xref: /linux/mm/mmap.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/mount.h>
25 #include <linux/mempolicy.h>
26 #include <linux/rmap.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 
32 static void unmap_region(struct mm_struct *mm,
33 		struct vm_area_struct *vma, struct vm_area_struct *prev,
34 		unsigned long start, unsigned long end);
35 
36 /*
37  * WARNING: the debugging will use recursive algorithms so never enable this
38  * unless you know what you are doing.
39  */
40 #undef DEBUG_MM_RB
41 
42 /* description of effects of mapping type and prot in current implementation.
43  * this is due to the limited x86 page protection hardware.  The expected
44  * behavior is in parens:
45  *
46  * map_type	prot
47  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
48  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
49  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
50  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
51  *
52  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
53  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
54  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
55  *
56  */
57 pgprot_t protection_map[16] = {
58 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
59 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
60 };
61 
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50;	/* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 atomic_t vm_committed_space = ATOMIC_INIT(0);
66 
67 /*
68  * Check that a process has enough memory to allocate a new virtual
69  * mapping. 0 means there is enough memory for the allocation to
70  * succeed and -ENOMEM implies there is not.
71  *
72  * We currently support three overcommit policies, which are set via the
73  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
74  *
75  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
76  * Additional code 2002 Jul 20 by Robert Love.
77  *
78  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
79  *
80  * Note this is a helper function intended to be used by LSMs which
81  * wish to use this logic.
82  */
83 int __vm_enough_memory(long pages, int cap_sys_admin)
84 {
85 	unsigned long free, allowed;
86 
87 	vm_acct_memory(pages);
88 
89 	/*
90 	 * Sometimes we want to use more memory than we have
91 	 */
92 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
93 		return 0;
94 
95 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
96 		unsigned long n;
97 
98 		free = get_page_cache_size();
99 		free += nr_swap_pages;
100 
101 		/*
102 		 * Any slabs which are created with the
103 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
104 		 * which are reclaimable, under pressure.  The dentry
105 		 * cache and most inode caches should fall into this
106 		 */
107 		free += atomic_read(&slab_reclaim_pages);
108 
109 		/*
110 		 * Leave the last 3% for root
111 		 */
112 		if (!cap_sys_admin)
113 			free -= free / 32;
114 
115 		if (free > pages)
116 			return 0;
117 
118 		/*
119 		 * nr_free_pages() is very expensive on large systems,
120 		 * only call if we're about to fail.
121 		 */
122 		n = nr_free_pages();
123 		if (!cap_sys_admin)
124 			n -= n / 32;
125 		free += n;
126 
127 		if (free > pages)
128 			return 0;
129 		vm_unacct_memory(pages);
130 		return -ENOMEM;
131 	}
132 
133 	allowed = (totalram_pages - hugetlb_total_pages())
134 	       	* sysctl_overcommit_ratio / 100;
135 	/*
136 	 * Leave the last 3% for root
137 	 */
138 	if (!cap_sys_admin)
139 		allowed -= allowed / 32;
140 	allowed += total_swap_pages;
141 
142 	/* Don't let a single process grow too big:
143 	   leave 3% of the size of this process for other processes */
144 	allowed -= current->mm->total_vm / 32;
145 
146 	if (atomic_read(&vm_committed_space) < allowed)
147 		return 0;
148 
149 	vm_unacct_memory(pages);
150 
151 	return -ENOMEM;
152 }
153 
154 EXPORT_SYMBOL(sysctl_overcommit_memory);
155 EXPORT_SYMBOL(sysctl_overcommit_ratio);
156 EXPORT_SYMBOL(sysctl_max_map_count);
157 EXPORT_SYMBOL(vm_committed_space);
158 EXPORT_SYMBOL(__vm_enough_memory);
159 
160 /*
161  * Requires inode->i_mapping->i_mmap_lock
162  */
163 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
164 		struct file *file, struct address_space *mapping)
165 {
166 	if (vma->vm_flags & VM_DENYWRITE)
167 		atomic_inc(&file->f_dentry->d_inode->i_writecount);
168 	if (vma->vm_flags & VM_SHARED)
169 		mapping->i_mmap_writable--;
170 
171 	flush_dcache_mmap_lock(mapping);
172 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
173 		list_del_init(&vma->shared.vm_set.list);
174 	else
175 		vma_prio_tree_remove(vma, &mapping->i_mmap);
176 	flush_dcache_mmap_unlock(mapping);
177 }
178 
179 /*
180  * Remove one vm structure and free it.
181  */
182 static void remove_vm_struct(struct vm_area_struct *vma)
183 {
184 	struct file *file = vma->vm_file;
185 
186 	might_sleep();
187 	if (file) {
188 		struct address_space *mapping = file->f_mapping;
189 		spin_lock(&mapping->i_mmap_lock);
190 		__remove_shared_vm_struct(vma, file, mapping);
191 		spin_unlock(&mapping->i_mmap_lock);
192 	}
193 	if (vma->vm_ops && vma->vm_ops->close)
194 		vma->vm_ops->close(vma);
195 	if (file)
196 		fput(file);
197 	anon_vma_unlink(vma);
198 	mpol_free(vma_policy(vma));
199 	kmem_cache_free(vm_area_cachep, vma);
200 }
201 
202 /*
203  *  sys_brk() for the most part doesn't need the global kernel
204  *  lock, except when an application is doing something nasty
205  *  like trying to un-brk an area that has already been mapped
206  *  to a regular file.  in this case, the unmapping will need
207  *  to invoke file system routines that need the global lock.
208  */
209 asmlinkage unsigned long sys_brk(unsigned long brk)
210 {
211 	unsigned long rlim, retval;
212 	unsigned long newbrk, oldbrk;
213 	struct mm_struct *mm = current->mm;
214 
215 	down_write(&mm->mmap_sem);
216 
217 	if (brk < mm->end_code)
218 		goto out;
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk)
222 		goto set_brk;
223 
224 	/* Always allow shrinking brk. */
225 	if (brk <= mm->brk) {
226 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
227 			goto set_brk;
228 		goto out;
229 	}
230 
231 	/* Check against rlimit.. */
232 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
233 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
234 		goto out;
235 
236 	/* Check against existing mmap mappings. */
237 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
238 		goto out;
239 
240 	/* Ok, looks good - let it rip. */
241 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
242 		goto out;
243 set_brk:
244 	mm->brk = brk;
245 out:
246 	retval = mm->brk;
247 	up_write(&mm->mmap_sem);
248 	return retval;
249 }
250 
251 #ifdef DEBUG_MM_RB
252 static int browse_rb(struct rb_root *root)
253 {
254 	int i = 0, j;
255 	struct rb_node *nd, *pn = NULL;
256 	unsigned long prev = 0, pend = 0;
257 
258 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
259 		struct vm_area_struct *vma;
260 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
261 		if (vma->vm_start < prev)
262 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
263 		if (vma->vm_start < pend)
264 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
265 		if (vma->vm_start > vma->vm_end)
266 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
267 		i++;
268 		pn = nd;
269 	}
270 	j = 0;
271 	for (nd = pn; nd; nd = rb_prev(nd)) {
272 		j++;
273 	}
274 	if (i != j)
275 		printk("backwards %d, forwards %d\n", j, i), i = 0;
276 	return i;
277 }
278 
279 void validate_mm(struct mm_struct *mm)
280 {
281 	int bug = 0;
282 	int i = 0;
283 	struct vm_area_struct *tmp = mm->mmap;
284 	while (tmp) {
285 		tmp = tmp->vm_next;
286 		i++;
287 	}
288 	if (i != mm->map_count)
289 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
290 	i = browse_rb(&mm->mm_rb);
291 	if (i != mm->map_count)
292 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
293 	if (bug)
294 		BUG();
295 }
296 #else
297 #define validate_mm(mm) do { } while (0)
