1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 95 * MAP_PRIVATE: 96 * r: (no) no 97 * w: (no) no 98 * x: (yes) yes 99 */ 100 pgprot_t protection_map[16] __ro_after_init = { 101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 103 }; 104 105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 107 { 108 return prot; 109 } 110 #endif 111 112 pgprot_t vm_get_page_prot(unsigned long vm_flags) 113 { 114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 116 pgprot_val(arch_vm_get_page_prot(vm_flags))); 117 118 return arch_filter_pgprot(ret); 119 } 120 EXPORT_SYMBOL(vm_get_page_prot); 121 122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 123 { 124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 125 } 126 127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 128 void vma_set_page_prot(struct vm_area_struct *vma) 129 { 130 unsigned long vm_flags = vma->vm_flags; 131 pgprot_t vm_page_prot; 132 133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 134 if (vma_wants_writenotify(vma, vm_page_prot)) { 135 vm_flags &= ~VM_SHARED; 136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 137 } 138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 140 } 141 142 /* 143 * Requires inode->i_mapping->i_mmap_rwsem 144 */ 145 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 146 struct file *file, struct address_space *mapping) 147 { 148 if (vma->vm_flags & VM_DENYWRITE) 149 atomic_inc(&file_inode(file)->i_writecount); 150 if (vma->vm_flags & VM_SHARED) 151 mapping_unmap_writable(mapping); 152 153 flush_dcache_mmap_lock(mapping); 154 vma_interval_tree_remove(vma, &mapping->i_mmap); 155 flush_dcache_mmap_unlock(mapping); 156 } 157 158 /* 159 * Unlink a file-based vm structure from its interval tree, to hide 160 * vma from rmap and vmtruncate before freeing its page tables. 161 */ 162 void unlink_file_vma(struct vm_area_struct *vma) 163 { 164 struct file *file = vma->vm_file; 165 166 if (file) { 167 struct address_space *mapping = file->f_mapping; 168 i_mmap_lock_write(mapping); 169 __remove_shared_vm_struct(vma, file, mapping); 170 i_mmap_unlock_write(mapping); 171 } 172 } 173 174 /* 175 * Close a vm structure and free it, returning the next. 176 */ 177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 178 { 179 struct vm_area_struct *next = vma->vm_next; 180 181 might_sleep(); 182 if (vma->vm_ops && vma->vm_ops->close) 183 vma->vm_ops->close(vma); 184 if (vma->vm_file) 185 fput(vma->vm_file); 186 mpol_put(vma_policy(vma)); 187 vm_area_free(vma); 188 return next; 189 } 190 191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 192 struct list_head *uf); 193 SYSCALL_DEFINE1(brk, unsigned long, brk) 194 { 195 unsigned long retval; 196 unsigned long newbrk, oldbrk, origbrk; 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *next; 199 unsigned long min_brk; 200 bool populate; 201 bool downgraded = false; 202 LIST_HEAD(uf); 203 204 brk = untagged_addr(brk); 205 206 if (down_write_killable(&mm->mmap_sem)) 207 return -EINTR; 208 209 origbrk = mm->brk; 210 211 #ifdef CONFIG_COMPAT_BRK 212 /* 213 * CONFIG_COMPAT_BRK can still be overridden by setting 214 * randomize_va_space to 2, which will still cause mm->start_brk 215 * to be arbitrarily shifted 216 */ 217 if (current->brk_randomized) 218 min_brk = mm->start_brk; 219 else 220 min_brk = mm->end_data; 221 #else 222 min_brk = mm->start_brk; 223 #endif 224 if (brk < min_brk) 225 goto out; 226 227 /* 228 * Check against rlimit here. If this check is done later after the test 229 * of oldbrk with newbrk then it can escape the test and let the data 230 * segment grow beyond its set limit the in case where the limit is 231 * not page aligned -Ram Gupta 232 */ 233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 234 mm->end_data, mm->start_data)) 235 goto out; 236 237 newbrk = PAGE_ALIGN(brk); 238 oldbrk = PAGE_ALIGN(mm->brk); 239 if (oldbrk == newbrk) { 240 mm->brk = brk; 241 goto success; 242 } 243 244 /* 245 * Always allow shrinking brk. 246 * __do_munmap() may downgrade mmap_sem to read. 247 */ 248 if (brk <= mm->brk) { 249 int ret; 250 251 /* 252 * mm->brk must to be protected by write mmap_sem so update it 253 * before downgrading mmap_sem. When __do_munmap() fails, 254 * mm->brk will be restored from origbrk. 255 */ 256 mm->brk = brk; 257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 258 if (ret < 0) { 259 mm->brk = origbrk; 260 goto out; 261 } else if (ret == 1) { 262 downgraded = true; 263 } 264 goto success; 265 } 266 267 /* Check against existing mmap mappings. */ 268 next = find_vma(mm, oldbrk); 269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 270 goto out; 271 272 /* Ok, looks good - let it rip. */ 273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 274 goto out; 275 mm->brk = brk; 276 277 success: 278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 279 if (downgraded) 280 up_read(&mm->mmap_sem); 281 else 282 up_write(&mm->mmap_sem); 283 userfaultfd_unmap_complete(mm, &uf); 284 if (populate) 285 mm_populate(oldbrk, newbrk - oldbrk); 286 return brk; 287 288 out: 289 retval = origbrk; 290 up_write(&mm->mmap_sem); 291 return retval; 292 } 293 294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 295 { 296 unsigned long gap, prev_end; 297 298 /* 299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 300 * allow two stack_guard_gaps between them here, and when choosing 301 * an unmapped area; whereas when expanding we only require one. 302 * That's a little inconsistent, but keeps the code here simpler. 303 */ 304 gap = vm_start_gap(vma); 305 if (vma->vm_prev) { 306 prev_end = vm_end_gap(vma->vm_prev); 307 if (gap > prev_end) 308 gap -= prev_end; 309 else 310 gap = 0; 311 } 312 return gap; 313 } 314 315 #ifdef CONFIG_DEBUG_VM_RB 316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 317 { 318 unsigned long max = vma_compute_gap(vma), subtree_gap; 319 if (vma->vm_rb.rb_left) { 320 subtree_gap = rb_entry(vma->vm_rb.rb_left, 321 struct vm_area_struct, vm_rb)->rb_subtree_gap; 322 if (subtree_gap > max) 323 max = subtree_gap; 324 } 325 if (vma->vm_rb.rb_right) { 326 subtree_gap = rb_entry(vma->vm_rb.rb_right, 327 struct vm_area_struct, vm_rb)->rb_subtree_gap; 328 if (subtree_gap > max) 329 max = subtree_gap; 330 } 331 return max; 332 } 333 334 static int browse_rb(struct mm_struct *mm) 335 { 336 struct rb_root *root = &mm->mm_rb; 337 int i = 0, j, bug = 0; 338 struct rb_node *nd, *pn = NULL; 339 unsigned long prev = 0, pend = 0; 340 341 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 342 struct vm_area_struct *vma; 343 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 344 if (vma->vm_start < prev) { 345 pr_emerg("vm_start %lx < prev %lx\n", 346 vma->vm_start, prev); 347 bug = 1; 348 } 349 if (vma->vm_start < pend) { 350 pr_emerg("vm_start %lx < pend %lx\n", 351 vma->vm_start, pend); 352 bug = 1; 353 } 354 if (vma->vm_start > vma->vm_end) { 355 pr_emerg("vm_start %lx > vm_end %lx\n", 356 vma->vm_start, vma->vm_end); 357 bug = 1; 358 } 359 spin_lock(&mm->page_table_lock); 360 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 361 pr_emerg("free gap %lx, correct %lx\n", 362 vma->rb_subtree_gap, 363 vma_compute_subtree_gap(vma)); 364 bug = 1; 365 } 366 spin_unlock(&mm->page_table_lock); 367 i++; 368 pn = nd; 369 prev = vma->vm_start; 370 pend = vma->vm_end; 371 } 372 j = 0; 373 for (nd = pn; nd; nd = rb_prev(nd)) 374 j++; 375 if (i != j) { 376 pr_emerg("backwards %d, forwards %d\n", j, i); 377 bug = 1; 378 } 379 return bug ? -1 : i; 380 } 381 382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 383 { 384 struct rb_node *nd; 385 386 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 387 struct vm_area_struct *vma; 388 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 389 VM_BUG_ON_VMA(vma != ignore && 390 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 391 vma); 392 } 393 } 394 395 static void validate_mm(struct mm_struct *mm) 396 { 397 int bug = 0; 398 int i = 0; 399 unsigned long highest_address = 0; 400 struct vm_area_struct *vma = mm->mmap; 401 402 while (vma) { 403 struct anon_vma *anon_vma = vma->anon_vma; 404 struct anon_vma_chain *avc; 405 406 if (anon_vma) { 407 anon_vma_lock_read(anon_vma); 408 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 409 anon_vma_interval_tree_verify(avc); 410 anon_vma_unlock_read(anon_vma); 411 } 412 413 highest_address = vm_end_gap(vma); 414 vma = vma->vm_next; 415 i++; 416 } 417 if (i != mm->map_count) { 418 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 419 bug = 1; 420 } 421 if (highest_address != mm->highest_vm_end) { 422 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 423 mm->highest_vm_end, highest_address); 424 bug = 1; 425 } 426 i = browse_rb(mm); 427 if (i != mm->map_count) { 428 if (i != -1) 429 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 430 bug = 1; 431 } 432 VM_BUG_ON_MM(bug, mm); 433 } 434 #else 435 #define validate_mm_rb(root, ignore) do { } while (0) 436 #define validate_mm(mm) do { } while (0) 437 #endif 438 439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 440 struct vm_area_struct, vm_rb, 441 unsigned long, rb_subtree_gap, vma_compute_gap) 442 443 /* 444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 445 * vma->vm_prev->vm_end values changed, without modifying the vma's position 446 * in the rbtree. 447 */ 448 static void vma_gap_update(struct vm_area_struct *vma) 449 { 450 /* 451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 452 * a callback function that does exactly what we want. 453 */ 454 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 455 } 456 457 static inline void vma_rb_insert(struct vm_area_struct *vma, 458 struct rb_root *root) 459 { 460 /* All rb_subtree_gap values must be consistent prior to insertion */ 461 validate_mm_rb(root, NULL); 462 463 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 464 } 465 466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 467 { 468 /* 469 * Note rb_erase_augmented is a fairly large inline function, 470 * so make sure we instantiate it only once with our desired 471 * augmented rbtree callbacks. 472 */ 473 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 474 } 475 476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 477 struct rb_root *root, 478 struct vm_area_struct *ignore) 479 { 480 /* 481 * All rb_subtree_gap values must be consistent prior to erase, 482 * with the possible exception of the "next" vma being erased if 483 * next->vm_start was reduced. 484 */ 485 validate_mm_rb(root, ignore); 486 487 __vma_rb_erase(vma, root); 488 } 489 490 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 491 struct rb_root *root) 492 { 493 /* 494 * All rb_subtree_gap values must be consistent prior to erase, 495 * with the possible exception of the vma being erased. 496 */ 497 validate_mm_rb(root, vma); 498 499 __vma_rb_erase(vma, root); 500 } 501 502 /* 503 * vma has some anon_vma assigned, and is already inserted on that 504 * anon_vma's interval trees. 505 * 506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 507 * vma must be removed from the anon_vma's interval trees using 508 * anon_vma_interval_tree_pre_update_vma(). 509 * 510 * After the update, the vma will be reinserted using 511 * anon_vma_interval_tree_post_update_vma(). 512 * 513 * The entire update must be protected by exclusive mmap_sem and by 514 * the root anon_vma's mutex. 515 */ 516 static inline void 517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 518 { 519 struct anon_vma_chain *avc; 520 521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 522 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 523 } 524 525 static inline void 526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 527 { 528 struct anon_vma_chain *avc; 529 530 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 531 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 532 } 533 534 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 535 unsigned long end, struct vm_area_struct **pprev, 536 struct rb_node ***rb_link, struct rb_node **rb_parent) 537 { 538 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 539 540 __rb_link = &mm->mm_rb.rb_node; 541 rb_prev = __rb_parent = NULL; 542 543 while (*__rb_link) { 544 struct vm_area_struct *vma_tmp; 545 546 __rb_parent = *__rb_link; 547 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 548 549 if (vma_tmp->vm_end > addr) { 550 /* Fail if an existing vma overlaps the area */ 551 if (vma_tmp->vm_start < end) 552 return -ENOMEM; 553 __rb_link = &__rb_parent->rb_left; 554 } else { 555 rb_prev = __rb_parent; 556 __rb_link = &__rb_parent->rb_right; 557 } 558 } 559 560 *pprev = NULL; 561 if (rb_prev) 562 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 563 *rb_link = __rb_link; 564 *rb_parent = __rb_parent; 565 return 0; 566 } 567 568 static unsigned long count_vma_pages_range(struct mm_struct *mm, 569 unsigned long addr, unsigned long end) 570 { 571 unsigned long nr_pages = 0; 572 struct vm_area_struct *vma; 573 574 /* Find first overlaping mapping */ 575 vma = find_vma_intersection(mm, addr, end); 576 if (!vma) 577 return 0; 578 579 nr_pages = (min(end, vma->vm_end) - 580 max(addr, vma->vm_start)) >> PAGE_SHIFT; 581 582 /* Iterate over the rest of the overlaps */ 583 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 584 unsigned long overlap_len; 585 586 if (vma->vm_start > end) 587 break; 588 589 overlap_len = min(end, vma->vm_end) - vma->vm_start; 590 nr_pages += overlap_len >> PAGE_SHIFT; 591 } 592 593 return nr_pages; 594 } 595 