1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/cacheflush.h> 52 #include <asm/tlb.h> 53 #include <asm/mmu_context.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/mmap.h> 57 58 #include "internal.h" 59 60 #ifndef arch_mmap_check 61 #define arch_mmap_check(addr, len, flags) (0) 62 #endif 63 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 68 #endif 69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 73 #endif 74 75 static bool ignore_rlimit_data; 76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 77 78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 79 struct vm_area_struct *vma, struct vm_area_struct *prev, 80 struct vm_area_struct *next, unsigned long start, 81 unsigned long end); 82 83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 84 { 85 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 86 } 87 88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 89 void vma_set_page_prot(struct vm_area_struct *vma) 90 { 91 unsigned long vm_flags = vma->vm_flags; 92 pgprot_t vm_page_prot; 93 94 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 95 if (vma_wants_writenotify(vma, vm_page_prot)) { 96 vm_flags &= ~VM_SHARED; 97 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 98 } 99 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 100 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 101 } 102 103 /* 104 * Requires inode->i_mapping->i_mmap_rwsem 105 */ 106 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 107 struct file *file, struct address_space *mapping) 108 { 109 if (vma->vm_flags & VM_SHARED) 110 mapping_unmap_writable(mapping); 111 112 flush_dcache_mmap_lock(mapping); 113 vma_interval_tree_remove(vma, &mapping->i_mmap); 114 flush_dcache_mmap_unlock(mapping); 115 } 116 117 /* 118 * Unlink a file-based vm structure from its interval tree, to hide 119 * vma from rmap and vmtruncate before freeing its page tables. 120 */ 121 void unlink_file_vma(struct vm_area_struct *vma) 122 { 123 struct file *file = vma->vm_file; 124 125 if (file) { 126 struct address_space *mapping = file->f_mapping; 127 i_mmap_lock_write(mapping); 128 __remove_shared_vm_struct(vma, file, mapping); 129 i_mmap_unlock_write(mapping); 130 } 131 } 132 133 /* 134 * Close a vm structure and free it. 135 */ 136 static void remove_vma(struct vm_area_struct *vma) 137 { 138 might_sleep(); 139 if (vma->vm_ops && vma->vm_ops->close) 140 vma->vm_ops->close(vma); 141 if (vma->vm_file) 142 fput(vma->vm_file); 143 mpol_put(vma_policy(vma)); 144 vm_area_free(vma); 145 } 146 147 /* 148 * check_brk_limits() - Use platform specific check of range & verify mlock 149 * limits. 150 * @addr: The address to check 151 * @len: The size of increase. 152 * 153 * Return: 0 on success. 154 */ 155 static int check_brk_limits(unsigned long addr, unsigned long len) 156 { 157 unsigned long mapped_addr; 158 159 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 160 if (IS_ERR_VALUE(mapped_addr)) 161 return mapped_addr; 162 163 return mlock_future_check(current->mm, current->mm->def_flags, len); 164 } 165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma, 166 unsigned long newbrk, unsigned long oldbrk, 167 struct list_head *uf); 168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma, 169 unsigned long addr, unsigned long request, unsigned long flags); 170 SYSCALL_DEFINE1(brk, unsigned long, brk) 171 { 172 unsigned long newbrk, oldbrk, origbrk; 173 struct mm_struct *mm = current->mm; 174 struct vm_area_struct *brkvma, *next = NULL; 175 unsigned long min_brk; 176 bool populate; 177 bool downgraded = false; 178 LIST_HEAD(uf); 179 MA_STATE(mas, &mm->mm_mt, 0, 0); 180 181 if (mmap_write_lock_killable(mm)) 182 return -EINTR; 183 184 origbrk = mm->brk; 185 186 #ifdef CONFIG_COMPAT_BRK 187 /* 188 * CONFIG_COMPAT_BRK can still be overridden by setting 189 * randomize_va_space to 2, which will still cause mm->start_brk 190 * to be arbitrarily shifted 191 */ 192 if (current->brk_randomized) 193 min_brk = mm->start_brk; 194 else 195 min_brk = mm->end_data; 196 #else 197 min_brk = mm->start_brk; 198 #endif 199 if (brk < min_brk) 200 goto out; 201 202 /* 203 * Check against rlimit here. If this check is done later after the test 204 * of oldbrk with newbrk then it can escape the test and let the data 205 * segment grow beyond its set limit the in case where the limit is 206 * not page aligned -Ram Gupta 207 */ 208 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 209 mm->end_data, mm->start_data)) 210 goto out; 211 212 newbrk = PAGE_ALIGN(brk); 213 oldbrk = PAGE_ALIGN(mm->brk); 214 if (oldbrk == newbrk) { 215 mm->brk = brk; 216 goto success; 217 } 218 219 /* 220 * Always allow shrinking brk. 221 * do_brk_munmap() may downgrade mmap_lock to read. 222 */ 223 if (brk <= mm->brk) { 224 int ret; 225 226 /* Search one past newbrk */ 227 mas_set(&mas, newbrk); 228 brkvma = mas_find(&mas, oldbrk); 229 BUG_ON(brkvma == NULL); 230 if (brkvma->vm_start >= oldbrk) 231 goto out; /* mapping intersects with an existing non-brk vma. */ 232 /* 233 * mm->brk must be protected by write mmap_lock. 234 * do_brk_munmap() may downgrade the lock, so update it 235 * before calling do_brk_munmap(). 236 */ 237 mm->brk = brk; 238 ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf); 239 if (ret == 1) { 240 downgraded = true; 241 goto success; 242 } else if (!ret) 243 goto success; 244 245 mm->brk = origbrk; 246 goto out; 247 } 248 249 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 250 goto out; 251 252 /* 253 * Only check if the next VMA is within the stack_guard_gap of the 254 * expansion area 255 */ 256 mas_set(&mas, oldbrk); 257 next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap); 258 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 259 goto out; 260 261 brkvma = mas_prev(&mas, mm->start_brk); 262 /* Ok, looks good - let it rip. */ 263 if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 264 goto out; 265 266 mm->brk = brk; 267 268 success: 269 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 270 if (downgraded) 271 mmap_read_unlock(mm); 272 else 273 mmap_write_unlock(mm); 274 userfaultfd_unmap_complete(mm, &uf); 275 if (populate) 276 mm_populate(oldbrk, newbrk - oldbrk); 277 return brk; 278 279 out: 280 mmap_write_unlock(mm); 281 return origbrk; 282 } 283 284 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 285 extern void mt_validate(struct maple_tree *mt); 286 extern void mt_dump(const struct maple_tree *mt); 287 288 /* Validate the maple tree */ 289 static void validate_mm_mt(struct mm_struct *mm) 290 { 291 struct maple_tree *mt = &mm->mm_mt; 292 struct vm_area_struct *vma_mt; 293 294 MA_STATE(mas, mt, 0, 0); 295 296 mt_validate(&mm->mm_mt); 297 mas_for_each(&mas, vma_mt, ULONG_MAX) { 298 if ((vma_mt->vm_start != mas.index) || 299 (vma_mt->vm_end - 1 != mas.last)) { 300 pr_emerg("issue in %s\n", current->comm); 301 dump_stack(); 302 dump_vma(vma_mt); 303 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt, 304 mas.index, mas.last); 305 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt, 306 vma_mt->vm_start, vma_mt->vm_end); 307 308 mt_dump(mas.tree); 309 if (vma_mt->vm_end != mas.last + 1) { 310 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n", 311 mm, vma_mt->vm_start, vma_mt->vm_end, 312 mas.index, mas.last); 313 mt_dump(mas.tree); 314 } 315 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm); 316 if (vma_mt->vm_start != mas.index) { 317 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n", 318 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end); 319 mt_dump(mas.tree); 320 } 321 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm); 322 } 323 } 324 } 325 326 static void validate_mm(struct mm_struct *mm) 327 { 328 int bug = 0; 329 int i = 0; 330 struct vm_area_struct *vma; 331 MA_STATE(mas, &mm->mm_mt, 0, 0); 332 333 validate_mm_mt(mm); 334 335 mas_for_each(&mas, vma, ULONG_MAX) { 336 #ifdef CONFIG_DEBUG_VM_RB 337 struct anon_vma *anon_vma = vma->anon_vma; 338 struct anon_vma_chain *avc; 339 340 if (anon_vma) { 341 anon_vma_lock_read(anon_vma); 342 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 343 anon_vma_interval_tree_verify(avc); 344 anon_vma_unlock_read(anon_vma); 345 } 346 #endif 347 i++; 348 } 349 if (i != mm->map_count) { 350 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i); 351 bug = 1; 352 } 353 VM_BUG_ON_MM(bug, mm); 354 } 355 356 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 357 #define validate_mm_mt(root) do { } while (0) 358 #define validate_mm(mm) do { } while (0) 359 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 360 361 /* 362 * vma has some anon_vma assigned, and is already inserted on that 363 * anon_vma's interval trees. 364 * 365 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 366 * vma must be removed from the anon_vma's interval trees using 367 * anon_vma_interval_tree_pre_update_vma(). 368 * 369 * After the update, the vma will be reinserted using 370 * anon_vma_interval_tree_post_update_vma(). 371 * 372 * The entire update must be protected by exclusive mmap_lock and by 373 * the root anon_vma's mutex. 374 */ 375 static inline void 376 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 377 { 378 struct anon_vma_chain *avc; 379 380 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 381 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 382 } 383 384 static inline void 385 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 386 { 387 struct anon_vma_chain *avc; 388 389 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 390 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 391 } 392 393 static unsigned long count_vma_pages_range(struct mm_struct *mm, 394 unsigned long addr, unsigned long end) 395 { 396 VMA_ITERATOR(vmi, mm, addr); 397 struct vm_area_struct *vma; 398 unsigned long nr_pages = 0; 399 400 for_each_vma_range(vmi, vma, end) { 401 unsigned long vm_start = max(addr, vma->vm_start); 402 unsigned long vm_end = min(end, vma->vm_end); 403 404 nr_pages += PHYS_PFN(vm_end - vm_start); 405 } 406 407 return nr_pages; 408 } 409 410 static void __vma_link_file(struct vm_area_struct *vma, 411 struct address_space *mapping) 412 { 413 if (vma->vm_flags & VM_SHARED) 414 mapping_allow_writable(mapping); 415 416 flush_dcache_mmap_lock(mapping); 417 vma_interval_tree_insert(vma, &mapping->i_mmap); 418 flush_dcache_mmap_unlock(mapping); 419 } 420 421 /* 422 * vma_mas_store() - Store a VMA in the maple tree. 423 * @vma: The vm_area_struct 424 * @mas: The maple state 425 * 426 * Efficient way to store a VMA in the maple tree when the @mas has already 427 * walked to the correct location. 428 * 429 * Note: the end address is inclusive in the maple tree. 430 */ 431 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas) 432 { 433 trace_vma_store(mas->tree, vma); 434 mas_set_range(mas, vma->vm_start, vma->vm_end - 1); 435 mas_store_prealloc(mas, vma); 436 } 437 438 /* 439 * vma_mas_remove() - Remove a VMA from the maple tree. 440 * @vma: The vm_area_struct 441 * @mas: The maple state 442 * 443 * Efficient way to remove a VMA from the maple tree when the @mas has already 444 * been established and points to the correct location. 445 * Note: the end address is inclusive in the maple tree. 446 */ 447 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas) 448 { 449 trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1); 450 mas->index = vma->vm_start; 451 mas->last = vma->vm_end - 1; 452 mas_store_prealloc(mas, NULL); 453 } 454 455 /* 456 * vma_mas_szero() - Set a given range to zero. Used when modifying a 457 * vm_area_struct start or end. 458 * 459 * @mm: The struct_mm 460 * @start: The start address to zero 461 * @end: The end address to zero. 462 */ 463 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start, 464 unsigned long end) 465 { 466 trace_vma_mas_szero(mas->tree, start, end - 1); 467 mas_set_range(mas, start, end - 1); 468 mas_store_prealloc(mas, NULL); 469 } 470 471 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 472 { 473 MA_STATE(mas, &mm->mm_mt, 0, 0); 474 struct address_space *mapping = NULL; 475 476 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 477 return -ENOMEM; 478 479 if (vma->vm_file) { 480 mapping = vma->vm_file->f_mapping; 481 i_mmap_lock_write(mapping); 482 } 483 484 vma_mas_store(vma, &mas); 485 486 if (mapping) { 487 __vma_link_file(vma, mapping); 488 i_mmap_unlock_write(mapping); 489 } 490 491 mm->map_count++; 492 validate_mm(mm); 493 return 0; 494 } 495 496 /* 497 * vma_expand - Expand an existing VMA 498 * 499 * @mas: The maple state 500 * @vma: The vma to expand 501 * @start: The start of the vma 502 * @end: The exclusive end of the vma 503 * @pgoff: The page offset of vma 504 * @next: The current of next vma. 505 * 506 * Expand @vma to @start and @end. Can expand off the start and end. Will 507 * expand over @next if it's different from @vma and @end == @next->vm_end. 508 * Checking if the @vma can expand and merge with @next needs to be handled by 509 * the caller. 