298 #endif
299 
300 static struct vm_area_struct *
301 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
302 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
303 		struct rb_node ** rb_parent)
304 {
305 	struct vm_area_struct * vma;
306 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
307 
308 	__rb_link = &mm->mm_rb.rb_node;
309 	rb_prev = __rb_parent = NULL;
310 	vma = NULL;
311 
312 	while (*__rb_link) {
313 		struct vm_area_struct *vma_tmp;
314 
315 		__rb_parent = *__rb_link;
316 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
317 
318 		if (vma_tmp->vm_end > addr) {
319 			vma = vma_tmp;
320 			if (vma_tmp->vm_start <= addr)
321 				return vma;
322 			__rb_link = &__rb_parent->rb_left;
323 		} else {
324 			rb_prev = __rb_parent;
325 			__rb_link = &__rb_parent->rb_right;
326 		}
327 	}
328 
329 	*pprev = NULL;
330 	if (rb_prev)
331 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
332 	*rb_link = __rb_link;
333 	*rb_parent = __rb_parent;
334 	return vma;
335 }
336 
337 static inline void
338 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
339 		struct vm_area_struct *prev, struct rb_node *rb_parent)
340 {
341 	if (prev) {
342 		vma->vm_next = prev->vm_next;
343 		prev->vm_next = vma;
344 	} else {
345 		mm->mmap = vma;
346 		if (rb_parent)
347 			vma->vm_next = rb_entry(rb_parent,
348 					struct vm_area_struct, vm_rb);
349 		else
350 			vma->vm_next = NULL;
351 	}
352 }
353 
354 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
355 		struct rb_node **rb_link, struct rb_node *rb_parent)
356 {
357 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
358 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
359 }
360 
361 static inline void __vma_link_file(struct vm_area_struct *vma)
362 {
363 	struct file * file;
364 
365 	file = vma->vm_file;
366 	if (file) {
367 		struct address_space *mapping = file->f_mapping;
368 
369 		if (vma->vm_flags & VM_DENYWRITE)
370 			atomic_dec(&file->f_dentry->d_inode->i_writecount);
371 		if (vma->vm_flags & VM_SHARED)
372 			mapping->i_mmap_writable++;
373 
374 		flush_dcache_mmap_lock(mapping);
375 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
376 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
377 		else
378 			vma_prio_tree_insert(vma, &mapping->i_mmap);
379 		flush_dcache_mmap_unlock(mapping);
380 	}
381 }
382 
383 static void
384 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
385 	struct vm_area_struct *prev, struct rb_node **rb_link,
386 	struct rb_node *rb_parent)
387 {
388 	__vma_link_list(mm, vma, prev, rb_parent);
389 	__vma_link_rb(mm, vma, rb_link, rb_parent);
390 	__anon_vma_link(vma);
391 }
392 
393 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
394 			struct vm_area_struct *prev, struct rb_node **rb_link,
395 			struct rb_node *rb_parent)
396 {
397 	struct address_space *mapping = NULL;
398 
399 	if (vma->vm_file)
400 		mapping = vma->vm_file->f_mapping;
401 
402 	if (mapping) {
403 		spin_lock(&mapping->i_mmap_lock);
404 		vma->vm_truncate_count = mapping->truncate_count;
405 	}
406 	anon_vma_lock(vma);
407 
408 	__vma_link(mm, vma, prev, rb_link, rb_parent);
409 	__vma_link_file(vma);
410 
411 	anon_vma_unlock(vma);
412 	if (mapping)
413 		spin_unlock(&mapping->i_mmap_lock);
414 
415 	mm->map_count++;
416 	validate_mm(mm);
417 }
418 
419 /*
420  * Helper for vma_adjust in the split_vma insert case:
421  * insert vm structure into list and rbtree and anon_vma,
422  * but it has already been inserted into prio_tree earlier.
423  */
424 static void
425 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
426 {
427 	struct vm_area_struct * __vma, * prev;
428 	struct rb_node ** rb_link, * rb_parent;
429 
430 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
431 	if (__vma && __vma->vm_start < vma->vm_end)
432 		BUG();
433 	__vma_link(mm, vma, prev, rb_link, rb_parent);
434 	mm->map_count++;
435 }
436 
437 static inline void
438 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
439 		struct vm_area_struct *prev)
440 {
441 	prev->vm_next = vma->vm_next;
442 	rb_erase(&vma->vm_rb, &mm->mm_rb);
443 	if (mm->mmap_cache == vma)
444 		mm->mmap_cache = prev;
445 }
446 
447 /*
448  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
449  * is already present in an i_mmap tree without adjusting the tree.
450  * The following helper function should be used when such adjustments
451  * are necessary.  The "insert" vma (if any) is to be inserted
452  * before we drop the necessary locks.
453  */
454 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
455 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
456 {
457 	struct mm_struct *mm = vma->vm_mm;
458 	struct vm_area_struct *next = vma->vm_next;
459 	struct vm_area_struct *importer = NULL;
460 	struct address_space *mapping = NULL;
461 	struct prio_tree_root *root = NULL;
462 	struct file *file = vma->vm_file;
463 	struct anon_vma *anon_vma = NULL;
464 	long adjust_next = 0;
465 	int remove_next = 0;
466 
467 	if (next && !insert) {
468 		if (end >= next->vm_end) {
469 			/*
470 			 * vma expands, overlapping all the next, and
471 			 * perhaps the one after too (mprotect case 6).
472 			 */
473 again:			remove_next = 1 + (end > next->vm_end);
474 			end = next->vm_end;
475 			anon_vma = next->anon_vma;
476 			importer = vma;
477 		} else if (end > next->vm_start) {
478 			/*
479 			 * vma expands, overlapping part of the next:
480 			 * mprotect case 5 shifting the boundary up.
481 			 */
482 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
483 			anon_vma = next->anon_vma;
484 			importer = vma;
485 		} else if (end < vma->vm_end) {
486 			/*
487 			 * vma shrinks, and !insert tells it's not
488 			 * split_vma inserting another: so it must be
489 			 * mprotect case 4 shifting the boundary down.
490 			 */
491 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
492 			anon_vma = next->anon_vma;
493 			importer = next;
494 		}
495 	}
496 
497 	if (file) {
498 		mapping = file->f_mapping;
499 		if (!(vma->vm_flags & VM_NONLINEAR))
500 			root = &mapping->i_mmap;
501 		spin_lock(&mapping->i_mmap_lock);
502 		if (importer &&
503 		    vma->vm_truncate_count != next->vm_truncate_count) {
504 			/*
505 			 * unmap_mapping_range might be in progress:
506 			 * ensure that the expanding vma is rescanned.
507 			 */
508 			importer->vm_truncate_count = 0;
509 		}
510 		if (insert) {
511 			insert->vm_truncate_count = vma->vm_truncate_count;
512 			/*
513 			 * Put into prio_tree now, so instantiated pages
514 			 * are visible to arm/parisc __flush_dcache_page
515 			 * throughout; but we cannot insert into address
516 			 * space until vma start or end is updated.
517 			 */
518 			__vma_link_file(insert);
519 		}
520 	}
521 
522 	/*
523 	 * When changing only vma->vm_end, we don't really need
524 	 * anon_vma lock: but is that case worth optimizing out?
525 	 */
526 	if (vma->anon_vma)
527 		anon_vma = vma->anon_vma;
528 	if (anon_vma) {
529 		spin_lock(&anon_vma->lock);
530 		/*
531 		 * Easily overlooked: when mprotect shifts the boundary,
532 		 * make sure the expanding vma has anon_vma set if the
533 		 * shrinking vma had, to cover any anon pages imported.
534 		 */
535 		if (importer && !importer->anon_vma) {
536 			importer->anon_vma = anon_vma;
537 			__anon_vma_link(importer);
538 		}
539 	}
540 
541 	if (root) {
542 		flush_dcache_mmap_lock(mapping);
543 		vma_prio_tree_remove(vma, root);
544 		if (adjust_next)
545 			vma_prio_tree_remove(next, root);
546 	}
547 
548 	vma->vm_start = start;
549 	vma->vm_end = end;
550 	vma->vm_pgoff = pgoff;
551 	if (adjust_next) {
552 		next->vm_start += adjust_next << PAGE_SHIFT;
553 		next->vm_pgoff += adjust_next;
554 	}
555 
556 	if (root) {
557 		if (adjust_next)
558 			vma_prio_tree_insert(next, root);
559 		vma_prio_tree_insert(vma, root);
560 		flush_dcache_mmap_unlock(mapping);
561 	}
562 
563 	if (remove_next) {
564 		/*
565 		 * vma_merge has merged next into vma, and needs
566 		 * us to remove next before dropping the locks.
