1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 #include <linux/uprobes.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlb.h> 38 #include <asm/mmu_context.h> 39 40 #include "internal.h" 41 42 #ifndef arch_mmap_check 43 #define arch_mmap_check(addr, len, flags) (0) 44 #endif 45 46 #ifndef arch_rebalance_pgtables 47 #define arch_rebalance_pgtables(addr, len) (addr) 48 #endif 49 50 static void unmap_region(struct mm_struct *mm, 51 struct vm_area_struct *vma, struct vm_area_struct *prev, 52 unsigned long start, unsigned long end); 53 54 /* 55 * WARNING: the debugging will use recursive algorithms so never enable this 56 * unless you know what you are doing. 57 */ 58 #undef DEBUG_MM_RB 59 60 /* description of effects of mapping type and prot in current implementation. 61 * this is due to the limited x86 page protection hardware. The expected 62 * behavior is in parens: 63 * 64 * map_type prot 65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 67 * w: (no) no w: (no) no w: (yes) yes w: (no) no 68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 69 * 70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (copy) copy w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 */ 75 pgprot_t protection_map[16] = { 76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 78 }; 79 80 pgprot_t vm_get_page_prot(unsigned long vm_flags) 81 { 82 return __pgprot(pgprot_val(protection_map[vm_flags & 83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 84 pgprot_val(arch_vm_get_page_prot(vm_flags))); 85 } 86 EXPORT_SYMBOL(vm_get_page_prot); 87 88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 91 /* 92 * Make sure vm_committed_as in one cacheline and not cacheline shared with 93 * other variables. It can be updated by several CPUs frequently. 94 */ 95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 96 97 /* 98 * Check that a process has enough memory to allocate a new virtual 99 * mapping. 0 means there is enough memory for the allocation to 100 * succeed and -ENOMEM implies there is not. 101 * 102 * We currently support three overcommit policies, which are set via the 103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 104 * 105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 106 * Additional code 2002 Jul 20 by Robert Love. 107 * 108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 109 * 110 * Note this is a helper function intended to be used by LSMs which 111 * wish to use this logic. 112 */ 113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 114 { 115 unsigned long free, allowed; 116 117 vm_acct_memory(pages); 118 119 /* 120 * Sometimes we want to use more memory than we have 121 */ 122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 123 return 0; 124 125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 126 free = global_page_state(NR_FREE_PAGES); 127 free += global_page_state(NR_FILE_PAGES); 128 129 /* 130 * shmem pages shouldn't be counted as free in this 131 * case, they can't be purged, only swapped out, and 132 * that won't affect the overall amount of available 133 * memory in the system. 134 */ 135 free -= global_page_state(NR_SHMEM); 136 137 free += nr_swap_pages; 138 139 /* 140 * Any slabs which are created with the 141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 142 * which are reclaimable, under pressure. The dentry 143 * cache and most inode caches should fall into this 144 */ 145 free += global_page_state(NR_SLAB_RECLAIMABLE); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (free <= totalreserve_pages) 151 goto error; 152 else 153 free -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 free -= free / 32; 160 161 if (free > pages) 162 return 0; 163 164 goto error; 165 } 166 167 allowed = (totalram_pages - hugetlb_total_pages()) 168 * sysctl_overcommit_ratio / 100; 169 /* 170 * Leave the last 3% for root 171 */ 172 if (!cap_sys_admin) 173 allowed -= allowed / 32; 174 allowed += total_swap_pages; 175 176 /* Don't let a single process grow too big: 177 leave 3% of the size of this process for other processes */ 178 if (mm) 179 allowed -= mm->total_vm / 32; 180 181 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 182 return 0; 183 error: 184 vm_unacct_memory(pages); 185 186 return -ENOMEM; 187 } 188 189 /* 190 * Requires inode->i_mapping->i_mmap_mutex 191 */ 192 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 193 struct file *file, struct address_space *mapping) 194 { 195 if (vma->vm_flags & VM_DENYWRITE) 196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 197 if (vma->vm_flags & VM_SHARED) 198 mapping->i_mmap_writable--; 199 200 flush_dcache_mmap_lock(mapping); 201 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 202 list_del_init(&vma->shared.vm_set.list); 203 else 204 vma_prio_tree_remove(vma, &mapping->i_mmap); 205 flush_dcache_mmap_unlock(mapping); 206 } 207 208 /* 209 * Unlink a file-based vm structure from its prio_tree, to hide 210 * vma from rmap and vmtruncate before freeing its page tables. 211 */ 212 void unlink_file_vma(struct vm_area_struct *vma) 213 { 214 struct file *file = vma->vm_file; 215 216 if (file) { 217 struct address_space *mapping = file->f_mapping; 218 mutex_lock(&mapping->i_mmap_mutex); 219 __remove_shared_vm_struct(vma, file, mapping); 220 mutex_unlock(&mapping->i_mmap_mutex); 221 } 222 } 223 224 /* 225 * Close a vm structure and free it, returning the next. 226 */ 227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 228 { 229 struct vm_area_struct *next = vma->vm_next; 230 231 might_sleep(); 232 if (vma->vm_ops && vma->vm_ops->close) 233 vma->vm_ops->close(vma); 234 if (vma->vm_file) { 235 fput(vma->vm_file); 236 if (vma->vm_flags & VM_EXECUTABLE) 237 removed_exe_file_vma(vma->vm_mm); 238 } 239 mpol_put(vma_policy(vma)); 240 kmem_cache_free(vm_area_cachep, vma); 241 return next; 242 } 243 244 static unsigned long do_brk(unsigned long addr, unsigned long len); 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 /* 257 * CONFIG_COMPAT_BRK can still be overridden by setting 258 * randomize_va_space to 2, which will still cause mm->start_brk 259 * to be arbitrarily shifted 260 */ 261 if (current->brk_randomized) 262 min_brk = mm->start_brk; 263 else 264 min_brk = mm->end_data; 265 #else 266 min_brk = mm->start_brk; 267 #endif 268 if (brk < min_brk) 269 goto out; 270 271 /* 272 * Check against rlimit here. If this check is done later after the test 273 * of oldbrk with newbrk then it can escape the test and let the data 274 * segment grow beyond its set limit the in case where the limit is 275 * not page aligned -Ram Gupta 276 */ 277 rlim = rlimit(RLIMIT_DATA); 278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 279 (mm->end_data - mm->start_data) > rlim) 280 goto out; 281 282 newbrk = PAGE_ALIGN(brk); 283 oldbrk = PAGE_ALIGN(mm->brk); 284 if (oldbrk == newbrk) 285 goto set_brk; 286 287 /* Always allow shrinking brk. */ 288 if (brk <= mm->brk) { 289 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 290 goto set_brk; 291 goto out; 292 } 293 294 /* Check against existing mmap mappings. */ 295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 296 goto out; 297 298 /* Ok, looks good - let it rip. */ 299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 300 goto out; 301 set_brk: 302 mm->brk = brk; 303 out: 304 retval = mm->brk; 305 up_write(&mm->mmap_sem); 306 return retval; 307 } 308 309 #ifdef DEBUG_MM_RB 310 static int browse_rb(struct rb_root *root) 311 { 312 int i = 0, j; 313 struct rb_node *nd, *pn = NULL; 314 unsigned long prev = 0, pend = 0; 315 316 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 317 struct vm_area_struct *vma; 318 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 319 if (vma->vm_start < prev) 320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 321 if (vma->vm_start < pend) 322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 323 if (vma->vm_start > vma->vm_end) 324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 325 i++; 326 pn = nd; 327 prev = vma->vm_start; 328 pend = vma->vm_end; 329 } 330 j = 0; 331 for (nd = pn; nd; nd = rb_prev(nd)) { 332 j++; 333 } 334 if (i != j) 335 printk("backwards %d, forwards %d\n", j, i), i = 0; 336 return i; 337 } 338 339 void validate_mm(struct mm_struct *mm) 340 { 341 int bug = 0; 342 int i = 0; 343 struct vm_area_struct *tmp = mm->mmap; 344 while (tmp) { 345 tmp = tmp->vm_next; 346 i++; 347 } 348 if (i != mm->map_count) 349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 350 i = browse_rb(&mm->mm_rb); 351 if (i != mm->map_count) 352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 353 BUG_ON(bug); 354 } 355 #else 356 #define validate_mm(mm) do { } while (0) 357 #endif 358 359 static struct vm_area_struct * 360 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 361 struct vm_area_struct **pprev, struct rb_node ***rb_link, 362 struct rb_node ** rb_parent) 363 { 364 struct vm_area_struct * vma; 365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 366 367 __rb_link = &mm->mm_rb.rb_node; 368 rb_prev = __rb_parent = NULL; 369 vma = NULL; 370 371 while (*__rb_link) { 372 struct vm_area_struct *vma_tmp; 373 374 __rb_parent = *__rb_link; 375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 376 377 if (vma_tmp->vm_end > addr) { 378 vma = vma_tmp; 379 if (vma_tmp->vm_start <= addr) 380 break; 381 __rb_link = &__rb_parent->rb_left; 382 } else { 383 rb_prev = __rb_parent; 384 __rb_link = &__rb_parent->rb_right; 385 } 386 } 387 388 *pprev = NULL; 389 if (rb_prev) 390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 391 *rb_link = __rb_link; 392 *rb_parent = __rb_parent; 393 return vma; 394 } 395 396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 