xref: /linux/mm/mmap.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/mount.h>
25 #include <linux/mempolicy.h>
26 #include <linux/rmap.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 
32 static void unmap_region(struct mm_struct *mm,
33 		struct vm_area_struct *vma, struct vm_area_struct *prev,
34 		unsigned long start, unsigned long end);
35 
36 /*
37  * WARNING: the debugging will use recursive algorithms so never enable this
38  * unless you know what you are doing.
39  */
40 #undef DEBUG_MM_RB
41 
42 /* description of effects of mapping type and prot in current implementation.
43  * this is due to the limited x86 page protection hardware.  The expected
44  * behavior is in parens:
45  *
46  * map_type	prot
47  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
48  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
49  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
50  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
51  *
52  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
53  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
54  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
55  *
56  */
57 pgprot_t protection_map[16] = {
58 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
59 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
60 };
61 
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50;	/* default is 50% */
64 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
65 atomic_t vm_committed_space = ATOMIC_INIT(0);
66 
67 /*
68  * Check that a process has enough memory to allocate a new virtual
69  * mapping. 0 means there is enough memory for the allocation to
70  * succeed and -ENOMEM implies there is not.
71  *
72  * We currently support three overcommit policies, which are set via the
73  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
74  *
75  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
76  * Additional code 2002 Jul 20 by Robert Love.
77  *
78  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
79  *
80  * Note this is a helper function intended to be used by LSMs which
81  * wish to use this logic.
82  */
83 int __vm_enough_memory(long pages, int cap_sys_admin)
84 {
85 	unsigned long free, allowed;
86 
87 	vm_acct_memory(pages);
88 
89 	/*
90 	 * Sometimes we want to use more memory than we have
91 	 */
92 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
93 		return 0;
94 
95 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
96 		unsigned long n;
97 
98 		free = get_page_cache_size();
99 		free += nr_swap_pages;
100 
101 		/*
102 		 * Any slabs which are created with the
103 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
104 		 * which are reclaimable, under pressure.  The dentry
105 		 * cache and most inode caches should fall into this
106 		 */
107 		free += atomic_read(&slab_reclaim_pages);
108 
109 		/*
110 		 * Leave the last 3% for root
111 		 */
112 		if (!cap_sys_admin)
113 			free -= free / 32;
114 
115 		if (free > pages)
116 			return 0;
117 
118 		/*
119 		 * nr_free_pages() is very expensive on large systems,
120 		 * only call if we're about to fail.
121 		 */
122 		n = nr_free_pages();
123 		if (!cap_sys_admin)
124 			n -= n / 32;
125 		free += n;
126 
127 		if (free > pages)
128 			return 0;
129 		vm_unacct_memory(pages);
130 		return -ENOMEM;
131 	}
132 
133 	allowed = (totalram_pages - hugetlb_total_pages())
134 	       	* sysctl_overcommit_ratio / 100;
135 	/*
136 	 * Leave the last 3% for root
137 	 */
138 	if (!cap_sys_admin)
139 		allowed -= allowed / 32;
140 	allowed += total_swap_pages;
141 
142 	/* Don't let a single process grow too big:
143 	   leave 3% of the size of this process for other processes */
144 	allowed -= current->mm->total_vm / 32;
145 
146 	/*
147 	 * cast `allowed' as a signed long because vm_committed_space
148 	 * sometimes has a negative value
149 	 */
150 	if (atomic_read(&vm_committed_space) < (long)allowed)
151 		return 0;
152 
153 	vm_unacct_memory(pages);
154 
155 	return -ENOMEM;
156 }
157 
158 EXPORT_SYMBOL(sysctl_overcommit_memory);
159 EXPORT_SYMBOL(sysctl_overcommit_ratio);
160 EXPORT_SYMBOL(sysctl_max_map_count);
161 EXPORT_SYMBOL(vm_committed_space);
162 EXPORT_SYMBOL(__vm_enough_memory);
163 
164 /*
165  * Requires inode->i_mapping->i_mmap_lock
166  */
167 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
168 		struct file *file, struct address_space *mapping)
169 {
170 	if (vma->vm_flags & VM_DENYWRITE)
171 		atomic_inc(&file->f_dentry->d_inode->i_writecount);
172 	if (vma->vm_flags & VM_SHARED)
173 		mapping->i_mmap_writable--;
174 
175 	flush_dcache_mmap_lock(mapping);
176 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
177 		list_del_init(&vma->shared.vm_set.list);
178 	else
179 		vma_prio_tree_remove(vma, &mapping->i_mmap);
180 	flush_dcache_mmap_unlock(mapping);
181 }
182 
183 /*
184  * Remove one vm structure and free it.
185  */
186 static void remove_vm_struct(struct vm_area_struct *vma)
187 {
188 	struct file *file = vma->vm_file;
189 
190 	might_sleep();
191 	if (file) {
192 		struct address_space *mapping = file->f_mapping;
193 		spin_lock(&mapping->i_mmap_lock);
194 		__remove_shared_vm_struct(vma, file, mapping);
195 		spin_unlock(&mapping->i_mmap_lock);
196 	}
197 	if (vma->vm_ops && vma->vm_ops->close)
198 		vma->vm_ops->close(vma);
199 	if (file)
200 		fput(file);
201 	anon_vma_unlink(vma);
202 	mpol_free(vma_policy(vma));
203 	kmem_cache_free(vm_area_cachep, vma);
204 }
205 
206 asmlinkage unsigned long sys_brk(unsigned long brk)
207 {
208 	unsigned long rlim, retval;
209 	unsigned long newbrk, oldbrk;
210 	struct mm_struct *mm = current->mm;
211 
212 	down_write(&mm->mmap_sem);
213 
214 	if (brk < mm->end_code)
215 		goto out;
216 	newbrk = PAGE_ALIGN(brk);
217 	oldbrk = PAGE_ALIGN(mm->brk);
218 	if (oldbrk == newbrk)
219 		goto set_brk;
220 
221 	/* Always allow shrinking brk. */
222 	if (brk <= mm->brk) {
223 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
224 			goto set_brk;
225 		goto out;
226 	}
227 
228 	/* Check against rlimit.. */
229 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
230 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
231 		goto out;
232 
233 	/* Check against existing mmap mappings. */
234 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
235 		goto out;
236 
237 	/* Ok, looks good - let it rip. */
238 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
239 		goto out;
240 set_brk:
241 	mm->brk = brk;
242 out:
243 	retval = mm->brk;
244 	up_write(&mm->mmap_sem);
245 	return retval;
246 }
247 
248 #ifdef DEBUG_MM_RB
249 static int browse_rb(struct rb_root *root)
250 {
251 	int i = 0, j;
252 	struct rb_node *nd, *pn = NULL;
253 	unsigned long prev = 0, pend = 0;
254 
255 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
256 		struct vm_area_struct *vma;
257 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
258 		if (vma->vm_start < prev)
259 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
260 		if (vma->vm_start < pend)
261 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
262 		if (vma->vm_start > vma->vm_end)
263 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
264 		i++;
265 		pn = nd;
266 	}
267 	j = 0;
268 	for (nd = pn; nd; nd = rb_prev(nd)) {
269 		j++;
270 	}
271 	if (i != j)
272 		printk("backwards %d, forwards %d\n", j, i), i = 0;
273 	return i;
274 }
275 
276 void validate_mm(struct mm_struct *mm)
277 {
278 	int bug = 0;
279 	int i = 0;
280 	struct vm_area_struct *tmp = mm->mmap;
281 	while (tmp) {
282 		tmp = tmp->vm_next;
283 		i++;
284 	}
285 	if (i != mm->map_count)
286 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
287 	i = browse_rb(&mm->mm_rb);
288 	if (i != mm->map_count)
289 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
290 	if (bug)
291 		BUG();
292 }
293 #else
294 #define validate_mm(mm) do { } while (0)
295 #endif
296 
297 static struct vm_area_struct *