596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 597 struct rb_node **rb_link, struct rb_node *rb_parent) 598 { 599 /* Update tracking information for the gap following the new vma. */ 600 if (vma->vm_next) 601 vma_gap_update(vma->vm_next); 602 else 603 mm->highest_vm_end = vm_end_gap(vma); 604 605 /* 606 * vma->vm_prev wasn't known when we followed the rbtree to find the 607 * correct insertion point for that vma. As a result, we could not 608 * update the vma vm_rb parents rb_subtree_gap values on the way down. 609 * So, we first insert the vma with a zero rb_subtree_gap value 610 * (to be consistent with what we did on the way down), and then 611 * immediately update the gap to the correct value. Finally we 612 * rebalance the rbtree after all augmented values have been set. 613 */ 614 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 615 vma->rb_subtree_gap = 0; 616 vma_gap_update(vma); 617 vma_rb_insert(vma, &mm->mm_rb); 618 } 619 620 static void __vma_link_file(struct vm_area_struct *vma) 621 { 622 struct file *file; 623 624 file = vma->vm_file; 625 if (file) { 626 struct address_space *mapping = file->f_mapping; 627 628 if (vma->vm_flags & VM_DENYWRITE) 629 atomic_dec(&file_inode(file)->i_writecount); 630 if (vma->vm_flags & VM_SHARED) 631 atomic_inc(&mapping->i_mmap_writable); 632 633 flush_dcache_mmap_lock(mapping); 634 vma_interval_tree_insert(vma, &mapping->i_mmap); 635 flush_dcache_mmap_unlock(mapping); 636 } 637 } 638 639 static void 640 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 641 struct vm_area_struct *prev, struct rb_node **rb_link, 642 struct rb_node *rb_parent) 643 { 644 __vma_link_list(mm, vma, prev); 645 __vma_link_rb(mm, vma, rb_link, rb_parent); 646 } 647 648 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 649 struct vm_area_struct *prev, struct rb_node **rb_link, 650 struct rb_node *rb_parent) 651 { 652 struct address_space *mapping = NULL; 653 654 if (vma->vm_file) { 655 mapping = vma->vm_file->f_mapping; 656 i_mmap_lock_write(mapping); 657 } 658 659 __vma_link(mm, vma, prev, rb_link, rb_parent); 660 __vma_link_file(vma); 661 662 if (mapping) 663 i_mmap_unlock_write(mapping); 664 665 mm->map_count++; 666 validate_mm(mm); 667 } 668 669 /* 670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 671 * mm's list and rbtree. It has already been inserted into the interval tree. 672 */ 673 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 674 { 675 struct vm_area_struct *prev; 676 struct rb_node **rb_link, *rb_parent; 677 678 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 679 &prev, &rb_link, &rb_parent)) 680 BUG(); 681 __vma_link(mm, vma, prev, rb_link, rb_parent); 682 mm->map_count++; 683 } 684 685 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 686 struct vm_area_struct *vma, 687 struct vm_area_struct *ignore) 688 { 689 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 690 __vma_unlink_list(mm, vma); 691 /* Kill the cache */ 692 vmacache_invalidate(mm); 693 } 694 695 /* 696 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 697 * is already present in an i_mmap tree without adjusting the tree. 698 * The following helper function should be used when such adjustments 699 * are necessary. The "insert" vma (if any) is to be inserted 700 * before we drop the necessary locks. 701 */ 702 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 703 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 704 struct vm_area_struct *expand) 705 { 706 struct mm_struct *mm = vma->vm_mm; 707 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 708 struct address_space *mapping = NULL; 709 struct rb_root_cached *root = NULL; 710 struct anon_vma *anon_vma = NULL; 711 struct file *file = vma->vm_file; 712 bool start_changed = false, end_changed = false; 713 long adjust_next = 0; 714 int remove_next = 0; 715 716 if (next && !insert) { 717 struct vm_area_struct *exporter = NULL, *importer = NULL; 718 719 if (end >= next->vm_end) { 720 /* 721 * vma expands, overlapping all the next, and 722 * perhaps the one after too (mprotect case 6). 723 * The only other cases that gets here are 724 * case 1, case 7 and case 8. 725 */ 726 if (next == expand) { 727 /* 728 * The only case where we don't expand "vma" 729 * and we expand "next" instead is case 8. 730 */ 731 VM_WARN_ON(end != next->vm_end); 732 /* 733 * remove_next == 3 means we're 734 * removing "vma" and that to do so we 735 * swapped "vma" and "next". 736 */ 737 remove_next = 3; 738 VM_WARN_ON(file != next->vm_file); 739 swap(vma, next); 740 } else { 741 VM_WARN_ON(expand != vma); 742 /* 743 * case 1, 6, 7, remove_next == 2 is case 6, 744 * remove_next == 1 is case 1 or 7. 745 */ 746 remove_next = 1 + (end > next->vm_end); 747 VM_WARN_ON(remove_next == 2 && 748 end != next->vm_next->vm_end); 749 /* trim end to next, for case 6 first pass */ 750 end = next->vm_end; 751 } 752 753 exporter = next; 754 importer = vma; 755 756 /* 757 * If next doesn't have anon_vma, import from vma after 758 * next, if the vma overlaps with it. 759 */ 760 if (remove_next == 2 && !next->anon_vma) 761 exporter = next->vm_next; 762 763 } else if (end > next->vm_start) { 764 /* 765 * vma expands, overlapping part of the next: 766 * mprotect case 5 shifting the boundary up. 767 */ 768 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 769 exporter = next; 770 importer = vma; 771 VM_WARN_ON(expand != importer); 772 } else if (end < vma->vm_end) { 773 /* 774 * vma shrinks, and !insert tells it's not 775 * split_vma inserting another: so it must be 776 * mprotect case 4 shifting the boundary down. 777 */ 778 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 779 exporter = vma; 780 importer = next; 781 VM_WARN_ON(expand != importer); 782 } 783 784 /* 785 * Easily overlooked: when mprotect shifts the boundary, 786 * make sure the expanding vma has anon_vma set if the 787 * shrinking vma had, to cover any anon pages imported. 788 */ 789 if (exporter && exporter->anon_vma && !importer->anon_vma) { 790 int error; 791 792 importer->anon_vma = exporter->anon_vma; 793 error = anon_vma_clone(importer, exporter); 794 if (error) 795 return error; 796 } 797 } 798 again: 799 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 800 801 if (file) { 802 mapping = file->f_mapping; 803 root = &mapping->i_mmap; 804 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 805 806 if (adjust_next) 807 uprobe_munmap(next, next->vm_start, next->vm_end); 808 809 i_mmap_lock_write(mapping); 810 if (insert) { 811 /* 812 * Put into interval tree now, so instantiated pages 813 * are visible to arm/parisc __flush_dcache_page 814 * throughout; but we cannot insert into address 815 * space until vma start or end is updated. 816 */ 817 __vma_link_file(insert); 818 } 819 } 820 821 anon_vma = vma->anon_vma; 822 if (!anon_vma && adjust_next) 823 anon_vma = next->anon_vma; 824 if (anon_vma) { 825 VM_WARN_ON(adjust_next && next->anon_vma && 826 anon_vma != next->anon_vma); 827 anon_vma_lock_write(anon_vma); 828 anon_vma_interval_tree_pre_update_vma(vma); 829 if (adjust_next) 830 anon_vma_interval_tree_pre_update_vma(next); 831 } 832 833 if (root) { 834 flush_dcache_mmap_lock(mapping); 835 vma_interval_tree_remove(vma, root); 836 if (adjust_next) 837 vma_interval_tree_remove(next, root); 838 } 839 840 if (start != vma->vm_start) { 841 vma->vm_start = start; 842 start_changed = true; 843 } 844 if (end != vma->vm_end) { 845 vma->vm_end = end; 846 end_changed = true; 847 } 848 vma->vm_pgoff = pgoff; 849 if (adjust_next) { 850 next->vm_start += adjust_next << PAGE_SHIFT; 851 next->vm_pgoff += adjust_next; 852 } 853 854 if (root) { 855 if (adjust_next) 856 vma_interval_tree_insert(next, root); 857 vma_interval_tree_insert(vma, root); 858 flush_dcache_mmap_unlock(mapping); 859 } 860 861 if (remove_next) { 862 /* 863 * vma_merge has merged next into vma, and needs 864 * us to remove next before dropping the locks. 865 */ 866 if (remove_next != 3) 867 __vma_unlink_common(mm, next, next); 868 else 869 /* 870 * vma is not before next if they've been 871 * swapped. 872 * 873 * pre-swap() next->vm_start was reduced so 874 * tell validate_mm_rb to ignore pre-swap() 875 * "next" (which is stored in post-swap() 876 * "vma"). 877 */ 878 __vma_unlink_common(mm, next, vma); 879 if (file) 880 __remove_shared_vm_struct(next, file, mapping); 881 } else if (insert) { 882 /* 883 * split_vma has split insert from vma, and needs 884 * us to insert it before dropping the locks 885 * (it may either follow vma or precede it). 886 */ 887 __insert_vm_struct(mm, insert); 888 } else { 889 if (start_changed) 890 vma_gap_update(vma); 891 if (end_changed) { 892 if (!next) 893 mm->highest_vm_end = vm_end_gap(vma); 894 else if (!adjust_next) 895 vma_gap_update(next); 896 } 897 } 898 899 if (anon_vma) { 900 anon_vma_interval_tree_post_update_vma(vma); 901 if (adjust_next) 902 anon_vma_interval_tree_post_update_vma(next); 903 anon_vma_unlock_write(anon_vma); 904 } 905 if (mapping) 906 i_mmap_unlock_write(mapping); 907 908 if (root) { 909 uprobe_mmap(vma); 910 911 if (adjust_next) 912 uprobe_mmap(next); 913 } 914 915 if (remove_next) { 916 if (file) { 917 uprobe_munmap(next, next->vm_start, next->vm_end); 918 fput(file); 919 } 920 if (next->anon_vma) 921 anon_vma_merge(vma, next); 922 mm->map_count--; 923 mpol_put(vma_policy(next)); 924 vm_area_free(next); 925 /* 926 * In mprotect's case 6 (see comments on vma_merge), 927 * we must remove another next too. It would clutter 928 * up the code too much to do both in one go. 929 */ 930 if (remove_next != 3) { 931 /* 932 * If "next" was removed and vma->vm_end was 933 * expanded (up) over it, in turn 934 * "next->vm_prev->vm_end" changed and the 935 * "vma->vm_next" gap must be updated. 936 */ 937 next = vma->vm_next; 938 } else { 939 /* 940 * For the scope of the comment "next" and 941 * "vma" considered pre-swap(): if "vma" was 942 * removed, next->vm_start was expanded (down) 943 * over it and the "next" gap must be updated. 944 * Because of the swap() the post-swap() "vma" 945 * actually points to pre-swap() "next" 946 * (post-swap() "next" as opposed is now a 947 * dangling pointer). 948 */ 949 next = vma; 950 } 951 if (remove_next == 2) { 952 remove_next = 1; 953 end = next->vm_end; 954 goto again; 955 } 956 else if (next) 957 vma_gap_update(next); 958 else { 959 /* 960 * If remove_next == 2 we obviously can't 961 * reach this path. 962 * 963 * If remove_next == 3 we can't reach this 964 * path because pre-swap() next is always not 965 * NULL. pre-swap() "next" is not being 966 * removed and its next->vm_end is not altered 967 * (and furthermore "end" already matches 968 * next->vm_end in remove_next == 3). 969 * 970 * We reach this only in the remove_next == 1 971 * case if the "next" vma that was removed was 972 * the highest vma of the mm. However in such 973 * case next->vm_end == "end" and the extended 974 * "vma" has vma->vm_end == next->vm_end so 975 * mm->highest_vm_end doesn't need any update 976 * in remove_next == 1 case. 977 */ 978 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 979 } 980 } 981 if (insert && file) 982 uprobe_mmap(insert); 983 984 validate_mm(mm); 985 986 return 0; 987 } 988 989 /* 990 * If the vma has a ->close operation then the driver probably needs to release 991 * per-vma resources, so we don't attempt to merge those. 992 */ 993 static inline int is_mergeable_vma(struct vm_area_struct *vma, 994 struct file *file, unsigned long vm_flags, 995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 996 { 997 /* 998 * VM_SOFTDIRTY should not prevent from VMA merging, if we 999 * match the flags but dirty bit -- the caller should mark 1000 * merged VMA as dirty. If dirty bit won't be excluded from 1001 * comparison, we increase pressure on the memory system forcing 1002 * the kernel to generate new VMAs when old one could be 1003 * extended instead. 1004 */ 1005 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1006 return 0; 1007 if (vma->vm_file != file) 1008 return 0; 1009 if (vma->vm_ops && vma->vm_ops->close) 1010 return 0; 1011 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1012 return 0; 1013 return 1; 1014 } 1015 1016 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1017 struct anon_vma *anon_vma2, 1018 struct vm_area_struct *vma) 1019 { 1020 /* 1021 * The list_is_singular() test is to avoid merging VMA cloned from 1022 * parents. This can improve scalability caused by anon_vma lock. 1023 */ 1024 if ((!anon_vma1 || !anon_vma2) && (!vma || 1025 list_is_singular(&vma->anon_vma_chain))) 1026 return 1; 1027 return anon_vma1 == anon_vma2; 1028 } 1029 1030 /* 1031 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1032 * in front of (at a lower virtual address and file offset than) the vma. 1033 * 1034 * We cannot merge two vmas if they have differently assigned (non-NULL) 1035 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1036 * 1037 * We don't check here for the merged mmap wrapping around the end of pagecache 1038 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1039 * wrap, nor mmaps which cover the final page at index -1UL. 1040 */ 1041 static int 1042 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1043 struct anon_vma *anon_vma, struct file *file, 1044 pgoff_t vm_pgoff, 1045 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1046 { 1047 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1048 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1049 if (vma->vm_pgoff == vm_pgoff) 1050 return 1; 1051 } 1052 return 0; 1053 } 1054 1055 /* 1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1057 * beyond (at a higher virtual address and file offset than) the vma. 1058 * 1059 * We cannot merge two vmas if they have differently assigned (non-NULL) 1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1061 */ 1062 static int 1063 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1064 struct anon_vma *anon_vma, struct file *file, 1065 pgoff_t vm_pgoff, 1066 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1067 { 1068 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1069 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1070 pgoff_t vm_pglen; 1071 vm_pglen = vma_pages(vma); 1072 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1073 return 1; 1074 } 1075 return 0; 1076 } 1077 1078 /* 1079 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1080 * whether that can be merged with its predecessor or its successor. 