xref: /linux/mm/mmap.c (revision 2241f81c91f211b512bd2c3a26a4a74258d0e008)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 	VMA_ITERATOR(vmi, mm, 0);
398 	struct address_space *mapping = NULL;
399 
400 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 	if (vma_iter_prealloc(&vmi, vma))
402 		return -ENOMEM;
403 
404 	vma_start_write(vma);
405 
406 	vma_iter_store(&vmi, vma);
407 
408 	if (vma->vm_file) {
409 		mapping = vma->vm_file->f_mapping;
410 		i_mmap_lock_write(mapping);
411 		__vma_link_file(vma, mapping);
412 		i_mmap_unlock_write(mapping);
413 	}
414 
415 	mm->map_count++;
416 	validate_mm(mm);
417 	return 0;
418 }
419 
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 		struct vm_area_struct *vma, struct vm_area_struct *next,
430 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 	memset(vp, 0, sizeof(struct vma_prepare));
433 	vp->vma = vma;
434 	vp->anon_vma = vma->anon_vma;
435 	vp->remove = remove;
436 	vp->remove2 = remove2;
437 	vp->adj_next = next;
438 	if (!vp->anon_vma && next)
439 		vp->anon_vma = next->anon_vma;
440 
441 	vp->file = vma->vm_file;
442 	if (vp->file)
443 		vp->mapping = vma->vm_file->f_mapping;
444 
445 }
446 
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453 				 struct vm_area_struct *vma)
454 {
455 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457 
458 
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 	if (vp->file) {
466 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467 
468 		if (vp->adj_next)
469 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 				      vp->adj_next->vm_end);
471 
472 		i_mmap_lock_write(vp->mapping);
473 		if (vp->insert && vp->insert->vm_file) {
474 			/*
475 			 * Put into interval tree now, so instantiated pages
476 			 * are visible to arm/parisc __flush_dcache_page
477 			 * throughout; but we cannot insert into address
478 			 * space until vma start or end is updated.
479 			 */
480 			__vma_link_file(vp->insert,
481 					vp->insert->vm_file->f_mapping);
482 		}
483 	}
484 
485 	if (vp->anon_vma) {
486 		anon_vma_lock_write(vp->anon_vma);
487 		anon_vma_interval_tree_pre_update_vma(vp->vma);
488 		if (vp->adj_next)
489 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 	}
491 
492 	if (vp->file) {
493 		flush_dcache_mmap_lock(vp->mapping);
494 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 		if (vp->adj_next)
496 			vma_interval_tree_remove(vp->adj_next,
497 						 &vp->mapping->i_mmap);
498 	}
499 
500 }
501 
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511 				struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 	if (vp->file) {
514 		if (vp->adj_next)
515 			vma_interval_tree_insert(vp->adj_next,
516 						 &vp->mapping->i_mmap);
517 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 		flush_dcache_mmap_unlock(vp->mapping);
519 	}
520 
521 	if (vp->remove && vp->file) {
522 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 		if (vp->remove2)
524 			__remove_shared_vm_struct(vp->remove2, vp->file,
525 						  vp->mapping);
526 	} else if (vp->insert) {
527 		/*
528 		 * split_vma has split insert from vma, and needs
529 		 * us to insert it before dropping the locks
530 		 * (it may either follow vma or precede it).
531 		 */
532 		vma_iter_store(vmi, vp->insert);
533 		mm->map_count++;
534 	}
535 
536 	if (vp->anon_vma) {
537 		anon_vma_interval_tree_post_update_vma(vp->vma);
538 		if (vp->adj_next)
539 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 		anon_vma_unlock_write(vp->anon_vma);
541 	}
542 
543 	if (vp->file) {
544 		i_mmap_unlock_write(vp->mapping);
545 		uprobe_mmap(vp->vma);
546 
547 		if (vp->adj_next)
548 			uprobe_mmap(vp->adj_next);
549 	}
550 
551 	if (vp->remove) {
552 again:
553 		vma_mark_detached(vp->remove, true);
554 		if (vp->file) {
555 			uprobe_munmap(vp->remove, vp->remove->vm_start,
556 				      vp->remove->vm_end);
557 			fput(vp->file);
558 		}
559 		if (vp->remove->anon_vma)
560 			anon_vma_merge(vp->vma, vp->remove);
561 		mm->map_count--;
562 		mpol_put(vma_policy(vp->remove));
563 		if (!vp->remove2)
564 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 		vm_area_free(vp->remove);
566 
567 		/*
568 		 * In mprotect's case 6 (see comments on vma_merge),
569 		 * we are removing both mid and next vmas
570 		 */
571 		if (vp->remove2) {
572 			vp->remove = vp->remove2;
573 			vp->remove2 = NULL;
574 			goto again;
575 		}
576 	}
577 	if (vp->insert && vp->file)
578 		uprobe_mmap(vp->insert);
579 	validate_mm(mm);
580 }
581 
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  * @dup: Pointer to the destination VMA when successful.
587  *
588  * Returns: 0 on success.
589  */
590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591 		struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593 	/*
594 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
595 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
596 	 * anon pages imported.
597 	 */
598 	if (src->anon_vma && !dst->anon_vma) {
599 		int ret;
600 
601 		vma_assert_write_locked(dst);
602 		dst->anon_vma = src->anon_vma;
603 		ret = anon_vma_clone(dst, src);
604 		if (ret)
605 			return ret;
606 
607 		*dup = dst;
608 	}
609 
610 	return 0;
611 }
612 
613 /*
614  * vma_expand - Expand an existing VMA
615  *
616  * @vmi: The vma iterator
617  * @vma: The vma to expand
618  * @start: The start of the vma
619  * @end: The exclusive end of the vma
620  * @pgoff: The page offset of vma
621  * @next: The current of next vma.
622  *
623  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
624  * expand over @next if it's different from @vma and @end == @next->vm_end.
625  * Checking if the @vma can expand and merge with @next needs to be handled by
626  * the caller.
627  *
628  * Returns: 0 on success
629  */
630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631 	       unsigned long start, unsigned long end, pgoff_t pgoff,
632 	       struct vm_area_struct *next)
633 {
634 	struct vm_area_struct *anon_dup = NULL;
635 	bool remove_next = false;
636 	struct vma_prepare vp;
637 
638 	vma_start_write(vma);
639 	if (next && (vma != next) && (end == next->vm_end)) {
640 		int ret;
641 
642 		remove_next = true;
643 		vma_start_write(next);
644 		ret = dup_anon_vma(vma, next, &anon_dup);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650 	/* Not merging but overwriting any part of next is not handled. */
651 	VM_WARN_ON(next && !vp.remove &&
652 		  next != vma && end > next->vm_start);
653 	/* Only handles expanding */
654 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655 
656 	/* Note: vma iterator must be pointing to 'start' */
657 	vma_iter_config(vmi, start, end);
658 	if (vma_iter_prealloc(vmi, vma))
659 		goto nomem;
660 
661 	vma_prepare(&vp);
662 	vma_adjust_trans_huge(vma, start, end, 0);
663 	vma->vm_start = start;
664 	vma->vm_end = end;
665 	vma->vm_pgoff = pgoff;
666 	vma_iter_store(vmi, vma);
667 
668 	vma_complete(&vp, vmi, vma->vm_mm);
669 	return 0;
670 
671 nomem:
672 	if (anon_dup)
673 		unlink_anon_vmas(anon_dup);
674 	return -ENOMEM;
675 }
676 
677 /*
678  * vma_shrink() - Reduce an existing VMAs memory area
679  * @vmi: The vma iterator
680  * @vma: The VMA to modify
681  * @start: The new start
682  * @end: The new end
683  *
684  * Returns: 0 on success, -ENOMEM otherwise
685  */
686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687 	       unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689 	struct vma_prepare vp;
690 
691 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692 
693 	if (vma->vm_start < start)
694 		vma_iter_config(vmi, vma->vm_start, start);
695 	else
696 		vma_iter_config(vmi, end, vma->vm_end);
697 
698 	if (vma_iter_prealloc(vmi, NULL))
699 		return -ENOMEM;
700 
701 	vma_start_write(vma);
702 
703 	init_vma_prep(&vp, vma);
704 	vma_prepare(&vp);
705 	vma_adjust_trans_huge(vma, start, end, 0);
706 
707 	vma_iter_clear(vmi);
708 	vma->vm_start = start;
709 	vma->vm_end = end;
710 	vma->vm_pgoff = pgoff;
711 	vma_complete(&vp, vmi, vma->vm_mm);
712 	return 0;
713 }
714 
715 /*
716  * If the vma has a ->close operation then the driver probably needs to release
717  * per-vma resources, so we don't attempt to merge those if the caller indicates
718  * the current vma may be removed as part of the merge.
719  */
720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721 		struct file *file, unsigned long vm_flags,
722 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723 		struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725 	/*
726 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
727 	 * match the flags but dirty bit -- the caller should mark
728 	 * merged VMA as dirty. If dirty bit won't be excluded from
729 	 * comparison, we increase pressure on the memory system forcing
730 	 * the kernel to generate new VMAs when old one could be
731 	 * extended instead.
732 	 */
733 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734 		return false;
735 	if (vma->vm_file != file)
736 		return false;
737 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738 		return false;
739 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740 		return false;
741 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742 		return false;
743 	return true;
744 }
745 
746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749 	/*
750 	 * The list_is_singular() test is to avoid merging VMA cloned from
751 	 * parents. This can improve scalability caused by anon_vma lock.
752 	 */
753 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
754 		list_is_singular(&vma->anon_vma_chain)))
755 		return true;
756 	return anon_vma1 == anon_vma2;
757 }
758 
759 /*
760  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761  * in front of (at a lower virtual address and file offset than) the vma.
762  *
763  * We cannot merge two vmas if they have differently assigned (non-NULL)
764  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765  *
766  * We don't check here for the merged mmap wrapping around the end of pagecache
767  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768  * wrap, nor mmaps which cover the final page at index -1UL.
769  *
770  * We assume the vma may be removed as part of the merge.
771  */
772 static bool
773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774 		struct anon_vma *anon_vma, struct file *file,
775 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776 		struct anon_vma_name *anon_name)
777 {
778 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780 		if (vma->vm_pgoff == vm_pgoff)
781 			return true;
782 	}
783 	return false;
784 }
785 
786 /*
787  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788  * beyond (at a higher virtual address and file offset than) the vma.
789  *
790  * We cannot merge two vmas if they have differently assigned (non-NULL)
791  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792  *
793  * We assume that vma is not removed as part of the merge.
794  */
795 static bool
796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797 		struct anon_vma *anon_vma, struct file *file,
798 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799 		struct anon_vma_name *anon_name)
800 {
801 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803 		pgoff_t vm_pglen;
804 		vm_pglen = vma_pages(vma);
805 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806 			return true;
807 	}
808 	return false;
809 }
810 
811 /*
812  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813  * figure out whether that can be merged with its predecessor or its
814  * successor.  Or both (it neatly fills a hole).
