xref: /linux/mm/mmap.c (revision 2d7ce0e8a704d1aedc4462817a4eade1c3b00fbe)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 
50 #include "internal.h"
51 
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)	(0)
54 #endif
55 
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)		(addr)
58 #endif
59 
60 static void unmap_region(struct mm_struct *mm,
61 		struct vm_area_struct *vma, struct vm_area_struct *prev,
62 		unsigned long start, unsigned long end);
63 
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type	prot
69  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
70  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
75  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
76  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83 
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 	return __pgprot(pgprot_val(protection_map[vm_flags &
87 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91 
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96 
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100 	unsigned long vm_flags = vma->vm_flags;
101 
102 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 	if (vma_wants_writenotify(vma)) {
104 		vm_flags &= ~VM_SHARED;
105 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 						     vm_flags);
107 	}
108 }
109 
110 
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122 
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133 	return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136 
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155 	unsigned long free, allowed, reserve;
156 
157 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 			-(s64)vm_committed_as_batch * num_online_cpus(),
159 			"memory commitment underflow");
160 
161 	vm_acct_memory(pages);
162 
163 	/*
164 	 * Sometimes we want to use more memory than we have
165 	 */
166 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 		return 0;
168 
169 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 		free = global_page_state(NR_FREE_PAGES);
171 		free += global_page_state(NR_FILE_PAGES);
172 
173 		/*
174 		 * shmem pages shouldn't be counted as free in this
175 		 * case, they can't be purged, only swapped out, and
176 		 * that won't affect the overall amount of available
177 		 * memory in the system.
178 		 */
179 		free -= global_page_state(NR_SHMEM);
180 
181 		free += get_nr_swap_pages();
182 
183 		/*
184 		 * Any slabs which are created with the
185 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 		 * which are reclaimable, under pressure.  The dentry
187 		 * cache and most inode caches should fall into this
188 		 */
189 		free += global_page_state(NR_SLAB_RECLAIMABLE);
190 
191 		/*
192 		 * Leave reserved pages. The pages are not for anonymous pages.
193 		 */
194 		if (free <= totalreserve_pages)
195 			goto error;
196 		else
197 			free -= totalreserve_pages;
198 
199 		/*
200 		 * Reserve some for root
201 		 */
202 		if (!cap_sys_admin)
203 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204 
205 		if (free > pages)
206 			return 0;
207 
208 		goto error;
209 	}
210 
211 	allowed = vm_commit_limit();
212 	/*
213 	 * Reserve some for root
214 	 */
215 	if (!cap_sys_admin)
216 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217 
218 	/*
219 	 * Don't let a single process grow so big a user can't recover
220 	 */
221 	if (mm) {
222 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 		allowed -= min(mm->total_vm / 32, reserve);
224 	}
225 
226 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 		return 0;
228 error:
229 	vm_unacct_memory(pages);
230 
231 	return -ENOMEM;
232 }
233 
234 /*
235  * Requires inode->i_mapping->i_mmap_mutex
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 		struct file *file, struct address_space *mapping)
239 {
240 	if (vma->vm_flags & VM_DENYWRITE)
241 		atomic_inc(&file_inode(file)->i_writecount);
242 	if (vma->vm_flags & VM_SHARED)
243 		mapping_unmap_writable(mapping);
244 
245 	flush_dcache_mmap_lock(mapping);
246 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
247 		list_del_init(&vma->shared.nonlinear);
248 	else
249 		vma_interval_tree_remove(vma, &mapping->i_mmap);
250 	flush_dcache_mmap_unlock(mapping);
251 }
252 
253 /*
254  * Unlink a file-based vm structure from its interval tree, to hide
255  * vma from rmap and vmtruncate before freeing its page tables.
256  */
257 void unlink_file_vma(struct vm_area_struct *vma)
258 {
259 	struct file *file = vma->vm_file;
260 
261 	if (file) {
262 		struct address_space *mapping = file->f_mapping;
263 		mutex_lock(&mapping->i_mmap_mutex);
264 		__remove_shared_vm_struct(vma, file, mapping);
265 		mutex_unlock(&mapping->i_mmap_mutex);
266 	}
267 }
268 
269 /*
270  * Close a vm structure and free it, returning the next.
271  */
272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
273 {
274 	struct vm_area_struct *next = vma->vm_next;
275 
276 	might_sleep();
277 	if (vma->vm_ops && vma->vm_ops->close)
278 		vma->vm_ops->close(vma);
279 	if (vma->vm_file)
280 		fput(vma->vm_file);
281 	mpol_put(vma_policy(vma));
282 	kmem_cache_free(vm_area_cachep, vma);
283 	return next;
284 }
285 
286 static unsigned long do_brk(unsigned long addr, unsigned long len);
287 
288 SYSCALL_DEFINE1(brk, unsigned long, brk)
289 {
290 	unsigned long retval;
291 	unsigned long newbrk, oldbrk;
292 	struct mm_struct *mm = current->mm;
293 	unsigned long min_brk;
294 	bool populate;
295 
296 	down_write(&mm->mmap_sem);
297 
298 #ifdef CONFIG_COMPAT_BRK
299 	/*
300 	 * CONFIG_COMPAT_BRK can still be overridden by setting
301 	 * randomize_va_space to 2, which will still cause mm->start_brk
302 	 * to be arbitrarily shifted
303 	 */
304 	if (current->brk_randomized)
305 		min_brk = mm->start_brk;
306 	else
307 		min_brk = mm->end_data;
308 #else
309 	min_brk = mm->start_brk;
310 #endif
311 	if (brk < min_brk)
312 		goto out;
313 
314 	/*
315 	 * Check against rlimit here. If this check is done later after the test
316 	 * of oldbrk with newbrk then it can escape the test and let the data
317 	 * segment grow beyond its set limit the in case where the limit is
318 	 * not page aligned -Ram Gupta
319 	 */
320 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321 			      mm->end_data, mm->start_data))
322 		goto out;
323 
324 	newbrk = PAGE_ALIGN(brk);
325 	oldbrk = PAGE_ALIGN(mm->brk);
326 	if (oldbrk == newbrk)
327 		goto set_brk;
328 
329 	/* Always allow shrinking brk. */
330 	if (brk <= mm->brk) {
331 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332 			goto set_brk;
333 		goto out;
334 	}
335 
336 	/* Check against existing mmap mappings. */
337 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338 		goto out;
339 
340 	/* Ok, looks good - let it rip. */
341 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342 		goto out;
343 
344 set_brk:
345 	mm->brk = brk;
346 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347 	up_write(&mm->mmap_sem);
348 	if (populate)
349 		mm_populate(oldbrk, newbrk - oldbrk);
350 	return brk;
351 
352 out:
353 	retval = mm->brk;
354 	up_write(&mm->mmap_sem);
355 	return retval;
356 }
357 
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
359 {
360 	unsigned long max, subtree_gap;
361 	max = vma->vm_start;
362 	if (vma->vm_prev)
363 		max -= vma->vm_prev->vm_end;
364 	if (vma->vm_rb.rb_left) {
365 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
366 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
367 		if (subtree_gap > max)
368 			max = subtree_gap;
369 	}
370 	if (vma->vm_rb.rb_right) {
371 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
372 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
373 		if (subtree_gap > max)
374 			max = subtree_gap;
375 	}
376 	return max;
377 }
378 
379 #ifdef CONFIG_DEBUG_VM_RB
380 static int browse_rb(struct rb_root *root)
381 {
382 	int i = 0, j, bug = 0;
383 	struct rb_node *nd, *pn = NULL;
384 	unsigned long prev = 0, pend = 0;
385 
386 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 		struct vm_area_struct *vma;
388 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 		if (vma->vm_start < prev) {
390 			pr_emerg("vm_start %lx < prev %lx\n",
391 				  vma->vm_start, prev);
392 			bug = 1;
393 		}
394 		if (vma->vm_start < pend) {
395 			pr_emerg("vm_start %lx < pend %lx\n",
396 				  vma->vm_start, pend);
397 			bug = 1;
398 		}
399 		if (vma->vm_start > vma->vm_end) {
400 			pr_emerg("vm_start %lx > vm_end %lx\n",
401 				  vma->vm_start, vma->vm_end);
402 			bug = 1;
403 		}
404 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
405 			pr_emerg("free gap %lx, correct %lx\n",
406 			       vma->rb_subtree_gap,
407 			       vma_compute_subtree_gap(vma));
408 			bug = 1;
409 		}
410 		i++;
411 		pn = nd;
412 		prev = vma->vm_start;
413 		pend = vma->vm_end;
414 	}
415 	j = 0;
416 	for (nd = pn; nd; nd = rb_prev(nd))
417 		j++;
418 	if (i != j) {
419 		pr_emerg("backwards %d, forwards %d\n", j, i);
420 		bug = 1;
421 	}
422 	return bug ? -1 : i;
423 }
424 
425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
426 {
427 	struct rb_node *nd;
428 
429 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
430 		struct vm_area_struct *vma;
431 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
432 		VM_BUG_ON_VMA(vma != ignore &&
433 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
434 			vma);
435 	}
436 }
437 
438 static void validate_mm(struct mm_struct *mm)
439 {
440 	int bug = 0;
441 	int i = 0;
442 	unsigned long highest_address = 0;
443 	struct vm_area_struct *vma = mm->mmap;
444 
445 	while (vma) {
446 		struct anon_vma_chain *avc;
447 
448 		vma_lock_anon_vma(vma);
449 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 			anon_vma_interval_tree_verify(avc);
451 		vma_unlock_anon_vma(vma);
452 		highest_address = vma->vm_end;
453 		vma = vma->vm_next;
454 		i++;
455 	}
456 	if (i != mm->map_count) {
457 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458 		bug = 1;
459 	}
460 	if (highest_address != mm->highest_vm_end) {
461 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
462 			  mm->highest_vm_end, highest_address);
463 		bug = 1;
464 	}
465 	i = browse_rb(&mm->mm_rb);
466 	if (i != mm->map_count) {
467 		if (i != -1)
468 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469 		bug = 1;
470 	}
471 	VM_BUG_ON_MM(bug, mm);
472 }
473 #else
474 #define validate_mm_rb(root, ignore) do { } while (0)
475 #define validate_mm(mm) do { } while (0)
476 #endif
477 
478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
479 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
480 
481 /*
482  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
483  * vma->vm_prev->vm_end values changed, without modifying the vma's position
484  * in the rbtree.
485  */
486 static void vma_gap_update(struct vm_area_struct *vma)
487 {
488 	/*
489 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
490 	 * function that does exacltly what we want.
491 	 */
492 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
493 }
494 
495 static inline void vma_rb_insert(struct vm_area_struct *vma,
496 				 struct rb_root *root)
497 {
498 	/* All rb_subtree_gap values must be consistent prior to insertion */
499 	validate_mm_rb(root, NULL);
500 
501 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
502 }
503 
504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
505 {
506 	/*
507 	 * All rb_subtree_gap values must be consistent prior to erase,
508 	 * with the possible exception of the vma being erased.
509 	 */
510 	validate_mm_rb(root, vma);
511 
512 	/*
513 	 * Note rb_erase_augmented is a fairly large inline function,
514 	 * so make sure we instantiate it only once with our desired
515 	 * augmented rbtree callbacks.
516 	 */
517 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519 
520 /*
521  * vma has some anon_vma assigned, and is already inserted on that
522  * anon_vma's interval trees.
523  *
524  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
525  * vma must be removed from the anon_vma's interval trees using
526  * anon_vma_interval_tree_pre_update_vma().
527  *
528  * After the update, the vma will be reinserted using
529  * anon_vma_interval_tree_post_update_vma().
530  *
531  * The entire update must be protected by exclusive mmap_sem and by
532  * the root anon_vma's mutex.