1081 * Or both (it neatly fills a hole). 1082 * 1083 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1084 * certain not to be mapped by the time vma_merge is called; but when 1085 * called for mprotect, it is certain to be already mapped (either at 1086 * an offset within prev, or at the start of next), and the flags of 1087 * this area are about to be changed to vm_flags - and the no-change 1088 * case has already been eliminated. 1089 * 1090 * The following mprotect cases have to be considered, where AAAA is 1091 * the area passed down from mprotect_fixup, never extending beyond one 1092 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1093 * 1094 * AAAA AAAA AAAA AAAA 1095 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1096 * cannot merge might become might become might become 1097 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1098 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1099 * mremap move: PPPPXXXXXXXX 8 1100 * AAAA 1101 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1102 * might become case 1 below case 2 below case 3 below 1103 * 1104 * It is important for case 8 that the vma NNNN overlapping the 1105 * region AAAA is never going to extended over XXXX. Instead XXXX must 1106 * be extended in region AAAA and NNNN must be removed. This way in 1107 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1108 * rmap_locks, the properties of the merged vma will be already 1109 * correct for the whole merged range. Some of those properties like 1110 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1111 * be correct for the whole merged range immediately after the 1112 * rmap_locks are released. Otherwise if XXXX would be removed and 1113 * NNNN would be extended over the XXXX range, remove_migration_ptes 1114 * or other rmap walkers (if working on addresses beyond the "end" 1115 * parameter) may establish ptes with the wrong permissions of NNNN 1116 * instead of the right permissions of XXXX. 1117 */ 1118 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1119 struct vm_area_struct *prev, unsigned long addr, 1120 unsigned long end, unsigned long vm_flags, 1121 struct anon_vma *anon_vma, struct file *file, 1122 pgoff_t pgoff, struct mempolicy *policy, 1123 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1124 { 1125 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1126 struct vm_area_struct *area, *next; 1127 int err; 1128 1129 /* 1130 * We later require that vma->vm_flags == vm_flags, 1131 * so this tests vma->vm_flags & VM_SPECIAL, too. 1132 */ 1133 if (vm_flags & VM_SPECIAL) 1134 return NULL; 1135 1136 if (prev) 1137 next = prev->vm_next; 1138 else 1139 next = mm->mmap; 1140 area = next; 1141 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1142 next = next->vm_next; 1143 1144 /* verify some invariant that must be enforced by the caller */ 1145 VM_WARN_ON(prev && addr <= prev->vm_start); 1146 VM_WARN_ON(area && end > area->vm_end); 1147 VM_WARN_ON(addr >= end); 1148 1149 /* 1150 * Can it merge with the predecessor? 1151 */ 1152 if (prev && prev->vm_end == addr && 1153 mpol_equal(vma_policy(prev), policy) && 1154 can_vma_merge_after(prev, vm_flags, 1155 anon_vma, file, pgoff, 1156 vm_userfaultfd_ctx)) { 1157 /* 1158 * OK, it can. Can we now merge in the successor as well? 1159 */ 1160 if (next && end == next->vm_start && 1161 mpol_equal(policy, vma_policy(next)) && 1162 can_vma_merge_before(next, vm_flags, 1163 anon_vma, file, 1164 pgoff+pglen, 1165 vm_userfaultfd_ctx) && 1166 is_mergeable_anon_vma(prev->anon_vma, 1167 next->anon_vma, NULL)) { 1168 /* cases 1, 6 */ 1169 err = __vma_adjust(prev, prev->vm_start, 1170 next->vm_end, prev->vm_pgoff, NULL, 1171 prev); 1172 } else /* cases 2, 5, 7 */ 1173 err = __vma_adjust(prev, prev->vm_start, 1174 end, prev->vm_pgoff, NULL, prev); 1175 if (err) 1176 return NULL; 1177 khugepaged_enter_vma_merge(prev, vm_flags); 1178 return prev; 1179 } 1180 1181 /* 1182 * Can this new request be merged in front of next? 1183 */ 1184 if (next && end == next->vm_start && 1185 mpol_equal(policy, vma_policy(next)) && 1186 can_vma_merge_before(next, vm_flags, 1187 anon_vma, file, pgoff+pglen, 1188 vm_userfaultfd_ctx)) { 1189 if (prev && addr < prev->vm_end) /* case 4 */ 1190 err = __vma_adjust(prev, prev->vm_start, 1191 addr, prev->vm_pgoff, NULL, next); 1192 else { /* cases 3, 8 */ 1193 err = __vma_adjust(area, addr, next->vm_end, 1194 next->vm_pgoff - pglen, NULL, next); 1195 /* 1196 * In case 3 area is already equal to next and 1197 * this is a noop, but in case 8 "area" has 1198 * been removed and next was expanded over it. 1199 */ 1200 area = next; 1201 } 1202 if (err) 1203 return NULL; 1204 khugepaged_enter_vma_merge(area, vm_flags); 1205 return area; 1206 } 1207 1208 return NULL; 1209 } 1210 1211 /* 1212 * Rough compatbility check to quickly see if it's even worth looking 1213 * at sharing an anon_vma. 1214 * 1215 * They need to have the same vm_file, and the flags can only differ 1216 * in things that mprotect may change. 1217 * 1218 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1219 * we can merge the two vma's. For example, we refuse to merge a vma if 1220 * there is a vm_ops->close() function, because that indicates that the 1221 * driver is doing some kind of reference counting. But that doesn't 1222 * really matter for the anon_vma sharing case. 1223 */ 1224 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1225 { 1226 return a->vm_end == b->vm_start && 1227 mpol_equal(vma_policy(a), vma_policy(b)) && 1228 a->vm_file == b->vm_file && 1229 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1230 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1231 } 1232 1233 /* 1234 * Do some basic sanity checking to see if we can re-use the anon_vma 1235 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1236 * the same as 'old', the other will be the new one that is trying 1237 * to share the anon_vma. 1238 * 1239 * NOTE! This runs with mm_sem held for reading, so it is possible that 1240 * the anon_vma of 'old' is concurrently in the process of being set up 1241 * by another page fault trying to merge _that_. But that's ok: if it 1242 * is being set up, that automatically means that it will be a singleton 1243 * acceptable for merging, so we can do all of this optimistically. But 1244 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1245 * 1246 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1247 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1248 * is to return an anon_vma that is "complex" due to having gone through 1249 * a fork). 1250 * 1251 * We also make sure that the two vma's are compatible (adjacent, 1252 * and with the same memory policies). That's all stable, even with just 1253 * a read lock on the mm_sem. 1254 */ 1255 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1256 { 1257 if (anon_vma_compatible(a, b)) { 1258 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1259 1260 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1261 return anon_vma; 1262 } 1263 return NULL; 1264 } 1265 1266 /* 1267 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1268 * neighbouring vmas for a suitable anon_vma, before it goes off 1269 * to allocate a new anon_vma. It checks because a repetitive 1270 * sequence of mprotects and faults may otherwise lead to distinct 1271 * anon_vmas being allocated, preventing vma merge in subsequent 1272 * mprotect. 1273 */ 1274 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1275 { 1276 struct anon_vma *anon_vma; 1277 struct vm_area_struct *near; 1278 1279 near = vma->vm_next; 1280 if (!near) 1281 goto try_prev; 1282 1283 anon_vma = reusable_anon_vma(near, vma, near); 1284 if (anon_vma) 1285 return anon_vma; 1286 try_prev: 1287 near = vma->vm_prev; 1288 if (!near) 1289 goto none; 1290 1291 anon_vma = reusable_anon_vma(near, near, vma); 1292 if (anon_vma) 1293 return anon_vma; 1294 none: 1295 /* 1296 * There's no absolute need to look only at touching neighbours: 1297 * we could search further afield for "compatible" anon_vmas. 1298 * But it would probably just be a waste of time searching, 1299 * or lead to too many vmas hanging off the same anon_vma. 1300 * We're trying to allow mprotect remerging later on, 1301 * not trying to minimize memory used for anon_vmas. 1302 */ 1303 return NULL; 1304 } 1305 1306 /* 1307 * If a hint addr is less than mmap_min_addr change hint to be as 1308 * low as possible but still greater than mmap_min_addr 1309 */ 1310 static inline unsigned long round_hint_to_min(unsigned long hint) 1311 { 1312 hint &= PAGE_MASK; 1313 if (((void *)hint != NULL) && 1314 (hint < mmap_min_addr)) 1315 return PAGE_ALIGN(mmap_min_addr); 1316 return hint; 1317 } 1318 1319 static inline int mlock_future_check(struct mm_struct *mm, 1320 unsigned long flags, 1321 unsigned long len) 1322 { 1323 unsigned long locked, lock_limit; 1324 1325 /* mlock MCL_FUTURE? */ 1326 if (flags & VM_LOCKED) { 1327 locked = len >> PAGE_SHIFT; 1328 locked += mm->locked_vm; 1329 lock_limit = rlimit(RLIMIT_MEMLOCK); 1330 lock_limit >>= PAGE_SHIFT; 1331 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1332 return -EAGAIN; 1333 } 1334 return 0; 1335 } 1336 1337 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1338 { 1339 if (S_ISREG(inode->i_mode)) 1340 return MAX_LFS_FILESIZE; 1341 1342 if (S_ISBLK(inode->i_mode)) 1343 return MAX_LFS_FILESIZE; 1344 1345 if (S_ISSOCK(inode->i_mode)) 1346 return MAX_LFS_FILESIZE; 1347 1348 /* Special "we do even unsigned file positions" case */ 1349 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1350 return 0; 1351 1352 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1353 return ULONG_MAX; 1354 } 1355 1356 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1357 unsigned long pgoff, unsigned long len) 1358 { 1359 u64 maxsize = file_mmap_size_max(file, inode); 1360 1361 if (maxsize && len > maxsize) 1362 return false; 1363 maxsize -= len; 1364 if (pgoff > maxsize >> PAGE_SHIFT) 1365 return false; 1366 return true; 1367 } 1368 1369 /* 1370 * The caller must hold down_write(¤t->mm->mmap_sem). 1371 */ 1372 unsigned long do_mmap(struct file *file, unsigned long addr, 1373 unsigned long len, unsigned long prot, 1374 unsigned long flags, vm_flags_t vm_flags, 1375 unsigned long pgoff, unsigned long *populate, 1376 struct list_head *uf) 1377 { 1378 struct mm_struct *mm = current->mm; 1379 int pkey = 0; 1380 1381 *populate = 0; 1382 1383 if (!len) 1384 return -EINVAL; 1385 1386 /* 1387 * Does the application expect PROT_READ to imply PROT_EXEC? 1388 * 1389 * (the exception is when the underlying filesystem is noexec 1390 * mounted, in which case we dont add PROT_EXEC.) 1391 */ 1392 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1393 if (!(file && path_noexec(&file->f_path))) 1394 prot |= PROT_EXEC; 1395 1396 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1397 if (flags & MAP_FIXED_NOREPLACE) 1398 flags |= MAP_FIXED; 1399 1400 if (!(flags & MAP_FIXED)) 1401 addr = round_hint_to_min(addr); 1402 1403 /* Careful about overflows.. */ 1404 len = PAGE_ALIGN(len); 1405 if (!len) 1406 return -ENOMEM; 1407 1408 /* offset overflow? */ 1409 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1410 return -EOVERFLOW; 1411 1412 /* Too many mappings? */ 1413 if (mm->map_count > sysctl_max_map_count) 1414 return -ENOMEM; 1415 1416 /* Obtain the address to map to. we verify (or select) it and ensure 1417 * that it represents a valid section of the address space. 1418 */ 1419 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1420 if (IS_ERR_VALUE(addr)) 1421 return addr; 1422 1423 if (flags & MAP_FIXED_NOREPLACE) { 1424 struct vm_area_struct *vma = find_vma(mm, addr); 1425 1426 if (vma && vma->vm_start < addr + len) 1427 return -EEXIST; 1428 } 1429 1430 if (prot == PROT_EXEC) { 1431 pkey = execute_only_pkey(mm); 1432 if (pkey < 0) 1433 pkey = 0; 1434 } 1435 1436 /* Do simple checking here so the lower-level routines won't have 1437 * to. we assume access permissions have been handled by the open 1438 * of the memory object, so we don't do any here. 1439 */ 1440 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1441 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1442 1443 if (flags & MAP_LOCKED) 1444 if (!can_do_mlock()) 1445 return -EPERM; 1446 1447 if (mlock_future_check(mm, vm_flags, len)) 1448 return -EAGAIN; 1449 1450 if (file) { 1451 struct inode *inode = file_inode(file); 1452 unsigned long flags_mask; 1453 1454 if (!file_mmap_ok(file, inode, pgoff, len)) 1455 return -EOVERFLOW; 1456 1457 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1458 1459 switch (flags & MAP_TYPE) { 1460 case MAP_SHARED: 1461 /* 1462 * Force use of MAP_SHARED_VALIDATE with non-legacy 1463 * flags. E.g. MAP_SYNC is dangerous to use with 1464 * MAP_SHARED as you don't know which consistency model 1465 * you will get. We silently ignore unsupported flags 1466 * with MAP_SHARED to preserve backward compatibility. 