397 struct rb_node **rb_link, struct rb_node *rb_parent) 398 { 399 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 400 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 401 } 402 403 static void __vma_link_file(struct vm_area_struct *vma) 404 { 405 struct file *file; 406 407 file = vma->vm_file; 408 if (file) { 409 struct address_space *mapping = file->f_mapping; 410 411 if (vma->vm_flags & VM_DENYWRITE) 412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 413 if (vma->vm_flags & VM_SHARED) 414 mapping->i_mmap_writable++; 415 416 flush_dcache_mmap_lock(mapping); 417 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 419 else 420 vma_prio_tree_insert(vma, &mapping->i_mmap); 421 flush_dcache_mmap_unlock(mapping); 422 } 423 } 424 425 static void 426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 427 struct vm_area_struct *prev, struct rb_node **rb_link, 428 struct rb_node *rb_parent) 429 { 430 __vma_link_list(mm, vma, prev, rb_parent); 431 __vma_link_rb(mm, vma, rb_link, rb_parent); 432 } 433 434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 435 struct vm_area_struct *prev, struct rb_node **rb_link, 436 struct rb_node *rb_parent) 437 { 438 struct address_space *mapping = NULL; 439 440 if (vma->vm_file) 441 mapping = vma->vm_file->f_mapping; 442 443 if (mapping) 444 mutex_lock(&mapping->i_mmap_mutex); 445 446 __vma_link(mm, vma, prev, rb_link, rb_parent); 447 __vma_link_file(vma); 448 449 if (mapping) 450 mutex_unlock(&mapping->i_mmap_mutex); 451 452 mm->map_count++; 453 validate_mm(mm); 454 } 455 456 /* 457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 458 * mm's list and rbtree. It has already been inserted into the prio_tree. 459 */ 460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 461 { 462 struct vm_area_struct *__vma, *prev; 463 struct rb_node **rb_link, *rb_parent; 464 465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 466 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 467 __vma_link(mm, vma, prev, rb_link, rb_parent); 468 mm->map_count++; 469 } 470 471 static inline void 472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 473 struct vm_area_struct *prev) 474 { 475 struct vm_area_struct *next = vma->vm_next; 476 477 prev->vm_next = next; 478 if (next) 479 next->vm_prev = prev; 480 rb_erase(&vma->vm_rb, &mm->mm_rb); 481 if (mm->mmap_cache == vma) 482 mm->mmap_cache = prev; 483 } 484 485 /* 486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 487 * is already present in an i_mmap tree without adjusting the tree. 488 * The following helper function should be used when such adjustments 489 * are necessary. The "insert" vma (if any) is to be inserted 490 * before we drop the necessary locks. 491 */ 492 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 493 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 struct vm_area_struct *next = vma->vm_next; 497 struct vm_area_struct *importer = NULL; 498 struct address_space *mapping = NULL; 499 struct prio_tree_root *root = NULL; 500 struct anon_vma *anon_vma = NULL; 501 struct file *file = vma->vm_file; 502 long adjust_next = 0; 503 int remove_next = 0; 504 505 if (next && !insert) { 506 struct vm_area_struct *exporter = NULL; 507 508 if (end >= next->vm_end) { 509 /* 510 * vma expands, overlapping all the next, and 511 * perhaps the one after too (mprotect case 6). 512 */ 513 again: remove_next = 1 + (end > next->vm_end); 514 end = next->vm_end; 515 exporter = next; 516 importer = vma; 517 } else if (end > next->vm_start) { 518 /* 519 * vma expands, overlapping part of the next: 520 * mprotect case 5 shifting the boundary up. 521 */ 522 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 523 exporter = next; 524 importer = vma; 525 } else if (end < vma->vm_end) { 526 /* 527 * vma shrinks, and !insert tells it's not 528 * split_vma inserting another: so it must be 529 * mprotect case 4 shifting the boundary down. 530 */ 531 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 532 exporter = vma; 533 importer = next; 534 } 535 536 /* 537 * Easily overlooked: when mprotect shifts the boundary, 538 * make sure the expanding vma has anon_vma set if the 539 * shrinking vma had, to cover any anon pages imported. 540 */ 541 if (exporter && exporter->anon_vma && !importer->anon_vma) { 542 if (anon_vma_clone(importer, exporter)) 543 return -ENOMEM; 544 importer->anon_vma = exporter->anon_vma; 545 } 546 } 547 548 if (file) { 549 mapping = file->f_mapping; 550 if (!(vma->vm_flags & VM_NONLINEAR)) { 551 root = &mapping->i_mmap; 552 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 553 554 if (adjust_next) 555 uprobe_munmap(next, next->vm_start, 556 next->vm_end); 557 } 558 559 mutex_lock(&mapping->i_mmap_mutex); 560 if (insert) { 561 /* 562 * Put into prio_tree now, so instantiated pages 563 * are visible to arm/parisc __flush_dcache_page 564 * throughout; but we cannot insert into address 565 * space until vma start or end is updated. 566 */ 567 __vma_link_file(insert); 568 } 569 } 570 571 vma_adjust_trans_huge(vma, start, end, adjust_next); 572 573 /* 574 * When changing only vma->vm_end, we don't really need anon_vma 575 * lock. This is a fairly rare case by itself, but the anon_vma 576 * lock may be shared between many sibling processes. Skipping 577 * the lock for brk adjustments makes a difference sometimes. 578 */ 579 if (vma->anon_vma && (importer || start != vma->vm_start)) { 580 anon_vma = vma->anon_vma; 581 anon_vma_lock(anon_vma); 582 } 583 584 if (root) { 585 flush_dcache_mmap_lock(mapping); 586 vma_prio_tree_remove(vma, root); 587 if (adjust_next) 588 vma_prio_tree_remove(next, root); 589 } 590 591 vma->vm_start = start; 592 vma->vm_end = end; 593 vma->vm_pgoff = pgoff; 594 if (adjust_next) { 595 next->vm_start += adjust_next << PAGE_SHIFT; 596 next->vm_pgoff += adjust_next; 597 } 598 599 if (root) { 600 if (adjust_next) 601 vma_prio_tree_insert(next, root); 602 vma_prio_tree_insert(vma, root); 603 flush_dcache_mmap_unlock(mapping); 604 } 605 606 if (remove_next) { 607 /* 608 * vma_merge has merged next into vma, and needs 609 * us to remove next before dropping the locks. 610 */ 611 __vma_unlink(mm, next, vma); 612 if (file) 613 __remove_shared_vm_struct(next, file, mapping); 614 } else if (insert) { 615 /* 616 * split_vma has split insert from vma, and needs 617 * us to insert it before dropping the locks 618 * (it may either follow vma or precede it). 619 */ 620 __insert_vm_struct(mm, insert); 621 } 622 623 if (anon_vma) 624 anon_vma_unlock(anon_vma); 625 if (mapping) 626 mutex_unlock(&mapping->i_mmap_mutex); 627 628 if (root) { 629 uprobe_mmap(vma); 630 631 if (adjust_next) 632 uprobe_mmap(next); 633 } 634 635 if (remove_next) { 636 if (file) { 637 uprobe_munmap(next, next->vm_start, next->vm_end); 638 fput(file); 639 if (next->vm_flags & VM_EXECUTABLE) 640 removed_exe_file_vma(mm); 641 } 642 if (next->anon_vma) 643 anon_vma_merge(vma, next); 644 mm->map_count--; 645 mpol_put(vma_policy(next)); 646 kmem_cache_free(vm_area_cachep, next); 647 /* 648 * In mprotect's case 6 (see comments on vma_merge), 649 * we must remove another next too. It would clutter 650 * up the code too much to do both in one go. 651 */ 652 if (remove_next == 2) { 653 next = vma->vm_next; 654 goto again; 655 } 656 } 657 if (insert && file) 658 uprobe_mmap(insert); 659 660 validate_mm(mm); 661 662 return 0; 663 } 664 665 /* 666 * If the vma has a ->close operation then the driver probably needs to release 667 * per-vma resources, so we don't attempt to merge those. 668 */ 669 static inline int is_mergeable_vma(struct vm_area_struct *vma, 670 struct file *file, unsigned long vm_flags) 671 { 672 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 673 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 674 return 0; 675 if (vma->vm_file != file) 676 return 0; 677 if (vma->vm_ops && vma->vm_ops->close) 678 return 0; 679 return 1; 680 } 681 682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 683 struct anon_vma *anon_vma2, 684 struct vm_area_struct *vma) 685 { 686 /* 687 * The list_is_singular() test is to avoid merging VMA cloned from 688 * parents. This can improve scalability caused by anon_vma lock. 689 */ 690 if ((!anon_vma1 || !anon_vma2) && (!vma || 691 list_is_singular(&vma->anon_vma_chain))) 692 return 1; 693 return anon_vma1 == anon_vma2; 694 } 695 696 /* 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 698 * in front of (at a lower virtual address and file offset than) the vma. 699 * 700 * We cannot merge two vmas if they have differently assigned (non-NULL) 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 702 * 703 * We don't check here for the merged mmap wrapping around the end of pagecache 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 705 * wrap, nor mmaps which cover the final page at index -1UL. 706 */ 707 static int 708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 710 { 711 if (is_mergeable_vma(vma, file, vm_flags) && 712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 713 if (vma->vm_pgoff == vm_pgoff) 714 return 1; 715 } 716 return 0; 717 } 718 719 /* 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 721 * beyond (at a higher virtual address and file offset than) the vma. 722 * 723 * We cannot merge two vmas if they have differently assigned (non-NULL) 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 725 */ 726 static int 727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 729 { 730 if (is_mergeable_vma(vma, file, vm_flags) && 731 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 732 pgoff_t vm_pglen; 733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 734 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 735 return 1; 736 } 737 return 0; 738 } 739 740 /* 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 742 * whether that can be merged with its predecessor or its successor. 