533  */
534 static inline void
535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
536 {
537 	struct anon_vma_chain *avc;
538 
539 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
540 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
541 }
542 
543 static inline void
544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
545 {
546 	struct anon_vma_chain *avc;
547 
548 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
549 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
550 }
551 
552 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
553 		unsigned long end, struct vm_area_struct **pprev,
554 		struct rb_node ***rb_link, struct rb_node **rb_parent)
555 {
556 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
557 
558 	__rb_link = &mm->mm_rb.rb_node;
559 	rb_prev = __rb_parent = NULL;
560 
561 	while (*__rb_link) {
562 		struct vm_area_struct *vma_tmp;
563 
564 		__rb_parent = *__rb_link;
565 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
566 
567 		if (vma_tmp->vm_end > addr) {
568 			/* Fail if an existing vma overlaps the area */
569 			if (vma_tmp->vm_start < end)
570 				return -ENOMEM;
571 			__rb_link = &__rb_parent->rb_left;
572 		} else {
573 			rb_prev = __rb_parent;
574 			__rb_link = &__rb_parent->rb_right;
575 		}
576 	}
577 
578 	*pprev = NULL;
579 	if (rb_prev)
580 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
581 	*rb_link = __rb_link;
582 	*rb_parent = __rb_parent;
583 	return 0;
584 }
585 
586 static unsigned long count_vma_pages_range(struct mm_struct *mm,
587 		unsigned long addr, unsigned long end)
588 {
589 	unsigned long nr_pages = 0;
590 	struct vm_area_struct *vma;
591 
592 	/* Find first overlaping mapping */
593 	vma = find_vma_intersection(mm, addr, end);
594 	if (!vma)
595 		return 0;
596 
597 	nr_pages = (min(end, vma->vm_end) -
598 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
599 
600 	/* Iterate over the rest of the overlaps */
601 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
602 		unsigned long overlap_len;
603 
604 		if (vma->vm_start > end)
605 			break;
606 
607 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
608 		nr_pages += overlap_len >> PAGE_SHIFT;
609 	}
610 
611 	return nr_pages;
612 }
613 
614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
615 		struct rb_node **rb_link, struct rb_node *rb_parent)
616 {
617 	/* Update tracking information for the gap following the new vma. */
618 	if (vma->vm_next)
619 		vma_gap_update(vma->vm_next);
620 	else
621 		mm->highest_vm_end = vma->vm_end;
622 
623 	/*
624 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
625 	 * correct insertion point for that vma. As a result, we could not
626 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
627 	 * So, we first insert the vma with a zero rb_subtree_gap value
628 	 * (to be consistent with what we did on the way down), and then
629 	 * immediately update the gap to the correct value. Finally we
630 	 * rebalance the rbtree after all augmented values have been set.
631 	 */
632 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633 	vma->rb_subtree_gap = 0;
634 	vma_gap_update(vma);
635 	vma_rb_insert(vma, &mm->mm_rb);
636 }
637 
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640 	struct file *file;
641 
642 	file = vma->vm_file;
643 	if (file) {
644 		struct address_space *mapping = file->f_mapping;
645 
646 		if (vma->vm_flags & VM_DENYWRITE)
647 			atomic_dec(&file_inode(file)->i_writecount);
648 		if (vma->vm_flags & VM_SHARED)
649 			atomic_inc(&mapping->i_mmap_writable);
650 
651 		flush_dcache_mmap_lock(mapping);
652 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
653 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
654 		else
655 			vma_interval_tree_insert(vma, &mapping->i_mmap);
656 		flush_dcache_mmap_unlock(mapping);
657 	}
658 }
659 
660 static void
661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
662 	struct vm_area_struct *prev, struct rb_node **rb_link,
663 	struct rb_node *rb_parent)
664 {
665 	__vma_link_list(mm, vma, prev, rb_parent);
666 	__vma_link_rb(mm, vma, rb_link, rb_parent);
667 }
668 
669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
670 			struct vm_area_struct *prev, struct rb_node **rb_link,
671 			struct rb_node *rb_parent)
672 {
673 	struct address_space *mapping = NULL;
674 
675 	if (vma->vm_file) {
676 		mapping = vma->vm_file->f_mapping;
677 		mutex_lock(&mapping->i_mmap_mutex);
678 	}
679 
680 	__vma_link(mm, vma, prev, rb_link, rb_parent);
681 	__vma_link_file(vma);
682 
683 	if (mapping)
684 		mutex_unlock(&mapping->i_mmap_mutex);
685 
686 	mm->map_count++;
687 	validate_mm(mm);
688 }
689 
690 /*
691  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
692  * mm's list and rbtree.  It has already been inserted into the interval tree.
693  */
694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
695 {
696 	struct vm_area_struct *prev;
697 	struct rb_node **rb_link, *rb_parent;
698 
699 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
700 			   &prev, &rb_link, &rb_parent))
701 		BUG();
702 	__vma_link(mm, vma, prev, rb_link, rb_parent);
703 	mm->map_count++;
704 }
705 
706 static inline void
707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
708 		struct vm_area_struct *prev)
709 {
710 	struct vm_area_struct *next;
711 
712 	vma_rb_erase(vma, &mm->mm_rb);
713 	prev->vm_next = next = vma->vm_next;
714 	if (next)
715 		next->vm_prev = prev;
716 
717 	/* Kill the cache */
718 	vmacache_invalidate(mm);
719 }
720 
721 /*
722  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
723  * is already present in an i_mmap tree without adjusting the tree.
724  * The following helper function should be used when such adjustments
725  * are necessary.  The "insert" vma (if any) is to be inserted
726  * before we drop the necessary locks.
727  */
728 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
729 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
730 {
731 	struct mm_struct *mm = vma->vm_mm;
732 	struct vm_area_struct *next = vma->vm_next;
733 	struct vm_area_struct *importer = NULL;
734 	struct address_space *mapping = NULL;
735 	struct rb_root *root = NULL;
736 	struct anon_vma *anon_vma = NULL;
737 	struct file *file = vma->vm_file;
738 	bool start_changed = false, end_changed = false;
739 	long adjust_next = 0;
740 	int remove_next = 0;
741 
742 	if (next && !insert) {
743 		struct vm_area_struct *exporter = NULL;
744 
745 		if (end >= next->vm_end) {
746 			/*
747 			 * vma expands, overlapping all the next, and
748 			 * perhaps the one after too (mprotect case 6).
749 			 */
750 again:			remove_next = 1 + (end > next->vm_end);
751 			end = next->vm_end;
752 			exporter = next;
753 			importer = vma;
754 		} else if (end > next->vm_start) {
755 			/*
756 			 * vma expands, overlapping part of the next:
757 			 * mprotect case 5 shifting the boundary up.
758 			 */
759 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
760 			exporter = next;
761 			importer = vma;
762 		} else if (end < vma->vm_end) {
763 			/*
764 			 * vma shrinks, and !insert tells it's not
765 			 * split_vma inserting another: so it must be
766 			 * mprotect case 4 shifting the boundary down.
767 			 */
768 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 			exporter = vma;
770 			importer = next;
771 		}
772 
773 		/*
774 		 * Easily overlooked: when mprotect shifts the boundary,
775 		 * make sure the expanding vma has anon_vma set if the
776 		 * shrinking vma had, to cover any anon pages imported.
777 		 */
778 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
779 			int error;
780 
781 			error = anon_vma_clone(importer, exporter);
782 			if (error)
783 				return error;
784 			importer->anon_vma = exporter->anon_vma;
785 		}
786 	}
787 
788 	if (file) {
789 		mapping = file->f_mapping;
790 		if (!(vma->vm_flags & VM_NONLINEAR)) {
791 			root = &mapping->i_mmap;
792 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
793 
794 			if (adjust_next)
795 				uprobe_munmap(next, next->vm_start,
796 							next->vm_end);
797 		}
798 
799 		mutex_lock(&mapping->i_mmap_mutex);
800 		if (insert) {
801 			/*
802 			 * Put into interval tree now, so instantiated pages
803 			 * are visible to arm/parisc __flush_dcache_page
804 			 * throughout; but we cannot insert into address
805 			 * space until vma start or end is updated.
806 			 */
807 			__vma_link_file(insert);
808 		}
809 	}
810 
811 	vma_adjust_trans_huge(vma, start, end, adjust_next);
812 
813 	anon_vma = vma->anon_vma;
814 	if (!anon_vma && adjust_next)
815 		anon_vma = next->anon_vma;
816 	if (anon_vma) {
817 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
818 			  anon_vma != next->anon_vma, next);
819 		anon_vma_lock_write(anon_vma);
820 		anon_vma_interval_tree_pre_update_vma(vma);
821 		if (adjust_next)
822 			anon_vma_interval_tree_pre_update_vma(next);
823 	}
824 
825 	if (root) {
826 		flush_dcache_mmap_lock(mapping);
827 		vma_interval_tree_remove(vma, root);
828 		if (adjust_next)
829 			vma_interval_tree_remove(next, root);
830 	}
831 
832 	if (start != vma->vm_start) {
833 		vma->vm_start = start;
834 		start_changed = true;
835 	}
836 	if (end != vma->vm_end) {
837 		vma->vm_end = end;
838 		end_changed = true;
839 	}
840 	vma->vm_pgoff = pgoff;
841 	if (adjust_next) {
842 		next->vm_start += adjust_next << PAGE_SHIFT;
843 		next->vm_pgoff += adjust_next;
844 	}
845 
846 	if (root) {
847 		if (adjust_next)
848 			vma_interval_tree_insert(next, root);
849 		vma_interval_tree_insert(vma, root);
850 		flush_dcache_mmap_unlock(mapping);
851 	}
852 
853 	if (remove_next) {
854 		/*
855 		 * vma_merge has merged next into vma, and needs
856 		 * us to remove next before dropping the locks.
857 		 */
858 		__vma_unlink(mm, next, vma);
859 		if (file)
860 			__remove_shared_vm_struct(next, file, mapping);
861 	} else if (insert) {
862 		/*
863 		 * split_vma has split insert from vma, and needs
864 		 * us to insert it before dropping the locks
865 		 * (it may either follow vma or precede it).
866 		 */
867 		__insert_vm_struct(mm, insert);
868 	} else {
869 		if (start_changed)
870 			vma_gap_update(vma);
871 		if (end_changed) {
872 			if (!next)
873 				mm->highest_vm_end = end;
874 			else if (!adjust_next)
875 				vma_gap_update(next);
876 		}
877 	}
878 
879 	if (anon_vma) {
880 		anon_vma_interval_tree_post_update_vma(vma);
881 		if (adjust_next)
882 			anon_vma_interval_tree_post_update_vma(next);
883 		anon_vma_unlock_write(anon_vma);
884 	}
885 	if (mapping)
886 		mutex_unlock(&mapping->i_mmap_mutex);
887 
888 	if (root) {
889 		uprobe_mmap(vma);
890 
891 		if (adjust_next)
892 			uprobe_mmap(next);
893 	}
894 
895 	if (remove_next) {
896 		if (file) {
897 			uprobe_munmap(next, next->vm_start, next->vm_end);
898 			fput(file);
899 		}
900 		if (next->anon_vma)
901 			anon_vma_merge(vma, next);
902 		mm->map_count--;
903 		mpol_put(vma_policy(next));
904 		kmem_cache_free(vm_area_cachep, next);
905 		/*
906 		 * In mprotect's case 6 (see comments on vma_merge),
907 		 * we must remove another next too. It would clutter
908 		 * up the code too much to do both in one go.
909 		 */
910 		next = vma->vm_next;
911 		if (remove_next == 2)
912 			goto again;
913 		else if (next)
914 			vma_gap_update(next);
915 		else
916 			mm->highest_vm_end = end;
917 	}
918 	if (insert && file)
919 		uprobe_mmap(insert);
920 
921 	validate_mm(mm);
922 
923 	return 0;
924 }
925 
926 /*
927  * If the vma has a ->close operation then the driver probably needs to release
928  * per-vma resources, so we don't attempt to merge those.
929  */
930 static inline int is_mergeable_vma(struct vm_area_struct *vma,
931 			struct file *file, unsigned long vm_flags)
932 {
933 	/*
934 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
935 	 * match the flags but dirty bit -- the caller should mark
936 	 * merged VMA as dirty. If dirty bit won't be excluded from
937 	 * comparison, we increase pressue on the memory system forcing
938 	 * the kernel to generate new VMAs when old one could be
939 	 * extended instead.
940 	 */
941 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
942 		return 0;
943 	if (vma->vm_file != file)
944 		return 0;
945 	if (vma->vm_ops && vma->vm_ops->close)
946 		return 0;
947 	return 1;
948 }
949 
950 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
951 					struct anon_vma *anon_vma2,
952 					struct vm_area_struct *vma)
953 {
954 	/*
955 	 * The list_is_singular() test is to avoid merging VMA cloned from
956 	 * parents. This can improve scalability caused by anon_vma lock.
957 	 */
958 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
959 		list_is_singular(&vma->anon_vma_chain)))
960 		return 1;
961 	return anon_vma1 == anon_vma2;
962 }
963 
964 /*
965  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
966  * in front of (at a lower virtual address and file offset than) the vma.
967  *
968  * We cannot merge two vmas if they have differently assigned (non-NULL)
969  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
970  *
971  * We don't check here for the merged mmap wrapping around the end of pagecache
972  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
973  * wrap, nor mmaps which cover the final page at index -1UL.
