = NULL; 3152 mmap_write_unlock(mm); 3153 vm_unacct_memory(nr_accounted); 3154 } 3155 3156 /* Insert vm structure into process list sorted by address 3157 * and into the inode's i_mmap tree. If vm_file is non-NULL 3158 * then i_mmap_rwsem is taken here. 3159 */ 3160 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3161 { 3162 struct vm_area_struct *prev; 3163 struct rb_node **rb_link, *rb_parent; 3164 3165 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3166 &prev, &rb_link, &rb_parent)) 3167 return -ENOMEM; 3168 if ((vma->vm_flags & VM_ACCOUNT) && 3169 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3170 return -ENOMEM; 3171 3172 /* 3173 * The vm_pgoff of a purely anonymous vma should be irrelevant 3174 * until its first write fault, when page's anon_vma and index 3175 * are set. But now set the vm_pgoff it will almost certainly 3176 * end up with (unless mremap moves it elsewhere before that 3177 * first wfault), so /proc/pid/maps tells a consistent story. 3178 * 3179 * By setting it to reflect the virtual start address of the 3180 * vma, merges and splits can happen in a seamless way, just 3181 * using the existing file pgoff checks and manipulations. 3182 * Similarly in do_mmap and in do_brk_flags. 3183 */ 3184 if (vma_is_anonymous(vma)) { 3185 BUG_ON(vma->anon_vma); 3186 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3187 } 3188 3189 vma_link(mm, vma, prev, rb_link, rb_parent); 3190 return 0; 3191 } 3192 3193 /* 3194 * Copy the vma structure to a new location in the same mm, 3195 * prior to moving page table entries, to effect an mremap move. 3196 */ 3197 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3198 unsigned long addr, unsigned long len, pgoff_t pgoff, 3199 bool *need_rmap_locks) 3200 { 3201 struct vm_area_struct *vma = *vmap; 3202 unsigned long vma_start = vma->vm_start; 3203 struct mm_struct *mm = vma->vm_mm; 3204 struct vm_area_struct *new_vma, *prev; 3205 struct rb_node **rb_link, *rb_parent; 3206 bool faulted_in_anon_vma = true; 3207 3208 /* 3209 * If anonymous vma has not yet been faulted, update new pgoff 3210 * to match new location, to increase its chance of merging. 3211 */ 3212 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3213 pgoff = addr >> PAGE_SHIFT; 3214 faulted_in_anon_vma = false; 3215 } 3216 3217 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3218 return NULL; /* should never get here */ 3219 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3220 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3221 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3222 if (new_vma) { 3223 /* 3224 * Source vma may have been merged into new_vma 3225 */ 3226 if (unlikely(vma_start >= new_vma->vm_start && 3227 vma_start < new_vma->vm_end)) { 3228 /* 3229 * The only way we can get a vma_merge with 3230 * self during an mremap is if the vma hasn't 3231 * been faulted in yet and we were allowed to 3232 * reset the dst vma->vm_pgoff to the 3233 * destination address of the mremap to allow 3234 * the merge to happen. mremap must change the 3235 * vm_pgoff linearity between src and dst vmas 3236 * (in turn preventing a vma_merge) to be 3237 * safe. It is only safe to keep the vm_pgoff 3238 * linear if there are no pages mapped yet. 3239 */ 3240 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3241 *vmap = vma = new_vma; 3242 } 3243 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3244 } else { 3245 new_vma = vm_area_dup(vma); 3246 if (!new_vma) 3247 goto out; 3248 new_vma->vm_start = addr; 3249 new_vma->vm_end = addr + len; 3250 new_vma->vm_pgoff = pgoff; 3251 if (vma_dup_policy(vma, new_vma)) 3252 goto out_free_vma; 3253 if (anon_vma_clone(new_vma, vma)) 3254 goto out_free_mempol; 3255 if (new_vma->vm_file) 3256 get_file(new_vma->vm_file); 3257 if (new_vma->vm_ops && new_vma->vm_ops->open) 3258 new_vma->vm_ops->open(new_vma); 3259 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3260 *need_rmap_locks = false; 3261 } 3262 return new_vma; 3263 3264 out_free_mempol: 3265 mpol_put(vma_policy(new_vma)); 3266 out_free_vma: 3267 vm_area_free(new_vma); 3268 out: 3269 return NULL; 3270 } 3271 3272 /* 3273 * Return true if the calling process may expand its vm space by the passed 3274 * number of pages 3275 */ 3276 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3277 { 3278 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3279 return false; 3280 3281 if (is_data_mapping(flags) && 3282 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3283 /* Workaround for Valgrind */ 3284 if (rlimit(RLIMIT_DATA) == 0 && 3285 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3286 return true; 3287 3288 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3289 current->comm, current->pid, 3290 (mm->data_vm + npages) << PAGE_SHIFT, 3291 rlimit(RLIMIT_DATA), 3292 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3293 3294 if (!ignore_rlimit_data) 3295 return false; 3296 } 3297 3298 return true; 3299 } 3300 3301 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3302 { 3303 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3304 3305 if (is_exec_mapping(flags)) 3306 mm->exec_vm += npages; 3307 else if (is_stack_mapping(flags)) 3308 mm->stack_vm += npages; 3309 else if (is_data_mapping(flags)) 3310 mm->data_vm += npages; 3311 } 3312 3313 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3314 3315 /* 3316 * Having a close hook prevents vma merging regardless of flags. 3317 */ 3318 static void special_mapping_close(struct vm_area_struct *vma) 3319 { 3320 } 3321 3322 static const char *special_mapping_name(struct vm_area_struct *vma) 3323 { 3324 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3325 } 3326 3327 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3328 { 3329 struct vm_special_mapping *sm = new_vma->vm_private_data; 3330 3331 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3332 return -EFAULT; 3333 3334 if (sm->mremap) 3335 return sm->mremap(sm, new_vma); 3336 3337 return 0; 3338 } 3339 3340 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3341 { 3342 /* 3343 * Forbid splitting special mappings - kernel has expectations over 3344 * the number of pages in mapping. Together with VM_DONTEXPAND 3345 * the size of vma should stay the same over the special mapping's 3346 * lifetime. 3347 */ 3348 return -EINVAL; 3349 } 3350 3351 static const struct vm_operations_struct special_mapping_vmops = { 3352 .close = special_mapping_close, 3353 .fault = special_mapping_fault, 3354 .mremap = special_mapping_mremap, 3355 .name = special_mapping_name, 3356 /* vDSO code relies that VVAR can't be accessed remotely */ 3357 .access = NULL, 3358 .may_split = special_mapping_split, 3359 }; 3360 3361 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3362 .close = special_mapping_close, 3363 .fault = special_mapping_fault, 3364 }; 3365 3366 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3367 { 3368 struct vm_area_struct *vma = vmf->vma; 3369 pgoff_t pgoff; 3370 struct page **pages; 3371 3372 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3373 pages = vma->vm_private_data; 3374 } else { 3375 struct vm_special_mapping *sm = vma->vm_private_data; 3376 3377 if (sm->fault) 3378 return sm->fault(sm, vmf->vma, vmf); 3379 3380 pages = sm->pages; 3381 } 3382 3383 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3384 pgoff--; 3385 3386 if (*pages) { 3387 struct page *page = *pages; 3388 get_page(page); 3389 vmf->page = page; 3390 return 0; 3391 } 3392 3393 return VM_FAULT_SIGBUS; 3394 } 3395 3396 static struct vm_area_struct *__install_special_mapping( 3397 struct mm_struct *mm, 3398 unsigned long addr, unsigned long len, 3399 unsigned long vm_flags, void *priv, 3400 const struct vm_operations_struct *ops) 3401 { 3402 int ret; 3403 struct vm_area_struct *vma; 3404 3405 vma = vm_area_alloc(mm); 