xref: /linux/mm/mmap.c (revision 2e53c4e1c807d91dc7241c2104e69ad9d2c71e48)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #include "internal.h"
57 
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)	(0)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
95  * MAP_PRIVATE:
96  *								r: (no) no
97  *								w: (no) no
98  *								x: (yes) yes
99  */
100 pgprot_t protection_map[16] __ro_after_init = {
101 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 };
104 
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
107 {
108 	return prot;
109 }
110 #endif
111 
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
113 {
114 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
117 
118 	return arch_filter_pgprot(ret);
119 }
120 EXPORT_SYMBOL(vm_get_page_prot);
121 
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
123 {
124 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 }
126 
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
129 {
130 	unsigned long vm_flags = vma->vm_flags;
131 	pgprot_t vm_page_prot;
132 
133 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 	if (vma_wants_writenotify(vma, vm_page_prot)) {
135 		vm_flags &= ~VM_SHARED;
136 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
137 	}
138 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
140 }
141 
142 /*
143  * Requires inode->i_mapping->i_mmap_rwsem
144  */
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 		struct file *file, struct address_space *mapping)
147 {
148 	if (vma->vm_flags & VM_DENYWRITE)
149 		atomic_inc(&file_inode(file)->i_writecount);
150 	if (vma->vm_flags & VM_SHARED)
151 		mapping_unmap_writable(mapping);
152 
153 	flush_dcache_mmap_lock(mapping);
154 	vma_interval_tree_remove(vma, &mapping->i_mmap);
155 	flush_dcache_mmap_unlock(mapping);
156 }
157 
158 /*
159  * Unlink a file-based vm structure from its interval tree, to hide
160  * vma from rmap and vmtruncate before freeing its page tables.
161  */
162 void unlink_file_vma(struct vm_area_struct *vma)
163 {
164 	struct file *file = vma->vm_file;
165 
166 	if (file) {
167 		struct address_space *mapping = file->f_mapping;
168 		i_mmap_lock_write(mapping);
169 		__remove_shared_vm_struct(vma, file, mapping);
170 		i_mmap_unlock_write(mapping);
171 	}
172 }
173 
174 /*
175  * Close a vm structure and free it, returning the next.
176  */
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
178 {
179 	struct vm_area_struct *next = vma->vm_next;
180 
181 	might_sleep();
182 	if (vma->vm_ops && vma->vm_ops->close)
183 		vma->vm_ops->close(vma);
184 	if (vma->vm_file)
185 		fput(vma->vm_file);
186 	mpol_put(vma_policy(vma));
187 	vm_area_free(vma);
188 	return next;
189 }
190 
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 		struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
194 {
195 	unsigned long retval;
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	brk = untagged_addr(brk);
205 
206 	if (down_write_killable(&mm->mmap_sem))
207 		return -EINTR;
208 
209 	origbrk = mm->brk;
210 
211 #ifdef CONFIG_COMPAT_BRK
212 	/*
213 	 * CONFIG_COMPAT_BRK can still be overridden by setting
214 	 * randomize_va_space to 2, which will still cause mm->start_brk
215 	 * to be arbitrarily shifted
216 	 */
217 	if (current->brk_randomized)
218 		min_brk = mm->start_brk;
219 	else
220 		min_brk = mm->end_data;
221 #else
222 	min_brk = mm->start_brk;
223 #endif
224 	if (brk < min_brk)
225 		goto out;
226 
227 	/*
228 	 * Check against rlimit here. If this check is done later after the test
229 	 * of oldbrk with newbrk then it can escape the test and let the data
230 	 * segment grow beyond its set limit the in case where the limit is
231 	 * not page aligned -Ram Gupta
232 	 */
233 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 			      mm->end_data, mm->start_data))
235 		goto out;
236 
237 	newbrk = PAGE_ALIGN(brk);
238 	oldbrk = PAGE_ALIGN(mm->brk);
239 	if (oldbrk == newbrk) {
240 		mm->brk = brk;
241 		goto success;
242 	}
243 
244 	/*
245 	 * Always allow shrinking brk.
246 	 * __do_munmap() may downgrade mmap_sem to read.
247 	 */
248 	if (brk <= mm->brk) {
249 		int ret;
250 
251 		/*
252 		 * mm->brk must to be protected by write mmap_sem so update it
253 		 * before downgrading mmap_sem. When __do_munmap() fails,
254 		 * mm->brk will be restored from origbrk.
255 		 */
256 		mm->brk = brk;
257 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 		if (ret < 0) {
259 			mm->brk = origbrk;
260 			goto out;
261 		} else if (ret == 1) {
262 			downgraded = true;
263 		}
264 		goto success;
265 	}
266 
267 	/* Check against existing mmap mappings. */
268 	next = find_vma(mm, oldbrk);
269 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 		goto out;
271 
272 	/* Ok, looks good - let it rip. */
273 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 		goto out;
275 	mm->brk = brk;
276 
277 success:
278 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 	if (downgraded)
280 		up_read(&mm->mmap_sem);
281 	else
282 		up_write(&mm->mmap_sem);
283 	userfaultfd_unmap_complete(mm, &uf);
284 	if (populate)
285 		mm_populate(oldbrk, newbrk - oldbrk);
286 	return brk;
287 
288 out:
289 	retval = origbrk;
290 	up_write(&mm->mmap_sem);
291 	return retval;
292 }
293 
294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
295 {
296 	unsigned long gap, prev_end;
297 
298 	/*
299 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 	 * allow two stack_guard_gaps between them here, and when choosing
301 	 * an unmapped area; whereas when expanding we only require one.
302 	 * That's a little inconsistent, but keeps the code here simpler.
303 	 */
304 	gap = vm_start_gap(vma);
305 	if (vma->vm_prev) {
306 		prev_end = vm_end_gap(vma->vm_prev);
307 		if (gap > prev_end)
308 			gap -= prev_end;
309 		else
310 			gap = 0;
311 	}
312 	return gap;
313 }
314 
315 #ifdef CONFIG_DEBUG_VM_RB
316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 {
318 	unsigned long max = vma_compute_gap(vma), subtree_gap;
319 	if (vma->vm_rb.rb_left) {
320 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
321 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 		if (subtree_gap > max)
323 			max = subtree_gap;
324 	}
325 	if (vma->vm_rb.rb_right) {
326 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
327 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
328 		if (subtree_gap > max)
329 			max = subtree_gap;
330 	}
331 	return max;
332 }
333 
334 static int browse_rb(struct mm_struct *mm)
335 {
336 	struct rb_root *root = &mm->mm_rb;
337 	int i = 0, j, bug = 0;
338 	struct rb_node *nd, *pn = NULL;
339 	unsigned long prev = 0, pend = 0;
340 
341 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
342 		struct vm_area_struct *vma;
343 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
344 		if (vma->vm_start < prev) {
345 			pr_emerg("vm_start %lx < prev %lx\n",
346 				  vma->vm_start, prev);
347 			bug = 1;
348 		}
349 		if (vma->vm_start < pend) {
350 			pr_emerg("vm_start %lx < pend %lx\n",
351 				  vma->vm_start, pend);
352 			bug = 1;
353 		}
354 		if (vma->vm_start > vma->vm_end) {
355 			pr_emerg("vm_start %lx > vm_end %lx\n",
356 				  vma->vm_start, vma->vm_end);
357 			bug = 1;
358 		}
359 		spin_lock(&mm->page_table_lock);
360 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361 			pr_emerg("free gap %lx, correct %lx\n",
362 			       vma->rb_subtree_gap,
363 			       vma_compute_subtree_gap(vma));
364 			bug = 1;
365 		}
366 		spin_unlock(&mm->page_table_lock);
367 		i++;
368 		pn = nd;
369 		prev = vma->vm_start;
370 		pend = vma->vm_end;
371 	}
372 	j = 0;
373 	for (nd = pn; nd; nd = rb_prev(nd))
374 		j++;
375 	if (i != j) {
376 		pr_emerg("backwards %d, forwards %d\n", j, i);
377 		bug = 1;
378 	}
379 	return bug ? -1 : i;
380 }
381 
382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
383 {
384 	struct rb_node *nd;
385 
386 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 		struct vm_area_struct *vma;
388 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 		VM_BUG_ON_VMA(vma != ignore &&
390 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
391 			vma);
392 	}
393 }
394 
395 static void validate_mm(struct mm_struct *mm)
396 {
397 	int bug = 0;
398 	int i = 0;
399 	unsigned long highest_address = 0;
400 	struct vm_area_struct *vma = mm->mmap;
401 
402 	while (vma) {
403 		struct anon_vma *anon_vma = vma->anon_vma;
404 		struct anon_vma_chain *avc;
405 
406 		if (anon_vma) {
407 			anon_vma_lock_read(anon_vma);
408 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
409 				anon_vma_interval_tree_verify(avc);
410 			anon_vma_unlock_read(anon_vma);
411 		}
412 
413 		highest_address = vm_end_gap(vma);
414 		vma = vma->vm_next;
415 		i++;
416 	}
417 	if (i != mm->map_count) {
418 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
419 		bug = 1;
420 	}
421 	if (highest_address != mm->highest_vm_end) {
422 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 			  mm->highest_vm_end, highest_address);
424 		bug = 1;
425 	}
426 	i = browse_rb(mm);
427 	if (i != mm->map_count) {
428 		if (i != -1)
429 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
430 		bug = 1;
431 	}
432 	VM_BUG_ON_MM(bug, mm);
433 }
434 #else
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
437 #endif
438 
439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
440 			 struct vm_area_struct, vm_rb,
441 			 unsigned long, rb_subtree_gap, vma_compute_gap)
442 
443 /*
444  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445  * vma->vm_prev->vm_end values changed, without modifying the vma's position
446  * in the rbtree.
447  */
448 static void vma_gap_update(struct vm_area_struct *vma)
449 {
450 	/*
451 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 	 * a callback function that does exactly what we want.
453 	 */
454 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
455 }
456 
457 static inline void vma_rb_insert(struct vm_area_struct *vma,
458 				 struct rb_root *root)
459 {
460 	/* All rb_subtree_gap values must be consistent prior to insertion */
461 	validate_mm_rb(root, NULL);
462 
463 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465 
466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
467 {
468 	/*
469 	 * Note rb_erase_augmented is a fairly large inline function,
470 	 * so make sure we instantiate it only once with our desired
471 	 * augmented rbtree callbacks.
472 	 */
473 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
474 }
475 
476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
477 						struct rb_root *root,
478 						struct vm_area_struct *ignore)
479 {
480 	/*
481 	 * All rb_subtree_gap values must be consistent prior to erase,
482 	 * with the possible exception of the "next" vma being erased if
483 	 * next->vm_start was reduced.
484 	 */
485 	validate_mm_rb(root, ignore);
486 
487 	__vma_rb_erase(vma, root);
488 }
489 
490 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
491 					 struct rb_root *root)
492 {
493 	/*
494 	 * All rb_subtree_gap values must be consistent prior to erase,
495 	 * with the possible exception of the vma being erased.
496 	 */
497 	validate_mm_rb(root, vma);
498 
499 	__vma_rb_erase(vma, root);
500 }
501 
502 /*
503  * vma has some anon_vma assigned, and is already inserted on that
504  * anon_vma's interval trees.
505  *
506  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507  * vma must be removed from the anon_vma's interval trees using
508  * anon_vma_interval_tree_pre_update_vma().
509  *
510  * After the update, the vma will be reinserted using
511  * anon_vma_interval_tree_post_update_vma().
512  *
513  * The entire update must be protected by exclusive mmap_sem and by
514  * the root anon_vma's mutex.
515  */
516 static inline void
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
518 {
519 	struct anon_vma_chain *avc;
520 
521 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 }
524 
525 static inline void
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
527 {
528 	struct anon_vma_chain *avc;
529 
530 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
532 }
533 
534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535 		unsigned long end, struct vm_area_struct **pprev,
536 		struct rb_node ***rb_link, struct rb_node **rb_parent)
537 {
538 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
539 
540 	__rb_link = &mm->mm_rb.rb_node;
541 	rb_prev = __rb_parent = NULL;
542 
543 	while (*__rb_link) {
544 		struct vm_area_struct *vma_tmp;
545 
546 		__rb_parent = *__rb_link;
547 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
548 
549 		if (vma_tmp->vm_end > addr) {
550 			/* Fail if an existing vma overlaps the area */
551 			if (vma_tmp->vm_start < end)
552 				return -ENOMEM;
553 			__rb_link = &__rb_parent->rb_left;
554 		} else {
555 			rb_prev = __rb_parent;
556 			__rb_link = &__rb_parent->rb_right;
557 		}
558 	}
559 
560 	*pprev = NULL;
561 	if (rb_prev)
562 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563 	*rb_link = __rb_link;
564 	*rb_parent = __rb_parent;
565 	return 0;
566 }
567 
568 static unsigned long count_vma_pages_range(struct mm_struct *mm,
569 		unsigned long addr, unsigned long end)
570 {
571 	unsigned long nr_pages = 0;
572 	struct vm_area_struct *vma;
573 
574 	/* Find first overlaping mapping */
575 	vma = find_vma_intersection(mm, addr, end);
576 	if (!vma)
577 		return 0;
578 
579 	nr_pages = (min(end, vma->vm_end) -
580 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
581 
582 	/* Iterate over the rest of the overlaps */
583 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
584 		unsigned long overlap_len;
585 
586 		if (vma->vm_start > end)
587 			break;
588 
589 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
590 		nr_pages += overlap_len >> PAGE_SHIFT;
591 	}
592 
593 	return nr_pages;
594 }
595 
596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
597 		struct rb_node **rb_link, struct rb_node *rb_parent)
598 {
599 	/* Update tracking information for the gap following the new vma. */
600 	if (vma->vm_next)
601 		vma_gap_update(vma->vm_next);
602 	else
603 		mm->highest_vm_end = vm_end_gap(vma);
604 
605 	/*
606 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
607 	 * correct insertion point for that vma. As a result, we could not
608 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
609 	 * So, we first insert the vma with a zero rb_subtree_gap value
610 	 * (to be consistent with what we did on the way down), and then
611 	 * immediately update the gap to the correct value. Finally we
612 	 * rebalance the rbtree after all augmented values have been set.