743 * Or both (it neatly fills a hole). 744 * 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is 746 * certain not to be mapped by the time vma_merge is called; but when 747 * called for mprotect, it is certain to be already mapped (either at 748 * an offset within prev, or at the start of next), and the flags of 749 * this area are about to be changed to vm_flags - and the no-change 750 * case has already been eliminated. 751 * 752 * The following mprotect cases have to be considered, where AAAA is 753 * the area passed down from mprotect_fixup, never extending beyond one 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 755 * 756 * AAAA AAAA AAAA AAAA 757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 758 * cannot merge might become might become might become 759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 761 * mremap move: PPPPNNNNNNNN 8 762 * AAAA 763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 764 * might become case 1 below case 2 below case 3 below 765 * 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 768 */ 769 struct vm_area_struct *vma_merge(struct mm_struct *mm, 770 struct vm_area_struct *prev, unsigned long addr, 771 unsigned long end, unsigned long vm_flags, 772 struct anon_vma *anon_vma, struct file *file, 773 pgoff_t pgoff, struct mempolicy *policy) 774 { 775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 776 struct vm_area_struct *area, *next; 777 int err; 778 779 /* 780 * We later require that vma->vm_flags == vm_flags, 781 * so this tests vma->vm_flags & VM_SPECIAL, too. 782 */ 783 if (vm_flags & VM_SPECIAL) 784 return NULL; 785 786 if (prev) 787 next = prev->vm_next; 788 else 789 next = mm->mmap; 790 area = next; 791 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 792 next = next->vm_next; 793 794 /* 795 * Can it merge with the predecessor? 796 */ 797 if (prev && prev->vm_end == addr && 798 mpol_equal(vma_policy(prev), policy) && 799 can_vma_merge_after(prev, vm_flags, 800 anon_vma, file, pgoff)) { 801 /* 802 * OK, it can. Can we now merge in the successor as well? 803 */ 804 if (next && end == next->vm_start && 805 mpol_equal(policy, vma_policy(next)) && 806 can_vma_merge_before(next, vm_flags, 807 anon_vma, file, pgoff+pglen) && 808 is_mergeable_anon_vma(prev->anon_vma, 809 next->anon_vma, NULL)) { 810 /* cases 1, 6 */ 811 err = vma_adjust(prev, prev->vm_start, 812 next->vm_end, prev->vm_pgoff, NULL); 813 } else /* cases 2, 5, 7 */ 814 err = vma_adjust(prev, prev->vm_start, 815 end, prev->vm_pgoff, NULL); 816 if (err) 817 return NULL; 818 khugepaged_enter_vma_merge(prev); 819 return prev; 820 } 821 822 /* 823 * Can this new request be merged in front of next? 824 */ 825 if (next && end == next->vm_start && 826 mpol_equal(policy, vma_policy(next)) && 827 can_vma_merge_before(next, vm_flags, 828 anon_vma, file, pgoff+pglen)) { 829 if (prev && addr < prev->vm_end) /* case 4 */ 830 err = vma_adjust(prev, prev->vm_start, 831 addr, prev->vm_pgoff, NULL); 832 else /* cases 3, 8 */ 833 err = vma_adjust(area, addr, next->vm_end, 834 next->vm_pgoff - pglen, NULL); 835 if (err) 836 return NULL; 837 khugepaged_enter_vma_merge(area); 838 return area; 839 } 840 841 return NULL; 842 } 843 844 /* 845 * Rough compatbility check to quickly see if it's even worth looking 846 * at sharing an anon_vma. 847 * 848 * They need to have the same vm_file, and the flags can only differ 849 * in things that mprotect may change. 850 * 851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 852 * we can merge the two vma's. For example, we refuse to merge a vma if 853 * there is a vm_ops->close() function, because that indicates that the 854 * driver is doing some kind of reference counting. But that doesn't 855 * really matter for the anon_vma sharing case. 856 */ 857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 858 { 859 return a->vm_end == b->vm_start && 860 mpol_equal(vma_policy(a), vma_policy(b)) && 861 a->vm_file == b->vm_file && 862 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 863 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 864 } 865 866 /* 867 * Do some basic sanity checking to see if we can re-use the anon_vma 868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 869 * the same as 'old', the other will be the new one that is trying 870 * to share the anon_vma. 871 * 872 * NOTE! This runs with mm_sem held for reading, so it is possible that 873 * the anon_vma of 'old' is concurrently in the process of being set up 874 * by another page fault trying to merge _that_. But that's ok: if it 875 * is being set up, that automatically means that it will be a singleton 876 * acceptable for merging, so we can do all of this optimistically. But 877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 878 * 879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 881 * is to return an anon_vma that is "complex" due to having gone through 882 * a fork). 883 * 884 * We also make sure that the two vma's are compatible (adjacent, 885 * and with the same memory policies). That's all stable, even with just 886 * a read lock on the mm_sem. 887 */ 888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 889 { 890 if (anon_vma_compatible(a, b)) { 891 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 892 893 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 894 return anon_vma; 895 } 896 return NULL; 897 } 898 899 /* 900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 901 * neighbouring vmas for a suitable anon_vma, before it goes off 902 * to allocate a new anon_vma. It checks because a repetitive 903 * sequence of mprotects and faults may otherwise lead to distinct 904 * anon_vmas being allocated, preventing vma merge in subsequent 905 * mprotect. 906 */ 907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 908 { 909 struct anon_vma *anon_vma; 910 struct vm_area_struct *near; 911 912 near = vma->vm_next; 913 if (!near) 914 goto try_prev; 915 916 anon_vma = reusable_anon_vma(near, vma, near); 917 if (anon_vma) 918 return anon_vma; 919 try_prev: 920 near = vma->vm_prev; 921 if (!near) 922 goto none; 923 924 anon_vma = reusable_anon_vma(near, near, vma); 925 if (anon_vma) 926 return anon_vma; 927 none: 928 /* 929 * There's no absolute need to look only at touching neighbours: 930 * we could search further afield for "compatible" anon_vmas. 931 * But it would probably just be a waste of time searching, 932 * or lead to too many vmas hanging off the same anon_vma. 933 * We're trying to allow mprotect remerging later on, 934 * not trying to minimize memory used for anon_vmas. 935 */ 936 return NULL; 937 } 938 939 #ifdef CONFIG_PROC_FS 940 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 941 struct file *file, long pages) 942 { 943 const unsigned long stack_flags 944 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 945 946 if (file) { 947 mm->shared_vm += pages; 948 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 949 mm->exec_vm += pages; 950 } else if (flags & stack_flags) 951 mm->stack_vm += pages; 952 if (flags & (VM_RESERVED|VM_IO)) 953 mm->reserved_vm += pages; 954 } 955 #endif /* CONFIG_PROC_FS */ 956 957 /* 958 * If a hint addr is less than mmap_min_addr change hint to be as 959 * low as possible but still greater than mmap_min_addr 960 */ 961 static inline unsigned long round_hint_to_min(unsigned long hint) 962 { 963 hint &= PAGE_MASK; 964 if (((void *)hint != NULL) && 965 (hint < mmap_min_addr)) 966 return PAGE_ALIGN(mmap_min_addr); 967 return hint; 968 } 969 970 /* 971 * The caller must hold down_write(¤t->mm->mmap_sem). 972 */ 973 974 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 975 unsigned long len, unsigned long prot, 976 unsigned long flags, unsigned long pgoff) 977 { 978 struct mm_struct * mm = current->mm; 979 struct inode *inode; 980 vm_flags_t vm_flags; 981 982 /* 983 * Does the application expect PROT_READ to imply PROT_EXEC? 984 * 985 * (the exception is when the underlying filesystem is noexec 986 * mounted, in which case we dont add PROT_EXEC.) 987 */ 988 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 989 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 990 prot |= PROT_EXEC; 991 992 if (!len) 993 return -EINVAL; 994 995 if (!(flags & MAP_FIXED)) 996 addr = round_hint_to_min(addr); 997 998 /* Careful about overflows.. */ 999 len = PAGE_ALIGN(len); 1000 if (!len) 1001 return -ENOMEM; 1002 1003 /* offset overflow? */ 1004 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1005 return -EOVERFLOW; 1006 1007 /* Too many mappings? */ 1008 if (mm->map_count > sysctl_max_map_count) 1009 return -ENOMEM; 1010 1011 /* Obtain the address to map to. we verify (or select) it and ensure 1012 * that it represents a valid section of the address space. 