815  *
816  * In most cases - when called for mmap, brk or mremap - [addr,end) is
817  * certain not to be mapped by the time vma_merge is called; but when
818  * called for mprotect, it is certain to be already mapped (either at
819  * an offset within prev, or at the start of next), and the flags of
820  * this area are about to be changed to vm_flags - and the no-change
821  * case has already been eliminated.
822  *
823  * The following mprotect cases have to be considered, where **** is
824  * the area passed down from mprotect_fixup, never extending beyond one
825  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826  * at the same address as **** and is of the same or larger span, and
827  * NNNN the next vma after ****:
828  *
829  *     ****             ****                   ****
830  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
831  *    cannot merge    might become       might become
832  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
833  *    mmap, brk or    case 4 below       case 5 below
834  *    mremap move:
835  *                        ****               ****
836  *                    PPPP    NNNN       PPPPCCCCNNNN
837  *                    might become       might become
838  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
839  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
840  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
841  *
842  * It is important for case 8 that the vma CCCC overlapping the
843  * region **** is never going to extended over NNNN. Instead NNNN must
844  * be extended in region **** and CCCC must be removed. This way in
845  * all cases where vma_merge succeeds, the moment vma_merge drops the
846  * rmap_locks, the properties of the merged vma will be already
847  * correct for the whole merged range. Some of those properties like
848  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849  * be correct for the whole merged range immediately after the
850  * rmap_locks are released. Otherwise if NNNN would be removed and
851  * CCCC would be extended over the NNNN range, remove_migration_ptes
852  * or other rmap walkers (if working on addresses beyond the "end"
853  * parameter) may establish ptes with the wrong permissions of CCCC
854  * instead of the right permissions of NNNN.
855  *
856  * In the code below:
857  * PPPP is represented by *prev
858  * CCCC is represented by *curr or not represented at all (NULL)
859  * NNNN is represented by *next or not represented at all (NULL)
860  * **** is not represented - it will be merged and the vma containing the
861  *      area is returned, or the function will return NULL
862  */
863 static struct vm_area_struct
864 *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
865 	   struct vm_area_struct *prev, unsigned long addr, unsigned long end,
866 	   unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
867 	   pgoff_t pgoff, struct mempolicy *policy,
868 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 	   struct anon_vma_name *anon_name)
870 {
871 	struct vm_area_struct *curr, *next, *res;
872 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
873 	struct vm_area_struct *anon_dup = NULL;
874 	struct vma_prepare vp;
875 	pgoff_t vma_pgoff;
876 	int err = 0;
877 	bool merge_prev = false;
878 	bool merge_next = false;
879 	bool vma_expanded = false;
880 	unsigned long vma_start = addr;
881 	unsigned long vma_end = end;
882 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883 	long adj_start = 0;
884 
885 	/*
886 	 * We later require that vma->vm_flags == vm_flags,
887 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
888 	 */
889 	if (vm_flags & VM_SPECIAL)
890 		return NULL;
891 
892 	/* Does the input range span an existing VMA? (cases 5 - 8) */
893 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894 
895 	if (!curr ||			/* cases 1 - 4 */
896 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
897 		next = vma_lookup(mm, end);
898 	else
899 		next = NULL;		/* case 5 */
900 
901 	if (prev) {
902 		vma_start = prev->vm_start;
903 		vma_pgoff = prev->vm_pgoff;
904 
905 		/* Can we merge the predecessor? */
906 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
909 			merge_prev = true;
910 			vma_prev(vmi);
911 		}
912 	}
913 
914 	/* Can we merge the successor? */
915 	if (next && mpol_equal(policy, vma_policy(next)) &&
916 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917 				 vm_userfaultfd_ctx, anon_name)) {
918 		merge_next = true;
919 	}
920 
921 	/* Verify some invariant that must be enforced by the caller. */
922 	VM_WARN_ON(prev && addr <= prev->vm_start);
923 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924 	VM_WARN_ON(addr >= end);
925 
926 	if (!merge_prev && !merge_next)
927 		return NULL; /* Not mergeable. */
928 
929 	if (merge_prev)
930 		vma_start_write(prev);
931 
932 	res = vma = prev;
933 	remove = remove2 = adjust = NULL;
934 
935 	/* Can we merge both the predecessor and the successor? */
936 	if (merge_prev && merge_next &&
937 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938 		vma_start_write(next);
939 		remove = next;				/* case 1 */
940 		vma_end = next->vm_end;
941 		err = dup_anon_vma(prev, next, &anon_dup);
942 		if (curr) {				/* case 6 */
943 			vma_start_write(curr);
944 			remove = curr;
945 			remove2 = next;
946 			/*
947 			 * Note that the dup_anon_vma below cannot overwrite err
948 			 * since the first caller would do nothing unless next
949 			 * has an anon_vma.
950 			 */
951 			if (!next->anon_vma)
952 				err = dup_anon_vma(prev, curr, &anon_dup);
953 		}
954 	} else if (merge_prev) {			/* case 2 */
955 		if (curr) {
956 			vma_start_write(curr);
957 			err = dup_anon_vma(prev, curr, &anon_dup);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				remove = curr;
960 			} else {			/* case 5 */
961 				adjust = curr;
962 				adj_start = (end - curr->vm_start);
963 			}
964 		}
965 	} else { /* merge_next */
966 		vma_start_write(next);
967 		res = next;
968 		if (prev && addr < prev->vm_end) {	/* case 4 */
969 			vma_start_write(prev);
970 			vma_end = addr;
971 			adjust = next;
972 			adj_start = -(prev->vm_end - addr);
973 			err = dup_anon_vma(next, prev, &anon_dup);
974 		} else {
975 			/*
976 			 * Note that cases 3 and 8 are the ONLY ones where prev
977 			 * is permitted to be (but is not necessarily) NULL.
978 			 */
979 			vma = next;			/* case 3 */
980 			vma_start = addr;
981 			vma_end = next->vm_end;
982 			vma_pgoff = next->vm_pgoff - pglen;
983 			if (curr) {			/* case 8 */
984 				vma_pgoff = curr->vm_pgoff;
985 				vma_start_write(curr);
986 				remove = curr;
987 				err = dup_anon_vma(next, curr, &anon_dup);
988 			}
989 		}
990 	}
991 
992 	/* Error in anon_vma clone. */
993 	if (err)
994 		goto anon_vma_fail;
995 
996 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
997 		vma_expanded = true;
998 
999 	if (vma_expanded) {
1000 		vma_iter_config(vmi, vma_start, vma_end);
1001 	} else {
1002 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1003 				adjust->vm_end);
1004 	}
1005 
1006 	if (vma_iter_prealloc(vmi, vma))
1007 		goto prealloc_fail;
1008 
1009 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1010 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1011 		   vp.anon_vma != adjust->anon_vma);
1012 
1013 	vma_prepare(&vp);
1014 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1015 
1016 	vma->vm_start = vma_start;
1017 	vma->vm_end = vma_end;
1018 	vma->vm_pgoff = vma_pgoff;
1019 
1020 	if (vma_expanded)
1021 		vma_iter_store(vmi, vma);
1022 
1023 	if (adj_start) {
1024 		adjust->vm_start += adj_start;
1025 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1026 		if (adj_start < 0) {
1027 			WARN_ON(vma_expanded);
1028 			vma_iter_store(vmi, next);
1029 		}
1030 	}
1031 
1032 	vma_complete(&vp, vmi, mm);
1033 	khugepaged_enter_vma(res, vm_flags);
1034 	return res;
1035 
1036 prealloc_fail:
1037 	if (anon_dup)
1038 		unlink_anon_vmas(anon_dup);
1039 
1040 anon_vma_fail:
1041 	vma_iter_set(vmi, addr);
1042 	vma_iter_load(vmi);
1043 	return NULL;
1044 }
1045 
1046 /*
1047  * Rough compatibility check to quickly see if it's even worth looking
1048  * at sharing an anon_vma.
1049  *
1050  * They need to have the same vm_file, and the flags can only differ
1051  * in things that mprotect may change.
1052  *
1053  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1054  * we can merge the two vma's. For example, we refuse to merge a vma if
1055  * there is a vm_ops->close() function, because that indicates that the
1056  * driver is doing some kind of reference counting. But that doesn't
1057  * really matter for the anon_vma sharing case.
1058  */
1059 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1060 {
1061 	return a->vm_end == b->vm_start &&
1062 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1063 		a->vm_file == b->vm_file &&
1064 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1065 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1066 }
1067 
1068 /*
1069  * Do some basic sanity checking to see if we can re-use the anon_vma
1070  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1071  * the same as 'old', the other will be the new one that is trying
1072  * to share the anon_vma.
1073  *
1074  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1075  * the anon_vma of 'old' is concurrently in the process of being set up
1076  * by another page fault trying to merge _that_. But that's ok: if it
1077  * is being set up, that automatically means that it will be a singleton
1078  * acceptable for merging, so we can do all of this optimistically. But
1079  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1080  *
1081  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1082  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1083  * is to return an anon_vma that is "complex" due to having gone through
1084  * a fork).
1085  *
1086  * We also make sure that the two vma's are compatible (adjacent,
1087  * and with the same memory policies). That's all stable, even with just
1088  * a read lock on the mmap_lock.
1089  */
1090 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1091 {
1092 	if (anon_vma_compatible(a, b)) {
1093 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1094 
1095 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1096 			return anon_vma;
1097 	}
1098 	return NULL;
1099 }
1100 
1101 /*
1102  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1103  * neighbouring vmas for a suitable anon_vma, before it goes off
1104  * to allocate a new anon_vma.  It checks because a repetitive
1105  * sequence of mprotects and faults may otherwise lead to distinct
1106  * anon_vmas being allocated, preventing vma merge in subsequent
1107  * mprotect.
1108  */
1109 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1110 {
1111 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1112 	struct anon_vma *anon_vma = NULL;
1113 	struct vm_area_struct *prev, *next;
1114 
1115 	/* Try next first. */
1116 	next = mas_walk(&mas);
1117 	if (next) {
1118 		anon_vma = reusable_anon_vma(next, vma, next);
1119 		if (anon_vma)
1120 			return anon_vma;
1121 	}
1122 
1123 	prev = mas_prev(&mas, 0);
1124 	VM_BUG_ON_VMA(prev != vma, vma);
1125 	prev = mas_prev(&mas, 0);
1126 	/* Try prev next. */
1127 	if (prev)
1128 		anon_vma = reusable_anon_vma(prev, prev, vma);
1129 
1130 	/*
1131 	 * We might reach here with anon_vma == NULL if we can't find
1132 	 * any reusable anon_vma.
1133 	 * There's no absolute need to look only at touching neighbours:
1134 	 * we could search further afield for "compatible" anon_vmas.
1135 	 * But it would probably just be a waste of time searching,
1136 	 * or lead to too many vmas hanging off the same anon_vma.
1137 	 * We're trying to allow mprotect remerging later on,
1138 	 * not trying to minimize memory used for anon_vmas.