974  */
975 static int
976 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
977 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
978 {
979 	if (is_mergeable_vma(vma, file, vm_flags) &&
980 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
981 		if (vma->vm_pgoff == vm_pgoff)
982 			return 1;
983 	}
984 	return 0;
985 }
986 
987 /*
988  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
989  * beyond (at a higher virtual address and file offset than) the vma.
990  *
991  * We cannot merge two vmas if they have differently assigned (non-NULL)
992  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
993  */
994 static int
995 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
996 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
997 {
998 	if (is_mergeable_vma(vma, file, vm_flags) &&
999 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1000 		pgoff_t vm_pglen;
1001 		vm_pglen = vma_pages(vma);
1002 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1003 			return 1;
1004 	}
1005 	return 0;
1006 }
1007 
1008 /*
1009  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1010  * whether that can be merged with its predecessor or its successor.
1011  * Or both (it neatly fills a hole).
1012  *
1013  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1014  * certain not to be mapped by the time vma_merge is called; but when
1015  * called for mprotect, it is certain to be already mapped (either at
1016  * an offset within prev, or at the start of next), and the flags of
1017  * this area are about to be changed to vm_flags - and the no-change
1018  * case has already been eliminated.
1019  *
1020  * The following mprotect cases have to be considered, where AAAA is
1021  * the area passed down from mprotect_fixup, never extending beyond one
1022  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1023  *
1024  *     AAAA             AAAA                AAAA          AAAA
1025  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1026  *    cannot merge    might become    might become    might become
1027  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1028  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1029  *    mremap move:                                    PPPPNNNNNNNN 8
1030  *        AAAA
1031  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1032  *    might become    case 1 below    case 2 below    case 3 below
1033  *
1034  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1035  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1036  */
1037 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1038 			struct vm_area_struct *prev, unsigned long addr,
1039 			unsigned long end, unsigned long vm_flags,
1040 			struct anon_vma *anon_vma, struct file *file,
1041 			pgoff_t pgoff, struct mempolicy *policy)
1042 {
1043 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1044 	struct vm_area_struct *area, *next;
1045 	int err;
1046 
1047 	/*
1048 	 * We later require that vma->vm_flags == vm_flags,
1049 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1050 	 */
1051 	if (vm_flags & VM_SPECIAL)
1052 		return NULL;
1053 
1054 	if (prev)
1055 		next = prev->vm_next;
1056 	else
1057 		next = mm->mmap;
1058 	area = next;
1059 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1060 		next = next->vm_next;
1061 
1062 	/*
1063 	 * Can it merge with the predecessor?
1064 	 */
1065 	if (prev && prev->vm_end == addr &&
1066 			mpol_equal(vma_policy(prev), policy) &&
1067 			can_vma_merge_after(prev, vm_flags,
1068 						anon_vma, file, pgoff)) {
1069 		/*
1070 		 * OK, it can.  Can we now merge in the successor as well?
1071 		 */
1072 		if (next && end == next->vm_start &&
1073 				mpol_equal(policy, vma_policy(next)) &&
1074 				can_vma_merge_before(next, vm_flags,
1075 					anon_vma, file, pgoff+pglen) &&
1076 				is_mergeable_anon_vma(prev->anon_vma,
1077 						      next->anon_vma, NULL)) {
1078 							/* cases 1, 6 */
1079 			err = vma_adjust(prev, prev->vm_start,
1080 				next->vm_end, prev->vm_pgoff, NULL);
1081 		} else					/* cases 2, 5, 7 */
1082 			err = vma_adjust(prev, prev->vm_start,
1083 				end, prev->vm_pgoff, NULL);
1084 		if (err)
1085 			return NULL;
1086 		khugepaged_enter_vma_merge(prev, vm_flags);
1087 		return prev;
1088 	}
1089 
1090 	/*
1091 	 * Can this new request be merged in front of next?
1092 	 */
1093 	if (next && end == next->vm_start &&
1094 			mpol_equal(policy, vma_policy(next)) &&
1095 			can_vma_merge_before(next, vm_flags,
1096 					anon_vma, file, pgoff+pglen)) {
1097 		if (prev && addr < prev->vm_end)	/* case 4 */
1098 			err = vma_adjust(prev, prev->vm_start,
1099 				addr, prev->vm_pgoff, NULL);
1100 		else					/* cases 3, 8 */
1101 			err = vma_adjust(area, addr, next->vm_end,
1102 				next->vm_pgoff - pglen, NULL);
1103 		if (err)
1104 			return NULL;
1105 		khugepaged_enter_vma_merge(area, vm_flags);
1106 		return area;
1107 	}
1108 
1109 	return NULL;
1110 }
1111 
1112 /*
1113  * Rough compatbility check to quickly see if it's even worth looking
1114  * at sharing an anon_vma.
1115  *
1116  * They need to have the same vm_file, and the flags can only differ
1117  * in things that mprotect may change.
1118  *
1119  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1120  * we can merge the two vma's. For example, we refuse to merge a vma if
1121  * there is a vm_ops->close() function, because that indicates that the
1122  * driver is doing some kind of reference counting. But that doesn't
1123  * really matter for the anon_vma sharing case.
1124  */
1125 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1126 {
1127 	return a->vm_end == b->vm_start &&
1128 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1129 		a->vm_file == b->vm_file &&
1130 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1131 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1132 }
1133 
1134 /*
1135  * Do some basic sanity checking to see if we can re-use the anon_vma
1136  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1137  * the same as 'old', the other will be the new one that is trying
1138  * to share the anon_vma.
1139  *
1140  * NOTE! This runs with mm_sem held for reading, so it is possible that
1141  * the anon_vma of 'old' is concurrently in the process of being set up
1142  * by another page fault trying to merge _that_. But that's ok: if it
1143  * is being set up, that automatically means that it will be a singleton
1144  * acceptable for merging, so we can do all of this optimistically. But
1145  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1146  *
1147  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1148  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1149  * is to return an anon_vma that is "complex" due to having gone through
1150  * a fork).
1151  *
1152  * We also make sure that the two vma's are compatible (adjacent,
1153  * and with the same memory policies). That's all stable, even with just
1154  * a read lock on the mm_sem.
1155  */
1156 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1157 {
1158 	if (anon_vma_compatible(a, b)) {
1159 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1160 
1161 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1162 			return anon_vma;
1163 	}
1164 	return NULL;
1165 }
1166 
1167 /*
1168  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1169  * neighbouring vmas for a suitable anon_vma, before it goes off
1170  * to allocate a new anon_vma.  It checks because a repetitive
1171  * sequence of mprotects and faults may otherwise lead to distinct
1172  * anon_vmas being allocated, preventing vma merge in subsequent
1173  * mprotect.
1174  */
1175 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1176 {
1177 	struct anon_vma *anon_vma;
1178 	struct vm_area_struct *near;
1179 
1180 	near = vma->vm_next;
1181 	if (!near)
1182 		goto try_prev;
1183 
1184 	anon_vma = reusable_anon_vma(near, vma, near);
1185 	if (anon_vma)
1186 		return anon_vma;
1187 try_prev:
1188 	near = vma->vm_prev;
1189 	if (!near)
1190 		goto none;
1191 
1192 	anon_vma = reusable_anon_vma(near, near, vma);
1193 	if (anon_vma)
1194 		return anon_vma;
1195 none:
1196 	/*
1197 	 * There's no absolute need to look only at touching neighbours:
1198 	 * we could search further afield for "compatible" anon_vmas.
1199 	 * But it would probably just be a waste of time searching,
1200 	 * or lead to too many vmas hanging off the same anon_vma.
1201 	 * We're trying to allow mprotect remerging later on,
1202 	 * not trying to minimize memory used for anon_vmas.
1203 	 */
1204 	return NULL;
1205 }
1206 
1207 #ifdef CONFIG_PROC_FS
1208 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1209 						struct file *file, long pages)
1210 {
1211 	const unsigned long stack_flags
1212 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1213 
1214 	mm->total_vm += pages;
1215 
1216 	if (file) {
1217 		mm->shared_vm += pages;
1218 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1219 			mm->exec_vm += pages;
1220 	} else if (flags & stack_flags)
1221 		mm->stack_vm += pages;
1222 }
1223 #endif /* CONFIG_PROC_FS */
1224 
1225 /*
1226  * If a hint addr is less than mmap_min_addr change hint to be as
1227  * low as possible but still greater than mmap_min_addr
1228  */
1229 static inline unsigned long round_hint_to_min(unsigned long hint)
1230 {
1231 	hint &= PAGE_MASK;
1232 	if (((void *)hint != NULL) &&
1233 	    (hint < mmap_min_addr))
1234 		return PAGE_ALIGN(mmap_min_addr);
1235 	return hint;
1236 }
1237 
1238 static inline int mlock_future_check(struct mm_struct *mm,
1239 				     unsigned long flags,
1240 				     unsigned long len)
1241 {
1242 	unsigned long locked, lock_limit;
1243 
1244 	/*  mlock MCL_FUTURE? */
1245 	if (flags & VM_LOCKED) {
1246 		locked = len >> PAGE_SHIFT;
1247 		locked += mm->locked_vm;
1248 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1249 		lock_limit >>= PAGE_SHIFT;
1250 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1251 			return -EAGAIN;
1252 	}
1253 	return 0;
1254 }
1255 
1256 /*
1257  * The caller must hold down_write(&current->mm->mmap_sem).
1258  */
1259 
1260 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1261 			unsigned long len, unsigned long prot,
1262 			unsigned long flags, unsigned long pgoff,
1263 			unsigned long *populate)
1264 {
1265 	struct mm_struct *mm = current->mm;
1266 	vm_flags_t vm_flags;
1267 
1268 	*populate = 0;
1269 
1270 	/*
1271 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1272 	 *
1273 	 * (the exception is when the underlying filesystem is noexec
1274 	 *  mounted, in which case we dont add PROT_EXEC.)
1275 	 */
1276 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1277 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1278 			prot |= PROT_EXEC;
1279 
1280 	if (!len)
1281 		return -EINVAL;
1282 
1283 	if (!(flags & MAP_FIXED))
1284 		addr = round_hint_to_min(addr);
1285 
1286 	/* Careful about overflows.. */
1287 	len = PAGE_ALIGN(len);
1288 	if (!len)
1289 		return -ENOMEM;
1290 
1291 	/* offset overflow? */
1292 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1293 		return -EOVERFLOW;
1294 
1295 	/* Too many mappings? */
1296 	if (mm->map_count > sysctl_max_map_count)
1297 		return -ENOMEM;
1298 
1299 	/* Obtain the address to map to. we verify (or select) it and ensure
1300 	 * that it represents a valid section of the address space.
1301 	 */
1302 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1303 	if (addr & ~PAGE_MASK)
1304 		return addr;
1305 
1306 	/* Do simple checking here so the lower-level routines won't have
1307 	 * to. we assume access permissions have been handled by the open
1308 	 * of the memory object, so we don't do any here.
1309 	 */
1310 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1311 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1312 
1313 	if (flags & MAP_LOCKED)
1314 		if (!can_do_mlock())
1315 			return -EPERM;
1316 
1317 	if (mlock_future_check(mm, vm_flags, len))
1318 		return -EAGAIN;
1319 
1320 	if (file) {
1321 		struct inode *inode = file_inode(file);
1322 
1323 		switch (flags & MAP_TYPE) {
1324 		case MAP_SHARED:
1325 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1326 				return -EACCES;
1327 
1328 			/*
1329 			 * Make sure we don't allow writing to an append-only
1330 			 * file..
1331 			 */
1332 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1333 				return -EACCES;
1334 
1335 			/*
1336 			 * Make sure there are no mandatory locks on the file.
1337 			 */
1338 			if (locks_verify_locked(file))
1339 				return -EAGAIN;
1340 
1341 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1342 			if (!(file->f_mode & FMODE_WRITE))
1343 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1344 
1345 			/* fall through */
1346 		case MAP_PRIVATE:
1347 			if (!(file->f_mode & FMODE_READ))
1348 				return -EACCES;
1349 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1350 				if (vm_flags & VM_EXEC)
1351 					return -EPERM;
1352 				vm_flags &= ~VM_MAYEXEC;
1353 			}
1354 
1355 			if (!file->f_op->mmap)
1356 				return -ENODEV;
1357 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1358 				return -EINVAL;
1359 			break;
1360 
1361 		default:
1362 			return -EINVAL;
1363 		}
1364 	} else {
1365 		switch (flags & MAP_TYPE) {
1366 		case MAP_SHARED:
1367 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1368 				return -EINVAL;
1369 			/*
1370 			 * Ignore pgoff.