298 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
299 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
300 		struct rb_node ** rb_parent)
301 {
302 	struct vm_area_struct * vma;
303 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
304 
305 	__rb_link = &mm->mm_rb.rb_node;
306 	rb_prev = __rb_parent = NULL;
307 	vma = NULL;
308 
309 	while (*__rb_link) {
310 		struct vm_area_struct *vma_tmp;
311 
312 		__rb_parent = *__rb_link;
313 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
314 
315 		if (vma_tmp->vm_end > addr) {
316 			vma = vma_tmp;
317 			if (vma_tmp->vm_start <= addr)
318 				return vma;
319 			__rb_link = &__rb_parent->rb_left;
320 		} else {
321 			rb_prev = __rb_parent;
322 			__rb_link = &__rb_parent->rb_right;
323 		}
324 	}
325 
326 	*pprev = NULL;
327 	if (rb_prev)
328 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
329 	*rb_link = __rb_link;
330 	*rb_parent = __rb_parent;
331 	return vma;
332 }
333 
334 static inline void
335 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
336 		struct vm_area_struct *prev, struct rb_node *rb_parent)
337 {
338 	if (prev) {
339 		vma->vm_next = prev->vm_next;
340 		prev->vm_next = vma;
341 	} else {
342 		mm->mmap = vma;
343 		if (rb_parent)
344 			vma->vm_next = rb_entry(rb_parent,
345 					struct vm_area_struct, vm_rb);
346 		else
347 			vma->vm_next = NULL;
348 	}
349 }
350 
351 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
352 		struct rb_node **rb_link, struct rb_node *rb_parent)
353 {
354 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
355 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
356 }
357 
358 static inline void __vma_link_file(struct vm_area_struct *vma)
359 {
360 	struct file * file;
361 
362 	file = vma->vm_file;
363 	if (file) {
364 		struct address_space *mapping = file->f_mapping;
365 
366 		if (vma->vm_flags & VM_DENYWRITE)
367 			atomic_dec(&file->f_dentry->d_inode->i_writecount);
368 		if (vma->vm_flags & VM_SHARED)
369 			mapping->i_mmap_writable++;
370 
371 		flush_dcache_mmap_lock(mapping);
372 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
373 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
374 		else
375 			vma_prio_tree_insert(vma, &mapping->i_mmap);
376 		flush_dcache_mmap_unlock(mapping);
377 	}
378 }
379 
380 static void
381 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
382 	struct vm_area_struct *prev, struct rb_node **rb_link,
383 	struct rb_node *rb_parent)
384 {
385 	__vma_link_list(mm, vma, prev, rb_parent);
386 	__vma_link_rb(mm, vma, rb_link, rb_parent);
387 	__anon_vma_link(vma);
388 }
389 
390 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
391 			struct vm_area_struct *prev, struct rb_node **rb_link,
392 			struct rb_node *rb_parent)
393 {
394 	struct address_space *mapping = NULL;
395 
396 	if (vma->vm_file)
397 		mapping = vma->vm_file->f_mapping;
398 
399 	if (mapping) {
400 		spin_lock(&mapping->i_mmap_lock);
401 		vma->vm_truncate_count = mapping->truncate_count;
402 	}
403 	anon_vma_lock(vma);
404 
405 	__vma_link(mm, vma, prev, rb_link, rb_parent);
406 	__vma_link_file(vma);
407 
408 	anon_vma_unlock(vma);
409 	if (mapping)
410 		spin_unlock(&mapping->i_mmap_lock);
411 
412 	mm->map_count++;
413 	validate_mm(mm);
414 }
415 
416 /*
417  * Helper for vma_adjust in the split_vma insert case:
418  * insert vm structure into list and rbtree and anon_vma,
419  * but it has already been inserted into prio_tree earlier.
420  */
421 static void
422 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
423 {
424 	struct vm_area_struct * __vma, * prev;
425 	struct rb_node ** rb_link, * rb_parent;
426 
427 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
428 	if (__vma && __vma->vm_start < vma->vm_end)
429 		BUG();
430 	__vma_link(mm, vma, prev, rb_link, rb_parent);
431 	mm->map_count++;
432 }
433 
434 static inline void
435 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
436 		struct vm_area_struct *prev)
437 {
438 	prev->vm_next = vma->vm_next;
439 	rb_erase(&vma->vm_rb, &mm->mm_rb);
440 	if (mm->mmap_cache == vma)
441 		mm->mmap_cache = prev;
442 }
443 
444 /*
445  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
446  * is already present in an i_mmap tree without adjusting the tree.
447  * The following helper function should be used when such adjustments
448  * are necessary.  The "insert" vma (if any) is to be inserted
449  * before we drop the necessary locks.
450  */
451 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
452 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
453 {
454 	struct mm_struct *mm = vma->vm_mm;
455 	struct vm_area_struct *next = vma->vm_next;
456 	struct vm_area_struct *importer = NULL;
457 	struct address_space *mapping = NULL;
458 	struct prio_tree_root *root = NULL;
459 	struct file *file = vma->vm_file;
460 	struct anon_vma *anon_vma = NULL;
461 	long adjust_next = 0;
462 	int remove_next = 0;
463 
464 	if (next && !insert) {
465 		if (end >= next->vm_end) {
466 			/*
467 			 * vma expands, overlapping all the next, and
468 			 * perhaps the one after too (mprotect case 6).
469 			 */
470 again:			remove_next = 1 + (end > next->vm_end);
471 			end = next->vm_end;
472 			anon_vma = next->anon_vma;
473 			importer = vma;
474 		} else if (end > next->vm_start) {
475 			/*
476 			 * vma expands, overlapping part of the next:
477 			 * mprotect case 5 shifting the boundary up.
478 			 */
479 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
480 			anon_vma = next->anon_vma;
481 			importer = vma;
482 		} else if (end < vma->vm_end) {
483 			/*
484 			 * vma shrinks, and !insert tells it's not
485 			 * split_vma inserting another: so it must be
486 			 * mprotect case 4 shifting the boundary down.
487 			 */
488 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
489 			anon_vma = next->anon_vma;
490 			importer = next;
491 		}
492 	}
493 
494 	if (file) {
495 		mapping = file->f_mapping;
496 		if (!(vma->vm_flags & VM_NONLINEAR))
497 			root = &mapping->i_mmap;
498 		spin_lock(&mapping->i_mmap_lock);
499 		if (importer &&
500 		    vma->vm_truncate_count != next->vm_truncate_count) {
501 			/*
502 			 * unmap_mapping_range might be in progress:
503 			 * ensure that the expanding vma is rescanned.
504 			 */
505 			importer->vm_truncate_count = 0;
506 		}
507 		if (insert) {
508 			insert->vm_truncate_count = vma->vm_truncate_count;
509 			/*
510 			 * Put into prio_tree now, so instantiated pages
511 			 * are visible to arm/parisc __flush_dcache_page
512 			 * throughout; but we cannot insert into address
513 			 * space until vma start or end is updated.
514 			 */
515 			__vma_link_file(insert);
516 		}
517 	}
518 
519 	/*
520 	 * When changing only vma->vm_end, we don't really need
521 	 * anon_vma lock: but is that case worth optimizing out?
522 	 */
523 	if (vma->anon_vma)
524 		anon_vma = vma->anon_vma;
525 	if (anon_vma) {
526 		spin_lock(&anon_vma->lock);
527 		/*
528 		 * Easily overlooked: when mprotect shifts the boundary,
529 		 * make sure the expanding vma has anon_vma set if the
530 		 * shrinking vma had, to cover any anon pages imported.
531 		 */
532 		if (importer && !importer->anon_vma) {
533 			importer->anon_vma = anon_vma;
534 			__anon_vma_link(importer);
535 		}
536 	}
537 
538 	if (root) {
539 		flush_dcache_mmap_lock(mapping);
540 		vma_prio_tree_remove(vma, root);
541 		if (adjust_next)
542 			vma_prio_tree_remove(next, root);
543 	}
544 
545 	vma->vm_start = start;
546 	vma->vm_end = end;
547 	vma->vm_pgoff = pgoff;
548 	if (adjust_next) {
549 		next->vm_start += adjust_next << PAGE_SHIFT;
550 		next->vm_pgoff += adjust_next;
551 	}
552 
553 	if (root) {
554 		if (adjust_next)
555 			vma_prio_tree_insert(next, root);
556 		vma_prio_tree_insert(vma, root);
557 		flush_dcache_mmap_unlock(mapping);
558 	}
559 
560 	if (remove_next) {
561 		/*
562 		 * vma_merge has merged next into vma, and needs
563 		 * us to remove next before dropping the locks.