1139 	 */
1140 	return anon_vma;
1141 }
1142 
1143 /*
1144  * If a hint addr is less than mmap_min_addr change hint to be as
1145  * low as possible but still greater than mmap_min_addr
1146  */
1147 static inline unsigned long round_hint_to_min(unsigned long hint)
1148 {
1149 	hint &= PAGE_MASK;
1150 	if (((void *)hint != NULL) &&
1151 	    (hint < mmap_min_addr))
1152 		return PAGE_ALIGN(mmap_min_addr);
1153 	return hint;
1154 }
1155 
1156 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1157 			unsigned long bytes)
1158 {
1159 	unsigned long locked_pages, limit_pages;
1160 
1161 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1162 		return true;
1163 
1164 	locked_pages = bytes >> PAGE_SHIFT;
1165 	locked_pages += mm->locked_vm;
1166 
1167 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1168 	limit_pages >>= PAGE_SHIFT;
1169 
1170 	return locked_pages <= limit_pages;
1171 }
1172 
1173 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1174 {
1175 	if (S_ISREG(inode->i_mode))
1176 		return MAX_LFS_FILESIZE;
1177 
1178 	if (S_ISBLK(inode->i_mode))
1179 		return MAX_LFS_FILESIZE;
1180 
1181 	if (S_ISSOCK(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	/* Special "we do even unsigned file positions" case */
1185 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1186 		return 0;
1187 
1188 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1189 	return ULONG_MAX;
1190 }
1191 
1192 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1193 				unsigned long pgoff, unsigned long len)
1194 {
1195 	u64 maxsize = file_mmap_size_max(file, inode);
1196 
1197 	if (maxsize && len > maxsize)
1198 		return false;
1199 	maxsize -= len;
1200 	if (pgoff > maxsize >> PAGE_SHIFT)
1201 		return false;
1202 	return true;
1203 }
1204 
1205 /*
1206  * The caller must write-lock current->mm->mmap_lock.
1207  */
1208 unsigned long do_mmap(struct file *file, unsigned long addr,
1209 			unsigned long len, unsigned long prot,
1210 			unsigned long flags, vm_flags_t vm_flags,
1211 			unsigned long pgoff, unsigned long *populate,
1212 			struct list_head *uf)
1213 {
1214 	struct mm_struct *mm = current->mm;
1215 	int pkey = 0;
1216 
1217 	*populate = 0;
1218 
1219 	if (!len)
1220 		return -EINVAL;
1221 
1222 	/*
1223 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1224 	 *
1225 	 * (the exception is when the underlying filesystem is noexec
1226 	 *  mounted, in which case we don't add PROT_EXEC.)
1227 	 */
1228 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1229 		if (!(file && path_noexec(&file->f_path)))
1230 			prot |= PROT_EXEC;
1231 
1232 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1233 	if (flags & MAP_FIXED_NOREPLACE)
1234 		flags |= MAP_FIXED;
1235 
1236 	if (!(flags & MAP_FIXED))
1237 		addr = round_hint_to_min(addr);
1238 
1239 	/* Careful about overflows.. */
1240 	len = PAGE_ALIGN(len);
1241 	if (!len)
1242 		return -ENOMEM;
1243 
1244 	/* offset overflow? */
1245 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1246 		return -EOVERFLOW;
1247 
1248 	/* Too many mappings? */
1249 	if (mm->map_count > sysctl_max_map_count)
1250 		return -ENOMEM;
1251 
1252 	/* Obtain the address to map to. we verify (or select) it and ensure
1253 	 * that it represents a valid section of the address space.
1254 	 */
1255 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1256 	if (IS_ERR_VALUE(addr))
1257 		return addr;
1258 
1259 	if (flags & MAP_FIXED_NOREPLACE) {
1260 		if (find_vma_intersection(mm, addr, addr + len))
1261 			return -EEXIST;
1262 	}
1263 
1264 	if (prot == PROT_EXEC) {
1265 		pkey = execute_only_pkey(mm);
1266 		if (pkey < 0)
1267 			pkey = 0;
1268 	}
1269 
1270 	/* Do simple checking here so the lower-level routines won't have
1271 	 * to. we assume access permissions have been handled by the open
1272 	 * of the memory object, so we don't do any here.
1273 	 */
1274 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1275 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1276 
1277 	if (flags & MAP_LOCKED)
1278 		if (!can_do_mlock())
1279 			return -EPERM;
1280 
1281 	if (!mlock_future_ok(mm, vm_flags, len))
1282 		return -EAGAIN;
1283 
1284 	if (file) {
1285 		struct inode *inode = file_inode(file);
1286 		unsigned long flags_mask;
1287 
1288 		if (!file_mmap_ok(file, inode, pgoff, len))
1289 			return -EOVERFLOW;
1290 
1291 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1292 
1293 		switch (flags & MAP_TYPE) {
1294 		case MAP_SHARED:
1295 			/*
1296 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1297 			 * flags. E.g. MAP_SYNC is dangerous to use with
1298 			 * MAP_SHARED as you don't know which consistency model
1299 			 * you will get. We silently ignore unsupported flags
1300 			 * with MAP_SHARED to preserve backward compatibility.
1301 			 */
1302 			flags &= LEGACY_MAP_MASK;
1303 			fallthrough;
1304 		case MAP_SHARED_VALIDATE:
1305 			if (flags & ~flags_mask)
1306 				return -EOPNOTSUPP;
1307 			if (prot & PROT_WRITE) {
1308 				if (!(file->f_mode & FMODE_WRITE))
1309 					return -EACCES;
1310 				if (IS_SWAPFILE(file->f_mapping->host))
1311 					return -ETXTBSY;
1312 			}
1313 
1314 			/*
1315 			 * Make sure we don't allow writing to an append-only
1316 			 * file..
1317 			 */
1318 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1319 				return -EACCES;
1320 
1321 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1322 			if (!(file->f_mode & FMODE_WRITE))
1323 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1324 			fallthrough;
1325 		case MAP_PRIVATE:
1326 			if (!(file->f_mode & FMODE_READ))
1327 				return -EACCES;
1328 			if (path_noexec(&file->f_path)) {
1329 				if (vm_flags & VM_EXEC)
1330 					return -EPERM;
1331 				vm_flags &= ~VM_MAYEXEC;
1332 			}
1333 
1334 			if (!file->f_op->mmap)
1335 				return -ENODEV;
1336 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1337 				return -EINVAL;
1338 			break;
1339 
1340 		default:
1341 			return -EINVAL;
1342 		}
1343 	} else {
1344 		switch (flags & MAP_TYPE) {
1345 		case MAP_SHARED:
1346 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1347 				return -EINVAL;
1348 			/*
1349 			 * Ignore pgoff.
1350 			 */
1351 			pgoff = 0;
1352 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1353 			break;
1354 		case MAP_PRIVATE:
1355 			/*
1356 			 * Set pgoff according to addr for anon_vma.
1357 			 */
1358 			pgoff = addr >> PAGE_SHIFT;
1359 			break;
1360 		default:
1361 			return -EINVAL;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Set 'VM_NORESERVE' if we should not account for the
1367 	 * memory use of this mapping.
1368 	 */
1369 	if (flags & MAP_NORESERVE) {
1370 		/* We honor MAP_NORESERVE if allowed to overcommit */
1371 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1372 			vm_flags |= VM_NORESERVE;
1373 
1374 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1375 		if (file && is_file_hugepages(file))
1376 			vm_flags |= VM_NORESERVE;
1377 	}
1378 
1379 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1380 	if (!IS_ERR_VALUE(addr) &&
1381 	    ((vm_flags & VM_LOCKED) ||
1382 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1383 		*populate = len;
1384 	return addr;
1385 }
1386 
1387 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1388 			      unsigned long prot, unsigned long flags,
1389 			      unsigned long fd, unsigned long pgoff)
1390 {
1391 	struct file *file = NULL;
1392 	unsigned long retval;
1393 
1394 	if (!(flags & MAP_ANONYMOUS)) {
1395 		audit_mmap_fd(fd, flags);
1396 		file = fget(fd);
1397 		if (!file)
1398 			return -EBADF;
1399 		if (is_file_hugepages(file)) {
1400 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1401 		} else if (unlikely(flags & MAP_HUGETLB)) {
1402 			retval = -EINVAL;
1403 			goto out_fput;
1404 		}
1405 	} else if (flags & MAP_HUGETLB) {
1406 		struct hstate *hs;
1407 
1408 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1409 		if (!hs)
1410 			return -EINVAL;
1411 
1412 		len = ALIGN(len, huge_page_size(hs));
1413 		/*
1414 		 * VM_NORESERVE is used because the reservations will be
1415 		 * taken when vm_ops->mmap() is called
1416 		 */
1417 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1418 				VM_NORESERVE,
1419 				HUGETLB_ANONHUGE_INODE,
1420 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1421 		if (IS_ERR(file))
1422 			return PTR_ERR(file);
1423 	}
1424 
1425 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1426 out_fput:
1427 	if (file)
1428 		fput(file);
1429 	return retval;
1430 }
1431 
1432 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1433 		unsigned long, prot, unsigned long, flags,
1434 		unsigned long, fd, unsigned long, pgoff)
1435 {
1436 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1437 }
1438 
1439 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1440 struct mmap_arg_struct {
1441 	unsigned long addr;
1442 	unsigned long len;
1443 	unsigned long prot;
1444 	unsigned long flags;
1445 	unsigned long fd;
1446 	unsigned long offset;
1447 };
1448 
1449 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1450 {
1451 	struct mmap_arg_struct a;
1452 
1453 	if (copy_from_user(&a, arg, sizeof(a)))
1454 		return -EFAULT;
1455 	if (offset_in_page(a.offset))
1456 		return -EINVAL;
1457 
1458 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1459 			       a.offset >> PAGE_SHIFT);
1460 }
1461 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1462 
1463 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1464 {
1465 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1466 }
1467 
1468 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1469 {
1470 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1471 		(VM_WRITE | VM_SHARED);
1472 }
1473 
1474 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1475 {
1476 	/* No managed pages to writeback. */
1477 	if (vma->vm_flags & VM_PFNMAP)
1478 		return false;
1479 
1480 	return vma->vm_file && vma->vm_file->f_mapping &&
1481 		mapping_can_writeback(vma->vm_file->f_mapping);
1482 }
1483 
1484 /*
1485  * Does this VMA require the underlying folios to have their dirty state
1486  * tracked?
1487  */
1488 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1489 {
1490 	/* Only shared, writable VMAs require dirty tracking. */
1491 	if (!vma_is_shared_writable(vma))
1492 		return false;
1493 
1494 	/* Does the filesystem need to be notified? */
1495 	if (vm_ops_needs_writenotify(vma->vm_ops))
1496 		return true;
1497 
1498 	/*
1499 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1500 	 * can writeback, dirty tracking is still required.