1467 */ 1468 flags &= LEGACY_MAP_MASK; 1469 /* fall through */ 1470 case MAP_SHARED_VALIDATE: 1471 if (flags & ~flags_mask) 1472 return -EOPNOTSUPP; 1473 if (prot & PROT_WRITE) { 1474 if (!(file->f_mode & FMODE_WRITE)) 1475 return -EACCES; 1476 if (IS_SWAPFILE(file->f_mapping->host)) 1477 return -ETXTBSY; 1478 } 1479 1480 /* 1481 * Make sure we don't allow writing to an append-only 1482 * file.. 1483 */ 1484 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1485 return -EACCES; 1486 1487 /* 1488 * Make sure there are no mandatory locks on the file. 1489 */ 1490 if (locks_verify_locked(file)) 1491 return -EAGAIN; 1492 1493 vm_flags |= VM_SHARED | VM_MAYSHARE; 1494 if (!(file->f_mode & FMODE_WRITE)) 1495 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1496 1497 /* fall through */ 1498 case MAP_PRIVATE: 1499 if (!(file->f_mode & FMODE_READ)) 1500 return -EACCES; 1501 if (path_noexec(&file->f_path)) { 1502 if (vm_flags & VM_EXEC) 1503 return -EPERM; 1504 vm_flags &= ~VM_MAYEXEC; 1505 } 1506 1507 if (!file->f_op->mmap) 1508 return -ENODEV; 1509 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1510 return -EINVAL; 1511 break; 1512 1513 default: 1514 return -EINVAL; 1515 } 1516 } else { 1517 switch (flags & MAP_TYPE) { 1518 case MAP_SHARED: 1519 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1520 return -EINVAL; 1521 /* 1522 * Ignore pgoff. 1523 */ 1524 pgoff = 0; 1525 vm_flags |= VM_SHARED | VM_MAYSHARE; 1526 break; 1527 case MAP_PRIVATE: 1528 /* 1529 * Set pgoff according to addr for anon_vma. 1530 */ 1531 pgoff = addr >> PAGE_SHIFT; 1532 break; 1533 default: 1534 return -EINVAL; 1535 } 1536 } 1537 1538 /* 1539 * Set 'VM_NORESERVE' if we should not account for the 1540 * memory use of this mapping. 1541 */ 1542 if (flags & MAP_NORESERVE) { 1543 /* We honor MAP_NORESERVE if allowed to overcommit */ 1544 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1545 vm_flags |= VM_NORESERVE; 1546 1547 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1548 if (file && is_file_hugepages(file)) 1549 vm_flags |= VM_NORESERVE; 1550 } 1551 1552 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1553 if (!IS_ERR_VALUE(addr) && 1554 ((vm_flags & VM_LOCKED) || 1555 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1556 *populate = len; 1557 return addr; 1558 } 1559 1560 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1561 unsigned long prot, unsigned long flags, 1562 unsigned long fd, unsigned long pgoff) 1563 { 1564 struct file *file = NULL; 1565 unsigned long retval; 1566 1567 addr = untagged_addr(addr); 1568 1569 if (!(flags & MAP_ANONYMOUS)) { 1570 audit_mmap_fd(fd, flags); 1571 file = fget(fd); 1572 if (!file) 1573 return -EBADF; 1574 if (is_file_hugepages(file)) 1575 len = ALIGN(len, huge_page_size(hstate_file(file))); 1576 retval = -EINVAL; 1577 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1578 goto out_fput; 1579 } else if (flags & MAP_HUGETLB) { 1580 struct user_struct *user = NULL; 1581 struct hstate *hs; 1582 1583 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1584 if (!hs) 1585 return -EINVAL; 1586 1587 len = ALIGN(len, huge_page_size(hs)); 1588 /* 1589 * VM_NORESERVE is used because the reservations will be 1590 * taken when vm_ops->mmap() is called 1591 * A dummy user value is used because we are not locking 1592 * memory so no accounting is necessary 1593 */ 1594 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1595 VM_NORESERVE, 1596 &user, HUGETLB_ANONHUGE_INODE, 1597 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1598 if (IS_ERR(file)) 1599 return PTR_ERR(file); 1600 } 1601 1602 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1603 1604 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1605 out_fput: 1606 if (file) 1607 fput(file); 1608 return retval; 1609 } 1610 1611 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1612 unsigned long, prot, unsigned long, flags, 1613 unsigned long, fd, unsigned long, pgoff) 1614 { 1615 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1616 } 1617 1618 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1619 struct mmap_arg_struct { 1620 unsigned long addr; 1621 unsigned long len; 1622 unsigned long prot; 1623 unsigned long flags; 1624 unsigned long fd; 1625 unsigned long offset; 1626 }; 1627 1628 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1629 { 1630 struct mmap_arg_struct a; 1631 1632 if (copy_from_user(&a, arg, sizeof(a))) 1633 return -EFAULT; 1634 if (offset_in_page(a.offset)) 1635 return -EINVAL; 1636 1637 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1638 a.offset >> PAGE_SHIFT); 1639 } 1640 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1641 1642 /* 1643 * Some shared mappings will want the pages marked read-only 1644 * to track write events. If so, we'll downgrade vm_page_prot 1645 * to the private version (using protection_map[] without the 1646 * VM_SHARED bit). 1647 */ 1648 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1649 { 1650 vm_flags_t vm_flags = vma->vm_flags; 1651 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1652 1653 /* If it was private or non-writable, the write bit is already clear */ 1654 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1655 return 0; 1656 1657 /* The backer wishes to know when pages are first written to? */ 1658 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1659 return 1; 1660 1661 /* The open routine did something to the protections that pgprot_modify 1662 * won't preserve? */ 1663 if (pgprot_val(vm_page_prot) != 1664 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1665 return 0; 1666 1667 /* Do we need to track softdirty? */ 1668 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1669 return 1; 1670 1671 /* Specialty mapping? */ 1672 if (vm_flags & VM_PFNMAP) 1673 return 0; 1674 1675 /* Can the mapping track the dirty pages? */ 1676 return vma->vm_file && vma->vm_file->f_mapping && 1677 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1678 } 1679 1680 /* 1681 * We account for memory if it's a private writeable mapping, 1682 * not hugepages and VM_NORESERVE wasn't set. 1683 */ 1684 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1685 { 1686 /* 1687 * hugetlb has its own accounting separate from the core VM 1688 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1689 */ 1690 if (file && is_file_hugepages(file)) 1691 return 0; 1692 1693 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1694 } 1695 1696 unsigned long mmap_region(struct file *file, unsigned long addr, 1697 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1698 struct list_head *uf) 1699 { 1700 struct mm_struct *mm = current->mm; 1701 struct vm_area_struct *vma, *prev; 1702 int error; 1703 struct rb_node **rb_link, *rb_parent; 1704 unsigned long charged = 0; 1705 1706 /* Check against address space limit. */ 1707 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1708 unsigned long nr_pages; 1709 1710 /* 1711 * MAP_FIXED may remove pages of mappings that intersects with 1712 * requested mapping. Account for the pages it would unmap. 1713 */ 1714 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1715 1716 if (!may_expand_vm(mm, vm_flags, 1717 (len >> PAGE_SHIFT) - nr_pages)) 1718 return -ENOMEM; 1719 } 1720 1721 /* Clear old maps */ 1722 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1723 &rb_parent)) { 1724 if (do_munmap(mm, addr, len, uf)) 1725 return -ENOMEM; 1726 } 1727 1728 /* 1729 * Private writable mapping: check memory availability 1730 */ 1731 if (accountable_mapping(file, vm_flags)) { 1732 charged = len >> PAGE_SHIFT; 1733 if (security_vm_enough_memory_mm(mm, charged)) 1734 return -ENOMEM; 1735 vm_flags |= VM_ACCOUNT; 1736 } 1737 1738 /* 1739 * Can we just expand an old mapping? 1740 */ 1741 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1742 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1743 if (vma) 1744 goto out; 1745 1746 /* 1747 * Determine the object being mapped and call the appropriate 1748 * specific mapper. the address has already been validated, but 1749 * not unmapped, but the maps are removed from the list. 1750 */ 1751 vma = vm_area_alloc(mm); 1752 if (!vma) { 1753 error = -ENOMEM; 1754 goto unacct_error; 1755 } 1756 1757 vma->vm_start = addr; 1758 vma->vm_end = addr + len; 1759 vma->vm_flags = vm_flags; 1760 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1761 vma->vm_pgoff = pgoff; 1762 1763 if (file) { 1764 if (vm_flags & VM_DENYWRITE) { 1765 error = deny_write_access(file); 1766 if (error) 1767 goto free_vma; 1768 } 1769 if (vm_flags & VM_SHARED) { 1770 error = mapping_map_writable(file->f_mapping); 1771 if (error) 1772 goto allow_write_and_free_vma; 1773 } 1774 1775 /* ->mmap() can change vma->vm_file, but must guarantee that 1776 * vma_link() below can deny write-access if VM_DENYWRITE is set 1777 * and map writably if VM_SHARED is set. This usually means the 1778 * new file must not have been exposed to user-space, yet. 1779 */ 1780 vma->vm_file = get_file(file); 1781 error = call_mmap(file, vma); 1782 if (error) 1783 goto unmap_and_free_vma; 1784 1785 /* Can addr have changed?? 1786 * 1787 * Answer: Yes, several device drivers can do it in their 1788 * f_op->mmap method. -DaveM 1789 * Bug: If addr is changed, prev, rb_link, rb_parent should 1790 * be updated for vma_link() 1791 */ 1792 WARN_ON_ONCE(addr != vma->vm_start); 1793 1794 addr = vma->vm_start; 1795 vm_flags = vma->vm_flags; 1796 } else if (vm_flags & VM_SHARED) { 1797 error = shmem_zero_setup(vma); 1798 if (error) 1799 goto free_vma; 1800 } else { 1801 vma_set_anonymous(vma); 1802 } 1803 1804 vma_link(mm, vma, prev, rb_link, rb_parent); 1805 /* Once vma denies write, undo our temporary denial count */ 1806 if (file) { 1807 if (vm_flags & VM_SHARED) 1808 mapping_unmap_writable(file->f_mapping); 1809 if (vm_flags & VM_DENYWRITE) 1810 allow_write_access(file); 1811 } 1812 file = vma->vm_file; 1813 out: 1814 perf_event_mmap(vma); 1815 1816 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1817 if (vm_flags & VM_LOCKED) { 1818 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1819 is_vm_hugetlb_page(vma) || 1820 vma == get_gate_vma(current->mm)) 1821 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1822 else 1823 mm->locked_vm += (len >> PAGE_SHIFT); 1824 } 1825 1826 if (file) 1827 uprobe_mmap(vma); 1828 1829 /* 1830 * New (or expanded) vma always get soft dirty status. 1831 * Otherwise user-space soft-dirty page tracker won't 1832 * be able to distinguish situation when vma area unmapped, 1833 * then new mapped in-place (which must be aimed as 1834 * a completely new data area). 1835 */ 1836 vma->vm_flags |= VM_SOFTDIRTY; 1837 1838 vma_set_page_prot(vma); 1839 1840 return addr; 1841 1842 unmap_and_free_vma: 1843 vma->vm_file = NULL; 1844 fput(file); 1845 1846 /* Undo any partial mapping done by a device driver. */ 1847 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1848 charged = 0; 1849 if (vm_flags & VM_SHARED) 1850 mapping_unmap_writable(file->f_mapping); 1851 allow_write_and_free_vma: 1852 if (vm_flags & VM_DENYWRITE) 1853 allow_write_access(file); 1854 free_vma: 1855 vm_area_free(vma); 1856 unacct_error: 1857 if (charged) 1858 vm_unacct_memory(charged); 1859 return error; 1860 } 1861 1862 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1863 { 1864 /* 1865 * We implement the search by looking for an rbtree node that 1866 * immediately follows a suitable gap. That is, 1867 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1868 * - gap_end = vma->vm_start >= info->low_limit + length; 1869 * - gap_end - gap_start >= length 1870 */ 1871 1872 struct mm_struct *mm = current->mm; 1873 struct vm_area_struct *vma; 1874 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1875 1876 /* Adjust search length to account for worst case alignment overhead */ 1877 length = info->length + info->align_mask; 1878 if (length < info->length) 1879 return -ENOMEM; 1880 1881 /* Adjust search limits by the desired length */ 1882 if (info->high_limit < length) 1883 return -ENOMEM; 1884 high_limit = info->high_limit - length; 1885 1886 if (info->low_limit > high_limit) 1887 return -ENOMEM; 1888 low_limit = info->low_limit + length; 1889 1890 /* Check if rbtree root looks promising */ 1891 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1892 goto check_highest; 1893 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1894 if (vma->rb_subtree_gap < length) 1895 goto check_highest; 1896 1897 while (true) { 1898 /* Visit left subtree if it looks promising */ 1899 gap_end = vm_start_gap(vma); 1900 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1901 struct vm_area_struct *left = 1902 rb_entry(vma->vm_rb.rb_left, 1903 struct vm_area_struct, vm_rb); 1904 if (left->rb_subtree_gap >= length) { 1905 vma = left; 1906 continue; 1907 } 1908 } 1909 1910 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1911 check_current: 1912 /* Check if current node has a suitable gap */ 1913 if (gap_start > high_limit) 1914 return -ENOMEM; 1915 if (gap_end >= low_limit && 1916 gap_end > gap_start && gap_end - gap_start >= length) 1917 goto found; 1918 1919 /* Visit right subtree if it looks promising */ 1920 if (vma->vm_rb.rb_right) { 1921 struct vm_area_struct *right = 1922 rb_entry(vma->vm_rb.rb_right, 1923 struct vm_area_struct, vm_rb); 1924 if (right->rb_subtree_gap >= length) { 1925 vma = right; 1926 continue; 1927 } 1928 } 1929 1930 /* Go back up the rbtree to find next candidate node */ 1931 while (true) { 1932 struct rb_node *prev = &vma->vm_rb; 1933 if (!rb_parent(prev)) 1934 goto check_highest; 1935 vma = rb_entry(rb_parent(prev), 1936 struct vm_area_struct, vm_rb); 1937 if (prev == vma->vm_rb.rb_left) { 1938 gap_start = vm_end_gap(vma->vm_prev); 1939 gap_end = vm_start_gap(vma); 1940 goto check_current; 1941 } 1942 } 1943 } 1944 1945 check_highest: 1946 /* Check highest gap, which does not precede any rbtree node */ 1947 gap_start = mm->highest_vm_end; 1948 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1949 if (gap_start > high_limit) 1950 return -ENOMEM; 1951 1952 found: 1953 /* We found a suitable gap. Clip it with the original low_limit. */ 1954 if (gap_start < info->low_limit) 1955 gap_start = info->low_limit; 1956 1957 /* Adjust gap address to the desired alignment */ 1958 gap_start += (info->align_offset - gap_start) & info->align_mask; 1959 1960 VM_BUG_ON(gap_start + info->length > info->high_limit); 1961 VM_BUG_ON(gap_start + info->length > gap_end); 1962 return gap_start; 1963 } 1964 1965 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1966 { 1967 struct mm_struct *mm = current->mm; 1968 struct vm_area_struct *vma; 1969 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1970 1971 /* Adjust search length to account for worst case alignment overhead */ 1972 length = info->length + info->align_mask; 1973 if (length < info->length) 1974 return -ENOMEM; 1975 1976 /* 1977 * Adjust search limits by the desired length. 