567 		 */
568 		__vma_unlink(mm, next, vma);
569 		if (file)
570 			__remove_shared_vm_struct(next, file, mapping);
571 		if (next->anon_vma)
572 			__anon_vma_merge(vma, next);
573 	} else if (insert) {
574 		/*
575 		 * split_vma has split insert from vma, and needs
576 		 * us to insert it before dropping the locks
577 		 * (it may either follow vma or precede it).
578 		 */
579 		__insert_vm_struct(mm, insert);
580 	}
581 
582 	if (anon_vma)
583 		spin_unlock(&anon_vma->lock);
584 	if (mapping)
585 		spin_unlock(&mapping->i_mmap_lock);
586 
587 	if (remove_next) {
588 		if (file)
589 			fput(file);
590 		mm->map_count--;
591 		mpol_free(vma_policy(next));
592 		kmem_cache_free(vm_area_cachep, next);
593 		/*
594 		 * In mprotect's case 6 (see comments on vma_merge),
595 		 * we must remove another next too. It would clutter
596 		 * up the code too much to do both in one go.
597 		 */
598 		if (remove_next == 2) {
599 			next = vma->vm_next;
600 			goto again;
601 		}
602 	}
603 
604 	validate_mm(mm);
605 }
606 
607 /*
608  * If the vma has a ->close operation then the driver probably needs to release
609  * per-vma resources, so we don't attempt to merge those.
610  */
611 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
612 
613 static inline int is_mergeable_vma(struct vm_area_struct *vma,
614 			struct file *file, unsigned long vm_flags)
615 {
616 	if (vma->vm_flags != vm_flags)
617 		return 0;
618 	if (vma->vm_file != file)
619 		return 0;
620 	if (vma->vm_ops && vma->vm_ops->close)
621 		return 0;
622 	return 1;
623 }
624 
625 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
626 					struct anon_vma *anon_vma2)
627 {
628 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
629 }
630 
631 /*
632  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
633  * in front of (at a lower virtual address and file offset than) the vma.
634  *
635  * We cannot merge two vmas if they have differently assigned (non-NULL)
636  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
637  *
638  * We don't check here for the merged mmap wrapping around the end of pagecache
639  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
640  * wrap, nor mmaps which cover the final page at index -1UL.
641  */
642 static int
643 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
644 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
645 {
646 	if (is_mergeable_vma(vma, file, vm_flags) &&
647 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
648 		if (vma->vm_pgoff == vm_pgoff)
649 			return 1;
650 	}
651 	return 0;
652 }
653 
654 /*
655  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
656  * beyond (at a higher virtual address and file offset than) the vma.
657  *
658  * We cannot merge two vmas if they have differently assigned (non-NULL)
659  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
660  */
661 static int
662 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
663 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
664 {
665 	if (is_mergeable_vma(vma, file, vm_flags) &&
666 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
667 		pgoff_t vm_pglen;
668 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
669 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
670 			return 1;
671 	}
672 	return 0;
673 }
674 
675 /*
676  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
677  * whether that can be merged with its predecessor or its successor.
678  * Or both (it neatly fills a hole).
679  *
680  * In most cases - when called for mmap, brk or mremap - [addr,end) is
681  * certain not to be mapped by the time vma_merge is called; but when
682  * called for mprotect, it is certain to be already mapped (either at
683  * an offset within prev, or at the start of next), and the flags of
684  * this area are about to be changed to vm_flags - and the no-change
685  * case has already been eliminated.
686  *
687  * The following mprotect cases have to be considered, where AAAA is
688  * the area passed down from mprotect_fixup, never extending beyond one
689  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
690  *
691  *     AAAA             AAAA                AAAA          AAAA
692  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
693  *    cannot merge    might become    might become    might become
694  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
695  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
696  *    mremap move:                                    PPPPNNNNNNNN 8
697  *        AAAA
698  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
699  *    might become    case 1 below    case 2 below    case 3 below
700  *
701  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
702  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
703  */
704 struct vm_area_struct *vma_merge(struct mm_struct *mm,
705 			struct vm_area_struct *prev, unsigned long addr,
706 			unsigned long end, unsigned long vm_flags,
707 		     	struct anon_vma *anon_vma, struct file *file,
708 			pgoff_t pgoff, struct mempolicy *policy)
709 {
710 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
711 	struct vm_area_struct *area, *next;
712 
713 	/*
714 	 * We later require that vma->vm_flags == vm_flags,
715 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
716 	 */
717 	if (vm_flags & VM_SPECIAL)
718 		return NULL;
719 
720 	if (prev)
721 		next = prev->vm_next;
722 	else
723 		next = mm->mmap;
724 	area = next;
725 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
726 		next = next->vm_next;
727 
728 	/*
729 	 * Can it merge with the predecessor?
730 	 */
731 	if (prev && prev->vm_end == addr &&
732   			mpol_equal(vma_policy(prev), policy) &&
733 			can_vma_merge_after(prev, vm_flags,
734 						anon_vma, file, pgoff)) {
735 		/*
736 		 * OK, it can.  Can we now merge in the successor as well?
737 		 */
738 		if (next && end == next->vm_start &&
739 				mpol_equal(policy, vma_policy(next)) &&
740 				can_vma_merge_before(next, vm_flags,
741 					anon_vma, file, pgoff+pglen) &&
742 				is_mergeable_anon_vma(prev->anon_vma,
743 						      next->anon_vma)) {
744 							/* cases 1, 6 */
745 			vma_adjust(prev, prev->vm_start,
746 				next->vm_end, prev->vm_pgoff, NULL);
747 		} else					/* cases 2, 5, 7 */
748 			vma_adjust(prev, prev->vm_start,
749 				end, prev->vm_pgoff, NULL);
750 		return prev;
751 	}
752 
753 	/*
754 	 * Can this new request be merged in front of next?
755 	 */
756 	if (next && end == next->vm_start &&
757  			mpol_equal(policy, vma_policy(next)) &&
758 			can_vma_merge_before(next, vm_flags,
759 					anon_vma, file, pgoff+pglen)) {
760 		if (prev && addr < prev->vm_end)	/* case 4 */
761 			vma_adjust(prev, prev->vm_start,
762 				addr, prev->vm_pgoff, NULL);
763 		else					/* cases 3, 8 */
764 			vma_adjust(area, addr, next->vm_end,
765 				next->vm_pgoff - pglen, NULL);
766 		return area;
767 	}
768 
769 	return NULL;
770 }
771 
772 /*
773  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
774  * neighbouring vmas for a suitable anon_vma, before it goes off
775  * to allocate a new anon_vma.  It checks because a repetitive
776  * sequence of mprotects and faults may otherwise lead to distinct
777  * anon_vmas being allocated, preventing vma merge in subsequent
778  * mprotect.
779  */
780 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
781 {
782 	struct vm_area_struct *near;
783 	unsigned long vm_flags;
784 
785 	near = vma->vm_next;
786 	if (!near)
787 		goto try_prev;
788 
789 	/*
790 	 * Since only mprotect tries to remerge vmas, match flags
791 	 * which might be mprotected into each other later on.
792 	 * Neither mlock nor madvise tries to remerge at present,
793 	 * so leave their flags as obstructing a merge.
794 	 */
795 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
796 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
797 
798 	if (near->anon_vma && vma->vm_end == near->vm_start &&
799  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
800 			can_vma_merge_before(near, vm_flags,
801 				NULL, vma->vm_file, vma->vm_pgoff +
802 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
803 		return near->anon_vma;
804 try_prev:
805 	/*
806 	 * It is potentially slow to have to call find_vma_prev here.