1371 			 */
1372 			pgoff = 0;
1373 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1374 			break;
1375 		case MAP_PRIVATE:
1376 			/*
1377 			 * Set pgoff according to addr for anon_vma.
1378 			 */
1379 			pgoff = addr >> PAGE_SHIFT;
1380 			break;
1381 		default:
1382 			return -EINVAL;
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * Set 'VM_NORESERVE' if we should not account for the
1388 	 * memory use of this mapping.
1389 	 */
1390 	if (flags & MAP_NORESERVE) {
1391 		/* We honor MAP_NORESERVE if allowed to overcommit */
1392 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1393 			vm_flags |= VM_NORESERVE;
1394 
1395 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1396 		if (file && is_file_hugepages(file))
1397 			vm_flags |= VM_NORESERVE;
1398 	}
1399 
1400 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1401 	if (!IS_ERR_VALUE(addr) &&
1402 	    ((vm_flags & VM_LOCKED) ||
1403 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1404 		*populate = len;
1405 	return addr;
1406 }
1407 
1408 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1409 		unsigned long, prot, unsigned long, flags,
1410 		unsigned long, fd, unsigned long, pgoff)
1411 {
1412 	struct file *file = NULL;
1413 	unsigned long retval = -EBADF;
1414 
1415 	if (!(flags & MAP_ANONYMOUS)) {
1416 		audit_mmap_fd(fd, flags);
1417 		file = fget(fd);
1418 		if (!file)
1419 			goto out;
1420 		if (is_file_hugepages(file))
1421 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1422 		retval = -EINVAL;
1423 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1424 			goto out_fput;
1425 	} else if (flags & MAP_HUGETLB) {
1426 		struct user_struct *user = NULL;
1427 		struct hstate *hs;
1428 
1429 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1430 		if (!hs)
1431 			return -EINVAL;
1432 
1433 		len = ALIGN(len, huge_page_size(hs));
1434 		/*
1435 		 * VM_NORESERVE is used because the reservations will be
1436 		 * taken when vm_ops->mmap() is called
1437 		 * A dummy user value is used because we are not locking
1438 		 * memory so no accounting is necessary
1439 		 */
1440 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1441 				VM_NORESERVE,
1442 				&user, HUGETLB_ANONHUGE_INODE,
1443 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1444 		if (IS_ERR(file))
1445 			return PTR_ERR(file);
1446 	}
1447 
1448 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1449 
1450 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1451 out_fput:
1452 	if (file)
1453 		fput(file);
1454 out:
1455 	return retval;
1456 }
1457 
1458 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1459 struct mmap_arg_struct {
1460 	unsigned long addr;
1461 	unsigned long len;
1462 	unsigned long prot;
1463 	unsigned long flags;
1464 	unsigned long fd;
1465 	unsigned long offset;
1466 };
1467 
1468 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1469 {
1470 	struct mmap_arg_struct a;
1471 
1472 	if (copy_from_user(&a, arg, sizeof(a)))
1473 		return -EFAULT;
1474 	if (a.offset & ~PAGE_MASK)
1475 		return -EINVAL;
1476 
1477 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1478 			      a.offset >> PAGE_SHIFT);
1479 }
1480 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1481 
1482 /*
1483  * Some shared mappigns will want the pages marked read-only
1484  * to track write events. If so, we'll downgrade vm_page_prot
1485  * to the private version (using protection_map[] without the
1486  * VM_SHARED bit).
1487  */
1488 int vma_wants_writenotify(struct vm_area_struct *vma)
1489 {
1490 	vm_flags_t vm_flags = vma->vm_flags;
1491 
1492 	/* If it was private or non-writable, the write bit is already clear */
1493 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1494 		return 0;
1495 
1496 	/* The backer wishes to know when pages are first written to? */
1497 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1498 		return 1;
1499 
1500 	/* The open routine did something to the protections that pgprot_modify
1501 	 * won't preserve? */
1502 	if (pgprot_val(vma->vm_page_prot) !=
1503 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1504 		return 0;
1505 
1506 	/* Do we need to track softdirty? */
1507 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1508 		return 1;
1509 
1510 	/* Specialty mapping? */
1511 	if (vm_flags & VM_PFNMAP)
1512 		return 0;
1513 
1514 	/* Can the mapping track the dirty pages? */
1515 	return vma->vm_file && vma->vm_file->f_mapping &&
1516 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1517 }
1518 
1519 /*
1520  * We account for memory if it's a private writeable mapping,
1521  * not hugepages and VM_NORESERVE wasn't set.
1522  */
1523 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1524 {
1525 	/*
1526 	 * hugetlb has its own accounting separate from the core VM
1527 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1528 	 */
1529 	if (file && is_file_hugepages(file))
1530 		return 0;
1531 
1532 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1533 }
1534 
1535 unsigned long mmap_region(struct file *file, unsigned long addr,
1536 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1537 {
1538 	struct mm_struct *mm = current->mm;
1539 	struct vm_area_struct *vma, *prev;
1540 	int error;
1541 	struct rb_node **rb_link, *rb_parent;
1542 	unsigned long charged = 0;
1543 
1544 	/* Check against address space limit. */
1545 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1546 		unsigned long nr_pages;
1547 
1548 		/*
1549 		 * MAP_FIXED may remove pages of mappings that intersects with
1550 		 * requested mapping. Account for the pages it would unmap.
1551 		 */
1552 		if (!(vm_flags & MAP_FIXED))
1553 			return -ENOMEM;
1554 
1555 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1556 
1557 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1558 			return -ENOMEM;
1559 	}
1560 
1561 	/* Clear old maps */
1562 	error = -ENOMEM;
1563 munmap_back:
1564 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1565 		if (do_munmap(mm, addr, len))
1566 			return -ENOMEM;
1567 		goto munmap_back;
1568 	}
1569 
1570 	/*
1571 	 * Private writable mapping: check memory availability
1572 	 */
1573 	if (accountable_mapping(file, vm_flags)) {
1574 		charged = len >> PAGE_SHIFT;
1575 		if (security_vm_enough_memory_mm(mm, charged))
1576 			return -ENOMEM;
1577 		vm_flags |= VM_ACCOUNT;
1578 	}
1579 
1580 	/*
1581 	 * Can we just expand an old mapping?
1582 	 */
1583 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1584 	if (vma)
1585 		goto out;
1586 
1587 	/*
1588 	 * Determine the object being mapped and call the appropriate
1589 	 * specific mapper. the address has already been validated, but
1590 	 * not unmapped, but the maps are removed from the list.
1591 	 */
1592 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1593 	if (!vma) {
1594 		error = -ENOMEM;
1595 		goto unacct_error;
1596 	}
1597 
1598 	vma->vm_mm = mm;
1599 	vma->vm_start = addr;
1600 	vma->vm_end = addr + len;
1601 	vma->vm_flags = vm_flags;
1602 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1603 	vma->vm_pgoff = pgoff;
1604 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1605 
1606 	if (file) {
1607 		if (vm_flags & VM_DENYWRITE) {
1608 			error = deny_write_access(file);
1609 			if (error)
1610 				goto free_vma;
1611 		}
1612 		if (vm_flags & VM_SHARED) {
1613 			error = mapping_map_writable(file->f_mapping);
1614 			if (error)
1615 				goto allow_write_and_free_vma;
1616 		}
1617 
1618 		/* ->mmap() can change vma->vm_file, but must guarantee that
1619 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1620 		 * and map writably if VM_SHARED is set. This usually means the
1621 		 * new file must not have been exposed to user-space, yet.
1622 		 */
1623 		vma->vm_file = get_file(file);
1624 		error = file->f_op->mmap(file, vma);
1625 		if (error)
1626 			goto unmap_and_free_vma;
1627 
1628 		/* Can addr have changed??
1629 		 *
1630 		 * Answer: Yes, several device drivers can do it in their
1631 		 *         f_op->mmap method. -DaveM
1632 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1633 		 *      be updated for vma_link()
1634 		 */
1635 		WARN_ON_ONCE(addr != vma->vm_start);
1636 
1637 		addr = vma->vm_start;
1638 		vm_flags = vma->vm_flags;
1639 	} else if (vm_flags & VM_SHARED) {
1640 		error = shmem_zero_setup(vma);
1641 		if (error)
1642 			goto free_vma;
1643 	}
1644 
1645 	vma_link(mm, vma, prev, rb_link, rb_parent);
1646 	/* Once vma denies write, undo our temporary denial count */
1647 	if (file) {
1648 		if (vm_flags & VM_SHARED)
1649 			mapping_unmap_writable(file->f_mapping);
1650 		if (vm_flags & VM_DENYWRITE)
1651 			allow_write_access(file);
1652 	}
1653 	file = vma->vm_file;
1654 out:
1655 	perf_event_mmap(vma);
1656 
1657 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1658 	if (vm_flags & VM_LOCKED) {
1659 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1660 					vma == get_gate_vma(current->mm)))
1661 			mm->locked_vm += (len >> PAGE_SHIFT);
1662 		else
1663 			vma->vm_flags &= ~VM_LOCKED;
1664 	}
1665 
1666 	if (file)
1667 		uprobe_mmap(vma);
1668 
1669 	/*
1670 	 * New (or expanded) vma always get soft dirty status.
1671 	 * Otherwise user-space soft-dirty page tracker won't
1672 	 * be able to distinguish situation when vma area unmapped,
1673 	 * then new mapped in-place (which must be aimed as
1674 	 * a completely new data area).
1675 	 */
1676 	vma->vm_flags |= VM_SOFTDIRTY;
1677 
1678 	vma_set_page_prot(vma);
1679 
1680 	return addr;
1681 
1682 unmap_and_free_vma:
1683 	vma->vm_file = NULL;
1684 	fput(file);
1685 
1686 	/* Undo any partial mapping done by a device driver. */
1687 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1688 	charged = 0;
1689 	if (vm_flags & VM_SHARED)
1690 		mapping_unmap_writable(file->f_mapping);
1691 allow_write_and_free_vma:
1692 	if (vm_flags & VM_DENYWRITE)
1693 		allow_write_access(file);
1694 free_vma:
1695 	kmem_cache_free(vm_area_cachep, vma);
1696 unacct_error:
1697 	if (charged)
1698 		vm_unacct_memory(charged);
1699 	return error;
1700 }
1701 
1702 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1703 {
1704 	/*
1705 	 * We implement the search by looking for an rbtree node that
1706 	 * immediately follows a suitable gap. That is,
1707 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1708 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1709 	 * - gap_end - gap_start >= length
1710 	 */
1711 
1712 	struct mm_struct *mm = current->mm;
1713 	struct vm_area_struct *vma;
1714 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1715 
1716 	/* Adjust search length to account for worst case alignment overhead */
1717 	length = info->length + info->align_mask;
1718 	if (length < info->length)
1719 		return -ENOMEM;
1720 
1721 	/* Adjust search limits by the desired length */
1722 	if (info->high_limit < length)
1723 		return -ENOMEM;
1724 	high_limit = info->high_limit - length;
1725 
1726 	if (info->low_limit > high_limit)
1727 		return -ENOMEM;
1728 	low_limit = info->low_limit + length;
1729 
1730 	/* Check if rbtree root looks promising */
1731 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1732 		goto check_highest;
1733 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1734 	if (vma->rb_subtree_gap < length)
1735 		goto check_highest;
1736 
1737 	while (true) {
1738 		/* Visit left subtree if it looks promising */
1739 		gap_end = vma->vm_start;
1740 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1741 			struct vm_area_struct *left =
1742 				rb_entry(vma->vm_rb.rb_left,
1743 					 struct vm_area_struct, vm_rb);
1744 			if (left->rb_subtree_gap >= length) {
1745 				vma = left;
1746 				continue;
1747 			}
1748 		}
1749 
1750 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1751 check_current:
1752 		/* Check if current node has a suitable gap */
1753 		if (gap_start > high_limit)
1754 			return -ENOMEM;
1755 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1756 			goto found;
1757 
1758 		/* Visit right subtree if it looks promising */
1759 		if (vma->vm_rb.rb_right) {
1760 			struct vm_area_struct *right =
1761 				rb_entry(vma->vm_rb.rb_right,
1762 					 struct vm_area_struct, vm_rb);
1763 			if (right->rb_subtree_gap >= length) {
1764 				vma = right;
1765 				continue;
1766 			}
1767 		}
1768 
1769 		/* Go back up the rbtree to find next candidate node */
1770 		while (true) {
1771 			struct rb_node *prev = &vma->vm_rb;
1772 			if (!rb_parent(prev))
1773 				goto check_highest;
1774 			vma = rb_entry(rb_parent(prev),
1775 				       struct vm_area_struct, vm_rb);
1776 			if (prev == vma->vm_rb.rb_left) {
1777 				gap_start = vma->vm_prev->vm_end;
1778 				gap_end = vma->vm_start;
1779 				goto check_current;
1780 			}
1781 		}
1782 	}
1783 
1784 check_highest:
1785 	/* Check highest gap, which does not precede any rbtree node */
1786 	gap_start = mm->highest_vm_end;
1787 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1788 	if (gap_start > high_limit)
1789 		return -ENOMEM;
1790 
1791 found:
1792 	/* We found a suitable gap. Clip it with the original low_limit. */
1793 	if (gap_start < info->low_limit)
1794 		gap_start = info->low_limit;
1795 
1796 	/* Adjust gap address to the desired alignment */
1797 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1798 
1799 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1800 	VM_BUG_ON(gap_start + info->length > gap_end);
1801 	return gap_start;
1802 }
1803 
1804 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1805 {
1806 	struct mm_struct *mm = current->mm;
1807 	struct vm_area_struct *vma;
1808 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1809 
1810 	/* Adjust search length to account for worst case alignment overhead */
1811 	length = info->length + info->align_mask;
1812 	if (length < info->length)
1813 		return -ENOMEM;
1814 
1815 	/*
1816 	 * Adjust search limits by the desired length.