1501 	 */
1502 	return vma_fs_can_writeback(vma);
1503 }
1504 
1505 /*
1506  * Some shared mappings will want the pages marked read-only
1507  * to track write events. If so, we'll downgrade vm_page_prot
1508  * to the private version (using protection_map[] without the
1509  * VM_SHARED bit).
1510  */
1511 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1512 {
1513 	/* If it was private or non-writable, the write bit is already clear */
1514 	if (!vma_is_shared_writable(vma))
1515 		return 0;
1516 
1517 	/* The backer wishes to know when pages are first written to? */
1518 	if (vm_ops_needs_writenotify(vma->vm_ops))
1519 		return 1;
1520 
1521 	/* The open routine did something to the protections that pgprot_modify
1522 	 * won't preserve? */
1523 	if (pgprot_val(vm_page_prot) !=
1524 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1525 		return 0;
1526 
1527 	/*
1528 	 * Do we need to track softdirty? hugetlb does not support softdirty
1529 	 * tracking yet.
1530 	 */
1531 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1532 		return 1;
1533 
1534 	/* Do we need write faults for uffd-wp tracking? */
1535 	if (userfaultfd_wp(vma))
1536 		return 1;
1537 
1538 	/* Can the mapping track the dirty pages? */
1539 	return vma_fs_can_writeback(vma);
1540 }
1541 
1542 /*
1543  * We account for memory if it's a private writeable mapping,
1544  * not hugepages and VM_NORESERVE wasn't set.
1545  */
1546 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1547 {
1548 	/*
1549 	 * hugetlb has its own accounting separate from the core VM
1550 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1551 	 */
1552 	if (file && is_file_hugepages(file))
1553 		return 0;
1554 
1555 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1556 }
1557 
1558 /**
1559  * unmapped_area() - Find an area between the low_limit and the high_limit with
1560  * the correct alignment and offset, all from @info. Note: current->mm is used
1561  * for the search.
1562  *
1563  * @info: The unmapped area information including the range [low_limit -
1564  * high_limit), the alignment offset and mask.
1565  *
1566  * Return: A memory address or -ENOMEM.
1567  */
1568 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1569 {
1570 	unsigned long length, gap;
1571 	unsigned long low_limit, high_limit;
1572 	struct vm_area_struct *tmp;
1573 
1574 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1575 
1576 	/* Adjust search length to account for worst case alignment overhead */
1577 	length = info->length + info->align_mask;
1578 	if (length < info->length)
1579 		return -ENOMEM;
1580 
1581 	low_limit = info->low_limit;
1582 	if (low_limit < mmap_min_addr)
1583 		low_limit = mmap_min_addr;
1584 	high_limit = info->high_limit;
1585 retry:
1586 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1587 		return -ENOMEM;
1588 
1589 	gap = mas.index;
1590 	gap += (info->align_offset - gap) & info->align_mask;
1591 	tmp = mas_next(&mas, ULONG_MAX);
1592 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1593 		if (vm_start_gap(tmp) < gap + length - 1) {
1594 			low_limit = tmp->vm_end;
1595 			mas_reset(&mas);
1596 			goto retry;
1597 		}
1598 	} else {
1599 		tmp = mas_prev(&mas, 0);
1600 		if (tmp && vm_end_gap(tmp) > gap) {
1601 			low_limit = vm_end_gap(tmp);
1602 			mas_reset(&mas);
1603 			goto retry;
1604 		}
1605 	}
1606 
1607 	return gap;
1608 }
1609 
1610 /**
1611  * unmapped_area_topdown() - Find an area between the low_limit and the
1612  * high_limit with the correct alignment and offset at the highest available
1613  * address, all from @info. Note: current->mm is used for the search.
1614  *
1615  * @info: The unmapped area information including the range [low_limit -
1616  * high_limit), the alignment offset and mask.
1617  *
1618  * Return: A memory address or -ENOMEM.
1619  */
1620 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1621 {
1622 	unsigned long length, gap, gap_end;
1623 	unsigned long low_limit, high_limit;
1624 	struct vm_area_struct *tmp;
1625 
1626 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1627 	/* Adjust search length to account for worst case alignment overhead */
1628 	length = info->length + info->align_mask;
1629 	if (length < info->length)
1630 		return -ENOMEM;
1631 
1632 	low_limit = info->low_limit;
1633 	if (low_limit < mmap_min_addr)
1634 		low_limit = mmap_min_addr;
1635 	high_limit = info->high_limit;
1636 retry:
1637 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1638 		return -ENOMEM;
1639 
1640 	gap = mas.last + 1 - info->length;
1641 	gap -= (gap - info->align_offset) & info->align_mask;
1642 	gap_end = mas.last;
1643 	tmp = mas_next(&mas, ULONG_MAX);
1644 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1645 		if (vm_start_gap(tmp) <= gap_end) {
1646 			high_limit = vm_start_gap(tmp);
1647 			mas_reset(&mas);
1648 			goto retry;
1649 		}
1650 	} else {
1651 		tmp = mas_prev(&mas, 0);
1652 		if (tmp && vm_end_gap(tmp) > gap) {
1653 			high_limit = tmp->vm_start;
1654 			mas_reset(&mas);
1655 			goto retry;
1656 		}
1657 	}
1658 
1659 	return gap;
1660 }
1661 
1662 /*
1663  * Search for an unmapped address range.
1664  *
1665  * We are looking for a range that:
1666  * - does not intersect with any VMA;
1667  * - is contained within the [low_limit, high_limit) interval;
1668  * - is at least the desired size.
1669  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1670  */
1671 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1672 {
1673 	unsigned long addr;
1674 
1675 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1676 		addr = unmapped_area_topdown(info);
1677 	else
1678 		addr = unmapped_area(info);
1679 
1680 	trace_vm_unmapped_area(addr, info);
1681 	return addr;
1682 }
1683 
1684 /* Get an address range which is currently unmapped.
1685  * For shmat() with addr=0.
1686  *
1687  * Ugly calling convention alert:
1688  * Return value with the low bits set means error value,
1689  * ie
1690  *	if (ret & ~PAGE_MASK)
1691  *		error = ret;
1692  *
1693  * This function "knows" that -ENOMEM has the bits set.
1694  */
1695 unsigned long
1696 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1697 			  unsigned long len, unsigned long pgoff,
1698 			  unsigned long flags)
1699 {
1700 	struct mm_struct *mm = current->mm;
1701 	struct vm_area_struct *vma, *prev;
1702 	struct vm_unmapped_area_info info;
1703 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1704 
1705 	if (len > mmap_end - mmap_min_addr)
1706 		return -ENOMEM;
1707 
1708 	if (flags & MAP_FIXED)
1709 		return addr;
1710 
1711 	if (addr) {
1712 		addr = PAGE_ALIGN(addr);
1713 		vma = find_vma_prev(mm, addr, &prev);
1714 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1715 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1716 		    (!prev || addr >= vm_end_gap(prev)))
1717 			return addr;
1718 	}
1719 
1720 	info.flags = 0;
1721 	info.length = len;
1722 	info.low_limit = mm->mmap_base;
1723 	info.high_limit = mmap_end;
1724 	info.align_mask = 0;
1725 	info.align_offset = 0;
1726 	return vm_unmapped_area(&info);
1727 }
1728 
1729 #ifndef HAVE_ARCH_UNMAPPED_AREA
1730 unsigned long
1731 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1732 		       unsigned long len, unsigned long pgoff,
1733 		       unsigned long flags)
1734 {
1735 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1736 }
1737 #endif
1738 
1739 /*
1740  * This mmap-allocator allocates new areas top-down from below the
1741  * stack's low limit (the base):
1742  */
1743 unsigned long
1744 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1745 				  unsigned long len, unsigned long pgoff,
1746 				  unsigned long flags)
1747 {
1748 	struct vm_area_struct *vma, *prev;
1749 	struct mm_struct *mm = current->mm;
1750 	struct vm_unmapped_area_info info;
1751 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1752 
1753 	/* requested length too big for entire address space */
1754 	if (len > mmap_end - mmap_min_addr)
1755 		return -ENOMEM;
1756 
1757 	if (flags & MAP_FIXED)
1758 		return addr;
1759 
1760 	/* requesting a specific address */
1761 	if (addr) {
1762 		addr = PAGE_ALIGN(addr);
1763 		vma = find_vma_prev(mm, addr, &prev);
1764 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1765 				(!vma || addr + len <= vm_start_gap(vma)) &&
1766 				(!prev || addr >= vm_end_gap(prev)))
1767 			return addr;
1768 	}
1769 
1770 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1771 	info.length = len;
1772 	info.low_limit = PAGE_SIZE;
1773 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1774 	info.align_mask = 0;
1775 	info.align_offset = 0;
1776 	addr = vm_unmapped_area(&info);
1777 
1778 	/*
1779 	 * A failed mmap() very likely causes application failure,
1780 	 * so fall back to the bottom-up function here. This scenario
1781 	 * can happen with large stack limits and large mmap()
1782 	 * allocations.
1783 	 */
1784 	if (offset_in_page(addr)) {
1785 		VM_BUG_ON(addr != -ENOMEM);
1786 		info.flags = 0;
1787 		info.low_limit = TASK_UNMAPPED_BASE;
1788 		info.high_limit = mmap_end;
1789 		addr = vm_unmapped_area(&info);
1790 	}
1791 
1792 	return addr;
1793 }
1794 
1795 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1796 unsigned long
1797 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1798 			       unsigned long len, unsigned long pgoff,
1799 			       unsigned long flags)
1800 {
1801 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1802 }
1803 #endif
1804 
1805 unsigned long
1806 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1807 		unsigned long pgoff, unsigned long flags)
1808 {
1809 	unsigned long (*get_area)(struct file *, unsigned long,
1810 				  unsigned long, unsigned long, unsigned long);
1811 
1812 	unsigned long error = arch_mmap_check(addr, len, flags);
1813 	if (error)
1814 		return error;
1815 
1816 	/* Careful about overflows.. */
1817 	if (len > TASK_SIZE)
1818 		return -ENOMEM;
1819 
1820 	get_area = current->mm->get_unmapped_area;
1821 	if (file) {
1822 		if (file->f_op->get_unmapped_area)
1823 			get_area = file->f_op->get_unmapped_area;
1824 	} else if (flags & MAP_SHARED) {
1825 		/*
1826 		 * mmap_region() will call shmem_zero_setup() to create a file,
1827 		 * so use shmem's get_unmapped_area in case it can be huge.
1828 		 * do_mmap() will clear pgoff, so match alignment.
1829 		 */
1830 		pgoff = 0;
1831 		get_area = shmem_get_unmapped_area;
1832 	}
1833 
1834 	addr = get_area(file, addr, len, pgoff, flags);
1835 	if (IS_ERR_VALUE(addr))
1836 		return addr;
1837 
1838 	if (addr > TASK_SIZE - len)
1839 		return -ENOMEM;
1840 	if (offset_in_page(addr))
1841 		return -EINVAL;
1842 
1843 	error = security_mmap_addr(addr);
1844 	return error ? error : addr;
1845 }
1846 
1847 EXPORT_SYMBOL(get_unmapped_area);
1848 
1849 /**
1850  * find_vma_intersection() - Look up the first VMA which intersects the interval
1851  * @mm: The process address space.