613 	 */
614 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
615 	vma->rb_subtree_gap = 0;
616 	vma_gap_update(vma);
617 	vma_rb_insert(vma, &mm->mm_rb);
618 }
619 
620 static void __vma_link_file(struct vm_area_struct *vma)
621 {
622 	struct file *file;
623 
624 	file = vma->vm_file;
625 	if (file) {
626 		struct address_space *mapping = file->f_mapping;
627 
628 		if (vma->vm_flags & VM_DENYWRITE)
629 			atomic_dec(&file_inode(file)->i_writecount);
630 		if (vma->vm_flags & VM_SHARED)
631 			atomic_inc(&mapping->i_mmap_writable);
632 
633 		flush_dcache_mmap_lock(mapping);
634 		vma_interval_tree_insert(vma, &mapping->i_mmap);
635 		flush_dcache_mmap_unlock(mapping);
636 	}
637 }
638 
639 static void
640 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 	struct vm_area_struct *prev, struct rb_node **rb_link,
642 	struct rb_node *rb_parent)
643 {
644 	__vma_link_list(mm, vma, prev);
645 	__vma_link_rb(mm, vma, rb_link, rb_parent);
646 }
647 
648 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
649 			struct vm_area_struct *prev, struct rb_node **rb_link,
650 			struct rb_node *rb_parent)
651 {
652 	struct address_space *mapping = NULL;
653 
654 	if (vma->vm_file) {
655 		mapping = vma->vm_file->f_mapping;
656 		i_mmap_lock_write(mapping);
657 	}
658 
659 	__vma_link(mm, vma, prev, rb_link, rb_parent);
660 	__vma_link_file(vma);
661 
662 	if (mapping)
663 		i_mmap_unlock_write(mapping);
664 
665 	mm->map_count++;
666 	validate_mm(mm);
667 }
668 
669 /*
670  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
671  * mm's list and rbtree.  It has already been inserted into the interval tree.
672  */
673 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
674 {
675 	struct vm_area_struct *prev;
676 	struct rb_node **rb_link, *rb_parent;
677 
678 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
679 			   &prev, &rb_link, &rb_parent))
680 		BUG();
681 	__vma_link(mm, vma, prev, rb_link, rb_parent);
682 	mm->map_count++;
683 }
684 
685 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
686 						struct vm_area_struct *vma,
687 						struct vm_area_struct *ignore)
688 {
689 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
690 	__vma_unlink_list(mm, vma);
691 	/* Kill the cache */
692 	vmacache_invalidate(mm);
693 }
694 
695 /*
696  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
697  * is already present in an i_mmap tree without adjusting the tree.
698  * The following helper function should be used when such adjustments
699  * are necessary.  The "insert" vma (if any) is to be inserted
700  * before we drop the necessary locks.
701  */
702 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
703 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
704 	struct vm_area_struct *expand)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
708 	struct address_space *mapping = NULL;
709 	struct rb_root_cached *root = NULL;
710 	struct anon_vma *anon_vma = NULL;
711 	struct file *file = vma->vm_file;
712 	bool start_changed = false, end_changed = false;
713 	long adjust_next = 0;
714 	int remove_next = 0;
715 
716 	if (next && !insert) {
717 		struct vm_area_struct *exporter = NULL, *importer = NULL;
718 
719 		if (end >= next->vm_end) {
720 			/*
721 			 * vma expands, overlapping all the next, and
722 			 * perhaps the one after too (mprotect case 6).
723 			 * The only other cases that gets here are
724 			 * case 1, case 7 and case 8.
725 			 */
726 			if (next == expand) {
727 				/*
728 				 * The only case where we don't expand "vma"
729 				 * and we expand "next" instead is case 8.
730 				 */
731 				VM_WARN_ON(end != next->vm_end);
732 				/*
733 				 * remove_next == 3 means we're
734 				 * removing "vma" and that to do so we
735 				 * swapped "vma" and "next".
736 				 */
737 				remove_next = 3;
738 				VM_WARN_ON(file != next->vm_file);
739 				swap(vma, next);
740 			} else {
741 				VM_WARN_ON(expand != vma);
742 				/*
743 				 * case 1, 6, 7, remove_next == 2 is case 6,
744 				 * remove_next == 1 is case 1 or 7.
745 				 */
746 				remove_next = 1 + (end > next->vm_end);
747 				VM_WARN_ON(remove_next == 2 &&
748 					   end != next->vm_next->vm_end);
749 				/* trim end to next, for case 6 first pass */
750 				end = next->vm_end;
751 			}
752 
753 			exporter = next;
754 			importer = vma;
755 
756 			/*
757 			 * If next doesn't have anon_vma, import from vma after
758 			 * next, if the vma overlaps with it.
759 			 */
760 			if (remove_next == 2 && !next->anon_vma)
761 				exporter = next->vm_next;
762 
763 		} else if (end > next->vm_start) {
764 			/*
765 			 * vma expands, overlapping part of the next:
766 			 * mprotect case 5 shifting the boundary up.
767 			 */
768 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
769 			exporter = next;
770 			importer = vma;
771 			VM_WARN_ON(expand != importer);
772 		} else if (end < vma->vm_end) {
773 			/*
774 			 * vma shrinks, and !insert tells it's not
775 			 * split_vma inserting another: so it must be
776 			 * mprotect case 4 shifting the boundary down.
777 			 */
778 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
779 			exporter = vma;
780 			importer = next;
781 			VM_WARN_ON(expand != importer);
782 		}
783 
784 		/*
785 		 * Easily overlooked: when mprotect shifts the boundary,
786 		 * make sure the expanding vma has anon_vma set if the
787 		 * shrinking vma had, to cover any anon pages imported.
788 		 */
789 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
790 			int error;
791 
792 			importer->anon_vma = exporter->anon_vma;
793 			error = anon_vma_clone(importer, exporter);
794 			if (error)
795 				return error;
796 		}
797 	}
798 again:
799 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
800 
801 	if (file) {
802 		mapping = file->f_mapping;
803 		root = &mapping->i_mmap;
804 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
805 
806 		if (adjust_next)
807 			uprobe_munmap(next, next->vm_start, next->vm_end);
808 
809 		i_mmap_lock_write(mapping);
810 		if (insert) {
811 			/*
812 			 * Put into interval tree now, so instantiated pages
813 			 * are visible to arm/parisc __flush_dcache_page
814 			 * throughout; but we cannot insert into address
815 			 * space until vma start or end is updated.
816 			 */
817 			__vma_link_file(insert);
818 		}
819 	}
820 
821 	anon_vma = vma->anon_vma;
822 	if (!anon_vma && adjust_next)
823 		anon_vma = next->anon_vma;
824 	if (anon_vma) {
825 		VM_WARN_ON(adjust_next && next->anon_vma &&
826 			   anon_vma != next->anon_vma);
827 		anon_vma_lock_write(anon_vma);
828 		anon_vma_interval_tree_pre_update_vma(vma);
829 		if (adjust_next)
830 			anon_vma_interval_tree_pre_update_vma(next);
831 	}
832 
833 	if (root) {
834 		flush_dcache_mmap_lock(mapping);
835 		vma_interval_tree_remove(vma, root);
836 		if (adjust_next)
837 			vma_interval_tree_remove(next, root);
838 	}
839 
840 	if (start != vma->vm_start) {
841 		vma->vm_start = start;
842 		start_changed = true;
843 	}
844 	if (end != vma->vm_end) {
845 		vma->vm_end = end;
846 		end_changed = true;
847 	}
848 	vma->vm_pgoff = pgoff;
849 	if (adjust_next) {
850 		next->vm_start += adjust_next << PAGE_SHIFT;
851 		next->vm_pgoff += adjust_next;
852 	}
853 
854 	if (root) {
855 		if (adjust_next)
856 			vma_interval_tree_insert(next, root);
857 		vma_interval_tree_insert(vma, root);
858 		flush_dcache_mmap_unlock(mapping);
859 	}
860 
861 	if (remove_next) {
862 		/*
863 		 * vma_merge has merged next into vma, and needs
864 		 * us to remove next before dropping the locks.
865 		 */
866 		if (remove_next != 3)
867 			__vma_unlink_common(mm, next, next);
868 		else
869 			/*
870 			 * vma is not before next if they've been
871 			 * swapped.
872 			 *
873 			 * pre-swap() next->vm_start was reduced so
874 			 * tell validate_mm_rb to ignore pre-swap()
875 			 * "next" (which is stored in post-swap()
876 			 * "vma").
877 			 */
878 			__vma_unlink_common(mm, next, vma);
879 		if (file)
880 			__remove_shared_vm_struct(next, file, mapping);
881 	} else if (insert) {
882 		/*
883 		 * split_vma has split insert from vma, and needs
884 		 * us to insert it before dropping the locks
885 		 * (it may either follow vma or precede it).
886 		 */
887 		__insert_vm_struct(mm, insert);
888 	} else {
889 		if (start_changed)
890 			vma_gap_update(vma);
891 		if (end_changed) {
892 			if (!next)
893 				mm->highest_vm_end = vm_end_gap(vma);
894 			else if (!adjust_next)
895 				vma_gap_update(next);
896 		}
897 	}
898 
899 	if (anon_vma) {
900 		anon_vma_interval_tree_post_update_vma(vma);
901 		if (adjust_next)
902 			anon_vma_interval_tree_post_update_vma(next);
903 		anon_vma_unlock_write(anon_vma);
904 	}
905 	if (mapping)
906 		i_mmap_unlock_write(mapping);
907 
908 	if (root) {
909 		uprobe_mmap(vma);
910 
911 		if (adjust_next)
912 			uprobe_mmap(next);
913 	}
914 
915 	if (remove_next) {
916 		if (file) {
917 			uprobe_munmap(next, next->vm_start, next->vm_end);
918 			fput(file);
919 		}
920 		if (next->anon_vma)
921 			anon_vma_merge(vma, next);
922 		mm->map_count--;
923 		mpol_put(vma_policy(next));
924 		vm_area_free(next);
925 		/*
926 		 * In mprotect's case 6 (see comments on vma_merge),
927 		 * we must remove another next too. It would clutter
928 		 * up the code too much to do both in one go.
929 		 */
930 		if (remove_next != 3) {
931 			/*
932 			 * If "next" was removed and vma->vm_end was
933 			 * expanded (up) over it, in turn
934 			 * "next->vm_prev->vm_end" changed and the
935 			 * "vma->vm_next" gap must be updated.
936 			 */
937 			next = vma->vm_next;
938 		} else {
939 			/*
940 			 * For the scope of the comment "next" and
941 			 * "vma" considered pre-swap(): if "vma" was
942 			 * removed, next->vm_start was expanded (down)
943 			 * over it and the "next" gap must be updated.
944 			 * Because of the swap() the post-swap() "vma"
945 			 * actually points to pre-swap() "next"
946 			 * (post-swap() "next" as opposed is now a
947 			 * dangling pointer).
948 			 */
949 			next = vma;
950 		}
951 		if (remove_next == 2) {
952 			remove_next = 1;
953 			end = next->vm_end;
954 			goto again;
955 		}
956 		else if (next)
957 			vma_gap_update(next);
958 		else {
959 			/*
960 			 * If remove_next == 2 we obviously can't
961 			 * reach this path.
962 			 *
963 			 * If remove_next == 3 we can't reach this
964 			 * path because pre-swap() next is always not
965 			 * NULL. pre-swap() "next" is not being
966 			 * removed and its next->vm_end is not altered
967 			 * (and furthermore "end" already matches
968 			 * next->vm_end in remove_next == 3).
969 			 *
970 			 * We reach this only in the remove_next == 1
971 			 * case if the "next" vma that was removed was
972 			 * the highest vma of the mm. However in such
973 			 * case next->vm_end == "end" and the extended
974 			 * "vma" has vma->vm_end == next->vm_end so
975 			 * mm->highest_vm_end doesn't need any update
976 			 * in remove_next == 1 case.
977 			 */
978 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
979 		}
980 	}
981 	if (insert && file)
982 		uprobe_mmap(insert);
983 
984 	validate_mm(mm);
985 
986 	return 0;
987 }
988 
989 /*
990  * If the vma has a ->close operation then the driver probably needs to release
991  * per-vma resources, so we don't attempt to merge those.
992  */
993 static inline int is_mergeable_vma(struct vm_area_struct *vma,
994 				struct file *file, unsigned long vm_flags,
995 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
996 {
997 	/*
998 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
999 	 * match the flags but dirty bit -- the caller should mark
1000 	 * merged VMA as dirty. If dirty bit won't be excluded from
1001 	 * comparison, we increase pressure on the memory system forcing
1002 	 * the kernel to generate new VMAs when old one could be
1003 	 * extended instead.
1004 	 */
1005 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1006 		return 0;
1007 	if (vma->vm_file != file)
1008 		return 0;
1009 	if (vma->vm_ops && vma->vm_ops->close)
1010 		return 0;
1011 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1012 		return 0;
1013 	return 1;
1014 }
1015 
1016 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1017 					struct anon_vma *anon_vma2,
1018 					struct vm_area_struct *vma)
1019 {
1020 	/*
1021 	 * The list_is_singular() test is to avoid merging VMA cloned from
1022 	 * parents. This can improve scalability caused by anon_vma lock.
1023 	 */
1024 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1025 		list_is_singular(&vma->anon_vma_chain)))
1026 		return 1;
1027 	return anon_vma1 == anon_vma2;
1028 }
1029 
1030 /*
1031  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1032  * in front of (at a lower virtual address and file offset than) the vma.
1033  *
1034  * We cannot merge two vmas if they have differently assigned (non-NULL)
1035  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1036  *
1037  * We don't check here for the merged mmap wrapping around the end of pagecache
1038  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1039  * wrap, nor mmaps which cover the final page at index -1UL.
1040  */
1041 static int
1042 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1043 		     struct anon_vma *anon_vma, struct file *file,
1044 		     pgoff_t vm_pgoff,
1045 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1046 {
1047 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1048 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1049 		if (vma->vm_pgoff == vm_pgoff)
1050 			return 1;
1051 	}
1052 	return 0;
1053 }
1054 
1055 /*
1056  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057  * beyond (at a higher virtual address and file offset than) the vma.
1058  *
1059  * We cannot merge two vmas if they have differently assigned (non-NULL)
1060  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061  */
1062 static int
1063 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1064 		    struct anon_vma *anon_vma, struct file *file,
1065 		    pgoff_t vm_pgoff,
1066 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1067 {
1068 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1069 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1070 		pgoff_t vm_pglen;
1071 		vm_pglen = vma_pages(vma);
1072 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1073 			return 1;
1074 	}
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1080  * whether that can be merged with its predecessor or its successor.