1978 * See implementation comment at top of unmapped_area(). 1979 */ 1980 gap_end = info->high_limit; 1981 if (gap_end < length) 1982 return -ENOMEM; 1983 high_limit = gap_end - length; 1984 1985 if (info->low_limit > high_limit) 1986 return -ENOMEM; 1987 low_limit = info->low_limit + length; 1988 1989 /* Check highest gap, which does not precede any rbtree node */ 1990 gap_start = mm->highest_vm_end; 1991 if (gap_start <= high_limit) 1992 goto found_highest; 1993 1994 /* Check if rbtree root looks promising */ 1995 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1996 return -ENOMEM; 1997 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1998 if (vma->rb_subtree_gap < length) 1999 return -ENOMEM; 2000 2001 while (true) { 2002 /* Visit right subtree if it looks promising */ 2003 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2004 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2005 struct vm_area_struct *right = 2006 rb_entry(vma->vm_rb.rb_right, 2007 struct vm_area_struct, vm_rb); 2008 if (right->rb_subtree_gap >= length) { 2009 vma = right; 2010 continue; 2011 } 2012 } 2013 2014 check_current: 2015 /* Check if current node has a suitable gap */ 2016 gap_end = vm_start_gap(vma); 2017 if (gap_end < low_limit) 2018 return -ENOMEM; 2019 if (gap_start <= high_limit && 2020 gap_end > gap_start && gap_end - gap_start >= length) 2021 goto found; 2022 2023 /* Visit left subtree if it looks promising */ 2024 if (vma->vm_rb.rb_left) { 2025 struct vm_area_struct *left = 2026 rb_entry(vma->vm_rb.rb_left, 2027 struct vm_area_struct, vm_rb); 2028 if (left->rb_subtree_gap >= length) { 2029 vma = left; 2030 continue; 2031 } 2032 } 2033 2034 /* Go back up the rbtree to find next candidate node */ 2035 while (true) { 2036 struct rb_node *prev = &vma->vm_rb; 2037 if (!rb_parent(prev)) 2038 return -ENOMEM; 2039 vma = rb_entry(rb_parent(prev), 2040 struct vm_area_struct, vm_rb); 2041 if (prev == vma->vm_rb.rb_right) { 2042 gap_start = vma->vm_prev ? 2043 vm_end_gap(vma->vm_prev) : 0; 2044 goto check_current; 2045 } 2046 } 2047 } 2048 2049 found: 2050 /* We found a suitable gap. Clip it with the original high_limit. */ 2051 if (gap_end > info->high_limit) 2052 gap_end = info->high_limit; 2053 2054 found_highest: 2055 /* Compute highest gap address at the desired alignment */ 2056 gap_end -= info->length; 2057 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2058 2059 VM_BUG_ON(gap_end < info->low_limit); 2060 VM_BUG_ON(gap_end < gap_start); 2061 return gap_end; 2062 } 2063 2064 2065 #ifndef arch_get_mmap_end 2066 #define arch_get_mmap_end(addr) (TASK_SIZE) 2067 #endif 2068 2069 #ifndef arch_get_mmap_base 2070 #define arch_get_mmap_base(addr, base) (base) 2071 #endif 2072 2073 /* Get an address range which is currently unmapped. 2074 * For shmat() with addr=0. 2075 * 2076 * Ugly calling convention alert: 2077 * Return value with the low bits set means error value, 2078 * ie 2079 * if (ret & ~PAGE_MASK) 2080 * error = ret; 2081 * 2082 * This function "knows" that -ENOMEM has the bits set. 2083 */ 2084 #ifndef HAVE_ARCH_UNMAPPED_AREA 2085 unsigned long 2086 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2087 unsigned long len, unsigned long pgoff, unsigned long flags) 2088 { 2089 struct mm_struct *mm = current->mm; 2090 struct vm_area_struct *vma, *prev; 2091 struct vm_unmapped_area_info info; 2092 const unsigned long mmap_end = arch_get_mmap_end(addr); 2093 2094 if (len > mmap_end - mmap_min_addr) 2095 return -ENOMEM; 2096 2097 if (flags & MAP_FIXED) 2098 return addr; 2099 2100 if (addr) { 2101 addr = PAGE_ALIGN(addr); 2102 vma = find_vma_prev(mm, addr, &prev); 2103 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2104 (!vma || addr + len <= vm_start_gap(vma)) && 2105 (!prev || addr >= vm_end_gap(prev))) 2106 return addr; 2107 } 2108 2109 info.flags = 0; 2110 info.length = len; 2111 info.low_limit = mm->mmap_base; 2112 info.high_limit = mmap_end; 2113 info.align_mask = 0; 2114 return vm_unmapped_area(&info); 2115 } 2116 #endif 2117 2118 /* 2119 * This mmap-allocator allocates new areas top-down from below the 2120 * stack's low limit (the base): 2121 */ 2122 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2123 unsigned long 2124 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2125 unsigned long len, unsigned long pgoff, 2126 unsigned long flags) 2127 { 2128 struct vm_area_struct *vma, *prev; 2129 struct mm_struct *mm = current->mm; 2130 struct vm_unmapped_area_info info; 2131 const unsigned long mmap_end = arch_get_mmap_end(addr); 2132 2133 /* requested length too big for entire address space */ 2134 if (len > mmap_end - mmap_min_addr) 2135 return -ENOMEM; 2136 2137 if (flags & MAP_FIXED) 2138 return addr; 2139 2140 /* requesting a specific address */ 2141 if (addr) { 2142 addr = PAGE_ALIGN(addr); 2143 vma = find_vma_prev(mm, addr, &prev); 2144 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2145 (!vma || addr + len <= vm_start_gap(vma)) && 2146 (!prev || addr >= vm_end_gap(prev))) 2147 return addr; 2148 } 2149 2150 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2151 info.length = len; 2152 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2153 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2154 info.align_mask = 0; 2155 addr = vm_unmapped_area(&info); 2156 2157 /* 2158 * A failed mmap() very likely causes application failure, 2159 * so fall back to the bottom-up function here. This scenario 2160 * can happen with large stack limits and large mmap() 2161 * allocations. 2162 */ 2163 if (offset_in_page(addr)) { 2164 VM_BUG_ON(addr != -ENOMEM); 2165 info.flags = 0; 2166 info.low_limit = TASK_UNMAPPED_BASE; 2167 info.high_limit = mmap_end; 2168 addr = vm_unmapped_area(&info); 2169 } 2170 2171 return addr; 2172 } 2173 #endif 2174 2175 unsigned long 2176 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2177 unsigned long pgoff, unsigned long flags) 2178 { 2179 unsigned long (*get_area)(struct file *, unsigned long, 2180 unsigned long, unsigned long, unsigned long); 2181 2182 unsigned long error = arch_mmap_check(addr, len, flags); 2183 if (error) 2184 return error; 2185 2186 /* Careful about overflows.. */ 2187 if (len > TASK_SIZE) 2188 return -ENOMEM; 2189 2190 get_area = current->mm->get_unmapped_area; 2191 if (file) { 2192 if (file->f_op->get_unmapped_area) 2193 get_area = file->f_op->get_unmapped_area; 2194 } else if (flags & MAP_SHARED) { 2195 /* 2196 * mmap_region() will call shmem_zero_setup() to create a file, 2197 * so use shmem's get_unmapped_area in case it can be huge. 2198 * do_mmap_pgoff() will clear pgoff, so match alignment. 2199 */ 2200 pgoff = 0; 2201 get_area = shmem_get_unmapped_area; 2202 } 2203 2204 addr = get_area(file, addr, len, pgoff, flags); 2205 if (IS_ERR_VALUE(addr)) 2206 return addr; 2207 2208 if (addr > TASK_SIZE - len) 2209 return -ENOMEM; 2210 if (offset_in_page(addr)) 2211 return -EINVAL; 2212 2213 error = security_mmap_addr(addr); 2214 return error ? error : addr; 2215 } 2216 2217 EXPORT_SYMBOL(get_unmapped_area); 2218 2219 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2220 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2221 { 2222 struct rb_node *rb_node; 2223 struct vm_area_struct *vma; 2224 2225 /* Check the cache first. */ 2226 vma = vmacache_find(mm, addr); 2227 if (likely(vma)) 2228 return vma; 2229 2230 rb_node = mm->mm_rb.rb_node; 2231 2232 while (rb_node) { 2233 struct vm_area_struct *tmp; 2234 2235 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2236 2237 if (tmp->vm_end > addr) { 2238 vma = tmp; 2239 if (tmp->vm_start <= addr) 2240 break; 2241 rb_node = rb_node->rb_left; 2242 } else 2243 rb_node = rb_node->rb_right; 2244 } 2245 2246 if (vma) 2247 vmacache_update(addr, vma); 2248 return vma; 2249 } 2250 2251 EXPORT_SYMBOL(find_vma); 2252 2253 /* 2254 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2255 */ 2256 struct vm_area_struct * 2257 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2258 struct vm_area_struct **pprev) 2259 { 2260 struct vm_area_struct *vma; 2261 2262 vma = find_vma(mm, addr); 2263 if (vma) { 2264 *pprev = vma->vm_prev; 2265 } else { 2266 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2267 2268 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2269 } 2270 return vma; 2271 } 2272 2273 /* 2274 * Verify that the stack growth is acceptable and 2275 * update accounting. This is shared with both the 2276 * grow-up and grow-down cases. 2277 */ 2278 static int acct_stack_growth(struct vm_area_struct *vma, 2279 unsigned long size, unsigned long grow) 2280 { 2281 struct mm_struct *mm = vma->vm_mm; 2282 unsigned long new_start; 2283 2284 /* address space limit tests */ 2285 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2286 return -ENOMEM; 2287 2288 /* Stack limit test */ 2289 if (size > rlimit(RLIMIT_STACK)) 2290 return -ENOMEM; 2291 2292 /* mlock limit tests */ 2293 if (vma->vm_flags & VM_LOCKED) { 2294 unsigned long locked; 2295 unsigned long limit; 2296 locked = mm->locked_vm + grow; 2297 limit = rlimit(RLIMIT_MEMLOCK); 2298 limit >>= PAGE_SHIFT; 2299 if (locked > limit && !capable(CAP_IPC_LOCK)) 2300 return -ENOMEM; 2301 } 2302 2303 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2304 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2305 vma->vm_end - size; 2306 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2307 return -EFAULT; 2308 2309 /* 2310 * Overcommit.. This must be the final test, as it will 2311 * update security statistics. 2312 */ 2313 if (security_vm_enough_memory_mm(mm, grow)) 2314 return -ENOMEM; 2315 2316 return 0; 2317 } 2318 2319 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2320 /* 2321 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2322 * vma is the last one with address > vma->vm_end. Have to extend vma. 2323 */ 2324 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2325 { 2326 struct mm_struct *mm = vma->vm_mm; 2327 struct vm_area_struct *next; 2328 unsigned long gap_addr; 2329 int error = 0; 2330 2331 if (!(vma->vm_flags & VM_GROWSUP)) 2332 return -EFAULT; 2333 2334 /* Guard against exceeding limits of the address space. */ 2335 address &= PAGE_MASK; 2336 if (address >= (TASK_SIZE & PAGE_MASK)) 2337 return -ENOMEM; 2338 address += PAGE_SIZE; 2339 2340 /* Enforce stack_guard_gap */ 2341 gap_addr = address + stack_guard_gap; 2342 2343 /* Guard against overflow */ 2344 if (gap_addr < address || gap_addr > TASK_SIZE) 2345 gap_addr = TASK_SIZE; 2346 2347 next = vma->vm_next; 2348 if (next && next->vm_start < gap_addr && 2349 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2350 if (!(next->vm_flags & VM_GROWSUP)) 2351 return -ENOMEM; 2352 /* Check that both stack segments have the same anon_vma? */ 2353 } 2354 2355 /* We must make sure the anon_vma is allocated. */ 2356 if (unlikely(anon_vma_prepare(vma))) 2357 return -ENOMEM; 2358 2359 /* 2360 * vma->vm_start/vm_end cannot change under us because the caller 2361 * is required to hold the mmap_sem in read mode. We need the 2362 * anon_vma lock to serialize against concurrent expand_stacks. 2363 */ 2364 anon_vma_lock_write(vma->anon_vma); 2365 2366 /* Somebody else might have raced and expanded it already */ 2367 if (address > vma->vm_end) { 2368 unsigned long size, grow; 2369 2370 size = address - vma->vm_start; 2371 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2372 2373 error = -ENOMEM; 2374 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2375 error = acct_stack_growth(vma, size, grow); 2376 if (!error) { 2377 /* 2378 * vma_gap_update() doesn't support concurrent 2379 * updates, but we only hold a shared mmap_sem 2380 * lock here, so we need to protect against 2381 * concurrent vma expansions. 