1852  * @start_addr: The inclusive start user address.
1853  * @end_addr: The exclusive end user address.
1854  *
1855  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1856  * start_addr < end_addr.
1857  */
1858 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1859 					     unsigned long start_addr,
1860 					     unsigned long end_addr)
1861 {
1862 	unsigned long index = start_addr;
1863 
1864 	mmap_assert_locked(mm);
1865 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1866 }
1867 EXPORT_SYMBOL(find_vma_intersection);
1868 
1869 /**
1870  * find_vma() - Find the VMA for a given address, or the next VMA.
1871  * @mm: The mm_struct to check
1872  * @addr: The address
1873  *
1874  * Returns: The VMA associated with addr, or the next VMA.
1875  * May return %NULL in the case of no VMA at addr or above.
1876  */
1877 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1878 {
1879 	unsigned long index = addr;
1880 
1881 	mmap_assert_locked(mm);
1882 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1883 }
1884 EXPORT_SYMBOL(find_vma);
1885 
1886 /**
1887  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1888  * set %pprev to the previous VMA, if any.
1889  * @mm: The mm_struct to check
1890  * @addr: The address
1891  * @pprev: The pointer to set to the previous VMA
1892  *
1893  * Note that RCU lock is missing here since the external mmap_lock() is used
1894  * instead.
1895  *
1896  * Returns: The VMA associated with @addr, or the next vma.
1897  * May return %NULL in the case of no vma at addr or above.
1898  */
1899 struct vm_area_struct *
1900 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1901 			struct vm_area_struct **pprev)
1902 {
1903 	struct vm_area_struct *vma;
1904 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1905 
1906 	vma = mas_walk(&mas);
1907 	*pprev = mas_prev(&mas, 0);
1908 	if (!vma)
1909 		vma = mas_next(&mas, ULONG_MAX);
1910 	return vma;
1911 }
1912 
1913 /*
1914  * Verify that the stack growth is acceptable and
1915  * update accounting. This is shared with both the
1916  * grow-up and grow-down cases.
1917  */
1918 static int acct_stack_growth(struct vm_area_struct *vma,
1919 			     unsigned long size, unsigned long grow)
1920 {
1921 	struct mm_struct *mm = vma->vm_mm;
1922 	unsigned long new_start;
1923 
1924 	/* address space limit tests */
1925 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1926 		return -ENOMEM;
1927 
1928 	/* Stack limit test */
1929 	if (size > rlimit(RLIMIT_STACK))
1930 		return -ENOMEM;
1931 
1932 	/* mlock limit tests */
1933 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1934 		return -ENOMEM;
1935 
1936 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1937 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1938 			vma->vm_end - size;
1939 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1940 		return -EFAULT;
1941 
1942 	/*
1943 	 * Overcommit..  This must be the final test, as it will
1944 	 * update security statistics.
1945 	 */
1946 	if (security_vm_enough_memory_mm(mm, grow))
1947 		return -ENOMEM;
1948 
1949 	return 0;
1950 }
1951 
1952 #if defined(CONFIG_STACK_GROWSUP)
1953 /*
1954  * PA-RISC uses this for its stack.
1955  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1956  */
1957 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1958 {
1959 	struct mm_struct *mm = vma->vm_mm;
1960 	struct vm_area_struct *next;
1961 	unsigned long gap_addr;
1962 	int error = 0;
1963 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1964 
1965 	if (!(vma->vm_flags & VM_GROWSUP))
1966 		return -EFAULT;
1967 
1968 	/* Guard against exceeding limits of the address space. */
1969 	address &= PAGE_MASK;
1970 	if (address >= (TASK_SIZE & PAGE_MASK))
1971 		return -ENOMEM;
1972 	address += PAGE_SIZE;
1973 
1974 	/* Enforce stack_guard_gap */
1975 	gap_addr = address + stack_guard_gap;
1976 
1977 	/* Guard against overflow */
1978 	if (gap_addr < address || gap_addr > TASK_SIZE)
1979 		gap_addr = TASK_SIZE;
1980 
1981 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1982 	if (next && vma_is_accessible(next)) {
1983 		if (!(next->vm_flags & VM_GROWSUP))
1984 			return -ENOMEM;
1985 		/* Check that both stack segments have the same anon_vma? */
1986 	}
1987 
1988 	if (next)
1989 		mas_prev_range(&mas, address);
1990 
1991 	__mas_set_range(&mas, vma->vm_start, address - 1);
1992 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
1993 		return -ENOMEM;
1994 
1995 	/* We must make sure the anon_vma is allocated. */
1996 	if (unlikely(anon_vma_prepare(vma))) {
1997 		mas_destroy(&mas);
1998 		return -ENOMEM;
1999 	}
2000 
2001 	/* Lock the VMA before expanding to prevent concurrent page faults */
2002 	vma_start_write(vma);
2003 	/*
2004 	 * vma->vm_start/vm_end cannot change under us because the caller
2005 	 * is required to hold the mmap_lock in read mode.  We need the
2006 	 * anon_vma lock to serialize against concurrent expand_stacks.
2007 	 */
2008 	anon_vma_lock_write(vma->anon_vma);
2009 
2010 	/* Somebody else might have raced and expanded it already */
2011 	if (address > vma->vm_end) {
2012 		unsigned long size, grow;
2013 
2014 		size = address - vma->vm_start;
2015 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2016 
2017 		error = -ENOMEM;
2018 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2019 			error = acct_stack_growth(vma, size, grow);
2020 			if (!error) {
2021 				/*
2022 				 * We only hold a shared mmap_lock lock here, so
2023 				 * we need to protect against concurrent vma
2024 				 * expansions.  anon_vma_lock_write() doesn't
2025 				 * help here, as we don't guarantee that all
2026 				 * growable vmas in a mm share the same root
2027 				 * anon vma.  So, we reuse mm->page_table_lock
2028 				 * to guard against concurrent vma expansions.
2029 				 */
2030 				spin_lock(&mm->page_table_lock);
2031 				if (vma->vm_flags & VM_LOCKED)
2032 					mm->locked_vm += grow;
2033 				vm_stat_account(mm, vma->vm_flags, grow);
2034 				anon_vma_interval_tree_pre_update_vma(vma);
2035 				vma->vm_end = address;
2036 				/* Overwrite old entry in mtree. */
2037 				mas_store_prealloc(&mas, vma);
2038 				anon_vma_interval_tree_post_update_vma(vma);
2039 				spin_unlock(&mm->page_table_lock);
2040 
2041 				perf_event_mmap(vma);
2042 			}
2043 		}
2044 	}
2045 	anon_vma_unlock_write(vma->anon_vma);
2046 	khugepaged_enter_vma(vma, vma->vm_flags);
2047 	mas_destroy(&mas);
2048 	validate_mm(mm);
2049 	return error;
2050 }
2051 #endif /* CONFIG_STACK_GROWSUP */
2052 
2053 /*
2054  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2055  * mmap_lock held for writing.
2056  */
2057 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2058 {
2059 	struct mm_struct *mm = vma->vm_mm;
2060 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2061 	struct vm_area_struct *prev;
2062 	int error = 0;
2063 
2064 	if (!(vma->vm_flags & VM_GROWSDOWN))
2065 		return -EFAULT;
2066 
2067 	address &= PAGE_MASK;
2068 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2069 		return -EPERM;
2070 
2071 	/* Enforce stack_guard_gap */
2072 	prev = mas_prev(&mas, 0);
2073 	/* Check that both stack segments have the same anon_vma? */
2074 	if (prev) {
2075 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2076 		    vma_is_accessible(prev) &&
2077 		    (address - prev->vm_end < stack_guard_gap))
2078 			return -ENOMEM;
2079 	}
2080 
2081 	if (prev)
2082 		mas_next_range(&mas, vma->vm_start);
2083 
2084 	__mas_set_range(&mas, address, vma->vm_end - 1);
2085 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2086 		return -ENOMEM;
2087 
2088 	/* We must make sure the anon_vma is allocated. */
2089 	if (unlikely(anon_vma_prepare(vma))) {
2090 		mas_destroy(&mas);
2091 		return -ENOMEM;
2092 	}
2093 
2094 	/* Lock the VMA before expanding to prevent concurrent page faults */
2095 	vma_start_write(vma);
2096 	/*
2097 	 * vma->vm_start/vm_end cannot change under us because the caller
2098 	 * is required to hold the mmap_lock in read mode.  We need the
2099 	 * anon_vma lock to serialize against concurrent expand_stacks.
2100 	 */
2101 	anon_vma_lock_write(vma->anon_vma);
2102 
2103 	/* Somebody else might have raced and expanded it already */
2104 	if (address < vma->vm_start) {
2105 		unsigned long size, grow;
2106 
2107 		size = vma->vm_end - address;
2108 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2109 
2110 		error = -ENOMEM;
2111 		if (grow <= vma->vm_pgoff) {
2112 			error = acct_stack_growth(vma, size, grow);
2113 			if (!error) {
2114 				/*
2115 				 * We only hold a shared mmap_lock lock here, so
2116 				 * we need to protect against concurrent vma
2117 				 * expansions.  anon_vma_lock_write() doesn't
2118 				 * help here, as we don't guarantee that all
2119 				 * growable vmas in a mm share the same root
2120 				 * anon vma.  So, we reuse mm->page_table_lock
2121 				 * to guard against concurrent vma expansions.