1013 */ 1014 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1015 if (addr & ~PAGE_MASK) 1016 return addr; 1017 1018 /* Do simple checking here so the lower-level routines won't have 1019 * to. we assume access permissions have been handled by the open 1020 * of the memory object, so we don't do any here. 1021 */ 1022 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1023 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1024 1025 if (flags & MAP_LOCKED) 1026 if (!can_do_mlock()) 1027 return -EPERM; 1028 1029 /* mlock MCL_FUTURE? */ 1030 if (vm_flags & VM_LOCKED) { 1031 unsigned long locked, lock_limit; 1032 locked = len >> PAGE_SHIFT; 1033 locked += mm->locked_vm; 1034 lock_limit = rlimit(RLIMIT_MEMLOCK); 1035 lock_limit >>= PAGE_SHIFT; 1036 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1037 return -EAGAIN; 1038 } 1039 1040 inode = file ? file->f_path.dentry->d_inode : NULL; 1041 1042 if (file) { 1043 switch (flags & MAP_TYPE) { 1044 case MAP_SHARED: 1045 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1046 return -EACCES; 1047 1048 /* 1049 * Make sure we don't allow writing to an append-only 1050 * file.. 1051 */ 1052 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1053 return -EACCES; 1054 1055 /* 1056 * Make sure there are no mandatory locks on the file. 1057 */ 1058 if (locks_verify_locked(inode)) 1059 return -EAGAIN; 1060 1061 vm_flags |= VM_SHARED | VM_MAYSHARE; 1062 if (!(file->f_mode & FMODE_WRITE)) 1063 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1064 1065 /* fall through */ 1066 case MAP_PRIVATE: 1067 if (!(file->f_mode & FMODE_READ)) 1068 return -EACCES; 1069 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1070 if (vm_flags & VM_EXEC) 1071 return -EPERM; 1072 vm_flags &= ~VM_MAYEXEC; 1073 } 1074 1075 if (!file->f_op || !file->f_op->mmap) 1076 return -ENODEV; 1077 break; 1078 1079 default: 1080 return -EINVAL; 1081 } 1082 } else { 1083 switch (flags & MAP_TYPE) { 1084 case MAP_SHARED: 1085 /* 1086 * Ignore pgoff. 1087 */ 1088 pgoff = 0; 1089 vm_flags |= VM_SHARED | VM_MAYSHARE; 1090 break; 1091 case MAP_PRIVATE: 1092 /* 1093 * Set pgoff according to addr for anon_vma. 1094 */ 1095 pgoff = addr >> PAGE_SHIFT; 1096 break; 1097 default: 1098 return -EINVAL; 1099 } 1100 } 1101 1102 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1103 } 1104 1105 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1106 unsigned long, prot, unsigned long, flags, 1107 unsigned long, fd, unsigned long, pgoff) 1108 { 1109 struct file *file = NULL; 1110 unsigned long retval = -EBADF; 1111 1112 if (!(flags & MAP_ANONYMOUS)) { 1113 audit_mmap_fd(fd, flags); 1114 if (unlikely(flags & MAP_HUGETLB)) 1115 return -EINVAL; 1116 file = fget(fd); 1117 if (!file) 1118 goto out; 1119 } else if (flags & MAP_HUGETLB) { 1120 struct user_struct *user = NULL; 1121 /* 1122 * VM_NORESERVE is used because the reservations will be 1123 * taken when vm_ops->mmap() is called 1124 * A dummy user value is used because we are not locking 1125 * memory so no accounting is necessary 1126 */ 1127 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1128 VM_NORESERVE, &user, 1129 HUGETLB_ANONHUGE_INODE); 1130 if (IS_ERR(file)) 1131 return PTR_ERR(file); 1132 } 1133 1134 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1135 1136 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1137 if (file) 1138 fput(file); 1139 out: 1140 return retval; 1141 } 1142 1143 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1144 struct mmap_arg_struct { 1145 unsigned long addr; 1146 unsigned long len; 1147 unsigned long prot; 1148 unsigned long flags; 1149 unsigned long fd; 1150 unsigned long offset; 1151 }; 1152 1153 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1154 { 1155 struct mmap_arg_struct a; 1156 1157 if (copy_from_user(&a, arg, sizeof(a))) 1158 return -EFAULT; 1159 if (a.offset & ~PAGE_MASK) 1160 return -EINVAL; 1161 1162 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1163 a.offset >> PAGE_SHIFT); 1164 } 1165 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1166 1167 /* 1168 * Some shared mappigns will want the pages marked read-only 1169 * to track write events. If so, we'll downgrade vm_page_prot 1170 * to the private version (using protection_map[] without the 1171 * VM_SHARED bit). 1172 */ 1173 int vma_wants_writenotify(struct vm_area_struct *vma) 1174 { 1175 vm_flags_t vm_flags = vma->vm_flags; 1176 1177 /* If it was private or non-writable, the write bit is already clear */ 1178 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1179 return 0; 1180 1181 /* The backer wishes to know when pages are first written to? */ 1182 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1183 return 1; 1184 1185 /* The open routine did something to the protections already? */ 1186 if (pgprot_val(vma->vm_page_prot) != 1187 pgprot_val(vm_get_page_prot(vm_flags))) 1188 return 0; 1189 1190 /* Specialty mapping? */ 1191 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1192 return 0; 1193 1194 /* Can the mapping track the dirty pages? */ 1195 return vma->vm_file && vma->vm_file->f_mapping && 1196 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1197 } 1198 1199 /* 1200 * We account for memory if it's a private writeable mapping, 1201 * not hugepages and VM_NORESERVE wasn't set. 1202 */ 1203 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1204 { 1205 /* 1206 * hugetlb has its own accounting separate from the core VM 1207 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1208 */ 1209 if (file && is_file_hugepages(file)) 1210 return 0; 1211 1212 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1213 } 1214 1215 unsigned long mmap_region(struct file *file, unsigned long addr, 1216 unsigned long len, unsigned long flags, 1217 vm_flags_t vm_flags, unsigned long pgoff) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 struct vm_area_struct *vma, *prev; 1221 int correct_wcount = 0; 1222 int error; 1223 struct rb_node **rb_link, *rb_parent; 1224 unsigned long charged = 0; 1225 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1226 1227 /* Clear old maps */ 1228 error = -ENOMEM; 1229 munmap_back: 1230 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1231 if (vma && vma->vm_start < addr + len) { 1232 if (do_munmap(mm, addr, len)) 1233 return -ENOMEM; 1234 goto munmap_back; 1235 } 1236 1237 /* Check against address space limit. */ 1238 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1239 return -ENOMEM; 1240 1241 /* 1242 * Set 'VM_NORESERVE' if we should not account for the 1243 * memory use of this mapping. 1244 */ 1245 if ((flags & MAP_NORESERVE)) { 1246 /* We honor MAP_NORESERVE if allowed to overcommit */ 1247 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1248 vm_flags |= VM_NORESERVE; 1249 1250 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1251 if (file && is_file_hugepages(file)) 1252 vm_flags |= VM_NORESERVE; 1253 } 1254 1255 /* 1256 * Private writable mapping: check memory availability 1257 */ 1258 if (accountable_mapping(file, vm_flags)) { 1259 charged = len >> PAGE_SHIFT; 1260 if (security_vm_enough_memory_mm(mm, charged)) 1261 return -ENOMEM; 1262 vm_flags |= VM_ACCOUNT; 1263 } 1264 1265 /* 1266 * Can we just expand an old mapping? 1267 */ 1268 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1269 if (vma) 1270 goto out; 1271 1272 /* 1273 * Determine the object being mapped and call the appropriate 1274 * specific mapper. the address has already been validated, but 1275 * not unmapped, but the maps are removed from the list. 1276 */ 1277 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1278 if (!vma) { 1279 error = -ENOMEM; 1280 goto unacct_error; 1281 } 1282 1283 vma->vm_mm = mm; 1284 vma->vm_start = addr; 1285 vma->vm_end = addr + len; 1286 vma->vm_flags = vm_flags; 1287 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1288 vma->vm_pgoff = pgoff; 1289 INIT_LIST_HEAD(&vma->anon_vma_chain); 1290 1291 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1292 1293 if (file) { 1294 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1295 goto free_vma; 1296 if (vm_flags & VM_DENYWRITE) { 1297 error = deny_write_access(file); 1298 if (error) 1299 goto free_vma; 1300 correct_wcount = 1; 1301 } 1302 vma->vm_file = file; 1303 get_file(file); 1304 error = file->f_op->mmap(file, vma); 1305 if (error) 1306 goto unmap_and_free_vma; 1307 if (vm_flags & VM_EXECUTABLE) 1308 added_exe_file_vma(mm); 1309 1310 /* Can addr have changed?? 1311 * 1312 * Answer: Yes, several device drivers can do it in their 1313 * f_op->mmap method. -DaveM 1314 */ 1315 addr = vma->vm_start; 1316 pgoff = vma->vm_pgoff; 1317 vm_flags = vma->vm_flags; 1318 } else if (vm_flags & VM_SHARED) { 1319 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1320 goto free_vma; 1321 error = shmem_zero_setup(vma); 1322 if (error) 1323 goto free_vma; 1324 } 1325 1326 if (vma_wants_writenotify(vma)) { 1327 pgprot_t pprot = vma->vm_page_prot; 1328 1329 /* Can vma->vm_page_prot have changed?? 1330 * 1331 * Answer: Yes, drivers may have changed it in their 1332 * f_op->mmap method. 1333 * 1334 * Ensures that vmas marked as uncached stay that way. 1335 */ 1336 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1337 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1338 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1339 } 1340 1341 vma_link(mm, vma, prev, rb_link, rb_parent); 1342 file = vma->vm_file; 1343 1344 /* Once vma denies write, undo our temporary denial count */ 1345 if (correct_wcount) 1346 atomic_inc(&inode->i_writecount); 1347 out: 1348 perf_event_mmap(vma); 1349 1350 mm->total_vm += len >> PAGE_SHIFT; 1351 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1352 if (vm_flags & VM_LOCKED) { 1353 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1354 mm->locked_vm += (len >> PAGE_SHIFT); 1355 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1356 make_pages_present(addr, addr + len); 1357 1358 if (file && uprobe_mmap(vma)) 1359 /* matching probes but cannot insert */ 1360 goto unmap_and_free_vma; 1361 1362 return addr; 1363 1364 unmap_and_free_vma: 1365 if (correct_wcount) 1366 atomic_inc(&inode->i_writecount); 1367 vma->vm_file = NULL; 1368 fput(file); 1369 1370 /* Undo any partial mapping done by a device driver. */ 1371 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1372 charged = 0; 1373 free_vma: 1374 kmem_cache_free(vm_area_cachep, vma); 1375 unacct_error: 1376 if (charged) 1377 vm_unacct_memory(charged); 1378 return error; 1379 } 1380 1381 /* Get an address range which is currently unmapped. 