1081  * Or both (it neatly fills a hole).
1082  *
1083  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1084  * certain not to be mapped by the time vma_merge is called; but when
1085  * called for mprotect, it is certain to be already mapped (either at
1086  * an offset within prev, or at the start of next), and the flags of
1087  * this area are about to be changed to vm_flags - and the no-change
1088  * case has already been eliminated.
1089  *
1090  * The following mprotect cases have to be considered, where AAAA is
1091  * the area passed down from mprotect_fixup, never extending beyond one
1092  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1093  *
1094  *     AAAA             AAAA                AAAA          AAAA
1095  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1096  *    cannot merge    might become    might become    might become
1097  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1098  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1099  *    mremap move:                                    PPPPXXXXXXXX 8
1100  *        AAAA
1101  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1102  *    might become    case 1 below    case 2 below    case 3 below
1103  *
1104  * It is important for case 8 that the vma NNNN overlapping the
1105  * region AAAA is never going to extended over XXXX. Instead XXXX must
1106  * be extended in region AAAA and NNNN must be removed. This way in
1107  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1108  * rmap_locks, the properties of the merged vma will be already
1109  * correct for the whole merged range. Some of those properties like
1110  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1111  * be correct for the whole merged range immediately after the
1112  * rmap_locks are released. Otherwise if XXXX would be removed and
1113  * NNNN would be extended over the XXXX range, remove_migration_ptes
1114  * or other rmap walkers (if working on addresses beyond the "end"
1115  * parameter) may establish ptes with the wrong permissions of NNNN
1116  * instead of the right permissions of XXXX.
1117  */
1118 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1119 			struct vm_area_struct *prev, unsigned long addr,
1120 			unsigned long end, unsigned long vm_flags,
1121 			struct anon_vma *anon_vma, struct file *file,
1122 			pgoff_t pgoff, struct mempolicy *policy,
1123 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1124 {
1125 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1126 	struct vm_area_struct *area, *next;
1127 	int err;
1128 
1129 	/*
1130 	 * We later require that vma->vm_flags == vm_flags,
1131 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1132 	 */
1133 	if (vm_flags & VM_SPECIAL)
1134 		return NULL;
1135 
1136 	if (prev)
1137 		next = prev->vm_next;
1138 	else
1139 		next = mm->mmap;
1140 	area = next;
1141 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1142 		next = next->vm_next;
1143 
1144 	/* verify some invariant that must be enforced by the caller */
1145 	VM_WARN_ON(prev && addr <= prev->vm_start);
1146 	VM_WARN_ON(area && end > area->vm_end);
1147 	VM_WARN_ON(addr >= end);
1148 
1149 	/*
1150 	 * Can it merge with the predecessor?
1151 	 */
1152 	if (prev && prev->vm_end == addr &&
1153 			mpol_equal(vma_policy(prev), policy) &&
1154 			can_vma_merge_after(prev, vm_flags,
1155 					    anon_vma, file, pgoff,
1156 					    vm_userfaultfd_ctx)) {
1157 		/*
1158 		 * OK, it can.  Can we now merge in the successor as well?
1159 		 */
1160 		if (next && end == next->vm_start &&
1161 				mpol_equal(policy, vma_policy(next)) &&
1162 				can_vma_merge_before(next, vm_flags,
1163 						     anon_vma, file,
1164 						     pgoff+pglen,
1165 						     vm_userfaultfd_ctx) &&
1166 				is_mergeable_anon_vma(prev->anon_vma,
1167 						      next->anon_vma, NULL)) {
1168 							/* cases 1, 6 */
1169 			err = __vma_adjust(prev, prev->vm_start,
1170 					 next->vm_end, prev->vm_pgoff, NULL,
1171 					 prev);
1172 		} else					/* cases 2, 5, 7 */
1173 			err = __vma_adjust(prev, prev->vm_start,
1174 					 end, prev->vm_pgoff, NULL, prev);
1175 		if (err)
1176 			return NULL;
1177 		khugepaged_enter_vma_merge(prev, vm_flags);
1178 		return prev;
1179 	}
1180 
1181 	/*
1182 	 * Can this new request be merged in front of next?
1183 	 */
1184 	if (next && end == next->vm_start &&
1185 			mpol_equal(policy, vma_policy(next)) &&
1186 			can_vma_merge_before(next, vm_flags,
1187 					     anon_vma, file, pgoff+pglen,
1188 					     vm_userfaultfd_ctx)) {
1189 		if (prev && addr < prev->vm_end)	/* case 4 */
1190 			err = __vma_adjust(prev, prev->vm_start,
1191 					 addr, prev->vm_pgoff, NULL, next);
1192 		else {					/* cases 3, 8 */
1193 			err = __vma_adjust(area, addr, next->vm_end,
1194 					 next->vm_pgoff - pglen, NULL, next);
1195 			/*
1196 			 * In case 3 area is already equal to next and
1197 			 * this is a noop, but in case 8 "area" has
1198 			 * been removed and next was expanded over it.
1199 			 */
1200 			area = next;
1201 		}
1202 		if (err)
1203 			return NULL;
1204 		khugepaged_enter_vma_merge(area, vm_flags);
1205 		return area;
1206 	}
1207 
1208 	return NULL;
1209 }
1210 
1211 /*
1212  * Rough compatbility check to quickly see if it's even worth looking
1213  * at sharing an anon_vma.
1214  *
1215  * They need to have the same vm_file, and the flags can only differ
1216  * in things that mprotect may change.
1217  *
1218  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1219  * we can merge the two vma's. For example, we refuse to merge a vma if
1220  * there is a vm_ops->close() function, because that indicates that the
1221  * driver is doing some kind of reference counting. But that doesn't
1222  * really matter for the anon_vma sharing case.
1223  */
1224 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1225 {
1226 	return a->vm_end == b->vm_start &&
1227 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1228 		a->vm_file == b->vm_file &&
1229 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1230 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1231 }
1232 
1233 /*
1234  * Do some basic sanity checking to see if we can re-use the anon_vma
1235  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1236  * the same as 'old', the other will be the new one that is trying
1237  * to share the anon_vma.
1238  *
1239  * NOTE! This runs with mm_sem held for reading, so it is possible that
1240  * the anon_vma of 'old' is concurrently in the process of being set up
1241  * by another page fault trying to merge _that_. But that's ok: if it
1242  * is being set up, that automatically means that it will be a singleton
1243  * acceptable for merging, so we can do all of this optimistically. But
1244  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1245  *
1246  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1247  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1248  * is to return an anon_vma that is "complex" due to having gone through
1249  * a fork).
1250  *
1251  * We also make sure that the two vma's are compatible (adjacent,
1252  * and with the same memory policies). That's all stable, even with just
1253  * a read lock on the mm_sem.
1254  */
1255 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1256 {
1257 	if (anon_vma_compatible(a, b)) {
1258 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1259 
1260 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1261 			return anon_vma;
1262 	}
1263 	return NULL;
1264 }
1265 
1266 /*
1267  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1268  * neighbouring vmas for a suitable anon_vma, before it goes off
1269  * to allocate a new anon_vma.  It checks because a repetitive
1270  * sequence of mprotects and faults may otherwise lead to distinct
1271  * anon_vmas being allocated, preventing vma merge in subsequent
1272  * mprotect.
1273  */
1274 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1275 {
1276 	struct anon_vma *anon_vma;
1277 	struct vm_area_struct *near;
1278 
1279 	near = vma->vm_next;
1280 	if (!near)
1281 		goto try_prev;
1282 
1283 	anon_vma = reusable_anon_vma(near, vma, near);
1284 	if (anon_vma)
1285 		return anon_vma;
1286 try_prev:
1287 	near = vma->vm_prev;
1288 	if (!near)
1289 		goto none;
1290 
1291 	anon_vma = reusable_anon_vma(near, near, vma);
1292 	if (anon_vma)
1293 		return anon_vma;
1294 none:
1295 	/*
1296 	 * There's no absolute need to look only at touching neighbours:
1297 	 * we could search further afield for "compatible" anon_vmas.
1298 	 * But it would probably just be a waste of time searching,
1299 	 * or lead to too many vmas hanging off the same anon_vma.
1300 	 * We're trying to allow mprotect remerging later on,
1301 	 * not trying to minimize memory used for anon_vmas.
1302 	 */
1303 	return NULL;
1304 }
1305 
1306 /*
1307  * If a hint addr is less than mmap_min_addr change hint to be as
1308  * low as possible but still greater than mmap_min_addr
1309  */
1310 static inline unsigned long round_hint_to_min(unsigned long hint)
1311 {
1312 	hint &= PAGE_MASK;
1313 	if (((void *)hint != NULL) &&
1314 	    (hint < mmap_min_addr))
1315 		return PAGE_ALIGN(mmap_min_addr);
1316 	return hint;
1317 }
1318 
1319 static inline int mlock_future_check(struct mm_struct *mm,
1320 				     unsigned long flags,
1321 				     unsigned long len)
1322 {
1323 	unsigned long locked, lock_limit;
1324 
1325 	/*  mlock MCL_FUTURE? */
1326 	if (flags & VM_LOCKED) {
1327 		locked = len >> PAGE_SHIFT;
1328 		locked += mm->locked_vm;
1329 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1330 		lock_limit >>= PAGE_SHIFT;
1331 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1332 			return -EAGAIN;
1333 	}
1334 	return 0;
1335 }
1336 
1337 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1338 {
1339 	if (S_ISREG(inode->i_mode))
1340 		return MAX_LFS_FILESIZE;
1341 
1342 	if (S_ISBLK(inode->i_mode))
1343 		return MAX_LFS_FILESIZE;
1344 
1345 	if (S_ISSOCK(inode->i_mode))
1346 		return MAX_LFS_FILESIZE;
1347 
1348 	/* Special "we do even unsigned file positions" case */
1349 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1350 		return 0;
1351 
1352 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1353 	return ULONG_MAX;
1354 }
1355 
1356 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1357 				unsigned long pgoff, unsigned long len)
1358 {
1359 	u64 maxsize = file_mmap_size_max(file, inode);
1360 
1361 	if (maxsize && len > maxsize)
1362 		return false;
1363 	maxsize -= len;
1364 	if (pgoff > maxsize >> PAGE_SHIFT)
1365 		return false;
1366 	return true;
1367 }
1368 
1369 /*
1370  * The caller must hold down_write(&current->mm->mmap_sem).
1371  */
1372 unsigned long do_mmap(struct file *file, unsigned long addr,
1373 			unsigned long len, unsigned long prot,
1374 			unsigned long flags, vm_flags_t vm_flags,
1375 			unsigned long pgoff, unsigned long *populate,
1376 			struct list_head *uf)
1377 {
1378 	struct mm_struct *mm = current->mm;
1379 	int pkey = 0;
1380 
1381 	*populate = 0;
1382 
1383 	if (!len)
1384 		return -EINVAL;
1385 
1386 	/*
1387 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1388 	 *
1389 	 * (the exception is when the underlying filesystem is noexec
1390 	 *  mounted, in which case we dont add PROT_EXEC.)
1391 	 */
1392 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1393 		if (!(file && path_noexec(&file->f_path)))
1394 			prot |= PROT_EXEC;
1395 
1396 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1397 	if (flags & MAP_FIXED_NOREPLACE)
1398 		flags |= MAP_FIXED;
1399 
1400 	if (!(flags & MAP_FIXED))
1401 		addr = round_hint_to_min(addr);
1402 
1403 	/* Careful about overflows.. */
1404 	len = PAGE_ALIGN(len);
1405 	if (!len)
1406 		return -ENOMEM;
1407 
1408 	/* offset overflow? */
1409 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1410 		return -EOVERFLOW;
1411 
1412 	/* Too many mappings? */
1413 	if (mm->map_count > sysctl_max_map_count)
1414 		return -ENOMEM;
1415 
1416 	/* Obtain the address to map to. we verify (or select) it and ensure
1417 	 * that it represents a valid section of the address space.
1418 	 */
1419 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1420 	if (IS_ERR_VALUE(addr))
1421 		return addr;
1422 
1423 	if (flags & MAP_FIXED_NOREPLACE) {
1424 		struct vm_area_struct *vma = find_vma(mm, addr);
1425 
1426 		if (vma && vma->vm_start < addr + len)
1427 			return -EEXIST;
1428 	}
1429 
1430 	if (prot == PROT_EXEC) {
1431 		pkey = execute_only_pkey(mm);
1432 		if (pkey < 0)
1433 			pkey = 0;
1434 	}
1435 
1436 	/* Do simple checking here so the lower-level routines won't have
1437 	 * to. we assume access permissions have been handled by the open
1438 	 * of the memory object, so we don't do any here.
1439 	 */
1440 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1441 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1442 
1443 	if (flags & MAP_LOCKED)
1444 		if (!can_do_mlock())
1445 			return -EPERM;
1446 
1447 	if (mlock_future_check(mm, vm_flags, len))
1448 		return -EAGAIN;
1449 
1450 	if (file) {
1451 		struct inode *inode = file_inode(file);
1452 		unsigned long flags_mask;
1453 
1454 		if (!file_mmap_ok(file, inode, pgoff, len))
1455 			return -EOVERFLOW;
1456 
1457 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1458 
1459 		switch (flags & MAP_TYPE) {
1460 		case MAP_SHARED:
1461 			/*
1462 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1463 			 * flags. E.g. MAP_SYNC is dangerous to use with
1464 			 * MAP_SHARED as you don't know which consistency model
1465 			 * you will get. We silently ignore unsupported flags
1466 			 * with MAP_SHARED to preserve backward compatibility.
1467 			 */
1468 			flags &= LEGACY_MAP_MASK;
1469 			/* fall through */
1470 		case MAP_SHARED_VALIDATE:
1471 			if (flags & ~flags_mask)
1472 				return -EOPNOTSUPP;
1473 			if (prot & PROT_WRITE) {
1474 				if (!(file->f_mode & FMODE_WRITE))
1475 					return -EACCES;
1476 				if (IS_SWAPFILE(file->f_mapping->host))
1477 					return -ETXTBSY;
1478 			}
1479 
1480 			/*
1481 			 * Make sure we don't allow writing to an append-only
1482 			 * file..
