xref: /linux/mm/mmap.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 
60 #include "internal.h"
61 
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)	(0)
64 #endif
65 
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76 
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 
80 static void unmap_region(struct mm_struct *mm,
81 		struct vm_area_struct *vma, struct vm_area_struct *prev,
82 		unsigned long start, unsigned long end);
83 
84 /* description of effects of mapping type and prot in current implementation.
85  * this is due to the limited x86 page protection hardware.  The expected
86  * behavior is in parens:
87  *
88  * map_type	prot
89  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
90  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
95  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
96  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
97  *
98  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99  * MAP_PRIVATE (with Enhanced PAN supported):
100  *								r: (no) no
101  *								w: (no) no
102  *								x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
106 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
107 };
108 
109 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
110 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
111 {
112 	return prot;
113 }
114 #endif
115 
116 pgprot_t vm_get_page_prot(unsigned long vm_flags)
117 {
118 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
119 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
120 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
121 
122 	return arch_filter_pgprot(ret);
123 }
124 EXPORT_SYMBOL(vm_get_page_prot);
125 
126 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
127 {
128 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
129 }
130 
131 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
132 void vma_set_page_prot(struct vm_area_struct *vma)
133 {
134 	unsigned long vm_flags = vma->vm_flags;
135 	pgprot_t vm_page_prot;
136 
137 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
138 	if (vma_wants_writenotify(vma, vm_page_prot)) {
139 		vm_flags &= ~VM_SHARED;
140 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
141 	}
142 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
143 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
144 }
145 
146 /*
147  * Requires inode->i_mapping->i_mmap_rwsem
148  */
149 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
150 		struct file *file, struct address_space *mapping)
151 {
152 	if (vma->vm_flags & VM_SHARED)
153 		mapping_unmap_writable(mapping);
154 
155 	flush_dcache_mmap_lock(mapping);
156 	vma_interval_tree_remove(vma, &mapping->i_mmap);
157 	flush_dcache_mmap_unlock(mapping);
158 }
159 
160 /*
161  * Unlink a file-based vm structure from its interval tree, to hide
162  * vma from rmap and vmtruncate before freeing its page tables.
163  */
164 void unlink_file_vma(struct vm_area_struct *vma)
165 {
166 	struct file *file = vma->vm_file;
167 
168 	if (file) {
169 		struct address_space *mapping = file->f_mapping;
170 		i_mmap_lock_write(mapping);
171 		__remove_shared_vm_struct(vma, file, mapping);
172 		i_mmap_unlock_write(mapping);
173 	}
174 }
175 
176 /*
177  * Close a vm structure and free it, returning the next.
178  */
179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
180 {
181 	struct vm_area_struct *next = vma->vm_next;
182 
183 	might_sleep();
184 	if (vma->vm_ops && vma->vm_ops->close)
185 		vma->vm_ops->close(vma);
186 	if (vma->vm_file)
187 		fput(vma->vm_file);
188 	mpol_put(vma_policy(vma));
189 	vm_area_free(vma);
190 	return next;
191 }
192 
193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
194 		struct list_head *uf);
195 SYSCALL_DEFINE1(brk, unsigned long, brk)
196 {
197 	unsigned long newbrk, oldbrk, origbrk;
198 	struct mm_struct *mm = current->mm;
199 	struct vm_area_struct *next;
200 	unsigned long min_brk;
201 	bool populate;
202 	bool downgraded = false;
203 	LIST_HEAD(uf);
204 
205 	if (mmap_write_lock_killable(mm))
206 		return -EINTR;
207 
208 	origbrk = mm->brk;
209 
210 #ifdef CONFIG_COMPAT_BRK
211 	/*
212 	 * CONFIG_COMPAT_BRK can still be overridden by setting
213 	 * randomize_va_space to 2, which will still cause mm->start_brk
214 	 * to be arbitrarily shifted
215 	 */
216 	if (current->brk_randomized)
217 		min_brk = mm->start_brk;
218 	else
219 		min_brk = mm->end_data;
220 #else
221 	min_brk = mm->start_brk;
222 #endif
223 	if (brk < min_brk)
224 		goto out;
225 
226 	/*
227 	 * Check against rlimit here. If this check is done later after the test
228 	 * of oldbrk with newbrk then it can escape the test and let the data
229 	 * segment grow beyond its set limit the in case where the limit is
230 	 * not page aligned -Ram Gupta
231 	 */
232 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
233 			      mm->end_data, mm->start_data))
234 		goto out;
235 
236 	newbrk = PAGE_ALIGN(brk);
237 	oldbrk = PAGE_ALIGN(mm->brk);
238 	if (oldbrk == newbrk) {
239 		mm->brk = brk;
240 		goto success;
241 	}
242 
243 	/*
244 	 * Always allow shrinking brk.
245 	 * __do_munmap() may downgrade mmap_lock to read.
246 	 */
247 	if (brk <= mm->brk) {
248 		int ret;
249 
250 		/*
251 		 * mm->brk must to be protected by write mmap_lock so update it
252 		 * before downgrading mmap_lock. When __do_munmap() fails,
253 		 * mm->brk will be restored from origbrk.
254 		 */
255 		mm->brk = brk;
256 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
257 		if (ret < 0) {
258 			mm->brk = origbrk;
259 			goto out;
260 		} else if (ret == 1) {
261 			downgraded = true;
262 		}
263 		goto success;
264 	}
265 
266 	/* Check against existing mmap mappings. */
267 	next = find_vma(mm, oldbrk);
268 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269 		goto out;
270 
271 	/* Ok, looks good - let it rip. */
272 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
273 		goto out;
274 	mm->brk = brk;
275 
276 success:
277 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
278 	if (downgraded)
279 		mmap_read_unlock(mm);
280 	else
281 		mmap_write_unlock(mm);
282 	userfaultfd_unmap_complete(mm, &uf);
283 	if (populate)
284 		mm_populate(oldbrk, newbrk - oldbrk);
285 	return brk;
286 
287 out:
288 	mmap_write_unlock(mm);
289 	return origbrk;
290 }
291 
292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
293 {
294 	unsigned long gap, prev_end;
295 
296 	/*
297 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
298 	 * allow two stack_guard_gaps between them here, and when choosing
299 	 * an unmapped area; whereas when expanding we only require one.
300 	 * That's a little inconsistent, but keeps the code here simpler.
301 	 */
302 	gap = vm_start_gap(vma);
303 	if (vma->vm_prev) {
304 		prev_end = vm_end_gap(vma->vm_prev);
305 		if (gap > prev_end)
306 			gap -= prev_end;
307 		else
308 			gap = 0;
309 	}
310 	return gap;
311 }
312 
313 #ifdef CONFIG_DEBUG_VM_RB
314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
315 {
316 	unsigned long max = vma_compute_gap(vma), subtree_gap;
317 	if (vma->vm_rb.rb_left) {
318 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
319 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
320 		if (subtree_gap > max)
321 			max = subtree_gap;
322 	}
323 	if (vma->vm_rb.rb_right) {
324 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
325 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
326 		if (subtree_gap > max)
327 			max = subtree_gap;
328 	}
329 	return max;
330 }
331 
332 static int browse_rb(struct mm_struct *mm)
333 {
334 	struct rb_root *root = &mm->mm_rb;
335 	int i = 0, j, bug = 0;
336 	struct rb_node *nd, *pn = NULL;
337 	unsigned long prev = 0, pend = 0;
338 
339 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
340 		struct vm_area_struct *vma;
341 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
342 		if (vma->vm_start < prev) {
343 			pr_emerg("vm_start %lx < prev %lx\n",
344 				  vma->vm_start, prev);
345 			bug = 1;
346 		}
347 		if (vma->vm_start < pend) {
348 			pr_emerg("vm_start %lx < pend %lx\n",
349 				  vma->vm_start, pend);
350 			bug = 1;
351 		}
352 		if (vma->vm_start > vma->vm_end) {
353 			pr_emerg("vm_start %lx > vm_end %lx\n",
354 				  vma->vm_start, vma->vm_end);
355 			bug = 1;
356 		}
357 		spin_lock(&mm->page_table_lock);
358 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
359 			pr_emerg("free gap %lx, correct %lx\n",
360 			       vma->rb_subtree_gap,
361 			       vma_compute_subtree_gap(vma));
362 			bug = 1;
363 		}
364 		spin_unlock(&mm->page_table_lock);
365 		i++;
366 		pn = nd;
367 		prev = vma->vm_start;
368 		pend = vma->vm_end;
369 	}
370 	j = 0;
371 	for (nd = pn; nd; nd = rb_prev(nd))
372 		j++;
373 	if (i != j) {
374 		pr_emerg("backwards %d, forwards %d\n", j, i);
375 		bug = 1;
376 	}
377 	return bug ? -1 : i;
378 }
379 
380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
381 {
382 	struct rb_node *nd;
383 
384 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 		struct vm_area_struct *vma;
386 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 		VM_BUG_ON_VMA(vma != ignore &&
388 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
389 			vma);
390 	}
391 }
392 
393 static void validate_mm(struct mm_struct *mm)
394 {
395 	int bug = 0;
396 	int i = 0;
397 	unsigned long highest_address = 0;
398 	struct vm_area_struct *vma = mm->mmap;
399 
400 	while (vma) {
401 		struct anon_vma *anon_vma = vma->anon_vma;
402 		struct anon_vma_chain *avc;
403 
404 		if (anon_vma) {
405 			anon_vma_lock_read(anon_vma);
406 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
407 				anon_vma_interval_tree_verify(avc);
408 			anon_vma_unlock_read(anon_vma);
409 		}
410 
411 		highest_address = vm_end_gap(vma);
412 		vma = vma->vm_next;
413 		i++;
414 	}
415 	if (i != mm->map_count) {
416 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
417 		bug = 1;
418 	}
419 	if (highest_address != mm->highest_vm_end) {
420 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
421 			  mm->highest_vm_end, highest_address);
422 		bug = 1;
423 	}
424 	i = browse_rb(mm);
425 	if (i != mm->map_count) {
426 		if (i != -1)
427 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
428 		bug = 1;
429 	}
430 	VM_BUG_ON_MM(bug, mm);
431 }
432 #else
433 #define validate_mm_rb(root, ignore) do { } while (0)
434 #define validate_mm(mm) do { } while (0)
435 #endif
436 
437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
438 			 struct vm_area_struct, vm_rb,
439 			 unsigned long, rb_subtree_gap, vma_compute_gap)
440 
441 /*
442  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443  * vma->vm_prev->vm_end values changed, without modifying the vma's position
444  * in the rbtree.
445  */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448 	/*
449 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
450 	 * a callback function that does exactly what we want.
451 	 */
452 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454 
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456 				 struct rb_root *root)
457 {
458 	/* All rb_subtree_gap values must be consistent prior to insertion */
459 	validate_mm_rb(root, NULL);
460 
461 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463 
464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466 	/*
467 	 * Note rb_erase_augmented is a fairly large inline function,
468 	 * so make sure we instantiate it only once with our desired
469 	 * augmented rbtree callbacks.
470 	 */
471 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
472 }
473 
474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
475 						struct rb_root *root,
476 						struct vm_area_struct *ignore)
477 {
478 	/*
479 	 * All rb_subtree_gap values must be consistent prior to erase,
480 	 * with the possible exception of
481 	 *
482 	 * a. the "next" vma being erased if next->vm_start was reduced in
483 	 *    __vma_adjust() -> __vma_unlink()
484 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
485 	 *    vma_rb_erase()
486 	 */
487 	validate_mm_rb(root, ignore);
488 
489 	__vma_rb_erase(vma, root);
490 }
491 
492 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
493 					 struct rb_root *root)
494 {
495 	vma_rb_erase_ignore(vma, root, vma);
496 }
497 
498 /*
499  * vma has some anon_vma assigned, and is already inserted on that
500  * anon_vma's interval trees.
501  *
502  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
503  * vma must be removed from the anon_vma's interval trees using
504  * anon_vma_interval_tree_pre_update_vma().
505  *
506  * After the update, the vma will be reinserted using
507  * anon_vma_interval_tree_post_update_vma().
508  *
509  * The entire update must be protected by exclusive mmap_lock and by
510  * the root anon_vma's mutex.
511  */
512 static inline void
513 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
514 {
515 	struct anon_vma_chain *avc;
516 
517 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
518 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
519 }
520 
521 static inline void
522 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
523 {
524 	struct anon_vma_chain *avc;
525 
526 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
527 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
528 }
529 
530 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
531 		unsigned long end, struct vm_area_struct **pprev,
532 		struct rb_node ***rb_link, struct rb_node **rb_parent)
533 {
534 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
535 
536 	mmap_assert_locked(mm);
537 	__rb_link = &mm->mm_rb.rb_node;
538 	rb_prev = __rb_parent = NULL;
539 
540 	while (*__rb_link) {
541 		struct vm_area_struct *vma_tmp;
542 
543 		__rb_parent = *__rb_link;
544 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545 
546 		if (vma_tmp->vm_end > addr) {
547 			/* Fail if an existing vma overlaps the area */
548 			if (vma_tmp->vm_start < end)
549 				return -ENOMEM;
550 			__rb_link = &__rb_parent->rb_left;
551 		} else {
552 			rb_prev = __rb_parent;
553 			__rb_link = &__rb_parent->rb_right;
554 		}
555 	}
556 
557 	*pprev = NULL;
558 	if (rb_prev)
559 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 	*rb_link = __rb_link;
561 	*rb_parent = __rb_parent;
562 	return 0;
563 }
564 
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 					 struct vm_area_struct *vma)
576 {
577 	if (!vma)
578 		return mm->mmap;
579 
580 	return vma->vm_next;
581 }
582 
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 		 struct vm_area_struct **pprev, struct rb_node ***link,
600 		 struct rb_node **parent, struct list_head *uf)
601 {
602 
603 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 		if (do_munmap(mm, start, len, uf))
605 			return -ENOMEM;
606 
607 	return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 		unsigned long addr, unsigned long end)
611 {
612 	unsigned long nr_pages = 0;
613 	struct vm_area_struct *vma;
614 
615 	/* Find first overlapping mapping */
616 	vma = find_vma_intersection(mm, addr, end);
617 	if (!vma)
618 		return 0;
619 
620 	nr_pages = (min(end, vma->vm_end) -
621 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
622 
623 	/* Iterate over the rest of the overlaps */
624 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 		unsigned long overlap_len;
626 
627 		if (vma->vm_start > end)
628 			break;
629 
630 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 		nr_pages += overlap_len >> PAGE_SHIFT;
632 	}
633 
634 	return nr_pages;
635 }
636 
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 		struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 	/* Update tracking information for the gap following the new vma. */
641 	if (vma->vm_next)
642 		vma_gap_update(vma->vm_next);
643 	else
644 		mm->highest_vm_end = vm_end_gap(vma);
645 
646 	/*
647 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 	 * correct insertion point for that vma. As a result, we could not
649 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 	 * So, we first insert the vma with a zero rb_subtree_gap value
651 	 * (to be consistent with what we did on the way down), and then
652 	 * immediately update the gap to the correct value. Finally we
653 	 * rebalance the rbtree after all augmented values have been set.