1382 * For shmat() with addr=0. 1383 * 1384 * Ugly calling convention alert: 1385 * Return value with the low bits set means error value, 1386 * ie 1387 * if (ret & ~PAGE_MASK) 1388 * error = ret; 1389 * 1390 * This function "knows" that -ENOMEM has the bits set. 1391 */ 1392 #ifndef HAVE_ARCH_UNMAPPED_AREA 1393 unsigned long 1394 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1395 unsigned long len, unsigned long pgoff, unsigned long flags) 1396 { 1397 struct mm_struct *mm = current->mm; 1398 struct vm_area_struct *vma; 1399 unsigned long start_addr; 1400 1401 if (len > TASK_SIZE) 1402 return -ENOMEM; 1403 1404 if (flags & MAP_FIXED) 1405 return addr; 1406 1407 if (addr) { 1408 addr = PAGE_ALIGN(addr); 1409 vma = find_vma(mm, addr); 1410 if (TASK_SIZE - len >= addr && 1411 (!vma || addr + len <= vma->vm_start)) 1412 return addr; 1413 } 1414 if (len > mm->cached_hole_size) { 1415 start_addr = addr = mm->free_area_cache; 1416 } else { 1417 start_addr = addr = TASK_UNMAPPED_BASE; 1418 mm->cached_hole_size = 0; 1419 } 1420 1421 full_search: 1422 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1423 /* At this point: (!vma || addr < vma->vm_end). */ 1424 if (TASK_SIZE - len < addr) { 1425 /* 1426 * Start a new search - just in case we missed 1427 * some holes. 1428 */ 1429 if (start_addr != TASK_UNMAPPED_BASE) { 1430 addr = TASK_UNMAPPED_BASE; 1431 start_addr = addr; 1432 mm->cached_hole_size = 0; 1433 goto full_search; 1434 } 1435 return -ENOMEM; 1436 } 1437 if (!vma || addr + len <= vma->vm_start) { 1438 /* 1439 * Remember the place where we stopped the search: 1440 */ 1441 mm->free_area_cache = addr + len; 1442 return addr; 1443 } 1444 if (addr + mm->cached_hole_size < vma->vm_start) 1445 mm->cached_hole_size = vma->vm_start - addr; 1446 addr = vma->vm_end; 1447 } 1448 } 1449 #endif 1450 1451 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1452 { 1453 /* 1454 * Is this a new hole at the lowest possible address? 1455 */ 1456 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1457 mm->free_area_cache = addr; 1458 } 1459 1460 /* 1461 * This mmap-allocator allocates new areas top-down from below the 1462 * stack's low limit (the base): 1463 */ 1464 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1465 unsigned long 1466 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1467 const unsigned long len, const unsigned long pgoff, 1468 const unsigned long flags) 1469 { 1470 struct vm_area_struct *vma; 1471 struct mm_struct *mm = current->mm; 1472 unsigned long addr = addr0, start_addr; 1473 1474 /* requested length too big for entire address space */ 1475 if (len > TASK_SIZE) 1476 return -ENOMEM; 1477 1478 if (flags & MAP_FIXED) 1479 return addr; 1480 1481 /* requesting a specific address */ 1482 if (addr) { 1483 addr = PAGE_ALIGN(addr); 1484 vma = find_vma(mm, addr); 1485 if (TASK_SIZE - len >= addr && 1486 (!vma || addr + len <= vma->vm_start)) 1487 return addr; 1488 } 1489 1490 /* check if free_area_cache is useful for us */ 1491 if (len <= mm->cached_hole_size) { 1492 mm->cached_hole_size = 0; 1493 mm->free_area_cache = mm->mmap_base; 1494 } 1495 1496 try_again: 1497 /* either no address requested or can't fit in requested address hole */ 1498 start_addr = addr = mm->free_area_cache; 1499 1500 if (addr < len) 1501 goto fail; 1502 1503 addr -= len; 1504 do { 1505 /* 1506 * Lookup failure means no vma is above this address, 1507 * else if new region fits below vma->vm_start, 1508 * return with success: 1509 */ 1510 vma = find_vma(mm, addr); 1511 if (!vma || addr+len <= vma->vm_start) 1512 /* remember the address as a hint for next time */ 1513 return (mm->free_area_cache = addr); 1514 1515 /* remember the largest hole we saw so far */ 1516 if (addr + mm->cached_hole_size < vma->vm_start) 1517 mm->cached_hole_size = vma->vm_start - addr; 1518 1519 /* try just below the current vma->vm_start */ 1520 addr = vma->vm_start-len; 1521 } while (len < vma->vm_start); 1522 1523 fail: 1524 /* 1525 * if hint left us with no space for the requested 1526 * mapping then try again: 1527 * 1528 * Note: this is different with the case of bottomup 1529 * which does the fully line-search, but we use find_vma 1530 * here that causes some holes skipped. 1531 */ 1532 if (start_addr != mm->mmap_base) { 1533 mm->free_area_cache = mm->mmap_base; 1534 mm->cached_hole_size = 0; 1535 goto try_again; 1536 } 1537 1538 /* 1539 * A failed mmap() very likely causes application failure, 1540 * so fall back to the bottom-up function here. This scenario 1541 * can happen with large stack limits and large mmap() 1542 * allocations. 1543 */ 1544 mm->cached_hole_size = ~0UL; 1545 mm->free_area_cache = TASK_UNMAPPED_BASE; 1546 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1547 /* 1548 * Restore the topdown base: 1549 */ 1550 mm->free_area_cache = mm->mmap_base; 1551 mm->cached_hole_size = ~0UL; 1552 1553 return addr; 1554 } 1555 #endif 1556 1557 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1558 { 1559 /* 1560 * Is this a new hole at the highest possible address? 1561 */ 1562 if (addr > mm->free_area_cache) 1563 mm->free_area_cache = addr; 1564 1565 /* dont allow allocations above current base */ 1566 if (mm->free_area_cache > mm->mmap_base) 1567 mm->free_area_cache = mm->mmap_base; 1568 } 1569 1570 unsigned long 1571 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1572 unsigned long pgoff, unsigned long flags) 1573 { 1574 unsigned long (*get_area)(struct file *, unsigned long, 1575 unsigned long, unsigned long, unsigned long); 1576 1577 unsigned long error = arch_mmap_check(addr, len, flags); 1578 if (error) 1579 return error; 1580 1581 /* Careful about overflows.. */ 1582 if (len > TASK_SIZE) 1583 return -ENOMEM; 1584 1585 get_area = current->mm->get_unmapped_area; 1586 if (file && file->f_op && file->f_op->get_unmapped_area) 1587 get_area = file->f_op->get_unmapped_area; 1588 addr = get_area(file, addr, len, pgoff, flags); 1589 if (IS_ERR_VALUE(addr)) 1590 return addr; 1591 1592 if (addr > TASK_SIZE - len) 1593 return -ENOMEM; 1594 if (addr & ~PAGE_MASK) 1595 return -EINVAL; 1596 1597 addr = arch_rebalance_pgtables(addr, len); 1598 error = security_mmap_addr(addr); 1599 return error ? error : addr; 1600 } 1601 1602 EXPORT_SYMBOL(get_unmapped_area); 1603 1604 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1605 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1606 { 1607 struct vm_area_struct *vma = NULL; 1608 1609 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ 1610 return NULL; 1611 1612 /* Check the cache first. */ 1613 /* (Cache hit rate is typically around 35%.) */ 1614 vma = mm->mmap_cache; 1615 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1616 struct rb_node *rb_node; 1617 1618 rb_node = mm->mm_rb.rb_node; 1619 vma = NULL; 1620 1621 while (rb_node) { 1622 struct vm_area_struct *vma_tmp; 1623 1624 vma_tmp = rb_entry(rb_node, 1625 struct vm_area_struct, vm_rb); 1626 1627 if (vma_tmp->vm_end > addr) { 1628 vma = vma_tmp; 1629 if (vma_tmp->vm_start <= addr) 1630 break; 1631 rb_node = rb_node->rb_left; 1632 } else 1633 rb_node = rb_node->rb_right; 1634 } 1635 if (vma) 1636 mm->mmap_cache = vma; 1637 } 1638 return vma; 1639 } 1640 1641 EXPORT_SYMBOL(find_vma); 1642 1643 /* 1644 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1645 */ 1646 struct vm_area_struct * 1647 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1648 struct vm_area_struct **pprev) 1649 { 1650 struct vm_area_struct *vma; 1651 1652 vma = find_vma(mm, addr); 1653 if (vma) { 1654 *pprev = vma->vm_prev; 1655 } else { 1656 struct rb_node *rb_node = mm->mm_rb.rb_node; 1657 *pprev = NULL; 1658 while (rb_node) { 1659 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1660 rb_node = rb_node->rb_right; 1661 } 1662 } 1663 return vma; 1664 } 1665 1666 /* 1667 * Verify that the stack growth is acceptable and 1668 * update accounting. This is shared with both the 1669 * grow-up and grow-down cases. 1670 */ 1671 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1672 { 1673 struct mm_struct *mm = vma->vm_mm; 1674 struct rlimit *rlim = current->signal->rlim; 1675 unsigned long new_start; 1676 1677 /* address space limit tests */ 1678 if (!may_expand_vm(mm, grow)) 1679 return -ENOMEM; 1680 1681 /* Stack limit test */ 1682 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1683 return -ENOMEM; 1684 1685 /* mlock limit tests */ 1686 if (vma->vm_flags & VM_LOCKED) { 1687 unsigned long locked; 1688 unsigned long limit; 1689 locked = mm->locked_vm + grow; 1690 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1691 limit >>= PAGE_SHIFT; 1692 if (locked > limit && !capable(CAP_IPC_LOCK)) 1693 return -ENOMEM; 1694 } 1695 1696 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1697 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1698 vma->vm_end - size; 1699 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1700 return -EFAULT; 1701 1702 /* 1703 * Overcommit.. This must be the final test, as it will 1704 * update security statistics. 1705 */ 1706 if (security_vm_enough_memory_mm(mm, grow)) 1707 return -ENOMEM; 1708 1709 /* Ok, everything looks good - let it rip */ 1710 mm->total_vm += grow; 1711 if (vma->vm_flags & VM_LOCKED) 1712 mm->locked_vm += grow; 1713 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1714 return 0; 1715 } 1716 1717 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1718 /* 1719 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1720 * vma is the last one with address > vma->vm_end. Have to extend vma. 1721 */ 1722 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1723 { 1724 int error; 1725 1726 if (!