564 		 */
565 		__vma_unlink(mm, next, vma);
566 		if (file)
567 			__remove_shared_vm_struct(next, file, mapping);
568 		if (next->anon_vma)
569 			__anon_vma_merge(vma, next);
570 	} else if (insert) {
571 		/*
572 		 * split_vma has split insert from vma, and needs
573 		 * us to insert it before dropping the locks
574 		 * (it may either follow vma or precede it).
575 		 */
576 		__insert_vm_struct(mm, insert);
577 	}
578 
579 	if (anon_vma)
580 		spin_unlock(&anon_vma->lock);
581 	if (mapping)
582 		spin_unlock(&mapping->i_mmap_lock);
583 
584 	if (remove_next) {
585 		if (file)
586 			fput(file);
587 		mm->map_count--;
588 		mpol_free(vma_policy(next));
589 		kmem_cache_free(vm_area_cachep, next);
590 		/*
591 		 * In mprotect's case 6 (see comments on vma_merge),
592 		 * we must remove another next too. It would clutter
593 		 * up the code too much to do both in one go.
594 		 */
595 		if (remove_next == 2) {
596 			next = vma->vm_next;
597 			goto again;
598 		}
599 	}
600 
601 	validate_mm(mm);
602 }
603 
604 /*
605  * If the vma has a ->close operation then the driver probably needs to release
606  * per-vma resources, so we don't attempt to merge those.
607  */
608 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
609 
610 static inline int is_mergeable_vma(struct vm_area_struct *vma,
611 			struct file *file, unsigned long vm_flags)
612 {
613 	if (vma->vm_flags != vm_flags)
614 		return 0;
615 	if (vma->vm_file != file)
616 		return 0;
617 	if (vma->vm_ops && vma->vm_ops->close)
618 		return 0;
619 	return 1;
620 }
621 
622 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
623 					struct anon_vma *anon_vma2)
624 {
625 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
626 }
627 
628 /*
629  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
630  * in front of (at a lower virtual address and file offset than) the vma.
631  *
632  * We cannot merge two vmas if they have differently assigned (non-NULL)
633  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
634  *
635  * We don't check here for the merged mmap wrapping around the end of pagecache
636  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
637  * wrap, nor mmaps which cover the final page at index -1UL.
638  */
639 static int
640 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
641 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
642 {
643 	if (is_mergeable_vma(vma, file, vm_flags) &&
644 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
645 		if (vma->vm_pgoff == vm_pgoff)
646 			return 1;
647 	}
648 	return 0;
649 }
650 
651 /*
652  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
653  * beyond (at a higher virtual address and file offset than) the vma.
654  *
655  * We cannot merge two vmas if they have differently assigned (non-NULL)
656  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
657  */
658 static int
659 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
660 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
661 {
662 	if (is_mergeable_vma(vma, file, vm_flags) &&
663 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
664 		pgoff_t vm_pglen;
665 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
666 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
667 			return 1;
668 	}
669 	return 0;
670 }
671 
672 /*
673  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
674  * whether that can be merged with its predecessor or its successor.
675  * Or both (it neatly fills a hole).
676  *
677  * In most cases - when called for mmap, brk or mremap - [addr,end) is
678  * certain not to be mapped by the time vma_merge is called; but when
679  * called for mprotect, it is certain to be already mapped (either at
680  * an offset within prev, or at the start of next), and the flags of
681  * this area are about to be changed to vm_flags - and the no-change
682  * case has already been eliminated.
683  *
684  * The following mprotect cases have to be considered, where AAAA is
685  * the area passed down from mprotect_fixup, never extending beyond one
686  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
687  *
688  *     AAAA             AAAA                AAAA          AAAA
689  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
690  *    cannot merge    might become    might become    might become
691  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
692  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
693  *    mremap move:                                    PPPPNNNNNNNN 8
694  *        AAAA
695  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
696  *    might become    case 1 below    case 2 below    case 3 below
697  *
698  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
699  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
700  */
701 struct vm_area_struct *vma_merge(struct mm_struct *mm,
702 			struct vm_area_struct *prev, unsigned long addr,
703 			unsigned long end, unsigned long vm_flags,
704 		     	struct anon_vma *anon_vma, struct file *file,
705 			pgoff_t pgoff, struct mempolicy *policy)
706 {
707 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
708 	struct vm_area_struct *area, *next;
709 
710 	/*
711 	 * We later require that vma->vm_flags == vm_flags,
712 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
713 	 */
714 	if (vm_flags & VM_SPECIAL)
715 		return NULL;
716 
717 	if (prev)
718 		next = prev->vm_next;
719 	else
720 		next = mm->mmap;
721 	area = next;
722 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
723 		next = next->vm_next;
724 
725 	/*
726 	 * Can it merge with the predecessor?
727 	 */
728 	if (prev && prev->vm_end == addr &&
729   			mpol_equal(vma_policy(prev), policy) &&
730 			can_vma_merge_after(prev, vm_flags,
731 						anon_vma, file, pgoff)) {
732 		/*
733 		 * OK, it can.  Can we now merge in the successor as well?
734 		 */
735 		if (next && end == next->vm_start &&
736 				mpol_equal(policy, vma_policy(next)) &&
737 				can_vma_merge_before(next, vm_flags,
738 					anon_vma, file, pgoff+pglen) &&
739 				is_mergeable_anon_vma(prev->anon_vma,
740 						      next->anon_vma)) {
741 							/* cases 1, 6 */
742 			vma_adjust(prev, prev->vm_start,
743 				next->vm_end, prev->vm_pgoff, NULL);
744 		} else					/* cases 2, 5, 7 */
745 			vma_adjust(prev, prev->vm_start,
746 				end, prev->vm_pgoff, NULL);
747 		return prev;
748 	}
749 
750 	/*
751 	 * Can this new request be merged in front of next?
752 	 */
753 	if (next && end == next->vm_start &&
754  			mpol_equal(policy, vma_policy(next)) &&
755 			can_vma_merge_before(next, vm_flags,
756 					anon_vma, file, pgoff+pglen)) {
757 		if (prev && addr < prev->vm_end)	/* case 4 */
758 			vma_adjust(prev, prev->vm_start,
759 				addr, prev->vm_pgoff, NULL);
760 		else					/* cases 3, 8 */
761 			vma_adjust(area, addr, next->vm_end,
762 				next->vm_pgoff - pglen, NULL);
763 		return area;
764 	}
765 
766 	return NULL;
767 }
768 
769 /*
770  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
771  * neighbouring vmas for a suitable anon_vma, before it goes off
772  * to allocate a new anon_vma.  It checks because a repetitive
773  * sequence of mprotects and faults may otherwise lead to distinct
774  * anon_vmas being allocated, preventing vma merge in subsequent
775  * mprotect.
776  */
777 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
778 {
779 	struct vm_area_struct *near;
780 	unsigned long vm_flags;
781 
782 	near = vma->vm_next;
783 	if (!near)
784 		goto try_prev;
785 
786 	/*
787 	 * Since only mprotect tries to remerge vmas, match flags
788 	 * which might be mprotected into each other later on.
789 	 * Neither mlock nor madvise tries to remerge at present,
790 	 * so leave their flags as obstructing a merge.
791 	 */
792 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
793 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
794 
795 	if (near->anon_vma && vma->vm_end == near->vm_start &&
796  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
797 			can_vma_merge_before(near, vm_flags,
798 				NULL, vma->vm_file, vma->vm_pgoff +
799 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
800 		return near->anon_vma;
801 try_prev:
802 	/*
803 	 * It is potentially slow to have to call find_vma_prev here.
804 	 * But it's only on the first write fault on the vma, not
805 	 * every time, and we could devise a way to avoid it later
806 	 * (e.g. stash info in next's anon_vma_node when assigning
807 	 * an anon_vma, or when trying vma_merge).  Another time.