2122 				 */
2123 				spin_lock(&mm->page_table_lock);
2124 				if (vma->vm_flags & VM_LOCKED)
2125 					mm->locked_vm += grow;
2126 				vm_stat_account(mm, vma->vm_flags, grow);
2127 				anon_vma_interval_tree_pre_update_vma(vma);
2128 				vma->vm_start = address;
2129 				vma->vm_pgoff -= grow;
2130 				/* Overwrite old entry in mtree. */
2131 				mas_store_prealloc(&mas, vma);
2132 				anon_vma_interval_tree_post_update_vma(vma);
2133 				spin_unlock(&mm->page_table_lock);
2134 
2135 				perf_event_mmap(vma);
2136 			}
2137 		}
2138 	}
2139 	anon_vma_unlock_write(vma->anon_vma);
2140 	khugepaged_enter_vma(vma, vma->vm_flags);
2141 	mas_destroy(&mas);
2142 	validate_mm(mm);
2143 	return error;
2144 }
2145 
2146 /* enforced gap between the expanding stack and other mappings. */
2147 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2148 
2149 static int __init cmdline_parse_stack_guard_gap(char *p)
2150 {
2151 	unsigned long val;
2152 	char *endptr;
2153 
2154 	val = simple_strtoul(p, &endptr, 10);
2155 	if (!*endptr)
2156 		stack_guard_gap = val << PAGE_SHIFT;
2157 
2158 	return 1;
2159 }
2160 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2161 
2162 #ifdef CONFIG_STACK_GROWSUP
2163 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2164 {
2165 	return expand_upwards(vma, address);
2166 }
2167 
2168 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2169 {
2170 	struct vm_area_struct *vma, *prev;
2171 
2172 	addr &= PAGE_MASK;
2173 	vma = find_vma_prev(mm, addr, &prev);
2174 	if (vma && (vma->vm_start <= addr))
2175 		return vma;
2176 	if (!prev)
2177 		return NULL;
2178 	if (expand_stack_locked(prev, addr))
2179 		return NULL;
2180 	if (prev->vm_flags & VM_LOCKED)
2181 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2182 	return prev;
2183 }
2184 #else
2185 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2186 {
2187 	return expand_downwards(vma, address);
2188 }
2189 
2190 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2191 {
2192 	struct vm_area_struct *vma;
2193 	unsigned long start;
2194 
2195 	addr &= PAGE_MASK;
2196 	vma = find_vma(mm, addr);
2197 	if (!vma)
2198 		return NULL;
2199 	if (vma->vm_start <= addr)
2200 		return vma;
2201 	start = vma->vm_start;
2202 	if (expand_stack_locked(vma, addr))
2203 		return NULL;
2204 	if (vma->vm_flags & VM_LOCKED)
2205 		populate_vma_page_range(vma, addr, start, NULL);
2206 	return vma;
2207 }
2208 #endif
2209 
2210 /*
2211  * IA64 has some horrid mapping rules: it can expand both up and down,
2212  * but with various special rules.
2213  *
2214  * We'll get rid of this architecture eventually, so the ugliness is
2215  * temporary.
2216  */
2217 #ifdef CONFIG_IA64
2218 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2219 {
2220 	return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2221 		REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2222 }
2223 
2224 /*
2225  * IA64 stacks grow down, but there's a special register backing store
2226  * that can grow up. Only sequentially, though, so the new address must
2227  * match vm_end.
2228  */
2229 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2230 {
2231 	if (!vma_expand_ok(vma, addr))
2232 		return -EFAULT;
2233 	if (vma->vm_end != (addr & PAGE_MASK))
2234 		return -EFAULT;
2235 	return expand_upwards(vma, addr);
2236 }
2237 
2238 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2239 {
2240 	if (!vma_expand_ok(vma, addr))
2241 		return -EFAULT;
2242 	return expand_downwards(vma, addr);
2243 }
2244 
2245 #elif defined(CONFIG_STACK_GROWSUP)
2246 
2247 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2248 #define vma_expand_down(vma, addr) (-EFAULT)
2249 
2250 #else
2251 
2252 #define vma_expand_up(vma,addr) (-EFAULT)
2253 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2254 
2255 #endif
2256 
2257 /*
2258  * expand_stack(): legacy interface for page faulting. Don't use unless
2259  * you have to.
2260  *
2261  * This is called with the mm locked for reading, drops the lock, takes
2262  * the lock for writing, tries to look up a vma again, expands it if
2263  * necessary, and downgrades the lock to reading again.
2264  *
2265  * If no vma is found or it can't be expanded, it returns NULL and has
2266  * dropped the lock.
2267  */
2268 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2269 {
2270 	struct vm_area_struct *vma, *prev;
2271 
2272 	mmap_read_unlock(mm);
2273 	if (mmap_write_lock_killable(mm))
2274 		return NULL;
2275 
2276 	vma = find_vma_prev(mm, addr, &prev);
2277 	if (vma && vma->vm_start <= addr)
2278 		goto success;
2279 
2280 	if (prev && !vma_expand_up(prev, addr)) {
2281 		vma = prev;
2282 		goto success;
2283 	}
2284 
2285 	if (vma && !vma_expand_down(vma, addr))
2286 		goto success;
2287 
2288 	mmap_write_unlock(mm);
2289 	return NULL;
2290 
2291 success:
2292 	mmap_write_downgrade(mm);
2293 	return vma;
2294 }
2295 
2296 /*
2297  * Ok - we have the memory areas we should free on a maple tree so release them,
2298  * and do the vma updates.
2299  *
2300  * Called with the mm semaphore held.
2301  */
2302 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2303 {
2304 	unsigned long nr_accounted = 0;
2305 	struct vm_area_struct *vma;
2306 
2307 	/* Update high watermark before we lower total_vm */
2308 	update_hiwater_vm(mm);
2309 	mas_for_each(mas, vma, ULONG_MAX) {
2310 		long nrpages = vma_pages(vma);
2311 
2312 		if (vma->vm_flags & VM_ACCOUNT)
2313 			nr_accounted += nrpages;
2314 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2315 		remove_vma(vma, false);
2316 	}
2317 	vm_unacct_memory(nr_accounted);
2318 }
2319 
2320 /*
2321  * Get rid of page table information in the indicated region.
2322  *
2323  * Called with the mm semaphore held.
2324  */
2325 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2326 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2327 		struct vm_area_struct *next, unsigned long start,
2328 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2329 {
2330 	struct mmu_gather tlb;
2331 	unsigned long mt_start = mas->index;
2332 
2333 	lru_add_drain();
2334 	tlb_gather_mmu(&tlb, mm);
2335 	update_hiwater_rss(mm);
2336 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2337 	mas_set(mas, mt_start);
2338 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2339 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2340 				 mm_wr_locked);
2341 	tlb_finish_mmu(&tlb);
2342 }
2343 
2344 /*
2345  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2346  * has already been checked or doesn't make sense to fail.
2347  * VMA Iterator will point to the end VMA.
2348  */
2349 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2350 		       unsigned long addr, int new_below)
2351 {
2352 	struct vma_prepare vp;
2353 	struct vm_area_struct *new;
2354 	int err;
2355 
2356 	WARN_ON(vma->vm_start >= addr);
2357 	WARN_ON(vma->vm_end <= addr);
2358 
2359 	if (vma->vm_ops && vma->vm_ops->may_split) {
2360 		err = vma->vm_ops->may_split(vma, addr);
2361 		if (err)
2362 			return err;
2363 	}
2364 
2365 	new = vm_area_dup(vma);
2366 	if (!new)
2367 		return -ENOMEM;
2368 
2369 	if (new_below) {
2370 		new->vm_end = addr;
2371 	} else {
2372 		new->vm_start = addr;
2373 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2374 	}
2375 
2376 	err = -ENOMEM;
2377 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2378 	if (vma_iter_prealloc(vmi, new))
2379 		goto out_free_vma;
2380 
2381 	err = vma_dup_policy(vma, new);
2382 	if (err)
2383 		goto out_free_vmi;
2384 
2385 	err = anon_vma_clone(new, vma);
2386 	if (err)
2387 		goto out_free_mpol;
2388 
2389 	if (new->vm_file)
2390 		get_file(new->vm_file);
2391 
2392 	if (new->vm_ops && new->vm_ops->open)
2393 		new->vm_ops->open(new);
2394 
2395 	vma_start_write(vma);
2396 	vma_start_write(new);
2397 
2398 	init_vma_prep(&vp, vma);
2399 	vp.insert = new;
2400 	vma_prepare(&vp);
2401 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2402 
2403 	if (new_below) {
2404 		vma->vm_start = addr;
2405 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2406 	} else {
2407 		vma->vm_end = addr;
2408 	}
2409 
2410 	/* vma_complete stores the new vma */
2411 	vma_complete(&vp, vmi, vma->vm_mm);
2412 
2413 	/* Success. */
2414 	if (new_below)
2415 		vma_next(vmi);
2416 	return 0;
2417 
2418 out_free_mpol:
2419 	mpol_put(vma_policy(new));
2420 out_free_vmi:
2421 	vma_iter_free(vmi);
2422 out_free_vma:
2423 	vm_area_free(new);
2424 	return err;
2425 }
2426 
2427 /*
2428  * Split a vma into two pieces at address 'addr', a new vma is allocated
2429  * either for the first part or the tail.
2430  */
2431 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2432 		     unsigned long addr, int new_below)
2433 {
2434 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2435 		return -ENOMEM;
2436 
2437 	return __split_vma(vmi, vma, addr, new_below);
2438 }
2439 
2440 /*
2441  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2442  * context and anonymous VMA name within the range [start, end).
2443  *
2444  * As a result, we might be able to merge the newly modified VMA range with an
2445  * adjacent VMA with identical properties.
2446  *
2447  * If no merge is possible and the range does not span the entirety of the VMA,
2448  * we then need to split the VMA to accommodate the change.
2449  *
2450  * The function returns either the merged VMA, the original VMA if a split was
2451  * required instead, or an error if the split failed.
2452  */
2453 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2454 				  struct vm_area_struct *prev,
2455 				  struct vm_area_struct *vma,
2456 				  unsigned long start, unsigned long end,
2457 				  unsigned long vm_flags,
2458 				  struct mempolicy *policy,
2459 				  struct vm_userfaultfd_ctx uffd_ctx,
2460 				  struct anon_vma_name *anon_name)
2461 {
2462 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2463 	struct vm_area_struct *merged;
2464 
2465 	merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2466 			   vma->anon_vma, vma->vm_file, pgoff, policy,
2467 			   uffd_ctx, anon_name);
2468 	if (merged)
2469 		return merged;
2470 
2471 	if (vma->vm_start < start) {
2472 		int err = split_vma(vmi, vma, start, 1);
2473 
2474 		if (err)
2475 			return ERR_PTR(err);
2476 	}
2477 
2478 	if (vma->vm_end > end) {
2479 		int err = split_vma(vmi, vma, end, 0);
2480 
2481 		if (err)
2482 			return ERR_PTR(err);
2483 	}
2484 
2485 	return vma;
2486 }
2487 
2488 /*
2489  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2490  * must ensure that [start, end) does not overlap any existing VMA.
2491  */
2492 static struct vm_area_struct
2493 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2494 		   struct vm_area_struct *vma, unsigned long start,
2495 		   unsigned long end, pgoff_t pgoff)
2496 {
2497 	return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2498 			 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2499 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2500 }
2501 
2502 /*
2503  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2504  * VMA with identical properties.
2505  */
2506 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2507 					struct vm_area_struct *vma,
2508 					unsigned long delta)
2509 {
2510 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2511 
2512 	/* vma is specified as prev, so case 1 or 2 will apply. */
2513 	return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2514 			 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2515 			 vma_policy(vma), vma->vm_userfaultfd_ctx,
2516 			 anon_vma_name(vma));
2517 }
2518 
2519 /*
2520  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2521  * @vmi: The vma iterator
2522  * @vma: The starting vm_area_struct
2523  * @mm: The mm_struct
2524  * @start: The aligned start address to munmap.
2525  * @end: The aligned end address to munmap.
2526  * @uf: The userfaultfd list_head
2527  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2528  * success.
2529  *
2530  * Return: 0 on success and drops the lock if so directed, error and leaves the
2531  * lock held otherwise.