654 	 */
655 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 	vma->rb_subtree_gap = 0;
657 	vma_gap_update(vma);
658 	vma_rb_insert(vma, &mm->mm_rb);
659 }
660 
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 	struct file *file;
664 
665 	file = vma->vm_file;
666 	if (file) {
667 		struct address_space *mapping = file->f_mapping;
668 
669 		if (vma->vm_flags & VM_SHARED)
670 			mapping_allow_writable(mapping);
671 
672 		flush_dcache_mmap_lock(mapping);
673 		vma_interval_tree_insert(vma, &mapping->i_mmap);
674 		flush_dcache_mmap_unlock(mapping);
675 	}
676 }
677 
678 static void
679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680 	struct vm_area_struct *prev, struct rb_node **rb_link,
681 	struct rb_node *rb_parent)
682 {
683 	__vma_link_list(mm, vma, prev);
684 	__vma_link_rb(mm, vma, rb_link, rb_parent);
685 }
686 
687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688 			struct vm_area_struct *prev, struct rb_node **rb_link,
689 			struct rb_node *rb_parent)
690 {
691 	struct address_space *mapping = NULL;
692 
693 	if (vma->vm_file) {
694 		mapping = vma->vm_file->f_mapping;
695 		i_mmap_lock_write(mapping);
696 	}
697 
698 	__vma_link(mm, vma, prev, rb_link, rb_parent);
699 	__vma_link_file(vma);
700 
701 	if (mapping)
702 		i_mmap_unlock_write(mapping);
703 
704 	mm->map_count++;
705 	validate_mm(mm);
706 }
707 
708 /*
709  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
710  * mm's list and rbtree.  It has already been inserted into the interval tree.
711  */
712 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
713 {
714 	struct vm_area_struct *prev;
715 	struct rb_node **rb_link, *rb_parent;
716 
717 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
718 			   &prev, &rb_link, &rb_parent))
719 		BUG();
720 	__vma_link(mm, vma, prev, rb_link, rb_parent);
721 	mm->map_count++;
722 }
723 
724 static __always_inline void __vma_unlink(struct mm_struct *mm,
725 						struct vm_area_struct *vma,
726 						struct vm_area_struct *ignore)
727 {
728 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
729 	__vma_unlink_list(mm, vma);
730 	/* Kill the cache */
731 	vmacache_invalidate(mm);
732 }
733 
734 /*
735  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
736  * is already present in an i_mmap tree without adjusting the tree.
737  * The following helper function should be used when such adjustments
738  * are necessary.  The "insert" vma (if any) is to be inserted
739  * before we drop the necessary locks.
740  */
741 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
742 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
743 	struct vm_area_struct *expand)
744 {
745 	struct mm_struct *mm = vma->vm_mm;
746 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
747 	struct address_space *mapping = NULL;
748 	struct rb_root_cached *root = NULL;
749 	struct anon_vma *anon_vma = NULL;
750 	struct file *file = vma->vm_file;
751 	bool start_changed = false, end_changed = false;
752 	long adjust_next = 0;
753 	int remove_next = 0;
754 
755 	if (next && !insert) {
756 		struct vm_area_struct *exporter = NULL, *importer = NULL;
757 
758 		if (end >= next->vm_end) {
759 			/*
760 			 * vma expands, overlapping all the next, and
761 			 * perhaps the one after too (mprotect case 6).
762 			 * The only other cases that gets here are
763 			 * case 1, case 7 and case 8.
764 			 */
765 			if (next == expand) {
766 				/*
767 				 * The only case where we don't expand "vma"
768 				 * and we expand "next" instead is case 8.
769 				 */
770 				VM_WARN_ON(end != next->vm_end);
771 				/*
772 				 * remove_next == 3 means we're
773 				 * removing "vma" and that to do so we
774 				 * swapped "vma" and "next".
775 				 */
776 				remove_next = 3;
777 				VM_WARN_ON(file != next->vm_file);
778 				swap(vma, next);
779 			} else {
780 				VM_WARN_ON(expand != vma);
781 				/*
782 				 * case 1, 6, 7, remove_next == 2 is case 6,
783 				 * remove_next == 1 is case 1 or 7.
784 				 */
785 				remove_next = 1 + (end > next->vm_end);
786 				VM_WARN_ON(remove_next == 2 &&
787 					   end != next->vm_next->vm_end);
788 				/* trim end to next, for case 6 first pass */
789 				end = next->vm_end;
790 			}
791 
792 			exporter = next;
793 			importer = vma;
794 
795 			/*
796 			 * If next doesn't have anon_vma, import from vma after
797 			 * next, if the vma overlaps with it.
798 			 */
799 			if (remove_next == 2 && !next->anon_vma)
800 				exporter = next->vm_next;
801 
802 		} else if (end > next->vm_start) {
803 			/*
804 			 * vma expands, overlapping part of the next:
805 			 * mprotect case 5 shifting the boundary up.
806 			 */
807 			adjust_next = (end - next->vm_start);
808 			exporter = next;
809 			importer = vma;
810 			VM_WARN_ON(expand != importer);
811 		} else if (end < vma->vm_end) {
812 			/*
813 			 * vma shrinks, and !insert tells it's not
814 			 * split_vma inserting another: so it must be
815 			 * mprotect case 4 shifting the boundary down.
816 			 */
817 			adjust_next = -(vma->vm_end - end);
818 			exporter = vma;
819 			importer = next;
820 			VM_WARN_ON(expand != importer);
821 		}
822 
823 		/*
824 		 * Easily overlooked: when mprotect shifts the boundary,
825 		 * make sure the expanding vma has anon_vma set if the
826 		 * shrinking vma had, to cover any anon pages imported.
827 		 */
828 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
829 			int error;
830 
831 			importer->anon_vma = exporter->anon_vma;
832 			error = anon_vma_clone(importer, exporter);
833 			if (error)
834 				return error;
835 		}
836 	}
837 again:
838 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
839 
840 	if (file) {
841 		mapping = file->f_mapping;
842 		root = &mapping->i_mmap;
843 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
844 
845 		if (adjust_next)
846 			uprobe_munmap(next, next->vm_start, next->vm_end);
847 
848 		i_mmap_lock_write(mapping);
849 		if (insert) {
850 			/*
851 			 * Put into interval tree now, so instantiated pages
852 			 * are visible to arm/parisc __flush_dcache_page
853 			 * throughout; but we cannot insert into address
854 			 * space until vma start or end is updated.
855 			 */
856 			__vma_link_file(insert);
857 		}
858 	}
859 
860 	anon_vma = vma->anon_vma;
861 	if (!anon_vma && adjust_next)
862 		anon_vma = next->anon_vma;
863 	if (anon_vma) {
864 		VM_WARN_ON(adjust_next && next->anon_vma &&
865 			   anon_vma != next->anon_vma);
866 		anon_vma_lock_write(anon_vma);
867 		anon_vma_interval_tree_pre_update_vma(vma);
868 		if (adjust_next)
869 			anon_vma_interval_tree_pre_update_vma(next);
870 	}
871 
872 	if (file) {
873 		flush_dcache_mmap_lock(mapping);
874 		vma_interval_tree_remove(vma, root);
875 		if (adjust_next)
876 			vma_interval_tree_remove(next, root);
877 	}
878 
879 	if (start != vma->vm_start) {
880 		vma->vm_start = start;
881 		start_changed = true;
882 	}
883 	if (end != vma->vm_end) {
884 		vma->vm_end = end;
885 		end_changed = true;
886 	}
887 	vma->vm_pgoff = pgoff;
888 	if (adjust_next) {
889 		next->vm_start += adjust_next;
890 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
891 	}
892 
893 	if (file) {
894 		if (adjust_next)
895 			vma_interval_tree_insert(next, root);
896 		vma_interval_tree_insert(vma, root);
897 		flush_dcache_mmap_unlock(mapping);
898 	}
899 
900 	if (remove_next) {
901 		/*
902 		 * vma_merge has merged next into vma, and needs
903 		 * us to remove next before dropping the locks.
904 		 */
905 		if (remove_next != 3)
906 			__vma_unlink(mm, next, next);
907 		else
908 			/*
909 			 * vma is not before next if they've been
910 			 * swapped.
911 			 *
912 			 * pre-swap() next->vm_start was reduced so
913 			 * tell validate_mm_rb to ignore pre-swap()
914 			 * "next" (which is stored in post-swap()
915 			 * "vma").
916 			 */
917 			__vma_unlink(mm, next, vma);
918 		if (file)
919 			__remove_shared_vm_struct(next, file, mapping);
920 	} else if (insert) {
921 		/*
922 		 * split_vma has split insert from vma, and needs
923 		 * us to insert it before dropping the locks
924 		 * (it may either follow vma or precede it).
925 		 */
926 		__insert_vm_struct(mm, insert);
927 	} else {
928 		if (start_changed)
929 			vma_gap_update(vma);
930 		if (end_changed) {
931 			if (!next)
932 				mm->highest_vm_end = vm_end_gap(vma);
933 			else if (!adjust_next)
934 				vma_gap_update(next);
935 		}
936 	}
937 
938 	if (anon_vma) {
939 		anon_vma_interval_tree_post_update_vma(vma);
940 		if (adjust_next)
941 			anon_vma_interval_tree_post_update_vma(next);
942 		anon_vma_unlock_write(anon_vma);
943 	}
944 
945 	if (file) {
946 		i_mmap_unlock_write(mapping);
947 		uprobe_mmap(vma);
948 
949 		if (adjust_next)
950 			uprobe_mmap(next);
951 	}
952 
953 	if (remove_next) {
954 		if (file) {
955 			uprobe_munmap(next, next->vm_start, next->vm_end);
956 			fput(file);
957 		}
958 		if (next->anon_vma)
959 			anon_vma_merge(vma, next);
960 		mm->map_count--;
961 		mpol_put(vma_policy(next));
962 		vm_area_free(next);
963 		/*
964 		 * In mprotect's case 6 (see comments on vma_merge),
965 		 * we must remove another next too. It would clutter
966 		 * up the code too much to do both in one go.
967 		 */
968 		if (remove_next != 3) {
969 			/*
970 			 * If "next" was removed and vma->vm_end was
971 			 * expanded (up) over it, in turn
972 			 * "next->vm_prev->vm_end" changed and the
973 			 * "vma->vm_next" gap must be updated.
974 			 */
975 			next = vma->vm_next;
976 		} else {
977 			/*
978 			 * For the scope of the comment "next" and
979 			 * "vma" considered pre-swap(): if "vma" was
980 			 * removed, next->vm_start was expanded (down)
981 			 * over it and the "next" gap must be updated.
982 			 * Because of the swap() the post-swap() "vma"
983 			 * actually points to pre-swap() "next"
984 			 * (post-swap() "next" as opposed is now a
985 			 * dangling pointer).
986 			 */
987 			next = vma;
988 		}
989 		if (remove_next == 2) {
990 			remove_next = 1;
991 			end = next->vm_end;
992 			goto again;
993 		}
994 		else if (next)
995 			vma_gap_update(next);
996 		else {
997 			/*
998 			 * If remove_next == 2 we obviously can't
999 			 * reach this path.
1000 			 *
1001 			 * If remove_next == 3 we can't reach this
1002 			 * path because pre-swap() next is always not
1003 			 * NULL. pre-swap() "next" is not being
1004 			 * removed and its next->vm_end is not altered
1005 			 * (and furthermore "end" already matches
1006 			 * next->vm_end in remove_next == 3).
1007 			 *
1008 			 * We reach this only in the remove_next == 1
1009 			 * case if the "next" vma that was removed was
1010 			 * the highest vma of the mm. However in such
1011 			 * case next->vm_end == "end" and the extended
1012 			 * "vma" has vma->vm_end == next->vm_end so
1013 			 * mm->highest_vm_end doesn't need any update
1014 			 * in remove_next == 1 case.
1015 			 */
1016 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1017 		}
1018 	}
1019 	if (insert && file)
1020 		uprobe_mmap(insert);
1021 
1022 	validate_mm(mm);
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * If the vma has a ->close operation then the driver probably needs to release
1029  * per-vma resources, so we don't attempt to merge those.
1030  */
1031 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1032 				struct file *file, unsigned long vm_flags,
1033 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1034 				struct anon_vma_name *anon_name)
1035 {
1036 	/*
1037 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1038 	 * match the flags but dirty bit -- the caller should mark
1039 	 * merged VMA as dirty. If dirty bit won't be excluded from
1040 	 * comparison, we increase pressure on the memory system forcing
1041 	 * the kernel to generate new VMAs when old one could be
1042 	 * extended instead.
1043 	 */
1044 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1045 		return 0;
1046 	if (vma->vm_file != file)
1047 		return 0;
1048 	if (vma->vm_ops && vma->vm_ops->close)
1049 		return 0;
1050 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1051 		return 0;
1052 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1053 		return 0;
1054 	return 1;
1055 }
1056 
1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1058 					struct anon_vma *anon_vma2,
1059 					struct vm_area_struct *vma)
1060 {
1061 	/*
1062 	 * The list_is_singular() test is to avoid merging VMA cloned from
1063 	 * parents. This can improve scalability caused by anon_vma lock.
1064 	 */
1065 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1066 		list_is_singular(&vma->anon_vma_chain)))
1067 		return 1;
1068 	return anon_vma1 == anon_vma2;
1069 }
1070 
1071 /*
1072  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073  * in front of (at a lower virtual address and file offset than) the vma.