808 	 */
809 	if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
810 		BUG();
811 	if (!near)
812 		goto none;
813 
814 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
815 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
816 
817 	if (near->anon_vma && near->vm_end == vma->vm_start &&
818   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
819 			can_vma_merge_after(near, vm_flags,
820 				NULL, vma->vm_file, vma->vm_pgoff))
821 		return near->anon_vma;
822 none:
823 	/*
824 	 * There's no absolute need to look only at touching neighbours:
825 	 * we could search further afield for "compatible" anon_vmas.
826 	 * But it would probably just be a waste of time searching,
827 	 * or lead to too many vmas hanging off the same anon_vma.
828 	 * We're trying to allow mprotect remerging later on,
829 	 * not trying to minimize memory used for anon_vmas.
830 	 */
831 	return NULL;
832 }
833 
834 #ifdef CONFIG_PROC_FS
835 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
836 						struct file *file, long pages)
837 {
838 	const unsigned long stack_flags
839 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
840 
841 #ifdef CONFIG_HUGETLB
842 	if (flags & VM_HUGETLB) {
843 		if (!(flags & VM_DONTCOPY))
844 			mm->shared_vm += pages;
845 		return;
846 	}
847 #endif /* CONFIG_HUGETLB */
848 
849 	if (file) {
850 		mm->shared_vm += pages;
851 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
852 			mm->exec_vm += pages;
853 	} else if (flags & stack_flags)
854 		mm->stack_vm += pages;
855 	if (flags & (VM_RESERVED|VM_IO))
856 		mm->reserved_vm += pages;
857 }
858 #endif /* CONFIG_PROC_FS */
859 
860 /*
861  * The caller must hold down_write(current->mm->mmap_sem).
862  */
863 
864 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
865 			unsigned long len, unsigned long prot,
866 			unsigned long flags, unsigned long pgoff)
867 {
868 	struct mm_struct * mm = current->mm;
869 	struct vm_area_struct * vma, * prev;
870 	struct inode *inode;
871 	unsigned int vm_flags;
872 	int correct_wcount = 0;
873 	int error;
874 	struct rb_node ** rb_link, * rb_parent;
875 	int accountable = 1;
876 	unsigned long charged = 0, reqprot = prot;
877 
878 	if (file) {
879 		if (is_file_hugepages(file))
880 			accountable = 0;
881 
882 		if (!file->f_op || !file->f_op->mmap)
883 			return -ENODEV;
884 
885 		if ((prot & PROT_EXEC) &&
886 		    (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
887 			return -EPERM;
888 	}
889 	/*
890 	 * Does the application expect PROT_READ to imply PROT_EXEC?
891 	 *
892 	 * (the exception is when the underlying filesystem is noexec
893 	 *  mounted, in which case we dont add PROT_EXEC.)
894 	 */
895 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
896 		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
897 			prot |= PROT_EXEC;
898 
899 	if (!len)
900 		return -EINVAL;
901 
902 	/* Careful about overflows.. */
903 	len = PAGE_ALIGN(len);
904 	if (!len || len > TASK_SIZE)
905 		return -ENOMEM;
906 
907 	/* offset overflow? */
908 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
909                return -EOVERFLOW;
910 
911 	/* Too many mappings? */
912 	if (mm->map_count > sysctl_max_map_count)
913 		return -ENOMEM;
914 
915 	/* Obtain the address to map to. we verify (or select) it and ensure
916 	 * that it represents a valid section of the address space.
917 	 */
918 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
919 	if (addr & ~PAGE_MASK)
920 		return addr;
921 
922 	/* Do simple checking here so the lower-level routines won't have
923 	 * to. we assume access permissions have been handled by the open
924 	 * of the memory object, so we don't do any here.
925 	 */
926 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
927 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
928 
929 	if (flags & MAP_LOCKED) {
930 		if (!can_do_mlock())
931 			return -EPERM;
932 		vm_flags |= VM_LOCKED;
933 	}
934 	/* mlock MCL_FUTURE? */
935 	if (vm_flags & VM_LOCKED) {
936 		unsigned long locked, lock_limit;
937 		locked = len >> PAGE_SHIFT;
938 		locked += mm->locked_vm;
939 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
940 		lock_limit >>= PAGE_SHIFT;
941 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
942 			return -EAGAIN;
943 	}
944 
945 	inode = file ? file->f_dentry->d_inode : NULL;
946 
947 	if (file) {
948 		switch (flags & MAP_TYPE) {
949 		case MAP_SHARED:
950 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
951 				return -EACCES;
952 
953 			/*
954 			 * Make sure we don't allow writing to an append-only
955 			 * file..
956 			 */
957 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
958 				return -EACCES;
959 
960 			/*
961 			 * Make sure there are no mandatory locks on the file.
962 			 */
963 			if (locks_verify_locked(inode))
964 				return -EAGAIN;
965 
966 			vm_flags |= VM_SHARED | VM_MAYSHARE;
967 			if (!(file->f_mode & FMODE_WRITE))
968 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
969 
970 			/* fall through */
971 		case MAP_PRIVATE:
972 			if (!(file->f_mode & FMODE_READ))
973 				return -EACCES;
974 			break;
975 
976 		default:
977 			return -EINVAL;
978 		}
979 	} else {
980 		switch (flags & MAP_TYPE) {
981 		case MAP_SHARED:
982 			vm_flags |= VM_SHARED | VM_MAYSHARE;
983 			break;
984 		case MAP_PRIVATE:
985 			/*
986 			 * Set pgoff according to addr for anon_vma.
987 			 */
988 			pgoff = addr >> PAGE_SHIFT;
989 			break;
990 		default:
991 			return -EINVAL;
992 		}
993 	}
994 
995 	error = security_file_mmap(file, reqprot, prot, flags);
996 	if (error)
997 		return error;
998 
999 	/* Clear old maps */
1000 	error = -ENOMEM;
1001 munmap_back:
1002 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1003 	if (vma && vma->vm_start < addr + len) {
1004 		if (do_munmap(mm, addr, len))
1005 			return -ENOMEM;
1006 		goto munmap_back;
1007 	}
1008 
1009 	/* Check against address space limit. */
1010 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1011 		return -ENOMEM;
1012 
1013 	if (accountable && (!(flags & MAP_NORESERVE) ||
1014 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1015 		if (vm_flags & VM_SHARED) {
1016 			/* Check memory availability in shmem_file_setup? */
1017 			vm_flags |= VM_ACCOUNT;
1018 		} else if (vm_flags & VM_WRITE) {
1019 			/*
1020 			 * Private writable mapping: check memory availability
1021 			 */
1022 			charged = len >> PAGE_SHIFT;
1023 			if (security_vm_enough_memory(charged))
1024 				return -ENOMEM;
1025 			vm_flags |= VM_ACCOUNT;
1026 		}
1027 	}
1028 
1029 	/*
1030 	 * Can we just expand an old private anonymous mapping?
1031 	 * The VM_SHARED test is necessary because shmem_zero_setup
1032 	 * will create the file object for a shared anonymous map below.
1033 	 */
1034 	if (!file && !(vm_flags & VM_SHARED) &&
1035 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1036 					NULL, NULL, pgoff, NULL))
1037 		goto out;
1038 
1039 	/*
1040 	 * Determine the object being mapped and call the appropriate
1041 	 * specific mapper. the address has already been validated, but
1042 	 * not unmapped, but the maps are removed from the list.
1043 	 */
1044 	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1045 	if (!vma) {
1046 		error = -ENOMEM;
1047 		goto unacct_error;
1048 	}
1049 	memset(vma, 0, sizeof(*vma));
1050 
1051 	vma->vm_mm = mm;
1052 	vma->vm_start = addr;
1053 	vma->vm_end = addr + len;
1054 	vma->vm_flags = vm_flags;
1055 	vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1056 	vma->vm_pgoff = pgoff;
1057 
1058 	if (file) {
1059 		error = -EINVAL;
1060 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1061 			goto free_vma;
1062 		if (vm_flags & VM_DENYWRITE) {
1063 			error = deny_write_access(file);
1064 			if (error)
1065 				goto free_vma;
1066 			correct_wcount = 1;
1067 		}
1068 		vma->vm_file = file;
1069 		get_file(file);
1070 		error = file->f_op->mmap(file, vma);
1071 		if (error)
1072 			goto unmap_and_free_vma;
1073 	} else if (vm_flags & VM_SHARED) {
1074 		error = shmem_zero_setup(vma);
1075 		if (error)
1076 			goto free_vma;
1077 	}
1078 
1079 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1080 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1081 	 * that memory reservation must be checked; but that reservation
1082 	 * belongs to shared memory object, not to vma: so now clear it.