1483 			 */
1484 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1485 				return -EACCES;
1486 
1487 			/*
1488 			 * Make sure there are no mandatory locks on the file.
1489 			 */
1490 			if (locks_verify_locked(file))
1491 				return -EAGAIN;
1492 
1493 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1494 			if (!(file->f_mode & FMODE_WRITE))
1495 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1496 
1497 			/* fall through */
1498 		case MAP_PRIVATE:
1499 			if (!(file->f_mode & FMODE_READ))
1500 				return -EACCES;
1501 			if (path_noexec(&file->f_path)) {
1502 				if (vm_flags & VM_EXEC)
1503 					return -EPERM;
1504 				vm_flags &= ~VM_MAYEXEC;
1505 			}
1506 
1507 			if (!file->f_op->mmap)
1508 				return -ENODEV;
1509 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1510 				return -EINVAL;
1511 			break;
1512 
1513 		default:
1514 			return -EINVAL;
1515 		}
1516 	} else {
1517 		switch (flags & MAP_TYPE) {
1518 		case MAP_SHARED:
1519 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1520 				return -EINVAL;
1521 			/*
1522 			 * Ignore pgoff.
1523 			 */
1524 			pgoff = 0;
1525 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1526 			break;
1527 		case MAP_PRIVATE:
1528 			/*
1529 			 * Set pgoff according to addr for anon_vma.
1530 			 */
1531 			pgoff = addr >> PAGE_SHIFT;
1532 			break;
1533 		default:
1534 			return -EINVAL;
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * Set 'VM_NORESERVE' if we should not account for the
1540 	 * memory use of this mapping.
1541 	 */
1542 	if (flags & MAP_NORESERVE) {
1543 		/* We honor MAP_NORESERVE if allowed to overcommit */
1544 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1545 			vm_flags |= VM_NORESERVE;
1546 
1547 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1548 		if (file && is_file_hugepages(file))
1549 			vm_flags |= VM_NORESERVE;
1550 	}
1551 
1552 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1553 	if (!IS_ERR_VALUE(addr) &&
1554 	    ((vm_flags & VM_LOCKED) ||
1555 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1556 		*populate = len;
1557 	return addr;
1558 }
1559 
1560 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1561 			      unsigned long prot, unsigned long flags,
1562 			      unsigned long fd, unsigned long pgoff)
1563 {
1564 	struct file *file = NULL;
1565 	unsigned long retval;
1566 
1567 	addr = untagged_addr(addr);
1568 
1569 	if (!(flags & MAP_ANONYMOUS)) {
1570 		audit_mmap_fd(fd, flags);
1571 		file = fget(fd);
1572 		if (!file)
1573 			return -EBADF;
1574 		if (is_file_hugepages(file))
1575 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1576 		retval = -EINVAL;
1577 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1578 			goto out_fput;
1579 	} else if (flags & MAP_HUGETLB) {
1580 		struct user_struct *user = NULL;
1581 		struct hstate *hs;
1582 
1583 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1584 		if (!hs)
1585 			return -EINVAL;
1586 
1587 		len = ALIGN(len, huge_page_size(hs));
1588 		/*
1589 		 * VM_NORESERVE is used because the reservations will be
1590 		 * taken when vm_ops->mmap() is called
1591 		 * A dummy user value is used because we are not locking
1592 		 * memory so no accounting is necessary
1593 		 */
1594 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1595 				VM_NORESERVE,
1596 				&user, HUGETLB_ANONHUGE_INODE,
1597 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1598 		if (IS_ERR(file))
1599 			return PTR_ERR(file);
1600 	}
1601 
1602 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1603 
1604 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1605 out_fput:
1606 	if (file)
1607 		fput(file);
1608 	return retval;
1609 }
1610 
1611 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1612 		unsigned long, prot, unsigned long, flags,
1613 		unsigned long, fd, unsigned long, pgoff)
1614 {
1615 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1616 }
1617 
1618 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1619 struct mmap_arg_struct {
1620 	unsigned long addr;
1621 	unsigned long len;
1622 	unsigned long prot;
1623 	unsigned long flags;
1624 	unsigned long fd;
1625 	unsigned long offset;
1626 };
1627 
1628 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1629 {
1630 	struct mmap_arg_struct a;
1631 
1632 	if (copy_from_user(&a, arg, sizeof(a)))
1633 		return -EFAULT;
1634 	if (offset_in_page(a.offset))
1635 		return -EINVAL;
1636 
1637 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1638 			       a.offset >> PAGE_SHIFT);
1639 }
1640 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1641 
1642 /*
1643  * Some shared mappings will want the pages marked read-only
1644  * to track write events. If so, we'll downgrade vm_page_prot
1645  * to the private version (using protection_map[] without the
1646  * VM_SHARED bit).
1647  */
1648 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1649 {
1650 	vm_flags_t vm_flags = vma->vm_flags;
1651 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1652 
1653 	/* If it was private or non-writable, the write bit is already clear */
1654 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1655 		return 0;
1656 
1657 	/* The backer wishes to know when pages are first written to? */
1658 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1659 		return 1;
1660 
1661 	/* The open routine did something to the protections that pgprot_modify
1662 	 * won't preserve? */
1663 	if (pgprot_val(vm_page_prot) !=
1664 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1665 		return 0;
1666 
1667 	/* Do we need to track softdirty? */
1668 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1669 		return 1;
1670 
1671 	/* Specialty mapping? */
1672 	if (vm_flags & VM_PFNMAP)
1673 		return 0;
1674 
1675 	/* Can the mapping track the dirty pages? */
1676 	return vma->vm_file && vma->vm_file->f_mapping &&
1677 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1678 }
1679 
1680 /*
1681  * We account for memory if it's a private writeable mapping,
1682  * not hugepages and VM_NORESERVE wasn't set.
1683  */
1684 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1685 {
1686 	/*
1687 	 * hugetlb has its own accounting separate from the core VM
1688 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1689 	 */
1690 	if (file && is_file_hugepages(file))
1691 		return 0;
1692 
1693 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1694 }
1695 
1696 unsigned long mmap_region(struct file *file, unsigned long addr,
1697 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1698 		struct list_head *uf)
1699 {
1700 	struct mm_struct *mm = current->mm;
1701 	struct vm_area_struct *vma, *prev;
1702 	int error;
1703 	struct rb_node **rb_link, *rb_parent;
1704 	unsigned long charged = 0;
1705 
1706 	/* Check against address space limit. */
1707 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1708 		unsigned long nr_pages;
1709 
1710 		/*
1711 		 * MAP_FIXED may remove pages of mappings that intersects with
1712 		 * requested mapping. Account for the pages it would unmap.
1713 		 */
1714 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1715 
1716 		if (!may_expand_vm(mm, vm_flags,
1717 					(len >> PAGE_SHIFT) - nr_pages))
1718 			return -ENOMEM;
1719 	}
1720 
1721 	/* Clear old maps */
1722 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1723 			      &rb_parent)) {
1724 		if (do_munmap(mm, addr, len, uf))
1725 			return -ENOMEM;
1726 	}
1727 
1728 	/*
1729 	 * Private writable mapping: check memory availability
1730 	 */
1731 	if (accountable_mapping(file, vm_flags)) {
1732 		charged = len >> PAGE_SHIFT;
1733 		if (security_vm_enough_memory_mm(mm, charged))
1734 			return -ENOMEM;
1735 		vm_flags |= VM_ACCOUNT;
1736 	}
1737 
1738 	/*
1739 	 * Can we just expand an old mapping?
1740 	 */
1741 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1742 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1743 	if (vma)
1744 		goto out;
1745 
1746 	/*
1747 	 * Determine the object being mapped and call the appropriate
1748 	 * specific mapper. the address has already been validated, but
1749 	 * not unmapped, but the maps are removed from the list.
1750 	 */
1751 	vma = vm_area_alloc(mm);
1752 	if (!vma) {
1753 		error = -ENOMEM;
1754 		goto unacct_error;
1755 	}
1756 
1757 	vma->vm_start = addr;
1758 	vma->vm_end = addr + len;
1759 	vma->vm_flags = vm_flags;
1760 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1761 	vma->vm_pgoff = pgoff;
1762 
1763 	if (file) {
1764 		if (vm_flags & VM_DENYWRITE) {
1765 			error = deny_write_access(file);
1766 			if (error)
1767 				goto free_vma;
1768 		}
1769 		if (vm_flags & VM_SHARED) {
1770 			error = mapping_map_writable(file->f_mapping);
1771 			if (error)
1772 				goto allow_write_and_free_vma;
1773 		}
1774 
1775 		/* ->mmap() can change vma->vm_file, but must guarantee that
1776 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1777 		 * and map writably if VM_SHARED is set. This usually means the
1778 		 * new file must not have been exposed to user-space, yet.
1779 		 */
1780 		vma->vm_file = get_file(file);
1781 		error = call_mmap(file, vma);
1782 		if (error)
1783 			goto unmap_and_free_vma;
1784 
1785 		/* Can addr have changed??
1786 		 *
1787 		 * Answer: Yes, several device drivers can do it in their
1788 		 *         f_op->mmap method. -DaveM
1789 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1790 		 *      be updated for vma_link()
1791 		 */
1792 		WARN_ON_ONCE(addr != vma->vm_start);
1793 
1794 		addr = vma->vm_start;
1795 		vm_flags = vma->vm_flags;
1796 	} else if (vm_flags & VM_SHARED) {
1797 		error = shmem_zero_setup(vma);
1798 		if (error)
1799 			goto free_vma;
1800 	} else {
1801 		vma_set_anonymous(vma);
1802 	}
1803 
1804 	vma_link(mm, vma, prev, rb_link, rb_parent);
1805 	/* Once vma denies write, undo our temporary denial count */
1806 	if (file) {
1807 		if (vm_flags & VM_SHARED)
1808 			mapping_unmap_writable(file->f_mapping);
1809 		if (vm_flags & VM_DENYWRITE)
1810 			allow_write_access(file);
1811 	}
1812 	file = vma->vm_file;
1813 out:
1814 	perf_event_mmap(vma);
1815 
1816 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1817 	if (vm_flags & VM_LOCKED) {
1818 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1819 					is_vm_hugetlb_page(vma) ||
1820 					vma == get_gate_vma(current->mm))
1821 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1822 		else
1823 			mm->locked_vm += (len >> PAGE_SHIFT);
1824 	}
1825 
1826 	if (file)
1827 		uprobe_mmap(vma);
1828 
1829 	/*
1830 	 * New (or expanded) vma always get soft dirty status.
1831 	 * Otherwise user-space soft-dirty page tracker won't
1832 	 * be able to distinguish situation when vma area unmapped,
1833 	 * then new mapped in-place (which must be aimed as
1834 	 * a completely new data area).
1835 	 */
1836 	vma->vm_flags |= VM_SOFTDIRTY;
1837 
1838 	vma_set_page_prot(vma);
1839 
1840 	return addr;
1841 
1842 unmap_and_free_vma:
1843 	vma->vm_file = NULL;
1844 	fput(file);
1845 
1846 	/* Undo any partial mapping done by a device driver. */
1847 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1848 	charged = 0;
1849 	if (vm_flags & VM_SHARED)
1850 		mapping_unmap_writable(file->f_mapping);
1851 allow_write_and_free_vma:
1852 	if (vm_flags & VM_DENYWRITE)
1853 		allow_write_access(file);
1854 free_vma:
1855 	vm_area_free(vma);
1856 unacct_error:
1857 	if (charged)
1858 		vm_unacct_memory(charged);
1859 	return error;
1860 }
1861 
1862 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1863 {
1864 	/*
1865 	 * We implement the search by looking for an rbtree node that
1866 	 * immediately follows a suitable gap. That is,
1867 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1868 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1869 	 * - gap_end - gap_start >= length
1870 	 */
1871 
1872 	struct mm_struct *mm = current->mm;
1873 	struct vm_area_struct *vma;
1874 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1875 
1876 	/* Adjust search length to account for worst case alignment overhead */
1877 	length = info->length + info->align_mask;
1878 	if (length < info->length)
1879 		return -ENOMEM;
1880 
1881 	/* Adjust search limits by the desired length */
1882 	if (info->high_limit < length)
1883 		return -ENOMEM;
1884 	high_limit = info->high_limit - length;
1885 
1886 	if (info->low_limit > high_limit)
1887 		return -ENOMEM;
1888 	low_limit = info->low_limit + length;
1889 
1890 	/* Check if rbtree root looks promising */
1891 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1892 		goto check_highest;
1893 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1894 	if (vma->rb_subtree_gap < length)
1895 		goto check_highest;
1896 
1897 	while (true) {
1898 		/* Visit left subtree if it looks promising */
1899 		gap_end = vm_start_gap(vma);
1900 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1901 			struct vm_area_struct *left =
1902 				rb_entry(vma->vm_rb.rb_left,
1903 					 struct vm_area_struct, vm_rb);
1904 			if (left->rb_subtree_gap >= length) {
1905 				vma = left;
1906 				continue;
1907 			}
1908 		}
1909 
1910 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1911 check_current:
1912 		/* Check if current node has a suitable gap */
1913 		if (gap_start > high_limit)
1914 			return -ENOMEM;
1915 		if (gap_end >= low_limit &&
1916 		    gap_end > gap_start && gap_end - gap_start >= length)
1917 			goto found;
1918 
1919 		/* Visit right subtree if it looks promising */
1920 		if (vma->vm_rb.rb_right) {
1921 			struct vm_area_struct *right =
1922 				rb_entry(vma->vm_rb.rb_right,
1923 					 struct vm_area_struct, vm_rb);
1924 			if (right->rb_subtree_gap >= length) {
1925 				vma = right;
1926 				continue;
1927 			}
1928 		}
1929 
1930 		/* Go back up the rbtree to find next candidate node */
1931 		while (true) {
1932 			struct rb_node *prev = &vma->vm_rb;
1933 			if (!rb_parent(prev))
1934 				goto check_highest;
1935 			vma = rb_entry(rb_parent(prev),
1936 				       struct vm_area_struct, vm_rb);
1937 			if (prev == vma->vm_rb.rb_left) {
1938 				gap_start = vm_end_gap(vma->vm_prev);
1939 				gap_end = vm_start_gap(vma);
1940 				goto check_current;
1941 			}
1942 		}
1943 	}
1944 
1945 check_highest:
1946 	/* Check highest gap, which does not precede any rbtree node */
1947 	gap_start = mm->highest_vm_end;
1948 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1949 	if (gap_start > high_limit)
1950 		return -ENOMEM;
1951 
1952 found:
1953 	/* We found a suitable gap. Clip it with the original low_limit. */
1954 	if (gap_start < info->low_limit)
1955 		gap_start = info->low_limit;
1956 
1957 	/* Adjust gap address to the desired alignment */
1958 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1959 
1960 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1961 	VM_BUG_ON(gap_start + info->length > gap_end);
1962 	return gap_start;
1963 }
1964 
1965 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1966 {
1967 	struct mm_struct *mm = current->mm;
1968 	struct vm_area_struct *vma;
1969 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1970 
1971 	/* Adjust search length to account for worst case alignment overhead */
1972 	length = info->length + info->align_mask;
1973 	if (length < info->length)
1974 		return -ENOMEM;
1975 
1976 	/*
1977 	 * Adjust search limits by the desired length.