1817 	 * See implementation comment at top of unmapped_area().
1818 	 */
1819 	gap_end = info->high_limit;
1820 	if (gap_end < length)
1821 		return -ENOMEM;
1822 	high_limit = gap_end - length;
1823 
1824 	if (info->low_limit > high_limit)
1825 		return -ENOMEM;
1826 	low_limit = info->low_limit + length;
1827 
1828 	/* Check highest gap, which does not precede any rbtree node */
1829 	gap_start = mm->highest_vm_end;
1830 	if (gap_start <= high_limit)
1831 		goto found_highest;
1832 
1833 	/* Check if rbtree root looks promising */
1834 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1835 		return -ENOMEM;
1836 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1837 	if (vma->rb_subtree_gap < length)
1838 		return -ENOMEM;
1839 
1840 	while (true) {
1841 		/* Visit right subtree if it looks promising */
1842 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1843 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1844 			struct vm_area_struct *right =
1845 				rb_entry(vma->vm_rb.rb_right,
1846 					 struct vm_area_struct, vm_rb);
1847 			if (right->rb_subtree_gap >= length) {
1848 				vma = right;
1849 				continue;
1850 			}
1851 		}
1852 
1853 check_current:
1854 		/* Check if current node has a suitable gap */
1855 		gap_end = vma->vm_start;
1856 		if (gap_end < low_limit)
1857 			return -ENOMEM;
1858 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1859 			goto found;
1860 
1861 		/* Visit left subtree if it looks promising */
1862 		if (vma->vm_rb.rb_left) {
1863 			struct vm_area_struct *left =
1864 				rb_entry(vma->vm_rb.rb_left,
1865 					 struct vm_area_struct, vm_rb);
1866 			if (left->rb_subtree_gap >= length) {
1867 				vma = left;
1868 				continue;
1869 			}
1870 		}
1871 
1872 		/* Go back up the rbtree to find next candidate node */
1873 		while (true) {
1874 			struct rb_node *prev = &vma->vm_rb;
1875 			if (!rb_parent(prev))
1876 				return -ENOMEM;
1877 			vma = rb_entry(rb_parent(prev),
1878 				       struct vm_area_struct, vm_rb);
1879 			if (prev == vma->vm_rb.rb_right) {
1880 				gap_start = vma->vm_prev ?
1881 					vma->vm_prev->vm_end : 0;
1882 				goto check_current;
1883 			}
1884 		}
1885 	}
1886 
1887 found:
1888 	/* We found a suitable gap. Clip it with the original high_limit. */
1889 	if (gap_end > info->high_limit)
1890 		gap_end = info->high_limit;
1891 
1892 found_highest:
1893 	/* Compute highest gap address at the desired alignment */
1894 	gap_end -= info->length;
1895 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1896 
1897 	VM_BUG_ON(gap_end < info->low_limit);
1898 	VM_BUG_ON(gap_end < gap_start);
1899 	return gap_end;
1900 }
1901 
1902 /* Get an address range which is currently unmapped.
1903  * For shmat() with addr=0.
1904  *
1905  * Ugly calling convention alert:
1906  * Return value with the low bits set means error value,
1907  * ie
1908  *	if (ret & ~PAGE_MASK)
1909  *		error = ret;
1910  *
1911  * This function "knows" that -ENOMEM has the bits set.
1912  */
1913 #ifndef HAVE_ARCH_UNMAPPED_AREA
1914 unsigned long
1915 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1916 		unsigned long len, unsigned long pgoff, unsigned long flags)
1917 {
1918 	struct mm_struct *mm = current->mm;
1919 	struct vm_area_struct *vma;
1920 	struct vm_unmapped_area_info info;
1921 
1922 	if (len > TASK_SIZE - mmap_min_addr)
1923 		return -ENOMEM;
1924 
1925 	if (flags & MAP_FIXED)
1926 		return addr;
1927 
1928 	if (addr) {
1929 		addr = PAGE_ALIGN(addr);
1930 		vma = find_vma(mm, addr);
1931 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1932 		    (!vma || addr + len <= vma->vm_start))
1933 			return addr;
1934 	}
1935 
1936 	info.flags = 0;
1937 	info.length = len;
1938 	info.low_limit = mm->mmap_base;
1939 	info.high_limit = TASK_SIZE;
1940 	info.align_mask = 0;
1941 	return vm_unmapped_area(&info);
1942 }
1943 #endif
1944 
1945 /*
1946  * This mmap-allocator allocates new areas top-down from below the
1947  * stack's low limit (the base):
1948  */
1949 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1950 unsigned long
1951 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1952 			  const unsigned long len, const unsigned long pgoff,
1953 			  const unsigned long flags)
1954 {
1955 	struct vm_area_struct *vma;
1956 	struct mm_struct *mm = current->mm;
1957 	unsigned long addr = addr0;
1958 	struct vm_unmapped_area_info info;
1959 
1960 	/* requested length too big for entire address space */
1961 	if (len > TASK_SIZE - mmap_min_addr)
1962 		return -ENOMEM;
1963 
1964 	if (flags & MAP_FIXED)
1965 		return addr;
1966 
1967 	/* requesting a specific address */
1968 	if (addr) {
1969 		addr = PAGE_ALIGN(addr);
1970 		vma = find_vma(mm, addr);
1971 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1972 				(!vma || addr + len <= vma->vm_start))
1973 			return addr;
1974 	}
1975 
1976 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1977 	info.length = len;
1978 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1979 	info.high_limit = mm->mmap_base;
1980 	info.align_mask = 0;
1981 	addr = vm_unmapped_area(&info);
1982 
1983 	/*
1984 	 * A failed mmap() very likely causes application failure,
1985 	 * so fall back to the bottom-up function here. This scenario
1986 	 * can happen with large stack limits and large mmap()
1987 	 * allocations.
1988 	 */
1989 	if (addr & ~PAGE_MASK) {
1990 		VM_BUG_ON(addr != -ENOMEM);
1991 		info.flags = 0;
1992 		info.low_limit = TASK_UNMAPPED_BASE;
1993 		info.high_limit = TASK_SIZE;
1994 		addr = vm_unmapped_area(&info);
1995 	}
1996 
1997 	return addr;
1998 }
1999 #endif
2000 
2001 unsigned long
2002 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2003 		unsigned long pgoff, unsigned long flags)
2004 {
2005 	unsigned long (*get_area)(struct file *, unsigned long,
2006 				  unsigned long, unsigned long, unsigned long);
2007 
2008 	unsigned long error = arch_mmap_check(addr, len, flags);
2009 	if (error)
2010 		return error;
2011 
2012 	/* Careful about overflows.. */
2013 	if (len > TASK_SIZE)
2014 		return -ENOMEM;
2015 
2016 	get_area = current->mm->get_unmapped_area;
2017 	if (file && file->f_op->get_unmapped_area)
2018 		get_area = file->f_op->get_unmapped_area;
2019 	addr = get_area(file, addr, len, pgoff, flags);
2020 	if (IS_ERR_VALUE(addr))
2021 		return addr;
2022 
2023 	if (addr > TASK_SIZE - len)
2024 		return -ENOMEM;
2025 	if (addr & ~PAGE_MASK)
2026 		return -EINVAL;
2027 
2028 	addr = arch_rebalance_pgtables(addr, len);
2029 	error = security_mmap_addr(addr);
2030 	return error ? error : addr;
2031 }
2032 
2033 EXPORT_SYMBOL(get_unmapped_area);
2034 
2035 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2036 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2037 {
2038 	struct rb_node *rb_node;
2039 	struct vm_area_struct *vma;
2040 
2041 	/* Check the cache first. */
2042 	vma = vmacache_find(mm, addr);
2043 	if (likely(vma))
2044 		return vma;
2045 
2046 	rb_node = mm->mm_rb.rb_node;
2047 	vma = NULL;
2048 
2049 	while (rb_node) {
2050 		struct vm_area_struct *tmp;
2051 
2052 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2053 
2054 		if (tmp->vm_end > addr) {
2055 			vma = tmp;
2056 			if (tmp->vm_start <= addr)
2057 				break;
2058 			rb_node = rb_node->rb_left;
2059 		} else
2060 			rb_node = rb_node->rb_right;
2061 	}
2062 
2063 	if (vma)
2064 		vmacache_update(addr, vma);
2065 	return vma;
2066 }
2067 
2068 EXPORT_SYMBOL(find_vma);
2069 
2070 /*
2071  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2072  */
2073 struct vm_area_struct *
2074 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2075 			struct vm_area_struct **pprev)
2076 {
2077 	struct vm_area_struct *vma;
2078 
2079 	vma = find_vma(mm, addr);
2080 	if (vma) {
2081 		*pprev = vma->vm_prev;
2082 	} else {
2083 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2084 		*pprev = NULL;
2085 		while (rb_node) {
2086 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2087 			rb_node = rb_node->rb_right;
2088 		}
2089 	}
2090 	return vma;
2091 }
2092 
2093 /*
2094  * Verify that the stack growth is acceptable and
2095  * update accounting. This is shared with both the
2096  * grow-up and grow-down cases.
2097  */
2098 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2099 {
2100 	struct mm_struct *mm = vma->vm_mm;
2101 	struct rlimit *rlim = current->signal->rlim;
2102 	unsigned long new_start;
2103 
2104 	/* address space limit tests */
2105 	if (!may_expand_vm(mm, grow))
2106 		return -ENOMEM;
2107 
2108 	/* Stack limit test */
2109 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2110 		return -ENOMEM;
2111 
2112 	/* mlock limit tests */
2113 	if (vma->vm_flags & VM_LOCKED) {
2114 		unsigned long locked;
2115 		unsigned long limit;
2116 		locked = mm->locked_vm + grow;
2117 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2118 		limit >>= PAGE_SHIFT;
2119 		if (locked > limit && !capable(CAP_IPC_LOCK))
2120 			return -ENOMEM;
2121 	}
2122 
2123 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2124 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2125 			vma->vm_end - size;
2126 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2127 		return -EFAULT;
2128 
2129 	/*
2130 	 * Overcommit..  This must be the final test, as it will
2131 	 * update security statistics.
2132 	 */
2133 	if (security_vm_enough_memory_mm(mm, grow))
2134 		return -ENOMEM;
2135 
2136 	/* Ok, everything looks good - let it rip */
2137 	if (vma->vm_flags & VM_LOCKED)
2138 		mm->locked_vm += grow;
2139 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2140 	return 0;
2141 }
2142 
2143 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2144 /*
2145  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2146  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2147  */
2148 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2149 {
2150 	int error;
2151 
2152 	if (!(vma->vm_flags & VM_GROWSUP))
2153 		return -EFAULT;
2154 
2155 	/*
2156 	 * We must make sure the anon_vma is allocated
2157 	 * so that the anon_vma locking is not a noop.