(vma->vm_flags & VM_GROWSUP)) 1727 return -EFAULT; 1728 1729 /* 1730 * We must make sure the anon_vma is allocated 1731 * so that the anon_vma locking is not a noop. 1732 */ 1733 if (unlikely(anon_vma_prepare(vma))) 1734 return -ENOMEM; 1735 vma_lock_anon_vma(vma); 1736 1737 /* 1738 * vma->vm_start/vm_end cannot change under us because the caller 1739 * is required to hold the mmap_sem in read mode. We need the 1740 * anon_vma lock to serialize against concurrent expand_stacks. 1741 * Also guard against wrapping around to address 0. 1742 */ 1743 if (address < PAGE_ALIGN(address+4)) 1744 address = PAGE_ALIGN(address+4); 1745 else { 1746 vma_unlock_anon_vma(vma); 1747 return -ENOMEM; 1748 } 1749 error = 0; 1750 1751 /* Somebody else might have raced and expanded it already */ 1752 if (address > vma->vm_end) { 1753 unsigned long size, grow; 1754 1755 size = address - vma->vm_start; 1756 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1757 1758 error = -ENOMEM; 1759 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1760 error = acct_stack_growth(vma, size, grow); 1761 if (!error) { 1762 vma->vm_end = address; 1763 perf_event_mmap(vma); 1764 } 1765 } 1766 } 1767 vma_unlock_anon_vma(vma); 1768 khugepaged_enter_vma_merge(vma); 1769 return error; 1770 } 1771 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1772 1773 /* 1774 * vma is the first one with address < vma->vm_start. Have to extend vma. 1775 */ 1776 int expand_downwards(struct vm_area_struct *vma, 1777 unsigned long address) 1778 { 1779 int error; 1780 1781 /* 1782 * We must make sure the anon_vma is allocated 1783 * so that the anon_vma locking is not a noop. 1784 */ 1785 if (unlikely(anon_vma_prepare(vma))) 1786 return -ENOMEM; 1787 1788 address &= PAGE_MASK; 1789 error = security_mmap_addr(address); 1790 if (error) 1791 return error; 1792 1793 vma_lock_anon_vma(vma); 1794 1795 /* 1796 * vma->vm_start/vm_end cannot change under us because the caller 1797 * is required to hold the mmap_sem in read mode. We need the 1798 * anon_vma lock to serialize against concurrent expand_stacks. 1799 */ 1800 1801 /* Somebody else might have raced and expanded it already */ 1802 if (address < vma->vm_start) { 1803 unsigned long size, grow; 1804 1805 size = vma->vm_end - address; 1806 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1807 1808 error = -ENOMEM; 1809 if (grow <= vma->vm_pgoff) { 1810 error = acct_stack_growth(vma, size, grow); 1811 if (!error) { 1812 vma->vm_start = address; 1813 vma->vm_pgoff -= grow; 1814 perf_event_mmap(vma); 1815 } 1816 } 1817 } 1818 vma_unlock_anon_vma(vma); 1819 khugepaged_enter_vma_merge(vma); 1820 return error; 1821 } 1822 1823 #ifdef CONFIG_STACK_GROWSUP 1824 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1825 { 1826 return expand_upwards(vma, address); 1827 } 1828 1829 struct vm_area_struct * 1830 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1831 { 1832 struct vm_area_struct *vma, *prev; 1833 1834 addr &= PAGE_MASK; 1835 vma = find_vma_prev(mm, addr, &prev); 1836 if (vma && (vma->vm_start <= addr)) 1837 return vma; 1838 if (!prev || expand_stack(prev, addr)) 1839 return NULL; 1840 if (prev->vm_flags & VM_LOCKED) { 1841 mlock_vma_pages_range(prev, addr, prev->vm_end); 1842 } 1843 return prev; 1844 } 1845 #else 1846 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1847 { 1848 return expand_downwards(vma, address); 1849 } 1850 1851 struct vm_area_struct * 1852 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1853 { 1854 struct vm_area_struct * vma; 1855 unsigned long start; 1856 1857 addr &= PAGE_MASK; 1858 vma = find_vma(mm,addr); 1859 if (!vma) 1860 return NULL; 1861 if (vma->vm_start <= addr) 1862 return vma; 1863 if (!(vma->vm_flags & VM_GROWSDOWN)) 1864 return NULL; 1865 start = vma->vm_start; 1866 if (expand_stack(vma, addr)) 1867 return NULL; 1868 if (vma->vm_flags & VM_LOCKED) { 1869 mlock_vma_pages_range(vma, addr, start); 1870 } 1871 return vma; 1872 } 1873 #endif 1874 1875 /* 1876 * Ok - we have the memory areas we should free on the vma list, 1877 * so release them, and do the vma updates. 1878 * 1879 * Called with the mm semaphore held. 1880 */ 1881 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1882 { 1883 unsigned long nr_accounted = 0; 1884 1885 /* Update high watermark before we lower total_vm */ 1886 update_hiwater_vm(mm); 1887 do { 1888 long nrpages = vma_pages(vma); 1889 1890 if (vma->vm_flags & VM_ACCOUNT) 1891 nr_accounted += nrpages; 1892 mm->total_vm -= nrpages; 1893 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1894 vma = remove_vma(vma); 1895 } while (vma); 1896 vm_unacct_memory(nr_accounted); 1897 validate_mm(mm); 1898 } 1899 1900 /* 1901 * Get rid of page table information in the indicated region. 1902 * 1903 * Called with the mm semaphore held. 1904 */ 1905 static void unmap_region(struct mm_struct *mm, 1906 struct vm_area_struct *vma, struct vm_area_struct *prev, 1907 unsigned long start, unsigned long end) 1908 { 1909 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1910 struct mmu_gather tlb; 1911 1912 lru_add_drain(); 1913 tlb_gather_mmu(&tlb, mm, 0); 1914 update_hiwater_rss(mm); 1915 unmap_vmas(&tlb, vma, start, end); 1916 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1917 next ? next->vm_start : 0); 1918 tlb_finish_mmu(&tlb, start, end); 1919 } 1920 1921 /* 1922 * Create a list of vma's touched by the unmap, removing them from the mm's 1923 * vma list as we go.. 1924 */ 1925 static void 1926 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1927 struct vm_area_struct *prev, unsigned long end) 1928 { 1929 struct vm_area_struct **insertion_point; 1930 struct vm_area_struct *tail_vma = NULL; 1931 unsigned long addr; 1932 1933 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1934 vma->vm_prev = NULL; 1935 do { 1936 rb_erase(&vma->vm_rb, &mm->mm_rb); 1937 mm->map_count--; 1938 tail_vma = vma; 1939 vma = vma->vm_next; 1940 } while (vma && vma->vm_start < end); 1941 *insertion_point = vma; 1942 if (vma) 1943 vma->vm_prev = prev; 1944 tail_vma->vm_next = NULL; 1945 if (mm->unmap_area == arch_unmap_area) 1946 addr = prev ? prev->vm_end : mm->mmap_base; 1947 else 1948 addr = vma ? vma->vm_start : mm->mmap_base; 1949 mm->unmap_area(mm, addr); 1950 mm->mmap_cache = NULL; /* Kill the cache. */ 1951 } 1952 1953 /* 1954 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1955 * munmap path where it doesn't make sense to fail. 1956 */ 1957 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1958 unsigned long addr, int new_below) 1959 { 1960 struct mempolicy *pol; 1961 struct vm_area_struct *new; 1962 int err = -ENOMEM; 1963 1964 if (is_vm_hugetlb_page(vma) && (addr & 1965 ~(huge_page_mask(hstate_vma(vma))))) 1966 return -EINVAL; 1967 1968 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1969 if (!new) 1970 goto out_err; 1971 1972 /* most fields are the same, copy all, and then fixup */ 1973 *new = *vma; 1974 1975 INIT_LIST_HEAD(&new->anon_vma_chain); 1976 1977 if (new_below) 1978 new->vm_end = addr; 1979 else { 1980 new->vm_start = addr; 1981 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1982 } 1983 1984 pol = mpol_dup(vma_policy(vma)); 1985 if (IS_ERR(pol)) { 1986 err = PTR_ERR(pol); 1987 goto out_free_vma; 1988 } 1989 vma_set_policy(new, pol); 1990 1991 if (anon_vma_clone(new, vma)) 1992 goto out_free_mpol; 1993 1994 if (new->vm_file) { 1995 get_file(new->vm_file); 1996 if (vma->vm_flags & VM_EXECUTABLE) 1997 added_exe_file_vma(mm); 1998 } 1999 2000 if (new->vm_ops && new->vm_ops->open) 2001 new->vm_ops->open(new); 2002 2003 if (new_below) 2004 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2005 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2006 else 2007 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2008 2009 /* Success. */ 2010 if (!err) 2011 return 0; 2012 2013 /* Clean everything up if vma_adjust failed. */ 2014 if (new->vm_ops && new->vm_ops->close) 2015 new->vm_ops->close(new); 2016 if (new->vm_file) { 2017 if (vma->vm_flags & VM_EXECUTABLE) 2018 removed_exe_file_vma(mm); 2019 fput(new->vm_file); 2020 } 2021 unlink_anon_vmas(new); 2022 out_free_mpol: 2023 mpol_put(pol); 2024 out_free_vma: 2025 kmem_cache_free(vm_area_cachep, new); 2026 out_err: 2027 return err; 2028 } 2029 2030 /* 2031 * Split a vma into two pieces at address 'addr', a new vma is allocated 2032 * either for the first part or the tail. 2033 */ 2034 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2035 unsigned long addr, int new_below) 2036 { 2037 if (mm->map_count >= sysctl_max_map_count) 2038 return -ENOMEM; 2039 2040 return __split_vma(mm, vma, addr, new_below); 2041 } 2042 2043 /* Munmap is split into 2 main parts -- this part which finds 2044 * what needs doing, and the areas themselves, which do the 2045 * work. This now handles partial unmappings. 2046 * Jeremy Fitzhardinge <jeremy@goop.org> 2047 */ 2048 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2049 { 2050 unsigned long end; 2051 struct vm_area_struct *vma, *prev, *last; 2052 2053 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2054 return -EINVAL; 2055 2056 if ((len = PAGE_ALIGN(len)) == 0) 2057 return -EINVAL; 2058 2059 /* Find the first overlapping VMA */ 2060 vma = find_vma(mm, start); 2061 if (!vma) 2062 return 0; 2063 prev = vma->vm_prev; 2064 /* we have start < vma->vm_end */ 2065 2066 /* if it doesn't overlap, we have nothing.. */ 2067 end = start + len; 2068 if (vma->vm_start >= end) 2069 return 0; 2070 2071 /* 2072 * If we need to split any vma, do it now to save pain later. 