1083 	 */
1084 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1085 		vma->vm_flags &= ~VM_ACCOUNT;
1086 
1087 	/* Can addr have changed??
1088 	 *
1089 	 * Answer: Yes, several device drivers can do it in their
1090 	 *         f_op->mmap method. -DaveM
1091 	 */
1092 	addr = vma->vm_start;
1093 	pgoff = vma->vm_pgoff;
1094 	vm_flags = vma->vm_flags;
1095 
1096 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1097 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1098 		file = vma->vm_file;
1099 		vma_link(mm, vma, prev, rb_link, rb_parent);
1100 		if (correct_wcount)
1101 			atomic_inc(&inode->i_writecount);
1102 	} else {
1103 		if (file) {
1104 			if (correct_wcount)
1105 				atomic_inc(&inode->i_writecount);
1106 			fput(file);
1107 		}
1108 		mpol_free(vma_policy(vma));
1109 		kmem_cache_free(vm_area_cachep, vma);
1110 	}
1111 out:
1112 	mm->total_vm += len >> PAGE_SHIFT;
1113 	__vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1114 	if (vm_flags & VM_LOCKED) {
1115 		mm->locked_vm += len >> PAGE_SHIFT;
1116 		make_pages_present(addr, addr + len);
1117 	}
1118 	if (flags & MAP_POPULATE) {
1119 		up_write(&mm->mmap_sem);
1120 		sys_remap_file_pages(addr, len, 0,
1121 					pgoff, flags & MAP_NONBLOCK);
1122 		down_write(&mm->mmap_sem);
1123 	}
1124 	return addr;
1125 
1126 unmap_and_free_vma:
1127 	if (correct_wcount)
1128 		atomic_inc(&inode->i_writecount);
1129 	vma->vm_file = NULL;
1130 	fput(file);
1131 
1132 	/* Undo any partial mapping done by a device driver. */
1133 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1134 	charged = 0;
1135 free_vma:
1136 	kmem_cache_free(vm_area_cachep, vma);
1137 unacct_error:
1138 	if (charged)
1139 		vm_unacct_memory(charged);
1140 	return error;
1141 }
1142 
1143 EXPORT_SYMBOL(do_mmap_pgoff);
1144 
1145 /* Get an address range which is currently unmapped.
1146  * For shmat() with addr=0.
1147  *
1148  * Ugly calling convention alert:
1149  * Return value with the low bits set means error value,
1150  * ie
1151  *	if (ret & ~PAGE_MASK)
1152  *		error = ret;
1153  *
1154  * This function "knows" that -ENOMEM has the bits set.
1155  */
1156 #ifndef HAVE_ARCH_UNMAPPED_AREA
1157 unsigned long
1158 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1159 		unsigned long len, unsigned long pgoff, unsigned long flags)
1160 {
1161 	struct mm_struct *mm = current->mm;
1162 	struct vm_area_struct *vma;
1163 	unsigned long start_addr;
1164 
1165 	if (len > TASK_SIZE)
1166 		return -ENOMEM;
1167 
1168 	if (addr) {
1169 		addr = PAGE_ALIGN(addr);
1170 		vma = find_vma(mm, addr);
1171 		if (TASK_SIZE - len >= addr &&
1172 		    (!vma || addr + len <= vma->vm_start))
1173 			return addr;
1174 	}
1175 	if (len > mm->cached_hole_size) {
1176 	        start_addr = addr = mm->free_area_cache;
1177 	} else {
1178 	        start_addr = addr = TASK_UNMAPPED_BASE;
1179 	        mm->cached_hole_size = 0;
1180 	}
1181 
1182 full_search:
1183 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1184 		/* At this point:  (!vma || addr < vma->vm_end). */
1185 		if (TASK_SIZE - len < addr) {
1186 			/*
1187 			 * Start a new search - just in case we missed
1188 			 * some holes.
1189 			 */
1190 			if (start_addr != TASK_UNMAPPED_BASE) {
1191 				addr = TASK_UNMAPPED_BASE;
1192 			        start_addr = addr;
1193 				mm->cached_hole_size = 0;
1194 				goto full_search;
1195 			}
1196 			return -ENOMEM;
1197 		}
1198 		if (!vma || addr + len <= vma->vm_start) {
1199 			/*
1200 			 * Remember the place where we stopped the search:
1201 			 */
1202 			mm->free_area_cache = addr + len;
1203 			return addr;
1204 		}
1205 		if (addr + mm->cached_hole_size < vma->vm_start)
1206 		        mm->cached_hole_size = vma->vm_start - addr;
1207 		addr = vma->vm_end;
1208 	}
1209 }
1210 #endif
1211 
1212 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1213 {
1214 	/*
1215 	 * Is this a new hole at the lowest possible address?
1216 	 */
1217 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1218 		mm->free_area_cache = addr;
1219 		mm->cached_hole_size = ~0UL;
1220 	}
1221 }
1222 
1223 /*
1224  * This mmap-allocator allocates new areas top-down from below the
1225  * stack's low limit (the base):
1226  */
1227 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1228 unsigned long
1229 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1230 			  const unsigned long len, const unsigned long pgoff,
1231 			  const unsigned long flags)
1232 {
1233 	struct vm_area_struct *vma;
1234 	struct mm_struct *mm = current->mm;
1235 	unsigned long addr = addr0;
1236 
1237 	/* requested length too big for entire address space */
1238 	if (len > TASK_SIZE)
1239 		return -ENOMEM;
1240 
1241 	/* requesting a specific address */
1242 	if (addr) {
1243 		addr = PAGE_ALIGN(addr);
1244 		vma = find_vma(mm, addr);
1245 		if (TASK_SIZE - len >= addr &&
1246 				(!vma || addr + len <= vma->vm_start))
1247 			return addr;
1248 	}
1249 
1250 	/* check if free_area_cache is useful for us */
1251 	if (len <= mm->cached_hole_size) {
1252  	        mm->cached_hole_size = 0;
1253  		mm->free_area_cache = mm->mmap_base;
1254  	}
1255 
1256 	/* either no address requested or can't fit in requested address hole */
1257 	addr = mm->free_area_cache;
1258 
1259 	/* make sure it can fit in the remaining address space */
1260 	if (addr > len) {
1261 		vma = find_vma(mm, addr-len);
1262 		if (!vma || addr <= vma->vm_start)
1263 			/* remember the address as a hint for next time */
1264 			return (mm->free_area_cache = addr-len);
1265 	}
1266 
1267 	if (mm->mmap_base < len)
1268 		goto bottomup;
1269 
1270 	addr = mm->mmap_base-len;
1271 
1272 	do {
1273 		/*
1274 		 * Lookup failure means no vma is above this address,
1275 		 * else if new region fits below vma->vm_start,
1276 		 * return with success:
1277 		 */
1278 		vma = find_vma(mm, addr);
1279 		if (!vma || addr+len <= vma->vm_start)
1280 			/* remember the address as a hint for next time */
1281 			return (mm->free_area_cache = addr);
1282 
1283  		/* remember the largest hole we saw so far */
1284  		if (addr + mm->cached_hole_size < vma->vm_start)
1285  		        mm->cached_hole_size = vma->vm_start - addr;
1286 
1287 		/* try just below the current vma->vm_start */
1288 		addr = vma->vm_start-len;
1289 	} while (len < vma->vm_start);
1290 
1291 bottomup:
1292 	/*
1293 	 * A failed mmap() very likely causes application failure,
1294 	 * so fall back to the bottom-up function here. This scenario
1295 	 * can happen with large stack limits and large mmap()
1296 	 * allocations.
1297 	 */
1298 	mm->cached_hole_size = ~0UL;
1299   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1300 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1301 	/*
1302 	 * Restore the topdown base:
1303 	 */
1304 	mm->free_area_cache = mm->mmap_base;
1305 	mm->cached_hole_size = ~0UL;
1306 
1307 	return addr;
1308 }
1309 #endif
1310 
1311 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1312 {
1313 	/*
1314 	 * Is this a new hole at the highest possible address?