807 	 * But it's only on the first write fault on the vma, not
808 	 * every time, and we could devise a way to avoid it later
809 	 * (e.g. stash info in next's anon_vma_node when assigning
810 	 * an anon_vma, or when trying vma_merge).  Another time.
811 	 */
812 	if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
813 		BUG();
814 	if (!near)
815 		goto none;
816 
817 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
818 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
819 
820 	if (near->anon_vma && near->vm_end == vma->vm_start &&
821   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
822 			can_vma_merge_after(near, vm_flags,
823 				NULL, vma->vm_file, vma->vm_pgoff))
824 		return near->anon_vma;
825 none:
826 	/*
827 	 * There's no absolute need to look only at touching neighbours:
828 	 * we could search further afield for "compatible" anon_vmas.
829 	 * But it would probably just be a waste of time searching,
830 	 * or lead to too many vmas hanging off the same anon_vma.
831 	 * We're trying to allow mprotect remerging later on,
832 	 * not trying to minimize memory used for anon_vmas.
833 	 */
834 	return NULL;
835 }
836 
837 #ifdef CONFIG_PROC_FS
838 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
839 						struct file *file, long pages)
840 {
841 	const unsigned long stack_flags
842 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
843 
844 #ifdef CONFIG_HUGETLB
845 	if (flags & VM_HUGETLB) {
846 		if (!(flags & VM_DONTCOPY))
847 			mm->shared_vm += pages;
848 		return;
849 	}
850 #endif /* CONFIG_HUGETLB */
851 
852 	if (file) {
853 		mm->shared_vm += pages;
854 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
855 			mm->exec_vm += pages;
856 	} else if (flags & stack_flags)
857 		mm->stack_vm += pages;
858 	if (flags & (VM_RESERVED|VM_IO))
859 		mm->reserved_vm += pages;
860 }
861 #endif /* CONFIG_PROC_FS */
862 
863 /*
864  * The caller must hold down_write(current->mm->mmap_sem).
865  */
866 
867 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
868 			unsigned long len, unsigned long prot,
869 			unsigned long flags, unsigned long pgoff)
870 {
871 	struct mm_struct * mm = current->mm;
872 	struct vm_area_struct * vma, * prev;
873 	struct inode *inode;
874 	unsigned int vm_flags;
875 	int correct_wcount = 0;
876 	int error;
877 	struct rb_node ** rb_link, * rb_parent;
878 	int accountable = 1;
879 	unsigned long charged = 0, reqprot = prot;
880 
881 	if (file) {
882 		if (is_file_hugepages(file))
883 			accountable = 0;
884 
885 		if (!file->f_op || !file->f_op->mmap)
886 			return -ENODEV;
887 
888 		if ((prot & PROT_EXEC) &&
889 		    (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
890 			return -EPERM;
891 	}
892 	/*
893 	 * Does the application expect PROT_READ to imply PROT_EXEC?
894 	 *
895 	 * (the exception is when the underlying filesystem is noexec
896 	 *  mounted, in which case we dont add PROT_EXEC.)
897 	 */
898 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
899 		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
900 			prot |= PROT_EXEC;
901 
902 	if (!len)
903 		return -EINVAL;
904 
905 	/* Careful about overflows.. */
906 	len = PAGE_ALIGN(len);
907 	if (!len || len > TASK_SIZE)
908 		return -ENOMEM;
909 
910 	/* offset overflow? */
911 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
912                return -EOVERFLOW;
913 
914 	/* Too many mappings? */
915 	if (mm->map_count > sysctl_max_map_count)
916 		return -ENOMEM;
917 
918 	/* Obtain the address to map to. we verify (or select) it and ensure
919 	 * that it represents a valid section of the address space.
920 	 */
921 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
922 	if (addr & ~PAGE_MASK)
923 		return addr;
924 
925 	/* Do simple checking here so the lower-level routines won't have
926 	 * to. we assume access permissions have been handled by the open
927 	 * of the memory object, so we don't do any here.
928 	 */
929 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
930 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
931 
932 	if (flags & MAP_LOCKED) {
933 		if (!can_do_mlock())
934 			return -EPERM;
935 		vm_flags |= VM_LOCKED;
936 	}
937 	/* mlock MCL_FUTURE? */
938 	if (vm_flags & VM_LOCKED) {
939 		unsigned long locked, lock_limit;
940 		locked = len >> PAGE_SHIFT;
941 		locked += mm->locked_vm;
942 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
943 		lock_limit >>= PAGE_SHIFT;
944 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
945 			return -EAGAIN;
946 	}
947 
948 	inode = file ? file->f_dentry->d_inode : NULL;
949 
950 	if (file) {
951 		switch (flags & MAP_TYPE) {
952 		case MAP_SHARED:
953 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
954 				return -EACCES;
955 
956 			/*
957 			 * Make sure we don't allow writing to an append-only
958 			 * file..
959 			 */
960 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
961 				return -EACCES;
962 
963 			/*
964 			 * Make sure there are no mandatory locks on the file.
965 			 */
966 			if (locks_verify_locked(inode))
967 				return -EAGAIN;
968 
969 			vm_flags |= VM_SHARED | VM_MAYSHARE;
970 			if (!(file->f_mode & FMODE_WRITE))
971 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
972 
973 			/* fall through */
974 		case MAP_PRIVATE:
975 			if (!(file->f_mode & FMODE_READ))
976 				return -EACCES;
977 			break;
978 
979 		default:
980 			return -EINVAL;
981 		}
982 	} else {
983 		switch (flags & MAP_TYPE) {
984 		case MAP_SHARED:
985 			vm_flags |= VM_SHARED | VM_MAYSHARE;
986 			break;
987 		case MAP_PRIVATE:
988 			/*
989 			 * Set pgoff according to addr for anon_vma.
990 			 */
991 			pgoff = addr >> PAGE_SHIFT;
992 			break;
993 		default:
994 			return -EINVAL;
995 		}
996 	}
997 
998 	error = security_file_mmap(file, reqprot, prot, flags);
999 	if (error)
1000 		return error;
1001 
1002 	/* Clear old maps */
1003 	error = -ENOMEM;
1004 munmap_back:
1005 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1006 	if (vma && vma->vm_start < addr + len) {
1007 		if (do_munmap(mm, addr, len))
1008 			return -ENOMEM;
1009 		goto munmap_back;
1010 	}
1011 
1012 	/* Check against address space limit. */
1013 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1014 		return -ENOMEM;
1015 
1016 	if (accountable && (!(flags & MAP_NORESERVE) ||
1017 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1018 		if (vm_flags & VM_SHARED) {
1019 			/* Check memory availability in shmem_file_setup? */
1020 			vm_flags |= VM_ACCOUNT;
1021 		} else if (vm_flags & VM_WRITE) {
1022 			/*
1023 			 * Private writable mapping: check memory availability
1024 			 */
1025 			charged = len >> PAGE_SHIFT;
1026 			if (security_vm_enough_memory(charged))
1027 				return -ENOMEM;
1028 			vm_flags |= VM_ACCOUNT;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Can we just expand an old private anonymous mapping?
1034 	 * The VM_SHARED test is necessary because shmem_zero_setup
1035 	 * will create the file object for a shared anonymous map below.
1036 	 */
1037 	if (!file && !(vm_flags & VM_SHARED) &&
1038 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1039 					NULL, NULL, pgoff, NULL))
1040 		goto out;
1041 
1042 	/*
1043 	 * Determine the object being mapped and call the appropriate
1044 	 * specific mapper. the address has already been validated, but
1045 	 * not unmapped, but the maps are removed from the list.