510 * 511 * Returns: 0 on success 512 */ 513 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma, 514 unsigned long start, unsigned long end, pgoff_t pgoff, 515 struct vm_area_struct *next) 516 { 517 struct mm_struct *mm = vma->vm_mm; 518 struct address_space *mapping = NULL; 519 struct rb_root_cached *root = NULL; 520 struct anon_vma *anon_vma = vma->anon_vma; 521 struct file *file = vma->vm_file; 522 bool remove_next = false; 523 524 if (next && (vma != next) && (end == next->vm_end)) { 525 remove_next = true; 526 if (next->anon_vma && !vma->anon_vma) { 527 int error; 528 529 anon_vma = next->anon_vma; 530 vma->anon_vma = anon_vma; 531 error = anon_vma_clone(vma, next); 532 if (error) 533 return error; 534 } 535 } 536 537 /* Not merging but overwriting any part of next is not handled. */ 538 VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start); 539 /* Only handles expanding */ 540 VM_BUG_ON(vma->vm_start < start || vma->vm_end > end); 541 542 if (mas_preallocate(mas, vma, GFP_KERNEL)) 543 goto nomem; 544 545 vma_adjust_trans_huge(vma, start, end, 0); 546 547 if (file) { 548 mapping = file->f_mapping; 549 root = &mapping->i_mmap; 550 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 551 i_mmap_lock_write(mapping); 552 } 553 554 if (anon_vma) { 555 anon_vma_lock_write(anon_vma); 556 anon_vma_interval_tree_pre_update_vma(vma); 557 } 558 559 if (file) { 560 flush_dcache_mmap_lock(mapping); 561 vma_interval_tree_remove(vma, root); 562 } 563 564 vma->vm_start = start; 565 vma->vm_end = end; 566 vma->vm_pgoff = pgoff; 567 /* Note: mas must be pointing to the expanding VMA */ 568 vma_mas_store(vma, mas); 569 570 if (file) { 571 vma_interval_tree_insert(vma, root); 572 flush_dcache_mmap_unlock(mapping); 573 } 574 575 /* Expanding over the next vma */ 576 if (remove_next && file) { 577 __remove_shared_vm_struct(next, file, mapping); 578 } 579 580 if (anon_vma) { 581 anon_vma_interval_tree_post_update_vma(vma); 582 anon_vma_unlock_write(anon_vma); 583 } 584 585 if (file) { 586 i_mmap_unlock_write(mapping); 587 uprobe_mmap(vma); 588 } 589 590 if (remove_next) { 591 if (file) { 592 uprobe_munmap(next, next->vm_start, next->vm_end); 593 fput(file); 594 } 595 if (next->anon_vma) 596 anon_vma_merge(vma, next); 597 mm->map_count--; 598 mpol_put(vma_policy(next)); 599 vm_area_free(next); 600 } 601 602 validate_mm(mm); 603 return 0; 604 605 nomem: 606 return -ENOMEM; 607 } 608 609 /* 610 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 611 * is already present in an i_mmap tree without adjusting the tree. 612 * The following helper function should be used when such adjustments 613 * are necessary. The "insert" vma (if any) is to be inserted 614 * before we drop the necessary locks. 615 */ 616 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 617 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 618 struct vm_area_struct *expand) 619 { 620 struct mm_struct *mm = vma->vm_mm; 621 struct vm_area_struct *next_next, *next = find_vma(mm, vma->vm_end); 622 struct vm_area_struct *orig_vma = vma; 623 struct address_space *mapping = NULL; 624 struct rb_root_cached *root = NULL; 625 struct anon_vma *anon_vma = NULL; 626 struct file *file = vma->vm_file; 627 bool vma_changed = false; 628 long adjust_next = 0; 629 int remove_next = 0; 630 MA_STATE(mas, &mm->mm_mt, 0, 0); 631 struct vm_area_struct *exporter = NULL, *importer = NULL; 632 633 if (next && !insert) { 634 if (end >= next->vm_end) { 635 /* 636 * vma expands, overlapping all the next, and 637 * perhaps the one after too (mprotect case 6). 638 * The only other cases that gets here are 639 * case 1, case 7 and case 8. 640 */ 641 if (next == expand) { 642 /* 643 * The only case where we don't expand "vma" 644 * and we expand "next" instead is case 8. 645 */ 646 VM_WARN_ON(end != next->vm_end); 647 /* 648 * remove_next == 3 means we're 649 * removing "vma" and that to do so we 650 * swapped "vma" and "next". 651 */ 652 remove_next = 3; 653 VM_WARN_ON(file != next->vm_file); 654 swap(vma, next); 655 } else { 656 VM_WARN_ON(expand != vma); 657 /* 658 * case 1, 6, 7, remove_next == 2 is case 6, 659 * remove_next == 1 is case 1 or 7. 660 */ 661 remove_next = 1 + (end > next->vm_end); 662 if (remove_next == 2) 663 next_next = find_vma(mm, next->vm_end); 664 665 VM_WARN_ON(remove_next == 2 && 666 end != next_next->vm_end); 667 } 668 669 exporter = next; 670 importer = vma; 671 672 /* 673 * If next doesn't have anon_vma, import from vma after 674 * next, if the vma overlaps with it. 675 */ 676 if (remove_next == 2 && !next->anon_vma) 677 exporter = next_next; 678 679 } else if (end > next->vm_start) { 680 /* 681 * vma expands, overlapping part of the next: 682 * mprotect case 5 shifting the boundary up. 683 */ 684 adjust_next = (end - next->vm_start); 685 exporter = next; 686 importer = vma; 687 VM_WARN_ON(expand != importer); 688 } else if (end < vma->vm_end) { 689 /* 690 * vma shrinks, and !insert tells it's not 691 * split_vma inserting another: so it must be 692 * mprotect case 4 shifting the boundary down. 693 */ 694 adjust_next = -(vma->vm_end - end); 695 exporter = vma; 696 importer = next; 697 VM_WARN_ON(expand != importer); 698 } 699 700 /* 701 * Easily overlooked: when mprotect shifts the boundary, 702 * make sure the expanding vma has anon_vma set if the 703 * shrinking vma had, to cover any anon pages imported. 704 */ 705 if (exporter && exporter->anon_vma && !importer->anon_vma) { 706 int error; 707 708 importer->anon_vma = exporter->anon_vma; 709 error = anon_vma_clone(importer, exporter); 710 if (error) 711 return error; 712 } 713 } 714 715 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 716 return -ENOMEM; 717 718 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 719 if (file) { 720 mapping = file->f_mapping; 721 root = &mapping->i_mmap; 722 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 723 724 if (adjust_next) 725 uprobe_munmap(next, next->vm_start, next->vm_end); 726 727 i_mmap_lock_write(mapping); 728 if (insert && insert->vm_file) { 729 /* 730 * Put into interval tree now, so instantiated pages 731 * are visible to arm/parisc __flush_dcache_page 732 * throughout; but we cannot insert into address 733 * space until vma start or end is updated. 734 */ 735 __vma_link_file(insert, insert->vm_file->f_mapping); 736 } 737 } 738 739 anon_vma = vma->anon_vma; 740 if (!anon_vma && adjust_next) 741 anon_vma = next->anon_vma; 742 if (anon_vma) { 743 VM_WARN_ON(adjust_next && next->anon_vma && 744 anon_vma != next->anon_vma); 745 anon_vma_lock_write(anon_vma); 746 anon_vma_interval_tree_pre_update_vma(vma); 747 if (adjust_next) 748 anon_vma_interval_tree_pre_update_vma(next); 749 } 750 751 if (file) { 752 flush_dcache_mmap_lock(mapping); 753 vma_interval_tree_remove(vma, root); 754 if (adjust_next) 755 vma_interval_tree_remove(next, root); 756 } 757 758 if (start != vma->vm_start) { 759 if ((vma->vm_start < start) && 760 (!insert || (insert->vm_end != start))) { 761 vma_mas_szero(&mas, vma->vm_start, start); 762 VM_WARN_ON(insert && insert->vm_start > vma->vm_start); 763 } else { 764 vma_changed = true; 765 } 766 vma->vm_start = start; 767 } 768 if (end != vma->vm_end) { 769 if (vma->vm_end > end) { 770 if (!insert || (insert->vm_start != end)) { 771 vma_mas_szero(&mas, end, vma->vm_end); 772 mas_reset(&mas); 773 VM_WARN_ON(insert && 774 insert->vm_end < vma->vm_end); 775 } 776 } else { 777 vma_changed = true; 778 } 779 vma->vm_end = end; 780 } 781 782 if (vma_changed) 783 vma_mas_store(vma, &mas); 784 785 vma->vm_pgoff = pgoff; 786 if (adjust_next) { 787 next->vm_start += adjust_next; 788 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 789 vma_mas_store(next, &mas); 790 } 791 792 if (file) { 793 if (adjust_next) 794 vma_interval_tree_insert(next, root); 795 vma_interval_tree_insert(vma, root); 796 flush_dcache_mmap_unlock(mapping); 797 } 798 799 if (remove_next && file) { 800 __remove_shared_vm_struct(next, file, mapping); 801 if (remove_next == 2) 802 __remove_shared_vm_struct(next_next, file, mapping); 803 } else if (insert) { 804 /* 805 * split_vma has split insert from vma, and needs 806 * us to insert it before dropping the locks 807 * (it may either follow vma or precede it). 808 */ 809 mas_reset(&mas); 810 vma_mas_store(insert, &mas); 811 mm->map_count++; 812 } 813 814 if (anon_vma) { 815 anon_vma_interval_tree_post_update_vma(vma); 816 if (adjust_next) 817 anon_vma_interval_tree_post_update_vma(next); 818 anon_vma_unlock_write(anon_vma); 819 } 820 821 if (file) { 822 i_mmap_unlock_write(mapping); 823 uprobe_mmap(vma); 824 825 if (adjust_next) 826 uprobe_mmap(next); 827 } 828 829 if (remove_next) { 830 again: 831 if (file) { 832 uprobe_munmap(next, next->vm_start, next->vm_end); 833 fput(file); 834 } 835 if (next->anon_vma) 836 anon_vma_merge(vma, next); 837 mm->map_count--; 838 mpol_put(vma_policy(next)); 839 if (remove_next != 2) 840 BUG_ON(vma->vm_end < next->vm_end); 841 vm_area_free(next); 842 843 /* 844 * In mprotect's case 6 (see comments on vma_merge), 845 * we must remove next_next too. 846 */ 847 if (remove_next == 2) { 848 remove_next = 1; 849 next = next_next; 850 goto again; 851 } 852 } 853 if (insert && file) 854 uprobe_mmap(insert); 855 856 mas_destroy(&mas); 857 validate_mm(mm); 858 859 return 0; 860 } 861 862 /* 863 * If the vma has a ->close operation then the driver probably needs to release 864 * per-vma resources, so we don't attempt to merge those. 865 */ 866 static inline int is_mergeable_vma(struct vm_area_struct *vma, 867 struct file *file, unsigned long vm_flags, 868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 869 struct anon_vma_name *anon_name) 870 { 871 /* 872 * VM_SOFTDIRTY should not prevent from VMA merging, if we 873 * match the flags but dirty bit -- the caller should mark 874 * merged VMA as dirty. If dirty bit won't be excluded from 875 * comparison, we increase pressure on the memory system forcing 876 * the kernel to generate new VMAs when old one could be 877 * extended instead. 878 */ 879 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 880 return 0; 881 if (vma->vm_file != file) 882 return 0; 883 if (vma->vm_ops && vma->vm_ops->close) 884 return 0; 885 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 886 return 0; 887 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 888 return 0; 889 return 1; 890 } 891 892 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 893 struct anon_vma *anon_vma2, 894 struct vm_area_struct *vma) 895 { 896 /* 897 * The list_is_singular() test is to avoid merging VMA cloned from 898 * parents. This can improve scalability caused by anon_vma lock. 899 */ 900 if ((!anon_vma1 || !anon_vma2) && (!vma || 901 list_is_singular(&vma->anon_vma_chain))) 902 return 1; 903 return anon_vma1 == anon_vma2; 904 } 905 906 /* 907 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 908 * in front of (at a lower virtual address and file offset than) the vma. 909 * 910 * We cannot merge two vmas if they have differently assigned (non-NULL) 911 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 912 * 913 * We don't check here for the merged mmap wrapping around the end of pagecache 914 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 915 * wrap, nor mmaps which cover the final page at index -1UL. 916 */ 917 static int 918 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 919 struct anon_vma *anon_vma, struct file *file, 920 pgoff_t vm_pgoff, 921 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 922 struct anon_vma_name *anon_name) 923 { 924 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 925 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 926 if (vma->vm_pgoff == vm_pgoff) 927 return 1; 928 } 929 return 0; 930 } 931 932 /* 933 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 934 * beyond (at a higher virtual address and file offset than) the vma. 935 * 936 * We cannot merge two vmas if they have differently assigned (non-NULL) 937 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 938 */ 939 static int 940 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 941 struct anon_vma *anon_vma, struct file *file, 942 pgoff_t vm_pgoff, 943 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 944 struct anon_vma_name *anon_name) 945 { 946 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 947 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 948 pgoff_t vm_pglen; 949 vm_pglen = vma_pages(vma); 950 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 951 return 1; 952 } 953 return 0; 954 } 955 956 /* 957 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 958 * figure out whether that can be merged with its predecessor or its 959 * successor. Or both (it neatly fills a hole). 960 * 961 * In most cases - when called for mmap, brk or mremap - [addr,end) is 962 * certain not to be mapped by the time vma_merge is called; but when 963 * called for mprotect, it is certain to be already mapped (either at 964 * an offset within prev, or at the start of next), and the flags of 965 * this area are about to be changed to vm_flags - and the no-change 966 * case has already been eliminated. 