1978 	 * See implementation comment at top of unmapped_area().
1979 	 */
1980 	gap_end = info->high_limit;
1981 	if (gap_end < length)
1982 		return -ENOMEM;
1983 	high_limit = gap_end - length;
1984 
1985 	if (info->low_limit > high_limit)
1986 		return -ENOMEM;
1987 	low_limit = info->low_limit + length;
1988 
1989 	/* Check highest gap, which does not precede any rbtree node */
1990 	gap_start = mm->highest_vm_end;
1991 	if (gap_start <= high_limit)
1992 		goto found_highest;
1993 
1994 	/* Check if rbtree root looks promising */
1995 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1996 		return -ENOMEM;
1997 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1998 	if (vma->rb_subtree_gap < length)
1999 		return -ENOMEM;
2000 
2001 	while (true) {
2002 		/* Visit right subtree if it looks promising */
2003 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2004 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2005 			struct vm_area_struct *right =
2006 				rb_entry(vma->vm_rb.rb_right,
2007 					 struct vm_area_struct, vm_rb);
2008 			if (right->rb_subtree_gap >= length) {
2009 				vma = right;
2010 				continue;
2011 			}
2012 		}
2013 
2014 check_current:
2015 		/* Check if current node has a suitable gap */
2016 		gap_end = vm_start_gap(vma);
2017 		if (gap_end < low_limit)
2018 			return -ENOMEM;
2019 		if (gap_start <= high_limit &&
2020 		    gap_end > gap_start && gap_end - gap_start >= length)
2021 			goto found;
2022 
2023 		/* Visit left subtree if it looks promising */
2024 		if (vma->vm_rb.rb_left) {
2025 			struct vm_area_struct *left =
2026 				rb_entry(vma->vm_rb.rb_left,
2027 					 struct vm_area_struct, vm_rb);
2028 			if (left->rb_subtree_gap >= length) {
2029 				vma = left;
2030 				continue;
2031 			}
2032 		}
2033 
2034 		/* Go back up the rbtree to find next candidate node */
2035 		while (true) {
2036 			struct rb_node *prev = &vma->vm_rb;
2037 			if (!rb_parent(prev))
2038 				return -ENOMEM;
2039 			vma = rb_entry(rb_parent(prev),
2040 				       struct vm_area_struct, vm_rb);
2041 			if (prev == vma->vm_rb.rb_right) {
2042 				gap_start = vma->vm_prev ?
2043 					vm_end_gap(vma->vm_prev) : 0;
2044 				goto check_current;
2045 			}
2046 		}
2047 	}
2048 
2049 found:
2050 	/* We found a suitable gap. Clip it with the original high_limit. */
2051 	if (gap_end > info->high_limit)
2052 		gap_end = info->high_limit;
2053 
2054 found_highest:
2055 	/* Compute highest gap address at the desired alignment */
2056 	gap_end -= info->length;
2057 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2058 
2059 	VM_BUG_ON(gap_end < info->low_limit);
2060 	VM_BUG_ON(gap_end < gap_start);
2061 	return gap_end;
2062 }
2063 
2064 
2065 #ifndef arch_get_mmap_end
2066 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2067 #endif
2068 
2069 #ifndef arch_get_mmap_base
2070 #define arch_get_mmap_base(addr, base) (base)
2071 #endif
2072 
2073 /* Get an address range which is currently unmapped.
2074  * For shmat() with addr=0.
2075  *
2076  * Ugly calling convention alert:
2077  * Return value with the low bits set means error value,
2078  * ie
2079  *	if (ret & ~PAGE_MASK)
2080  *		error = ret;
2081  *
2082  * This function "knows" that -ENOMEM has the bits set.
2083  */
2084 #ifndef HAVE_ARCH_UNMAPPED_AREA
2085 unsigned long
2086 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2087 		unsigned long len, unsigned long pgoff, unsigned long flags)
2088 {
2089 	struct mm_struct *mm = current->mm;
2090 	struct vm_area_struct *vma, *prev;
2091 	struct vm_unmapped_area_info info;
2092 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2093 
2094 	if (len > mmap_end - mmap_min_addr)
2095 		return -ENOMEM;
2096 
2097 	if (flags & MAP_FIXED)
2098 		return addr;
2099 
2100 	if (addr) {
2101 		addr = PAGE_ALIGN(addr);
2102 		vma = find_vma_prev(mm, addr, &prev);
2103 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2104 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2105 		    (!prev || addr >= vm_end_gap(prev)))
2106 			return addr;
2107 	}
2108 
2109 	info.flags = 0;
2110 	info.length = len;
2111 	info.low_limit = mm->mmap_base;
2112 	info.high_limit = mmap_end;
2113 	info.align_mask = 0;
2114 	return vm_unmapped_area(&info);
2115 }
2116 #endif
2117 
2118 /*
2119  * This mmap-allocator allocates new areas top-down from below the
2120  * stack's low limit (the base):
2121  */
2122 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2123 unsigned long
2124 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2125 			  unsigned long len, unsigned long pgoff,
2126 			  unsigned long flags)
2127 {
2128 	struct vm_area_struct *vma, *prev;
2129 	struct mm_struct *mm = current->mm;
2130 	struct vm_unmapped_area_info info;
2131 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2132 
2133 	/* requested length too big for entire address space */
2134 	if (len > mmap_end - mmap_min_addr)
2135 		return -ENOMEM;
2136 
2137 	if (flags & MAP_FIXED)
2138 		return addr;
2139 
2140 	/* requesting a specific address */
2141 	if (addr) {
2142 		addr = PAGE_ALIGN(addr);
2143 		vma = find_vma_prev(mm, addr, &prev);
2144 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2145 				(!vma || addr + len <= vm_start_gap(vma)) &&
2146 				(!prev || addr >= vm_end_gap(prev)))
2147 			return addr;
2148 	}
2149 
2150 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2151 	info.length = len;
2152 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2153 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2154 	info.align_mask = 0;
2155 	addr = vm_unmapped_area(&info);
2156 
2157 	/*
2158 	 * A failed mmap() very likely causes application failure,
2159 	 * so fall back to the bottom-up function here. This scenario
2160 	 * can happen with large stack limits and large mmap()
2161 	 * allocations.
2162 	 */
2163 	if (offset_in_page(addr)) {
2164 		VM_BUG_ON(addr != -ENOMEM);
2165 		info.flags = 0;
2166 		info.low_limit = TASK_UNMAPPED_BASE;
2167 		info.high_limit = mmap_end;
2168 		addr = vm_unmapped_area(&info);
2169 	}
2170 
2171 	return addr;
2172 }
2173 #endif
2174 
2175 unsigned long
2176 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2177 		unsigned long pgoff, unsigned long flags)
2178 {
2179 	unsigned long (*get_area)(struct file *, unsigned long,
2180 				  unsigned long, unsigned long, unsigned long);
2181 
2182 	unsigned long error = arch_mmap_check(addr, len, flags);
2183 	if (error)
2184 		return error;
2185 
2186 	/* Careful about overflows.. */
2187 	if (len > TASK_SIZE)
2188 		return -ENOMEM;
2189 
2190 	get_area = current->mm->get_unmapped_area;
2191 	if (file) {
2192 		if (file->f_op->get_unmapped_area)
2193 			get_area = file->f_op->get_unmapped_area;
2194 	} else if (flags & MAP_SHARED) {
2195 		/*
2196 		 * mmap_region() will call shmem_zero_setup() to create a file,
2197 		 * so use shmem's get_unmapped_area in case it can be huge.
2198 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2199 		 */
2200 		pgoff = 0;
2201 		get_area = shmem_get_unmapped_area;
2202 	}
2203 
2204 	addr = get_area(file, addr, len, pgoff, flags);
2205 	if (IS_ERR_VALUE(addr))
2206 		return addr;
2207 
2208 	if (addr > TASK_SIZE - len)
2209 		return -ENOMEM;
2210 	if (offset_in_page(addr))
2211 		return -EINVAL;
2212 
2213 	error = security_mmap_addr(addr);
2214 	return error ? error : addr;
2215 }
2216 
2217 EXPORT_SYMBOL(get_unmapped_area);
2218 
2219 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2220 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2221 {
2222 	struct rb_node *rb_node;
2223 	struct vm_area_struct *vma;
2224 
2225 	/* Check the cache first. */
2226 	vma = vmacache_find(mm, addr);
2227 	if (likely(vma))
2228 		return vma;
2229 
2230 	rb_node = mm->mm_rb.rb_node;
2231 
2232 	while (rb_node) {
2233 		struct vm_area_struct *tmp;
2234 
2235 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2236 
2237 		if (tmp->vm_end > addr) {
2238 			vma = tmp;
2239 			if (tmp->vm_start <= addr)
2240 				break;
2241 			rb_node = rb_node->rb_left;
2242 		} else
2243 			rb_node = rb_node->rb_right;
2244 	}
2245 
2246 	if (vma)
2247 		vmacache_update(addr, vma);
2248 	return vma;
2249 }
2250 
2251 EXPORT_SYMBOL(find_vma);
2252 
2253 /*
2254  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2255  */
2256 struct vm_area_struct *
2257 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2258 			struct vm_area_struct **pprev)
2259 {
2260 	struct vm_area_struct *vma;
2261 
2262 	vma = find_vma(mm, addr);
2263 	if (vma) {
2264 		*pprev = vma->vm_prev;
2265 	} else {
2266 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2267 
2268 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2269 	}
2270 	return vma;
2271 }
2272 
2273 /*
2274  * Verify that the stack growth is acceptable and
2275  * update accounting. This is shared with both the
2276  * grow-up and grow-down cases.
2277  */
2278 static int acct_stack_growth(struct vm_area_struct *vma,
2279 			     unsigned long size, unsigned long grow)
2280 {
2281 	struct mm_struct *mm = vma->vm_mm;
2282 	unsigned long new_start;
2283 
2284 	/* address space limit tests */
2285 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2286 		return -ENOMEM;
2287 
2288 	/* Stack limit test */
2289 	if (size > rlimit(RLIMIT_STACK))
2290 		return -ENOMEM;
2291 
2292 	/* mlock limit tests */
2293 	if (vma->vm_flags & VM_LOCKED) {
2294 		unsigned long locked;
2295 		unsigned long limit;
2296 		locked = mm->locked_vm + grow;
2297 		limit = rlimit(RLIMIT_MEMLOCK);
2298 		limit >>= PAGE_SHIFT;
2299 		if (locked > limit && !capable(CAP_IPC_LOCK))
2300 			return -ENOMEM;
2301 	}
2302 
2303 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2304 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2305 			vma->vm_end - size;
2306 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2307 		return -EFAULT;
2308 
2309 	/*
2310 	 * Overcommit..  This must be the final test, as it will
2311 	 * update security statistics.
2312 	 */
2313 	if (security_vm_enough_memory_mm(mm, grow))
2314 		return -ENOMEM;
2315 
2316 	return 0;
2317 }
2318 
2319 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2320 /*
2321  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2322  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2323  */
2324 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2325 {
2326 	struct mm_struct *mm = vma->vm_mm;
2327 	struct vm_area_struct *next;
2328 	unsigned long gap_addr;
2329 	int error = 0;
2330 
2331 	if (!(vma->vm_flags & VM_GROWSUP))
2332 		return -EFAULT;
2333 
2334 	/* Guard against exceeding limits of the address space. */
2335 	address &= PAGE_MASK;
2336 	if (address >= (TASK_SIZE & PAGE_MASK))
2337 		return -ENOMEM;
2338 	address += PAGE_SIZE;
2339 
2340 	/* Enforce stack_guard_gap */
2341 	gap_addr = address + stack_guard_gap;
2342 
2343 	/* Guard against overflow */
2344 	if (gap_addr < address || gap_addr > TASK_SIZE)
2345 		gap_addr = TASK_SIZE;
2346 
2347 	next = vma->vm_next;
2348 	if (next && next->vm_start < gap_addr &&
2349 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2350 		if (!(next->vm_flags & VM_GROWSUP))
2351 			return -ENOMEM;
2352 		/* Check that both stack segments have the same anon_vma? */
2353 	}
2354 
2355 	/* We must make sure the anon_vma is allocated. */
2356 	if (unlikely(anon_vma_prepare(vma)))
2357 		return -ENOMEM;
2358 
2359 	/*
2360 	 * vma->vm_start/vm_end cannot change under us because the caller
2361 	 * is required to hold the mmap_sem in read mode.  We need the
2362 	 * anon_vma lock to serialize against concurrent expand_stacks.
2363 	 */
2364 	anon_vma_lock_write(vma->anon_vma);
2365 
2366 	/* Somebody else might have raced and expanded it already */
2367 	if (address > vma->vm_end) {
2368 		unsigned long size, grow;
2369 
2370 		size = address - vma->vm_start;
2371 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2372 
2373 		error = -ENOMEM;
2374 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2375 			error = acct_stack_growth(vma, size, grow);
2376 			if (!error) {
2377 				/*
2378 				 * vma_gap_update() doesn't support concurrent
2379 				 * updates, but we only hold a shared mmap_sem
2380 				 * lock here, so we need to protect against
2381 				 * concurrent vma expansions.
2382 				 * anon_vma_lock_write() doesn't help here, as
2383 				 * we don't guarantee that all growable vmas
2384 				 * in a mm share the same root anon vma.