2532  */
2533 static int
2534 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2535 		    struct mm_struct *mm, unsigned long start,
2536 		    unsigned long end, struct list_head *uf, bool unlock)
2537 {
2538 	struct vm_area_struct *prev, *next = NULL;
2539 	struct maple_tree mt_detach;
2540 	int count = 0;
2541 	int error = -ENOMEM;
2542 	unsigned long locked_vm = 0;
2543 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2544 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2545 	mt_on_stack(mt_detach);
2546 
2547 	/*
2548 	 * If we need to split any vma, do it now to save pain later.
2549 	 *
2550 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2551 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2552 	 * places tmp vma above, and higher split_vma places tmp vma below.
2553 	 */
2554 
2555 	/* Does it split the first one? */
2556 	if (start > vma->vm_start) {
2557 
2558 		/*
2559 		 * Make sure that map_count on return from munmap() will
2560 		 * not exceed its limit; but let map_count go just above
2561 		 * its limit temporarily, to help free resources as expected.
2562 		 */
2563 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2564 			goto map_count_exceeded;
2565 
2566 		error = __split_vma(vmi, vma, start, 1);
2567 		if (error)
2568 			goto start_split_failed;
2569 	}
2570 
2571 	/*
2572 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2573 	 * it is always overwritten.
2574 	 */
2575 	next = vma;
2576 	do {
2577 		/* Does it split the end? */
2578 		if (next->vm_end > end) {
2579 			error = __split_vma(vmi, next, end, 0);
2580 			if (error)
2581 				goto end_split_failed;
2582 		}
2583 		vma_start_write(next);
2584 		mas_set(&mas_detach, count);
2585 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2586 		if (error)
2587 			goto munmap_gather_failed;
2588 		vma_mark_detached(next, true);
2589 		if (next->vm_flags & VM_LOCKED)
2590 			locked_vm += vma_pages(next);
2591 
2592 		count++;
2593 		if (unlikely(uf)) {
2594 			/*
2595 			 * If userfaultfd_unmap_prep returns an error the vmas
2596 			 * will remain split, but userland will get a
2597 			 * highly unexpected error anyway. This is no
2598 			 * different than the case where the first of the two
2599 			 * __split_vma fails, but we don't undo the first
2600 			 * split, despite we could. This is unlikely enough
2601 			 * failure that it's not worth optimizing it for.
2602 			 */
2603 			error = userfaultfd_unmap_prep(next, start, end, uf);
2604 
2605 			if (error)
2606 				goto userfaultfd_error;
2607 		}
2608 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2609 		BUG_ON(next->vm_start < start);
2610 		BUG_ON(next->vm_start > end);
2611 #endif
2612 	} for_each_vma_range(*vmi, next, end);
2613 
2614 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2615 	/* Make sure no VMAs are about to be lost. */
2616 	{
2617 		MA_STATE(test, &mt_detach, 0, 0);
2618 		struct vm_area_struct *vma_mas, *vma_test;
2619 		int test_count = 0;
2620 
2621 		vma_iter_set(vmi, start);
2622 		rcu_read_lock();
2623 		vma_test = mas_find(&test, count - 1);
2624 		for_each_vma_range(*vmi, vma_mas, end) {
2625 			BUG_ON(vma_mas != vma_test);
2626 			test_count++;
2627 			vma_test = mas_next(&test, count - 1);
2628 		}
2629 		rcu_read_unlock();
2630 		BUG_ON(count != test_count);
2631 	}
2632 #endif
2633 
2634 	while (vma_iter_addr(vmi) > start)
2635 		vma_iter_prev_range(vmi);
2636 
2637 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2638 	if (error)
2639 		goto clear_tree_failed;
2640 
2641 	/* Point of no return */
2642 	mm->locked_vm -= locked_vm;
2643 	mm->map_count -= count;
2644 	if (unlock)
2645 		mmap_write_downgrade(mm);
2646 
2647 	prev = vma_iter_prev_range(vmi);
2648 	next = vma_next(vmi);
2649 	if (next)
2650 		vma_iter_prev_range(vmi);
2651 
2652 	/*
2653 	 * We can free page tables without write-locking mmap_lock because VMAs
2654 	 * were isolated before we downgraded mmap_lock.
2655 	 */
2656 	mas_set(&mas_detach, 1);
2657 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2658 		     !unlock);
2659 	/* Statistics and freeing VMAs */
2660 	mas_set(&mas_detach, 0);
2661 	remove_mt(mm, &mas_detach);
2662 	validate_mm(mm);
2663 	if (unlock)
2664 		mmap_read_unlock(mm);
2665 
2666 	__mt_destroy(&mt_detach);
2667 	return 0;
2668 
2669 clear_tree_failed:
2670 userfaultfd_error:
2671 munmap_gather_failed:
2672 end_split_failed:
2673 	mas_set(&mas_detach, 0);
2674 	mas_for_each(&mas_detach, next, end)
2675 		vma_mark_detached(next, false);
2676 
2677 	__mt_destroy(&mt_detach);
2678 start_split_failed:
2679 map_count_exceeded:
2680 	validate_mm(mm);
2681 	return error;
2682 }
2683 
2684 /*
2685  * do_vmi_munmap() - munmap a given range.
2686  * @vmi: The vma iterator
2687  * @mm: The mm_struct
2688  * @start: The start address to munmap
2689  * @len: The length of the range to munmap
2690  * @uf: The userfaultfd list_head
2691  * @unlock: set to true if the user wants to drop the mmap_lock on success
2692  *
2693  * This function takes a @mas that is either pointing to the previous VMA or set
2694  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2695  * aligned and any arch_unmap work will be preformed.
2696  *
2697  * Return: 0 on success and drops the lock if so directed, error and leaves the
2698  * lock held otherwise.
2699  */
2700 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2701 		  unsigned long start, size_t len, struct list_head *uf,
2702 		  bool unlock)
2703 {
2704 	unsigned long end;
2705 	struct vm_area_struct *vma;
2706 
2707 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2708 		return -EINVAL;
2709 
2710 	end = start + PAGE_ALIGN(len);
2711 	if (end == start)
2712 		return -EINVAL;
2713 
2714 	 /* arch_unmap() might do unmaps itself.  */
2715 	arch_unmap(mm, start, end);
2716 
2717 	/* Find the first overlapping VMA */
2718 	vma = vma_find(vmi, end);
2719 	if (!vma) {
2720 		if (unlock)
2721 			mmap_write_unlock(mm);
2722 		return 0;
2723 	}
2724 
2725 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2726 }
2727 
2728 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2729  * @mm: The mm_struct
2730  * @start: The start address to munmap
2731  * @len: The length to be munmapped.
2732  * @uf: The userfaultfd list_head
2733  *
2734  * Return: 0 on success, error otherwise.
2735  */
2736 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2737 	      struct list_head *uf)
2738 {
2739 	VMA_ITERATOR(vmi, mm, start);
2740 
2741 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2742 }
2743 
2744 unsigned long mmap_region(struct file *file, unsigned long addr,
2745 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2746 		struct list_head *uf)
2747 {
2748 	struct mm_struct *mm = current->mm;
2749 	struct vm_area_struct *vma = NULL;
2750 	struct vm_area_struct *next, *prev, *merge;
2751 	pgoff_t pglen = len >> PAGE_SHIFT;
2752 	unsigned long charged = 0;
2753 	unsigned long end = addr + len;
2754 	unsigned long merge_start = addr, merge_end = end;
2755 	bool writable_file_mapping = false;
2756 	pgoff_t vm_pgoff;
2757 	int error;
2758 	VMA_ITERATOR(vmi, mm, addr);
2759 
2760 	/* Check against address space limit. */
2761 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2762 		unsigned long nr_pages;
2763 
2764 		/*
2765 		 * MAP_FIXED may remove pages of mappings that intersects with
2766 		 * requested mapping. Account for the pages it would unmap.
2767 		 */
2768 		nr_pages = count_vma_pages_range(mm, addr, end);
2769 
2770 		if (!may_expand_vm(mm, vm_flags,
2771 					(len >> PAGE_SHIFT) - nr_pages))
2772 			return -ENOMEM;
2773 	}
2774 
2775 	/* Unmap any existing mapping in the area */
2776 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2777 		return -ENOMEM;
2778 
2779 	/*
2780 	 * Private writable mapping: check memory availability
2781 	 */
2782 	if (accountable_mapping(file, vm_flags)) {
2783 		charged = len >> PAGE_SHIFT;
2784 		if (security_vm_enough_memory_mm(mm, charged))
2785 			return -ENOMEM;
2786 		vm_flags |= VM_ACCOUNT;
2787 	}
2788 
2789 	next = vma_next(&vmi);
2790 	prev = vma_prev(&vmi);
2791 	if (vm_flags & VM_SPECIAL) {
2792 		if (prev)
2793 			vma_iter_next_range(&vmi);
2794 		goto cannot_expand;
2795 	}
2796 
2797 	/* Attempt to expand an old mapping */
2798 	/* Check next */
2799 	if (next && next->vm_start == end && !vma_policy(next) &&
2800 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2801 				 NULL_VM_UFFD_CTX, NULL)) {
2802 		merge_end = next->vm_end;
2803 		vma = next;
2804 		vm_pgoff = next->vm_pgoff - pglen;
2805 	}
2806 
2807 	/* Check prev */
2808 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2809 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2810 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2811 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2812 				       NULL_VM_UFFD_CTX, NULL))) {
2813 		merge_start = prev->vm_start;
2814 		vma = prev;
2815 		vm_pgoff = prev->vm_pgoff;
2816 	} else if (prev) {
2817 		vma_iter_next_range(&vmi);
2818 	}
2819 
2820 	/* Actually expand, if possible */
2821 	if (vma &&
2822 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2823 		khugepaged_enter_vma(vma, vm_flags);
2824 		goto expanded;
2825 	}
2826 
2827 	if (vma == prev)
2828 		vma_iter_set(&vmi, addr);
2829 cannot_expand:
2830 
2831 	/*
2832 	 * Determine the object being mapped and call the appropriate
2833 	 * specific mapper. the address has already been validated, but
2834 	 * not unmapped, but the maps are removed from the list.
2835 	 */
2836 	vma = vm_area_alloc(mm);
2837 	if (!vma) {
2838 		error = -ENOMEM;
2839 		goto unacct_error;
2840 	}
2841 
2842 	vma_iter_config(&vmi, addr, end);
2843 	vma->vm_start = addr;
2844 	vma->vm_end = end;
2845 	vm_flags_init(vma, vm_flags);
2846 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2847 	vma->vm_pgoff = pgoff;
2848 
2849 	if (file) {
2850 		vma->vm_file = get_file(file);
2851 		error = call_mmap(file, vma);
2852 		if (error)
2853 			goto unmap_and_free_vma;
2854 
2855 		if (vma_is_shared_maywrite(vma)) {
2856 			error = mapping_map_writable(file->f_mapping);
2857 			if (error)
2858 				goto close_and_free_vma;
2859 
2860 			writable_file_mapping = true;
2861 		}
2862 
2863 		/*
2864 		 * Expansion is handled above, merging is handled below.