1074  *
1075  * We cannot merge two vmas if they have differently assigned (non-NULL)
1076  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077  *
1078  * We don't check here for the merged mmap wrapping around the end of pagecache
1079  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1080  * wrap, nor mmaps which cover the final page at index -1UL.
1081  */
1082 static int
1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1084 		     struct anon_vma *anon_vma, struct file *file,
1085 		     pgoff_t vm_pgoff,
1086 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1087 		     struct anon_vma_name *anon_name)
1088 {
1089 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1090 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1091 		if (vma->vm_pgoff == vm_pgoff)
1092 			return 1;
1093 	}
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1099  * beyond (at a higher virtual address and file offset than) the vma.
1100  *
1101  * We cannot merge two vmas if they have differently assigned (non-NULL)
1102  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1103  */
1104 static int
1105 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1106 		    struct anon_vma *anon_vma, struct file *file,
1107 		    pgoff_t vm_pgoff,
1108 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1109 		    struct anon_vma_name *anon_name)
1110 {
1111 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1112 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1113 		pgoff_t vm_pglen;
1114 		vm_pglen = vma_pages(vma);
1115 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1116 			return 1;
1117 	}
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1123  * figure out whether that can be merged with its predecessor or its
1124  * successor.  Or both (it neatly fills a hole).
1125  *
1126  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1127  * certain not to be mapped by the time vma_merge is called; but when
1128  * called for mprotect, it is certain to be already mapped (either at
1129  * an offset within prev, or at the start of next), and the flags of
1130  * this area are about to be changed to vm_flags - and the no-change
1131  * case has already been eliminated.
1132  *
1133  * The following mprotect cases have to be considered, where AAAA is
1134  * the area passed down from mprotect_fixup, never extending beyond one
1135  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1136  *
1137  *     AAAA             AAAA                   AAAA
1138  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1139  *    cannot merge    might become       might become
1140  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1141  *    mmap, brk or    case 4 below       case 5 below
1142  *    mremap move:
1143  *                        AAAA               AAAA
1144  *                    PPPP    NNNN       PPPPNNNNXXXX
1145  *                    might become       might become
1146  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1147  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1148  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1149  *
1150  * It is important for case 8 that the vma NNNN overlapping the
1151  * region AAAA is never going to extended over XXXX. Instead XXXX must
1152  * be extended in region AAAA and NNNN must be removed. This way in
1153  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1154  * rmap_locks, the properties of the merged vma will be already
1155  * correct for the whole merged range. Some of those properties like
1156  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1157  * be correct for the whole merged range immediately after the
1158  * rmap_locks are released. Otherwise if XXXX would be removed and
1159  * NNNN would be extended over the XXXX range, remove_migration_ptes
1160  * or other rmap walkers (if working on addresses beyond the "end"
1161  * parameter) may establish ptes with the wrong permissions of NNNN
1162  * instead of the right permissions of XXXX.
1163  */
1164 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1165 			struct vm_area_struct *prev, unsigned long addr,
1166 			unsigned long end, unsigned long vm_flags,
1167 			struct anon_vma *anon_vma, struct file *file,
1168 			pgoff_t pgoff, struct mempolicy *policy,
1169 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1170 			struct anon_vma_name *anon_name)
1171 {
1172 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1173 	struct vm_area_struct *area, *next;
1174 	int err;
1175 
1176 	/*
1177 	 * We later require that vma->vm_flags == vm_flags,
1178 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1179 	 */
1180 	if (vm_flags & VM_SPECIAL)
1181 		return NULL;
1182 
1183 	next = vma_next(mm, prev);
1184 	area = next;
1185 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1186 		next = next->vm_next;
1187 
1188 	/* verify some invariant that must be enforced by the caller */
1189 	VM_WARN_ON(prev && addr <= prev->vm_start);
1190 	VM_WARN_ON(area && end > area->vm_end);
1191 	VM_WARN_ON(addr >= end);
1192 
1193 	/*
1194 	 * Can it merge with the predecessor?
1195 	 */
1196 	if (prev && prev->vm_end == addr &&
1197 			mpol_equal(vma_policy(prev), policy) &&
1198 			can_vma_merge_after(prev, vm_flags,
1199 					    anon_vma, file, pgoff,
1200 					    vm_userfaultfd_ctx, anon_name)) {
1201 		/*
1202 		 * OK, it can.  Can we now merge in the successor as well?
1203 		 */
1204 		if (next && end == next->vm_start &&
1205 				mpol_equal(policy, vma_policy(next)) &&
1206 				can_vma_merge_before(next, vm_flags,
1207 						     anon_vma, file,
1208 						     pgoff+pglen,
1209 						     vm_userfaultfd_ctx, anon_name) &&
1210 				is_mergeable_anon_vma(prev->anon_vma,
1211 						      next->anon_vma, NULL)) {
1212 							/* cases 1, 6 */
1213 			err = __vma_adjust(prev, prev->vm_start,
1214 					 next->vm_end, prev->vm_pgoff, NULL,
1215 					 prev);
1216 		} else					/* cases 2, 5, 7 */
1217 			err = __vma_adjust(prev, prev->vm_start,
1218 					 end, prev->vm_pgoff, NULL, prev);
1219 		if (err)
1220 			return NULL;
1221 		khugepaged_enter_vma_merge(prev, vm_flags);
1222 		return prev;
1223 	}
1224 
1225 	/*
1226 	 * Can this new request be merged in front of next?
1227 	 */
1228 	if (next && end == next->vm_start &&
1229 			mpol_equal(policy, vma_policy(next)) &&
1230 			can_vma_merge_before(next, vm_flags,
1231 					     anon_vma, file, pgoff+pglen,
1232 					     vm_userfaultfd_ctx, anon_name)) {
1233 		if (prev && addr < prev->vm_end)	/* case 4 */
1234 			err = __vma_adjust(prev, prev->vm_start,
1235 					 addr, prev->vm_pgoff, NULL, next);
1236 		else {					/* cases 3, 8 */
1237 			err = __vma_adjust(area, addr, next->vm_end,
1238 					 next->vm_pgoff - pglen, NULL, next);
1239 			/*
1240 			 * In case 3 area is already equal to next and
1241 			 * this is a noop, but in case 8 "area" has
1242 			 * been removed and next was expanded over it.
1243 			 */
1244 			area = next;
1245 		}
1246 		if (err)
1247 			return NULL;
1248 		khugepaged_enter_vma_merge(area, vm_flags);
1249 		return area;
1250 	}
1251 
1252 	return NULL;
1253 }
1254 
1255 /*
1256  * Rough compatibility check to quickly see if it's even worth looking
1257  * at sharing an anon_vma.
1258  *
1259  * They need to have the same vm_file, and the flags can only differ
1260  * in things that mprotect may change.
1261  *
1262  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1263  * we can merge the two vma's. For example, we refuse to merge a vma if
1264  * there is a vm_ops->close() function, because that indicates that the
1265  * driver is doing some kind of reference counting. But that doesn't
1266  * really matter for the anon_vma sharing case.
1267  */
1268 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1269 {
1270 	return a->vm_end == b->vm_start &&
1271 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1272 		a->vm_file == b->vm_file &&
1273 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1274 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1275 }
1276 
1277 /*
1278  * Do some basic sanity checking to see if we can re-use the anon_vma
1279  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1280  * the same as 'old', the other will be the new one that is trying
1281  * to share the anon_vma.
1282  *
1283  * NOTE! This runs with mm_sem held for reading, so it is possible that
1284  * the anon_vma of 'old' is concurrently in the process of being set up
1285  * by another page fault trying to merge _that_. But that's ok: if it
1286  * is being set up, that automatically means that it will be a singleton
1287  * acceptable for merging, so we can do all of this optimistically. But
1288  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1289  *
1290  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1291  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1292  * is to return an anon_vma that is "complex" due to having gone through
1293  * a fork).
1294  *
1295  * We also make sure that the two vma's are compatible (adjacent,
1296  * and with the same memory policies). That's all stable, even with just
1297  * a read lock on the mm_sem.
1298  */
1299 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1300 {
1301 	if (anon_vma_compatible(a, b)) {
1302 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1303 
1304 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1305 			return anon_vma;
1306 	}
1307 	return NULL;
1308 }
1309 
1310 /*
1311  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1312  * neighbouring vmas for a suitable anon_vma, before it goes off
1313  * to allocate a new anon_vma.  It checks because a repetitive
1314  * sequence of mprotects and faults may otherwise lead to distinct
1315  * anon_vmas being allocated, preventing vma merge in subsequent
1316  * mprotect.
1317  */
1318 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1319 {
1320 	struct anon_vma *anon_vma = NULL;
1321 
1322 	/* Try next first. */
1323 	if (vma->vm_next) {
1324 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1325 		if (anon_vma)
1326 			return anon_vma;
1327 	}
1328 
1329 	/* Try prev next. */
1330 	if (vma->vm_prev)
1331 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1332 
1333 	/*
1334 	 * We might reach here with anon_vma == NULL if we can't find
1335 	 * any reusable anon_vma.
1336 	 * There's no absolute need to look only at touching neighbours:
1337 	 * we could search further afield for "compatible" anon_vmas.
1338 	 * But it would probably just be a waste of time searching,
1339 	 * or lead to too many vmas hanging off the same anon_vma.
1340 	 * We're trying to allow mprotect remerging later on,
1341 	 * not trying to minimize memory used for anon_vmas.
1342 	 */
1343 	return anon_vma;
1344 }
1345 
1346 /*
1347  * If a hint addr is less than mmap_min_addr change hint to be as
1348  * low as possible but still greater than mmap_min_addr
1349  */
1350 static inline unsigned long round_hint_to_min(unsigned long hint)
1351 {
1352 	hint &= PAGE_MASK;
1353 	if (((void *)hint != NULL) &&
1354 	    (hint < mmap_min_addr))
1355 		return PAGE_ALIGN(mmap_min_addr);
1356 	return hint;
1357 }
1358 
1359 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1360 		       unsigned long len)
1361 {
1362 	unsigned long locked, lock_limit;
1363 
1364 	/*  mlock MCL_FUTURE? */
1365 	if (flags & VM_LOCKED) {
1366 		locked = len >> PAGE_SHIFT;
1367 		locked += mm->locked_vm;
1368 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1369 		lock_limit >>= PAGE_SHIFT;
1370 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1371 			return -EAGAIN;
1372 	}
1373 	return 0;
1374 }
1375 
1376 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1377 {
1378 	if (S_ISREG(inode->i_mode))
1379 		return MAX_LFS_FILESIZE;
1380 
1381 	if (S_ISBLK(inode->i_mode))
1382 		return MAX_LFS_FILESIZE;
1383 
1384 	if (S_ISSOCK(inode->i_mode))
1385 		return MAX_LFS_FILESIZE;
1386 
1387 	/* Special "we do even unsigned file positions" case */
1388 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1389 		return 0;
1390 
1391 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1392 	return ULONG_MAX;
1393 }
1394 
1395 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1396 				unsigned long pgoff, unsigned long len)
1397 {
1398 	u64 maxsize = file_mmap_size_max(file, inode);
1399 
1400 	if (maxsize && len > maxsize)
1401 		return false;
1402 	maxsize -= len;
1403 	if (pgoff > maxsize >> PAGE_SHIFT)
1404 		return false;
1405 	return true;
1406 }
1407 
1408 /*
1409  * The caller must write-lock current->mm->mmap_lock.
1410  */
1411 unsigned long do_mmap(struct file *file, unsigned long addr,
1412 			unsigned long len, unsigned long prot,
1413 			unsigned long flags, unsigned long pgoff,
1414 			unsigned long *populate, struct list_head *uf)
1415 {
1416 	struct mm_struct *mm = current->mm;
1417 	vm_flags_t vm_flags;
1418 	int pkey = 0;
1419 
1420 	*populate = 0;
1421 
1422 	if (!len)
1423 		return -EINVAL;
1424 
1425 	/*
1426 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1427 	 *
1428 	 * (the exception is when the underlying filesystem is noexec
1429 	 *  mounted, in which case we dont add PROT_EXEC.)
1430 	 */
1431 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1432 		if (!(file && path_noexec(&file->f_path)))
1433 			prot |= PROT_EXEC;
1434 
1435 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1436 	if (flags & MAP_FIXED_NOREPLACE)
1437 		flags |= MAP_FIXED;
1438 
1439 	if (!(flags & MAP_FIXED))
1440 		addr = round_hint_to_min(addr);
1441 
1442 	/* Careful about overflows.. */
1443 	len = PAGE_ALIGN(len);
1444 	if (!len)
1445 		return -ENOMEM;
1446 
1447 	/* offset overflow? */
1448 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1449 		return -EOVERFLOW;
1450 
1451 	/* Too many mappings? */
1452 	if (mm->map_count > sysctl_max_map_count)
1453 		return -ENOMEM;
1454 
1455 	/* Obtain the address to map to. we verify (or select) it and ensure
1456 	 * that it represents a valid section of the address space.
1457 	 */
1458 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1459 	if (IS_ERR_VALUE(addr))
1460 		return addr;
1461 
1462 	if (flags & MAP_FIXED_NOREPLACE) {
1463 		if (find_vma_intersection(mm, addr, addr + len))
1464 			return -EEXIST;
1465 	}
1466 
1467 	if (prot == PROT_EXEC) {
1468 		pkey = execute_only_pkey(mm);
1469 		if (pkey < 0)
1470 			pkey = 0;
1471 	}
1472 
1473 	/* Do simple checking here so the lower-level routines won't have
1474 	 * to. we assume access permissions have been handled by the open
1475 	 * of the memory object, so we don't do any here.
1476 	 */
1477 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1478 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1479 
1480 	if (flags & MAP_LOCKED)
1481 		if (!can_do_mlock())
1482 			return -EPERM;
1483 
1484 	if (mlock_future_check(mm, vm_flags, len))
1485 		return -EAGAIN;
1486 
1487 	if (file) {
1488 		struct inode *inode = file_inode(file);
1489 		unsigned long flags_mask;
1490 
1491 		if (!file_mmap_ok(file, inode, pgoff, len))
1492 			return -EOVERFLOW;
1493 
1494 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1495 
1496 		switch (flags & MAP_TYPE) {
1497 		case MAP_SHARED:
1498 			/*
1499 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1500 			 * flags. E.g. MAP_SYNC is dangerous to use with
1501 			 * MAP_SHARED as you don't know which consistency model
1502 			 * you will get. We silently ignore unsupported flags
1503 			 * with MAP_SHARED to preserve backward compatibility.