1315 	 */
1316 	if (addr > mm->free_area_cache)
1317 		mm->free_area_cache = addr;
1318 
1319 	/* dont allow allocations above current base */
1320 	if (mm->free_area_cache > mm->mmap_base)
1321 		mm->free_area_cache = mm->mmap_base;
1322 }
1323 
1324 unsigned long
1325 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1326 		unsigned long pgoff, unsigned long flags)
1327 {
1328 	unsigned long ret;
1329 
1330 	if (!(flags & MAP_FIXED)) {
1331 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1332 
1333 		get_area = current->mm->get_unmapped_area;
1334 		if (file && file->f_op && file->f_op->get_unmapped_area)
1335 			get_area = file->f_op->get_unmapped_area;
1336 		addr = get_area(file, addr, len, pgoff, flags);
1337 		if (IS_ERR_VALUE(addr))
1338 			return addr;
1339 	}
1340 
1341 	if (addr > TASK_SIZE - len)
1342 		return -ENOMEM;
1343 	if (addr & ~PAGE_MASK)
1344 		return -EINVAL;
1345 	if (file && is_file_hugepages(file))  {
1346 		/*
1347 		 * Check if the given range is hugepage aligned, and
1348 		 * can be made suitable for hugepages.
1349 		 */
1350 		ret = prepare_hugepage_range(addr, len);
1351 	} else {
1352 		/*
1353 		 * Ensure that a normal request is not falling in a
1354 		 * reserved hugepage range.  For some archs like IA-64,
1355 		 * there is a separate region for hugepages.
1356 		 */
1357 		ret = is_hugepage_only_range(current->mm, addr, len);
1358 	}
1359 	if (ret)
1360 		return -EINVAL;
1361 	return addr;
1362 }
1363 
1364 EXPORT_SYMBOL(get_unmapped_area);
1365 
1366 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1367 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1368 {
1369 	struct vm_area_struct *vma = NULL;
1370 
1371 	if (mm) {
1372 		/* Check the cache first. */
1373 		/* (Cache hit rate is typically around 35%.) */
1374 		vma = mm->mmap_cache;
1375 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1376 			struct rb_node * rb_node;
1377 
1378 			rb_node = mm->mm_rb.rb_node;
1379 			vma = NULL;
1380 
1381 			while (rb_node) {
1382 				struct vm_area_struct * vma_tmp;
1383 
1384 				vma_tmp = rb_entry(rb_node,
1385 						struct vm_area_struct, vm_rb);
1386 
1387 				if (vma_tmp->vm_end > addr) {
1388 					vma = vma_tmp;
1389 					if (vma_tmp->vm_start <= addr)
1390 						break;
1391 					rb_node = rb_node->rb_left;
1392 				} else
1393 					rb_node = rb_node->rb_right;
1394 			}
1395 			if (vma)
1396 				mm->mmap_cache = vma;
1397 		}
1398 	}
1399 	return vma;
1400 }
1401 
1402 EXPORT_SYMBOL(find_vma);
1403 
1404 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1405 struct vm_area_struct *
1406 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1407 			struct vm_area_struct **pprev)
1408 {
1409 	struct vm_area_struct *vma = NULL, *prev = NULL;
1410 	struct rb_node * rb_node;
1411 	if (!mm)
1412 		goto out;
1413 
1414 	/* Guard against addr being lower than the first VMA */
1415 	vma = mm->mmap;
1416 
1417 	/* Go through the RB tree quickly. */
1418 	rb_node = mm->mm_rb.rb_node;
1419 
1420 	while (rb_node) {
1421 		struct vm_area_struct *vma_tmp;
1422 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1423 
1424 		if (addr < vma_tmp->vm_end) {
1425 			rb_node = rb_node->rb_left;
1426 		} else {
1427 			prev = vma_tmp;
1428 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1429 				break;
1430 			rb_node = rb_node->rb_right;
1431 		}
1432 	}
1433 
1434 out:
1435 	*pprev = prev;
1436 	return prev ? prev->vm_next : vma;
1437 }
1438 
1439 /*
1440  * Verify that the stack growth is acceptable and
1441  * update accounting. This is shared with both the
1442  * grow-up and grow-down cases.
1443  */
1444 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1445 {
1446 	struct mm_struct *mm = vma->vm_mm;
1447 	struct rlimit *rlim = current->signal->rlim;
1448 
1449 	/* address space limit tests */
1450 	if (!may_expand_vm(mm, grow))
1451 		return -ENOMEM;
1452 
1453 	/* Stack limit test */
1454 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1455 		return -ENOMEM;
1456 
1457 	/* mlock limit tests */
1458 	if (vma->vm_flags & VM_LOCKED) {
1459 		unsigned long locked;
1460 		unsigned long limit;
1461 		locked = mm->locked_vm + grow;
1462 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1463 		if (locked > limit && !capable(CAP_IPC_LOCK))
1464 			return -ENOMEM;
1465 	}
1466 
1467 	/*
1468 	 * Overcommit..  This must be the final test, as it will
1469 	 * update security statistics.
1470 	 */
1471 	if (security_vm_enough_memory(grow))
1472 		return -ENOMEM;
1473 
1474 	/* Ok, everything looks good - let it rip */
1475 	mm->total_vm += grow;
1476 	if (vma->vm_flags & VM_LOCKED)
1477 		mm->locked_vm += grow;
1478 	__vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1479 	return 0;
1480 }
1481 
1482 #ifdef CONFIG_STACK_GROWSUP
1483 /*
1484  * vma is the first one with address > vma->vm_end.  Have to extend vma.
1485  */
1486 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1487 {
1488 	int error;
1489 
1490 	if (!(vma->vm_flags & VM_GROWSUP))
1491 		return -EFAULT;
1492 
1493 	/*
1494 	 * We must make sure the anon_vma is allocated
1495 	 * so that the anon_vma locking is not a noop.
1496 	 */
1497 	if (unlikely(anon_vma_prepare(vma)))
1498 		return -ENOMEM;
1499 	anon_vma_lock(vma);
1500 
1501 	/*
1502 	 * vma->vm_start/vm_end cannot change under us because the caller
1503 	 * is required to hold the mmap_sem in read mode.  We need the
1504 	 * anon_vma lock to serialize against concurrent expand_stacks.
1505 	 */
1506 	address += 4 + PAGE_SIZE - 1;
1507 	address &= PAGE_MASK;
1508 	error = 0;
1509 
1510 	/* Somebody else might have raced and expanded it already */
1511 	if (address > vma->vm_end) {
1512 		unsigned long size, grow;
1513 
1514 		size = address - vma->vm_start;
1515 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1516 
1517 		error = acct_stack_growth(vma, size, grow);
1518 		if (!error)
1519 			vma->vm_end = address;
1520 	}
1521 	anon_vma_unlock(vma);
1522 	return error;
1523 }
1524 
1525 struct vm_area_struct *
1526 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1527 {
1528 	struct vm_area_struct *vma, *prev;
1529 
1530 	addr &= PAGE_MASK;
1531 	vma = find_vma_prev(mm, addr, &prev);
1532 	if (vma && (vma->vm_start <= addr))
1533 		return vma;
1534 	if (!prev || expand_stack(prev, addr))
1535 		return NULL;
1536 	if (prev->vm_flags & VM_LOCKED) {
1537 		make_pages_present(addr, prev->vm_end);
1538 	}
1539 	return prev;
1540 }
1541 #else
1542 /*
1543  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1544  */
1545 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1546 {
1547 	int error;
1548 
1549 	/*
1550 	 * We must make sure the anon_vma is allocated
1551 	 * so that the anon_vma locking is not a noop.
1552 	 */
1553 	if (unlikely(anon_vma_prepare(vma)))
1554 		return -ENOMEM;
1555 	anon_vma_lock(vma);
1556 
1557 	/*
1558 	 * vma->vm_start/vm_end cannot change under us because the caller
1559 	 * is required to hold the mmap_sem in read mode.  We need the
1560 	 * anon_vma lock to serialize against concurrent expand_stacks.