967 * 968 * The following mprotect cases have to be considered, where AAAA is 969 * the area passed down from mprotect_fixup, never extending beyond one 970 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 971 * 972 * AAAA AAAA AAAA 973 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 974 * cannot merge might become might become 975 * PPNNNNNNNNNN PPPPPPPPPPNN 976 * mmap, brk or case 4 below case 5 below 977 * mremap move: 978 * AAAA AAAA 979 * PPPP NNNN PPPPNNNNXXXX 980 * might become might become 981 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 982 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 983 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 984 * 985 * It is important for case 8 that the vma NNNN overlapping the 986 * region AAAA is never going to extended over XXXX. Instead XXXX must 987 * be extended in region AAAA and NNNN must be removed. This way in 988 * all cases where vma_merge succeeds, the moment vma_adjust drops the 989 * rmap_locks, the properties of the merged vma will be already 990 * correct for the whole merged range. Some of those properties like 991 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 992 * be correct for the whole merged range immediately after the 993 * rmap_locks are released. Otherwise if XXXX would be removed and 994 * NNNN would be extended over the XXXX range, remove_migration_ptes 995 * or other rmap walkers (if working on addresses beyond the "end" 996 * parameter) may establish ptes with the wrong permissions of NNNN 997 * instead of the right permissions of XXXX. 998 */ 999 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1000 struct vm_area_struct *prev, unsigned long addr, 1001 unsigned long end, unsigned long vm_flags, 1002 struct anon_vma *anon_vma, struct file *file, 1003 pgoff_t pgoff, struct mempolicy *policy, 1004 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1005 struct anon_vma_name *anon_name) 1006 { 1007 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1008 struct vm_area_struct *mid, *next, *res; 1009 int err = -1; 1010 bool merge_prev = false; 1011 bool merge_next = false; 1012 1013 /* 1014 * We later require that vma->vm_flags == vm_flags, 1015 * so this tests vma->vm_flags & VM_SPECIAL, too. 1016 */ 1017 if (vm_flags & VM_SPECIAL) 1018 return NULL; 1019 1020 next = find_vma(mm, prev ? prev->vm_end : 0); 1021 mid = next; 1022 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1023 next = find_vma(mm, next->vm_end); 1024 1025 /* verify some invariant that must be enforced by the caller */ 1026 VM_WARN_ON(prev && addr <= prev->vm_start); 1027 VM_WARN_ON(mid && end > mid->vm_end); 1028 VM_WARN_ON(addr >= end); 1029 1030 /* Can we merge the predecessor? */ 1031 if (prev && prev->vm_end == addr && 1032 mpol_equal(vma_policy(prev), policy) && 1033 can_vma_merge_after(prev, vm_flags, 1034 anon_vma, file, pgoff, 1035 vm_userfaultfd_ctx, anon_name)) { 1036 merge_prev = true; 1037 } 1038 /* Can we merge the successor? */ 1039 if (next && end == next->vm_start && 1040 mpol_equal(policy, vma_policy(next)) && 1041 can_vma_merge_before(next, vm_flags, 1042 anon_vma, file, pgoff+pglen, 1043 vm_userfaultfd_ctx, anon_name)) { 1044 merge_next = true; 1045 } 1046 /* Can we merge both the predecessor and the successor? */ 1047 if (merge_prev && merge_next && 1048 is_mergeable_anon_vma(prev->anon_vma, 1049 next->anon_vma, NULL)) { /* cases 1, 6 */ 1050 err = __vma_adjust(prev, prev->vm_start, 1051 next->vm_end, prev->vm_pgoff, NULL, 1052 prev); 1053 res = prev; 1054 } else if (merge_prev) { /* cases 2, 5, 7 */ 1055 err = __vma_adjust(prev, prev->vm_start, 1056 end, prev->vm_pgoff, NULL, prev); 1057 res = prev; 1058 } else if (merge_next) { 1059 if (prev && addr < prev->vm_end) /* case 4 */ 1060 err = __vma_adjust(prev, prev->vm_start, 1061 addr, prev->vm_pgoff, NULL, next); 1062 else /* cases 3, 8 */ 1063 err = __vma_adjust(mid, addr, next->vm_end, 1064 next->vm_pgoff - pglen, NULL, next); 1065 res = next; 1066 } 1067 1068 /* 1069 * Cannot merge with predecessor or successor or error in __vma_adjust? 1070 */ 1071 if (err) 1072 return NULL; 1073 khugepaged_enter_vma(res, vm_flags); 1074 return res; 1075 } 1076 1077 /* 1078 * Rough compatibility check to quickly see if it's even worth looking 1079 * at sharing an anon_vma. 1080 * 1081 * They need to have the same vm_file, and the flags can only differ 1082 * in things that mprotect may change. 1083 * 1084 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1085 * we can merge the two vma's. For example, we refuse to merge a vma if 1086 * there is a vm_ops->close() function, because that indicates that the 1087 * driver is doing some kind of reference counting. But that doesn't 1088 * really matter for the anon_vma sharing case. 1089 */ 1090 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1091 { 1092 return a->vm_end == b->vm_start && 1093 mpol_equal(vma_policy(a), vma_policy(b)) && 1094 a->vm_file == b->vm_file && 1095 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1096 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1097 } 1098 1099 /* 1100 * Do some basic sanity checking to see if we can re-use the anon_vma 1101 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1102 * the same as 'old', the other will be the new one that is trying 1103 * to share the anon_vma. 1104 * 1105 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1106 * the anon_vma of 'old' is concurrently in the process of being set up 1107 * by another page fault trying to merge _that_. But that's ok: if it 1108 * is being set up, that automatically means that it will be a singleton 1109 * acceptable for merging, so we can do all of this optimistically. But 1110 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1111 * 1112 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1113 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1114 * is to return an anon_vma that is "complex" due to having gone through 1115 * a fork). 1116 * 1117 * We also make sure that the two vma's are compatible (adjacent, 1118 * and with the same memory policies). That's all stable, even with just 1119 * a read lock on the mmap_lock. 1120 */ 1121 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1122 { 1123 if (anon_vma_compatible(a, b)) { 1124 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1125 1126 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1127 return anon_vma; 1128 } 1129 return NULL; 1130 } 1131 1132 /* 1133 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1134 * neighbouring vmas for a suitable anon_vma, before it goes off 1135 * to allocate a new anon_vma. It checks because a repetitive 1136 * sequence of mprotects and faults may otherwise lead to distinct 1137 * anon_vmas being allocated, preventing vma merge in subsequent 1138 * mprotect. 1139 */ 1140 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1141 { 1142 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1143 struct anon_vma *anon_vma = NULL; 1144 struct vm_area_struct *prev, *next; 1145 1146 /* Try next first. */ 1147 next = mas_walk(&mas); 1148 if (next) { 1149 anon_vma = reusable_anon_vma(next, vma, next); 1150 if (anon_vma) 1151 return anon_vma; 1152 } 1153 1154 prev = mas_prev(&mas, 0); 1155 VM_BUG_ON_VMA(prev != vma, vma); 1156 prev = mas_prev(&mas, 0); 1157 /* Try prev next. */ 1158 if (prev) 1159 anon_vma = reusable_anon_vma(prev, prev, vma); 1160 1161 /* 1162 * We might reach here with anon_vma == NULL if we can't find 1163 * any reusable anon_vma. 1164 * There's no absolute need to look only at touching neighbours: 1165 * we could search further afield for "compatible" anon_vmas. 1166 * But it would probably just be a waste of time searching, 1167 * or lead to too many vmas hanging off the same anon_vma. 1168 * We're trying to allow mprotect remerging later on, 1169 * not trying to minimize memory used for anon_vmas. 1170 */ 1171 return anon_vma; 1172 } 1173 1174 /* 1175 * If a hint addr is less than mmap_min_addr change hint to be as 1176 * low as possible but still greater than mmap_min_addr 1177 */ 1178 static inline unsigned long round_hint_to_min(unsigned long hint) 1179 { 1180 hint &= PAGE_MASK; 1181 if (((void *)hint != NULL) && 1182 (hint < mmap_min_addr)) 1183 return PAGE_ALIGN(mmap_min_addr); 1184 return hint; 1185 } 1186 1187 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1188 unsigned long len) 1189 { 1190 unsigned long locked, lock_limit; 1191 1192 /* mlock MCL_FUTURE? */ 1193 if (flags & VM_LOCKED) { 1194 locked = len >> PAGE_SHIFT; 1195 locked += mm->locked_vm; 1196 lock_limit = rlimit(RLIMIT_MEMLOCK); 1197 lock_limit >>= PAGE_SHIFT; 1198 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1199 return -EAGAIN; 1200 } 1201 return 0; 1202 } 1203 1204 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1205 { 1206 if (S_ISREG(inode->i_mode)) 1207 return MAX_LFS_FILESIZE; 1208 1209 if (S_ISBLK(inode->i_mode)) 1210 return MAX_LFS_FILESIZE; 1211 1212 if (S_ISSOCK(inode->i_mode)) 1213 return MAX_LFS_FILESIZE; 1214 1215 /* Special "we do even unsigned file positions" case */ 1216 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1217 return 0; 1218 1219 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1220 return ULONG_MAX; 1221 } 1222 1223 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1224 unsigned long pgoff, unsigned long len) 1225 { 1226 u64 maxsize = file_mmap_size_max(file, inode); 1227 1228 if (maxsize && len > maxsize) 1229 return false; 1230 maxsize -= len; 1231 if (pgoff > maxsize >> PAGE_SHIFT) 1232 return false; 1233 return true; 1234 } 1235 1236 /* 1237 * The caller must write-lock current->mm->mmap_lock. 1238 */ 1239 unsigned long do_mmap(struct file *file, unsigned long addr, 1240 unsigned long len, unsigned long prot, 1241 unsigned long flags, unsigned long pgoff, 1242 unsigned long *populate, struct list_head *uf) 1243 { 1244 struct mm_struct *mm = current->mm; 1245 vm_flags_t vm_flags; 1246 int pkey = 0; 1247 1248 validate_mm(mm); 1249 *populate = 0; 1250 1251 if (!len) 1252 return -EINVAL; 1253 1254 /* 1255 * Does the application expect PROT_READ to imply PROT_EXEC? 1256 * 1257 * (the exception is when the underlying filesystem is noexec 1258 * mounted, in which case we dont add PROT_EXEC.) 1259 */ 1260 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1261 if (!(file && path_noexec(&file->f_path))) 1262 prot |= PROT_EXEC; 1263 1264 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1265 if (flags & MAP_FIXED_NOREPLACE) 1266 flags |= MAP_FIXED; 1267 1268 if (!(flags & MAP_FIXED)) 1269 addr = round_hint_to_min(addr); 1270 1271 /* Careful about overflows.. */ 1272 len = PAGE_ALIGN(len); 1273 if (!len) 1274 return -ENOMEM; 1275 1276 /* offset overflow? */ 1277 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1278 return -EOVERFLOW; 1279 1280 /* Too many mappings? */ 1281 if (mm->map_count > sysctl_max_map_count) 1282 return -ENOMEM; 1283 1284 /* Obtain the address to map to. we verify (or select) it and ensure 1285 * that it represents a valid section of the address space. 1286 */ 1287 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1288 if (IS_ERR_VALUE(addr)) 1289 return addr; 1290 1291 if (flags & MAP_FIXED_NOREPLACE) { 1292 if (find_vma_intersection(mm, addr, addr + len)) 1293 return -EEXIST; 1294 } 1295 1296 if (prot == PROT_EXEC) { 1297 pkey = execute_only_pkey(mm); 1298 if (pkey < 0) 1299 pkey = 0; 1300 } 1301 1302 /* Do simple checking here so the lower-level routines won't have 1303 * to. we assume access permissions have been handled by the open 1304 * of the memory object, so we don't do any here. 1305 */ 1306 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1307 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1308 1309 if (flags & MAP_LOCKED) 1310 if (!can_do_mlock()) 1311 return -EPERM; 1312 1313 if (mlock_future_check(mm, vm_flags, len)) 1314 return -EAGAIN; 1315 1316 if (file) { 1317 struct inode *inode = file_inode(file); 1318 unsigned long flags_mask; 1319 1320 if (!file_mmap_ok(file, inode, pgoff, len)) 1321 return -EOVERFLOW; 1322 1323 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1324 1325 switch (flags & MAP_TYPE) { 1326 case MAP_SHARED: 1327 /* 1328 * Force use of MAP_SHARED_VALIDATE with non-legacy 1329 * flags. E.g. MAP_SYNC is dangerous to use with 1330 * MAP_SHARED as you don't know which consistency model 1331 * you will get. We silently ignore unsupported flags 1332 * with MAP_SHARED to preserve backward compatibility. 1333 */ 1334 flags &= LEGACY_MAP_MASK; 1335 fallthrough; 1336 case MAP_SHARED_VALIDATE: 1337 if (flags & ~flags_mask) 1338 return -EOPNOTSUPP; 1339 if (prot & PROT_WRITE) { 1340 if (!(file->f_mode & FMODE_WRITE)) 1341 return -EACCES; 1342 if (IS_SWAPFILE(file->f_mapping->host)) 1343 return -ETXTBSY; 1344 } 1345 1346 /* 1347 * Make sure we don't allow writing to an append-only 1348 * file.. 1349 */ 1350 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1351 return -EACCES; 1352 1353 vm_flags |= VM_SHARED | VM_MAYSHARE; 1354 if (!(file->f_mode & FMODE_WRITE)) 1355 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1356 fallthrough; 1357 case MAP_PRIVATE: 1358 if (!(file->f_mode & FMODE_READ)) 1359 return -EACCES; 1360 if (path_noexec(&file->f_path)) { 1361 if (vm_flags & VM_EXEC) 1362 return -EPERM; 1363 vm_flags &= ~VM_MAYEXEC; 1364 } 1365 1366 if (!file->f_op->mmap) 1367 return -ENODEV; 1368 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1369 return -EINVAL; 1370 break; 1371 1372 default: 1373 return -EINVAL; 1374 } 1375 } else { 1376 switch (flags & MAP_TYPE) { 1377 case MAP_SHARED: 1378 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1379 return -EINVAL; 1380 /* 1381 * Ignore pgoff. 1382 */ 1383 pgoff = 0; 1384 vm_flags |= VM_SHARED | VM_MAYSHARE; 1385 break; 1386 case MAP_PRIVATE: 1387 /* 1388 * Set pgoff according to addr for anon_vma. 1389 */ 1390 pgoff = addr >> PAGE_SHIFT; 1391 break; 1392 default: 1393 return -EINVAL; 1394 } 1395 } 1396 1397 /* 1398 * Set 'VM_NORESERVE' if we should not account for the 1399 * memory use of this mapping. 1400 */ 1401 if (flags & MAP_NORESERVE) { 1402 /* We honor MAP_NORESERVE if allowed to overcommit */ 1403 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1404 vm_flags |= VM_NORESERVE; 1405 1406 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1407 if (file && is_file_hugepages(file)) 1408 vm_flags |= VM_NORESERVE; 1409 } 1410 1411 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1412 if (!IS_ERR_VALUE(addr) && 1413 ((vm_flags & VM_LOCKED) || 1414 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1415 *populate = len; 1416 return addr; 1417 } 1418 1419 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1420 unsigned long prot, unsigned long flags, 1421 unsigned long fd, unsigned long pgoff) 1422 { 1423 struct file *file = NULL; 1424 unsigned long retval; 1425 1426 if (!