2382 * anon_vma_lock_write() doesn't help here, as 2383 * we don't guarantee that all growable vmas 2384 * in a mm share the same root anon vma. 2385 * So, we reuse mm->page_table_lock to guard 2386 * against concurrent vma expansions. 2387 */ 2388 spin_lock(&mm->page_table_lock); 2389 if (vma->vm_flags & VM_LOCKED) 2390 mm->locked_vm += grow; 2391 vm_stat_account(mm, vma->vm_flags, grow); 2392 anon_vma_interval_tree_pre_update_vma(vma); 2393 vma->vm_end = address; 2394 anon_vma_interval_tree_post_update_vma(vma); 2395 if (vma->vm_next) 2396 vma_gap_update(vma->vm_next); 2397 else 2398 mm->highest_vm_end = vm_end_gap(vma); 2399 spin_unlock(&mm->page_table_lock); 2400 2401 perf_event_mmap(vma); 2402 } 2403 } 2404 } 2405 anon_vma_unlock_write(vma->anon_vma); 2406 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2407 validate_mm(mm); 2408 return error; 2409 } 2410 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2411 2412 /* 2413 * vma is the first one with address < vma->vm_start. Have to extend vma. 2414 */ 2415 int expand_downwards(struct vm_area_struct *vma, 2416 unsigned long address) 2417 { 2418 struct mm_struct *mm = vma->vm_mm; 2419 struct vm_area_struct *prev; 2420 int error = 0; 2421 2422 address &= PAGE_MASK; 2423 if (address < mmap_min_addr) 2424 return -EPERM; 2425 2426 /* Enforce stack_guard_gap */ 2427 prev = vma->vm_prev; 2428 /* Check that both stack segments have the same anon_vma? */ 2429 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2430 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2431 if (address - prev->vm_end < stack_guard_gap) 2432 return -ENOMEM; 2433 } 2434 2435 /* We must make sure the anon_vma is allocated. */ 2436 if (unlikely(anon_vma_prepare(vma))) 2437 return -ENOMEM; 2438 2439 /* 2440 * vma->vm_start/vm_end cannot change under us because the caller 2441 * is required to hold the mmap_sem in read mode. We need the 2442 * anon_vma lock to serialize against concurrent expand_stacks. 2443 */ 2444 anon_vma_lock_write(vma->anon_vma); 2445 2446 /* Somebody else might have raced and expanded it already */ 2447 if (address < vma->vm_start) { 2448 unsigned long size, grow; 2449 2450 size = vma->vm_end - address; 2451 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2452 2453 error = -ENOMEM; 2454 if (grow <= vma->vm_pgoff) { 2455 error = acct_stack_growth(vma, size, grow); 2456 if (!error) { 2457 /* 2458 * vma_gap_update() doesn't support concurrent 2459 * updates, but we only hold a shared mmap_sem 2460 * lock here, so we need to protect against 2461 * concurrent vma expansions. 2462 * anon_vma_lock_write() doesn't help here, as 2463 * we don't guarantee that all growable vmas 2464 * in a mm share the same root anon vma. 2465 * So, we reuse mm->page_table_lock to guard 2466 * against concurrent vma expansions. 2467 */ 2468 spin_lock(&mm->page_table_lock); 2469 if (vma->vm_flags & VM_LOCKED) 2470 mm->locked_vm += grow; 2471 vm_stat_account(mm, vma->vm_flags, grow); 2472 anon_vma_interval_tree_pre_update_vma(vma); 2473 vma->vm_start = address; 2474 vma->vm_pgoff -= grow; 2475 anon_vma_interval_tree_post_update_vma(vma); 2476 vma_gap_update(vma); 2477 spin_unlock(&mm->page_table_lock); 2478 2479 perf_event_mmap(vma); 2480 } 2481 } 2482 } 2483 anon_vma_unlock_write(vma->anon_vma); 2484 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2485 validate_mm(mm); 2486 return error; 2487 } 2488 2489 /* enforced gap between the expanding stack and other mappings. */ 2490 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2491 2492 static int __init cmdline_parse_stack_guard_gap(char *p) 2493 { 2494 unsigned long val; 2495 char *endptr; 2496 2497 val = simple_strtoul(p, &endptr, 10); 2498 if (!*endptr) 2499 stack_guard_gap = val << PAGE_SHIFT; 2500 2501 return 0; 2502 } 2503 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2504 2505 #ifdef CONFIG_STACK_GROWSUP 2506 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2507 { 2508 return expand_upwards(vma, address); 2509 } 2510 2511 struct vm_area_struct * 2512 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2513 { 2514 struct vm_area_struct *vma, *prev; 2515 2516 addr &= PAGE_MASK; 2517 vma = find_vma_prev(mm, addr, &prev); 2518 if (vma && (vma->vm_start <= addr)) 2519 return vma; 2520 /* don't alter vm_end if the coredump is running */ 2521 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2522 return NULL; 2523 if (prev->vm_flags & VM_LOCKED) 2524 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2525 return prev; 2526 } 2527 #else 2528 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2529 { 2530 return expand_downwards(vma, address); 2531 } 2532 2533 struct vm_area_struct * 2534 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2535 { 2536 struct vm_area_struct *vma; 2537 unsigned long start; 2538 2539 addr &= PAGE_MASK; 2540 vma = find_vma(mm, addr); 2541 if (!vma) 2542 return NULL; 2543 if (vma->vm_start <= addr) 2544 return vma; 2545 if (!(vma->vm_flags & VM_GROWSDOWN)) 2546 return NULL; 2547 /* don't alter vm_start if the coredump is running */ 2548 if (!mmget_still_valid(mm)) 2549 return NULL; 2550 start = vma->vm_start; 2551 if (expand_stack(vma, addr)) 2552 return NULL; 2553 if (vma->vm_flags & VM_LOCKED) 2554 populate_vma_page_range(vma, addr, start, NULL); 2555 return vma; 2556 } 2557 #endif 2558 2559 EXPORT_SYMBOL_GPL(find_extend_vma); 2560 2561 /* 2562 * Ok - we have the memory areas we should free on the vma list, 2563 * so release them, and do the vma updates. 2564 * 2565 * Called with the mm semaphore held. 2566 */ 2567 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2568 { 2569 unsigned long nr_accounted = 0; 2570 2571 /* Update high watermark before we lower total_vm */ 2572 update_hiwater_vm(mm); 2573 do { 2574 long nrpages = vma_pages(vma); 2575 2576 if (vma->vm_flags & VM_ACCOUNT) 2577 nr_accounted += nrpages; 2578 vm_stat_account(mm, vma->vm_flags, -nrpages); 2579 vma = remove_vma(vma); 2580 } while (vma); 2581 vm_unacct_memory(nr_accounted); 2582 validate_mm(mm); 2583 } 2584 2585 /* 2586 * Get rid of page table information in the indicated region. 2587 * 2588 * Called with the mm semaphore held. 2589 */ 2590 static void unmap_region(struct mm_struct *mm, 2591 struct vm_area_struct *vma, struct vm_area_struct *prev, 2592 unsigned long start, unsigned long end) 2593 { 2594 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2595 struct mmu_gather tlb; 2596 2597 lru_add_drain(); 2598 tlb_gather_mmu(&tlb, mm, start, end); 2599 update_hiwater_rss(mm); 2600 unmap_vmas(&tlb, vma, start, end); 2601 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2602 next ? next->vm_start : USER_PGTABLES_CEILING); 2603 tlb_finish_mmu(&tlb, start, end); 2604 } 2605 2606 /* 2607 * Create a list of vma's touched by the unmap, removing them from the mm's 2608 * vma list as we go.. 2609 */ 2610 static void 2611 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2612 struct vm_area_struct *prev, unsigned long end) 2613 { 2614 struct vm_area_struct **insertion_point; 2615 struct vm_area_struct *tail_vma = NULL; 2616 2617 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2618 vma->vm_prev = NULL; 2619 do { 2620 vma_rb_erase(vma, &mm->mm_rb); 2621 mm->map_count--; 2622 tail_vma = vma; 2623 vma = vma->vm_next; 2624 } while (vma && vma->vm_start < end); 2625 *insertion_point = vma; 2626 if (vma) { 2627 vma->vm_prev = prev; 2628 vma_gap_update(vma); 2629 } else 2630 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2631 tail_vma->vm_next = NULL; 2632 2633 /* Kill the cache */ 2634 vmacache_invalidate(mm); 2635 } 2636 2637 /* 2638 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2639 * has already been checked or doesn't make sense to fail. 2640 */ 2641 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2642 unsigned long addr, int new_below) 2643 { 2644 struct vm_area_struct *new; 2645 int err; 2646 2647 if (vma->vm_ops && vma->vm_ops->split) { 2648 err = vma->vm_ops->split(vma, addr); 2649 if (err) 2650 return err; 2651 } 2652 2653 new = vm_area_dup(vma); 2654 if (!new) 2655 return -ENOMEM; 2656 2657 if (new_below) 2658 new->vm_end = addr; 2659 else { 2660 new->vm_start = addr; 2661 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2662 } 2663 2664 err = vma_dup_policy(vma, new); 2665 if (err) 2666 goto out_free_vma; 2667 2668 err = anon_vma_clone(new, vma); 2669 if (err) 2670 goto out_free_mpol; 2671 2672 if (new->vm_file) 2673 get_file(new->vm_file); 2674 2675 if (new->vm_ops && new->vm_ops->open) 2676 new->vm_ops->open(new); 2677 2678 if (new_below) 2679 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2680 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2681 else 2682 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2683 2684 /* Success. */ 2685 if (!err) 2686 return 0; 2687 2688 /* Clean everything up if vma_adjust failed. */ 2689 if (new->vm_ops && new->vm_ops->close) 2690 new->vm_ops->close(new); 2691 if (new->vm_file) 2692 fput(new->vm_file); 2693 unlink_anon_vmas(new); 2694 out_free_mpol: 2695 mpol_put(vma_policy(new)); 2696 out_free_vma: 2697 vm_area_free(new); 2698 return err; 2699 } 2700 2701 /* 2702 * Split a vma into two pieces at address 'addr', a new vma is allocated 2703 * either for the first part or the tail. 2704 */ 2705 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2706 unsigned long addr, int new_below) 2707 { 2708 if (mm->map_count >= sysctl_max_map_count) 2709 return -ENOMEM; 2710 2711 return __split_vma(mm, vma, addr, new_below); 2712 } 2713 2714 /* Munmap is split into 2 main parts -- this part which finds 2715 * what needs doing, and the areas themselves, which do the 2716 * work. This now handles partial unmappings. 2717 * Jeremy Fitzhardinge <jeremy@goop.org> 2718 */ 2719 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2720 struct list_head *uf, bool downgrade) 2721 { 2722 unsigned long end; 2723 struct vm_area_struct *vma, *prev, *last; 2724 2725 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2726 return -EINVAL; 2727 2728 len = PAGE_ALIGN(len); 2729 end = start + len; 2730 if (len == 0) 2731 return -EINVAL; 2732 2733 /* 2734 * arch_unmap() might do unmaps itself. It must be called 2735 * and finish any rbtree manipulation before this code 2736 * runs and also starts to manipulate the rbtree. 2737 */ 2738 arch_unmap(mm, start, end); 2739 2740 /* Find the first overlapping VMA */ 2741 vma = find_vma(mm, start); 2742 if (!vma) 2743 return 0; 2744 prev = vma->vm_prev; 2745 /* we have start < vma->vm_end */ 2746 2747 /* if it doesn't overlap, we have nothing.. */ 2748 if (vma->vm_start >= end) 2749 return 0; 2750 2751 /* 2752 * If we need to split any vma, do it now to save pain later. 2753 * 2754 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2755 * unmapped vm_area_struct will remain in use: so lower split_vma 2756 * places tmp vma above, and higher split_vma places tmp vma below. 2757 */ 2758 if (start > vma->vm_start) { 2759 int error; 2760 2761 /* 2762 * Make sure that map_count on return from munmap() will 2763 * not exceed its limit; but let map_count go just above 2764 * its limit temporarily, to help free resources as expected. 2765 */ 2766 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2767 return -ENOMEM; 2768 2769 error = __split_vma(mm, vma, start, 0); 2770 if (error) 2771 return error; 2772 prev = vma; 2773 } 2774 2775 /* Does it split the last one? */ 2776 last = find_vma(mm, end); 2777 if (last && end > last->vm_start) { 2778 int error = __split_vma(mm, last, end, 1); 2779 if (error) 2780 return error; 2781 } 2782 vma = prev ? prev->vm_next : mm->mmap; 2783 2784 if (unlikely(uf)) { 2785 /* 2786 * If userfaultfd_unmap_prep returns an error the vmas 2787 * will remain splitted, but userland will get a 2788 * highly unexpected error anyway. This is no 2789 * different than the case where the first of the two 2790 * __split_vma fails, but we don't undo the first 2791 * split, despite we could. This is unlikely enough 2792 * failure that it's not worth optimizing it for. 2793 */ 2794 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2795 if (error) 2796 return error; 2797 } 2798 2799 /* 2800 * unlock any mlock()ed ranges before detaching vmas 2801 */ 2802 if (mm->locked_vm) { 2803 struct vm_area_struct *tmp = vma; 2804 while (tmp && tmp->vm_start < end) { 2805 if (tmp->vm_flags & VM_LOCKED) { 2806 mm->locked_vm -= vma_pages(tmp); 2807 munlock_vma_pages_all(tmp); 2808 } 2809 2810 tmp = tmp->vm_next; 2811 } 2812 } 2813 2814 /* Detach vmas from rbtree */ 2815 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2816 2817 if (downgrade) 2818 downgrade_write(&mm->mmap_sem); 2819 2820 unmap_region(mm, vma, prev, start, end); 2821 2822 /* Fix up all other VM information */ 2823 remove_vma_list(mm, vma); 2824 2825 return downgrade ? 1 : 0; 2826 } 2827 2828 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2829 struct list_head *uf) 2830 { 2831 return __do_munmap(mm, start, len, uf, false); 2832 } 2833 2834 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2835 { 2836 int ret; 2837 struct mm_struct *mm = current->mm; 2838 LIST_HEAD(uf); 2839 2840 if (down_write_killable(&mm->mmap_sem)) 2841 return -EINTR; 2842 2843 ret = __do_munmap(mm, start, len, &uf, downgrade); 2844 /* 2845 * Returning 1 indicates mmap_sem is downgraded. 2846 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2847 * it to 0 before return. 