1504 			 */
1505 			flags &= LEGACY_MAP_MASK;
1506 			fallthrough;
1507 		case MAP_SHARED_VALIDATE:
1508 			if (flags & ~flags_mask)
1509 				return -EOPNOTSUPP;
1510 			if (prot & PROT_WRITE) {
1511 				if (!(file->f_mode & FMODE_WRITE))
1512 					return -EACCES;
1513 				if (IS_SWAPFILE(file->f_mapping->host))
1514 					return -ETXTBSY;
1515 			}
1516 
1517 			/*
1518 			 * Make sure we don't allow writing to an append-only
1519 			 * file..
1520 			 */
1521 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1522 				return -EACCES;
1523 
1524 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1525 			if (!(file->f_mode & FMODE_WRITE))
1526 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1527 			fallthrough;
1528 		case MAP_PRIVATE:
1529 			if (!(file->f_mode & FMODE_READ))
1530 				return -EACCES;
1531 			if (path_noexec(&file->f_path)) {
1532 				if (vm_flags & VM_EXEC)
1533 					return -EPERM;
1534 				vm_flags &= ~VM_MAYEXEC;
1535 			}
1536 
1537 			if (!file->f_op->mmap)
1538 				return -ENODEV;
1539 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1540 				return -EINVAL;
1541 			break;
1542 
1543 		default:
1544 			return -EINVAL;
1545 		}
1546 	} else {
1547 		switch (flags & MAP_TYPE) {
1548 		case MAP_SHARED:
1549 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1550 				return -EINVAL;
1551 			/*
1552 			 * Ignore pgoff.
1553 			 */
1554 			pgoff = 0;
1555 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1556 			break;
1557 		case MAP_PRIVATE:
1558 			/*
1559 			 * Set pgoff according to addr for anon_vma.
1560 			 */
1561 			pgoff = addr >> PAGE_SHIFT;
1562 			break;
1563 		default:
1564 			return -EINVAL;
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Set 'VM_NORESERVE' if we should not account for the
1570 	 * memory use of this mapping.
1571 	 */
1572 	if (flags & MAP_NORESERVE) {
1573 		/* We honor MAP_NORESERVE if allowed to overcommit */
1574 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1575 			vm_flags |= VM_NORESERVE;
1576 
1577 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1578 		if (file && is_file_hugepages(file))
1579 			vm_flags |= VM_NORESERVE;
1580 	}
1581 
1582 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1583 	if (!IS_ERR_VALUE(addr) &&
1584 	    ((vm_flags & VM_LOCKED) ||
1585 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1586 		*populate = len;
1587 	return addr;
1588 }
1589 
1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1591 			      unsigned long prot, unsigned long flags,
1592 			      unsigned long fd, unsigned long pgoff)
1593 {
1594 	struct file *file = NULL;
1595 	unsigned long retval;
1596 
1597 	if (!(flags & MAP_ANONYMOUS)) {
1598 		audit_mmap_fd(fd, flags);
1599 		file = fget(fd);
1600 		if (!file)
1601 			return -EBADF;
1602 		if (is_file_hugepages(file)) {
1603 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1604 		} else if (unlikely(flags & MAP_HUGETLB)) {
1605 			retval = -EINVAL;
1606 			goto out_fput;
1607 		}
1608 	} else if (flags & MAP_HUGETLB) {
1609 		struct hstate *hs;
1610 
1611 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612 		if (!hs)
1613 			return -EINVAL;
1614 
1615 		len = ALIGN(len, huge_page_size(hs));
1616 		/*
1617 		 * VM_NORESERVE is used because the reservations will be
1618 		 * taken when vm_ops->mmap() is called
1619 		 */
1620 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1621 				VM_NORESERVE,
1622 				HUGETLB_ANONHUGE_INODE,
1623 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1624 		if (IS_ERR(file))
1625 			return PTR_ERR(file);
1626 	}
1627 
1628 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1629 out_fput:
1630 	if (file)
1631 		fput(file);
1632 	return retval;
1633 }
1634 
1635 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1636 		unsigned long, prot, unsigned long, flags,
1637 		unsigned long, fd, unsigned long, pgoff)
1638 {
1639 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1640 }
1641 
1642 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1643 struct mmap_arg_struct {
1644 	unsigned long addr;
1645 	unsigned long len;
1646 	unsigned long prot;
1647 	unsigned long flags;
1648 	unsigned long fd;
1649 	unsigned long offset;
1650 };
1651 
1652 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1653 {
1654 	struct mmap_arg_struct a;
1655 
1656 	if (copy_from_user(&a, arg, sizeof(a)))
1657 		return -EFAULT;
1658 	if (offset_in_page(a.offset))
1659 		return -EINVAL;
1660 
1661 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1662 			       a.offset >> PAGE_SHIFT);
1663 }
1664 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1665 
1666 /*
1667  * Some shared mappings will want the pages marked read-only
1668  * to track write events. If so, we'll downgrade vm_page_prot
1669  * to the private version (using protection_map[] without the
1670  * VM_SHARED bit).
1671  */
1672 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1673 {
1674 	vm_flags_t vm_flags = vma->vm_flags;
1675 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1676 
1677 	/* If it was private or non-writable, the write bit is already clear */
1678 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1679 		return 0;
1680 
1681 	/* The backer wishes to know when pages are first written to? */
1682 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1683 		return 1;
1684 
1685 	/* The open routine did something to the protections that pgprot_modify
1686 	 * won't preserve? */
1687 	if (pgprot_val(vm_page_prot) !=
1688 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1689 		return 0;
1690 
1691 	/* Do we need to track softdirty? */
1692 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1693 		return 1;
1694 
1695 	/* Specialty mapping? */
1696 	if (vm_flags & VM_PFNMAP)
1697 		return 0;
1698 
1699 	/* Can the mapping track the dirty pages? */
1700 	return vma->vm_file && vma->vm_file->f_mapping &&
1701 		mapping_can_writeback(vma->vm_file->f_mapping);
1702 }
1703 
1704 /*
1705  * We account for memory if it's a private writeable mapping,
1706  * not hugepages and VM_NORESERVE wasn't set.
1707  */
1708 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1709 {
1710 	/*
1711 	 * hugetlb has its own accounting separate from the core VM
1712 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1713 	 */
1714 	if (file && is_file_hugepages(file))
1715 		return 0;
1716 
1717 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1718 }
1719 
1720 unsigned long mmap_region(struct file *file, unsigned long addr,
1721 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1722 		struct list_head *uf)
1723 {
1724 	struct mm_struct *mm = current->mm;
1725 	struct vm_area_struct *vma, *prev, *merge;
1726 	int error;
1727 	struct rb_node **rb_link, *rb_parent;
1728 	unsigned long charged = 0;
1729 
1730 	/* Check against address space limit. */
1731 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1732 		unsigned long nr_pages;
1733 
1734 		/*
1735 		 * MAP_FIXED may remove pages of mappings that intersects with
1736 		 * requested mapping. Account for the pages it would unmap.
1737 		 */
1738 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1739 
1740 		if (!may_expand_vm(mm, vm_flags,
1741 					(len >> PAGE_SHIFT) - nr_pages))
1742 			return -ENOMEM;
1743 	}
1744 
1745 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1746 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1747 		return -ENOMEM;
1748 	/*
1749 	 * Private writable mapping: check memory availability
1750 	 */
1751 	if (accountable_mapping(file, vm_flags)) {
1752 		charged = len >> PAGE_SHIFT;
1753 		if (security_vm_enough_memory_mm(mm, charged))
1754 			return -ENOMEM;
1755 		vm_flags |= VM_ACCOUNT;
1756 	}
1757 
1758 	/*
1759 	 * Can we just expand an old mapping?
1760 	 */
1761 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1762 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1763 	if (vma)
1764 		goto out;
1765 
1766 	/*
1767 	 * Determine the object being mapped and call the appropriate
1768 	 * specific mapper. the address has already been validated, but
1769 	 * not unmapped, but the maps are removed from the list.
1770 	 */
1771 	vma = vm_area_alloc(mm);
1772 	if (!vma) {
1773 		error = -ENOMEM;
1774 		goto unacct_error;
1775 	}
1776 
1777 	vma->vm_start = addr;
1778 	vma->vm_end = addr + len;
1779 	vma->vm_flags = vm_flags;
1780 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1781 	vma->vm_pgoff = pgoff;
1782 
1783 	if (file) {
1784 		if (vm_flags & VM_SHARED) {
1785 			error = mapping_map_writable(file->f_mapping);
1786 			if (error)
1787 				goto free_vma;
1788 		}
1789 
1790 		vma->vm_file = get_file(file);
1791 		error = call_mmap(file, vma);
1792 		if (error)
1793 			goto unmap_and_free_vma;
1794 
1795 		/* Can addr have changed??
1796 		 *
1797 		 * Answer: Yes, several device drivers can do it in their
1798 		 *         f_op->mmap method. -DaveM
1799 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1800 		 *      be updated for vma_link()
1801 		 */
1802 		WARN_ON_ONCE(addr != vma->vm_start);
1803 
1804 		addr = vma->vm_start;
1805 
1806 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1807 		 * as we may succeed this time.
1808 		 */
1809 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1810 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1811 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1812 			if (merge) {
1813 				/* ->mmap() can change vma->vm_file and fput the original file. So
1814 				 * fput the vma->vm_file here or we would add an extra fput for file
1815 				 * and cause general protection fault ultimately.
1816 				 */
1817 				fput(vma->vm_file);
1818 				vm_area_free(vma);
1819 				vma = merge;
1820 				/* Update vm_flags to pick up the change. */
1821 				vm_flags = vma->vm_flags;
1822 				goto unmap_writable;
1823 			}
1824 		}
1825 
1826 		vm_flags = vma->vm_flags;
1827 	} else if (vm_flags & VM_SHARED) {
1828 		error = shmem_zero_setup(vma);
1829 		if (error)
1830 			goto free_vma;
1831 	} else {
1832 		vma_set_anonymous(vma);
1833 	}
1834 
1835 	/* Allow architectures to sanity-check the vm_flags */
1836 	if (!arch_validate_flags(vma->vm_flags)) {
1837 		error = -EINVAL;
1838 		if (file)
1839 			goto unmap_and_free_vma;
1840 		else
1841 			goto free_vma;
1842 	}
1843 
1844 	vma_link(mm, vma, prev, rb_link, rb_parent);
1845 	/* Once vma denies write, undo our temporary denial count */
1846 unmap_writable:
1847 	if (file && vm_flags & VM_SHARED)
1848 		mapping_unmap_writable(file->f_mapping);
1849 	file = vma->vm_file;
1850 out:
1851 	perf_event_mmap(vma);
1852 
1853 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1854 	if (vm_flags & VM_LOCKED) {
1855 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1856 					is_vm_hugetlb_page(vma) ||
1857 					vma == get_gate_vma(current->mm))
1858 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1859 		else
1860 			mm->locked_vm += (len >> PAGE_SHIFT);
1861 	}
1862 
1863 	if (file)
1864 		uprobe_mmap(vma);
1865 
1866 	/*
1867 	 * New (or expanded) vma always get soft dirty status.
1868 	 * Otherwise user-space soft-dirty page tracker won't
1869 	 * be able to distinguish situation when vma area unmapped,
1870 	 * then new mapped in-place (which must be aimed as
1871 	 * a completely new data area).
1872 	 */
1873 	vma->vm_flags |= VM_SOFTDIRTY;
1874 
1875 	vma_set_page_prot(vma);
1876 
1877 	return addr;
1878 
1879 unmap_and_free_vma:
1880 	fput(vma->vm_file);
1881 	vma->vm_file = NULL;
1882 
1883 	/* Undo any partial mapping done by a device driver. */
1884 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1885 	charged = 0;
1886 	if (vm_flags & VM_SHARED)
1887 		mapping_unmap_writable(file->f_mapping);
1888 free_vma:
1889 	vm_area_free(vma);
1890 unacct_error:
1891 	if (charged)
1892 		vm_unacct_memory(charged);
1893 	return error;
1894 }
1895 
1896 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1897 {
1898 	/*
1899 	 * We implement the search by looking for an rbtree node that
1900 	 * immediately follows a suitable gap. That is,
1901 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1902 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1903 	 * - gap_end - gap_start >= length
1904 	 */
1905 
1906 	struct mm_struct *mm = current->mm;
1907 	struct vm_area_struct *vma;
1908 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1909 
1910 	/* Adjust search length to account for worst case alignment overhead */
1911 	length = info->length + info->align_mask;
1912 	if (length < info->length)
1913 		return -ENOMEM;
1914 
1915 	/* Adjust search limits by the desired length */
1916 	if (info->high_limit < length)
1917 		return -ENOMEM;
1918 	high_limit = info->high_limit - length;
1919 
1920 	if (info->low_limit > high_limit)
1921 		return -ENOMEM;
1922 	low_limit = info->low_limit + length;
1923 
1924 	/* Check if rbtree root looks promising */
1925 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1926 		goto check_highest;
1927 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1928 	if (vma->rb_subtree_gap < length)
1929 		goto check_highest;
1930 
1931 	while (true) {
1932 		/* Visit left subtree if it looks promising */
1933 		gap_end = vm_start_gap(vma);
1934 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1935 			struct vm_area_struct *left =
1936 				rb_entry(vma->vm_rb.rb_left,
1937 					 struct vm_area_struct, vm_rb);
1938 			if (left->rb_subtree_gap >= length) {
1939 				vma = left;
1940 				continue;
1941 			}
1942 		}
1943 
1944 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1945 check_current:
1946 		/* Check if current node has a suitable gap */
1947 		if (gap_start > high_limit)
1948 			return -ENOMEM;
1949 		if (gap_end >= low_limit &&
1950 		    gap_end > gap_start && gap_end - gap_start >= length)
1951 			goto found;
1952 
1953 		/* Visit right subtree if it looks promising */
1954 		if (vma->vm_rb.rb_right) {
1955 			struct vm_area_struct *right =
1956 				rb_entry(vma->vm_rb.rb_right,
1957 					 struct vm_area_struct, vm_rb);
1958 			if (right->rb_subtree_gap >= length) {
1959 				vma = right;
1960 				continue;
1961 			}
1962 		}
1963 
1964 		/* Go back up the rbtree to find next candidate node */
1965 		while (true) {
1966 			struct rb_node *prev = &vma->vm_rb;
1967 			if (!rb_parent(prev))
1968 				goto check_highest;
1969 			vma = rb_entry(rb_parent(prev),
1970 				       struct vm_area_struct, vm_rb);
1971 			if (prev == vma->vm_rb.rb_left) {
1972 				gap_start = vm_end_gap(vma->vm_prev);
1973 				gap_end = vm_start_gap(vma);
1974 				goto check_current;
1975 			}
1976 		}
1977 	}
1978 
1979 check_highest:
1980 	/* Check highest gap, which does not precede any rbtree node */
1981 	gap_start = mm->highest_vm_end;
1982 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1983 	if (gap_start > high_limit)
1984 		return -ENOMEM;
1985 
1986 found:
1987 	/* We found a suitable gap. Clip it with the original low_limit. */
1988 	if (gap_start < info->low_limit)
1989 		gap_start = info->low_limit;
1990 
1991 	/* Adjust gap address to the desired alignment */
1992 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1993 
1994 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1995 	VM_BUG_ON(gap_start + info->length > gap_end);
1996 	return gap_start;
1997 }
1998 
1999 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2000 {
2001 	struct mm_struct *mm = current->mm;
2002 	struct vm_area_struct *vma;
2003 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2004 
2005 	/* Adjust search length to account for worst case alignment overhead */
2006 	length = info->length + info->align_mask;
2007 	if (length < info->length)
2008 		return -ENOMEM;
2009 
2010 	/*
2011 	 * Adjust search limits by the desired length.