2158 	 */
2159 	if (unlikely(anon_vma_prepare(vma)))
2160 		return -ENOMEM;
2161 	vma_lock_anon_vma(vma);
2162 
2163 	/*
2164 	 * vma->vm_start/vm_end cannot change under us because the caller
2165 	 * is required to hold the mmap_sem in read mode.  We need the
2166 	 * anon_vma lock to serialize against concurrent expand_stacks.
2167 	 * Also guard against wrapping around to address 0.
2168 	 */
2169 	if (address < PAGE_ALIGN(address+4))
2170 		address = PAGE_ALIGN(address+4);
2171 	else {
2172 		vma_unlock_anon_vma(vma);
2173 		return -ENOMEM;
2174 	}
2175 	error = 0;
2176 
2177 	/* Somebody else might have raced and expanded it already */
2178 	if (address > vma->vm_end) {
2179 		unsigned long size, grow;
2180 
2181 		size = address - vma->vm_start;
2182 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2183 
2184 		error = -ENOMEM;
2185 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2186 			error = acct_stack_growth(vma, size, grow);
2187 			if (!error) {
2188 				/*
2189 				 * vma_gap_update() doesn't support concurrent
2190 				 * updates, but we only hold a shared mmap_sem
2191 				 * lock here, so we need to protect against
2192 				 * concurrent vma expansions.
2193 				 * vma_lock_anon_vma() doesn't help here, as
2194 				 * we don't guarantee that all growable vmas
2195 				 * in a mm share the same root anon vma.
2196 				 * So, we reuse mm->page_table_lock to guard
2197 				 * against concurrent vma expansions.
2198 				 */
2199 				spin_lock(&vma->vm_mm->page_table_lock);
2200 				anon_vma_interval_tree_pre_update_vma(vma);
2201 				vma->vm_end = address;
2202 				anon_vma_interval_tree_post_update_vma(vma);
2203 				if (vma->vm_next)
2204 					vma_gap_update(vma->vm_next);
2205 				else
2206 					vma->vm_mm->highest_vm_end = address;
2207 				spin_unlock(&vma->vm_mm->page_table_lock);
2208 
2209 				perf_event_mmap(vma);
2210 			}
2211 		}
2212 	}
2213 	vma_unlock_anon_vma(vma);
2214 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2215 	validate_mm(vma->vm_mm);
2216 	return error;
2217 }
2218 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2219 
2220 /*
2221  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2222  */
2223 int expand_downwards(struct vm_area_struct *vma,
2224 				   unsigned long address)
2225 {
2226 	int error;
2227 
2228 	/*
2229 	 * We must make sure the anon_vma is allocated
2230 	 * so that the anon_vma locking is not a noop.
2231 	 */
2232 	if (unlikely(anon_vma_prepare(vma)))
2233 		return -ENOMEM;
2234 
2235 	address &= PAGE_MASK;
2236 	error = security_mmap_addr(address);
2237 	if (error)
2238 		return error;
2239 
2240 	vma_lock_anon_vma(vma);
2241 
2242 	/*
2243 	 * vma->vm_start/vm_end cannot change under us because the caller
2244 	 * is required to hold the mmap_sem in read mode.  We need the
2245 	 * anon_vma lock to serialize against concurrent expand_stacks.
2246 	 */
2247 
2248 	/* Somebody else might have raced and expanded it already */
2249 	if (address < vma->vm_start) {
2250 		unsigned long size, grow;
2251 
2252 		size = vma->vm_end - address;
2253 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2254 
2255 		error = -ENOMEM;
2256 		if (grow <= vma->vm_pgoff) {
2257 			error = acct_stack_growth(vma, size, grow);
2258 			if (!error) {
2259 				/*
2260 				 * vma_gap_update() doesn't support concurrent
2261 				 * updates, but we only hold a shared mmap_sem
2262 				 * lock here, so we need to protect against
2263 				 * concurrent vma expansions.
2264 				 * vma_lock_anon_vma() doesn't help here, as
2265 				 * we don't guarantee that all growable vmas
2266 				 * in a mm share the same root anon vma.
2267 				 * So, we reuse mm->page_table_lock to guard
2268 				 * against concurrent vma expansions.
2269 				 */
2270 				spin_lock(&vma->vm_mm->page_table_lock);
2271 				anon_vma_interval_tree_pre_update_vma(vma);
2272 				vma->vm_start = address;
2273 				vma->vm_pgoff -= grow;
2274 				anon_vma_interval_tree_post_update_vma(vma);
2275 				vma_gap_update(vma);
2276 				spin_unlock(&vma->vm_mm->page_table_lock);
2277 
2278 				perf_event_mmap(vma);
2279 			}
2280 		}
2281 	}
2282 	vma_unlock_anon_vma(vma);
2283 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2284 	validate_mm(vma->vm_mm);
2285 	return error;
2286 }
2287 
2288 /*
2289  * Note how expand_stack() refuses to expand the stack all the way to
2290  * abut the next virtual mapping, *unless* that mapping itself is also
2291  * a stack mapping. We want to leave room for a guard page, after all
2292  * (the guard page itself is not added here, that is done by the
2293  * actual page faulting logic)
2294  *
2295  * This matches the behavior of the guard page logic (see mm/memory.c:
2296  * check_stack_guard_page()), which only allows the guard page to be
2297  * removed under these circumstances.
2298  */
2299 #ifdef CONFIG_STACK_GROWSUP
2300 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2301 {
2302 	struct vm_area_struct *next;
2303 
2304 	address &= PAGE_MASK;
2305 	next = vma->vm_next;
2306 	if (next && next->vm_start == address + PAGE_SIZE) {
2307 		if (!(next->vm_flags & VM_GROWSUP))
2308 			return -ENOMEM;
2309 	}
2310 	return expand_upwards(vma, address);
2311 }
2312 
2313 struct vm_area_struct *
2314 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2315 {
2316 	struct vm_area_struct *vma, *prev;
2317 
2318 	addr &= PAGE_MASK;
2319 	vma = find_vma_prev(mm, addr, &prev);
2320 	if (vma && (vma->vm_start <= addr))
2321 		return vma;
2322 	if (!prev || expand_stack(prev, addr))
2323 		return NULL;
2324 	if (prev->vm_flags & VM_LOCKED)
2325 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2326 	return prev;
2327 }
2328 #else
2329 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2330 {
2331 	struct vm_area_struct *prev;
2332 
2333 	address &= PAGE_MASK;
2334 	prev = vma->vm_prev;
2335 	if (prev && prev->vm_end == address) {
2336 		if (!(prev->vm_flags & VM_GROWSDOWN))
2337 			return -ENOMEM;
2338 	}
2339 	return expand_downwards(vma, address);
2340 }
2341 
2342 struct vm_area_struct *
2343 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2344 {
2345 	struct vm_area_struct *vma;
2346 	unsigned long start;
2347 
2348 	addr &= PAGE_MASK;
2349 	vma = find_vma(mm, addr);
2350 	if (!vma)
2351 		return NULL;
2352 	if (vma->vm_start <= addr)
2353 		return vma;
2354 	if (!(vma->vm_flags & VM_GROWSDOWN))
2355 		return NULL;
2356 	start = vma->vm_start;
2357 	if (expand_stack(vma, addr))
2358 		return NULL;
2359 	if (vma->vm_flags & VM_LOCKED)
2360 		__mlock_vma_pages_range(vma, addr, start, NULL);
2361 	return vma;
2362 }
2363 #endif
2364 
2365 /*
2366  * Ok - we have the memory areas we should free on the vma list,
2367  * so release them, and do the vma updates.
2368  *
2369  * Called with the mm semaphore held.
2370  */
2371 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2372 {
2373 	unsigned long nr_accounted = 0;
2374 
2375 	/* Update high watermark before we lower total_vm */
2376 	update_hiwater_vm(mm);
2377 	do {
2378 		long nrpages = vma_pages(vma);
2379 
2380 		if (vma->vm_flags & VM_ACCOUNT)
2381 			nr_accounted += nrpages;
2382 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2383 		vma = remove_vma(vma);
2384 	} while (vma);
2385 	vm_unacct_memory(nr_accounted);
2386 	validate_mm(mm);
2387 }
2388 
2389 /*
2390  * Get rid of page table information in the indicated region.
2391  *
2392  * Called with the mm semaphore held.
2393  */
2394 static void unmap_region(struct mm_struct *mm,
2395 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2396 		unsigned long start, unsigned long end)
2397 {
2398 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2399 	struct mmu_gather tlb;
2400 
2401 	lru_add_drain();
2402 	tlb_gather_mmu(&tlb, mm, start, end);
2403 	update_hiwater_rss(mm);
2404 	unmap_vmas(&tlb, vma, start, end);
2405 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2406 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2407 	tlb_finish_mmu(&tlb, start, end);
2408 }
2409 
2410 /*
2411  * Create a list of vma's touched by the unmap, removing them from the mm's
2412  * vma list as we go..
2413  */
2414 static void
2415 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2416 	struct vm_area_struct *prev, unsigned long end)
2417 {
2418 	struct vm_area_struct **insertion_point;
2419 	struct vm_area_struct *tail_vma = NULL;
2420 
2421 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2422 	vma->vm_prev = NULL;
2423 	do {
2424 		vma_rb_erase(vma, &mm->mm_rb);
2425 		mm->map_count--;
2426 		tail_vma = vma;
2427 		vma = vma->vm_next;
2428 	} while (vma && vma->vm_start < end);
2429 	*insertion_point = vma;
2430 	if (vma) {
2431 		vma->vm_prev = prev;
2432 		vma_gap_update(vma);
2433 	} else
2434 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2435 	tail_vma->vm_next = NULL;
2436 
2437 	/* Kill the cache */
2438 	vmacache_invalidate(mm);
2439 }
2440 
2441 /*
2442  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2443  * munmap path where it doesn't make sense to fail.
2444  */
2445 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2446 	      unsigned long addr, int new_below)
2447 {
2448 	struct vm_area_struct *new;
2449 	int err = -ENOMEM;
2450 
2451 	if (is_vm_hugetlb_page(vma) && (addr &
2452 					~(huge_page_mask(hstate_vma(vma)))))
2453 		return -EINVAL;
2454 
2455 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2456 	if (!new)
2457 		goto out_err;
2458 
2459 	/* most fields are the same, copy all, and then fixup */
2460 	*new = *vma;
2461 
2462 	INIT_LIST_HEAD(&new->anon_vma_chain);
2463 
2464 	if (new_below)
2465 		new->vm_end = addr;
2466 	else {
2467 		new->vm_start = addr;
2468 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2469 	}
2470 
2471 	err = vma_dup_policy(vma, new);
2472 	if (err)
2473 		goto out_free_vma;
2474 
2475 	err = anon_vma_clone(new, vma);
2476 	if (err)
2477 		goto out_free_mpol;
2478 
2479 	if (new->vm_file)
2480 		get_file(new->vm_file);
2481 
2482 	if (new->vm_ops && new->vm_ops->open)
2483 		new->vm_ops->open(new);
2484 
2485 	if (new_below)
2486 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2487 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2488 	else
2489 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2490 
2491 	/* Success. */
2492 	if (!err)
2493 		return 0;
2494 
2495 	/* Clean everything up if vma_adjust failed. */
2496 	if (new->vm_ops && new->vm_ops->close)
2497 		new->vm_ops->close(new);
2498 	if (new->vm_file)
2499 		fput(new->vm_file);
2500 	unlink_anon_vmas(new);
2501  out_free_mpol:
2502 	mpol_put(vma_policy(new));
2503  out_free_vma:
2504 	kmem_cache_free(vm_area_cachep, new);
2505  out_err:
2506 	return err;
2507 }
2508 
2509 /*
2510  * Split a vma into two pieces at address 'addr', a new vma is allocated
2511  * either for the first part or the tail.
2512  */
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514 	      unsigned long addr, int new_below)
2515 {
2516 	if (mm->map_count >= sysctl_max_map_count)
2517 		return -ENOMEM;
2518 
2519 	return __split_vma(mm, vma, addr, new_below);
2520 }
2521 
2522 /* Munmap is split into 2 main parts -- this part which finds
2523  * what needs doing, and the areas themselves, which do the
2524  * work.  This now handles partial unmappings.
2525  * Jeremy Fitzhardinge <jeremy@goop.org>
2526  */
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2528 {
2529 	unsigned long end;
2530 	struct vm_area_struct *vma, *prev, *last;
2531 
2532 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2533 		return -EINVAL;
2534 
2535 	len = PAGE_ALIGN(len);
2536 	if (len == 0)
2537 		return -EINVAL;
2538 
2539 	/* Find the first overlapping VMA */
2540 	vma = find_vma(mm, start);
2541 	if (!vma)
2542 		return 0;
2543 	prev = vma->vm_prev;
2544 	/* we have  start < vma->vm_end  */
2545 
2546 	/* if it doesn't overlap, we have nothing.. */
2547 	end = start + len;
2548 	if (vma->vm_start >= end)
2549 		return 0;
2550 
2551 	/*
2552 	 * If we need to split any vma, do it now to save pain later.