1046 	 */
1047 	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1048 	if (!vma) {
1049 		error = -ENOMEM;
1050 		goto unacct_error;
1051 	}
1052 	memset(vma, 0, sizeof(*vma));
1053 
1054 	vma->vm_mm = mm;
1055 	vma->vm_start = addr;
1056 	vma->vm_end = addr + len;
1057 	vma->vm_flags = vm_flags;
1058 	vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1059 	vma->vm_pgoff = pgoff;
1060 
1061 	if (file) {
1062 		error = -EINVAL;
1063 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1064 			goto free_vma;
1065 		if (vm_flags & VM_DENYWRITE) {
1066 			error = deny_write_access(file);
1067 			if (error)
1068 				goto free_vma;
1069 			correct_wcount = 1;
1070 		}
1071 		vma->vm_file = file;
1072 		get_file(file);
1073 		error = file->f_op->mmap(file, vma);
1074 		if (error)
1075 			goto unmap_and_free_vma;
1076 	} else if (vm_flags & VM_SHARED) {
1077 		error = shmem_zero_setup(vma);
1078 		if (error)
1079 			goto free_vma;
1080 	}
1081 
1082 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1083 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1084 	 * that memory reservation must be checked; but that reservation
1085 	 * belongs to shared memory object, not to vma: so now clear it.
1086 	 */
1087 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1088 		vma->vm_flags &= ~VM_ACCOUNT;
1089 
1090 	/* Can addr have changed??
1091 	 *
1092 	 * Answer: Yes, several device drivers can do it in their
1093 	 *         f_op->mmap method. -DaveM
1094 	 */
1095 	addr = vma->vm_start;
1096 	pgoff = vma->vm_pgoff;
1097 	vm_flags = vma->vm_flags;
1098 
1099 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1100 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1101 		file = vma->vm_file;
1102 		vma_link(mm, vma, prev, rb_link, rb_parent);
1103 		if (correct_wcount)
1104 			atomic_inc(&inode->i_writecount);
1105 	} else {
1106 		if (file) {
1107 			if (correct_wcount)
1108 				atomic_inc(&inode->i_writecount);
1109 			fput(file);
1110 		}
1111 		mpol_free(vma_policy(vma));
1112 		kmem_cache_free(vm_area_cachep, vma);
1113 	}
1114 out:
1115 	mm->total_vm += len >> PAGE_SHIFT;
1116 	__vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1117 	if (vm_flags & VM_LOCKED) {
1118 		mm->locked_vm += len >> PAGE_SHIFT;
1119 		make_pages_present(addr, addr + len);
1120 	}
1121 	if (flags & MAP_POPULATE) {
1122 		up_write(&mm->mmap_sem);
1123 		sys_remap_file_pages(addr, len, 0,
1124 					pgoff, flags & MAP_NONBLOCK);
1125 		down_write(&mm->mmap_sem);
1126 	}
1127 	return addr;
1128 
1129 unmap_and_free_vma:
1130 	if (correct_wcount)
1131 		atomic_inc(&inode->i_writecount);
1132 	vma->vm_file = NULL;
1133 	fput(file);
1134 
1135 	/* Undo any partial mapping done by a device driver. */
1136 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1137 	charged = 0;
1138 free_vma:
1139 	kmem_cache_free(vm_area_cachep, vma);
1140 unacct_error:
1141 	if (charged)
1142 		vm_unacct_memory(charged);
1143 	return error;
1144 }
1145 
1146 EXPORT_SYMBOL(do_mmap_pgoff);
1147 
1148 /* Get an address range which is currently unmapped.
1149  * For shmat() with addr=0.
1150  *
1151  * Ugly calling convention alert:
1152  * Return value with the low bits set means error value,
1153  * ie
1154  *	if (ret & ~PAGE_MASK)
1155  *		error = ret;
1156  *
1157  * This function "knows" that -ENOMEM has the bits set.
1158  */
1159 #ifndef HAVE_ARCH_UNMAPPED_AREA
1160 unsigned long
1161 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1162 		unsigned long len, unsigned long pgoff, unsigned long flags)
1163 {
1164 	struct mm_struct *mm = current->mm;
1165 	struct vm_area_struct *vma;
1166 	unsigned long start_addr;
1167 
1168 	if (len > TASK_SIZE)
1169 		return -ENOMEM;
1170 
1171 	if (addr) {
1172 		addr = PAGE_ALIGN(addr);
1173 		vma = find_vma(mm, addr);
1174 		if (TASK_SIZE - len >= addr &&
1175 		    (!vma || addr + len <= vma->vm_start))
1176 			return addr;
1177 	}
1178 	start_addr = addr = mm->free_area_cache;
1179 
1180 full_search:
1181 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1182 		/* At this point:  (!vma || addr < vma->vm_end). */
1183 		if (TASK_SIZE - len < addr) {
1184 			/*
1185 			 * Start a new search - just in case we missed
1186 			 * some holes.
1187 			 */
1188 			if (start_addr != TASK_UNMAPPED_BASE) {
1189 				start_addr = addr = TASK_UNMAPPED_BASE;
1190 				goto full_search;
1191 			}
1192 			return -ENOMEM;
1193 		}
1194 		if (!vma || addr + len <= vma->vm_start) {
1195 			/*
1196 			 * Remember the place where we stopped the search:
1197 			 */
1198 			mm->free_area_cache = addr + len;
1199 			return addr;
1200 		}
1201 		addr = vma->vm_end;
1202 	}
1203 }
1204 #endif
1205 
1206 void arch_unmap_area(struct vm_area_struct *area)
1207 {
1208 	/*
1209 	 * Is this a new hole at the lowest possible address?
1210 	 */
1211 	if (area->vm_start >= TASK_UNMAPPED_BASE &&
1212 			area->vm_start < area->vm_mm->free_area_cache)
1213 		area->vm_mm->free_area_cache = area->vm_start;
1214 }
1215 
1216 /*
1217  * This mmap-allocator allocates new areas top-down from below the
1218  * stack's low limit (the base):
1219  */
1220 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1221 unsigned long
1222 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1223 			  const unsigned long len, const unsigned long pgoff,
1224 			  const unsigned long flags)
1225 {
1226 	struct vm_area_struct *vma;
1227 	struct mm_struct *mm = current->mm;
1228 	unsigned long addr = addr0;
1229 
1230 	/* requested length too big for entire address space */
1231 	if (len > TASK_SIZE)
1232 		return -ENOMEM;
1233 
1234 	/* requesting a specific address */
1235 	if (addr) {
1236 		addr = PAGE_ALIGN(addr);
1237 		vma = find_vma(mm, addr);
1238 		if (TASK_SIZE - len >= addr &&
1239 				(!vma || addr + len <= vma->vm_start))
1240 			return addr;
1241 	}
1242 
1243 	/* either no address requested or can't fit in requested address hole */
1244 	addr = mm->free_area_cache;
1245 
1246 	/* make sure it can fit in the remaining address space */
1247 	if (addr > len) {
1248 		vma = find_vma(mm, addr-len);
1249 		if (!vma || addr <= vma->vm_start)
1250 			/* remember the address as a hint for next time */
1251 			return (mm->free_area_cache = addr-len);
1252 	}
1253 
1254 	addr = mm->mmap_base-len;
1255 
1256 	do {
1257 		/*
1258 		 * Lookup failure means no vma is above this address,
1259 		 * else if new region fits below vma->vm_start,
1260 		 * return with success:
1261 		 */
1262 		vma = find_vma(mm, addr);
1263 		if (!vma || addr+len <= vma->vm_start)
1264 			/* remember the address as a hint for next time */
1265 			return (mm->free_area_cache = addr);
1266 
1267 		/* try just below the current vma->vm_start */
1268 		addr = vma->vm_start-len;
1269 	} while (len < vma->vm_start);
1270 
1271 	/*
1272 	 * A failed mmap() very likely causes application failure,
1273 	 * so fall back to the bottom-up function here. This scenario
1274 	 * can happen with large stack limits and large mmap()
1275 	 * allocations.
1276 	 */
1277 	mm->free_area_cache = TASK_UNMAPPED_BASE;
1278 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1279 	/*
1280 	 * Restore the topdown base:
1281 	 */
1282 	mm->free_area_cache = mm->mmap_base;
1283 
1284 	return addr;
1285 }
1286 #endif
1287 
1288 void arch_unmap_area_topdown(struct vm_area_struct *area)
1289 {
1290 	/*
1291 	 * Is this a new hole at the highest possible address?