3406 if (unlikely(vma == NULL)) 3407 return ERR_PTR(-ENOMEM); 3408 3409 vma->vm_start = addr; 3410 vma->vm_end = addr + len; 3411 3412 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3413 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 3414 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3415 3416 vma->vm_ops = ops; 3417 vma->vm_private_data = priv; 3418 3419 ret = insert_vm_struct(mm, vma); 3420 if (ret) 3421 goto out; 3422 3423 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3424 3425 perf_event_mmap(vma); 3426 3427 return vma; 3428 3429 out: 3430 vm_area_free(vma); 3431 return ERR_PTR(ret); 3432 } 3433 3434 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3435 const struct vm_special_mapping *sm) 3436 { 3437 return vma->vm_private_data == sm && 3438 (vma->vm_ops == &special_mapping_vmops || 3439 vma->vm_ops == &legacy_special_mapping_vmops); 3440 } 3441 3442 /* 3443 * Called with mm->mmap_lock held for writing. 3444 * Insert a new vma covering the given region, with the given flags. 3445 * Its pages are supplied by the given array of struct page *. 3446 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3447 * The region past the last page supplied will always produce SIGBUS. 3448 * The array pointer and the pages it points to are assumed to stay alive 3449 * for as long as this mapping might exist. 3450 */ 3451 struct vm_area_struct *_install_special_mapping( 3452 struct mm_struct *mm, 3453 unsigned long addr, unsigned long len, 3454 unsigned long vm_flags, const struct vm_special_mapping *spec) 3455 { 3456 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3457 &special_mapping_vmops); 3458 } 3459 3460 int install_special_mapping(struct mm_struct *mm, 3461 unsigned long addr, unsigned long len, 3462 unsigned long vm_flags, struct page **pages) 3463 { 3464 struct vm_area_struct *vma = __install_special_mapping( 3465 mm, addr, len, vm_flags, (void *)pages, 3466 &legacy_special_mapping_vmops); 3467 3468 return PTR_ERR_OR_ZERO(vma); 3469 } 3470 3471 static DEFINE_MUTEX(mm_all_locks_mutex); 3472 3473 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3474 { 3475 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3476 /* 3477 * The LSB of head.next can't change from under us 3478 * because we hold the mm_all_locks_mutex. 3479 */ 3480 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3481 /* 3482 * We can safely modify head.next after taking the 3483 * anon_vma->root->rwsem. If some other vma in this mm shares 3484 * the same anon_vma we won't take it again. 3485 * 3486 * No need of atomic instructions here, head.next 3487 * can't change from under us thanks to the 3488 * anon_vma->root->rwsem. 3489 */ 3490 if (__test_and_set_bit(0, (unsigned long *) 3491 &anon_vma->root->rb_root.rb_root.rb_node)) 3492 BUG(); 3493 } 3494 } 3495 3496 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3497 { 3498 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3499 /* 3500 * AS_MM_ALL_LOCKS can't change from under us because 3501 * we hold the mm_all_locks_mutex. 3502 * 3503 * Operations on ->flags have to be atomic because 3504 * even if AS_MM_ALL_LOCKS is stable thanks to the 3505 * mm_all_locks_mutex, there may be other cpus 3506 * changing other bitflags in parallel to us. 3507 */ 3508 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3509 BUG(); 3510 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3511 } 3512 } 3513 3514 /* 3515 * This operation locks against the VM for all pte/vma/mm related 3516 * operations that could ever happen on a certain mm. This includes 3517 * vmtruncate, try_to_unmap, and all page faults. 3518 * 3519 * The caller must take the mmap_lock in write mode before calling 3520 * mm_take_all_locks(). The caller isn't allowed to release the 3521 * mmap_lock until mm_drop_all_locks() returns. 