2073 * 2074 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2075 * unmapped vm_area_struct will remain in use: so lower split_vma 2076 * places tmp vma above, and higher split_vma places tmp vma below. 2077 */ 2078 if (start > vma->vm_start) { 2079 int error; 2080 2081 /* 2082 * Make sure that map_count on return from munmap() will 2083 * not exceed its limit; but let map_count go just above 2084 * its limit temporarily, to help free resources as expected. 2085 */ 2086 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2087 return -ENOMEM; 2088 2089 error = __split_vma(mm, vma, start, 0); 2090 if (error) 2091 return error; 2092 prev = vma; 2093 } 2094 2095 /* Does it split the last one? */ 2096 last = find_vma(mm, end); 2097 if (last && end > last->vm_start) { 2098 int error = __split_vma(mm, last, end, 1); 2099 if (error) 2100 return error; 2101 } 2102 vma = prev? prev->vm_next: mm->mmap; 2103 2104 /* 2105 * unlock any mlock()ed ranges before detaching vmas 2106 */ 2107 if (mm->locked_vm) { 2108 struct vm_area_struct *tmp = vma; 2109 while (tmp && tmp->vm_start < end) { 2110 if (tmp->vm_flags & VM_LOCKED) { 2111 mm->locked_vm -= vma_pages(tmp); 2112 munlock_vma_pages_all(tmp); 2113 } 2114 tmp = tmp->vm_next; 2115 } 2116 } 2117 2118 /* 2119 * Remove the vma's, and unmap the actual pages 2120 */ 2121 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2122 unmap_region(mm, vma, prev, start, end); 2123 2124 /* Fix up all other VM information */ 2125 remove_vma_list(mm, vma); 2126 2127 return 0; 2128 } 2129 2130 int vm_munmap(unsigned long start, size_t len) 2131 { 2132 int ret; 2133 struct mm_struct *mm = current->mm; 2134 2135 down_write(&mm->mmap_sem); 2136 ret = do_munmap(mm, start, len); 2137 up_write(&mm->mmap_sem); 2138 return ret; 2139 } 2140 EXPORT_SYMBOL(vm_munmap); 2141 2142 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2143 { 2144 profile_munmap(addr); 2145 return vm_munmap(addr, len); 2146 } 2147 2148 static inline void verify_mm_writelocked(struct mm_struct *mm) 2149 { 2150 #ifdef CONFIG_DEBUG_VM 2151 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2152 WARN_ON(1); 2153 up_read(&mm->mmap_sem); 2154 } 2155 #endif 2156 } 2157 2158 /* 2159 * this is really a simplified "do_mmap". it only handles 2160 * anonymous maps. eventually we may be able to do some 2161 * brk-specific accounting here. 2162 */ 2163 static unsigned long do_brk(unsigned long addr, unsigned long len) 2164 { 2165 struct mm_struct * mm = current->mm; 2166 struct vm_area_struct * vma, * prev; 2167 unsigned long flags; 2168 struct rb_node ** rb_link, * rb_parent; 2169 pgoff_t pgoff = addr >> PAGE_SHIFT; 2170 int error; 2171 2172 len = PAGE_ALIGN(len); 2173 if (!len) 2174 return addr; 2175 2176 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2177 2178 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2179 if (error & ~PAGE_MASK) 2180 return error; 2181 2182 /* 2183 * mlock MCL_FUTURE? 2184 */ 2185 if (mm->def_flags & VM_LOCKED) { 2186 unsigned long locked, lock_limit; 2187 locked = len >> PAGE_SHIFT; 2188 locked += mm->locked_vm; 2189 lock_limit = rlimit(RLIMIT_MEMLOCK); 2190 lock_limit >>= PAGE_SHIFT; 2191 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2192 return -EAGAIN; 2193 } 2194 2195 /* 2196 * mm->mmap_sem is required to protect against another thread 2197 * changing the mappings in case we sleep. 2198 */ 2199 verify_mm_writelocked(mm); 2200 2201 /* 2202 * Clear old maps. this also does some error checking for us 2203 */ 2204 munmap_back: 2205 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2206 if (vma && vma->vm_start < addr + len) { 2207 if (do_munmap(mm, addr, len)) 2208 return -ENOMEM; 2209 goto munmap_back; 2210 } 2211 2212 /* Check against address space limits *after* clearing old maps... */ 2213 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2214 return -ENOMEM; 2215 2216 if (mm->map_count > sysctl_max_map_count) 2217 return -ENOMEM; 2218 2219 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2220 return -ENOMEM; 2221 2222 /* Can we just expand an old private anonymous mapping? */ 2223 vma = vma_merge(mm, prev, addr, addr + len, flags, 2224 NULL, NULL, pgoff, NULL); 2225 if (vma) 2226 goto out; 2227 2228 /* 2229 * create a vma struct for an anonymous mapping 2230 */ 2231 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2232 if (!vma) { 2233 vm_unacct_memory(len >> PAGE_SHIFT); 2234 return -ENOMEM; 2235 } 2236 2237 INIT_LIST_HEAD(&vma->anon_vma_chain); 2238 vma->vm_mm = mm; 2239 vma->vm_start = addr; 2240 vma->vm_end = addr + len; 2241 vma->vm_pgoff = pgoff; 2242 vma->vm_flags = flags; 2243 vma->vm_page_prot = vm_get_page_prot(flags); 2244 vma_link(mm, vma, prev, rb_link, rb_parent); 2245 out: 2246 perf_event_mmap(vma); 2247 mm->total_vm += len >> PAGE_SHIFT; 2248 if (flags & VM_LOCKED) { 2249 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2250 mm->locked_vm += (len >> PAGE_SHIFT); 2251 } 2252 return addr; 2253 } 2254 2255 unsigned long vm_brk(unsigned long addr, unsigned long len) 2256 { 2257 struct mm_struct *mm = current->mm; 2258 unsigned long ret; 2259 2260 down_write(&mm->mmap_sem); 2261 ret = do_brk(addr, len); 2262 up_write(&mm->mmap_sem); 2263 return ret; 2264 } 2265 EXPORT_SYMBOL(vm_brk); 2266 2267 /* Release all mmaps. */ 2268 void exit_mmap(struct mm_struct *mm) 2269 { 2270 struct mmu_gather tlb; 2271 struct vm_area_struct *vma; 2272 unsigned long nr_accounted = 0; 2273 2274 /* mm's last user has gone, and its about to be pulled down */ 2275 mmu_notifier_release(mm); 2276 2277 if (mm->locked_vm) { 2278 vma = mm->mmap; 2279 while (vma) { 2280 if (vma->vm_flags & VM_LOCKED) 2281 munlock_vma_pages_all(vma); 2282 vma = vma->vm_next; 2283 } 2284 } 2285 2286 arch_exit_mmap(mm); 2287 2288 vma = mm->mmap; 2289 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2290 return; 2291 2292 lru_add_drain(); 2293 flush_cache_mm(mm); 2294 tlb_gather_mmu(&tlb, mm, 1); 2295 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2296 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2297 unmap_vmas(&tlb, vma, 0, -1); 2298 2299 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2300 tlb_finish_mmu(&tlb, 0, -1); 2301 2302 /* 2303 * Walk the list again, actually closing and freeing it, 2304 * with preemption enabled, without holding any MM locks. 2305 */ 2306 while (vma) { 2307 if (vma->vm_flags & VM_ACCOUNT) 2308 nr_accounted += vma_pages(vma); 2309 vma = remove_vma(vma); 2310 } 2311 vm_unacct_memory(nr_accounted); 2312 2313 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2314 } 2315 2316 /* Insert vm structure into process list sorted by address 2317 * and into the inode's i_mmap tree. If vm_file is non-NULL 2318 * then i_mmap_mutex is taken here. 2319 */ 2320 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2321 { 2322 struct vm_area_struct * __vma, * prev; 2323 struct rb_node ** rb_link, * rb_parent; 2324 2325 /* 2326 * The vm_pgoff of a purely anonymous vma should be irrelevant 2327 * until its first write fault, when page's anon_vma and index 2328 * are set. But now set the vm_pgoff it will almost certainly 2329 * end up with (unless mremap moves it elsewhere before that 2330 * first wfault), so /proc/pid/maps tells a consistent story. 2331 * 2332 * By setting it to reflect the virtual start address of the 2333 * vma, merges and splits can happen in a seamless way, just 2334 * using the existing file pgoff checks and manipulations. 2335 * Similarly in do_mmap_pgoff and in do_brk. 2336 */ 2337 if (!vma->vm_file) { 2338 BUG_ON(vma->anon_vma); 2339 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2340 } 2341 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2342 if (__vma && __vma->vm_start < vma->vm_end) 2343 return -ENOMEM; 2344 if ((vma->vm_flags & VM_ACCOUNT) && 2345 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2346 return -ENOMEM; 2347 2348 if (vma->vm_file && uprobe_mmap(vma)) 2349 return -EINVAL; 2350 2351 vma_link(mm, vma, prev, rb_link, rb_parent); 2352 return 0; 2353 } 2354 2355 /* 2356 * Copy the vma structure to a new location in the same mm, 2357 * prior to moving page table entries, to effect an mremap move. 2358 */ 2359 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2360 unsigned long addr, unsigned long len, pgoff_t pgoff) 2361 { 2362 struct vm_area_struct *vma = *vmap; 2363 unsigned long vma_start = vma->vm_start; 2364 struct mm_struct *mm = vma->vm_mm; 2365 struct vm_area_struct *new_vma, *prev; 2366 struct rb_node **rb_link, *rb_parent; 2367 struct mempolicy *pol; 2368 bool faulted_in_anon_vma = true; 2369 2370 /* 2371 * If anonymous vma has not yet been faulted, update new pgoff 2372 * to match new location, to increase its chance of merging. 