1292 	 */
1293 	if (area->vm_end > area->vm_mm->free_area_cache)
1294 		area->vm_mm->free_area_cache = area->vm_end;
1295 
1296 	/* dont allow allocations above current base */
1297 	if (area->vm_mm->free_area_cache > area->vm_mm->mmap_base)
1298 		area->vm_mm->free_area_cache = area->vm_mm->mmap_base;
1299 }
1300 
1301 unsigned long
1302 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1303 		unsigned long pgoff, unsigned long flags)
1304 {
1305 	unsigned long ret;
1306 
1307 	if (!(flags & MAP_FIXED)) {
1308 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1309 
1310 		get_area = current->mm->get_unmapped_area;
1311 		if (file && file->f_op && file->f_op->get_unmapped_area)
1312 			get_area = file->f_op->get_unmapped_area;
1313 		addr = get_area(file, addr, len, pgoff, flags);
1314 		if (IS_ERR_VALUE(addr))
1315 			return addr;
1316 	}
1317 
1318 	if (addr > TASK_SIZE - len)
1319 		return -ENOMEM;
1320 	if (addr & ~PAGE_MASK)
1321 		return -EINVAL;
1322 	if (file && is_file_hugepages(file))  {
1323 		/*
1324 		 * Check if the given range is hugepage aligned, and
1325 		 * can be made suitable for hugepages.
1326 		 */
1327 		ret = prepare_hugepage_range(addr, len);
1328 	} else {
1329 		/*
1330 		 * Ensure that a normal request is not falling in a
1331 		 * reserved hugepage range.  For some archs like IA-64,
1332 		 * there is a separate region for hugepages.
1333 		 */
1334 		ret = is_hugepage_only_range(current->mm, addr, len);
1335 	}
1336 	if (ret)
1337 		return -EINVAL;
1338 	return addr;
1339 }
1340 
1341 EXPORT_SYMBOL(get_unmapped_area);
1342 
1343 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1344 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1345 {
1346 	struct vm_area_struct *vma = NULL;
1347 
1348 	if (mm) {
1349 		/* Check the cache first. */
1350 		/* (Cache hit rate is typically around 35%.) */
1351 		vma = mm->mmap_cache;
1352 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1353 			struct rb_node * rb_node;
1354 
1355 			rb_node = mm->mm_rb.rb_node;
1356 			vma = NULL;
1357 
1358 			while (rb_node) {
1359 				struct vm_area_struct * vma_tmp;
1360 
1361 				vma_tmp = rb_entry(rb_node,
1362 						struct vm_area_struct, vm_rb);
1363 
1364 				if (vma_tmp->vm_end > addr) {
1365 					vma = vma_tmp;
1366 					if (vma_tmp->vm_start <= addr)
1367 						break;
1368 					rb_node = rb_node->rb_left;
1369 				} else
1370 					rb_node = rb_node->rb_right;
1371 			}
1372 			if (vma)
1373 				mm->mmap_cache = vma;
1374 		}
1375 	}
1376 	return vma;
1377 }
1378 
1379 EXPORT_SYMBOL(find_vma);
1380 
1381 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1382 struct vm_area_struct *
1383 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1384 			struct vm_area_struct **pprev)
1385 {
1386 	struct vm_area_struct *vma = NULL, *prev = NULL;
1387 	struct rb_node * rb_node;
1388 	if (!mm)
1389 		goto out;
1390 
1391 	/* Guard against addr being lower than the first VMA */
1392 	vma = mm->mmap;
1393 
1394 	/* Go through the RB tree quickly. */
1395 	rb_node = mm->mm_rb.rb_node;
1396 
1397 	while (rb_node) {
1398 		struct vm_area_struct *vma_tmp;
1399 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1400 
1401 		if (addr < vma_tmp->vm_end) {
1402 			rb_node = rb_node->rb_left;
1403 		} else {
1404 			prev = vma_tmp;
1405 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1406 				break;
1407 			rb_node = rb_node->rb_right;
1408 		}
1409 	}
1410 
1411 out:
1412 	*pprev = prev;
1413 	return prev ? prev->vm_next : vma;
1414 }
1415 
1416 /*
1417  * Verify that the stack growth is acceptable and
1418  * update accounting. This is shared with both the
1419  * grow-up and grow-down cases.
1420  */
1421 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1422 {
1423 	struct mm_struct *mm = vma->vm_mm;
1424 	struct rlimit *rlim = current->signal->rlim;
1425 
1426 	/* address space limit tests */
1427 	if (!may_expand_vm(mm, grow))
1428 		return -ENOMEM;
1429 
1430 	/* Stack limit test */
1431 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1432 		return -ENOMEM;
1433 
1434 	/* mlock limit tests */
1435 	if (vma->vm_flags & VM_LOCKED) {
1436 		unsigned long locked;
1437 		unsigned long limit;
1438 		locked = mm->locked_vm + grow;
1439 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1440 		if (locked > limit && !capable(CAP_IPC_LOCK))
1441 			return -ENOMEM;
1442 	}
1443 
1444 	/*
1445 	 * Overcommit..  This must be the final test, as it will
1446 	 * update security statistics.
1447 	 */
1448 	if (security_vm_enough_memory(grow))
1449 		return -ENOMEM;
1450 
1451 	/* Ok, everything looks good - let it rip */
1452 	mm->total_vm += grow;
1453 	if (vma->vm_flags & VM_LOCKED)
1454 		mm->locked_vm += grow;
1455 	__vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1456 	return 0;
1457 }
1458 
1459 #ifdef CONFIG_STACK_GROWSUP
1460 /*
1461  * vma is the first one with address > vma->vm_end.  Have to extend vma.
1462  */
1463 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1464 {
1465 	int error;
1466 
1467 	if (!(vma->vm_flags & VM_GROWSUP))
1468 		return -EFAULT;
1469 
1470 	/*
1471 	 * We must make sure the anon_vma is allocated
1472 	 * so that the anon_vma locking is not a noop.
1473 	 */
1474 	if (unlikely(anon_vma_prepare(vma)))
1475 		return -ENOMEM;
1476 	anon_vma_lock(vma);
1477 
1478 	/*
1479 	 * vma->vm_start/vm_end cannot change under us because the caller
1480 	 * is required to hold the mmap_sem in read mode.  We need the
1481 	 * anon_vma lock to serialize against concurrent expand_stacks.
1482 	 */
1483 	address += 4 + PAGE_SIZE - 1;
1484 	address &= PAGE_MASK;
1485 	error = 0;
1486 
1487 	/* Somebody else might have raced and expanded it already */
1488 	if (address > vma->vm_end) {
1489 		unsigned long size, grow;
1490 
1491 		size = address - vma->vm_start;
1492 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1493 
1494 		error = acct_stack_growth(vma, size, grow);
1495 		if (!error)
1496 			vma->vm_end = address;
1497 	}
1498 	anon_vma_unlock(vma);
1499 	return error;
1500 }
1501 
1502 struct vm_area_struct *
1503 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1504 {
1505 	struct vm_area_struct *vma, *prev;
1506 
1507 	addr &= PAGE_MASK;
1508 	vma = find_vma_prev(mm, addr, &prev);
1509 	if (vma && (vma->vm_start <= addr))
1510 		return vma;
1511 	if (!prev || expand_stack(prev, addr))
1512 		return NULL;
1513 	if (prev->vm_flags & VM_LOCKED) {
1514 		make_pages_present(addr, prev->vm_end);
1515 	}
1516 	return prev;
1517 }
1518 #else
1519 /*
1520  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1521  */
1522 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1523 {
1524 	int error;
1525 
1526 	/*
1527 	 * We must make sure the anon_vma is allocated
1528 	 * so that the anon_vma locking is not a noop.
1529 	 */
1530 	if (unlikely(anon_vma_prepare(vma)))
1531 		return -ENOMEM;
1532 	anon_vma_lock(vma);
1533 
1534 	/*
1535 	 * vma->vm_start/vm_end cannot change under us because the caller
1536 	 * is required to hold the mmap_sem in read mode.  We need the
1537 	 * anon_vma lock to serialize against concurrent expand_stacks.