2553 	 *
2554 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 	 * places tmp vma above, and higher split_vma places tmp vma below.
2557 	 */
2558 	if (start > vma->vm_start) {
2559 		int error;
2560 
2561 		/*
2562 		 * Make sure that map_count on return from munmap() will
2563 		 * not exceed its limit; but let map_count go just above
2564 		 * its limit temporarily, to help free resources as expected.
2565 		 */
2566 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2567 			return -ENOMEM;
2568 
2569 		error = __split_vma(mm, vma, start, 0);
2570 		if (error)
2571 			return error;
2572 		prev = vma;
2573 	}
2574 
2575 	/* Does it split the last one? */
2576 	last = find_vma(mm, end);
2577 	if (last && end > last->vm_start) {
2578 		int error = __split_vma(mm, last, end, 1);
2579 		if (error)
2580 			return error;
2581 	}
2582 	vma = prev ? prev->vm_next : mm->mmap;
2583 
2584 	/*
2585 	 * unlock any mlock()ed ranges before detaching vmas
2586 	 */
2587 	if (mm->locked_vm) {
2588 		struct vm_area_struct *tmp = vma;
2589 		while (tmp && tmp->vm_start < end) {
2590 			if (tmp->vm_flags & VM_LOCKED) {
2591 				mm->locked_vm -= vma_pages(tmp);
2592 				munlock_vma_pages_all(tmp);
2593 			}
2594 			tmp = tmp->vm_next;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * Remove the vma's, and unmap the actual pages
2600 	 */
2601 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602 	unmap_region(mm, vma, prev, start, end);
2603 
2604 	/* Fix up all other VM information */
2605 	remove_vma_list(mm, vma);
2606 
2607 	return 0;
2608 }
2609 
2610 int vm_munmap(unsigned long start, size_t len)
2611 {
2612 	int ret;
2613 	struct mm_struct *mm = current->mm;
2614 
2615 	down_write(&mm->mmap_sem);
2616 	ret = do_munmap(mm, start, len);
2617 	up_write(&mm->mmap_sem);
2618 	return ret;
2619 }
2620 EXPORT_SYMBOL(vm_munmap);
2621 
2622 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2623 {
2624 	profile_munmap(addr);
2625 	return vm_munmap(addr, len);
2626 }
2627 
2628 static inline void verify_mm_writelocked(struct mm_struct *mm)
2629 {
2630 #ifdef CONFIG_DEBUG_VM
2631 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2632 		WARN_ON(1);
2633 		up_read(&mm->mmap_sem);
2634 	}
2635 #endif
2636 }
2637 
2638 /*
2639  *  this is really a simplified "do_mmap".  it only handles
2640  *  anonymous maps.  eventually we may be able to do some
2641  *  brk-specific accounting here.
2642  */
2643 static unsigned long do_brk(unsigned long addr, unsigned long len)
2644 {
2645 	struct mm_struct *mm = current->mm;
2646 	struct vm_area_struct *vma, *prev;
2647 	unsigned long flags;
2648 	struct rb_node **rb_link, *rb_parent;
2649 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2650 	int error;
2651 
2652 	len = PAGE_ALIGN(len);
2653 	if (!len)
2654 		return addr;
2655 
2656 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2657 
2658 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2659 	if (error & ~PAGE_MASK)
2660 		return error;
2661 
2662 	error = mlock_future_check(mm, mm->def_flags, len);
2663 	if (error)
2664 		return error;
2665 
2666 	/*
2667 	 * mm->mmap_sem is required to protect against another thread
2668 	 * changing the mappings in case we sleep.
2669 	 */
2670 	verify_mm_writelocked(mm);
2671 
2672 	/*
2673 	 * Clear old maps.  this also does some error checking for us
2674 	 */
2675  munmap_back:
2676 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2677 		if (do_munmap(mm, addr, len))
2678 			return -ENOMEM;
2679 		goto munmap_back;
2680 	}
2681 
2682 	/* Check against address space limits *after* clearing old maps... */
2683 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2684 		return -ENOMEM;
2685 
2686 	if (mm->map_count > sysctl_max_map_count)
2687 		return -ENOMEM;
2688 
2689 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2690 		return -ENOMEM;
2691 
2692 	/* Can we just expand an old private anonymous mapping? */
2693 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2694 					NULL, NULL, pgoff, NULL);
2695 	if (vma)
2696 		goto out;
2697 
2698 	/*
2699 	 * create a vma struct for an anonymous mapping
2700 	 */
2701 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2702 	if (!vma) {
2703 		vm_unacct_memory(len >> PAGE_SHIFT);
2704 		return -ENOMEM;
2705 	}
2706 
2707 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2708 	vma->vm_mm = mm;
2709 	vma->vm_start = addr;
2710 	vma->vm_end = addr + len;
2711 	vma->vm_pgoff = pgoff;
2712 	vma->vm_flags = flags;
2713 	vma->vm_page_prot = vm_get_page_prot(flags);
2714 	vma_link(mm, vma, prev, rb_link, rb_parent);
2715 out:
2716 	perf_event_mmap(vma);
2717 	mm->total_vm += len >> PAGE_SHIFT;
2718 	if (flags & VM_LOCKED)
2719 		mm->locked_vm += (len >> PAGE_SHIFT);
2720 	vma->vm_flags |= VM_SOFTDIRTY;
2721 	return addr;
2722 }
2723 
2724 unsigned long vm_brk(unsigned long addr, unsigned long len)
2725 {
2726 	struct mm_struct *mm = current->mm;
2727 	unsigned long ret;
2728 	bool populate;
2729 
2730 	down_write(&mm->mmap_sem);
2731 	ret = do_brk(addr, len);
2732 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2733 	up_write(&mm->mmap_sem);
2734 	if (populate)
2735 		mm_populate(addr, len);
2736 	return ret;
2737 }
2738 EXPORT_SYMBOL(vm_brk);
2739 
2740 /* Release all mmaps. */
2741 void exit_mmap(struct mm_struct *mm)
2742 {
2743 	struct mmu_gather tlb;
2744 	struct vm_area_struct *vma;
2745 	unsigned long nr_accounted = 0;
2746 
2747 	/* mm's last user has gone, and its about to be pulled down */
2748 	mmu_notifier_release(mm);
2749 
2750 	if (mm->locked_vm) {
2751 		vma = mm->mmap;
2752 		while (vma) {
2753 			if (vma->vm_flags & VM_LOCKED)
2754 				munlock_vma_pages_all(vma);
2755 			vma = vma->vm_next;
2756 		}
2757 	}
2758 
2759 	arch_exit_mmap(mm);
2760 
2761 	vma = mm->mmap;
2762 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2763 		return;
2764 
2765 	lru_add_drain();
2766 	flush_cache_mm(mm);
2767 	tlb_gather_mmu(&tlb, mm, 0, -1);
2768 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2769 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2770 	unmap_vmas(&tlb, vma, 0, -1);
2771 
2772 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2773 	tlb_finish_mmu(&tlb, 0, -1);
2774 
2775 	/*
2776 	 * Walk the list again, actually closing and freeing it,
2777 	 * with preemption enabled, without holding any MM locks.
2778 	 */
2779 	while (vma) {
2780 		if (vma->vm_flags & VM_ACCOUNT)
2781 			nr_accounted += vma_pages(vma);
2782 		vma = remove_vma(vma);
2783 	}
2784 	vm_unacct_memory(nr_accounted);
2785 
2786 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2787 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2788 }
2789 
2790 /* Insert vm structure into process list sorted by address
2791  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2792  * then i_mmap_mutex is taken here.
2793  */
2794 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2795 {
2796 	struct vm_area_struct *prev;
2797 	struct rb_node **rb_link, *rb_parent;
2798 
2799 	/*
2800 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2801 	 * until its first write fault, when page's anon_vma and index
2802 	 * are set.  But now set the vm_pgoff it will almost certainly
2803 	 * end up with (unless mremap moves it elsewhere before that
2804 	 * first wfault), so /proc/pid/maps tells a consistent story.
2805 	 *
2806 	 * By setting it to reflect the virtual start address of the
2807 	 * vma, merges and splits can happen in a seamless way, just
2808 	 * using the existing file pgoff checks and manipulations.
2809 	 * Similarly in do_mmap_pgoff and in do_brk.
2810 	 */
2811 	if (!vma->vm_file) {
2812 		BUG_ON(vma->anon_vma);
2813 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2814 	}
2815 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2816 			   &prev, &rb_link, &rb_parent))
2817 		return -ENOMEM;
2818 	if ((vma->vm_flags & VM_ACCOUNT) &&
2819 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2820 		return -ENOMEM;
2821 
2822 	vma_link(mm, vma, prev, rb_link, rb_parent);
2823 	return 0;
2824 }
2825 
2826 /*
2827  * Copy the vma structure to a new location in the same mm,
2828  * prior to moving page table entries, to effect an mremap move.
2829  */
2830 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2831 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2832 	bool *need_rmap_locks)
2833 {
2834 	struct vm_area_struct *vma = *vmap;
2835 	unsigned long vma_start = vma->vm_start;
2836 	struct mm_struct *mm = vma->vm_mm;
2837 	struct vm_area_struct *new_vma, *prev;
2838 	struct rb_node **rb_link, *rb_parent;
2839 	bool faulted_in_anon_vma = true;
2840 
2841 	/*
2842 	 * If anonymous vma has not yet been faulted, update new pgoff
2843 	 * to match new location, to increase its chance of merging.
2844 	 */
2845 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2846 		pgoff = addr >> PAGE_SHIFT;
2847 		faulted_in_anon_vma = false;
2848 	}
2849 
2850 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2851 		return NULL;	/* should never get here */
2852 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2853 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2854 	if (new_vma) {
2855 		/*
2856 		 * Source vma may have been merged into new_vma
2857 		 */
2858 		if (unlikely(vma_start >= new_vma->vm_start &&
2859 			     vma_start < new_vma->vm_end)) {
2860 			/*
2861 			 * The only way we can get a vma_merge with
2862 			 * self during an mremap is if the vma hasn't
2863 			 * been faulted in yet and we were allowed to
2864 			 * reset the dst vma->vm_pgoff to the
2865 			 * destination address of the mremap to allow
2866 			 * the merge to happen. mremap must change the
2867 			 * vm_pgoff linearity between src and dst vmas
2868 			 * (in turn preventing a vma_merge) to be
2869 			 * safe. It is only safe to keep the vm_pgoff
2870 			 * linear if there are no pages mapped yet.
2871 			 */
2872 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2873 			*vmap = vma = new_vma;
2874 		}
2875 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2876 	} else {
2877 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2878 		if (new_vma) {
2879 			*new_vma = *vma;
2880 			new_vma->vm_start = addr;
2881 			new_vma->vm_end = addr + len;
2882 			new_vma->vm_pgoff = pgoff;
2883 			if (vma_dup_policy(vma, new_vma))
2884 				goto out_free_vma;
2885 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2886 			if (anon_vma_clone(new_vma, vma))
2887 				goto out_free_mempol;
2888 			if (new_vma->vm_file)
2889 				get_file(new_vma->vm_file);
2890 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2891 				new_vma->vm_ops->open(new_vma);
2892 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2893 			*need_rmap_locks = false;
2894 		}
2895 	}
2896 	return new_vma;
2897 
2898  out_free_mempol:
2899 	mpol_put(vma_policy(new_vma));
2900  out_free_vma:
2901 	kmem_cache_free(vm_area_cachep, new_vma);
2902 	return NULL;
2903 }
2904 
2905 /*
2906  * Return true if the calling process may expand its vm space by the passed
2907  * number of pages
2908  */
2909 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2910 {
2911 	unsigned long cur = mm->total_vm;	/* pages */
2912 	unsigned long lim;
2913 
2914 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2915 
2916 	if (cur + npages > lim)
2917 		return 0;
2918 	return 1;
2919 }
2920 
2921 static int special_mapping_fault(struct vm_area_struct *vma,
2922 				 struct vm_fault *vmf);
2923 
2924 /*
2925  * Having a close hook prevents vma merging regardless of flags.