2848 */ 2849 if (ret == 1) { 2850 up_read(&mm->mmap_sem); 2851 ret = 0; 2852 } else 2853 up_write(&mm->mmap_sem); 2854 2855 userfaultfd_unmap_complete(mm, &uf); 2856 return ret; 2857 } 2858 2859 int vm_munmap(unsigned long start, size_t len) 2860 { 2861 return __vm_munmap(start, len, false); 2862 } 2863 EXPORT_SYMBOL(vm_munmap); 2864 2865 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2866 { 2867 addr = untagged_addr(addr); 2868 profile_munmap(addr); 2869 return __vm_munmap(addr, len, true); 2870 } 2871 2872 2873 /* 2874 * Emulation of deprecated remap_file_pages() syscall. 2875 */ 2876 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2877 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2878 { 2879 2880 struct mm_struct *mm = current->mm; 2881 struct vm_area_struct *vma; 2882 unsigned long populate = 0; 2883 unsigned long ret = -EINVAL; 2884 struct file *file; 2885 2886 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2887 current->comm, current->pid); 2888 2889 if (prot) 2890 return ret; 2891 start = start & PAGE_MASK; 2892 size = size & PAGE_MASK; 2893 2894 if (start + size <= start) 2895 return ret; 2896 2897 /* Does pgoff wrap? */ 2898 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2899 return ret; 2900 2901 if (down_write_killable(&mm->mmap_sem)) 2902 return -EINTR; 2903 2904 vma = find_vma(mm, start); 2905 2906 if (!vma || !(vma->vm_flags & VM_SHARED)) 2907 goto out; 2908 2909 if (start < vma->vm_start) 2910 goto out; 2911 2912 if (start + size > vma->vm_end) { 2913 struct vm_area_struct *next; 2914 2915 for (next = vma->vm_next; next; next = next->vm_next) { 2916 /* hole between vmas ? */ 2917 if (next->vm_start != next->vm_prev->vm_end) 2918 goto out; 2919 2920 if (next->vm_file != vma->vm_file) 2921 goto out; 2922 2923 if (next->vm_flags != vma->vm_flags) 2924 goto out; 2925 2926 if (start + size <= next->vm_end) 2927 break; 2928 } 2929 2930 if (!next) 2931 goto out; 2932 } 2933 2934 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2935 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2936 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2937 2938 flags &= MAP_NONBLOCK; 2939 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2940 if (vma->vm_flags & VM_LOCKED) { 2941 struct vm_area_struct *tmp; 2942 flags |= MAP_LOCKED; 2943 2944 /* drop PG_Mlocked flag for over-mapped range */ 2945 for (tmp = vma; tmp->vm_start >= start + size; 2946 tmp = tmp->vm_next) { 2947 /* 2948 * Split pmd and munlock page on the border 2949 * of the range. 2950 */ 2951 vma_adjust_trans_huge(tmp, start, start + size, 0); 2952 2953 munlock_vma_pages_range(tmp, 2954 max(tmp->vm_start, start), 2955 min(tmp->vm_end, start + size)); 2956 } 2957 } 2958 2959 file = get_file(vma->vm_file); 2960 ret = do_mmap_pgoff(vma->vm_file, start, size, 2961 prot, flags, pgoff, &populate, NULL); 2962 fput(file); 2963 out: 2964 up_write(&mm->mmap_sem); 2965 if (populate) 2966 mm_populate(ret, populate); 2967 if (!IS_ERR_VALUE(ret)) 2968 ret = 0; 2969 return ret; 2970 } 2971 2972 /* 2973 * this is really a simplified "do_mmap". it only handles 2974 * anonymous maps. eventually we may be able to do some 2975 * brk-specific accounting here. 2976 */ 2977 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2978 { 2979 struct mm_struct *mm = current->mm; 2980 struct vm_area_struct *vma, *prev; 2981 struct rb_node **rb_link, *rb_parent; 2982 pgoff_t pgoff = addr >> PAGE_SHIFT; 2983 int error; 2984 unsigned long mapped_addr; 2985 2986 /* Until we need other flags, refuse anything except VM_EXEC. */ 2987 if ((flags & (~VM_EXEC)) != 0) 2988 return -EINVAL; 2989 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2990 2991 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2992 if (IS_ERR_VALUE(mapped_addr)) 2993 return mapped_addr; 2994 2995 error = mlock_future_check(mm, mm->def_flags, len); 2996 if (error) 2997 return error; 2998 2999 /* 3000 * Clear old maps. this also does some error checking for us 3001 */ 3002 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3003 &rb_parent)) { 3004 if (do_munmap(mm, addr, len, uf)) 3005 return -ENOMEM; 3006 } 3007 3008 /* Check against address space limits *after* clearing old maps... */ 3009 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3010 return -ENOMEM; 3011 3012 if (mm->map_count > sysctl_max_map_count) 3013 return -ENOMEM; 3014 3015 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3016 return -ENOMEM; 3017 3018 /* Can we just expand an old private anonymous mapping? */ 3019 vma = vma_merge(mm, prev, addr, addr + len, flags, 3020 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3021 if (vma) 3022 goto out; 3023 3024 /* 3025 * create a vma struct for an anonymous mapping 3026 */ 3027 vma = vm_area_alloc(mm); 3028 if (!vma) { 3029 vm_unacct_memory(len >> PAGE_SHIFT); 3030 return -ENOMEM; 3031 } 3032 3033 vma_set_anonymous(vma); 3034 vma->vm_start = addr; 3035 vma->vm_end = addr + len; 3036 vma->vm_pgoff = pgoff; 3037 vma->vm_flags = flags; 3038 vma->vm_page_prot = vm_get_page_prot(flags); 3039 vma_link(mm, vma, prev, rb_link, rb_parent); 3040 out: 3041 perf_event_mmap(vma); 3042 mm->total_vm += len >> PAGE_SHIFT; 3043 mm->data_vm += len >> PAGE_SHIFT; 3044 if (flags & VM_LOCKED) 3045 mm->locked_vm += (len >> PAGE_SHIFT); 3046 vma->vm_flags |= VM_SOFTDIRTY; 3047 return 0; 3048 } 3049 3050 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3051 { 3052 struct mm_struct *mm = current->mm; 3053 unsigned long len; 3054 int ret; 3055 bool populate; 3056 LIST_HEAD(uf); 3057 3058 len = PAGE_ALIGN(request); 3059 if (len < request) 3060 return -ENOMEM; 3061 if (!len) 3062 return 0; 3063 3064 if (down_write_killable(&mm->mmap_sem)) 3065 return -EINTR; 3066 3067 ret = do_brk_flags(addr, len, flags, &uf); 3068 populate = ((mm->def_flags & VM_LOCKED) != 0); 3069 up_write(&mm->mmap_sem); 3070 userfaultfd_unmap_complete(mm, &uf); 3071 if (populate && !ret) 3072 mm_populate(addr, len); 3073 return ret; 3074 } 3075 EXPORT_SYMBOL(vm_brk_flags); 3076 3077 int vm_brk(unsigned long addr, unsigned long len) 3078 { 3079 return vm_brk_flags(addr, len, 0); 3080 } 3081 EXPORT_SYMBOL(vm_brk); 3082 3083 /* Release all mmaps. */ 3084 void exit_mmap(struct mm_struct *mm) 3085 { 3086 struct mmu_gather tlb; 3087 struct vm_area_struct *vma; 3088 unsigned long nr_accounted = 0; 3089 3090 /* mm's last user has gone, and its about to be pulled down */ 3091 mmu_notifier_release(mm); 3092 3093 if (unlikely(mm_is_oom_victim(mm))) { 3094 /* 3095 * Manually reap the mm to free as much memory as possible. 3096 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3097 * this mm from further consideration. Taking mm->mmap_sem for 3098 * write after setting MMF_OOM_SKIP will guarantee that the oom 3099 * reaper will not run on this mm again after mmap_sem is 3100 * dropped. 3101 * 3102 * Nothing can be holding mm->mmap_sem here and the above call 3103 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3104 * __oom_reap_task_mm() will not block. 3105 * 3106 * This needs to be done before calling munlock_vma_pages_all(), 3107 * which clears VM_LOCKED, otherwise the oom reaper cannot 3108 * reliably test it. 3109 */ 3110 (void)__oom_reap_task_mm(mm); 3111 3112 set_bit(MMF_OOM_SKIP, &mm->flags); 3113 down_write(&mm->mmap_sem); 3114 up_write(&mm->mmap_sem); 3115 } 3116 3117 if (mm->locked_vm) { 3118 vma = mm->mmap; 3119 while (vma) { 3120 if (vma->vm_flags & VM_LOCKED) 3121 munlock_vma_pages_all(vma); 3122 vma = vma->vm_next; 3123 } 3124 } 3125 3126 arch_exit_mmap(mm); 3127 3128 vma = mm->mmap; 3129 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3130 return; 3131 3132 lru_add_drain(); 3133 flush_cache_mm(mm); 3134 tlb_gather_mmu(&tlb, mm, 0, -1); 3135 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3136 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3137 unmap_vmas(&tlb, vma, 0, -1); 3138 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3139 tlb_finish_mmu(&tlb, 0, -1); 3140 3141 /* 3142 * Walk the list again, actually closing and freeing it, 3143 * with preemption enabled, without holding any MM locks. 3144 */ 3145 while (vma) { 3146 if (vma->vm_flags & VM_ACCOUNT) 3147 nr_accounted += vma_pages(vma); 3148 vma = remove_vma(vma); 3149 } 3150 vm_unacct_memory(nr_accounted); 3151 } 3152 3153 /* Insert vm structure into process list sorted by address 3154 * and into the inode's i_mmap tree. If vm_file is non-NULL 3155 * then i_mmap_rwsem is taken here. 3156 */ 3157 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3158 { 3159 struct vm_area_struct *prev; 3160 struct rb_node **rb_link, *rb_parent; 3161 3162 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3163 &prev, &rb_link, &rb_parent)) 3164 return -ENOMEM; 3165 if ((vma->vm_flags & VM_ACCOUNT) && 3166 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3167 return -ENOMEM; 3168 3169 /* 3170 * The vm_pgoff of a purely anonymous vma should be irrelevant 3171 * until its first write fault, when page's anon_vma and index 3172 * are set. But now set the vm_pgoff it will almost certainly 3173 * end up with (unless mremap moves it elsewhere before that 3174 * first wfault), so /proc/pid/maps tells a consistent story. 3175 * 3176 * By setting it to reflect the virtual start address of the 3177 * vma, merges and splits can happen in a seamless way, just 3178 * using the existing file pgoff checks and manipulations. 3179 * Similarly in do_mmap_pgoff and in do_brk. 3180 */ 3181 if (vma_is_anonymous(vma)) { 3182 BUG_ON(vma->anon_vma); 3183 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3184 } 3185 3186 vma_link(mm, vma, prev, rb_link, rb_parent); 3187 return 0; 3188 } 3189 3190 /* 3191 * Copy the vma structure to a new location in the same mm, 3192 * prior to moving page table entries, to effect an mremap move. 3193 */ 3194 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3195 unsigned long addr, unsigned long len, pgoff_t pgoff, 3196 bool *need_rmap_locks) 3197 { 3198 struct vm_area_struct *vma = *vmap; 3199 unsigned long vma_start = vma->vm_start; 3200 struct mm_struct *mm = vma->vm_mm; 3201 struct vm_area_struct *new_vma, *prev; 3202 struct rb_node **rb_link, *rb_parent; 3203 bool faulted_in_anon_vma = true; 3204 3205 /* 3206 * If anonymous vma has not yet been faulted, update new pgoff 3207 * to match new location, to increase its chance of merging. 3208 */ 3209 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3210 pgoff = addr >> PAGE_SHIFT; 3211 faulted_in_anon_vma = false; 3212 } 3213 3214 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3215 return NULL; /* should never get here */ 3216 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3217 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3218 vma->vm_userfaultfd_ctx); 3219 if (new_vma) { 3220 /* 3221 * Source vma may have been merged into new_vma 3222 */ 3223 if (unlikely(vma_start >= new_vma->vm_start && 3224 vma_start < new_vma->vm_end)) { 3225 /* 3226 * The only way we can get a vma_merge with 3227 * self during an mremap is if the vma hasn't 3228 * been faulted in yet and we were allowed to 3229 * reset the dst vma->vm_pgoff to the 3230 * destination address of the mremap to allow 3231 * the merge to happen. mremap must change the 3232 * vm_pgoff linearity between src and dst vmas 3233 * (in turn preventing a vma_merge) to be 3234 * safe. It is only safe to keep the vm_pgoff 3235 * linear if there are no pages mapped yet. 3236 */ 3237 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3238 *vmap = vma = new_vma; 3239 } 3240 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3241 } else { 3242 new_vma = vm_area_dup(vma); 3243 if (!new_vma) 3244 goto out; 3245 new_vma->vm_start = addr; 3246 new_vma->vm_end = addr + len; 3247 new_vma->vm_pgoff = pgoff; 3248 if (vma_dup_policy(vma, new_vma)) 3249 goto out_free_vma; 3250 if (anon_vma_clone(new_vma, vma)) 3251 goto out_free_mempol; 3252 if (new_vma->vm_file) 3253 get_file(new_vma->vm_file); 3254 if (new_vma->vm_ops && new_vma->vm_ops->open) 3255 new_vma->vm_ops->open(new_vma); 3256 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3257 *need_rmap_locks = false; 3258 } 3259 return new_vma; 3260 3261 out_free_mempol: 3262 mpol_put(vma_policy(new_vma)); 3263 out_free_vma: 3264 vm_area_free(new_vma); 3265 out: 3266 return NULL; 3267 } 3268 3269 /* 3270 * Return true if the calling process may expand its vm space by the passed 3271 * number of pages 3272 */ 3273 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3274 { 3275 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3276 return false; 3277 3278 if (is_data_mapping(flags) && 3279 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3280 /* Workaround for Valgrind */ 3281 if (rlimit(RLIMIT_DATA) == 0 && 3282 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3283 return true; 3284 3285 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3286 current->comm, current->pid, 3287 (mm->data_vm + npages) << PAGE_SHIFT, 3288 rlimit(RLIMIT_DATA), 3289 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3290 3291 if (!ignore_rlimit_data) 3292 return false; 3293 } 3294 3295 return true; 3296 } 3297 3298 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3299 { 3300 mm->total_vm += npages; 3301 3302 if (is_exec_mapping(flags)) 3303 mm->exec_vm += npages; 3304 else if (is_stack_mapping(flags)) 3305 mm->stack_vm += npages; 3306 else if (is_data_mapping(flags)) 3307 mm->data_vm += npages; 3308 } 3309 3310 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3311 3312 /* 3313 * Having a close hook prevents vma merging regardless of flags. 