2385 				 * So, we reuse mm->page_table_lock to guard
2386 				 * against concurrent vma expansions.
2387 				 */
2388 				spin_lock(&mm->page_table_lock);
2389 				if (vma->vm_flags & VM_LOCKED)
2390 					mm->locked_vm += grow;
2391 				vm_stat_account(mm, vma->vm_flags, grow);
2392 				anon_vma_interval_tree_pre_update_vma(vma);
2393 				vma->vm_end = address;
2394 				anon_vma_interval_tree_post_update_vma(vma);
2395 				if (vma->vm_next)
2396 					vma_gap_update(vma->vm_next);
2397 				else
2398 					mm->highest_vm_end = vm_end_gap(vma);
2399 				spin_unlock(&mm->page_table_lock);
2400 
2401 				perf_event_mmap(vma);
2402 			}
2403 		}
2404 	}
2405 	anon_vma_unlock_write(vma->anon_vma);
2406 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2407 	validate_mm(mm);
2408 	return error;
2409 }
2410 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2411 
2412 /*
2413  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2414  */
2415 int expand_downwards(struct vm_area_struct *vma,
2416 				   unsigned long address)
2417 {
2418 	struct mm_struct *mm = vma->vm_mm;
2419 	struct vm_area_struct *prev;
2420 	int error = 0;
2421 
2422 	address &= PAGE_MASK;
2423 	if (address < mmap_min_addr)
2424 		return -EPERM;
2425 
2426 	/* Enforce stack_guard_gap */
2427 	prev = vma->vm_prev;
2428 	/* Check that both stack segments have the same anon_vma? */
2429 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2430 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2431 		if (address - prev->vm_end < stack_guard_gap)
2432 			return -ENOMEM;
2433 	}
2434 
2435 	/* We must make sure the anon_vma is allocated. */
2436 	if (unlikely(anon_vma_prepare(vma)))
2437 		return -ENOMEM;
2438 
2439 	/*
2440 	 * vma->vm_start/vm_end cannot change under us because the caller
2441 	 * is required to hold the mmap_sem in read mode.  We need the
2442 	 * anon_vma lock to serialize against concurrent expand_stacks.
2443 	 */
2444 	anon_vma_lock_write(vma->anon_vma);
2445 
2446 	/* Somebody else might have raced and expanded it already */
2447 	if (address < vma->vm_start) {
2448 		unsigned long size, grow;
2449 
2450 		size = vma->vm_end - address;
2451 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2452 
2453 		error = -ENOMEM;
2454 		if (grow <= vma->vm_pgoff) {
2455 			error = acct_stack_growth(vma, size, grow);
2456 			if (!error) {
2457 				/*
2458 				 * vma_gap_update() doesn't support concurrent
2459 				 * updates, but we only hold a shared mmap_sem
2460 				 * lock here, so we need to protect against
2461 				 * concurrent vma expansions.
2462 				 * anon_vma_lock_write() doesn't help here, as
2463 				 * we don't guarantee that all growable vmas
2464 				 * in a mm share the same root anon vma.
2465 				 * So, we reuse mm->page_table_lock to guard
2466 				 * against concurrent vma expansions.
2467 				 */
2468 				spin_lock(&mm->page_table_lock);
2469 				if (vma->vm_flags & VM_LOCKED)
2470 					mm->locked_vm += grow;
2471 				vm_stat_account(mm, vma->vm_flags, grow);
2472 				anon_vma_interval_tree_pre_update_vma(vma);
2473 				vma->vm_start = address;
2474 				vma->vm_pgoff -= grow;
2475 				anon_vma_interval_tree_post_update_vma(vma);
2476 				vma_gap_update(vma);
2477 				spin_unlock(&mm->page_table_lock);
2478 
2479 				perf_event_mmap(vma);
2480 			}
2481 		}
2482 	}
2483 	anon_vma_unlock_write(vma->anon_vma);
2484 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2485 	validate_mm(mm);
2486 	return error;
2487 }
2488 
2489 /* enforced gap between the expanding stack and other mappings. */
2490 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2491 
2492 static int __init cmdline_parse_stack_guard_gap(char *p)
2493 {
2494 	unsigned long val;
2495 	char *endptr;
2496 
2497 	val = simple_strtoul(p, &endptr, 10);
2498 	if (!*endptr)
2499 		stack_guard_gap = val << PAGE_SHIFT;
2500 
2501 	return 0;
2502 }
2503 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2504 
2505 #ifdef CONFIG_STACK_GROWSUP
2506 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2507 {
2508 	return expand_upwards(vma, address);
2509 }
2510 
2511 struct vm_area_struct *
2512 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2513 {
2514 	struct vm_area_struct *vma, *prev;
2515 
2516 	addr &= PAGE_MASK;
2517 	vma = find_vma_prev(mm, addr, &prev);
2518 	if (vma && (vma->vm_start <= addr))
2519 		return vma;
2520 	/* don't alter vm_end if the coredump is running */
2521 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2522 		return NULL;
2523 	if (prev->vm_flags & VM_LOCKED)
2524 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2525 	return prev;
2526 }
2527 #else
2528 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2529 {
2530 	return expand_downwards(vma, address);
2531 }
2532 
2533 struct vm_area_struct *
2534 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2535 {
2536 	struct vm_area_struct *vma;
2537 	unsigned long start;
2538 
2539 	addr &= PAGE_MASK;
2540 	vma = find_vma(mm, addr);
2541 	if (!vma)
2542 		return NULL;
2543 	if (vma->vm_start <= addr)
2544 		return vma;
2545 	if (!(vma->vm_flags & VM_GROWSDOWN))
2546 		return NULL;
2547 	/* don't alter vm_start if the coredump is running */
2548 	if (!mmget_still_valid(mm))
2549 		return NULL;
2550 	start = vma->vm_start;
2551 	if (expand_stack(vma, addr))
2552 		return NULL;
2553 	if (vma->vm_flags & VM_LOCKED)
2554 		populate_vma_page_range(vma, addr, start, NULL);
2555 	return vma;
2556 }
2557 #endif
2558 
2559 EXPORT_SYMBOL_GPL(find_extend_vma);
2560 
2561 /*
2562  * Ok - we have the memory areas we should free on the vma list,
2563  * so release them, and do the vma updates.
2564  *
2565  * Called with the mm semaphore held.
2566  */
2567 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2568 {
2569 	unsigned long nr_accounted = 0;
2570 
2571 	/* Update high watermark before we lower total_vm */
2572 	update_hiwater_vm(mm);
2573 	do {
2574 		long nrpages = vma_pages(vma);
2575 
2576 		if (vma->vm_flags & VM_ACCOUNT)
2577 			nr_accounted += nrpages;
2578 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2579 		vma = remove_vma(vma);
2580 	} while (vma);
2581 	vm_unacct_memory(nr_accounted);
2582 	validate_mm(mm);
2583 }
2584 
2585 /*
2586  * Get rid of page table information in the indicated region.
2587  *
2588  * Called with the mm semaphore held.
2589  */
2590 static void unmap_region(struct mm_struct *mm,
2591 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2592 		unsigned long start, unsigned long end)
2593 {
2594 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2595 	struct mmu_gather tlb;
2596 
2597 	lru_add_drain();
2598 	tlb_gather_mmu(&tlb, mm, start, end);
2599 	update_hiwater_rss(mm);
2600 	unmap_vmas(&tlb, vma, start, end);
2601 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2602 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2603 	tlb_finish_mmu(&tlb, start, end);
2604 }
2605 
2606 /*
2607  * Create a list of vma's touched by the unmap, removing them from the mm's
2608  * vma list as we go..
2609  */
2610 static void
2611 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2612 	struct vm_area_struct *prev, unsigned long end)
2613 {
2614 	struct vm_area_struct **insertion_point;
2615 	struct vm_area_struct *tail_vma = NULL;
2616 
2617 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2618 	vma->vm_prev = NULL;
2619 	do {
2620 		vma_rb_erase(vma, &mm->mm_rb);
2621 		mm->map_count--;
2622 		tail_vma = vma;
2623 		vma = vma->vm_next;
2624 	} while (vma && vma->vm_start < end);
2625 	*insertion_point = vma;
2626 	if (vma) {
2627 		vma->vm_prev = prev;
2628 		vma_gap_update(vma);
2629 	} else
2630 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2631 	tail_vma->vm_next = NULL;
2632 
2633 	/* Kill the cache */
2634 	vmacache_invalidate(mm);
2635 }
2636 
2637 /*
2638  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2639  * has already been checked or doesn't make sense to fail.
2640  */
2641 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2642 		unsigned long addr, int new_below)
2643 {
2644 	struct vm_area_struct *new;
2645 	int err;
2646 
2647 	if (vma->vm_ops && vma->vm_ops->split) {
2648 		err = vma->vm_ops->split(vma, addr);
2649 		if (err)
2650 			return err;
2651 	}
2652 
2653 	new = vm_area_dup(vma);
2654 	if (!new)
2655 		return -ENOMEM;
2656 
2657 	if (new_below)
2658 		new->vm_end = addr;
2659 	else {
2660 		new->vm_start = addr;
2661 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2662 	}
2663 
2664 	err = vma_dup_policy(vma, new);
2665 	if (err)
2666 		goto out_free_vma;
2667 
2668 	err = anon_vma_clone(new, vma);
2669 	if (err)
2670 		goto out_free_mpol;
2671 
2672 	if (new->vm_file)
2673 		get_file(new->vm_file);
2674 
2675 	if (new->vm_ops && new->vm_ops->open)
2676 		new->vm_ops->open(new);
2677 
2678 	if (new_below)
2679 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2680 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2681 	else
2682 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2683 
2684 	/* Success. */
2685 	if (!err)
2686 		return 0;
2687 
2688 	/* Clean everything up if vma_adjust failed. */
2689 	if (new->vm_ops && new->vm_ops->close)
2690 		new->vm_ops->close(new);
2691 	if (new->vm_file)
2692 		fput(new->vm_file);
2693 	unlink_anon_vmas(new);
2694  out_free_mpol:
2695 	mpol_put(vma_policy(new));
2696  out_free_vma:
2697 	vm_area_free(new);
2698 	return err;
2699 }
2700 
2701 /*
2702  * Split a vma into two pieces at address 'addr', a new vma is allocated
2703  * either for the first part or the tail.
2704  */
2705 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2706 	      unsigned long addr, int new_below)
2707 {
2708 	if (mm->map_count >= sysctl_max_map_count)
2709 		return -ENOMEM;
2710 
2711 	return __split_vma(mm, vma, addr, new_below);
2712 }
2713 
2714 /* Munmap is split into 2 main parts -- this part which finds
2715  * what needs doing, and the areas themselves, which do the
2716  * work.  This now handles partial unmappings.
2717  * Jeremy Fitzhardinge <jeremy@goop.org>
2718  */
2719 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2720 		struct list_head *uf, bool downgrade)
2721 {
2722 	unsigned long end;
2723 	struct vm_area_struct *vma, *prev, *last;
2724 
2725 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2726 		return -EINVAL;
2727 
2728 	len = PAGE_ALIGN(len);
2729 	end = start + len;
2730 	if (len == 0)
2731 		return -EINVAL;
2732 
2733 	/*
2734 	 * arch_unmap() might do unmaps itself.  It must be called
2735 	 * and finish any rbtree manipulation before this code
2736 	 * runs and also starts to manipulate the rbtree.
2737 	 */
2738 	arch_unmap(mm, start, end);
2739 
2740 	/* Find the first overlapping VMA */
2741 	vma = find_vma(mm, start);
2742 	if (!vma)
2743 		return 0;
2744 	prev = vma->vm_prev;
2745 	/* we have  start < vma->vm_end  */
2746 
2747 	/* if it doesn't overlap, we have nothing.. */
2748 	if (vma->vm_start >= end)
2749 		return 0;
2750 
2751 	/*
2752 	 * If we need to split any vma, do it now to save pain later.
2753 	 *
2754 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2755 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2756 	 * places tmp vma above, and higher split_vma places tmp vma below.
2757 	 */
2758 	if (start > vma->vm_start) {
2759 		int error;
2760 
2761 		/*
2762 		 * Make sure that map_count on return from munmap() will
2763 		 * not exceed its limit; but let map_count go just above
2764 		 * its limit temporarily, to help free resources as expected.
2765 		 */
2766 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2767 			return -ENOMEM;
2768 
2769 		error = __split_vma(mm, vma, start, 0);
2770 		if (error)
2771 			return error;
2772 		prev = vma;
2773 	}
2774 
2775 	/* Does it split the last one? */
2776 	last = find_vma(mm, end);
2777 	if (last && end > last->vm_start) {
2778 		int error = __split_vma(mm, last, end, 1);
2779 		if (error)
2780 			return error;
2781 	}
2782 	vma = prev ? prev->vm_next : mm->mmap;
2783 
2784 	if (unlikely(uf)) {
2785 		/*
2786 		 * If userfaultfd_unmap_prep returns an error the vmas
2787 		 * will remain splitted, but userland will get a
2788 		 * highly unexpected error anyway. This is no
2789 		 * different than the case where the first of the two
2790 		 * __split_vma fails, but we don't undo the first
2791 		 * split, despite we could. This is unlikely enough
2792 		 * failure that it's not worth optimizing it for.
2793 		 */
2794 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2795 		if (error)
2796 			return error;
2797 	}
2798 
2799 	/*
2800 	 * unlock any mlock()ed ranges before detaching vmas
2801 	 */
2802 	if (mm->locked_vm) {
2803 		struct vm_area_struct *tmp = vma;
2804 		while (tmp && tmp->vm_start < end) {
2805 			if (tmp->vm_flags & VM_LOCKED) {
2806 				mm->locked_vm -= vma_pages(tmp);
2807 				munlock_vma_pages_all(tmp);
2808 			}
2809 
2810 			tmp = tmp->vm_next;
2811 		}
2812 	}
2813 
2814 	/* Detach vmas from rbtree */
2815 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2816 
2817 	if (downgrade)
2818 		downgrade_write(&mm->mmap_sem);
2819 
2820 	unmap_region(mm, vma, prev, start, end);
2821 
2822 	/* Fix up all other VM information */
2823 	remove_vma_list(mm, vma);
2824 
2825 	return downgrade ? 1 : 0;
2826 }
2827 
2828 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2829 	      struct list_head *uf)
2830 {
2831 	return __do_munmap(mm, start, len, uf, false);
2832 }
2833 
2834 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2835 {
2836 	int ret;
2837 	struct mm_struct *mm = current->mm;
2838 	LIST_HEAD(uf);
2839 
2840 	if (down_write_killable(&mm->mmap_sem))
2841 		return -EINTR;
2842 
2843 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2844 	/*
2845 	 * Returning 1 indicates mmap_sem is downgraded.