(flags & MAP_ANONYMOUS)) { 1427 audit_mmap_fd(fd, flags); 1428 file = fget(fd); 1429 if (!file) 1430 return -EBADF; 1431 if (is_file_hugepages(file)) { 1432 len = ALIGN(len, huge_page_size(hstate_file(file))); 1433 } else if (unlikely(flags & MAP_HUGETLB)) { 1434 retval = -EINVAL; 1435 goto out_fput; 1436 } 1437 } else if (flags & MAP_HUGETLB) { 1438 struct hstate *hs; 1439 1440 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1441 if (!hs) 1442 return -EINVAL; 1443 1444 len = ALIGN(len, huge_page_size(hs)); 1445 /* 1446 * VM_NORESERVE is used because the reservations will be 1447 * taken when vm_ops->mmap() is called 1448 */ 1449 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1450 VM_NORESERVE, 1451 HUGETLB_ANONHUGE_INODE, 1452 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1453 if (IS_ERR(file)) 1454 return PTR_ERR(file); 1455 } 1456 1457 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1458 out_fput: 1459 if (file) 1460 fput(file); 1461 return retval; 1462 } 1463 1464 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1465 unsigned long, prot, unsigned long, flags, 1466 unsigned long, fd, unsigned long, pgoff) 1467 { 1468 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1469 } 1470 1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1472 struct mmap_arg_struct { 1473 unsigned long addr; 1474 unsigned long len; 1475 unsigned long prot; 1476 unsigned long flags; 1477 unsigned long fd; 1478 unsigned long offset; 1479 }; 1480 1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1482 { 1483 struct mmap_arg_struct a; 1484 1485 if (copy_from_user(&a, arg, sizeof(a))) 1486 return -EFAULT; 1487 if (offset_in_page(a.offset)) 1488 return -EINVAL; 1489 1490 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1491 a.offset >> PAGE_SHIFT); 1492 } 1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1494 1495 /* 1496 * Some shared mappings will want the pages marked read-only 1497 * to track write events. If so, we'll downgrade vm_page_prot 1498 * to the private version (using protection_map[] without the 1499 * VM_SHARED bit). 1500 */ 1501 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1502 { 1503 vm_flags_t vm_flags = vma->vm_flags; 1504 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1505 1506 /* If it was private or non-writable, the write bit is already clear */ 1507 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1508 return 0; 1509 1510 /* The backer wishes to know when pages are first written to? */ 1511 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1512 return 1; 1513 1514 /* The open routine did something to the protections that pgprot_modify 1515 * won't preserve? */ 1516 if (pgprot_val(vm_page_prot) != 1517 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1518 return 0; 1519 1520 /* 1521 * Do we need to track softdirty? hugetlb does not support softdirty 1522 * tracking yet. 1523 */ 1524 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1525 return 1; 1526 1527 /* Specialty mapping? */ 1528 if (vm_flags & VM_PFNMAP) 1529 return 0; 1530 1531 /* Can the mapping track the dirty pages? */ 1532 return vma->vm_file && vma->vm_file->f_mapping && 1533 mapping_can_writeback(vma->vm_file->f_mapping); 1534 } 1535 1536 /* 1537 * We account for memory if it's a private writeable mapping, 1538 * not hugepages and VM_NORESERVE wasn't set. 1539 */ 1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1541 { 1542 /* 1543 * hugetlb has its own accounting separate from the core VM 1544 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1545 */ 1546 if (file && is_file_hugepages(file)) 1547 return 0; 1548 1549 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1550 } 1551 1552 /** 1553 * unmapped_area() - Find an area between the low_limit and the high_limit with 1554 * the correct alignment and offset, all from @info. Note: current->mm is used 1555 * for the search. 1556 * 1557 * @info: The unmapped area information including the range (low_limit - 1558 * hight_limit), the alignment offset and mask. 1559 * 1560 * Return: A memory address or -ENOMEM. 1561 */ 1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1563 { 1564 unsigned long length, gap; 1565 1566 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1567 1568 /* Adjust search length to account for worst case alignment overhead */ 1569 length = info->length + info->align_mask; 1570 if (length < info->length) 1571 return -ENOMEM; 1572 1573 if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1, 1574 length)) 1575 return -ENOMEM; 1576 1577 gap = mas.index; 1578 gap += (info->align_offset - gap) & info->align_mask; 1579 return gap; 1580 } 1581 1582 /** 1583 * unmapped_area_topdown() - Find an area between the low_limit and the 1584 * high_limit with * the correct alignment and offset at the highest available 1585 * address, all from @info. Note: current->mm is used for the search. 1586 * 1587 * @info: The unmapped area information including the range (low_limit - 1588 * hight_limit), the alignment offset and mask. 1589 * 1590 * Return: A memory address or -ENOMEM. 1591 */ 1592 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1593 { 1594 unsigned long length, gap; 1595 1596 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1597 /* Adjust search length to account for worst case alignment overhead */ 1598 length = info->length + info->align_mask; 1599 if (length < info->length) 1600 return -ENOMEM; 1601 1602 if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1, 1603 length)) 1604 return -ENOMEM; 1605 1606 gap = mas.last + 1 - info->length; 1607 gap -= (gap - info->align_offset) & info->align_mask; 1608 return gap; 1609 } 1610 1611 /* 1612 * Search for an unmapped address range. 1613 * 1614 * We are looking for a range that: 1615 * - does not intersect with any VMA; 1616 * - is contained within the [low_limit, high_limit) interval; 1617 * - is at least the desired size. 1618 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1619 */ 1620 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1621 { 1622 unsigned long addr; 1623 1624 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1625 addr = unmapped_area_topdown(info); 1626 else 1627 addr = unmapped_area(info); 1628 1629 trace_vm_unmapped_area(addr, info); 1630 return addr; 1631 } 1632 1633 /* Get an address range which is currently unmapped. 1634 * For shmat() with addr=0. 1635 * 1636 * Ugly calling convention alert: 1637 * Return value with the low bits set means error value, 1638 * ie 1639 * if (ret & ~PAGE_MASK) 1640 * error = ret; 1641 * 1642 * This function "knows" that -ENOMEM has the bits set. 1643 */ 1644 unsigned long 1645 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1646 unsigned long len, unsigned long pgoff, 1647 unsigned long flags) 1648 { 1649 struct mm_struct *mm = current->mm; 1650 struct vm_area_struct *vma, *prev; 1651 struct vm_unmapped_area_info info; 1652 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1653 1654 if (len > mmap_end - mmap_min_addr) 1655 return -ENOMEM; 1656 1657 if (flags & MAP_FIXED) 1658 return addr; 1659 1660 if (addr) { 1661 addr = PAGE_ALIGN(addr); 1662 vma = find_vma_prev(mm, addr, &prev); 1663 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1664 (!vma || addr + len <= vm_start_gap(vma)) && 1665 (!prev || addr >= vm_end_gap(prev))) 1666 return addr; 1667 } 1668 1669 info.flags = 0; 1670 info.length = len; 1671 info.low_limit = mm->mmap_base; 1672 info.high_limit = mmap_end; 1673 info.align_mask = 0; 1674 info.align_offset = 0; 1675 return vm_unmapped_area(&info); 1676 } 1677 1678 #ifndef HAVE_ARCH_UNMAPPED_AREA 1679 unsigned long 1680 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1681 unsigned long len, unsigned long pgoff, 1682 unsigned long flags) 1683 { 1684 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1685 } 1686 #endif 1687 1688 /* 1689 * This mmap-allocator allocates new areas top-down from below the 1690 * stack's low limit (the base): 1691 */ 1692 unsigned long 1693 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1694 unsigned long len, unsigned long pgoff, 1695 unsigned long flags) 1696 { 1697 struct vm_area_struct *vma, *prev; 1698 struct mm_struct *mm = current->mm; 1699 struct vm_unmapped_area_info info; 1700 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1701 1702 /* requested length too big for entire address space */ 1703 if (len > mmap_end - mmap_min_addr) 1704 return -ENOMEM; 1705 1706 if (flags & MAP_FIXED) 1707 return addr; 1708 1709 /* requesting a specific address */ 1710 if (addr) { 1711 addr = PAGE_ALIGN(addr); 1712 vma = find_vma_prev(mm, addr, &prev); 1713 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1714 (!vma || addr + len <= vm_start_gap(vma)) && 1715 (!prev || addr >= vm_end_gap(prev))) 1716 return addr; 1717 } 1718 1719 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1720 info.length = len; 1721 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1722 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1723 info.align_mask = 0; 1724 info.align_offset = 0; 1725 addr = vm_unmapped_area(&info); 1726 1727 /* 1728 * A failed mmap() very likely causes application failure, 1729 * so fall back to the bottom-up function here. This scenario 1730 * can happen with large stack limits and large mmap() 1731 * allocations. 1732 */ 1733 if (offset_in_page(addr)) { 1734 VM_BUG_ON(addr != -ENOMEM); 1735 info.flags = 0; 1736 info.low_limit = TASK_UNMAPPED_BASE; 1737 info.high_limit = mmap_end; 1738 addr = vm_unmapped_area(&info); 1739 } 1740 1741 return addr; 1742 } 1743 1744 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1745 unsigned long 1746 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1747 unsigned long len, unsigned long pgoff, 1748 unsigned long flags) 1749 { 1750 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1751 } 1752 #endif 1753 1754 unsigned long 1755 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1756 unsigned long pgoff, unsigned long flags) 1757 { 1758 unsigned long (*get_area)(struct file *, unsigned long, 1759 unsigned long, unsigned long, unsigned long); 1760 1761 unsigned long error = arch_mmap_check(addr, len, flags); 1762 if (error) 1763 return error; 1764 1765 /* Careful about overflows.. */ 1766 if (len > TASK_SIZE) 1767 return -ENOMEM; 1768 1769 get_area = current->mm->get_unmapped_area; 1770 if (file) { 1771 if (file->f_op->get_unmapped_area) 1772 get_area = file->f_op->get_unmapped_area; 1773 } else if (flags & MAP_SHARED) { 1774 /* 1775 * mmap_region() will call shmem_zero_setup() to create a file, 1776 * so use shmem's get_unmapped_area in case it can be huge. 1777 * do_mmap() will clear pgoff, so match alignment. 1778 */ 1779 pgoff = 0; 1780 get_area = shmem_get_unmapped_area; 1781 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1782 /* Ensures that larger anonymous mappings are THP aligned. */ 1783 get_area = thp_get_unmapped_area; 1784 } 1785 1786 addr = get_area(file, addr, len, pgoff, flags); 1787 if (IS_ERR_VALUE(addr)) 1788 return addr; 1789 1790 if (addr > TASK_SIZE - len) 1791 return -ENOMEM; 1792 if (offset_in_page(addr)) 1793 return -EINVAL; 1794 1795 error = security_mmap_addr(addr); 1796 return error ? error : addr; 1797 } 1798 1799 EXPORT_SYMBOL(get_unmapped_area); 1800 1801 /** 1802 * find_vma_intersection() - Look up the first VMA which intersects the interval 1803 * @mm: The process address space. 1804 * @start_addr: The inclusive start user address. 1805 * @end_addr: The exclusive end user address. 1806 * 1807 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1808 * start_addr < end_addr. 1809 */ 1810 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1811 unsigned long start_addr, 1812 unsigned long end_addr) 1813 { 1814 unsigned long index = start_addr; 1815 1816 mmap_assert_locked(mm); 1817 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1818 } 1819 EXPORT_SYMBOL(find_vma_intersection); 1820 1821 /** 1822 * find_vma() - Find the VMA for a given address, or the next VMA. 1823 * @mm: The mm_struct to check 1824 * @addr: The address 1825 * 1826 * Returns: The VMA associated with addr, or the next VMA. 1827 * May return %NULL in the case of no VMA at addr or above. 1828 */ 1829 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1830 { 1831 unsigned long index = addr; 1832 1833 mmap_assert_locked(mm); 1834 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1835 } 1836 EXPORT_SYMBOL(find_vma); 1837 1838 /** 1839 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1840 * set %pprev to the previous VMA, if any. 1841 * @mm: The mm_struct to check 1842 * @addr: The address 1843 * @pprev: The pointer to set to the previous VMA 1844 * 1845 * Note that RCU lock is missing here since the external mmap_lock() is used 1846 * instead. 1847 * 1848 * Returns: The VMA associated with @addr, or the next vma. 1849 * May return %NULL in the case of no vma at addr or above. 1850 */ 1851 struct vm_area_struct * 1852 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1853 struct vm_area_struct **pprev) 1854 { 1855 struct vm_area_struct *vma; 1856 MA_STATE(mas, &mm->mm_mt, addr, addr); 1857 1858 vma = mas_walk(&mas); 1859 *pprev = mas_prev(&mas, 0); 1860 if (!vma) 1861 vma = mas_next(&mas, ULONG_MAX); 1862 return vma; 1863 } 1864 1865 /* 1866 * Verify that the stack growth is acceptable and 1867 * update accounting. This is shared with both the 1868 * grow-up and grow-down cases. 1869 */ 1870 static int acct_stack_growth(struct vm_area_struct *vma, 1871 unsigned long size, unsigned long grow) 1872 { 1873 struct mm_struct *mm = vma->vm_mm; 1874 unsigned long new_start; 1875 1876 /* address space limit tests */ 1877 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1878 return -ENOMEM; 1879 1880 /* Stack limit test */ 1881 if (size > rlimit(RLIMIT_STACK)) 1882 return -ENOMEM; 1883 1884 /* mlock limit tests */ 1885 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1886 return -ENOMEM; 1887 1888 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1889 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1890 vma->vm_end - size; 1891 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1892 return -EFAULT; 1893 1894 /* 1895 * Overcommit.. This must be the final test, as it will 1896 * update security statistics. 