2012 	 * See implementation comment at top of unmapped_area().
2013 	 */
2014 	gap_end = info->high_limit;
2015 	if (gap_end < length)
2016 		return -ENOMEM;
2017 	high_limit = gap_end - length;
2018 
2019 	if (info->low_limit > high_limit)
2020 		return -ENOMEM;
2021 	low_limit = info->low_limit + length;
2022 
2023 	/* Check highest gap, which does not precede any rbtree node */
2024 	gap_start = mm->highest_vm_end;
2025 	if (gap_start <= high_limit)
2026 		goto found_highest;
2027 
2028 	/* Check if rbtree root looks promising */
2029 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2030 		return -ENOMEM;
2031 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2032 	if (vma->rb_subtree_gap < length)
2033 		return -ENOMEM;
2034 
2035 	while (true) {
2036 		/* Visit right subtree if it looks promising */
2037 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2038 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2039 			struct vm_area_struct *right =
2040 				rb_entry(vma->vm_rb.rb_right,
2041 					 struct vm_area_struct, vm_rb);
2042 			if (right->rb_subtree_gap >= length) {
2043 				vma = right;
2044 				continue;
2045 			}
2046 		}
2047 
2048 check_current:
2049 		/* Check if current node has a suitable gap */
2050 		gap_end = vm_start_gap(vma);
2051 		if (gap_end < low_limit)
2052 			return -ENOMEM;
2053 		if (gap_start <= high_limit &&
2054 		    gap_end > gap_start && gap_end - gap_start >= length)
2055 			goto found;
2056 
2057 		/* Visit left subtree if it looks promising */
2058 		if (vma->vm_rb.rb_left) {
2059 			struct vm_area_struct *left =
2060 				rb_entry(vma->vm_rb.rb_left,
2061 					 struct vm_area_struct, vm_rb);
2062 			if (left->rb_subtree_gap >= length) {
2063 				vma = left;
2064 				continue;
2065 			}
2066 		}
2067 
2068 		/* Go back up the rbtree to find next candidate node */
2069 		while (true) {
2070 			struct rb_node *prev = &vma->vm_rb;
2071 			if (!rb_parent(prev))
2072 				return -ENOMEM;
2073 			vma = rb_entry(rb_parent(prev),
2074 				       struct vm_area_struct, vm_rb);
2075 			if (prev == vma->vm_rb.rb_right) {
2076 				gap_start = vma->vm_prev ?
2077 					vm_end_gap(vma->vm_prev) : 0;
2078 				goto check_current;
2079 			}
2080 		}
2081 	}
2082 
2083 found:
2084 	/* We found a suitable gap. Clip it with the original high_limit. */
2085 	if (gap_end > info->high_limit)
2086 		gap_end = info->high_limit;
2087 
2088 found_highest:
2089 	/* Compute highest gap address at the desired alignment */
2090 	gap_end -= info->length;
2091 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2092 
2093 	VM_BUG_ON(gap_end < info->low_limit);
2094 	VM_BUG_ON(gap_end < gap_start);
2095 	return gap_end;
2096 }
2097 
2098 /*
2099  * Search for an unmapped address range.
2100  *
2101  * We are looking for a range that:
2102  * - does not intersect with any VMA;
2103  * - is contained within the [low_limit, high_limit) interval;
2104  * - is at least the desired size.
2105  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2106  */
2107 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2108 {
2109 	unsigned long addr;
2110 
2111 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2112 		addr = unmapped_area_topdown(info);
2113 	else
2114 		addr = unmapped_area(info);
2115 
2116 	trace_vm_unmapped_area(addr, info);
2117 	return addr;
2118 }
2119 
2120 #ifndef arch_get_mmap_end
2121 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2122 #endif
2123 
2124 #ifndef arch_get_mmap_base
2125 #define arch_get_mmap_base(addr, base) (base)
2126 #endif
2127 
2128 /* Get an address range which is currently unmapped.
2129  * For shmat() with addr=0.
2130  *
2131  * Ugly calling convention alert:
2132  * Return value with the low bits set means error value,
2133  * ie
2134  *	if (ret & ~PAGE_MASK)
2135  *		error = ret;
2136  *
2137  * This function "knows" that -ENOMEM has the bits set.
2138  */
2139 #ifndef HAVE_ARCH_UNMAPPED_AREA
2140 unsigned long
2141 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2142 		unsigned long len, unsigned long pgoff, unsigned long flags)
2143 {
2144 	struct mm_struct *mm = current->mm;
2145 	struct vm_area_struct *vma, *prev;
2146 	struct vm_unmapped_area_info info;
2147 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2148 
2149 	if (len > mmap_end - mmap_min_addr)
2150 		return -ENOMEM;
2151 
2152 	if (flags & MAP_FIXED)
2153 		return addr;
2154 
2155 	if (addr) {
2156 		addr = PAGE_ALIGN(addr);
2157 		vma = find_vma_prev(mm, addr, &prev);
2158 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2159 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2160 		    (!prev || addr >= vm_end_gap(prev)))
2161 			return addr;
2162 	}
2163 
2164 	info.flags = 0;
2165 	info.length = len;
2166 	info.low_limit = mm->mmap_base;
2167 	info.high_limit = mmap_end;
2168 	info.align_mask = 0;
2169 	info.align_offset = 0;
2170 	return vm_unmapped_area(&info);
2171 }
2172 #endif
2173 
2174 /*
2175  * This mmap-allocator allocates new areas top-down from below the
2176  * stack's low limit (the base):
2177  */
2178 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2179 unsigned long
2180 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2181 			  unsigned long len, unsigned long pgoff,
2182 			  unsigned long flags)
2183 {
2184 	struct vm_area_struct *vma, *prev;
2185 	struct mm_struct *mm = current->mm;
2186 	struct vm_unmapped_area_info info;
2187 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2188 
2189 	/* requested length too big for entire address space */
2190 	if (len > mmap_end - mmap_min_addr)
2191 		return -ENOMEM;
2192 
2193 	if (flags & MAP_FIXED)
2194 		return addr;
2195 
2196 	/* requesting a specific address */
2197 	if (addr) {
2198 		addr = PAGE_ALIGN(addr);
2199 		vma = find_vma_prev(mm, addr, &prev);
2200 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2201 				(!vma || addr + len <= vm_start_gap(vma)) &&
2202 				(!prev || addr >= vm_end_gap(prev)))
2203 			return addr;
2204 	}
2205 
2206 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2207 	info.length = len;
2208 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2209 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2210 	info.align_mask = 0;
2211 	info.align_offset = 0;
2212 	addr = vm_unmapped_area(&info);
2213 
2214 	/*
2215 	 * A failed mmap() very likely causes application failure,
2216 	 * so fall back to the bottom-up function here. This scenario
2217 	 * can happen with large stack limits and large mmap()
2218 	 * allocations.
2219 	 */
2220 	if (offset_in_page(addr)) {
2221 		VM_BUG_ON(addr != -ENOMEM);
2222 		info.flags = 0;
2223 		info.low_limit = TASK_UNMAPPED_BASE;
2224 		info.high_limit = mmap_end;
2225 		addr = vm_unmapped_area(&info);
2226 	}
2227 
2228 	return addr;
2229 }
2230 #endif
2231 
2232 unsigned long
2233 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2234 		unsigned long pgoff, unsigned long flags)
2235 {
2236 	unsigned long (*get_area)(struct file *, unsigned long,
2237 				  unsigned long, unsigned long, unsigned long);
2238 
2239 	unsigned long error = arch_mmap_check(addr, len, flags);
2240 	if (error)
2241 		return error;
2242 
2243 	/* Careful about overflows.. */
2244 	if (len > TASK_SIZE)
2245 		return -ENOMEM;
2246 
2247 	get_area = current->mm->get_unmapped_area;
2248 	if (file) {
2249 		if (file->f_op->get_unmapped_area)
2250 			get_area = file->f_op->get_unmapped_area;
2251 	} else if (flags & MAP_SHARED) {
2252 		/*
2253 		 * mmap_region() will call shmem_zero_setup() to create a file,
2254 		 * so use shmem's get_unmapped_area in case it can be huge.
2255 		 * do_mmap() will clear pgoff, so match alignment.
2256 		 */
2257 		pgoff = 0;
2258 		get_area = shmem_get_unmapped_area;
2259 	}
2260 
2261 	addr = get_area(file, addr, len, pgoff, flags);
2262 	if (IS_ERR_VALUE(addr))
2263 		return addr;
2264 
2265 	if (addr > TASK_SIZE - len)
2266 		return -ENOMEM;
2267 	if (offset_in_page(addr))
2268 		return -EINVAL;
2269 
2270 	error = security_mmap_addr(addr);
2271 	return error ? error : addr;
2272 }
2273 
2274 EXPORT_SYMBOL(get_unmapped_area);
2275 
2276 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2277 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2278 {
2279 	struct rb_node *rb_node;
2280 	struct vm_area_struct *vma;
2281 
2282 	mmap_assert_locked(mm);
2283 	/* Check the cache first. */
2284 	vma = vmacache_find(mm, addr);
2285 	if (likely(vma))
2286 		return vma;
2287 
2288 	rb_node = mm->mm_rb.rb_node;
2289 
2290 	while (rb_node) {
2291 		struct vm_area_struct *tmp;
2292 
2293 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2294 
2295 		if (tmp->vm_end > addr) {
2296 			vma = tmp;
2297 			if (tmp->vm_start <= addr)
2298 				break;
2299 			rb_node = rb_node->rb_left;
2300 		} else
2301 			rb_node = rb_node->rb_right;
2302 	}
2303 
2304 	if (vma)
2305 		vmacache_update(addr, vma);
2306 	return vma;
2307 }
2308 
2309 EXPORT_SYMBOL(find_vma);
2310 
2311 /*
2312  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2313  */
2314 struct vm_area_struct *
2315 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2316 			struct vm_area_struct **pprev)
2317 {
2318 	struct vm_area_struct *vma;
2319 
2320 	vma = find_vma(mm, addr);
2321 	if (vma) {
2322 		*pprev = vma->vm_prev;
2323 	} else {
2324 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2325 
2326 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2327 	}
2328 	return vma;
2329 }
2330 
2331 /*
2332  * Verify that the stack growth is acceptable and
2333  * update accounting. This is shared with both the
2334  * grow-up and grow-down cases.
2335  */
2336 static int acct_stack_growth(struct vm_area_struct *vma,
2337 			     unsigned long size, unsigned long grow)
2338 {
2339 	struct mm_struct *mm = vma->vm_mm;
2340 	unsigned long new_start;
2341 
2342 	/* address space limit tests */
2343 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2344 		return -ENOMEM;
2345 
2346 	/* Stack limit test */
2347 	if (size > rlimit(RLIMIT_STACK))
2348 		return -ENOMEM;
2349 
2350 	/* mlock limit tests */
2351 	if (vma->vm_flags & VM_LOCKED) {
2352 		unsigned long locked;
2353 		unsigned long limit;
2354 		locked = mm->locked_vm + grow;
2355 		limit = rlimit(RLIMIT_MEMLOCK);
2356 		limit >>= PAGE_SHIFT;
2357 		if (locked > limit && !capable(CAP_IPC_LOCK))
2358 			return -ENOMEM;
2359 	}
2360 
2361 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2362 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2363 			vma->vm_end - size;
2364 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2365 		return -EFAULT;
2366 
2367 	/*
2368 	 * Overcommit..  This must be the final test, as it will
2369 	 * update security statistics.
2370 	 */
2371 	if (security_vm_enough_memory_mm(mm, grow))
2372 		return -ENOMEM;
2373 
2374 	return 0;
2375 }
2376 
2377 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2378 /*
2379  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2380  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2381  */
2382 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2383 {
2384 	struct mm_struct *mm = vma->vm_mm;
2385 	struct vm_area_struct *next;
2386 	unsigned long gap_addr;
2387 	int error = 0;
2388 
2389 	if (!(vma->vm_flags & VM_GROWSUP))
2390 		return -EFAULT;
2391 
2392 	/* Guard against exceeding limits of the address space. */
2393 	address &= PAGE_MASK;
2394 	if (address >= (TASK_SIZE & PAGE_MASK))
2395 		return -ENOMEM;
2396 	address += PAGE_SIZE;
2397 
2398 	/* Enforce stack_guard_gap */
2399 	gap_addr = address + stack_guard_gap;
2400 
2401 	/* Guard against overflow */
2402 	if (gap_addr < address || gap_addr > TASK_SIZE)
2403 		gap_addr = TASK_SIZE;
2404 
2405 	next = vma->vm_next;
2406 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2407 		if (!(next->vm_flags & VM_GROWSUP))
2408 			return -ENOMEM;
2409 		/* Check that both stack segments have the same anon_vma? */
2410 	}
2411 
2412 	/* We must make sure the anon_vma is allocated. */
2413 	if (unlikely(anon_vma_prepare(vma)))
2414 		return -ENOMEM;
2415 
2416 	/*
2417 	 * vma->vm_start/vm_end cannot change under us because the caller
2418 	 * is required to hold the mmap_lock in read mode.  We need the
2419 	 * anon_vma lock to serialize against concurrent expand_stacks.