1538 	 */
1539 	address &= PAGE_MASK;
1540 	error = 0;
1541 
1542 	/* Somebody else might have raced and expanded it already */
1543 	if (address < vma->vm_start) {
1544 		unsigned long size, grow;
1545 
1546 		size = vma->vm_end - address;
1547 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1548 
1549 		error = acct_stack_growth(vma, size, grow);
1550 		if (!error) {
1551 			vma->vm_start = address;
1552 			vma->vm_pgoff -= grow;
1553 		}
1554 	}
1555 	anon_vma_unlock(vma);
1556 	return error;
1557 }
1558 
1559 struct vm_area_struct *
1560 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1561 {
1562 	struct vm_area_struct * vma;
1563 	unsigned long start;
1564 
1565 	addr &= PAGE_MASK;
1566 	vma = find_vma(mm,addr);
1567 	if (!vma)
1568 		return NULL;
1569 	if (vma->vm_start <= addr)
1570 		return vma;
1571 	if (!(vma->vm_flags & VM_GROWSDOWN))
1572 		return NULL;
1573 	start = vma->vm_start;
1574 	if (expand_stack(vma, addr))
1575 		return NULL;
1576 	if (vma->vm_flags & VM_LOCKED) {
1577 		make_pages_present(addr, start);
1578 	}
1579 	return vma;
1580 }
1581 #endif
1582 
1583 /* Normal function to fix up a mapping
1584  * This function is the default for when an area has no specific
1585  * function.  This may be used as part of a more specific routine.
1586  *
1587  * By the time this function is called, the area struct has been
1588  * removed from the process mapping list.
1589  */
1590 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1591 {
1592 	size_t len = area->vm_end - area->vm_start;
1593 
1594 	area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1595 	if (area->vm_flags & VM_LOCKED)
1596 		area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1597 	vm_stat_unaccount(area);
1598 	area->vm_mm->unmap_area(area);
1599 	remove_vm_struct(area);
1600 }
1601 
1602 /*
1603  * Update the VMA and inode share lists.
1604  *
1605  * Ok - we have the memory areas we should free on the 'free' list,
1606  * so release them, and do the vma updates.
1607  */
1608 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1609 {
1610 	do {
1611 		struct vm_area_struct *next = vma->vm_next;
1612 		unmap_vma(mm, vma);
1613 		vma = next;
1614 	} while (vma);
1615 	validate_mm(mm);
1616 }
1617 
1618 /*
1619  * Get rid of page table information in the indicated region.
1620  *
1621  * Called with the page table lock held.
1622  */
1623 static void unmap_region(struct mm_struct *mm,
1624 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1625 		unsigned long start, unsigned long end)
1626 {
1627 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1628 	struct mmu_gather *tlb;
1629 	unsigned long nr_accounted = 0;
1630 
1631 	lru_add_drain();
1632 	spin_lock(&mm->page_table_lock);
1633 	tlb = tlb_gather_mmu(mm, 0);
1634 	unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1635 	vm_unacct_memory(nr_accounted);
1636 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1637 				 next? next->vm_start: 0);
1638 	tlb_finish_mmu(tlb, start, end);
1639 	spin_unlock(&mm->page_table_lock);
1640 }
1641 
1642 /*
1643  * Create a list of vma's touched by the unmap, removing them from the mm's
1644  * vma list as we go..
1645  */
1646 static void
1647 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1648 	struct vm_area_struct *prev, unsigned long end)
1649 {
1650 	struct vm_area_struct **insertion_point;
1651 	struct vm_area_struct *tail_vma = NULL;
1652 
1653 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1654 	do {
1655 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1656 		mm->map_count--;
1657 		tail_vma = vma;
1658 		vma = vma->vm_next;
1659 	} while (vma && vma->vm_start < end);
1660 	*insertion_point = vma;
1661 	tail_vma->vm_next = NULL;
1662 	mm->mmap_cache = NULL;		/* Kill the cache. */
1663 }
1664 
1665 /*
1666  * Split a vma into two pieces at address 'addr', a new vma is allocated
1667  * either for the first part or the the tail.
1668  */
1669 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1670 	      unsigned long addr, int new_below)
1671 {
1672 	struct mempolicy *pol;
1673 	struct vm_area_struct *new;
1674 
1675 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1676 		return -EINVAL;
1677 
1678 	if (mm->map_count >= sysctl_max_map_count)
1679 		return -ENOMEM;
1680 
1681 	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1682 	if (!new)
1683 		return -ENOMEM;
1684 
1685 	/* most fields are the same, copy all, and then fixup */
1686 	*new = *vma;
1687 
1688 	if (new_below)
1689 		new->vm_end = addr;
1690 	else {
1691 		new->vm_start = addr;
1692 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1693 	}
1694 
1695 	pol = mpol_copy(vma_policy(vma));
1696 	if (IS_ERR(pol)) {
1697 		kmem_cache_free(vm_area_cachep, new);
1698 		return PTR_ERR(pol);
1699 	}
1700 	vma_set_policy(new, pol);
1701 
1702 	if (new->vm_file)
1703 		get_file(new->vm_file);
1704 
1705 	if (new->vm_ops && new->vm_ops->open)
1706 		new->vm_ops->open(new);
1707 
1708 	if (new_below)
1709 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1710 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1711 	else
1712 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1713 
1714 	return 0;
1715 }
1716 
1717 /* Munmap is split into 2 main parts -- this part which finds
1718  * what needs doing, and the areas themselves, which do the
1719  * work.  This now handles partial unmappings.
1720  * Jeremy Fitzhardinge <jeremy@goop.org>
1721  */
1722 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1723 {
1724 	unsigned long end;
1725 	struct vm_area_struct *vma, *prev, *last;
1726 
1727 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1728 		return -EINVAL;
1729 
1730 	if ((len = PAGE_ALIGN(len)) == 0)
1731 		return -EINVAL;
1732 
1733 	/* Find the first overlapping VMA */
1734 	vma = find_vma_prev(mm, start, &prev);
1735 	if (!vma)
1736 		return 0;
1737 	/* we have  start < vma->vm_end  */
1738 
1739 	/* if it doesn't overlap, we have nothing.. */
1740 	end = start + len;
1741 	if (vma->vm_start >= end)
1742 		return 0;
1743 
1744 	/*
1745 	 * If we need to split any vma, do it now to save pain later.
1746 	 *
1747 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1748 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1749 	 * places tmp vma above, and higher split_vma places tmp vma below.
1750 	 */
1751 	if (start > vma->vm_start) {
1752 		int error = split_vma(mm, vma, start, 0);
1753 		if (error)
1754 			return error;
1755 		prev = vma;
1756 	}
1757 
1758 	/* Does it split the last one? */
1759 	last = find_vma(mm, end);
1760 	if (last && end > last->vm_start) {
1761 		int error = split_vma(mm, last, end, 1);
1762 		if (error)
1763 			return error;
1764 	}
1765 	vma = prev? prev->vm_next: mm->mmap;
1766 
1767 	/*
1768 	 * Remove the vma's, and unmap the actual pages
1769 	 */
1770 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1771 	unmap_region(mm, vma, prev, start, end);
1772 
1773 	/* Fix up all other VM information */
1774 	unmap_vma_list(mm, vma);
1775 
1776 	return 0;
1777 }
1778 
1779 EXPORT_SYMBOL(do_munmap);
1780 
1781 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1782 {
1783 	int ret;
1784 	struct mm_struct *mm = current->mm;
1785 
1786 	profile_munmap(addr);
1787 
1788 	down_write(&mm->mmap_sem);
1789 	ret = do_munmap(mm, addr, len);
1790 	up_write(&mm->mmap_sem);
1791 	return ret;
1792 }
1793 
1794 static inline void verify_mm_writelocked(struct mm_struct *mm)
1795 {
1796 #ifdef CONFIG_DEBUG_KERNEL
1797 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1798 		WARN_ON(1);
1799 		up_read(&mm->mmap_sem);
1800 	}
1801 #endif
1802 }
1803 
1804 /*
1805  *  this is really a simplified "do_mmap".  it only handles
1806  *  anonymous maps.  eventually we may be able to do some
1807  *  brk-specific accounting here.