2926  */
2927 static void special_mapping_close(struct vm_area_struct *vma)
2928 {
2929 }
2930 
2931 static const char *special_mapping_name(struct vm_area_struct *vma)
2932 {
2933 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2934 }
2935 
2936 static const struct vm_operations_struct special_mapping_vmops = {
2937 	.close = special_mapping_close,
2938 	.fault = special_mapping_fault,
2939 	.name = special_mapping_name,
2940 };
2941 
2942 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2943 	.close = special_mapping_close,
2944 	.fault = special_mapping_fault,
2945 };
2946 
2947 static int special_mapping_fault(struct vm_area_struct *vma,
2948 				struct vm_fault *vmf)
2949 {
2950 	pgoff_t pgoff;
2951 	struct page **pages;
2952 
2953 	/*
2954 	 * special mappings have no vm_file, and in that case, the mm
2955 	 * uses vm_pgoff internally. So we have to subtract it from here.
2956 	 * We are allowed to do this because we are the mm; do not copy
2957 	 * this code into drivers!
2958 	 */
2959 	pgoff = vmf->pgoff - vma->vm_pgoff;
2960 
2961 	if (vma->vm_ops == &legacy_special_mapping_vmops)
2962 		pages = vma->vm_private_data;
2963 	else
2964 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2965 			pages;
2966 
2967 	for (; pgoff && *pages; ++pages)
2968 		pgoff--;
2969 
2970 	if (*pages) {
2971 		struct page *page = *pages;
2972 		get_page(page);
2973 		vmf->page = page;
2974 		return 0;
2975 	}
2976 
2977 	return VM_FAULT_SIGBUS;
2978 }
2979 
2980 static struct vm_area_struct *__install_special_mapping(
2981 	struct mm_struct *mm,
2982 	unsigned long addr, unsigned long len,
2983 	unsigned long vm_flags, const struct vm_operations_struct *ops,
2984 	void *priv)
2985 {
2986 	int ret;
2987 	struct vm_area_struct *vma;
2988 
2989 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2990 	if (unlikely(vma == NULL))
2991 		return ERR_PTR(-ENOMEM);
2992 
2993 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2994 	vma->vm_mm = mm;
2995 	vma->vm_start = addr;
2996 	vma->vm_end = addr + len;
2997 
2998 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2999 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3000 
3001 	vma->vm_ops = ops;
3002 	vma->vm_private_data = priv;
3003 
3004 	ret = insert_vm_struct(mm, vma);
3005 	if (ret)
3006 		goto out;
3007 
3008 	mm->total_vm += len >> PAGE_SHIFT;
3009 
3010 	perf_event_mmap(vma);
3011 
3012 	return vma;
3013 
3014 out:
3015 	kmem_cache_free(vm_area_cachep, vma);
3016 	return ERR_PTR(ret);
3017 }
3018 
3019 /*
3020  * Called with mm->mmap_sem held for writing.
3021  * Insert a new vma covering the given region, with the given flags.
3022  * Its pages are supplied by the given array of struct page *.
3023  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3024  * The region past the last page supplied will always produce SIGBUS.
3025  * The array pointer and the pages it points to are assumed to stay alive
3026  * for as long as this mapping might exist.
3027  */
3028 struct vm_area_struct *_install_special_mapping(
3029 	struct mm_struct *mm,
3030 	unsigned long addr, unsigned long len,
3031 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3032 {
3033 	return __install_special_mapping(mm, addr, len, vm_flags,
3034 					 &special_mapping_vmops, (void *)spec);
3035 }
3036 
3037 int install_special_mapping(struct mm_struct *mm,
3038 			    unsigned long addr, unsigned long len,
3039 			    unsigned long vm_flags, struct page **pages)
3040 {
3041 	struct vm_area_struct *vma = __install_special_mapping(
3042 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3043 		(void *)pages);
3044 
3045 	return PTR_ERR_OR_ZERO(vma);
3046 }
3047 
3048 static DEFINE_MUTEX(mm_all_locks_mutex);
3049 
3050 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3051 {
3052 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3053 		/*
3054 		 * The LSB of head.next can't change from under us
3055 		 * because we hold the mm_all_locks_mutex.
3056 		 */
3057 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3058 		/*
3059 		 * We can safely modify head.next after taking the
3060 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3061 		 * the same anon_vma we won't take it again.
3062 		 *
3063 		 * No need of atomic instructions here, head.next
3064 		 * can't change from under us thanks to the
3065 		 * anon_vma->root->rwsem.
3066 		 */
3067 		if (__test_and_set_bit(0, (unsigned long *)
3068 				       &anon_vma->root->rb_root.rb_node))
3069 			BUG();
3070 	}
3071 }
3072 
3073 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3074 {
3075 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3076 		/*
3077 		 * AS_MM_ALL_LOCKS can't change from under us because
3078 		 * we hold the mm_all_locks_mutex.
3079 		 *
3080 		 * Operations on ->flags have to be atomic because
3081 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3082 		 * mm_all_locks_mutex, there may be other cpus
3083 		 * changing other bitflags in parallel to us.
3084 		 */
3085 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3086 			BUG();
3087 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3088 	}
3089 }
3090 
3091 /*
3092  * This operation locks against the VM for all pte/vma/mm related
3093  * operations that could ever happen on a certain mm. This includes
3094  * vmtruncate, try_to_unmap, and all page faults.
3095  *
3096  * The caller must take the mmap_sem in write mode before calling
3097  * mm_take_all_locks(). The caller isn't allowed to release the
3098  * mmap_sem until mm_drop_all_locks() returns.
3099  *
3100  * mmap_sem in write mode is required in order to block all operations
3101  * that could modify pagetables and free pages without need of
3102  * altering the vma layout (for example populate_range() with
3103  * nonlinear vmas). It's also needed in write mode to avoid new
3104  * anon_vmas to be associated with existing vmas.
3105  *
3106  * A single task can't take more than one mm_take_all_locks() in a row
3107  * or it would deadlock.
3108  *
3109  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3110  * mapping->flags avoid to take the same lock twice, if more than one
3111  * vma in this mm is backed by the same anon_vma or address_space.
3112  *
3113  * We can take all the locks in random order because the VM code
3114  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3115  * takes more than one of them in a row. Secondly we're protected
3116  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3117  *
3118  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3119  * that may have to take thousand of locks.
3120  *
3121  * mm_take_all_locks() can fail if it's interrupted by signals.
3122  */
3123 int mm_take_all_locks(struct mm_struct *mm)
3124 {
3125 	struct vm_area_struct *vma;
3126 	struct anon_vma_chain *avc;
3127 
3128 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3129 
3130 	mutex_lock(&mm_all_locks_mutex);
3131 
3132 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3133 		if (signal_pending(current))
3134 			goto out_unlock;
3135 		if (vma->vm_file && vma->vm_file->f_mapping)
3136 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137 	}
3138 
3139 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140 		if (signal_pending(current))
3141 			goto out_unlock;
3142 		if (vma->anon_vma)
3143 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3144 				vm_lock_anon_vma(mm, avc->anon_vma);
3145 	}
3146 
3147 	return 0;
3148 
3149 out_unlock:
3150 	mm_drop_all_locks(mm);
3151 	return -EINTR;
3152 }
3153 
3154 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3155 {
3156 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3157 		/*
3158 		 * The LSB of head.next can't change to 0 from under
3159 		 * us because we hold the mm_all_locks_mutex.
3160 		 *
3161 		 * We must however clear the bitflag before unlocking
3162 		 * the vma so the users using the anon_vma->rb_root will
3163 		 * never see our bitflag.
3164 		 *
3165 		 * No need of atomic instructions here, head.next
3166 		 * can't change from under us until we release the
3167 		 * anon_vma->root->rwsem.
3168 		 */
3169 		if (!__test_and_clear_bit(0, (unsigned long *)
3170 					  &anon_vma->root->rb_root.rb_node))
3171 			BUG();
3172 		anon_vma_unlock_write(anon_vma);
3173 	}
3174 }
3175 
3176 static void vm_unlock_mapping(struct address_space *mapping)
3177 {
3178 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3179 		/*
3180 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3181 		 * because we hold the mm_all_locks_mutex.
3182 		 */
3183 		mutex_unlock(&mapping->i_mmap_mutex);
3184 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3185 					&mapping->flags))
3186 			BUG();
3187 	}
3188 }
3189 
3190 /*
3191  * The mmap_sem cannot be released by the caller until
3192  * mm_drop_all_locks() returns.
3193  */
3194 void mm_drop_all_locks(struct mm_struct *mm)
3195 {
3196 	struct vm_area_struct *vma;
3197 	struct anon_vma_chain *avc;
3198 
3199 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3200 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3201 
3202 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3203 		if (vma->anon_vma)
3204 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3205 				vm_unlock_anon_vma(avc->anon_vma);
3206 		if (vma->vm_file && vma->vm_file->f_mapping)
3207 			vm_unlock_mapping(vma->vm_file->f_mapping);
3208 	}
3209 
3210 	mutex_unlock(&mm_all_locks_mutex);
3211 }
3212 
3213 /*
3214  * initialise the VMA slab
3215  */
3216 void __init mmap_init(void)
3217 {
3218 	int ret;
3219 
3220 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3221 	VM_BUG_ON(ret);
3222 }
3223 
3224 /*
3225  * Initialise sysctl_user_reserve_kbytes.
3226  *
3227  * This is intended to prevent a user from starting a single memory hogging
3228  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3229  * mode.
3230  *
3231  * The default value is min(3% of free memory, 128MB)
3232  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3233  */
3234 static int init_user_reserve(void)
3235 {
3236 	unsigned long free_kbytes;
3237 
3238 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3239 
3240 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3241 	return 0;
3242 }
3243 subsys_initcall(init_user_reserve);
3244 
3245 /*
3246  * Initialise sysctl_admin_reserve_kbytes.
3247  *
3248  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3249  * to log in and kill a memory hogging process.
3250  *
3251  * Systems with more than 256MB will reserve 8MB, enough to recover
3252  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3253  * only reserve 3% of free pages by default.
3254  */
3255 static int init_admin_reserve(void)
3256 {
3257 	unsigned long free_kbytes;
3258 
3259 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260 
3261 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3262 	return 0;
3263 }
3264 subsys_initcall(init_admin_reserve);
3265 
3266 /*
3267  * Reinititalise user and admin reserves if memory is added or removed.
3268  *
3269  * The default user reserve max is 128MB, and the default max for the
3270  * admin reserve is 8MB. These are usually, but not always, enough to
3271  * enable recovery from a memory hogging process using login/sshd, a shell,
3272  * and tools like top. It may make sense to increase or even disable the
3273  * reserve depending on the existence of swap or variations in the recovery
3274  * tools. So, the admin may have changed them.
3275  *
3276  * If memory is added and the reserves have been eliminated or increased above
3277  * the default max, then we'll trust the admin.
3278  *
3279  * If memory is removed and there isn't enough free memory, then we
3280  * need to reset the reserves.
3281  *
3282  * Otherwise keep the reserve set by the admin.
3283  */
3284 static int reserve_mem_notifier(struct notifier_block *nb,
3285 			     unsigned long action, void *data)
3286 {
3287 	unsigned long tmp, free_kbytes;
3288 
3289 	switch (action) {
3290 	case MEM_ONLINE:
3291 		/* Default max is 128MB. Leave alone if modified by operator. */
3292 		tmp = sysctl_user_reserve_kbytes;
3293 		if (0 < tmp && tmp < (1UL << 17))
3294 			init_user_reserve();
3295 
3296 		/* Default max is 8MB.  Leave alone if modified by operator. */
3297 		tmp = sysctl_admin_reserve_kbytes;
3298 		if (0 < tmp && tmp < (1UL << 13))
3299 			init_admin_reserve();
3300 
3301 		break;
3302 	case MEM_OFFLINE:
3303 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3304 
3305 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3306 			init_user_reserve();
3307 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3308 				sysctl_user_reserve_kbytes);
3309 		}
3310 
3311 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3312 			init_admin_reserve();
3313 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3314 				sysctl_admin_reserve_kbytes);
3315 		}
3316 		break;
3317 	default:
3318 		break;
3319 	}
3320 	return NOTIFY_OK;
3321 }
3322 
3323 static struct notifier_block reserve_mem_nb = {
3324 	.notifier_call = reserve_mem_notifier,
3325 };
3326 
3327 static int __meminit init_reserve_notifier(void)
3328 {
3329 	if (register_hotmemory_notifier(&reserve_mem_nb))
3330 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3331 
3332 	return 0;
3333 }
3334 subsys_initcall(init_reserve_notifier);
3335