2846 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2847 	 * it to 0 before return.
2848 	 */
2849 	if (ret == 1) {
2850 		up_read(&mm->mmap_sem);
2851 		ret = 0;
2852 	} else
2853 		up_write(&mm->mmap_sem);
2854 
2855 	userfaultfd_unmap_complete(mm, &uf);
2856 	return ret;
2857 }
2858 
2859 int vm_munmap(unsigned long start, size_t len)
2860 {
2861 	return __vm_munmap(start, len, false);
2862 }
2863 EXPORT_SYMBOL(vm_munmap);
2864 
2865 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2866 {
2867 	addr = untagged_addr(addr);
2868 	profile_munmap(addr);
2869 	return __vm_munmap(addr, len, true);
2870 }
2871 
2872 
2873 /*
2874  * Emulation of deprecated remap_file_pages() syscall.
2875  */
2876 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2877 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2878 {
2879 
2880 	struct mm_struct *mm = current->mm;
2881 	struct vm_area_struct *vma;
2882 	unsigned long populate = 0;
2883 	unsigned long ret = -EINVAL;
2884 	struct file *file;
2885 
2886 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2887 		     current->comm, current->pid);
2888 
2889 	if (prot)
2890 		return ret;
2891 	start = start & PAGE_MASK;
2892 	size = size & PAGE_MASK;
2893 
2894 	if (start + size <= start)
2895 		return ret;
2896 
2897 	/* Does pgoff wrap? */
2898 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2899 		return ret;
2900 
2901 	if (down_write_killable(&mm->mmap_sem))
2902 		return -EINTR;
2903 
2904 	vma = find_vma(mm, start);
2905 
2906 	if (!vma || !(vma->vm_flags & VM_SHARED))
2907 		goto out;
2908 
2909 	if (start < vma->vm_start)
2910 		goto out;
2911 
2912 	if (start + size > vma->vm_end) {
2913 		struct vm_area_struct *next;
2914 
2915 		for (next = vma->vm_next; next; next = next->vm_next) {
2916 			/* hole between vmas ? */
2917 			if (next->vm_start != next->vm_prev->vm_end)
2918 				goto out;
2919 
2920 			if (next->vm_file != vma->vm_file)
2921 				goto out;
2922 
2923 			if (next->vm_flags != vma->vm_flags)
2924 				goto out;
2925 
2926 			if (start + size <= next->vm_end)
2927 				break;
2928 		}
2929 
2930 		if (!next)
2931 			goto out;
2932 	}
2933 
2934 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2935 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2936 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2937 
2938 	flags &= MAP_NONBLOCK;
2939 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2940 	if (vma->vm_flags & VM_LOCKED) {
2941 		struct vm_area_struct *tmp;
2942 		flags |= MAP_LOCKED;
2943 
2944 		/* drop PG_Mlocked flag for over-mapped range */
2945 		for (tmp = vma; tmp->vm_start >= start + size;
2946 				tmp = tmp->vm_next) {
2947 			/*
2948 			 * Split pmd and munlock page on the border
2949 			 * of the range.
2950 			 */
2951 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2952 
2953 			munlock_vma_pages_range(tmp,
2954 					max(tmp->vm_start, start),
2955 					min(tmp->vm_end, start + size));
2956 		}
2957 	}
2958 
2959 	file = get_file(vma->vm_file);
2960 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2961 			prot, flags, pgoff, &populate, NULL);
2962 	fput(file);
2963 out:
2964 	up_write(&mm->mmap_sem);
2965 	if (populate)
2966 		mm_populate(ret, populate);
2967 	if (!IS_ERR_VALUE(ret))
2968 		ret = 0;
2969 	return ret;
2970 }
2971 
2972 /*
2973  *  this is really a simplified "do_mmap".  it only handles
2974  *  anonymous maps.  eventually we may be able to do some
2975  *  brk-specific accounting here.
2976  */
2977 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2978 {
2979 	struct mm_struct *mm = current->mm;
2980 	struct vm_area_struct *vma, *prev;
2981 	struct rb_node **rb_link, *rb_parent;
2982 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2983 	int error;
2984 	unsigned long mapped_addr;
2985 
2986 	/* Until we need other flags, refuse anything except VM_EXEC. */
2987 	if ((flags & (~VM_EXEC)) != 0)
2988 		return -EINVAL;
2989 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2990 
2991 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2992 	if (IS_ERR_VALUE(mapped_addr))
2993 		return mapped_addr;
2994 
2995 	error = mlock_future_check(mm, mm->def_flags, len);
2996 	if (error)
2997 		return error;
2998 
2999 	/*
3000 	 * Clear old maps.  this also does some error checking for us
3001 	 */
3002 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3003 			      &rb_parent)) {
3004 		if (do_munmap(mm, addr, len, uf))
3005 			return -ENOMEM;
3006 	}
3007 
3008 	/* Check against address space limits *after* clearing old maps... */
3009 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3010 		return -ENOMEM;
3011 
3012 	if (mm->map_count > sysctl_max_map_count)
3013 		return -ENOMEM;
3014 
3015 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3016 		return -ENOMEM;
3017 
3018 	/* Can we just expand an old private anonymous mapping? */
3019 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3020 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3021 	if (vma)
3022 		goto out;
3023 
3024 	/*
3025 	 * create a vma struct for an anonymous mapping
3026 	 */
3027 	vma = vm_area_alloc(mm);
3028 	if (!vma) {
3029 		vm_unacct_memory(len >> PAGE_SHIFT);
3030 		return -ENOMEM;
3031 	}
3032 
3033 	vma_set_anonymous(vma);
3034 	vma->vm_start = addr;
3035 	vma->vm_end = addr + len;
3036 	vma->vm_pgoff = pgoff;
3037 	vma->vm_flags = flags;
3038 	vma->vm_page_prot = vm_get_page_prot(flags);
3039 	vma_link(mm, vma, prev, rb_link, rb_parent);
3040 out:
3041 	perf_event_mmap(vma);
3042 	mm->total_vm += len >> PAGE_SHIFT;
3043 	mm->data_vm += len >> PAGE_SHIFT;
3044 	if (flags & VM_LOCKED)
3045 		mm->locked_vm += (len >> PAGE_SHIFT);
3046 	vma->vm_flags |= VM_SOFTDIRTY;
3047 	return 0;
3048 }
3049 
3050 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3051 {
3052 	struct mm_struct *mm = current->mm;
3053 	unsigned long len;
3054 	int ret;
3055 	bool populate;
3056 	LIST_HEAD(uf);
3057 
3058 	len = PAGE_ALIGN(request);
3059 	if (len < request)
3060 		return -ENOMEM;
3061 	if (!len)
3062 		return 0;
3063 
3064 	if (down_write_killable(&mm->mmap_sem))
3065 		return -EINTR;
3066 
3067 	ret = do_brk_flags(addr, len, flags, &uf);
3068 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3069 	up_write(&mm->mmap_sem);
3070 	userfaultfd_unmap_complete(mm, &uf);
3071 	if (populate && !ret)
3072 		mm_populate(addr, len);
3073 	return ret;
3074 }
3075 EXPORT_SYMBOL(vm_brk_flags);
3076 
3077 int vm_brk(unsigned long addr, unsigned long len)
3078 {
3079 	return vm_brk_flags(addr, len, 0);
3080 }
3081 EXPORT_SYMBOL(vm_brk);
3082 
3083 /* Release all mmaps. */
3084 void exit_mmap(struct mm_struct *mm)
3085 {
3086 	struct mmu_gather tlb;
3087 	struct vm_area_struct *vma;
3088 	unsigned long nr_accounted = 0;
3089 
3090 	/* mm's last user has gone, and its about to be pulled down */
3091 	mmu_notifier_release(mm);
3092 
3093 	if (unlikely(mm_is_oom_victim(mm))) {
3094 		/*
3095 		 * Manually reap the mm to free as much memory as possible.
3096 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3097 		 * this mm from further consideration.  Taking mm->mmap_sem for
3098 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3099 		 * reaper will not run on this mm again after mmap_sem is
3100 		 * dropped.
3101 		 *
3102 		 * Nothing can be holding mm->mmap_sem here and the above call
3103 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3104 		 * __oom_reap_task_mm() will not block.
3105 		 *
3106 		 * This needs to be done before calling munlock_vma_pages_all(),
3107 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3108 		 * reliably test it.
3109 		 */
3110 		(void)__oom_reap_task_mm(mm);
3111 
3112 		set_bit(MMF_OOM_SKIP, &mm->flags);
3113 		down_write(&mm->mmap_sem);
3114 		up_write(&mm->mmap_sem);
3115 	}
3116 
3117 	if (mm->locked_vm) {
3118 		vma = mm->mmap;
3119 		while (vma) {
3120 			if (vma->vm_flags & VM_LOCKED)
3121 				munlock_vma_pages_all(vma);
3122 			vma = vma->vm_next;
3123 		}
3124 	}
3125 
3126 	arch_exit_mmap(mm);
3127 
3128 	vma = mm->mmap;
3129 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3130 		return;
3131 
3132 	lru_add_drain();
3133 	flush_cache_mm(mm);
3134 	tlb_gather_mmu(&tlb, mm, 0, -1);
3135 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3136 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3137 	unmap_vmas(&tlb, vma, 0, -1);
3138 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3139 	tlb_finish_mmu(&tlb, 0, -1);
3140 
3141 	/*
3142 	 * Walk the list again, actually closing and freeing it,
3143 	 * with preemption enabled, without holding any MM locks.
3144 	 */
3145 	while (vma) {
3146 		if (vma->vm_flags & VM_ACCOUNT)
3147 			nr_accounted += vma_pages(vma);
3148 		vma = remove_vma(vma);
3149 	}
3150 	vm_unacct_memory(nr_accounted);
3151 }
3152 
3153 /* Insert vm structure into process list sorted by address
3154  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3155  * then i_mmap_rwsem is taken here.
3156  */
3157 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3158 {
3159 	struct vm_area_struct *prev;
3160 	struct rb_node **rb_link, *rb_parent;
3161 
3162 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3163 			   &prev, &rb_link, &rb_parent))
3164 		return -ENOMEM;
3165 	if ((vma->vm_flags & VM_ACCOUNT) &&
3166 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3167 		return -ENOMEM;
3168 
3169 	/*
3170 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3171 	 * until its first write fault, when page's anon_vma and index
3172 	 * are set.  But now set the vm_pgoff it will almost certainly
3173 	 * end up with (unless mremap moves it elsewhere before that
3174 	 * first wfault), so /proc/pid/maps tells a consistent story.
3175 	 *
3176 	 * By setting it to reflect the virtual start address of the
3177 	 * vma, merges and splits can happen in a seamless way, just
3178 	 * using the existing file pgoff checks and manipulations.
3179 	 * Similarly in do_mmap_pgoff and in do_brk.
3180 	 */
3181 	if (vma_is_anonymous(vma)) {
3182 		BUG_ON(vma->anon_vma);
3183 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3184 	}
3185 
3186 	vma_link(mm, vma, prev, rb_link, rb_parent);
3187 	return 0;
3188 }
3189 
3190 /*
3191  * Copy the vma structure to a new location in the same mm,
3192  * prior to moving page table entries, to effect an mremap move.
3193  */
3194 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3195 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3196 	bool *need_rmap_locks)
3197 {
3198 	struct vm_area_struct *vma = *vmap;
3199 	unsigned long vma_start = vma->vm_start;
3200 	struct mm_struct *mm = vma->vm_mm;
3201 	struct vm_area_struct *new_vma, *prev;
3202 	struct rb_node **rb_link, *rb_parent;
3203 	bool faulted_in_anon_vma = true;
3204 
3205 	/*
3206 	 * If anonymous vma has not yet been faulted, update new pgoff
3207 	 * to match new location, to increase its chance of merging.
3208 	 */
3209 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3210 		pgoff = addr >> PAGE_SHIFT;
3211 		faulted_in_anon_vma = false;
3212 	}
3213 
3214 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3215 		return NULL;	/* should never get here */
3216 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3217 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3218 			    vma->vm_userfaultfd_ctx);
3219 	if (new_vma) {
3220 		/*
3221 		 * Source vma may have been merged into new_vma
3222 		 */
3223 		if (unlikely(vma_start >= new_vma->vm_start &&
3224 			     vma_start < new_vma->vm_end)) {
3225 			/*
3226 			 * The only way we can get a vma_merge with
3227 			 * self during an mremap is if the vma hasn't
3228 			 * been faulted in yet and we were allowed to
3229 			 * reset the dst vma->vm_pgoff to the
3230 			 * destination address of the mremap to allow
3231 			 * the merge to happen. mremap must change the
3232 			 * vm_pgoff linearity between src and dst vmas
3233 			 * (in turn preventing a vma_merge) to be
3234 			 * safe. It is only safe to keep the vm_pgoff
3235 			 * linear if there are no pages mapped yet.
3236 			 */
3237 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3238 			*vmap = vma = new_vma;
3239 		}
3240 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3241 	} else {
3242 		new_vma = vm_area_dup(vma);
3243 		if (!new_vma)
3244 			goto out;
3245 		new_vma->vm_start = addr;
3246 		new_vma->vm_end = addr + len;
3247 		new_vma->vm_pgoff = pgoff;
3248 		if (vma_dup_policy(vma, new_vma))
3249 			goto out_free_vma;
3250 		if (anon_vma_clone(new_vma, vma))
3251 			goto out_free_mempol;
3252 		if (new_vma->vm_file)
3253 			get_file(new_vma->vm_file);
3254 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3255 			new_vma->vm_ops->open(new_vma);
3256 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3257 		*need_rmap_locks = false;
3258 	}
3259 	return new_vma;
3260 
3261 out_free_mempol:
3262 	mpol_put(vma_policy(new_vma));
3263 out_free_vma:
3264 	vm_area_free(new_vma);
3265 out:
3266 	return NULL;
3267 }
3268 
3269 /*
3270  * Return true if the calling process may expand its vm space by the passed
3271  * number of pages
3272  */
3273 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3274 {
3275 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3276 		return false;
3277 
3278 	if (is_data_mapping(flags) &&
3279 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3280 		/* Workaround for Valgrind */
3281 		if (rlimit(RLIMIT_DATA) == 0 &&
3282 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3283 			return true;
3284 
3285 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3286 			     current->comm, current->pid,
3287 			     (mm->data_vm + npages) << PAGE_SHIFT,
3288 			     rlimit(RLIMIT_DATA),
3289 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3290 
3291 		if (!ignore_rlimit_data)
3292 			return false;
3293 	}
3294 
3295 	return true;
3296 }
3297 
3298 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3299 {
3300 	mm->total_vm += npages;
3301 
3302 	if (is_exec_mapping(flags))
3303 		mm->exec_vm += npages;
3304 	else if (is_stack_mapping(flags))
3305 		mm->stack_vm += npages;
3306 	else if (is_data_mapping(flags))
3307 		mm->data_vm += npages;
3308 }
3309 
3310 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3311 
3312 /*
3313  * Having a close hook prevents vma merging regardless of flags.