1897 */ 1898 if (security_vm_enough_memory_mm(mm, grow)) 1899 return -ENOMEM; 1900 1901 return 0; 1902 } 1903 1904 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1905 /* 1906 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1907 * vma is the last one with address > vma->vm_end. Have to extend vma. 1908 */ 1909 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1910 { 1911 struct mm_struct *mm = vma->vm_mm; 1912 struct vm_area_struct *next; 1913 unsigned long gap_addr; 1914 int error = 0; 1915 MA_STATE(mas, &mm->mm_mt, 0, 0); 1916 1917 if (!(vma->vm_flags & VM_GROWSUP)) 1918 return -EFAULT; 1919 1920 /* Guard against exceeding limits of the address space. */ 1921 address &= PAGE_MASK; 1922 if (address >= (TASK_SIZE & PAGE_MASK)) 1923 return -ENOMEM; 1924 address += PAGE_SIZE; 1925 1926 /* Enforce stack_guard_gap */ 1927 gap_addr = address + stack_guard_gap; 1928 1929 /* Guard against overflow */ 1930 if (gap_addr < address || gap_addr > TASK_SIZE) 1931 gap_addr = TASK_SIZE; 1932 1933 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1934 if (next && vma_is_accessible(next)) { 1935 if (!(next->vm_flags & VM_GROWSUP)) 1936 return -ENOMEM; 1937 /* Check that both stack segments have the same anon_vma? */ 1938 } 1939 1940 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1941 return -ENOMEM; 1942 1943 /* We must make sure the anon_vma is allocated. */ 1944 if (unlikely(anon_vma_prepare(vma))) { 1945 mas_destroy(&mas); 1946 return -ENOMEM; 1947 } 1948 1949 /* 1950 * vma->vm_start/vm_end cannot change under us because the caller 1951 * is required to hold the mmap_lock in read mode. We need the 1952 * anon_vma lock to serialize against concurrent expand_stacks. 1953 */ 1954 anon_vma_lock_write(vma->anon_vma); 1955 1956 /* Somebody else might have raced and expanded it already */ 1957 if (address > vma->vm_end) { 1958 unsigned long size, grow; 1959 1960 size = address - vma->vm_start; 1961 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1962 1963 error = -ENOMEM; 1964 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1965 error = acct_stack_growth(vma, size, grow); 1966 if (!error) { 1967 /* 1968 * We only hold a shared mmap_lock lock here, so 1969 * we need to protect against concurrent vma 1970 * expansions. anon_vma_lock_write() doesn't 1971 * help here, as we don't guarantee that all 1972 * growable vmas in a mm share the same root 1973 * anon vma. So, we reuse mm->page_table_lock 1974 * to guard against concurrent vma expansions. 1975 */ 1976 spin_lock(&mm->page_table_lock); 1977 if (vma->vm_flags & VM_LOCKED) 1978 mm->locked_vm += grow; 1979 vm_stat_account(mm, vma->vm_flags, grow); 1980 anon_vma_interval_tree_pre_update_vma(vma); 1981 vma->vm_end = address; 1982 /* Overwrite old entry in mtree. */ 1983 vma_mas_store(vma, &mas); 1984 anon_vma_interval_tree_post_update_vma(vma); 1985 spin_unlock(&mm->page_table_lock); 1986 1987 perf_event_mmap(vma); 1988 } 1989 } 1990 } 1991 anon_vma_unlock_write(vma->anon_vma); 1992 khugepaged_enter_vma(vma, vma->vm_flags); 1993 mas_destroy(&mas); 1994 return error; 1995 } 1996 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1997 1998 /* 1999 * vma is the first one with address < vma->vm_start. Have to extend vma. 2000 */ 2001 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2002 { 2003 struct mm_struct *mm = vma->vm_mm; 2004 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2005 struct vm_area_struct *prev; 2006 int error = 0; 2007 2008 address &= PAGE_MASK; 2009 if (address < mmap_min_addr) 2010 return -EPERM; 2011 2012 /* Enforce stack_guard_gap */ 2013 prev = mas_prev(&mas, 0); 2014 /* Check that both stack segments have the same anon_vma? */ 2015 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2016 vma_is_accessible(prev)) { 2017 if (address - prev->vm_end < stack_guard_gap) 2018 return -ENOMEM; 2019 } 2020 2021 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2022 return -ENOMEM; 2023 2024 /* We must make sure the anon_vma is allocated. */ 2025 if (unlikely(anon_vma_prepare(vma))) { 2026 mas_destroy(&mas); 2027 return -ENOMEM; 2028 } 2029 2030 /* 2031 * vma->vm_start/vm_end cannot change under us because the caller 2032 * is required to hold the mmap_lock in read mode. We need the 2033 * anon_vma lock to serialize against concurrent expand_stacks. 2034 */ 2035 anon_vma_lock_write(vma->anon_vma); 2036 2037 /* Somebody else might have raced and expanded it already */ 2038 if (address < vma->vm_start) { 2039 unsigned long size, grow; 2040 2041 size = vma->vm_end - address; 2042 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2043 2044 error = -ENOMEM; 2045 if (grow <= vma->vm_pgoff) { 2046 error = acct_stack_growth(vma, size, grow); 2047 if (!error) { 2048 /* 2049 * We only hold a shared mmap_lock lock here, so 2050 * we need to protect against concurrent vma 2051 * expansions. anon_vma_lock_write() doesn't 2052 * help here, as we don't guarantee that all 2053 * growable vmas in a mm share the same root 2054 * anon vma. So, we reuse mm->page_table_lock 2055 * to guard against concurrent vma expansions. 2056 */ 2057 spin_lock(&mm->page_table_lock); 2058 if (vma->vm_flags & VM_LOCKED) 2059 mm->locked_vm += grow; 2060 vm_stat_account(mm, vma->vm_flags, grow); 2061 anon_vma_interval_tree_pre_update_vma(vma); 2062 vma->vm_start = address; 2063 vma->vm_pgoff -= grow; 2064 /* Overwrite old entry in mtree. */ 2065 vma_mas_store(vma, &mas); 2066 anon_vma_interval_tree_post_update_vma(vma); 2067 spin_unlock(&mm->page_table_lock); 2068 2069 perf_event_mmap(vma); 2070 } 2071 } 2072 } 2073 anon_vma_unlock_write(vma->anon_vma); 2074 khugepaged_enter_vma(vma, vma->vm_flags); 2075 mas_destroy(&mas); 2076 return error; 2077 } 2078 2079 /* enforced gap between the expanding stack and other mappings. */ 2080 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2081 2082 static int __init cmdline_parse_stack_guard_gap(char *p) 2083 { 2084 unsigned long val; 2085 char *endptr; 2086 2087 val = simple_strtoul(p, &endptr, 10); 2088 if (!*endptr) 2089 stack_guard_gap = val << PAGE_SHIFT; 2090 2091 return 1; 2092 } 2093 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2094 2095 #ifdef CONFIG_STACK_GROWSUP 2096 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2097 { 2098 return expand_upwards(vma, address); 2099 } 2100 2101 struct vm_area_struct * 2102 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2103 { 2104 struct vm_area_struct *vma, *prev; 2105 2106 addr &= PAGE_MASK; 2107 vma = find_vma_prev(mm, addr, &prev); 2108 if (vma && (vma->vm_start <= addr)) 2109 return vma; 2110 if (!prev || expand_stack(prev, addr)) 2111 return NULL; 2112 if (prev->vm_flags & VM_LOCKED) 2113 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2114 return prev; 2115 } 2116 #else 2117 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2118 { 2119 return expand_downwards(vma, address); 2120 } 2121 2122 struct vm_area_struct * 2123 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2124 { 2125 struct vm_area_struct *vma; 2126 unsigned long start; 2127 2128 addr &= PAGE_MASK; 2129 vma = find_vma(mm, addr); 2130 if (!vma) 2131 return NULL; 2132 if (vma->vm_start <= addr) 2133 return vma; 2134 if (!(vma->vm_flags & VM_GROWSDOWN)) 2135 return NULL; 2136 start = vma->vm_start; 2137 if (expand_stack(vma, addr)) 2138 return NULL; 2139 if (vma->vm_flags & VM_LOCKED) 2140 populate_vma_page_range(vma, addr, start, NULL); 2141 return vma; 2142 } 2143 #endif 2144 2145 EXPORT_SYMBOL_GPL(find_extend_vma); 2146 2147 /* 2148 * Ok - we have the memory areas we should free on a maple tree so release them, 2149 * and do the vma updates. 2150 * 2151 * Called with the mm semaphore held. 2152 */ 2153 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2154 { 2155 unsigned long nr_accounted = 0; 2156 struct vm_area_struct *vma; 2157 2158 /* Update high watermark before we lower total_vm */ 2159 update_hiwater_vm(mm); 2160 mas_for_each(mas, vma, ULONG_MAX) { 2161 long nrpages = vma_pages(vma); 2162 2163 if (vma->vm_flags & VM_ACCOUNT) 2164 nr_accounted += nrpages; 2165 vm_stat_account(mm, vma->vm_flags, -nrpages); 2166 remove_vma(vma); 2167 } 2168 vm_unacct_memory(nr_accounted); 2169 validate_mm(mm); 2170 } 2171 2172 /* 2173 * Get rid of page table information in the indicated region. 2174 * 2175 * Called with the mm semaphore held. 2176 */ 2177 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2178 struct vm_area_struct *vma, struct vm_area_struct *prev, 2179 struct vm_area_struct *next, 2180 unsigned long start, unsigned long end) 2181 { 2182 struct mmu_gather tlb; 2183 2184 lru_add_drain(); 2185 tlb_gather_mmu(&tlb, mm); 2186 update_hiwater_rss(mm); 2187 unmap_vmas(&tlb, mt, vma, start, end); 2188 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2189 next ? next->vm_start : USER_PGTABLES_CEILING); 2190 tlb_finish_mmu(&tlb); 2191 } 2192 2193 /* 2194 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2195 * has already been checked or doesn't make sense to fail. 2196 */ 2197 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2198 unsigned long addr, int new_below) 2199 { 2200 struct vm_area_struct *new; 2201 int err; 2202 validate_mm_mt(mm); 2203 2204 if (vma->vm_ops && vma->vm_ops->may_split) { 2205 err = vma->vm_ops->may_split(vma, addr); 2206 if (err) 2207 return err; 2208 } 2209 2210 new = vm_area_dup(vma); 2211 if (!new) 2212 return -ENOMEM; 2213 2214 if (new_below) 2215 new->vm_end = addr; 2216 else { 2217 new->vm_start = addr; 2218 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2219 } 2220 2221 err = vma_dup_policy(vma, new); 2222 if (err) 2223 goto out_free_vma; 2224 2225 err = anon_vma_clone(new, vma); 2226 if (err) 2227 goto out_free_mpol; 2228 2229 if (new->vm_file) 2230 get_file(new->vm_file); 2231 2232 if (new->vm_ops && new->vm_ops->open) 2233 new->vm_ops->open(new); 2234 2235 if (new_below) 2236 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2237 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2238 else 2239 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2240 2241 /* Success. */ 2242 if (!err) 2243 return 0; 2244 2245 /* Avoid vm accounting in close() operation */ 2246 new->vm_start = new->vm_end; 2247 new->vm_pgoff = 0; 2248 /* Clean everything up if vma_adjust failed. */ 2249 if (new->vm_ops && new->vm_ops->close) 2250 new->vm_ops->close(new); 2251 if (new->vm_file) 2252 fput(new->vm_file); 2253 unlink_anon_vmas(new); 2254 out_free_mpol: 2255 mpol_put(vma_policy(new)); 2256 out_free_vma: 2257 vm_area_free(new); 2258 validate_mm_mt(mm); 2259 return err; 2260 } 2261 2262 /* 2263 * Split a vma into two pieces at address 'addr', a new vma is allocated 2264 * either for the first part or the tail. 2265 */ 2266 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2267 unsigned long addr, int new_below) 2268 { 2269 if (mm->map_count >= sysctl_max_map_count) 2270 return -ENOMEM; 2271 2272 return __split_vma(mm, vma, addr, new_below); 2273 } 2274 2275 static inline int munmap_sidetree(struct vm_area_struct *vma, 2276 struct ma_state *mas_detach) 2277 { 2278 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1); 2279 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL)) 2280 return -ENOMEM; 2281 2282 if (vma->vm_flags & VM_LOCKED) 2283 vma->vm_mm->locked_vm -= vma_pages(vma); 2284 2285 return 0; 2286 } 2287 2288 /* 2289 * do_mas_align_munmap() - munmap the aligned region from @start to @end. 2290 * @mas: The maple_state, ideally set up to alter the correct tree location. 2291 * @vma: The starting vm_area_struct 2292 * @mm: The mm_struct 2293 * @start: The aligned start address to munmap. 2294 * @end: The aligned end address to munmap. 2295 * @uf: The userfaultfd list_head 2296 * @downgrade: Set to true to attempt a write downgrade of the mmap_sem 2297 * 2298 * If @downgrade is true, check return code for potential release of the lock. 2299 */ 2300 static int 2301 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma, 2302 struct mm_struct *mm, unsigned long start, 2303 unsigned long end, struct list_head *uf, bool downgrade) 2304 { 2305 struct vm_area_struct *prev, *next = NULL; 2306 struct maple_tree mt_detach; 2307 int count = 0; 2308 int error = -ENOMEM; 2309 MA_STATE(mas_detach, &mt_detach, 0, 0); 2310 mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN); 2311 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2312 2313 if (mas_preallocate(mas, vma, GFP_KERNEL)) 2314 return -ENOMEM; 2315 2316 mas->last = end - 1; 2317 /* 2318 * If we need to split any vma, do it now to save pain later. 2319 * 2320 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2321 * unmapped vm_area_struct will remain in use: so lower split_vma 2322 * places tmp vma above, and higher split_vma places tmp vma below. 2323 */ 2324 2325 /* Does it split the first one? */ 2326 if (start > vma->vm_start) { 2327 2328 /* 2329 * Make sure that map_count on return from munmap() will 2330 * not exceed its limit; but let map_count go just above 2331 * its limit temporarily, to help free resources as expected. 2332 */ 2333 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2334 goto map_count_exceeded; 2335 2336 /* 2337 * mas_pause() is not needed since mas->index needs to be set 2338 * differently than vma->vm_end anyways. 2339 */ 2340 error = __split_vma(mm, vma, start, 0); 2341 if (error) 2342 goto start_split_failed; 2343 2344 mas_set(mas, start); 2345 vma = mas_walk(mas); 2346 } 2347 2348 prev = mas_prev(mas, 0); 2349 if (unlikely((!prev))) 2350 mas_set(mas, start); 2351 2352 /* 2353 * Detach a range of VMAs from the mm. Using next as a temp variable as 2354 * it is always overwritten. 