3314 */ 3315 static void special_mapping_close(struct vm_area_struct *vma) 3316 { 3317 } 3318 3319 static const char *special_mapping_name(struct vm_area_struct *vma) 3320 { 3321 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3322 } 3323 3324 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3325 { 3326 struct vm_special_mapping *sm = new_vma->vm_private_data; 3327 3328 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3329 return -EFAULT; 3330 3331 if (sm->mremap) 3332 return sm->mremap(sm, new_vma); 3333 3334 return 0; 3335 } 3336 3337 static const struct vm_operations_struct special_mapping_vmops = { 3338 .close = special_mapping_close, 3339 .fault = special_mapping_fault, 3340 .mremap = special_mapping_mremap, 3341 .name = special_mapping_name, 3342 }; 3343 3344 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3345 .close = special_mapping_close, 3346 .fault = special_mapping_fault, 3347 }; 3348 3349 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3350 { 3351 struct vm_area_struct *vma = vmf->vma; 3352 pgoff_t pgoff; 3353 struct page **pages; 3354 3355 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3356 pages = vma->vm_private_data; 3357 } else { 3358 struct vm_special_mapping *sm = vma->vm_private_data; 3359 3360 if (sm->fault) 3361 return sm->fault(sm, vmf->vma, vmf); 3362 3363 pages = sm->pages; 3364 } 3365 3366 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3367 pgoff--; 3368 3369 if (*pages) { 3370 struct page *page = *pages; 3371 get_page(page); 3372 vmf->page = page; 3373 return 0; 3374 } 3375 3376 return VM_FAULT_SIGBUS; 3377 } 3378 3379 static struct vm_area_struct *__install_special_mapping( 3380 struct mm_struct *mm, 3381 unsigned long addr, unsigned long len, 3382 unsigned long vm_flags, void *priv, 3383 const struct vm_operations_struct *ops) 3384 { 3385 int ret; 3386 struct vm_area_struct *vma; 3387 3388 vma = vm_area_alloc(mm); 3389 if (unlikely(vma == NULL)) 3390 return ERR_PTR(-ENOMEM); 3391 3392 vma->vm_start = addr; 3393 vma->vm_end = addr + len; 3394 3395 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3396 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3397 3398 vma->vm_ops = ops; 3399 vma->vm_private_data = priv; 3400 3401 ret = insert_vm_struct(mm, vma); 3402 if (ret) 3403 goto out; 3404 3405 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3406 3407 perf_event_mmap(vma); 3408 3409 return vma; 3410 3411 out: 3412 vm_area_free(vma); 3413 return ERR_PTR(ret); 3414 } 3415 3416 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3417 const struct vm_special_mapping *sm) 3418 { 3419 return vma->vm_private_data == sm && 3420 (vma->vm_ops == &special_mapping_vmops || 3421 vma->vm_ops == &legacy_special_mapping_vmops); 3422 } 3423 3424 /* 3425 * Called with mm->mmap_sem held for writing. 3426 * Insert a new vma covering the given region, with the given flags. 3427 * Its pages are supplied by the given array of struct page *. 3428 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3429 * The region past the last page supplied will always produce SIGBUS. 3430 * The array pointer and the pages it points to are assumed to stay alive 3431 * for as long as this mapping might exist. 3432 */ 3433 struct vm_area_struct *_install_special_mapping( 3434 struct mm_struct *mm, 3435 unsigned long addr, unsigned long len, 3436 unsigned long vm_flags, const struct vm_special_mapping *spec) 3437 { 3438 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3439 &special_mapping_vmops); 3440 } 3441 3442 int install_special_mapping(struct mm_struct *mm, 3443 unsigned long addr, unsigned long len, 3444 unsigned long vm_flags, struct page **pages) 3445 { 3446 struct vm_area_struct *vma = __install_special_mapping( 3447 mm, addr, len, vm_flags, (void *)pages, 3448 &legacy_special_mapping_vmops); 3449 3450 return PTR_ERR_OR_ZERO(vma); 3451 } 3452 3453 static DEFINE_MUTEX(mm_all_locks_mutex); 3454 3455 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3456 { 3457 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3458 /* 3459 * The LSB of head.next can't change from under us 3460 * because we hold the mm_all_locks_mutex. 3461 */ 3462 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3463 /* 3464 * We can safely modify head.next after taking the 3465 * anon_vma->root->rwsem. If some other vma in this mm shares 3466 * the same anon_vma we won't take it again. 3467 * 3468 * No need of atomic instructions here, head.next 3469 * can't change from under us thanks to the 3470 * anon_vma->root->rwsem. 3471 */ 3472 if (__test_and_set_bit(0, (unsigned long *) 3473 &anon_vma->root->rb_root.rb_root.rb_node)) 3474 BUG(); 3475 } 3476 } 3477 3478 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3479 { 3480 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3481 /* 3482 * AS_MM_ALL_LOCKS can't change from under us because 3483 * we hold the mm_all_locks_mutex. 3484 * 3485 * Operations on ->flags have to be atomic because 3486 * even if AS_MM_ALL_LOCKS is stable thanks to the 3487 * mm_all_locks_mutex, there may be other cpus 3488 * changing other bitflags in parallel to us. 3489 */ 3490 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3491 BUG(); 3492 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3493 } 3494 } 3495 3496 /* 3497 * This operation locks against the VM for all pte/vma/mm related 3498 * operations that could ever happen on a certain mm. This includes 3499 * vmtruncate, try_to_unmap, and all page faults. 3500 * 3501 * The caller must take the mmap_sem in write mode before calling 3502 * mm_take_all_locks(). The caller isn't allowed to release the 3503 * mmap_sem until mm_drop_all_locks() returns. 3504 * 3505 * mmap_sem in write mode is required in order to block all operations 3506 * that could modify pagetables and free pages without need of 3507 * altering the vma layout. It's also needed in write mode to avoid new 3508 * anon_vmas to be associated with existing vmas. 3509 * 3510 * A single task can't take more than one mm_take_all_locks() in a row 3511 * or it would deadlock. 3512 * 3513 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3514 * mapping->flags avoid to take the same lock twice, if more than one 3515 * vma in this mm is backed by the same anon_vma or address_space. 3516 * 3517 * We take locks in following order, accordingly to comment at beginning 3518 * of mm/rmap.c: 3519 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3520 * hugetlb mapping); 3521 * - all i_mmap_rwsem locks; 3522 * - all anon_vma->rwseml 3523 * 3524 * We can take all locks within these types randomly because the VM code 3525 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3526 * mm_all_locks_mutex. 3527 * 3528 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3529 * that may have to take thousand of locks. 3530 * 3531 * mm_take_all_locks() can fail if it's interrupted by signals. 3532 */ 3533 int mm_take_all_locks(struct mm_struct *mm) 3534 { 3535 struct vm_area_struct *vma; 3536 struct anon_vma_chain *avc; 3537 3538 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3539 3540 mutex_lock(&mm_all_locks_mutex); 3541 3542 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3543 if (signal_pending(current)) 3544 goto out_unlock; 3545 if (vma->vm_file && vma->vm_file->f_mapping && 3546 is_vm_hugetlb_page(vma)) 3547 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3548 } 3549 3550 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3551 if (signal_pending(current)) 3552 goto out_unlock; 3553 if (vma->vm_file && vma->vm_file->f_mapping && 3554 !is_vm_hugetlb_page(vma)) 3555 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3556 } 3557 3558 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3559 if (signal_pending(current)) 3560 goto out_unlock; 3561 if (vma->anon_vma) 3562 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3563 vm_lock_anon_vma(mm, avc->anon_vma); 3564 } 3565 3566 return 0; 3567 3568 out_unlock: 3569 mm_drop_all_locks(mm); 3570 return -EINTR; 3571 } 3572 3573 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3574 { 3575 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3576 /* 3577 * The LSB of head.next can't change to 0 from under 3578 * us because we hold the mm_all_locks_mutex. 3579 * 3580 * We must however clear the bitflag before unlocking 3581 * the vma so the users using the anon_vma->rb_root will 3582 * never see our bitflag. 3583 * 3584 * No need of atomic instructions here, head.next 3585 * can't change from under us until we release the 3586 * anon_vma->root->rwsem. 3587 */ 3588 if (!__test_and_clear_bit(0, (unsigned long *) 3589 &anon_vma->root->rb_root.rb_root.rb_node)) 3590 BUG(); 3591 anon_vma_unlock_write(anon_vma); 3592 } 3593 } 3594 3595 static void vm_unlock_mapping(struct address_space *mapping) 3596 { 3597 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3598 /* 3599 * AS_MM_ALL_LOCKS can't change to 0 from under us 3600 * because we hold the mm_all_locks_mutex. 3601 */ 3602 i_mmap_unlock_write(mapping); 3603 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3604 &mapping->flags)) 3605 BUG(); 3606 } 3607 } 3608 3609 /* 3610 * The mmap_sem cannot be released by the caller until 3611 * mm_drop_all_locks() returns. 3612 */ 3613 void mm_drop_all_locks(struct mm_struct *mm) 3614 { 3615 struct vm_area_struct *vma; 3616 struct anon_vma_chain *avc; 3617 3618 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3619 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3620 3621 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3622 if (vma->anon_vma) 3623 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3624 vm_unlock_anon_vma(avc->anon_vma); 3625 if (vma->vm_file && vma->vm_file->f_mapping) 3626 vm_unlock_mapping(vma->vm_file->f_mapping); 3627 } 3628 3629 mutex_unlock(&mm_all_locks_mutex); 3630 } 3631 3632 /* 3633 * initialise the percpu counter for VM 3634 */ 3635 void __init mmap_init(void) 3636 { 3637 int ret; 3638 3639 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3640 VM_BUG_ON(ret); 3641 } 3642 3643 /* 3644 * Initialise sysctl_user_reserve_kbytes. 3645 * 3646 * This is intended to prevent a user from starting a single memory hogging 3647 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3648 * mode. 3649 * 3650 * The default value is min(3% of free memory, 128MB) 3651 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3652 */ 3653 static int init_user_reserve(void) 3654 { 3655 unsigned long free_kbytes; 3656 3657 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3658 3659 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3660 return 0; 3661 } 3662 subsys_initcall(init_user_reserve); 3663 3664 /* 3665 * Initialise sysctl_admin_reserve_kbytes. 3666 * 3667 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3668 * to log in and kill a memory hogging process. 3669 * 3670 * Systems with more than 256MB will reserve 8MB, enough to recover 3671 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3672 * only reserve 3% of free pages by default. 3673 */ 3674 static int init_admin_reserve(void) 3675 { 3676 unsigned long free_kbytes; 3677 3678 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3679 3680 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3681 return 0; 3682 } 3683 subsys_initcall(init_admin_reserve); 3684 3685 /* 3686 * Reinititalise user and admin reserves if memory is added or removed. 3687 * 3688 * The default user reserve max is 128MB, and the default max for the 3689 * admin reserve is 8MB. These are usually, but not always, enough to 3690 * enable recovery from a memory hogging process using login/sshd, a shell, 3691 * and tools like top. It may make sense to increase or even disable the 3692 * reserve depending on the existence of swap or variations in the recovery 3693 * tools. So, the admin may have changed them. 3694 * 3695 * If memory is added and the reserves have been eliminated or increased above 3696 * the default max, then we'll trust the admin. 3697 * 3698 * If memory is removed and there isn't enough free memory, then we 3699 * need to reset the reserves. 3700 * 3701 * Otherwise keep the reserve set by the admin. 3702 */ 3703 static int reserve_mem_notifier(struct notifier_block *nb, 3704 unsigned long action, void *data) 3705 { 3706 unsigned long tmp, free_kbytes; 3707 3708 switch (action) { 3709 case MEM_ONLINE: 3710 /* Default max is 128MB. Leave alone if modified by operator. */ 3711 tmp = sysctl_user_reserve_kbytes; 3712 if (0 < tmp && tmp < (1UL << 17)) 3713 init_user_reserve(); 3714 3715 /* Default max is 8MB. Leave alone if modified by operator. */ 3716 tmp = sysctl_admin_reserve_kbytes; 3717 if (0 < tmp && tmp < (1UL << 13)) 3718 init_admin_reserve(); 3719 3720 break; 3721 case MEM_OFFLINE: 3722 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3723 3724 if (sysctl_user_reserve_kbytes > free_kbytes) { 3725 init_user_reserve(); 3726 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3727 sysctl_user_reserve_kbytes); 3728 } 3729 3730 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3731 init_admin_reserve(); 3732 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3733 sysctl_admin_reserve_kbytes); 3734 } 3735 break; 3736 default: 3737 break; 3738 } 3739 return NOTIFY_OK; 3740 } 3741 3742 static struct notifier_block reserve_mem_nb = { 3743 .notifier_call = reserve_mem_notifier, 3744 }; 3745 3746 static int __meminit init_reserve_notifier(void) 3747 { 3748 if (register_hotmemory_notifier(&reserve_mem_nb)) 3749 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3750 3751 return 0; 3752 } 3753 subsys_initcall(init_reserve_notifier); 3754