3522 * 3523 * mmap_lock in write mode is required in order to block all operations 3524 * that could modify pagetables and free pages without need of 3525 * altering the vma layout. It's also needed in write mode to avoid new 3526 * anon_vmas to be associated with existing vmas. 3527 * 3528 * A single task can't take more than one mm_take_all_locks() in a row 3529 * or it would deadlock. 3530 * 3531 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3532 * mapping->flags avoid to take the same lock twice, if more than one 3533 * vma in this mm is backed by the same anon_vma or address_space. 3534 * 3535 * We take locks in following order, accordingly to comment at beginning 3536 * of mm/rmap.c: 3537 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3538 * hugetlb mapping); 3539 * - all i_mmap_rwsem locks; 3540 * - all anon_vma->rwseml 3541 * 3542 * We can take all locks within these types randomly because the VM code 3543 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3544 * mm_all_locks_mutex. 3545 * 3546 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3547 * that may have to take thousand of locks. 3548 * 3549 * mm_take_all_locks() can fail if it's interrupted by signals. 3550 */ 3551 int mm_take_all_locks(struct mm_struct *mm) 3552 { 3553 struct vm_area_struct *vma; 3554 struct anon_vma_chain *avc; 3555 3556 BUG_ON(mmap_read_trylock(mm)); 3557 3558 mutex_lock(&mm_all_locks_mutex); 3559 3560 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3561 if (signal_pending(current)) 3562 goto out_unlock; 3563 if (vma->vm_file && vma->vm_file->f_mapping && 3564 is_vm_hugetlb_page(vma)) 3565 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3566 } 3567 3568 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3569 if (signal_pending(current)) 3570 goto out_unlock; 3571 if (vma->vm_file && vma->vm_file->f_mapping && 3572 !is_vm_hugetlb_page(vma)) 3573 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3574 } 3575 3576 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3577 if (signal_pending(current)) 3578 goto out_unlock; 3579 if (vma->anon_vma) 3580 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3581 vm_lock_anon_vma(mm, avc->anon_vma); 3582 } 3583 3584 return 0; 3585 3586 out_unlock: 3587 mm_drop_all_locks(mm); 3588 return -EINTR; 3589 } 3590 3591 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3592 { 3593 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3594 /* 3595 * The LSB of head.next can't change to 0 from under 3596 * us because we hold the mm_all_locks_mutex. 3597 * 3598 * We must however clear the bitflag before unlocking 3599 * the vma so the users using the anon_vma->rb_root will 3600 * never see our bitflag. 3601 * 3602 * No need of atomic instructions here, head.next 3603 * can't change from under us until we release the 3604 * anon_vma->root->rwsem. 3605 */ 3606 if (!__test_and_clear_bit(0, (unsigned long *) 3607 &anon_vma->root->rb_root.rb_root.rb_node)) 3608 BUG(); 3609 anon_vma_unlock_write(anon_vma); 3610 } 3611 } 3612 3613 static void vm_unlock_mapping(struct address_space *mapping) 3614 { 3615 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3616 /* 3617 * AS_MM_ALL_LOCKS can't change to 0 from under us 3618 * because we hold the mm_all_locks_mutex. 3619 */ 3620 i_mmap_unlock_write(mapping); 3621 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3622 &mapping->flags)) 3623 BUG(); 3624 } 3625 } 3626 3627 /* 3628 * The mmap_lock cannot be released by the caller until 3629 * mm_drop_all_locks() returns. 3630 */ 3631 void mm_drop_all_locks(struct mm_struct *mm) 3632 { 3633 struct vm_area_struct *vma; 3634 struct anon_vma_chain *avc; 3635 3636 BUG_ON(mmap_read_trylock(mm)); 3637 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3638 3639 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3640 if (vma->anon_vma) 3641 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3642 vm_unlock_anon_vma(avc->anon_vma); 3643 if (vma->vm_file && vma->vm_file->f_mapping) 3644 vm_unlock_mapping(vma->vm_file->f_mapping); 3645 } 3646 3647 mutex_unlock(&mm_all_locks_mutex); 3648 } 3649 3650 /* 3651 * initialise the percpu counter for VM 3652 */ 3653 void __init mmap_init(void) 3654 { 3655 int ret; 3656 3657 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3658 VM_BUG_ON(ret); 3659 } 3660 3661 /* 3662 * Initialise sysctl_user_reserve_kbytes. 