1808  */
1809 unsigned long do_brk(unsigned long addr, unsigned long len)
1810 {
1811 	struct mm_struct * mm = current->mm;
1812 	struct vm_area_struct * vma, * prev;
1813 	unsigned long flags;
1814 	struct rb_node ** rb_link, * rb_parent;
1815 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1816 
1817 	len = PAGE_ALIGN(len);
1818 	if (!len)
1819 		return addr;
1820 
1821 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1822 		return -EINVAL;
1823 
1824 	/*
1825 	 * mlock MCL_FUTURE?
1826 	 */
1827 	if (mm->def_flags & VM_LOCKED) {
1828 		unsigned long locked, lock_limit;
1829 		locked = len >> PAGE_SHIFT;
1830 		locked += mm->locked_vm;
1831 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1832 		lock_limit >>= PAGE_SHIFT;
1833 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1834 			return -EAGAIN;
1835 	}
1836 
1837 	/*
1838 	 * mm->mmap_sem is required to protect against another thread
1839 	 * changing the mappings in case we sleep.
1840 	 */
1841 	verify_mm_writelocked(mm);
1842 
1843 	/*
1844 	 * Clear old maps.  this also does some error checking for us
1845 	 */
1846  munmap_back:
1847 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1848 	if (vma && vma->vm_start < addr + len) {
1849 		if (do_munmap(mm, addr, len))
1850 			return -ENOMEM;
1851 		goto munmap_back;
1852 	}
1853 
1854 	/* Check against address space limits *after* clearing old maps... */
1855 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1856 		return -ENOMEM;
1857 
1858 	if (mm->map_count > sysctl_max_map_count)
1859 		return -ENOMEM;
1860 
1861 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1862 		return -ENOMEM;
1863 
1864 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1865 
1866 	/* Can we just expand an old private anonymous mapping? */
1867 	if (vma_merge(mm, prev, addr, addr + len, flags,
1868 					NULL, NULL, pgoff, NULL))
1869 		goto out;
1870 
1871 	/*
1872 	 * create a vma struct for an anonymous mapping
1873 	 */
1874 	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1875 	if (!vma) {
1876 		vm_unacct_memory(len >> PAGE_SHIFT);
1877 		return -ENOMEM;
1878 	}
1879 	memset(vma, 0, sizeof(*vma));
1880 
1881 	vma->vm_mm = mm;
1882 	vma->vm_start = addr;
1883 	vma->vm_end = addr + len;
1884 	vma->vm_pgoff = pgoff;
1885 	vma->vm_flags = flags;
1886 	vma->vm_page_prot = protection_map[flags & 0x0f];
1887 	vma_link(mm, vma, prev, rb_link, rb_parent);
1888 out:
1889 	mm->total_vm += len >> PAGE_SHIFT;
1890 	if (flags & VM_LOCKED) {
1891 		mm->locked_vm += len >> PAGE_SHIFT;
1892 		make_pages_present(addr, addr + len);
1893 	}
1894 	return addr;
1895 }
1896 
1897 EXPORT_SYMBOL(do_brk);
1898 
1899 /* Release all mmaps. */
1900 void exit_mmap(struct mm_struct *mm)
1901 {
1902 	struct mmu_gather *tlb;
1903 	struct vm_area_struct *vma = mm->mmap;
1904 	unsigned long nr_accounted = 0;
1905 	unsigned long end;
1906 
1907 	lru_add_drain();
1908 
1909 	spin_lock(&mm->page_table_lock);
1910 
1911 	flush_cache_mm(mm);
1912 	tlb = tlb_gather_mmu(mm, 1);
1913 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1914 	end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL);
1915 	vm_unacct_memory(nr_accounted);
1916 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1917 	tlb_finish_mmu(tlb, 0, end);
1918 
1919 	mm->mmap = mm->mmap_cache = NULL;
1920 	mm->mm_rb = RB_ROOT;
1921 	set_mm_counter(mm, rss, 0);
1922 	mm->total_vm = 0;
1923 	mm->locked_vm = 0;
1924 
1925 	spin_unlock(&mm->page_table_lock);
1926 
1927 	/*
1928 	 * Walk the list again, actually closing and freeing it
1929 	 * without holding any MM locks.
1930 	 */
1931 	while (vma) {
1932 		struct vm_area_struct *next = vma->vm_next;
1933 		remove_vm_struct(vma);
1934 		vma = next;
1935 	}
1936 
1937 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1938 }
1939 
1940 /* Insert vm structure into process list sorted by address
1941  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1942  * then i_mmap_lock is taken here.
1943  */
1944 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1945 {
1946 	struct vm_area_struct * __vma, * prev;
1947 	struct rb_node ** rb_link, * rb_parent;
1948 
1949 	/*
1950 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1951 	 * until its first write fault, when page's anon_vma and index
1952 	 * are set.  But now set the vm_pgoff it will almost certainly
1953 	 * end up with (unless mremap moves it elsewhere before that
1954 	 * first wfault), so /proc/pid/maps tells a consistent story.
1955 	 *
1956 	 * By setting it to reflect the virtual start address of the
1957 	 * vma, merges and splits can happen in a seamless way, just
1958 	 * using the existing file pgoff checks and manipulations.
1959 	 * Similarly in do_mmap_pgoff and in do_brk.
1960 	 */
1961 	if (!vma->vm_file) {
1962 		BUG_ON(vma->anon_vma);
1963 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1964 	}
1965 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
1966 	if (__vma && __vma->vm_start < vma->vm_end)
1967 		return -ENOMEM;
1968 	vma_link(mm, vma, prev, rb_link, rb_parent);
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Copy the vma structure to a new location in the same mm,
1974  * prior to moving page table entries, to effect an mremap move.
1975  */
1976 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1977 	unsigned long addr, unsigned long len, pgoff_t pgoff)
1978 {
1979 	struct vm_area_struct *vma = *vmap;
1980 	unsigned long vma_start = vma->vm_start;
1981 	struct mm_struct *mm = vma->vm_mm;
1982 	struct vm_area_struct *new_vma, *prev;
1983 	struct rb_node **rb_link, *rb_parent;
1984 	struct mempolicy *pol;
1985 
1986 	/*
1987 	 * If anonymous vma has not yet been faulted, update new pgoff
1988 	 * to match new location, to increase its chance of merging.
1989 	 */
1990 	if (!vma->vm_file && !vma->anon_vma)
1991 		pgoff = addr >> PAGE_SHIFT;
1992 
1993 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1994 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
1995 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
1996 	if (new_vma) {
1997 		/*
1998 		 * Source vma may have been merged into new_vma
1999 		 */
2000 		if (vma_start >= new_vma->vm_start &&
2001 		    vma_start < new_vma->vm_end)
2002 			*vmap = new_vma;
2003 	} else {
2004 		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2005 		if (new_vma) {
2006 			*new_vma = *vma;
2007 			pol = mpol_copy(vma_policy(vma));
2008 			if (IS_ERR(pol)) {
2009 				kmem_cache_free(vm_area_cachep, new_vma);
2010 				return NULL;
2011 			}
2012 			vma_set_policy(new_vma, pol);
2013 			new_vma->vm_start = addr;
2014 			new_vma->vm_end = addr + len;
2015 			new_vma->vm_pgoff = pgoff;
2016 			if (new_vma->vm_file)
2017 				get_file(new_vma->vm_file);
2018 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2019 				new_vma->vm_ops->open(new_vma);
2020 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2021 		}
2022 	}
2023 	return new_vma;
2024 }
2025 
2026 /*
2027  * Return true if the calling process may expand its vm space by the passed
2028  * number of pages
2029  */
2030 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2031 {
2032 	unsigned long cur = mm->total_vm;	/* pages */
2033 	unsigned long lim;
2034 
2035 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2036 
2037 	if (cur + npages > lim)
2038 		return 0;
2039 	return 1;
2040 }
2041