2420 	 */
2421 	anon_vma_lock_write(vma->anon_vma);
2422 
2423 	/* Somebody else might have raced and expanded it already */
2424 	if (address > vma->vm_end) {
2425 		unsigned long size, grow;
2426 
2427 		size = address - vma->vm_start;
2428 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2429 
2430 		error = -ENOMEM;
2431 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2432 			error = acct_stack_growth(vma, size, grow);
2433 			if (!error) {
2434 				/*
2435 				 * vma_gap_update() doesn't support concurrent
2436 				 * updates, but we only hold a shared mmap_lock
2437 				 * lock here, so we need to protect against
2438 				 * concurrent vma expansions.
2439 				 * anon_vma_lock_write() doesn't help here, as
2440 				 * we don't guarantee that all growable vmas
2441 				 * in a mm share the same root anon vma.
2442 				 * So, we reuse mm->page_table_lock to guard
2443 				 * against concurrent vma expansions.
2444 				 */
2445 				spin_lock(&mm->page_table_lock);
2446 				if (vma->vm_flags & VM_LOCKED)
2447 					mm->locked_vm += grow;
2448 				vm_stat_account(mm, vma->vm_flags, grow);
2449 				anon_vma_interval_tree_pre_update_vma(vma);
2450 				vma->vm_end = address;
2451 				anon_vma_interval_tree_post_update_vma(vma);
2452 				if (vma->vm_next)
2453 					vma_gap_update(vma->vm_next);
2454 				else
2455 					mm->highest_vm_end = vm_end_gap(vma);
2456 				spin_unlock(&mm->page_table_lock);
2457 
2458 				perf_event_mmap(vma);
2459 			}
2460 		}
2461 	}
2462 	anon_vma_unlock_write(vma->anon_vma);
2463 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2464 	validate_mm(mm);
2465 	return error;
2466 }
2467 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2468 
2469 /*
2470  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2471  */
2472 int expand_downwards(struct vm_area_struct *vma,
2473 				   unsigned long address)
2474 {
2475 	struct mm_struct *mm = vma->vm_mm;
2476 	struct vm_area_struct *prev;
2477 	int error = 0;
2478 
2479 	address &= PAGE_MASK;
2480 	if (address < mmap_min_addr)
2481 		return -EPERM;
2482 
2483 	/* Enforce stack_guard_gap */
2484 	prev = vma->vm_prev;
2485 	/* Check that both stack segments have the same anon_vma? */
2486 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2487 			vma_is_accessible(prev)) {
2488 		if (address - prev->vm_end < stack_guard_gap)
2489 			return -ENOMEM;
2490 	}
2491 
2492 	/* We must make sure the anon_vma is allocated. */
2493 	if (unlikely(anon_vma_prepare(vma)))
2494 		return -ENOMEM;
2495 
2496 	/*
2497 	 * vma->vm_start/vm_end cannot change under us because the caller
2498 	 * is required to hold the mmap_lock in read mode.  We need the
2499 	 * anon_vma lock to serialize against concurrent expand_stacks.
2500 	 */
2501 	anon_vma_lock_write(vma->anon_vma);
2502 
2503 	/* Somebody else might have raced and expanded it already */
2504 	if (address < vma->vm_start) {
2505 		unsigned long size, grow;
2506 
2507 		size = vma->vm_end - address;
2508 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2509 
2510 		error = -ENOMEM;
2511 		if (grow <= vma->vm_pgoff) {
2512 			error = acct_stack_growth(vma, size, grow);
2513 			if (!error) {
2514 				/*
2515 				 * vma_gap_update() doesn't support concurrent
2516 				 * updates, but we only hold a shared mmap_lock
2517 				 * lock here, so we need to protect against
2518 				 * concurrent vma expansions.
2519 				 * anon_vma_lock_write() doesn't help here, as
2520 				 * we don't guarantee that all growable vmas
2521 				 * in a mm share the same root anon vma.
2522 				 * So, we reuse mm->page_table_lock to guard
2523 				 * against concurrent vma expansions.
2524 				 */
2525 				spin_lock(&mm->page_table_lock);
2526 				if (vma->vm_flags & VM_LOCKED)
2527 					mm->locked_vm += grow;
2528 				vm_stat_account(mm, vma->vm_flags, grow);
2529 				anon_vma_interval_tree_pre_update_vma(vma);
2530 				vma->vm_start = address;
2531 				vma->vm_pgoff -= grow;
2532 				anon_vma_interval_tree_post_update_vma(vma);
2533 				vma_gap_update(vma);
2534 				spin_unlock(&mm->page_table_lock);
2535 
2536 				perf_event_mmap(vma);
2537 			}
2538 		}
2539 	}
2540 	anon_vma_unlock_write(vma->anon_vma);
2541 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2542 	validate_mm(mm);
2543 	return error;
2544 }
2545 
2546 /* enforced gap between the expanding stack and other mappings. */
2547 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2548 
2549 static int __init cmdline_parse_stack_guard_gap(char *p)
2550 {
2551 	unsigned long val;
2552 	char *endptr;
2553 
2554 	val = simple_strtoul(p, &endptr, 10);
2555 	if (!*endptr)
2556 		stack_guard_gap = val << PAGE_SHIFT;
2557 
2558 	return 1;
2559 }
2560 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2561 
2562 #ifdef CONFIG_STACK_GROWSUP
2563 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2564 {
2565 	return expand_upwards(vma, address);
2566 }
2567 
2568 struct vm_area_struct *
2569 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2570 {
2571 	struct vm_area_struct *vma, *prev;
2572 
2573 	addr &= PAGE_MASK;
2574 	vma = find_vma_prev(mm, addr, &prev);
2575 	if (vma && (vma->vm_start <= addr))
2576 		return vma;
2577 	/* don't alter vm_end if the coredump is running */
2578 	if (!prev || expand_stack(prev, addr))
2579 		return NULL;
2580 	if (prev->vm_flags & VM_LOCKED)
2581 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2582 	return prev;
2583 }
2584 #else
2585 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2586 {
2587 	return expand_downwards(vma, address);
2588 }
2589 
2590 struct vm_area_struct *
2591 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2592 {
2593 	struct vm_area_struct *vma;
2594 	unsigned long start;
2595 
2596 	addr &= PAGE_MASK;
2597 	vma = find_vma(mm, addr);
2598 	if (!vma)
2599 		return NULL;
2600 	if (vma->vm_start <= addr)
2601 		return vma;
2602 	if (!(vma->vm_flags & VM_GROWSDOWN))
2603 		return NULL;
2604 	start = vma->vm_start;
2605 	if (expand_stack(vma, addr))
2606 		return NULL;
2607 	if (vma->vm_flags & VM_LOCKED)
2608 		populate_vma_page_range(vma, addr, start, NULL);
2609 	return vma;
2610 }
2611 #endif
2612 
2613 EXPORT_SYMBOL_GPL(find_extend_vma);
2614 
2615 /*
2616  * Ok - we have the memory areas we should free on the vma list,
2617  * so release them, and do the vma updates.
2618  *
2619  * Called with the mm semaphore held.
2620  */
2621 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2622 {
2623 	unsigned long nr_accounted = 0;
2624 
2625 	/* Update high watermark before we lower total_vm */
2626 	update_hiwater_vm(mm);
2627 	do {
2628 		long nrpages = vma_pages(vma);
2629 
2630 		if (vma->vm_flags & VM_ACCOUNT)
2631 			nr_accounted += nrpages;
2632 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2633 		vma = remove_vma(vma);
2634 	} while (vma);
2635 	vm_unacct_memory(nr_accounted);
2636 	validate_mm(mm);
2637 }
2638 
2639 /*
2640  * Get rid of page table information in the indicated region.
2641  *
2642  * Called with the mm semaphore held.
2643  */
2644 static void unmap_region(struct mm_struct *mm,
2645 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2646 		unsigned long start, unsigned long end)
2647 {
2648 	struct vm_area_struct *next = vma_next(mm, prev);
2649 	struct mmu_gather tlb;
2650 
2651 	lru_add_drain();
2652 	tlb_gather_mmu(&tlb, mm);
2653 	update_hiwater_rss(mm);
2654 	unmap_vmas(&tlb, vma, start, end);
2655 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2656 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2657 	tlb_finish_mmu(&tlb);
2658 }
2659 
2660 /*
2661  * Create a list of vma's touched by the unmap, removing them from the mm's
2662  * vma list as we go..
2663  */
2664 static bool
2665 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2666 	struct vm_area_struct *prev, unsigned long end)
2667 {
2668 	struct vm_area_struct **insertion_point;
2669 	struct vm_area_struct *tail_vma = NULL;
2670 
2671 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2672 	vma->vm_prev = NULL;
2673 	do {
2674 		vma_rb_erase(vma, &mm->mm_rb);
2675 		if (vma->vm_flags & VM_LOCKED)
2676 			mm->locked_vm -= vma_pages(vma);
2677 		mm->map_count--;
2678 		tail_vma = vma;
2679 		vma = vma->vm_next;
2680 	} while (vma && vma->vm_start < end);
2681 	*insertion_point = vma;
2682 	if (vma) {
2683 		vma->vm_prev = prev;
2684 		vma_gap_update(vma);
2685 	} else
2686 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2687 	tail_vma->vm_next = NULL;
2688 
2689 	/* Kill the cache */
2690 	vmacache_invalidate(mm);
2691 
2692 	/*
2693 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2694 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2695 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2696 	 */
2697 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2698 		return false;
2699 	if (prev && (prev->vm_flags & VM_GROWSUP))
2700 		return false;
2701 	return true;
2702 }
2703 
2704 /*
2705  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2706  * has already been checked or doesn't make sense to fail.
2707  */
2708 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2709 		unsigned long addr, int new_below)
2710 {
2711 	struct vm_area_struct *new;
2712 	int err;
2713 
2714 	if (vma->vm_ops && vma->vm_ops->may_split) {
2715 		err = vma->vm_ops->may_split(vma, addr);
2716 		if (err)
2717 			return err;
2718 	}
2719 
2720 	new = vm_area_dup(vma);
2721 	if (!new)
2722 		return -ENOMEM;
2723 
2724 	if (new_below)
2725 		new->vm_end = addr;
2726 	else {
2727 		new->vm_start = addr;
2728 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2729 	}
2730 
2731 	err = vma_dup_policy(vma, new);
2732 	if (err)
2733 		goto out_free_vma;
2734 
2735 	err = anon_vma_clone(new, vma);
2736 	if (err)
2737 		goto out_free_mpol;
2738 
2739 	if (new->vm_file)
2740 		get_file(new->vm_file);
2741 
2742 	if (new->vm_ops && new->vm_ops->open)
2743 		new->vm_ops->open(new);
2744 
2745 	if (new_below)
2746 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2747 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2748 	else
2749 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2750 
2751 	/* Success. */
2752 	if (!err)
2753 		return 0;
2754 
2755 	/* Clean everything up if vma_adjust failed. */
2756 	if (new->vm_ops && new->vm_ops->close)
2757 		new->vm_ops->close(new);
2758 	if (new->vm_file)
2759 		fput(new->vm_file);
2760 	unlink_anon_vmas(new);
2761  out_free_mpol:
2762 	mpol_put(vma_policy(new));
2763  out_free_vma:
2764 	vm_area_free(new);
2765 	return err;
2766 }
2767 
2768 /*
2769  * Split a vma into two pieces at address 'addr', a new vma is allocated
2770  * either for the first part or the tail.
2771  */
2772 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2773 	      unsigned long addr, int new_below)
2774 {
2775 	if (mm->map_count >= sysctl_max_map_count)
2776 		return -ENOMEM;
2777 
2778 	return __split_vma(mm, vma, addr, new_below);
2779 }
2780 
2781 /* Munmap is split into 2 main parts -- this part which finds
2782  * what needs doing, and the areas themselves, which do the
2783  * work.  This now handles partial unmappings.
2784  * Jeremy Fitzhardinge <jeremy@goop.org>
2785  */
2786 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2787 		struct list_head *uf, bool downgrade)
2788 {
2789 	unsigned long end;
2790 	struct vm_area_struct *vma, *prev, *last;
2791 
2792 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2793 		return -EINVAL;
2794 
2795 	len = PAGE_ALIGN(len);
2796 	end = start + len;
2797 	if (len == 0)
2798 		return -EINVAL;
2799 
2800 	/*
2801 	 * arch_unmap() might do unmaps itself.  It must be called
2802 	 * and finish any rbtree manipulation before this code
2803 	 * runs and also starts to manipulate the rbtree.
2804 	 */
2805 	arch_unmap(mm, start, end);
2806 
2807 	/* Find the first overlapping VMA where start < vma->vm_end */
2808 	vma = find_vma_intersection(mm, start, end);
2809 	if (!vma)
2810 		return 0;
2811 	prev = vma->vm_prev;
2812 
2813 	/*
2814 	 * If we need to split any vma, do it now to save pain later.
2815 	 *
2816 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2817 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2818 	 * places tmp vma above, and higher split_vma places tmp vma below.
2819 	 */
2820 	if (start > vma->vm_start) {
2821 		int error;
2822 
2823 		/*
2824 		 * Make sure that map_count on return from munmap() will
2825 		 * not exceed its limit; but let map_count go just above
2826 		 * its limit temporarily, to help free resources as expected.
2827 		 */
2828 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2829 			return -ENOMEM;
2830 
2831 		error = __split_vma(mm, vma, start, 0);
2832 		if (error)
2833 			return error;
2834 		prev = vma;
2835 	}
2836 
2837 	/* Does it split the last one? */
2838 	last = find_vma(mm, end);
2839 	if (last && end > last->vm_start) {
2840 		int error = __split_vma(mm, last, end, 1);
2841 		if (error)
2842 			return error;
2843 	}
2844 	vma = vma_next(mm, prev);
2845 
2846 	if (unlikely(uf)) {
2847 		/*
2848 		 * If userfaultfd_unmap_prep returns an error the vmas
2849 		 * will remain split, but userland will get a
2850 		 * highly unexpected error anyway. This is no
2851 		 * different than the case where the first of the two
2852 		 * __split_vma fails, but we don't undo the first
2853 		 * split, despite we could. This is unlikely enough
2854 		 * failure that it's not worth optimizing it for.