3314  */
3315 static void special_mapping_close(struct vm_area_struct *vma)
3316 {
3317 }
3318 
3319 static const char *special_mapping_name(struct vm_area_struct *vma)
3320 {
3321 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3322 }
3323 
3324 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3325 {
3326 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3327 
3328 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3329 		return -EFAULT;
3330 
3331 	if (sm->mremap)
3332 		return sm->mremap(sm, new_vma);
3333 
3334 	return 0;
3335 }
3336 
3337 static const struct vm_operations_struct special_mapping_vmops = {
3338 	.close = special_mapping_close,
3339 	.fault = special_mapping_fault,
3340 	.mremap = special_mapping_mremap,
3341 	.name = special_mapping_name,
3342 };
3343 
3344 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3345 	.close = special_mapping_close,
3346 	.fault = special_mapping_fault,
3347 };
3348 
3349 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3350 {
3351 	struct vm_area_struct *vma = vmf->vma;
3352 	pgoff_t pgoff;
3353 	struct page **pages;
3354 
3355 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3356 		pages = vma->vm_private_data;
3357 	} else {
3358 		struct vm_special_mapping *sm = vma->vm_private_data;
3359 
3360 		if (sm->fault)
3361 			return sm->fault(sm, vmf->vma, vmf);
3362 
3363 		pages = sm->pages;
3364 	}
3365 
3366 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3367 		pgoff--;
3368 
3369 	if (*pages) {
3370 		struct page *page = *pages;
3371 		get_page(page);
3372 		vmf->page = page;
3373 		return 0;
3374 	}
3375 
3376 	return VM_FAULT_SIGBUS;
3377 }
3378 
3379 static struct vm_area_struct *__install_special_mapping(
3380 	struct mm_struct *mm,
3381 	unsigned long addr, unsigned long len,
3382 	unsigned long vm_flags, void *priv,
3383 	const struct vm_operations_struct *ops)
3384 {
3385 	int ret;
3386 	struct vm_area_struct *vma;
3387 
3388 	vma = vm_area_alloc(mm);
3389 	if (unlikely(vma == NULL))
3390 		return ERR_PTR(-ENOMEM);
3391 
3392 	vma->vm_start = addr;
3393 	vma->vm_end = addr + len;
3394 
3395 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3396 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3397 
3398 	vma->vm_ops = ops;
3399 	vma->vm_private_data = priv;
3400 
3401 	ret = insert_vm_struct(mm, vma);
3402 	if (ret)
3403 		goto out;
3404 
3405 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3406 
3407 	perf_event_mmap(vma);
3408 
3409 	return vma;
3410 
3411 out:
3412 	vm_area_free(vma);
3413 	return ERR_PTR(ret);
3414 }
3415 
3416 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3417 	const struct vm_special_mapping *sm)
3418 {
3419 	return vma->vm_private_data == sm &&
3420 		(vma->vm_ops == &special_mapping_vmops ||
3421 		 vma->vm_ops == &legacy_special_mapping_vmops);
3422 }
3423 
3424 /*
3425  * Called with mm->mmap_sem held for writing.
3426  * Insert a new vma covering the given region, with the given flags.
3427  * Its pages are supplied by the given array of struct page *.
3428  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3429  * The region past the last page supplied will always produce SIGBUS.
3430  * The array pointer and the pages it points to are assumed to stay alive
3431  * for as long as this mapping might exist.
3432  */
3433 struct vm_area_struct *_install_special_mapping(
3434 	struct mm_struct *mm,
3435 	unsigned long addr, unsigned long len,
3436 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3437 {
3438 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3439 					&special_mapping_vmops);
3440 }
3441 
3442 int install_special_mapping(struct mm_struct *mm,
3443 			    unsigned long addr, unsigned long len,
3444 			    unsigned long vm_flags, struct page **pages)
3445 {
3446 	struct vm_area_struct *vma = __install_special_mapping(
3447 		mm, addr, len, vm_flags, (void *)pages,
3448 		&legacy_special_mapping_vmops);
3449 
3450 	return PTR_ERR_OR_ZERO(vma);
3451 }
3452 
3453 static DEFINE_MUTEX(mm_all_locks_mutex);
3454 
3455 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3456 {
3457 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3458 		/*
3459 		 * The LSB of head.next can't change from under us
3460 		 * because we hold the mm_all_locks_mutex.
3461 		 */
3462 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3463 		/*
3464 		 * We can safely modify head.next after taking the
3465 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3466 		 * the same anon_vma we won't take it again.
3467 		 *
3468 		 * No need of atomic instructions here, head.next
3469 		 * can't change from under us thanks to the
3470 		 * anon_vma->root->rwsem.
3471 		 */
3472 		if (__test_and_set_bit(0, (unsigned long *)
3473 				       &anon_vma->root->rb_root.rb_root.rb_node))
3474 			BUG();
3475 	}
3476 }
3477 
3478 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3479 {
3480 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3481 		/*
3482 		 * AS_MM_ALL_LOCKS can't change from under us because
3483 		 * we hold the mm_all_locks_mutex.
3484 		 *
3485 		 * Operations on ->flags have to be atomic because
3486 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3487 		 * mm_all_locks_mutex, there may be other cpus
3488 		 * changing other bitflags in parallel to us.
3489 		 */
3490 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3491 			BUG();
3492 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3493 	}
3494 }
3495 
3496 /*
3497  * This operation locks against the VM for all pte/vma/mm related
3498  * operations that could ever happen on a certain mm. This includes
3499  * vmtruncate, try_to_unmap, and all page faults.
3500  *
3501  * The caller must take the mmap_sem in write mode before calling
3502  * mm_take_all_locks(). The caller isn't allowed to release the
3503  * mmap_sem until mm_drop_all_locks() returns.
3504  *
3505  * mmap_sem in write mode is required in order to block all operations
3506  * that could modify pagetables and free pages without need of
3507  * altering the vma layout. It's also needed in write mode to avoid new
3508  * anon_vmas to be associated with existing vmas.
3509  *
3510  * A single task can't take more than one mm_take_all_locks() in a row
3511  * or it would deadlock.
3512  *
3513  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3514  * mapping->flags avoid to take the same lock twice, if more than one
3515  * vma in this mm is backed by the same anon_vma or address_space.
3516  *
3517  * We take locks in following order, accordingly to comment at beginning
3518  * of mm/rmap.c:
3519  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3520  *     hugetlb mapping);
3521  *   - all i_mmap_rwsem locks;
3522  *   - all anon_vma->rwseml
3523  *
3524  * We can take all locks within these types randomly because the VM code
3525  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3526  * mm_all_locks_mutex.
3527  *
3528  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3529  * that may have to take thousand of locks.
3530  *
3531  * mm_take_all_locks() can fail if it's interrupted by signals.
3532  */
3533 int mm_take_all_locks(struct mm_struct *mm)
3534 {
3535 	struct vm_area_struct *vma;
3536 	struct anon_vma_chain *avc;
3537 
3538 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3539 
3540 	mutex_lock(&mm_all_locks_mutex);
3541 
3542 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3543 		if (signal_pending(current))
3544 			goto out_unlock;
3545 		if (vma->vm_file && vma->vm_file->f_mapping &&
3546 				is_vm_hugetlb_page(vma))
3547 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3548 	}
3549 
3550 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3551 		if (signal_pending(current))
3552 			goto out_unlock;
3553 		if (vma->vm_file && vma->vm_file->f_mapping &&
3554 				!is_vm_hugetlb_page(vma))
3555 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3556 	}
3557 
3558 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3559 		if (signal_pending(current))
3560 			goto out_unlock;
3561 		if (vma->anon_vma)
3562 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3563 				vm_lock_anon_vma(mm, avc->anon_vma);
3564 	}
3565 
3566 	return 0;
3567 
3568 out_unlock:
3569 	mm_drop_all_locks(mm);
3570 	return -EINTR;
3571 }
3572 
3573 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3574 {
3575 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3576 		/*
3577 		 * The LSB of head.next can't change to 0 from under
3578 		 * us because we hold the mm_all_locks_mutex.
3579 		 *
3580 		 * We must however clear the bitflag before unlocking
3581 		 * the vma so the users using the anon_vma->rb_root will
3582 		 * never see our bitflag.
3583 		 *
3584 		 * No need of atomic instructions here, head.next
3585 		 * can't change from under us until we release the
3586 		 * anon_vma->root->rwsem.
3587 		 */
3588 		if (!__test_and_clear_bit(0, (unsigned long *)
3589 					  &anon_vma->root->rb_root.rb_root.rb_node))
3590 			BUG();
3591 		anon_vma_unlock_write(anon_vma);
3592 	}
3593 }
3594 
3595 static void vm_unlock_mapping(struct address_space *mapping)
3596 {
3597 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3598 		/*
3599 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3600 		 * because we hold the mm_all_locks_mutex.
3601 		 */
3602 		i_mmap_unlock_write(mapping);
3603 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3604 					&mapping->flags))
3605 			BUG();
3606 	}
3607 }
3608 
3609 /*
3610  * The mmap_sem cannot be released by the caller until
3611  * mm_drop_all_locks() returns.
3612  */
3613 void mm_drop_all_locks(struct mm_struct *mm)
3614 {
3615 	struct vm_area_struct *vma;
3616 	struct anon_vma_chain *avc;
3617 
3618 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3619 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3620 
3621 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3622 		if (vma->anon_vma)
3623 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3624 				vm_unlock_anon_vma(avc->anon_vma);
3625 		if (vma->vm_file && vma->vm_file->f_mapping)
3626 			vm_unlock_mapping(vma->vm_file->f_mapping);
3627 	}
3628 
3629 	mutex_unlock(&mm_all_locks_mutex);
3630 }
3631 
3632 /*
3633  * initialise the percpu counter for VM
3634  */
3635 void __init mmap_init(void)
3636 {
3637 	int ret;
3638 
3639 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3640 	VM_BUG_ON(ret);
3641 }
3642 
3643 /*
3644  * Initialise sysctl_user_reserve_kbytes.
3645  *
3646  * This is intended to prevent a user from starting a single memory hogging
3647  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3648  * mode.
3649  *
3650  * The default value is min(3% of free memory, 128MB)
3651  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3652  */
3653 static int init_user_reserve(void)
3654 {
3655 	unsigned long free_kbytes;
3656 
3657 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3658 
3659 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3660 	return 0;
3661 }
3662 subsys_initcall(init_user_reserve);
3663 
3664 /*
3665  * Initialise sysctl_admin_reserve_kbytes.
3666  *
3667  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3668  * to log in and kill a memory hogging process.
3669  *
3670  * Systems with more than 256MB will reserve 8MB, enough to recover
3671  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3672  * only reserve 3% of free pages by default.
3673  */
3674 static int init_admin_reserve(void)
3675 {
3676 	unsigned long free_kbytes;
3677 
3678 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3679 
3680 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3681 	return 0;
3682 }
3683 subsys_initcall(init_admin_reserve);
3684 
3685 /*
3686  * Reinititalise user and admin reserves if memory is added or removed.
3687  *
3688  * The default user reserve max is 128MB, and the default max for the
3689  * admin reserve is 8MB. These are usually, but not always, enough to
3690  * enable recovery from a memory hogging process using login/sshd, a shell,
3691  * and tools like top. It may make sense to increase or even disable the
3692  * reserve depending on the existence of swap or variations in the recovery
3693  * tools. So, the admin may have changed them.
3694  *
3695  * If memory is added and the reserves have been eliminated or increased above
3696  * the default max, then we'll trust the admin.
3697  *
3698  * If memory is removed and there isn't enough free memory, then we
3699  * need to reset the reserves.
3700  *
3701  * Otherwise keep the reserve set by the admin.
3702  */
3703 static int reserve_mem_notifier(struct notifier_block *nb,
3704 			     unsigned long action, void *data)
3705 {
3706 	unsigned long tmp, free_kbytes;
3707 
3708 	switch (action) {
3709 	case MEM_ONLINE:
3710 		/* Default max is 128MB. Leave alone if modified by operator. */
3711 		tmp = sysctl_user_reserve_kbytes;
3712 		if (0 < tmp && tmp < (1UL << 17))
3713 			init_user_reserve();
3714 
3715 		/* Default max is 8MB.  Leave alone if modified by operator. */
3716 		tmp = sysctl_admin_reserve_kbytes;
3717 		if (0 < tmp && tmp < (1UL << 13))
3718 			init_admin_reserve();
3719 
3720 		break;
3721 	case MEM_OFFLINE:
3722 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3723 
3724 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3725 			init_user_reserve();
3726 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3727 				sysctl_user_reserve_kbytes);
3728 		}
3729 
3730 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3731 			init_admin_reserve();
3732 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3733 				sysctl_admin_reserve_kbytes);
3734 		}
3735 		break;
3736 	default:
3737 		break;
3738 	}
3739 	return NOTIFY_OK;
3740 }
3741 
3742 static struct notifier_block reserve_mem_nb = {
3743 	.notifier_call = reserve_mem_notifier,
3744 };
3745 
3746 static int __meminit init_reserve_notifier(void)
3747 {
3748 	if (register_hotmemory_notifier(&reserve_mem_nb))
3749 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3750 
3751 	return 0;
3752 }
3753 subsys_initcall(init_reserve_notifier);
3754