1561 	 */
1562 	address &= PAGE_MASK;
1563 	error = 0;
1564 
1565 	/* Somebody else might have raced and expanded it already */
1566 	if (address < vma->vm_start) {
1567 		unsigned long size, grow;
1568 
1569 		size = vma->vm_end - address;
1570 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1571 
1572 		error = acct_stack_growth(vma, size, grow);
1573 		if (!error) {
1574 			vma->vm_start = address;
1575 			vma->vm_pgoff -= grow;
1576 		}
1577 	}
1578 	anon_vma_unlock(vma);
1579 	return error;
1580 }
1581 
1582 struct vm_area_struct *
1583 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1584 {
1585 	struct vm_area_struct * vma;
1586 	unsigned long start;
1587 
1588 	addr &= PAGE_MASK;
1589 	vma = find_vma(mm,addr);
1590 	if (!vma)
1591 		return NULL;
1592 	if (vma->vm_start <= addr)
1593 		return vma;
1594 	if (!(vma->vm_flags & VM_GROWSDOWN))
1595 		return NULL;
1596 	start = vma->vm_start;
1597 	if (expand_stack(vma, addr))
1598 		return NULL;
1599 	if (vma->vm_flags & VM_LOCKED) {
1600 		make_pages_present(addr, start);
1601 	}
1602 	return vma;
1603 }
1604 #endif
1605 
1606 /* Normal function to fix up a mapping
1607  * This function is the default for when an area has no specific
1608  * function.  This may be used as part of a more specific routine.
1609  *
1610  * By the time this function is called, the area struct has been
1611  * removed from the process mapping list.
1612  */
1613 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1614 {
1615 	size_t len = area->vm_end - area->vm_start;
1616 
1617 	area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1618 	if (area->vm_flags & VM_LOCKED)
1619 		area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1620 	vm_stat_unaccount(area);
1621 	remove_vm_struct(area);
1622 }
1623 
1624 /*
1625  * Update the VMA and inode share lists.
1626  *
1627  * Ok - we have the memory areas we should free on the 'free' list,
1628  * so release them, and do the vma updates.
1629  */
1630 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1631 {
1632 	do {
1633 		struct vm_area_struct *next = vma->vm_next;
1634 		unmap_vma(mm, vma);
1635 		vma = next;
1636 	} while (vma);
1637 	validate_mm(mm);
1638 }
1639 
1640 /*
1641  * Get rid of page table information in the indicated region.
1642  *
1643  * Called with the page table lock held.
1644  */
1645 static void unmap_region(struct mm_struct *mm,
1646 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1647 		unsigned long start, unsigned long end)
1648 {
1649 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1650 	struct mmu_gather *tlb;
1651 	unsigned long nr_accounted = 0;
1652 
1653 	lru_add_drain();
1654 	spin_lock(&mm->page_table_lock);
1655 	tlb = tlb_gather_mmu(mm, 0);
1656 	unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1657 	vm_unacct_memory(nr_accounted);
1658 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1659 				 next? next->vm_start: 0);
1660 	tlb_finish_mmu(tlb, start, end);
1661 	spin_unlock(&mm->page_table_lock);
1662 }
1663 
1664 /*
1665  * Create a list of vma's touched by the unmap, removing them from the mm's
1666  * vma list as we go..
1667  */
1668 static void
1669 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1670 	struct vm_area_struct *prev, unsigned long end)
1671 {
1672 	struct vm_area_struct **insertion_point;
1673 	struct vm_area_struct *tail_vma = NULL;
1674 	unsigned long addr;
1675 
1676 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1677 	do {
1678 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1679 		mm->map_count--;
1680 		tail_vma = vma;
1681 		vma = vma->vm_next;
1682 	} while (vma && vma->vm_start < end);
1683 	*insertion_point = vma;
1684 	tail_vma->vm_next = NULL;
1685 	if (mm->unmap_area == arch_unmap_area)
1686 		addr = prev ? prev->vm_end : mm->mmap_base;
1687 	else
1688 		addr = vma ?  vma->vm_start : mm->mmap_base;
1689 	mm->unmap_area(mm, addr);
1690 	mm->mmap_cache = NULL;		/* Kill the cache. */
1691 }
1692 
1693 /*
1694  * Split a vma into two pieces at address 'addr', a new vma is allocated
1695  * either for the first part or the the tail.
1696  */
1697 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1698 	      unsigned long addr, int new_below)
1699 {
1700 	struct mempolicy *pol;
1701 	struct vm_area_struct *new;
1702 
1703 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1704 		return -EINVAL;
1705 
1706 	if (mm->map_count >= sysctl_max_map_count)
1707 		return -ENOMEM;
1708 
1709 	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1710 	if (!new)
1711 		return -ENOMEM;
1712 
1713 	/* most fields are the same, copy all, and then fixup */
1714 	*new = *vma;
1715 
1716 	if (new_below)
1717 		new->vm_end = addr;
1718 	else {
1719 		new->vm_start = addr;
1720 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1721 	}
1722 
1723 	pol = mpol_copy(vma_policy(vma));
1724 	if (IS_ERR(pol)) {
1725 		kmem_cache_free(vm_area_cachep, new);
1726 		return PTR_ERR(pol);
1727 	}
1728 	vma_set_policy(new, pol);
1729 
1730 	if (new->vm_file)
1731 		get_file(new->vm_file);
1732 
1733 	if (new->vm_ops && new->vm_ops->open)
1734 		new->vm_ops->open(new);
1735 
1736 	if (new_below)
1737 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1738 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1739 	else
1740 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1741 
1742 	return 0;
1743 }
1744 
1745 /* Munmap is split into 2 main parts -- this part which finds
1746  * what needs doing, and the areas themselves, which do the
1747  * work.  This now handles partial unmappings.
1748  * Jeremy Fitzhardinge <jeremy@goop.org>
1749  */
1750 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1751 {
1752 	unsigned long end;
1753 	struct vm_area_struct *vma, *prev, *last;
1754 
1755 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1756 		return -EINVAL;
1757 
1758 	if ((len = PAGE_ALIGN(len)) == 0)
1759 		return -EINVAL;
1760 
1761 	/* Find the first overlapping VMA */
1762 	vma = find_vma_prev(mm, start, &prev);
1763 	if (!vma)
1764 		return 0;
1765 	/* we have  start < vma->vm_end  */
1766 
1767 	/* if it doesn't overlap, we have nothing.. */
1768 	end = start + len;
1769 	if (vma->vm_start >= end)
1770 		return 0;
1771 
1772 	/*
1773 	 * If we need to split any vma, do it now to save pain later.
1774 	 *
1775 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1776 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1777 	 * places tmp vma above, and higher split_vma places tmp vma below.
1778 	 */
1779 	if (start > vma->vm_start) {
1780 		int error = split_vma(mm, vma, start, 0);
1781 		if (error)
1782 			return error;
1783 		prev = vma;
1784 	}
1785 
1786 	/* Does it split the last one? */
1787 	last = find_vma(mm, end);
1788 	if (last && end > last->vm_start) {
1789 		int error = split_vma(mm, last, end, 1);
1790 		if (error)
1791 			return error;
1792 	}
1793 	vma = prev? prev->vm_next: mm->mmap;
1794 
1795 	/*
1796 	 * Remove the vma's, and unmap the actual pages
1797 	 */
1798 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1799 	unmap_region(mm, vma, prev, start, end);
1800 
1801 	/* Fix up all other VM information */
1802 	unmap_vma_list(mm, vma);
1803 
1804 	return 0;
1805 }
1806 
1807 EXPORT_SYMBOL(do_munmap);
1808 
1809 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1810 {
1811 	int ret;
1812 	struct mm_struct *mm = current->mm;
1813 
1814 	profile_munmap(addr);
1815 
1816 	down_write(&mm->mmap_sem);
1817 	ret = do_munmap(mm, addr, len);
1818 	up_write(&mm->mmap_sem);
1819 	return ret;
1820 }
1821 
1822 static inline void verify_mm_writelocked(struct mm_struct *mm)
1823 {
1824 #ifdef CONFIG_DEBUG_KERNEL
1825 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1826 		WARN_ON(1);
1827 		up_read(&mm->mmap_sem);
1828 	}
1829 #endif
1830 }
1831 
1832 /*
1833  *  this is really a simplified "do_mmap".  it only handles
1834  *  anonymous maps.  eventually we may be able to do some
1835  *  brk-specific accounting here.