3663 * 3664 * This is intended to prevent a user from starting a single memory hogging 3665 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3666 * mode. 3667 * 3668 * The default value is min(3% of free memory, 128MB) 3669 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3670 */ 3671 static int init_user_reserve(void) 3672 { 3673 unsigned long free_kbytes; 3674 3675 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3676 3677 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3678 return 0; 3679 } 3680 subsys_initcall(init_user_reserve); 3681 3682 /* 3683 * Initialise sysctl_admin_reserve_kbytes. 3684 * 3685 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3686 * to log in and kill a memory hogging process. 3687 * 3688 * Systems with more than 256MB will reserve 8MB, enough to recover 3689 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3690 * only reserve 3% of free pages by default. 3691 */ 3692 static int init_admin_reserve(void) 3693 { 3694 unsigned long free_kbytes; 3695 3696 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3697 3698 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3699 return 0; 3700 } 3701 subsys_initcall(init_admin_reserve); 3702 3703 /* 3704 * Reinititalise user and admin reserves if memory is added or removed. 3705 * 3706 * The default user reserve max is 128MB, and the default max for the 3707 * admin reserve is 8MB. These are usually, but not always, enough to 3708 * enable recovery from a memory hogging process using login/sshd, a shell, 3709 * and tools like top. It may make sense to increase or even disable the 3710 * reserve depending on the existence of swap or variations in the recovery 3711 * tools. So, the admin may have changed them. 3712 * 3713 * If memory is added and the reserves have been eliminated or increased above 3714 * the default max, then we'll trust the admin. 3715 * 3716 * If memory is removed and there isn't enough free memory, then we 3717 * need to reset the reserves. 3718 * 3719 * Otherwise keep the reserve set by the admin. 3720 */ 3721 static int reserve_mem_notifier(struct notifier_block *nb, 3722 unsigned long action, void *data) 3723 { 3724 unsigned long tmp, free_kbytes; 3725 3726 switch (action) { 3727 case MEM_ONLINE: 3728 /* Default max is 128MB. Leave alone if modified by operator. */ 3729 tmp = sysctl_user_reserve_kbytes; 3730 if (0 < tmp && tmp < (1UL << 17)) 3731 init_user_reserve(); 3732 3733 /* Default max is 8MB. Leave alone if modified by operator. */ 3734 tmp = sysctl_admin_reserve_kbytes; 3735 if (0 < tmp && tmp < (1UL << 13)) 3736 init_admin_reserve(); 3737 3738 break; 3739 case MEM_OFFLINE: 3740 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3741 3742 if (sysctl_user_reserve_kbytes > free_kbytes) { 3743 init_user_reserve(); 3744 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3745 sysctl_user_reserve_kbytes); 3746 } 3747 3748 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3749 init_admin_reserve(); 3750 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3751 sysctl_admin_reserve_kbytes); 3752 } 3753 break; 3754 default: 3755 break; 3756 } 3757 return NOTIFY_OK; 3758 } 3759 3760 static struct notifier_block reserve_mem_nb = { 3761 .notifier_call = reserve_mem_notifier, 3762 }; 3763 3764 static int __meminit init_reserve_notifier(void) 3765 { 3766 if (register_hotmemory_notifier(&reserve_mem_nb)) 3767 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3768 3769 return 0; 3770 } 3771 subsys_initcall(init_reserve_notifier); 3772