2373 */ 2374 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2375 pgoff = addr >> PAGE_SHIFT; 2376 faulted_in_anon_vma = false; 2377 } 2378 2379 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2380 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2381 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2382 if (new_vma) { 2383 /* 2384 * Source vma may have been merged into new_vma 2385 */ 2386 if (unlikely(vma_start >= new_vma->vm_start && 2387 vma_start < new_vma->vm_end)) { 2388 /* 2389 * The only way we can get a vma_merge with 2390 * self during an mremap is if the vma hasn't 2391 * been faulted in yet and we were allowed to 2392 * reset the dst vma->vm_pgoff to the 2393 * destination address of the mremap to allow 2394 * the merge to happen. mremap must change the 2395 * vm_pgoff linearity between src and dst vmas 2396 * (in turn preventing a vma_merge) to be 2397 * safe. It is only safe to keep the vm_pgoff 2398 * linear if there are no pages mapped yet. 2399 */ 2400 VM_BUG_ON(faulted_in_anon_vma); 2401 *vmap = new_vma; 2402 } else 2403 anon_vma_moveto_tail(new_vma); 2404 } else { 2405 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2406 if (new_vma) { 2407 *new_vma = *vma; 2408 pol = mpol_dup(vma_policy(vma)); 2409 if (IS_ERR(pol)) 2410 goto out_free_vma; 2411 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2412 if (anon_vma_clone(new_vma, vma)) 2413 goto out_free_mempol; 2414 vma_set_policy(new_vma, pol); 2415 new_vma->vm_start = addr; 2416 new_vma->vm_end = addr + len; 2417 new_vma->vm_pgoff = pgoff; 2418 if (new_vma->vm_file) { 2419 get_file(new_vma->vm_file); 2420 2421 if (uprobe_mmap(new_vma)) 2422 goto out_free_mempol; 2423 2424 if (vma->vm_flags & VM_EXECUTABLE) 2425 added_exe_file_vma(mm); 2426 } 2427 if (new_vma->vm_ops && new_vma->vm_ops->open) 2428 new_vma->vm_ops->open(new_vma); 2429 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2430 } 2431 } 2432 return new_vma; 2433 2434 out_free_mempol: 2435 mpol_put(pol); 2436 out_free_vma: 2437 kmem_cache_free(vm_area_cachep, new_vma); 2438 return NULL; 2439 } 2440 2441 /* 2442 * Return true if the calling process may expand its vm space by the passed 2443 * number of pages 2444 */ 2445 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2446 { 2447 unsigned long cur = mm->total_vm; /* pages */ 2448 unsigned long lim; 2449 2450 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2451 2452 if (cur + npages > lim) 2453 return 0; 2454 return 1; 2455 } 2456 2457 2458 static int special_mapping_fault(struct vm_area_struct *vma, 2459 struct vm_fault *vmf) 2460 { 2461 pgoff_t pgoff; 2462 struct page **pages; 2463 2464 /* 2465 * special mappings have no vm_file, and in that case, the mm 2466 * uses vm_pgoff internally. So we have to subtract it from here. 2467 * We are allowed to do this because we are the mm; do not copy 2468 * this code into drivers! 2469 */ 2470 pgoff = vmf->pgoff - vma->vm_pgoff; 2471 2472 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2473 pgoff--; 2474 2475 if (*pages) { 2476 struct page *page = *pages; 2477 get_page(page); 2478 vmf->page = page; 2479 return 0; 2480 } 2481 2482 return VM_FAULT_SIGBUS; 2483 } 2484 2485 /* 2486 * Having a close hook prevents vma merging regardless of flags. 2487 */ 2488 static void special_mapping_close(struct vm_area_struct *vma) 2489 { 2490 } 2491 2492 static const struct vm_operations_struct special_mapping_vmops = { 2493 .close = special_mapping_close, 2494 .fault = special_mapping_fault, 2495 }; 2496 2497 /* 2498 * Called with mm->mmap_sem held for writing. 2499 * Insert a new vma covering the given region, with the given flags. 2500 * Its pages are supplied by the given array of struct page *. 2501 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2502 * The region past the last page supplied will always produce SIGBUS. 2503 * The array pointer and the pages it points to are assumed to stay alive 2504 * for as long as this mapping might exist. 2505 */ 2506 int install_special_mapping(struct mm_struct *mm, 2507 unsigned long addr, unsigned long len, 2508 unsigned long vm_flags, struct page **pages) 2509 { 2510 int ret; 2511 struct vm_area_struct *vma; 2512 2513 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2514 if (unlikely(vma == NULL)) 2515 return -ENOMEM; 2516 2517 INIT_LIST_HEAD(&vma->anon_vma_chain); 2518 vma->vm_mm = mm; 2519 vma->vm_start = addr; 2520 vma->vm_end = addr + len; 2521 2522 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2524 2525 vma->vm_ops = &special_mapping_vmops; 2526 vma->vm_private_data = pages; 2527 2528 ret = insert_vm_struct(mm, vma); 2529 if (ret) 2530 goto out; 2531 2532 mm->total_vm += len >> PAGE_SHIFT; 2533 2534 perf_event_mmap(vma); 2535 2536 return 0; 2537 2538 out: 2539 kmem_cache_free(vm_area_cachep, vma); 2540 return ret; 2541 } 2542 2543 static DEFINE_MUTEX(mm_all_locks_mutex); 2544 2545 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2546 { 2547 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2548 /* 2549 * The LSB of head.next can't change from under us 2550 * because we hold the mm_all_locks_mutex. 2551 */ 2552 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2553 /* 2554 * We can safely modify head.next after taking the 2555 * anon_vma->root->mutex. If some other vma in this mm shares 2556 * the same anon_vma we won't take it again. 2557 * 2558 * No need of atomic instructions here, head.next 2559 * can't change from under us thanks to the 2560 * anon_vma->root->mutex. 2561 */ 2562 if (__test_and_set_bit(0, (unsigned long *) 2563 &anon_vma->root->head.next)) 2564 BUG(); 2565 } 2566 } 2567 2568 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2569 { 2570 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2571 /* 2572 * AS_MM_ALL_LOCKS can't change from under us because 2573 * we hold the mm_all_locks_mutex. 2574 * 2575 * Operations on ->flags have to be atomic because 2576 * even if AS_MM_ALL_LOCKS is stable thanks to the 2577 * mm_all_locks_mutex, there may be other cpus 2578 * changing other bitflags in parallel to us. 2579 */ 2580 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2581 BUG(); 2582 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2583 } 2584 } 2585 2586 /* 2587 * This operation locks against the VM for all pte/vma/mm related 2588 * operations that could ever happen on a certain mm. This includes 2589 * vmtruncate, try_to_unmap, and all page faults. 2590 * 2591 * The caller must take the mmap_sem in write mode before calling 2592 * mm_take_all_locks(). The caller isn't allowed to release the 2593 * mmap_sem until mm_drop_all_locks() returns. 2594 * 2595 * mmap_sem in write mode is required in order to block all operations 2596 * that could modify pagetables and free pages without need of 2597 * altering the vma layout (for example populate_range() with 2598 * nonlinear vmas). It's also needed in write mode to avoid new 2599 * anon_vmas to be associated with existing vmas. 2600 * 2601 * A single task can't take more than one mm_take_all_locks() in a row 2602 * or it would deadlock. 2603 * 2604 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2605 * mapping->flags avoid to take the same lock twice, if more than one 2606 * vma in this mm is backed by the same anon_vma or address_space. 2607 * 2608 * We can take all the locks in random order because the VM code 2609 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2610 * takes more than one of them in a row. Secondly we're protected 2611 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2612 * 2613 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2614 * that may have to take thousand of locks. 2615 * 2616 * mm_take_all_locks() can fail if it's interrupted by signals. 2617 */ 2618 int mm_take_all_locks(struct mm_struct *mm) 2619 { 2620 struct vm_area_struct *vma; 2621 struct anon_vma_chain *avc; 2622 2623 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2624 2625 mutex_lock(&mm_all_locks_mutex); 2626 2627 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2628 if (signal_pending(current)) 2629 goto out_unlock; 2630 if (vma->vm_file && vma->vm_file->f_mapping) 2631 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2632 } 2633 2634 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2635 if (signal_pending(current)) 2636 goto out_unlock; 2637 if (vma->anon_vma) 2638 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2639 vm_lock_anon_vma(mm, avc->anon_vma); 2640 } 2641 2642 return 0; 2643 2644 out_unlock: 2645 mm_drop_all_locks(mm); 2646 return -EINTR; 2647 } 2648 2649 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2650 { 2651 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2652 /* 2653 * The LSB of head.next can't change to 0 from under 2654 * us because we hold the mm_all_locks_mutex. 2655 * 2656 * We must however clear the bitflag before unlocking 2657 * the vma so the users using the anon_vma->head will 2658 * never see our bitflag. 2659 * 2660 * No need of atomic instructions here, head.next 2661 * can't change from under us until we release the 2662 * anon_vma->root->mutex. 2663 */ 2664 if (!__test_and_clear_bit(0, (unsigned long *) 2665 &anon_vma->root->head.next)) 2666 BUG(); 2667 anon_vma_unlock(anon_vma); 2668 } 2669 } 2670 2671 static void vm_unlock_mapping(struct address_space *mapping) 2672 { 2673 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2674 /* 2675 * AS_MM_ALL_LOCKS can't change to 0 from under us 2676 * because we hold the mm_all_locks_mutex. 2677 */ 2678 mutex_unlock(&mapping->i_mmap_mutex); 2679 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2680 &mapping->flags)) 2681 BUG(); 2682 } 2683 } 2684 2685 /* 2686 * The mmap_sem cannot be released by the caller until 2687 * mm_drop_all_locks() returns. 2688 */ 2689 void mm_drop_all_locks(struct mm_struct *mm) 2690 { 2691 struct vm_area_struct *vma; 2692 struct anon_vma_chain *avc; 2693 2694 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2695 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2696 2697 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2698 if (vma->anon_vma) 2699 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2700 vm_unlock_anon_vma(avc->anon_vma); 2701 if (vma->vm_file && vma->vm_file->f_mapping) 2702 vm_unlock_mapping(vma->vm_file->f_mapping); 2703 } 2704 2705 mutex_unlock(&mm_all_locks_mutex); 2706 } 2707 2708 /* 2709 * initialise the VMA slab 2710 */ 2711 void __init mmap_init(void) 2712 { 2713 int ret; 2714 2715 ret = percpu_counter_init(&vm_committed_as, 0); 2716 VM_BUG_ON(ret); 2717 } 2718