2355 */ 2356 mas_for_each(mas, next, end - 1) { 2357 /* Does it split the end? */ 2358 if (next->vm_end > end) { 2359 struct vm_area_struct *split; 2360 2361 error = __split_vma(mm, next, end, 1); 2362 if (error) 2363 goto end_split_failed; 2364 2365 mas_set(mas, end); 2366 split = mas_prev(mas, 0); 2367 error = munmap_sidetree(split, &mas_detach); 2368 if (error) 2369 goto munmap_sidetree_failed; 2370 2371 count++; 2372 if (vma == next) 2373 vma = split; 2374 break; 2375 } 2376 error = munmap_sidetree(next, &mas_detach); 2377 if (error) 2378 goto munmap_sidetree_failed; 2379 2380 count++; 2381 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2382 BUG_ON(next->vm_start < start); 2383 BUG_ON(next->vm_start > end); 2384 #endif 2385 } 2386 2387 if (!next) 2388 next = mas_next(mas, ULONG_MAX); 2389 2390 if (unlikely(uf)) { 2391 /* 2392 * If userfaultfd_unmap_prep returns an error the vmas 2393 * will remain split, but userland will get a 2394 * highly unexpected error anyway. This is no 2395 * different than the case where the first of the two 2396 * __split_vma fails, but we don't undo the first 2397 * split, despite we could. This is unlikely enough 2398 * failure that it's not worth optimizing it for. 2399 */ 2400 error = userfaultfd_unmap_prep(mm, start, end, uf); 2401 2402 if (error) 2403 goto userfaultfd_error; 2404 } 2405 2406 /* Point of no return */ 2407 mas_set_range(mas, start, end - 1); 2408 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2409 /* Make sure no VMAs are about to be lost. */ 2410 { 2411 MA_STATE(test, &mt_detach, start, end - 1); 2412 struct vm_area_struct *vma_mas, *vma_test; 2413 int test_count = 0; 2414 2415 rcu_read_lock(); 2416 vma_test = mas_find(&test, end - 1); 2417 mas_for_each(mas, vma_mas, end - 1) { 2418 BUG_ON(vma_mas != vma_test); 2419 test_count++; 2420 vma_test = mas_next(&test, end - 1); 2421 } 2422 rcu_read_unlock(); 2423 BUG_ON(count != test_count); 2424 mas_set_range(mas, start, end - 1); 2425 } 2426 #endif 2427 mas_store_prealloc(mas, NULL); 2428 mm->map_count -= count; 2429 /* 2430 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2431 * VM_GROWSUP VMA. Such VMAs can change their size under 2432 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2433 */ 2434 if (downgrade) { 2435 if (next && (next->vm_flags & VM_GROWSDOWN)) 2436 downgrade = false; 2437 else if (prev && (prev->vm_flags & VM_GROWSUP)) 2438 downgrade = false; 2439 else 2440 mmap_write_downgrade(mm); 2441 } 2442 2443 unmap_region(mm, &mt_detach, vma, prev, next, start, end); 2444 /* Statistics and freeing VMAs */ 2445 mas_set(&mas_detach, start); 2446 remove_mt(mm, &mas_detach); 2447 __mt_destroy(&mt_detach); 2448 2449 2450 validate_mm(mm); 2451 return downgrade ? 1 : 0; 2452 2453 userfaultfd_error: 2454 munmap_sidetree_failed: 2455 end_split_failed: 2456 __mt_destroy(&mt_detach); 2457 start_split_failed: 2458 map_count_exceeded: 2459 mas_destroy(mas); 2460 return error; 2461 } 2462 2463 /* 2464 * do_mas_munmap() - munmap a given range. 2465 * @mas: The maple state 2466 * @mm: The mm_struct 2467 * @start: The start address to munmap 2468 * @len: The length of the range to munmap 2469 * @uf: The userfaultfd list_head 2470 * @downgrade: set to true if the user wants to attempt to write_downgrade the 2471 * mmap_sem 2472 * 2473 * This function takes a @mas that is either pointing to the previous VMA or set 2474 * to MA_START and sets it up to remove the mapping(s). The @len will be 2475 * aligned and any arch_unmap work will be preformed. 2476 * 2477 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise. 2478 */ 2479 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, 2480 unsigned long start, size_t len, struct list_head *uf, 2481 bool downgrade) 2482 { 2483 unsigned long end; 2484 struct vm_area_struct *vma; 2485 2486 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2487 return -EINVAL; 2488 2489 end = start + PAGE_ALIGN(len); 2490 if (end == start) 2491 return -EINVAL; 2492 2493 /* arch_unmap() might do unmaps itself. */ 2494 arch_unmap(mm, start, end); 2495 2496 /* Find the first overlapping VMA */ 2497 vma = mas_find(mas, end - 1); 2498 if (!vma) 2499 return 0; 2500 2501 return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade); 2502 } 2503 2504 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2505 * @mm: The mm_struct 2506 * @start: The start address to munmap 2507 * @len: The length to be munmapped. 2508 * @uf: The userfaultfd list_head 2509 */ 2510 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2511 struct list_head *uf) 2512 { 2513 MA_STATE(mas, &mm->mm_mt, start, start); 2514 2515 return do_mas_munmap(&mas, mm, start, len, uf, false); 2516 } 2517 2518 unsigned long mmap_region(struct file *file, unsigned long addr, 2519 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2520 struct list_head *uf) 2521 { 2522 struct mm_struct *mm = current->mm; 2523 struct vm_area_struct *vma = NULL; 2524 struct vm_area_struct *next, *prev, *merge; 2525 pgoff_t pglen = len >> PAGE_SHIFT; 2526 unsigned long charged = 0; 2527 unsigned long end = addr + len; 2528 unsigned long merge_start = addr, merge_end = end; 2529 pgoff_t vm_pgoff; 2530 int error; 2531 MA_STATE(mas, &mm->mm_mt, addr, end - 1); 2532 2533 /* Check against address space limit. */ 2534 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2535 unsigned long nr_pages; 2536 2537 /* 2538 * MAP_FIXED may remove pages of mappings that intersects with 2539 * requested mapping. Account for the pages it would unmap. 2540 */ 2541 nr_pages = count_vma_pages_range(mm, addr, end); 2542 2543 if (!may_expand_vm(mm, vm_flags, 2544 (len >> PAGE_SHIFT) - nr_pages)) 2545 return -ENOMEM; 2546 } 2547 2548 /* Unmap any existing mapping in the area */ 2549 if (do_mas_munmap(&mas, mm, addr, len, uf, false)) 2550 return -ENOMEM; 2551 2552 /* 2553 * Private writable mapping: check memory availability 2554 */ 2555 if (accountable_mapping(file, vm_flags)) { 2556 charged = len >> PAGE_SHIFT; 2557 if (security_vm_enough_memory_mm(mm, charged)) 2558 return -ENOMEM; 2559 vm_flags |= VM_ACCOUNT; 2560 } 2561 2562 next = mas_next(&mas, ULONG_MAX); 2563 prev = mas_prev(&mas, 0); 2564 if (vm_flags & VM_SPECIAL) 2565 goto cannot_expand; 2566 2567 /* Attempt to expand an old mapping */ 2568 /* Check next */ 2569 if (next && next->vm_start == end && !vma_policy(next) && 2570 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2571 NULL_VM_UFFD_CTX, NULL)) { 2572 merge_end = next->vm_end; 2573 vma = next; 2574 vm_pgoff = next->vm_pgoff - pglen; 2575 } 2576 2577 /* Check prev */ 2578 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2579 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2580 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2581 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2582 NULL_VM_UFFD_CTX, NULL))) { 2583 merge_start = prev->vm_start; 2584 vma = prev; 2585 vm_pgoff = prev->vm_pgoff; 2586 } 2587 2588 2589 /* Actually expand, if possible */ 2590 if (vma && 2591 !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) { 2592 khugepaged_enter_vma(vma, vm_flags); 2593 goto expanded; 2594 } 2595 2596 mas.index = addr; 2597 mas.last = end - 1; 2598 cannot_expand: 2599 /* 2600 * Determine the object being mapped and call the appropriate 2601 * specific mapper. the address has already been validated, but 2602 * not unmapped, but the maps are removed from the list. 2603 */ 2604 vma = vm_area_alloc(mm); 2605 if (!vma) { 2606 error = -ENOMEM; 2607 goto unacct_error; 2608 } 2609 2610 vma->vm_start = addr; 2611 vma->vm_end = end; 2612 vma->vm_flags = vm_flags; 2613 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2614 vma->vm_pgoff = pgoff; 2615 2616 if (file) { 2617 if (vm_flags & VM_SHARED) { 2618 error = mapping_map_writable(file->f_mapping); 2619 if (error) 2620 goto free_vma; 2621 } 2622 2623 vma->vm_file = get_file(file); 2624 error = call_mmap(file, vma); 2625 if (error) 2626 goto unmap_and_free_vma; 2627 2628 /* Can addr have changed?? 2629 * 2630 * Answer: Yes, several device drivers can do it in their 2631 * f_op->mmap method. -DaveM 2632 */ 2633 WARN_ON_ONCE(addr != vma->vm_start); 2634 2635 addr = vma->vm_start; 2636 mas_reset(&mas); 2637 2638 /* 2639 * If vm_flags changed after call_mmap(), we should try merge 2640 * vma again as we may succeed this time. 2641 */ 2642 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2643 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 2644 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 2645 if (merge) { 2646 /* 2647 * ->mmap() can change vma->vm_file and fput 2648 * the original file. So fput the vma->vm_file 2649 * here or we would add an extra fput for file 2650 * and cause general protection fault 2651 * ultimately. 2652 */ 2653 fput(vma->vm_file); 2654 vm_area_free(vma); 2655 vma = merge; 2656 /* Update vm_flags to pick up the change. */ 2657 addr = vma->vm_start; 2658 vm_flags = vma->vm_flags; 2659 goto unmap_writable; 2660 } 2661 } 2662 2663 vm_flags = vma->vm_flags; 2664 } else if (vm_flags & VM_SHARED) { 2665 error = shmem_zero_setup(vma); 2666 if (error) 2667 goto free_vma; 2668 } else { 2669 vma_set_anonymous(vma); 2670 } 2671 2672 /* Allow architectures to sanity-check the vm_flags */ 2673 if (!arch_validate_flags(vma->vm_flags)) { 2674 error = -EINVAL; 2675 if (file) 2676 goto close_and_free_vma; 2677 else 2678 goto free_vma; 2679 } 2680 2681 if (mas_preallocate(&mas, vma, GFP_KERNEL)) { 2682 error = -ENOMEM; 2683 if (file) 2684 goto unmap_and_free_vma; 2685 else 2686 goto free_vma; 2687 } 2688 2689 if (vma->vm_file) 2690 i_mmap_lock_write(vma->vm_file->f_mapping); 2691 2692 vma_mas_store(vma, &mas); 2693 mm->map_count++; 2694 if (vma->vm_file) { 2695 if (vma->vm_flags & VM_SHARED) 2696 mapping_allow_writable(vma->vm_file->f_mapping); 2697 2698 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2699 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2700 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2701 i_mmap_unlock_write(vma->vm_file->f_mapping); 2702 } 2703 2704 /* 2705 * vma_merge() calls khugepaged_enter_vma() either, the below 2706 * call covers the non-merge case. 2707 */ 2708 khugepaged_enter_vma(vma, vma->vm_flags); 2709 2710 /* Once vma denies write, undo our temporary denial count */ 2711 unmap_writable: 2712 if (file && vm_flags & VM_SHARED) 2713 mapping_unmap_writable(file->f_mapping); 2714 file = vma->vm_file; 2715 expanded: 2716 perf_event_mmap(vma); 2717 2718 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2719 if (vm_flags & VM_LOCKED) { 2720 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2721 is_vm_hugetlb_page(vma) || 2722 vma == get_gate_vma(current->mm)) 2723 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 2724 else 2725 mm->locked_vm += (len >> PAGE_SHIFT); 2726 } 2727 2728 if (file) 2729 uprobe_mmap(vma); 2730 2731 /* 2732 * New (or expanded) vma always get soft dirty status. 2733 * Otherwise user-space soft-dirty page tracker won't 2734 * be able to distinguish situation when vma area unmapped, 2735 * then new mapped in-place (which must be aimed as 2736 * a completely new data area). 2737 */ 2738 vma->vm_flags |= VM_SOFTDIRTY; 2739 2740 vma_set_page_prot(vma); 2741 2742 validate_mm(mm); 2743 return addr; 2744 2745 close_and_free_vma: 2746 if (vma->vm_ops && vma->vm_ops->close) 2747 vma->vm_ops->close(vma); 2748 unmap_and_free_vma: 2749 fput(vma->vm_file); 2750 vma->vm_file = NULL; 2751 2752 /* Undo any partial mapping done by a device driver. */ 2753 unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end); 2754 if (vm_flags & VM_SHARED) 2755 mapping_unmap_writable(file->f_mapping); 2756 free_vma: 2757 vm_area_free(vma); 2758 unacct_error: 2759 if (charged) 2760 vm_unacct_memory(charged); 2761 validate_mm(mm); 2762 return error; 2763 } 2764 2765 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2766 { 2767 int ret; 2768 struct mm_struct *mm = current->mm; 2769 LIST_HEAD(uf); 2770 MA_STATE(mas, &mm->mm_mt, start, start); 2771 2772 if (mmap_write_lock_killable(mm)) 2773 return -EINTR; 2774 2775 ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade); 2776 /* 2777 * Returning 1 indicates mmap_lock is downgraded. 2778 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2779 * it to 0 before return. 2780 */ 2781 if (ret == 1) { 2782 mmap_read_unlock(mm); 2783 ret = 0; 2784 } else 2785 mmap_write_unlock(mm); 2786 2787 userfaultfd_unmap_complete(mm, &uf); 2788 return ret; 2789 } 2790 2791 int vm_munmap(unsigned long start, size_t len) 2792 { 2793 return __vm_munmap(start, len, false); 2794 } 2795 EXPORT_SYMBOL(vm_munmap); 2796 2797 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2798 { 2799 addr = untagged_addr(addr); 2800 return __vm_munmap(addr, len, true); 2801 } 2802 2803 2804 /* 2805 * Emulation of deprecated remap_file_pages() syscall. 2806 */ 2807 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2808 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2809 { 2810 2811 struct mm_struct *mm = current->mm; 2812 struct vm_area_struct *vma; 2813 unsigned long populate = 0; 2814 unsigned long ret = -EINVAL; 2815 struct file *file; 2816 2817 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2818 current->comm, current->pid); 2819 2820 if (prot) 2821 return ret; 2822 start = start & PAGE_MASK; 2823 size = size & PAGE_MASK; 2824 2825 if (start + size <= start) 2826 return ret; 2827 2828 /* Does pgoff wrap? */ 2829 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2830 return ret; 2831 2832 if (mmap_write_lock_killable(mm)) 2833 return -EINTR; 2834 2835 vma = vma_lookup(mm, start); 2836 2837 if (!vma || !