2855 		 */
2856 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2857 		if (error)
2858 			return error;
2859 	}
2860 
2861 	/* Detach vmas from rbtree */
2862 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2863 		downgrade = false;
2864 
2865 	if (downgrade)
2866 		mmap_write_downgrade(mm);
2867 
2868 	unmap_region(mm, vma, prev, start, end);
2869 
2870 	/* Fix up all other VM information */
2871 	remove_vma_list(mm, vma);
2872 
2873 	return downgrade ? 1 : 0;
2874 }
2875 
2876 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2877 	      struct list_head *uf)
2878 {
2879 	return __do_munmap(mm, start, len, uf, false);
2880 }
2881 
2882 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2883 {
2884 	int ret;
2885 	struct mm_struct *mm = current->mm;
2886 	LIST_HEAD(uf);
2887 
2888 	if (mmap_write_lock_killable(mm))
2889 		return -EINTR;
2890 
2891 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2892 	/*
2893 	 * Returning 1 indicates mmap_lock is downgraded.
2894 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2895 	 * it to 0 before return.
2896 	 */
2897 	if (ret == 1) {
2898 		mmap_read_unlock(mm);
2899 		ret = 0;
2900 	} else
2901 		mmap_write_unlock(mm);
2902 
2903 	userfaultfd_unmap_complete(mm, &uf);
2904 	return ret;
2905 }
2906 
2907 int vm_munmap(unsigned long start, size_t len)
2908 {
2909 	return __vm_munmap(start, len, false);
2910 }
2911 EXPORT_SYMBOL(vm_munmap);
2912 
2913 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2914 {
2915 	addr = untagged_addr(addr);
2916 	return __vm_munmap(addr, len, true);
2917 }
2918 
2919 
2920 /*
2921  * Emulation of deprecated remap_file_pages() syscall.
2922  */
2923 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2924 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2925 {
2926 
2927 	struct mm_struct *mm = current->mm;
2928 	struct vm_area_struct *vma;
2929 	unsigned long populate = 0;
2930 	unsigned long ret = -EINVAL;
2931 	struct file *file;
2932 
2933 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2934 		     current->comm, current->pid);
2935 
2936 	if (prot)
2937 		return ret;
2938 	start = start & PAGE_MASK;
2939 	size = size & PAGE_MASK;
2940 
2941 	if (start + size <= start)
2942 		return ret;
2943 
2944 	/* Does pgoff wrap? */
2945 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2946 		return ret;
2947 
2948 	if (mmap_write_lock_killable(mm))
2949 		return -EINTR;
2950 
2951 	vma = vma_lookup(mm, start);
2952 
2953 	if (!vma || !(vma->vm_flags & VM_SHARED))
2954 		goto out;
2955 
2956 	if (start + size > vma->vm_end) {
2957 		struct vm_area_struct *next;
2958 
2959 		for (next = vma->vm_next; next; next = next->vm_next) {
2960 			/* hole between vmas ? */
2961 			if (next->vm_start != next->vm_prev->vm_end)
2962 				goto out;
2963 
2964 			if (next->vm_file != vma->vm_file)
2965 				goto out;
2966 
2967 			if (next->vm_flags != vma->vm_flags)
2968 				goto out;
2969 
2970 			if (start + size <= next->vm_end)
2971 				break;
2972 		}
2973 
2974 		if (!next)
2975 			goto out;
2976 	}
2977 
2978 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2979 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2980 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2981 
2982 	flags &= MAP_NONBLOCK;
2983 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2984 	if (vma->vm_flags & VM_LOCKED)
2985 		flags |= MAP_LOCKED;
2986 
2987 	file = get_file(vma->vm_file);
2988 	ret = do_mmap(vma->vm_file, start, size,
2989 			prot, flags, pgoff, &populate, NULL);
2990 	fput(file);
2991 out:
2992 	mmap_write_unlock(mm);
2993 	if (populate)
2994 		mm_populate(ret, populate);
2995 	if (!IS_ERR_VALUE(ret))
2996 		ret = 0;
2997 	return ret;
2998 }
2999 
3000 /*
3001  *  this is really a simplified "do_mmap".  it only handles
3002  *  anonymous maps.  eventually we may be able to do some
3003  *  brk-specific accounting here.
3004  */
3005 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3006 {
3007 	struct mm_struct *mm = current->mm;
3008 	struct vm_area_struct *vma, *prev;
3009 	struct rb_node **rb_link, *rb_parent;
3010 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3011 	int error;
3012 	unsigned long mapped_addr;
3013 
3014 	/* Until we need other flags, refuse anything except VM_EXEC. */
3015 	if ((flags & (~VM_EXEC)) != 0)
3016 		return -EINVAL;
3017 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3018 
3019 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3020 	if (IS_ERR_VALUE(mapped_addr))
3021 		return mapped_addr;
3022 
3023 	error = mlock_future_check(mm, mm->def_flags, len);
3024 	if (error)
3025 		return error;
3026 
3027 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3028 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3029 		return -ENOMEM;
3030 
3031 	/* Check against address space limits *after* clearing old maps... */
3032 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3033 		return -ENOMEM;
3034 
3035 	if (mm->map_count > sysctl_max_map_count)
3036 		return -ENOMEM;
3037 
3038 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3039 		return -ENOMEM;
3040 
3041 	/* Can we just expand an old private anonymous mapping? */
3042 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3043 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3044 	if (vma)
3045 		goto out;
3046 
3047 	/*
3048 	 * create a vma struct for an anonymous mapping
3049 	 */
3050 	vma = vm_area_alloc(mm);
3051 	if (!vma) {
3052 		vm_unacct_memory(len >> PAGE_SHIFT);
3053 		return -ENOMEM;
3054 	}
3055 
3056 	vma_set_anonymous(vma);
3057 	vma->vm_start = addr;
3058 	vma->vm_end = addr + len;
3059 	vma->vm_pgoff = pgoff;
3060 	vma->vm_flags = flags;
3061 	vma->vm_page_prot = vm_get_page_prot(flags);
3062 	vma_link(mm, vma, prev, rb_link, rb_parent);
3063 out:
3064 	perf_event_mmap(vma);
3065 	mm->total_vm += len >> PAGE_SHIFT;
3066 	mm->data_vm += len >> PAGE_SHIFT;
3067 	if (flags & VM_LOCKED)
3068 		mm->locked_vm += (len >> PAGE_SHIFT);
3069 	vma->vm_flags |= VM_SOFTDIRTY;
3070 	return 0;
3071 }
3072 
3073 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3074 {
3075 	struct mm_struct *mm = current->mm;
3076 	unsigned long len;
3077 	int ret;
3078 	bool populate;
3079 	LIST_HEAD(uf);
3080 
3081 	len = PAGE_ALIGN(request);
3082 	if (len < request)
3083 		return -ENOMEM;
3084 	if (!len)
3085 		return 0;
3086 
3087 	if (mmap_write_lock_killable(mm))
3088 		return -EINTR;
3089 
3090 	ret = do_brk_flags(addr, len, flags, &uf);
3091 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3092 	mmap_write_unlock(mm);
3093 	userfaultfd_unmap_complete(mm, &uf);
3094 	if (populate && !ret)
3095 		mm_populate(addr, len);
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL(vm_brk_flags);
3099 
3100 int vm_brk(unsigned long addr, unsigned long len)
3101 {
3102 	return vm_brk_flags(addr, len, 0);
3103 }
3104 EXPORT_SYMBOL(vm_brk);
3105 
3106 /* Release all mmaps. */
3107 void exit_mmap(struct mm_struct *mm)
3108 {
3109 	struct mmu_gather tlb;
3110 	struct vm_area_struct *vma;
3111 	unsigned long nr_accounted = 0;
3112 
3113 	/* mm's last user has gone, and its about to be pulled down */
3114 	mmu_notifier_release(mm);
3115 
3116 	if (unlikely(mm_is_oom_victim(mm))) {
3117 		/*
3118 		 * Manually reap the mm to free as much memory as possible.
3119 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3120 		 * this mm from further consideration.  Taking mm->mmap_lock for
3121 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3122 		 * reaper will not run on this mm again after mmap_lock is
3123 		 * dropped.
3124 		 *
3125 		 * Nothing can be holding mm->mmap_lock here and the above call
3126 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3127 		 * __oom_reap_task_mm() will not block.
3128 		 */
3129 		(void)__oom_reap_task_mm(mm);
3130 		set_bit(MMF_OOM_SKIP, &mm->flags);
3131 	}
3132 
3133 	mmap_write_lock(mm);
3134 	arch_exit_mmap(mm);
3135 
3136 	vma = mm->mmap;
3137 	if (!vma) {
3138 		/* Can happen if dup_mmap() received an OOM */
3139 		mmap_write_unlock(mm);
3140 		return;
3141 	}
3142 
3143 	lru_add_drain();
3144 	flush_cache_mm(mm);
3145 	tlb_gather_mmu_fullmm(&tlb, mm);
3146 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3147 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3148 	unmap_vmas(&tlb, vma, 0, -1);
3149 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3150 	tlb_finish_mmu(&tlb);
3151 
3152 	/* Walk the list again, actually closing and freeing it. */
3153 	while (vma) {
3154 		if (vma->vm_flags & VM_ACCOUNT)
3155 			nr_accounted += vma_pages(vma);
3156 		vma = remove_vma(vma);
3157 		cond_resched();
3158 	}
3159 	mm->mmap = NULL;
3160 	mmap_write_unlock(mm);
3161 	vm_unacct_memory(nr_accounted);
3162 }
3163 
3164 /* Insert vm structure into process list sorted by address
3165  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3166  * then i_mmap_rwsem is taken here.
3167  */
3168 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3169 {
3170 	struct vm_area_struct *prev;
3171 	struct rb_node **rb_link, *rb_parent;
3172 
3173 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3174 			   &prev, &rb_link, &rb_parent))
3175 		return -ENOMEM;
3176 	if ((vma->vm_flags & VM_ACCOUNT) &&
3177 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3178 		return -ENOMEM;
3179 
3180 	/*
3181 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3182 	 * until its first write fault, when page's anon_vma and index
3183 	 * are set.  But now set the vm_pgoff it will almost certainly
3184 	 * end up with (unless mremap moves it elsewhere before that
3185 	 * first wfault), so /proc/pid/maps tells a consistent story.
3186 	 *
3187 	 * By setting it to reflect the virtual start address of the
3188 	 * vma, merges and splits can happen in a seamless way, just
3189 	 * using the existing file pgoff checks and manipulations.
3190 	 * Similarly in do_mmap and in do_brk_flags.
3191 	 */
3192 	if (vma_is_anonymous(vma)) {
3193 		BUG_ON(vma->anon_vma);
3194 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3195 	}
3196 
3197 	vma_link(mm, vma, prev, rb_link, rb_parent);
3198 	return 0;
3199 }
3200 
3201 /*
3202  * Copy the vma structure to a new location in the same mm,
3203  * prior to moving page table entries, to effect an mremap move.
3204  */
3205 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3206 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3207 	bool *need_rmap_locks)
3208 {
3209 	struct vm_area_struct *vma = *vmap;
3210 	unsigned long vma_start = vma->vm_start;
3211 	struct mm_struct *mm = vma->vm_mm;
3212 	struct vm_area_struct *new_vma, *prev;
3213 	struct rb_node **rb_link, *rb_parent;
3214 	bool faulted_in_anon_vma = true;
3215 
3216 	/*
3217 	 * If anonymous vma has not yet been faulted, update new pgoff
3218 	 * to match new location, to increase its chance of merging.
3219 	 */
3220 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3221 		pgoff = addr >> PAGE_SHIFT;
3222 		faulted_in_anon_vma = false;
3223 	}
3224 
3225 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3226 		return NULL;	/* should never get here */
3227 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3228 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3229 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3230 	if (new_vma) {
3231 		/*
3232 		 * Source vma may have been merged into new_vma
3233 		 */
3234 		if (unlikely(vma_start >= new_vma->vm_start &&
3235 			     vma_start < new_vma->vm_end)) {
3236 			/*
3237 			 * The only way we can get a vma_merge with
3238 			 * self during an mremap is if the vma hasn't
3239 			 * been faulted in yet and we were allowed to
3240 			 * reset the dst vma->vm_pgoff to the
3241 			 * destination address of the mremap to allow
3242 			 * the merge to happen. mremap must change the
3243 			 * vm_pgoff linearity between src and dst vmas
3244 			 * (in turn preventing a vma_merge) to be
3245 			 * safe. It is only safe to keep the vm_pgoff
3246 			 * linear if there are no pages mapped yet.
3247 			 */
3248 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3249 			*vmap = vma = new_vma;
3250 		}
3251 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3252 	} else {
3253 		new_vma = vm_area_dup(vma);
3254 		if (!new_vma)
3255 			goto out;
3256 		new_vma->vm_start = addr;
3257 		new_vma->vm_end = addr + len;
3258 		new_vma->vm_pgoff = pgoff;
3259 		if (vma_dup_policy(vma, new_vma))
3260 			goto out_free_vma;
3261 		if (anon_vma_clone(new_vma, vma))
3262 			goto out_free_mempol;
3263 		if (new_vma->vm_file)
3264 			get_file(new_vma->vm_file);
3265 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3266 			new_vma->vm_ops->open(new_vma);
3267 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3268 		*need_rmap_locks = false;
3269 	}
3270 	return new_vma;
3271 
3272 out_free_mempol:
3273 	mpol_put(vma_policy(new_vma));
3274 out_free_vma:
3275 	vm_area_free(new_vma);
3276 out:
3277 	return NULL;
3278 }
3279 
3280 /*
3281  * Return true if the calling process may expand its vm space by the passed
3282  * number of pages
3283  */
3284 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3285 {
3286 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3287 		return false;
3288 
3289 	if (is_data_mapping(flags) &&
3290 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3291 		/* Workaround for Valgrind */
3292 		if (rlimit(RLIMIT_DATA) == 0 &&
3293 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3294 			return true;
3295 
3296 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3297 			     current->comm, current->pid,
3298 			     (mm->data_vm + npages) << PAGE_SHIFT,
3299 			     rlimit(RLIMIT_DATA),
3300 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3301 
3302 		if (!ignore_rlimit_data)
3303 			return false;
3304 	}
3305 
3306 	return true;
3307 }
3308 
3309 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3310 {
3311 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3312 
3313 	if (is_exec_mapping(flags))
3314 		mm->exec_vm += npages;
3315 	else if (is_stack_mapping(flags))
3316 		mm->stack_vm += npages;
3317 	else if (is_data_mapping(flags))
3318 		mm->data_vm += npages;
3319 }
3320 
3321 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3322 
3323 /*
3324  * Having a close hook prevents vma merging regardless of flags.