1836  */
1837 unsigned long do_brk(unsigned long addr, unsigned long len)
1838 {
1839 	struct mm_struct * mm = current->mm;
1840 	struct vm_area_struct * vma, * prev;
1841 	unsigned long flags;
1842 	struct rb_node ** rb_link, * rb_parent;
1843 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1844 
1845 	len = PAGE_ALIGN(len);
1846 	if (!len)
1847 		return addr;
1848 
1849 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1850 		return -EINVAL;
1851 
1852 	/*
1853 	 * mlock MCL_FUTURE?
1854 	 */
1855 	if (mm->def_flags & VM_LOCKED) {
1856 		unsigned long locked, lock_limit;
1857 		locked = len >> PAGE_SHIFT;
1858 		locked += mm->locked_vm;
1859 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1860 		lock_limit >>= PAGE_SHIFT;
1861 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1862 			return -EAGAIN;
1863 	}
1864 
1865 	/*
1866 	 * mm->mmap_sem is required to protect against another thread
1867 	 * changing the mappings in case we sleep.
1868 	 */
1869 	verify_mm_writelocked(mm);
1870 
1871 	/*
1872 	 * Clear old maps.  this also does some error checking for us
1873 	 */
1874  munmap_back:
1875 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1876 	if (vma && vma->vm_start < addr + len) {
1877 		if (do_munmap(mm, addr, len))
1878 			return -ENOMEM;
1879 		goto munmap_back;
1880 	}
1881 
1882 	/* Check against address space limits *after* clearing old maps... */
1883 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1884 		return -ENOMEM;
1885 
1886 	if (mm->map_count > sysctl_max_map_count)
1887 		return -ENOMEM;
1888 
1889 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1890 		return -ENOMEM;
1891 
1892 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1893 
1894 	/* Can we just expand an old private anonymous mapping? */
1895 	if (vma_merge(mm, prev, addr, addr + len, flags,
1896 					NULL, NULL, pgoff, NULL))
1897 		goto out;
1898 
1899 	/*
1900 	 * create a vma struct for an anonymous mapping
1901 	 */
1902 	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1903 	if (!vma) {
1904 		vm_unacct_memory(len >> PAGE_SHIFT);
1905 		return -ENOMEM;
1906 	}
1907 	memset(vma, 0, sizeof(*vma));
1908 
1909 	vma->vm_mm = mm;
1910 	vma->vm_start = addr;
1911 	vma->vm_end = addr + len;
1912 	vma->vm_pgoff = pgoff;
1913 	vma->vm_flags = flags;
1914 	vma->vm_page_prot = protection_map[flags & 0x0f];
1915 	vma_link(mm, vma, prev, rb_link, rb_parent);
1916 out:
1917 	mm->total_vm += len >> PAGE_SHIFT;
1918 	if (flags & VM_LOCKED) {
1919 		mm->locked_vm += len >> PAGE_SHIFT;
1920 		make_pages_present(addr, addr + len);
1921 	}
1922 	return addr;
1923 }
1924 
1925 EXPORT_SYMBOL(do_brk);
1926 
1927 /* Release all mmaps. */
1928 void exit_mmap(struct mm_struct *mm)
1929 {
1930 	struct mmu_gather *tlb;
1931 	struct vm_area_struct *vma = mm->mmap;
1932 	unsigned long nr_accounted = 0;
1933 	unsigned long end;
1934 
1935 	lru_add_drain();
1936 
1937 	spin_lock(&mm->page_table_lock);
1938 
1939 	flush_cache_mm(mm);
1940 	tlb = tlb_gather_mmu(mm, 1);
1941 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1942 	end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL);
1943 	vm_unacct_memory(nr_accounted);
1944 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1945 	tlb_finish_mmu(tlb, 0, end);
1946 
1947 	mm->mmap = mm->mmap_cache = NULL;
1948 	mm->mm_rb = RB_ROOT;
1949 	set_mm_counter(mm, rss, 0);
1950 	mm->total_vm = 0;
1951 	mm->locked_vm = 0;
1952 
1953 	spin_unlock(&mm->page_table_lock);
1954 
1955 	/*
1956 	 * Walk the list again, actually closing and freeing it
1957 	 * without holding any MM locks.
1958 	 */
1959 	while (vma) {
1960 		struct vm_area_struct *next = vma->vm_next;
1961 		remove_vm_struct(vma);
1962 		vma = next;
1963 	}
1964 
1965 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1966 }
1967 
1968 /* Insert vm structure into process list sorted by address
1969  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1970  * then i_mmap_lock is taken here.
1971  */
1972 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1973 {
1974 	struct vm_area_struct * __vma, * prev;
1975 	struct rb_node ** rb_link, * rb_parent;
1976 
1977 	/*
1978 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1979 	 * until its first write fault, when page's anon_vma and index
1980 	 * are set.  But now set the vm_pgoff it will almost certainly
1981 	 * end up with (unless mremap moves it elsewhere before that
1982 	 * first wfault), so /proc/pid/maps tells a consistent story.
1983 	 *
1984 	 * By setting it to reflect the virtual start address of the
1985 	 * vma, merges and splits can happen in a seamless way, just
1986 	 * using the existing file pgoff checks and manipulations.
1987 	 * Similarly in do_mmap_pgoff and in do_brk.
1988 	 */
1989 	if (!vma->vm_file) {
1990 		BUG_ON(vma->anon_vma);
1991 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1992 	}
1993 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
1994 	if (__vma && __vma->vm_start < vma->vm_end)
1995 		return -ENOMEM;
1996 	vma_link(mm, vma, prev, rb_link, rb_parent);
1997 	return 0;
1998 }
1999 
2000 /*
2001  * Copy the vma structure to a new location in the same mm,
2002  * prior to moving page table entries, to effect an mremap move.
2003  */
2004 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2005 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2006 {
2007 	struct vm_area_struct *vma = *vmap;
2008 	unsigned long vma_start = vma->vm_start;
2009 	struct mm_struct *mm = vma->vm_mm;
2010 	struct vm_area_struct *new_vma, *prev;
2011 	struct rb_node **rb_link, *rb_parent;
2012 	struct mempolicy *pol;
2013 
2014 	/*
2015 	 * If anonymous vma has not yet been faulted, update new pgoff
2016 	 * to match new location, to increase its chance of merging.
2017 	 */
2018 	if (!vma->vm_file && !vma->anon_vma)
2019 		pgoff = addr >> PAGE_SHIFT;
2020 
2021 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2022 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2023 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2024 	if (new_vma) {
2025 		/*
2026 		 * Source vma may have been merged into new_vma
2027 		 */
2028 		if (vma_start >= new_vma->vm_start &&
2029 		    vma_start < new_vma->vm_end)
2030 			*vmap = new_vma;
2031 	} else {
2032 		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2033 		if (new_vma) {
2034 			*new_vma = *vma;
2035 			pol = mpol_copy(vma_policy(vma));
2036 			if (IS_ERR(pol)) {
2037 				kmem_cache_free(vm_area_cachep, new_vma);
2038 				return NULL;
2039 			}
2040 			vma_set_policy(new_vma, pol);
2041 			new_vma->vm_start = addr;
2042 			new_vma->vm_end = addr + len;
2043 			new_vma->vm_pgoff = pgoff;
2044 			if (new_vma->vm_file)
2045 				get_file(new_vma->vm_file);
2046 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2047 				new_vma->vm_ops->open(new_vma);
2048 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2049 		}
2050 	}
2051 	return new_vma;
2052 }
2053 
2054 /*
2055  * Return true if the calling process may expand its vm space by the passed
2056  * number of pages
2057  */
2058 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2059 {
2060 	unsigned long cur = mm->total_vm;	/* pages */
2061 	unsigned long lim;
2062 
2063 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2064 
2065 	if (cur + npages > lim)
2066 		return 0;
2067 	return 1;
2068 }
2069