(vma->vm_flags & VM_SHARED)) 2838 goto out; 2839 2840 if (start + size > vma->vm_end) { 2841 VMA_ITERATOR(vmi, mm, vma->vm_end); 2842 struct vm_area_struct *next, *prev = vma; 2843 2844 for_each_vma_range(vmi, next, start + size) { 2845 /* hole between vmas ? */ 2846 if (next->vm_start != prev->vm_end) 2847 goto out; 2848 2849 if (next->vm_file != vma->vm_file) 2850 goto out; 2851 2852 if (next->vm_flags != vma->vm_flags) 2853 goto out; 2854 2855 prev = next; 2856 } 2857 2858 if (!next) 2859 goto out; 2860 } 2861 2862 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2863 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2864 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2865 2866 flags &= MAP_NONBLOCK; 2867 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2868 if (vma->vm_flags & VM_LOCKED) 2869 flags |= MAP_LOCKED; 2870 2871 file = get_file(vma->vm_file); 2872 ret = do_mmap(vma->vm_file, start, size, 2873 prot, flags, pgoff, &populate, NULL); 2874 fput(file); 2875 out: 2876 mmap_write_unlock(mm); 2877 if (populate) 2878 mm_populate(ret, populate); 2879 if (!IS_ERR_VALUE(ret)) 2880 ret = 0; 2881 return ret; 2882 } 2883 2884 /* 2885 * brk_munmap() - Unmap a parital vma. 2886 * @mas: The maple tree state. 2887 * @vma: The vma to be modified 2888 * @newbrk: the start of the address to unmap 2889 * @oldbrk: The end of the address to unmap 2890 * @uf: The userfaultfd list_head 2891 * 2892 * Returns: 1 on success. 2893 * unmaps a partial VMA mapping. Does not handle alignment, downgrades lock if 2894 * possible. 2895 */ 2896 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma, 2897 unsigned long newbrk, unsigned long oldbrk, 2898 struct list_head *uf) 2899 { 2900 struct mm_struct *mm = vma->vm_mm; 2901 int ret; 2902 2903 arch_unmap(mm, newbrk, oldbrk); 2904 ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true); 2905 validate_mm_mt(mm); 2906 return ret; 2907 } 2908 2909 /* 2910 * do_brk_flags() - Increase the brk vma if the flags match. 2911 * @mas: The maple tree state. 2912 * @addr: The start address 2913 * @len: The length of the increase 2914 * @vma: The vma, 2915 * @flags: The VMA Flags 2916 * 2917 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2918 * do not match then create a new anonymous VMA. Eventually we may be able to 2919 * do some brk-specific accounting here. 2920 */ 2921 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma, 2922 unsigned long addr, unsigned long len, unsigned long flags) 2923 { 2924 struct mm_struct *mm = current->mm; 2925 2926 validate_mm_mt(mm); 2927 /* 2928 * Check against address space limits by the changed size 2929 * Note: This happens *after* clearing old mappings in some code paths. 2930 */ 2931 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2932 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2933 return -ENOMEM; 2934 2935 if (mm->map_count > sysctl_max_map_count) 2936 return -ENOMEM; 2937 2938 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2939 return -ENOMEM; 2940 2941 /* 2942 * Expand the existing vma if possible; Note that singular lists do not 2943 * occur after forking, so the expand will only happen on new VMAs. 2944 */ 2945 if (vma && 2946 (!vma->anon_vma || list_is_singular(&vma->anon_vma_chain)) && 2947 ((vma->vm_flags & ~VM_SOFTDIRTY) == flags)) { 2948 mas_set_range(mas, vma->vm_start, addr + len - 1); 2949 if (mas_preallocate(mas, vma, GFP_KERNEL)) 2950 return -ENOMEM; 2951 2952 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 2953 if (vma->anon_vma) { 2954 anon_vma_lock_write(vma->anon_vma); 2955 anon_vma_interval_tree_pre_update_vma(vma); 2956 } 2957 vma->vm_end = addr + len; 2958 vma->vm_flags |= VM_SOFTDIRTY; 2959 mas_store_prealloc(mas, vma); 2960 2961 if (vma->anon_vma) { 2962 anon_vma_interval_tree_post_update_vma(vma); 2963 anon_vma_unlock_write(vma->anon_vma); 2964 } 2965 khugepaged_enter_vma(vma, flags); 2966 goto out; 2967 } 2968 2969 /* create a vma struct for an anonymous mapping */ 2970 vma = vm_area_alloc(mm); 2971 if (!vma) 2972 goto vma_alloc_fail; 2973 2974 vma_set_anonymous(vma); 2975 vma->vm_start = addr; 2976 vma->vm_end = addr + len; 2977 vma->vm_pgoff = addr >> PAGE_SHIFT; 2978 vma->vm_flags = flags; 2979 vma->vm_page_prot = vm_get_page_prot(flags); 2980 mas_set_range(mas, vma->vm_start, addr + len - 1); 2981 if (mas_store_gfp(mas, vma, GFP_KERNEL)) 2982 goto mas_store_fail; 2983 2984 mm->map_count++; 2985 out: 2986 perf_event_mmap(vma); 2987 mm->total_vm += len >> PAGE_SHIFT; 2988 mm->data_vm += len >> PAGE_SHIFT; 2989 if (flags & VM_LOCKED) 2990 mm->locked_vm += (len >> PAGE_SHIFT); 2991 vma->vm_flags |= VM_SOFTDIRTY; 2992 validate_mm(mm); 2993 return 0; 2994 2995 mas_store_fail: 2996 vm_area_free(vma); 2997 vma_alloc_fail: 2998 vm_unacct_memory(len >> PAGE_SHIFT); 2999 return -ENOMEM; 3000 } 3001 3002 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3003 { 3004 struct mm_struct *mm = current->mm; 3005 struct vm_area_struct *vma = NULL; 3006 unsigned long len; 3007 int ret; 3008 bool populate; 3009 LIST_HEAD(uf); 3010 MA_STATE(mas, &mm->mm_mt, addr, addr); 3011 3012 len = PAGE_ALIGN(request); 3013 if (len < request) 3014 return -ENOMEM; 3015 if (!len) 3016 return 0; 3017 3018 if (mmap_write_lock_killable(mm)) 3019 return -EINTR; 3020 3021 /* Until we need other flags, refuse anything except VM_EXEC. */ 3022 if ((flags & (~VM_EXEC)) != 0) 3023 return -EINVAL; 3024 3025 ret = check_brk_limits(addr, len); 3026 if (ret) 3027 goto limits_failed; 3028 3029 ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0); 3030 if (ret) 3031 goto munmap_failed; 3032 3033 vma = mas_prev(&mas, 0); 3034 if (!vma || vma->vm_end != addr || vma_policy(vma) || 3035 !can_vma_merge_after(vma, flags, NULL, NULL, 3036 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) 3037 vma = NULL; 3038 3039 ret = do_brk_flags(&mas, vma, addr, len, flags); 3040 populate = ((mm->def_flags & VM_LOCKED) != 0); 3041 mmap_write_unlock(mm); 3042 userfaultfd_unmap_complete(mm, &uf); 3043 if (populate && !ret) 3044 mm_populate(addr, len); 3045 return ret; 3046 3047 munmap_failed: 3048 limits_failed: 3049 mmap_write_unlock(mm); 3050 return ret; 3051 } 3052 EXPORT_SYMBOL(vm_brk_flags); 3053 3054 int vm_brk(unsigned long addr, unsigned long len) 3055 { 3056 return vm_brk_flags(addr, len, 0); 3057 } 3058 EXPORT_SYMBOL(vm_brk); 3059 3060 /* Release all mmaps. */ 3061 void exit_mmap(struct mm_struct *mm) 3062 { 3063 struct mmu_gather tlb; 3064 struct vm_area_struct *vma; 3065 unsigned long nr_accounted = 0; 3066 MA_STATE(mas, &mm->mm_mt, 0, 0); 3067 int count = 0; 3068 3069 /* mm's last user has gone, and its about to be pulled down */ 3070 mmu_notifier_release(mm); 3071 3072 mmap_read_lock(mm); 3073 arch_exit_mmap(mm); 3074 3075 vma = mas_find(&mas, ULONG_MAX); 3076 if (!vma) { 3077 /* Can happen if dup_mmap() received an OOM */ 3078 mmap_read_unlock(mm); 3079 return; 3080 } 3081 3082 lru_add_drain(); 3083 flush_cache_mm(mm); 3084 tlb_gather_mmu_fullmm(&tlb, mm); 3085 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3086 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3087 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX); 3088 mmap_read_unlock(mm); 3089 3090 /* 3091 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3092 * because the memory has been already freed. 3093 */ 3094 set_bit(MMF_OOM_SKIP, &mm->flags); 3095 mmap_write_lock(mm); 3096 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3097 USER_PGTABLES_CEILING); 3098 tlb_finish_mmu(&tlb); 3099 3100 /* 3101 * Walk the list again, actually closing and freeing it, with preemption 3102 * enabled, without holding any MM locks besides the unreachable 3103 * mmap_write_lock. 3104 */ 3105 do { 3106 if (vma->vm_flags & VM_ACCOUNT) 3107 nr_accounted += vma_pages(vma); 3108 remove_vma(vma); 3109 count++; 3110 cond_resched(); 3111 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3112 3113 BUG_ON(count != mm->map_count); 3114 3115 trace_exit_mmap(mm); 3116 __mt_destroy(&mm->mm_mt); 3117 mmap_write_unlock(mm); 3118 vm_unacct_memory(nr_accounted); 3119 } 3120 3121 /* Insert vm structure into process list sorted by address 3122 * and into the inode's i_mmap tree. If vm_file is non-NULL 3123 * then i_mmap_rwsem is taken here. 3124 */ 3125 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3126 { 3127 unsigned long charged = vma_pages(vma); 3128 3129 3130 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3131 return -ENOMEM; 3132 3133 if ((vma->vm_flags & VM_ACCOUNT) && 3134 security_vm_enough_memory_mm(mm, charged)) 3135 return -ENOMEM; 3136 3137 /* 3138 * The vm_pgoff of a purely anonymous vma should be irrelevant 3139 * until its first write fault, when page's anon_vma and index 3140 * are set. But now set the vm_pgoff it will almost certainly 3141 * end up with (unless mremap moves it elsewhere before that 3142 * first wfault), so /proc/pid/maps tells a consistent story. 3143 * 3144 * By setting it to reflect the virtual start address of the 3145 * vma, merges and splits can happen in a seamless way, just 3146 * using the existing file pgoff checks and manipulations. 3147 * Similarly in do_mmap and in do_brk_flags. 3148 */ 3149 if (vma_is_anonymous(vma)) { 3150 BUG_ON(vma->anon_vma); 3151 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3152 } 3153 3154 if (vma_link(mm, vma)) { 3155 vm_unacct_memory(charged); 3156 return -ENOMEM; 3157 } 3158 3159 return 0; 3160 } 3161 3162 /* 3163 * Copy the vma structure to a new location in the same mm, 3164 * prior to moving page table entries, to effect an mremap move. 3165 */ 3166 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3167 unsigned long addr, unsigned long len, pgoff_t pgoff, 3168 bool *need_rmap_locks) 3169 { 3170 struct vm_area_struct *vma = *vmap; 3171 unsigned long vma_start = vma->vm_start; 3172 struct mm_struct *mm = vma->vm_mm; 3173 struct vm_area_struct *new_vma, *prev; 3174 bool faulted_in_anon_vma = true; 3175 3176 validate_mm_mt(mm); 3177 /* 3178 * If anonymous vma has not yet been faulted, update new pgoff 3179 * to match new location, to increase its chance of merging. 3180 */ 3181 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3182 pgoff = addr >> PAGE_SHIFT; 3183 faulted_in_anon_vma = false; 3184 } 3185 3186 new_vma = find_vma_prev(mm, addr, &prev); 3187 if (new_vma && new_vma->vm_start < addr + len) 3188 return NULL; /* should never get here */ 3189 3190 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3191 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3192 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3193 if (new_vma) { 3194 /* 3195 * Source vma may have been merged into new_vma 3196 */ 3197 if (unlikely(vma_start >= new_vma->vm_start && 3198 vma_start < new_vma->vm_end)) { 3199 /* 3200 * The only way we can get a vma_merge with 3201 * self during an mremap is if the vma hasn't 3202 * been faulted in yet and we were allowed to 3203 * reset the dst vma->vm_pgoff to the 3204 * destination address of the mremap to allow 3205 * the merge to happen. mremap must change the 3206 * vm_pgoff linearity between src and dst vmas 3207 * (in turn preventing a vma_merge) to be 3208 * safe. It is only safe to keep the vm_pgoff 3209 * linear if there are no pages mapped yet. 3210 */ 3211 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3212 *vmap = vma = new_vma; 3213 } 3214 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3215 } else { 3216 new_vma = vm_area_dup(vma); 3217 if (!new_vma) 3218 goto out; 3219 new_vma->vm_start = addr; 3220 new_vma->vm_end = addr + len; 3221 new_vma->vm_pgoff = pgoff; 3222 if (vma_dup_policy(vma, new_vma)) 3223 goto out_free_vma; 3224 if (anon_vma_clone(new_vma, vma)) 3225 goto out_free_mempol; 3226 if (new_vma->vm_file) 3227 get_file(new_vma->vm_file); 3228 if (new_vma->vm_ops && new_vma->vm_ops->open) 3229 new_vma->vm_ops->open(new_vma); 3230 if (vma_link(mm, new_vma)) 3231 goto out_vma_link; 3232 *need_rmap_locks = false; 3233 } 3234 validate_mm_mt(mm); 3235 return new_vma; 3236 3237 out_vma_link: 3238 if (new_vma->vm_ops && new_vma->vm_ops->close) 3239 new_vma->vm_ops->close(new_vma); 3240 3241 if (new_vma->vm_file) 3242 fput(new_vma->vm_file); 3243 3244 unlink_anon_vmas(new_vma); 3245 out_free_mempol: 3246 mpol_put(vma_policy(new_vma)); 3247 out_free_vma: 3248 vm_area_free(new_vma); 3249 out: 3250 validate_mm_mt(mm); 3251 return NULL; 3252 } 3253 3254 /* 3255 * Return true if the calling process may expand its vm space by the passed 3256 * number of pages 3257 */ 3258 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3259 { 3260 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3261 return false; 3262 3263 if (is_data_mapping(flags) && 3264 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3265 /* Workaround for Valgrind */ 3266 if (rlimit(RLIMIT_DATA) == 0 && 3267 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3268 return true; 3269 3270 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3271 current->comm, current->pid, 3272 (mm->data_vm + npages) << PAGE_SHIFT, 3273 rlimit(RLIMIT_DATA), 3274 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3275 3276 if (!ignore_rlimit_data) 3277 return false; 3278 } 3279 3280 return true; 3281 } 3282 3283 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3284 { 3285 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3286 3287 if (is_exec_mapping(flags)) 3288 mm->exec_vm += npages; 3289 else if (is_stack_mapping(flags)) 3290 mm->stack_vm += npages; 3291 else if (is_data_mapping(flags)) 3292 mm->data_vm += npages; 3293 } 3294 3295 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3296 3297 /* 3298 * Having a close hook prevents vma merging regardless of flags. 