3325  */
3326 static void special_mapping_close(struct vm_area_struct *vma)
3327 {
3328 }
3329 
3330 static const char *special_mapping_name(struct vm_area_struct *vma)
3331 {
3332 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3333 }
3334 
3335 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3336 {
3337 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3338 
3339 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3340 		return -EFAULT;
3341 
3342 	if (sm->mremap)
3343 		return sm->mremap(sm, new_vma);
3344 
3345 	return 0;
3346 }
3347 
3348 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3349 {
3350 	/*
3351 	 * Forbid splitting special mappings - kernel has expectations over
3352 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3353 	 * the size of vma should stay the same over the special mapping's
3354 	 * lifetime.
3355 	 */
3356 	return -EINVAL;
3357 }
3358 
3359 static const struct vm_operations_struct special_mapping_vmops = {
3360 	.close = special_mapping_close,
3361 	.fault = special_mapping_fault,
3362 	.mremap = special_mapping_mremap,
3363 	.name = special_mapping_name,
3364 	/* vDSO code relies that VVAR can't be accessed remotely */
3365 	.access = NULL,
3366 	.may_split = special_mapping_split,
3367 };
3368 
3369 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3370 	.close = special_mapping_close,
3371 	.fault = special_mapping_fault,
3372 };
3373 
3374 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3375 {
3376 	struct vm_area_struct *vma = vmf->vma;
3377 	pgoff_t pgoff;
3378 	struct page **pages;
3379 
3380 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3381 		pages = vma->vm_private_data;
3382 	} else {
3383 		struct vm_special_mapping *sm = vma->vm_private_data;
3384 
3385 		if (sm->fault)
3386 			return sm->fault(sm, vmf->vma, vmf);
3387 
3388 		pages = sm->pages;
3389 	}
3390 
3391 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3392 		pgoff--;
3393 
3394 	if (*pages) {
3395 		struct page *page = *pages;
3396 		get_page(page);
3397 		vmf->page = page;
3398 		return 0;
3399 	}
3400 
3401 	return VM_FAULT_SIGBUS;
3402 }
3403 
3404 static struct vm_area_struct *__install_special_mapping(
3405 	struct mm_struct *mm,
3406 	unsigned long addr, unsigned long len,
3407 	unsigned long vm_flags, void *priv,
3408 	const struct vm_operations_struct *ops)
3409 {
3410 	int ret;
3411 	struct vm_area_struct *vma;
3412 
3413 	vma = vm_area_alloc(mm);
3414 	if (unlikely(vma == NULL))
3415 		return ERR_PTR(-ENOMEM);
3416 
3417 	vma->vm_start = addr;
3418 	vma->vm_end = addr + len;
3419 
3420 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3421 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3422 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3423 
3424 	vma->vm_ops = ops;
3425 	vma->vm_private_data = priv;
3426 
3427 	ret = insert_vm_struct(mm, vma);
3428 	if (ret)
3429 		goto out;
3430 
3431 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3432 
3433 	perf_event_mmap(vma);
3434 
3435 	return vma;
3436 
3437 out:
3438 	vm_area_free(vma);
3439 	return ERR_PTR(ret);
3440 }
3441 
3442 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3443 	const struct vm_special_mapping *sm)
3444 {
3445 	return vma->vm_private_data == sm &&
3446 		(vma->vm_ops == &special_mapping_vmops ||
3447 		 vma->vm_ops == &legacy_special_mapping_vmops);
3448 }
3449 
3450 /*
3451  * Called with mm->mmap_lock held for writing.
3452  * Insert a new vma covering the given region, with the given flags.
3453  * Its pages are supplied by the given array of struct page *.
3454  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3455  * The region past the last page supplied will always produce SIGBUS.
3456  * The array pointer and the pages it points to are assumed to stay alive
3457  * for as long as this mapping might exist.
3458  */
3459 struct vm_area_struct *_install_special_mapping(
3460 	struct mm_struct *mm,
3461 	unsigned long addr, unsigned long len,
3462 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3463 {
3464 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3465 					&special_mapping_vmops);
3466 }
3467 
3468 int install_special_mapping(struct mm_struct *mm,
3469 			    unsigned long addr, unsigned long len,
3470 			    unsigned long vm_flags, struct page **pages)
3471 {
3472 	struct vm_area_struct *vma = __install_special_mapping(
3473 		mm, addr, len, vm_flags, (void *)pages,
3474 		&legacy_special_mapping_vmops);
3475 
3476 	return PTR_ERR_OR_ZERO(vma);
3477 }
3478 
3479 static DEFINE_MUTEX(mm_all_locks_mutex);
3480 
3481 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3482 {
3483 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3484 		/*
3485 		 * The LSB of head.next can't change from under us
3486 		 * because we hold the mm_all_locks_mutex.
3487 		 */
3488 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3489 		/*
3490 		 * We can safely modify head.next after taking the
3491 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3492 		 * the same anon_vma we won't take it again.
3493 		 *
3494 		 * No need of atomic instructions here, head.next
3495 		 * can't change from under us thanks to the
3496 		 * anon_vma->root->rwsem.
3497 		 */
3498 		if (__test_and_set_bit(0, (unsigned long *)
3499 				       &anon_vma->root->rb_root.rb_root.rb_node))
3500 			BUG();
3501 	}
3502 }
3503 
3504 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3505 {
3506 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3507 		/*
3508 		 * AS_MM_ALL_LOCKS can't change from under us because
3509 		 * we hold the mm_all_locks_mutex.
3510 		 *
3511 		 * Operations on ->flags have to be atomic because
3512 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3513 		 * mm_all_locks_mutex, there may be other cpus
3514 		 * changing other bitflags in parallel to us.
3515 		 */
3516 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3517 			BUG();
3518 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3519 	}
3520 }
3521 
3522 /*
3523  * This operation locks against the VM for all pte/vma/mm related
3524  * operations that could ever happen on a certain mm. This includes
3525  * vmtruncate, try_to_unmap, and all page faults.
3526  *
3527  * The caller must take the mmap_lock in write mode before calling
3528  * mm_take_all_locks(). The caller isn't allowed to release the
3529  * mmap_lock until mm_drop_all_locks() returns.
3530  *
3531  * mmap_lock in write mode is required in order to block all operations
3532  * that could modify pagetables and free pages without need of
3533  * altering the vma layout. It's also needed in write mode to avoid new
3534  * anon_vmas to be associated with existing vmas.
3535  *
3536  * A single task can't take more than one mm_take_all_locks() in a row
3537  * or it would deadlock.
3538  *
3539  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3540  * mapping->flags avoid to take the same lock twice, if more than one
3541  * vma in this mm is backed by the same anon_vma or address_space.
3542  *
3543  * We take locks in following order, accordingly to comment at beginning
3544  * of mm/rmap.c:
3545  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3546  *     hugetlb mapping);
3547  *   - all i_mmap_rwsem locks;
3548  *   - all anon_vma->rwseml
3549  *
3550  * We can take all locks within these types randomly because the VM code
3551  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3552  * mm_all_locks_mutex.
3553  *
3554  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3555  * that may have to take thousand of locks.
3556  *
3557  * mm_take_all_locks() can fail if it's interrupted by signals.
3558  */
3559 int mm_take_all_locks(struct mm_struct *mm)
3560 {
3561 	struct vm_area_struct *vma;
3562 	struct anon_vma_chain *avc;
3563 
3564 	BUG_ON(mmap_read_trylock(mm));
3565 
3566 	mutex_lock(&mm_all_locks_mutex);
3567 
3568 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3569 		if (signal_pending(current))
3570 			goto out_unlock;
3571 		if (vma->vm_file && vma->vm_file->f_mapping &&
3572 				is_vm_hugetlb_page(vma))
3573 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3574 	}
3575 
3576 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3577 		if (signal_pending(current))
3578 			goto out_unlock;
3579 		if (vma->vm_file && vma->vm_file->f_mapping &&
3580 				!is_vm_hugetlb_page(vma))
3581 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3582 	}
3583 
3584 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3585 		if (signal_pending(current))
3586 			goto out_unlock;
3587 		if (vma->anon_vma)
3588 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3589 				vm_lock_anon_vma(mm, avc->anon_vma);
3590 	}
3591 
3592 	return 0;
3593 
3594 out_unlock:
3595 	mm_drop_all_locks(mm);
3596 	return -EINTR;
3597 }
3598 
3599 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3600 {
3601 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3602 		/*
3603 		 * The LSB of head.next can't change to 0 from under
3604 		 * us because we hold the mm_all_locks_mutex.
3605 		 *
3606 		 * We must however clear the bitflag before unlocking
3607 		 * the vma so the users using the anon_vma->rb_root will
3608 		 * never see our bitflag.
3609 		 *
3610 		 * No need of atomic instructions here, head.next
3611 		 * can't change from under us until we release the
3612 		 * anon_vma->root->rwsem.
3613 		 */
3614 		if (!__test_and_clear_bit(0, (unsigned long *)
3615 					  &anon_vma->root->rb_root.rb_root.rb_node))
3616 			BUG();
3617 		anon_vma_unlock_write(anon_vma);
3618 	}
3619 }
3620 
3621 static void vm_unlock_mapping(struct address_space *mapping)
3622 {
3623 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3624 		/*
3625 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3626 		 * because we hold the mm_all_locks_mutex.
3627 		 */
3628 		i_mmap_unlock_write(mapping);
3629 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3630 					&mapping->flags))
3631 			BUG();
3632 	}
3633 }
3634 
3635 /*
3636  * The mmap_lock cannot be released by the caller until
3637  * mm_drop_all_locks() returns.
3638  */
3639 void mm_drop_all_locks(struct mm_struct *mm)
3640 {
3641 	struct vm_area_struct *vma;
3642 	struct anon_vma_chain *avc;
3643 
3644 	BUG_ON(mmap_read_trylock(mm));
3645 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3646 
3647 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3648 		if (vma->anon_vma)
3649 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3650 				vm_unlock_anon_vma(avc->anon_vma);
3651 		if (vma->vm_file && vma->vm_file->f_mapping)
3652 			vm_unlock_mapping(vma->vm_file->f_mapping);
3653 	}
3654 
3655 	mutex_unlock(&mm_all_locks_mutex);
3656 }
3657 
3658 /*
3659  * initialise the percpu counter for VM
3660  */
3661 void __init mmap_init(void)
3662 {
3663 	int ret;
3664 
3665 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3666 	VM_BUG_ON(ret);
3667 }
3668 
3669 /*
3670  * Initialise sysctl_user_reserve_kbytes.
3671  *
3672  * This is intended to prevent a user from starting a single memory hogging
3673  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3674  * mode.
3675  *
3676  * The default value is min(3% of free memory, 128MB)
3677  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3678  */
3679 static int init_user_reserve(void)
3680 {
3681 	unsigned long free_kbytes;
3682 
3683 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3684 
3685 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3686 	return 0;
3687 }
3688 subsys_initcall(init_user_reserve);
3689 
3690 /*
3691  * Initialise sysctl_admin_reserve_kbytes.
3692  *
3693  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3694  * to log in and kill a memory hogging process.
3695  *
3696  * Systems with more than 256MB will reserve 8MB, enough to recover
3697  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3698  * only reserve 3% of free pages by default.
3699  */
3700 static int init_admin_reserve(void)
3701 {
3702 	unsigned long free_kbytes;
3703 
3704 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3705 
3706 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3707 	return 0;
3708 }
3709 subsys_initcall(init_admin_reserve);
3710 
3711 /*
3712  * Reinititalise user and admin reserves if memory is added or removed.
3713  *
3714  * The default user reserve max is 128MB, and the default max for the
3715  * admin reserve is 8MB. These are usually, but not always, enough to
3716  * enable recovery from a memory hogging process using login/sshd, a shell,
3717  * and tools like top. It may make sense to increase or even disable the
3718  * reserve depending on the existence of swap or variations in the recovery
3719  * tools. So, the admin may have changed them.
3720  *
3721  * If memory is added and the reserves have been eliminated or increased above
3722  * the default max, then we'll trust the admin.
3723  *
3724  * If memory is removed and there isn't enough free memory, then we
3725  * need to reset the reserves.
3726  *
3727  * Otherwise keep the reserve set by the admin.
3728  */
3729 static int reserve_mem_notifier(struct notifier_block *nb,
3730 			     unsigned long action, void *data)
3731 {
3732 	unsigned long tmp, free_kbytes;
3733 
3734 	switch (action) {
3735 	case MEM_ONLINE:
3736 		/* Default max is 128MB. Leave alone if modified by operator. */
3737 		tmp = sysctl_user_reserve_kbytes;
3738 		if (0 < tmp && tmp < (1UL << 17))
3739 			init_user_reserve();
3740 
3741 		/* Default max is 8MB.  Leave alone if modified by operator. */
3742 		tmp = sysctl_admin_reserve_kbytes;
3743 		if (0 < tmp && tmp < (1UL << 13))
3744 			init_admin_reserve();
3745 
3746 		break;
3747 	case MEM_OFFLINE:
3748 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3749 
3750 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3751 			init_user_reserve();
3752 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3753 				sysctl_user_reserve_kbytes);
3754 		}
3755 
3756 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3757 			init_admin_reserve();
3758 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3759 				sysctl_admin_reserve_kbytes);
3760 		}
3761 		break;
3762 	default:
3763 		break;
3764 	}
3765 	return NOTIFY_OK;
3766 }
3767 
3768 static struct notifier_block reserve_mem_nb = {
3769 	.notifier_call = reserve_mem_notifier,
3770 };
3771 
3772 static int __meminit init_reserve_notifier(void)
3773 {
3774 	if (register_hotmemory_notifier(&reserve_mem_nb))
3775 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3776 
3777 	return 0;
3778 }
3779 subsys_initcall(init_reserve_notifier);
3780