3299 */ 3300 static void special_mapping_close(struct vm_area_struct *vma) 3301 { 3302 } 3303 3304 static const char *special_mapping_name(struct vm_area_struct *vma) 3305 { 3306 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3307 } 3308 3309 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3310 { 3311 struct vm_special_mapping *sm = new_vma->vm_private_data; 3312 3313 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3314 return -EFAULT; 3315 3316 if (sm->mremap) 3317 return sm->mremap(sm, new_vma); 3318 3319 return 0; 3320 } 3321 3322 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3323 { 3324 /* 3325 * Forbid splitting special mappings - kernel has expectations over 3326 * the number of pages in mapping. Together with VM_DONTEXPAND 3327 * the size of vma should stay the same over the special mapping's 3328 * lifetime. 3329 */ 3330 return -EINVAL; 3331 } 3332 3333 static const struct vm_operations_struct special_mapping_vmops = { 3334 .close = special_mapping_close, 3335 .fault = special_mapping_fault, 3336 .mremap = special_mapping_mremap, 3337 .name = special_mapping_name, 3338 /* vDSO code relies that VVAR can't be accessed remotely */ 3339 .access = NULL, 3340 .may_split = special_mapping_split, 3341 }; 3342 3343 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3344 .close = special_mapping_close, 3345 .fault = special_mapping_fault, 3346 }; 3347 3348 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3349 { 3350 struct vm_area_struct *vma = vmf->vma; 3351 pgoff_t pgoff; 3352 struct page **pages; 3353 3354 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3355 pages = vma->vm_private_data; 3356 } else { 3357 struct vm_special_mapping *sm = vma->vm_private_data; 3358 3359 if (sm->fault) 3360 return sm->fault(sm, vmf->vma, vmf); 3361 3362 pages = sm->pages; 3363 } 3364 3365 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3366 pgoff--; 3367 3368 if (*pages) { 3369 struct page *page = *pages; 3370 get_page(page); 3371 vmf->page = page; 3372 return 0; 3373 } 3374 3375 return VM_FAULT_SIGBUS; 3376 } 3377 3378 static struct vm_area_struct *__install_special_mapping( 3379 struct mm_struct *mm, 3380 unsigned long addr, unsigned long len, 3381 unsigned long vm_flags, void *priv, 3382 const struct vm_operations_struct *ops) 3383 { 3384 int ret; 3385 struct vm_area_struct *vma; 3386 3387 validate_mm_mt(mm); 3388 vma = vm_area_alloc(mm); 3389 if (unlikely(vma == NULL)) 3390 return ERR_PTR(-ENOMEM); 3391 3392 vma->vm_start = addr; 3393 vma->vm_end = addr + len; 3394 3395 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3396 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 3397 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3398 3399 vma->vm_ops = ops; 3400 vma->vm_private_data = priv; 3401 3402 ret = insert_vm_struct(mm, vma); 3403 if (ret) 3404 goto out; 3405 3406 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3407 3408 perf_event_mmap(vma); 3409 3410 validate_mm_mt(mm); 3411 return vma; 3412 3413 out: 3414 vm_area_free(vma); 3415 validate_mm_mt(mm); 3416 return ERR_PTR(ret); 3417 } 3418 3419 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3420 const struct vm_special_mapping *sm) 3421 { 3422 return vma->vm_private_data == sm && 3423 (vma->vm_ops == &special_mapping_vmops || 3424 vma->vm_ops == &legacy_special_mapping_vmops); 3425 } 3426 3427 /* 3428 * Called with mm->mmap_lock held for writing. 3429 * Insert a new vma covering the given region, with the given flags. 3430 * Its pages are supplied by the given array of struct page *. 3431 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3432 * The region past the last page supplied will always produce SIGBUS. 3433 * The array pointer and the pages it points to are assumed to stay alive 3434 * for as long as this mapping might exist. 3435 */ 3436 struct vm_area_struct *_install_special_mapping( 3437 struct mm_struct *mm, 3438 unsigned long addr, unsigned long len, 3439 unsigned long vm_flags, const struct vm_special_mapping *spec) 3440 { 3441 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3442 &special_mapping_vmops); 3443 } 3444 3445 int install_special_mapping(struct mm_struct *mm, 3446 unsigned long addr, unsigned long len, 3447 unsigned long vm_flags, struct page **pages) 3448 { 3449 struct vm_area_struct *vma = __install_special_mapping( 3450 mm, addr, len, vm_flags, (void *)pages, 3451 &legacy_special_mapping_vmops); 3452 3453 return PTR_ERR_OR_ZERO(vma); 3454 } 3455 3456 static DEFINE_MUTEX(mm_all_locks_mutex); 3457 3458 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3459 { 3460 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3461 /* 3462 * The LSB of head.next can't change from under us 3463 * because we hold the mm_all_locks_mutex. 3464 */ 3465 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3466 /* 3467 * We can safely modify head.next after taking the 3468 * anon_vma->root->rwsem. If some other vma in this mm shares 3469 * the same anon_vma we won't take it again. 3470 * 3471 * No need of atomic instructions here, head.next 3472 * can't change from under us thanks to the 3473 * anon_vma->root->rwsem. 3474 */ 3475 if (__test_and_set_bit(0, (unsigned long *) 3476 &anon_vma->root->rb_root.rb_root.rb_node)) 3477 BUG(); 3478 } 3479 } 3480 3481 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3482 { 3483 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3484 /* 3485 * AS_MM_ALL_LOCKS can't change from under us because 3486 * we hold the mm_all_locks_mutex. 3487 * 3488 * Operations on ->flags have to be atomic because 3489 * even if AS_MM_ALL_LOCKS is stable thanks to the 3490 * mm_all_locks_mutex, there may be other cpus 3491 * changing other bitflags in parallel to us. 3492 */ 3493 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3494 BUG(); 3495 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3496 } 3497 } 3498 3499 /* 3500 * This operation locks against the VM for all pte/vma/mm related 3501 * operations that could ever happen on a certain mm. This includes 3502 * vmtruncate, try_to_unmap, and all page faults. 3503 * 3504 * The caller must take the mmap_lock in write mode before calling 3505 * mm_take_all_locks(). The caller isn't allowed to release the 3506 * mmap_lock until mm_drop_all_locks() returns. 3507 * 3508 * mmap_lock in write mode is required in order to block all operations 3509 * that could modify pagetables and free pages without need of 3510 * altering the vma layout. It's also needed in write mode to avoid new 3511 * anon_vmas to be associated with existing vmas. 3512 * 3513 * A single task can't take more than one mm_take_all_locks() in a row 3514 * or it would deadlock. 3515 * 3516 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3517 * mapping->flags avoid to take the same lock twice, if more than one 3518 * vma in this mm is backed by the same anon_vma or address_space. 3519 * 3520 * We take locks in following order, accordingly to comment at beginning 3521 * of mm/rmap.c: 3522 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3523 * hugetlb mapping); 3524 * - all i_mmap_rwsem locks; 3525 * - all anon_vma->rwseml 3526 * 3527 * We can take all locks within these types randomly because the VM code 3528 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3529 * mm_all_locks_mutex. 3530 * 3531 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3532 * that may have to take thousand of locks. 3533 * 3534 * mm_take_all_locks() can fail if it's interrupted by signals. 3535 */ 3536 int mm_take_all_locks(struct mm_struct *mm) 3537 { 3538 struct vm_area_struct *vma; 3539 struct anon_vma_chain *avc; 3540 MA_STATE(mas, &mm->mm_mt, 0, 0); 3541 3542 mmap_assert_write_locked(mm); 3543 3544 mutex_lock(&mm_all_locks_mutex); 3545 3546 mas_for_each(&mas, vma, ULONG_MAX) { 3547 if (signal_pending(current)) 3548 goto out_unlock; 3549 if (vma->vm_file && vma->vm_file->f_mapping && 3550 is_vm_hugetlb_page(vma)) 3551 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3552 } 3553 3554 mas_set(&mas, 0); 3555 mas_for_each(&mas, vma, ULONG_MAX) { 3556 if (signal_pending(current)) 3557 goto out_unlock; 3558 if (vma->vm_file && vma->vm_file->f_mapping && 3559 !is_vm_hugetlb_page(vma)) 3560 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3561 } 3562 3563 mas_set(&mas, 0); 3564 mas_for_each(&mas, vma, ULONG_MAX) { 3565 if (signal_pending(current)) 3566 goto out_unlock; 3567 if (vma->anon_vma) 3568 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3569 vm_lock_anon_vma(mm, avc->anon_vma); 3570 } 3571 3572 return 0; 3573 3574 out_unlock: 3575 mm_drop_all_locks(mm); 3576 return -EINTR; 3577 } 3578 3579 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3580 { 3581 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3582 /* 3583 * The LSB of head.next can't change to 0 from under 3584 * us because we hold the mm_all_locks_mutex. 3585 * 3586 * We must however clear the bitflag before unlocking 3587 * the vma so the users using the anon_vma->rb_root will 3588 * never see our bitflag. 3589 * 3590 * No need of atomic instructions here, head.next 3591 * can't change from under us until we release the 3592 * anon_vma->root->rwsem. 3593 */ 3594 if (!__test_and_clear_bit(0, (unsigned long *) 3595 &anon_vma->root->rb_root.rb_root.rb_node)) 3596 BUG(); 3597 anon_vma_unlock_write(anon_vma); 3598 } 3599 } 3600 3601 static void vm_unlock_mapping(struct address_space *mapping) 3602 { 3603 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3604 /* 3605 * AS_MM_ALL_LOCKS can't change to 0 from under us 3606 * because we hold the mm_all_locks_mutex. 3607 */ 3608 i_mmap_unlock_write(mapping); 3609 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3610 &mapping->flags)) 3611 BUG(); 3612 } 3613 } 3614 3615 /* 3616 * The mmap_lock cannot be released by the caller until 3617 * mm_drop_all_locks() returns. 3618 */ 3619 void mm_drop_all_locks(struct mm_struct *mm) 3620 { 3621 struct vm_area_struct *vma; 3622 struct anon_vma_chain *avc; 3623 MA_STATE(mas, &mm->mm_mt, 0, 0); 3624 3625 mmap_assert_write_locked(mm); 3626 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3627 3628 mas_for_each(&mas, vma, ULONG_MAX) { 3629 if (vma->anon_vma) 3630 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3631 vm_unlock_anon_vma(avc->anon_vma); 3632 if (vma->vm_file && vma->vm_file->f_mapping) 3633 vm_unlock_mapping(vma->vm_file->f_mapping); 3634 } 3635 3636 mutex_unlock(&mm_all_locks_mutex); 3637 } 3638 3639 /* 3640 * initialise the percpu counter for VM 3641 */ 3642 void __init mmap_init(void) 3643 { 3644 int ret; 3645 3646 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3647 VM_BUG_ON(ret); 3648 } 3649 3650 /* 3651 * Initialise sysctl_user_reserve_kbytes. 3652 * 3653 * This is intended to prevent a user from starting a single memory hogging 3654 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3655 * mode. 3656 * 3657 * The default value is min(3% of free memory, 128MB) 3658 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3659 */ 3660 static int init_user_reserve(void) 3661 { 3662 unsigned long free_kbytes; 3663 3664 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3665 3666 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3667 return 0; 3668 } 3669 subsys_initcall(init_user_reserve); 3670 3671 /* 3672 * Initialise sysctl_admin_reserve_kbytes. 3673 * 3674 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3675 * to log in and kill a memory hogging process. 3676 * 3677 * Systems with more than 256MB will reserve 8MB, enough to recover 3678 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3679 * only reserve 3% of free pages by default. 3680 */ 3681 static int init_admin_reserve(void) 3682 { 3683 unsigned long free_kbytes; 3684 3685 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3686 3687 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3688 return 0; 3689 } 3690 subsys_initcall(init_admin_reserve); 3691 3692 /* 3693 * Reinititalise user and admin reserves if memory is added or removed. 3694 * 3695 * The default user reserve max is 128MB, and the default max for the 3696 * admin reserve is 8MB. These are usually, but not always, enough to 3697 * enable recovery from a memory hogging process using login/sshd, a shell, 3698 * and tools like top. It may make sense to increase or even disable the 3699 * reserve depending on the existence of swap or variations in the recovery 3700 * tools. So, the admin may have changed them. 3701 * 3702 * If memory is added and the reserves have been eliminated or increased above 3703 * the default max, then we'll trust the admin. 3704 * 3705 * If memory is removed and there isn't enough free memory, then we 3706 * need to reset the reserves. 3707 * 3708 * Otherwise keep the reserve set by the admin. 3709 */ 3710 static int reserve_mem_notifier(struct notifier_block *nb, 3711 unsigned long action, void *data) 3712 { 3713 unsigned long tmp, free_kbytes; 3714 3715 switch (action) { 3716 case MEM_ONLINE: 3717 /* Default max is 128MB. Leave alone if modified by operator. */ 3718 tmp = sysctl_user_reserve_kbytes; 3719 if (0 < tmp && tmp < (1UL << 17)) 3720 init_user_reserve(); 3721 3722 /* Default max is 8MB. Leave alone if modified by operator. */ 3723 tmp = sysctl_admin_reserve_kbytes; 3724 if (0 < tmp && tmp < (1UL << 13)) 3725 init_admin_reserve(); 3726 3727 break; 3728 case MEM_OFFLINE: 3729 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3730 3731 if (sysctl_user_reserve_kbytes > free_kbytes) { 3732 init_user_reserve(); 3733 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3734 sysctl_user_reserve_kbytes); 3735 } 3736 3737 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3738 init_admin_reserve(); 3739 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3740 sysctl_admin_reserve_kbytes); 3741 } 3742 break; 3743 default: 3744 break; 3745 } 3746 return NOTIFY_OK; 3747 } 3748 3749 static struct notifier_block reserve_mem_nb = { 3750 .notifier_call = reserve_mem_notifier, 3751 }; 3752 3753 static int __meminit init_reserve_notifier(void) 3754 { 3755 if (register_hotmemory_notifier(&reserve_mem_nb)) 3756 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3757 3758 return 0; 3759 } 3760 subsys_initcall(init_reserve_notifier); 3761