2865 		 * Drivers should not alter the address of the VMA.
2866 		 */
2867 		error = -EINVAL;
2868 		if (WARN_ON((addr != vma->vm_start)))
2869 			goto close_and_free_vma;
2870 
2871 		vma_iter_config(&vmi, addr, end);
2872 		/*
2873 		 * If vm_flags changed after call_mmap(), we should try merge
2874 		 * vma again as we may succeed this time.
2875 		 */
2876 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2877 			merge = vma_merge_new_vma(&vmi, prev, vma,
2878 						  vma->vm_start, vma->vm_end,
2879 						  vma->vm_pgoff);
2880 			if (merge) {
2881 				/*
2882 				 * ->mmap() can change vma->vm_file and fput
2883 				 * the original file. So fput the vma->vm_file
2884 				 * here or we would add an extra fput for file
2885 				 * and cause general protection fault
2886 				 * ultimately.
2887 				 */
2888 				fput(vma->vm_file);
2889 				vm_area_free(vma);
2890 				vma = merge;
2891 				/* Update vm_flags to pick up the change. */
2892 				vm_flags = vma->vm_flags;
2893 				goto unmap_writable;
2894 			}
2895 		}
2896 
2897 		vm_flags = vma->vm_flags;
2898 	} else if (vm_flags & VM_SHARED) {
2899 		error = shmem_zero_setup(vma);
2900 		if (error)
2901 			goto free_vma;
2902 	} else {
2903 		vma_set_anonymous(vma);
2904 	}
2905 
2906 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2907 		error = -EACCES;
2908 		goto close_and_free_vma;
2909 	}
2910 
2911 	/* Allow architectures to sanity-check the vm_flags */
2912 	error = -EINVAL;
2913 	if (!arch_validate_flags(vma->vm_flags))
2914 		goto close_and_free_vma;
2915 
2916 	error = -ENOMEM;
2917 	if (vma_iter_prealloc(&vmi, vma))
2918 		goto close_and_free_vma;
2919 
2920 	/* Lock the VMA since it is modified after insertion into VMA tree */
2921 	vma_start_write(vma);
2922 	vma_iter_store(&vmi, vma);
2923 	mm->map_count++;
2924 	if (vma->vm_file) {
2925 		i_mmap_lock_write(vma->vm_file->f_mapping);
2926 		if (vma_is_shared_maywrite(vma))
2927 			mapping_allow_writable(vma->vm_file->f_mapping);
2928 
2929 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2930 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2931 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2932 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2933 	}
2934 
2935 	/*
2936 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2937 	 * call covers the non-merge case.
2938 	 */
2939 	khugepaged_enter_vma(vma, vma->vm_flags);
2940 
2941 	/* Once vma denies write, undo our temporary denial count */
2942 unmap_writable:
2943 	if (writable_file_mapping)
2944 		mapping_unmap_writable(file->f_mapping);
2945 	file = vma->vm_file;
2946 	ksm_add_vma(vma);
2947 expanded:
2948 	perf_event_mmap(vma);
2949 
2950 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2951 	if (vm_flags & VM_LOCKED) {
2952 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2953 					is_vm_hugetlb_page(vma) ||
2954 					vma == get_gate_vma(current->mm))
2955 			vm_flags_clear(vma, VM_LOCKED_MASK);
2956 		else
2957 			mm->locked_vm += (len >> PAGE_SHIFT);
2958 	}
2959 
2960 	if (file)
2961 		uprobe_mmap(vma);
2962 
2963 	/*
2964 	 * New (or expanded) vma always get soft dirty status.
2965 	 * Otherwise user-space soft-dirty page tracker won't
2966 	 * be able to distinguish situation when vma area unmapped,
2967 	 * then new mapped in-place (which must be aimed as
2968 	 * a completely new data area).
2969 	 */
2970 	vm_flags_set(vma, VM_SOFTDIRTY);
2971 
2972 	vma_set_page_prot(vma);
2973 
2974 	validate_mm(mm);
2975 	return addr;
2976 
2977 close_and_free_vma:
2978 	if (file && vma->vm_ops && vma->vm_ops->close)
2979 		vma->vm_ops->close(vma);
2980 
2981 	if (file || vma->vm_file) {
2982 unmap_and_free_vma:
2983 		fput(vma->vm_file);
2984 		vma->vm_file = NULL;
2985 
2986 		vma_iter_set(&vmi, vma->vm_end);
2987 		/* Undo any partial mapping done by a device driver. */
2988 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2989 			     vma->vm_end, vma->vm_end, true);
2990 	}
2991 	if (writable_file_mapping)
2992 		mapping_unmap_writable(file->f_mapping);
2993 free_vma:
2994 	vm_area_free(vma);
2995 unacct_error:
2996 	if (charged)
2997 		vm_unacct_memory(charged);
2998 	validate_mm(mm);
2999 	return error;
3000 }
3001 
3002 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3003 {
3004 	int ret;
3005 	struct mm_struct *mm = current->mm;
3006 	LIST_HEAD(uf);
3007 	VMA_ITERATOR(vmi, mm, start);
3008 
3009 	if (mmap_write_lock_killable(mm))
3010 		return -EINTR;
3011 
3012 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3013 	if (ret || !unlock)
3014 		mmap_write_unlock(mm);
3015 
3016 	userfaultfd_unmap_complete(mm, &uf);
3017 	return ret;
3018 }
3019 
3020 int vm_munmap(unsigned long start, size_t len)
3021 {
3022 	return __vm_munmap(start, len, false);
3023 }
3024 EXPORT_SYMBOL(vm_munmap);
3025 
3026 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3027 {
3028 	addr = untagged_addr(addr);
3029 	return __vm_munmap(addr, len, true);
3030 }
3031 
3032 
3033 /*
3034  * Emulation of deprecated remap_file_pages() syscall.
3035  */
3036 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3037 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3038 {
3039 
3040 	struct mm_struct *mm = current->mm;
3041 	struct vm_area_struct *vma;
3042 	unsigned long populate = 0;
3043 	unsigned long ret = -EINVAL;
3044 	struct file *file;
3045 
3046 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3047 		     current->comm, current->pid);
3048 
3049 	if (prot)
3050 		return ret;
3051 	start = start & PAGE_MASK;
3052 	size = size & PAGE_MASK;
3053 
3054 	if (start + size <= start)
3055 		return ret;
3056 
3057 	/* Does pgoff wrap? */
3058 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3059 		return ret;
3060 
3061 	if (mmap_write_lock_killable(mm))
3062 		return -EINTR;
3063 
3064 	vma = vma_lookup(mm, start);
3065 
3066 	if (!vma || !(vma->vm_flags & VM_SHARED))
3067 		goto out;
3068 
3069 	if (start + size > vma->vm_end) {
3070 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3071 		struct vm_area_struct *next, *prev = vma;
3072 
3073 		for_each_vma_range(vmi, next, start + size) {
3074 			/* hole between vmas ? */
3075 			if (next->vm_start != prev->vm_end)
3076 				goto out;
3077 
3078 			if (next->vm_file != vma->vm_file)
3079 				goto out;
3080 
3081 			if (next->vm_flags != vma->vm_flags)
3082 				goto out;
3083 
3084 			if (start + size <= next->vm_end)
3085 				break;
3086 
3087 			prev = next;
3088 		}
3089 
3090 		if (!next)
3091 			goto out;
3092 	}
3093 
3094 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3095 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3096 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3097 
3098 	flags &= MAP_NONBLOCK;
3099 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3100 	if (vma->vm_flags & VM_LOCKED)
3101 		flags |= MAP_LOCKED;
3102 
3103 	file = get_file(vma->vm_file);
3104 	ret = do_mmap(vma->vm_file, start, size,
3105 			prot, flags, 0, pgoff, &populate, NULL);
3106 	fput(file);
3107 out:
3108 	mmap_write_unlock(mm);
3109 	if (populate)
3110 		mm_populate(ret, populate);
3111 	if (!IS_ERR_VALUE(ret))
3112 		ret = 0;
3113 	return ret;
3114 }
3115 
3116 /*
3117  * do_vma_munmap() - Unmap a full or partial vma.
3118  * @vmi: The vma iterator pointing at the vma
3119  * @vma: The first vma to be munmapped
3120  * @start: the start of the address to unmap
3121  * @end: The end of the address to unmap
3122  * @uf: The userfaultfd list_head
3123  * @unlock: Drop the lock on success
3124  *
3125  * unmaps a VMA mapping when the vma iterator is already in position.
3126  * Does not handle alignment.
3127  *
3128  * Return: 0 on success drops the lock of so directed, error on failure and will
3129  * still hold the lock.
3130  */
3131 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132 		unsigned long start, unsigned long end, struct list_head *uf,
3133 		bool unlock)
3134 {
3135 	struct mm_struct *mm = vma->vm_mm;
3136 
3137 	arch_unmap(mm, start, end);
3138 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3139 }
3140 
3141 /*
3142  * do_brk_flags() - Increase the brk vma if the flags match.
3143  * @vmi: The vma iterator
3144  * @addr: The start address
3145  * @len: The length of the increase
3146  * @vma: The vma,
3147  * @flags: The VMA Flags
3148  *
3149  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3150  * do not match then create a new anonymous VMA.  Eventually we may be able to
3151  * do some brk-specific accounting here.
3152  */
3153 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3154 		unsigned long addr, unsigned long len, unsigned long flags)
3155 {
3156 	struct mm_struct *mm = current->mm;
3157 	struct vma_prepare vp;
3158 
3159 	/*
3160 	 * Check against address space limits by the changed size
3161 	 * Note: This happens *after* clearing old mappings in some code paths.
3162 	 */
3163 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3164 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3165 		return -ENOMEM;
3166 
3167 	if (mm->map_count > sysctl_max_map_count)
3168 		return -ENOMEM;
3169 
3170 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3171 		return -ENOMEM;
3172 
3173 	/*
3174 	 * Expand the existing vma if possible; Note that singular lists do not
3175 	 * occur after forking, so the expand will only happen on new VMAs.
3176 	 */
3177 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3178 	    can_vma_merge_after(vma, flags, NULL, NULL,
3179 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3180 		vma_iter_config(vmi, vma->vm_start, addr + len);
3181 		if (vma_iter_prealloc(vmi, vma))
3182 			goto unacct_fail;
3183 
3184 		vma_start_write(vma);
3185 
3186 		init_vma_prep(&vp, vma);
3187 		vma_prepare(&vp);
3188 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3189 		vma->vm_end = addr + len;
3190 		vm_flags_set(vma, VM_SOFTDIRTY);
3191 		vma_iter_store(vmi, vma);
3192 
3193 		vma_complete(&vp, vmi, mm);
3194 		khugepaged_enter_vma(vma, flags);
3195 		goto out;
3196 	}
3197 
3198 	if (vma)
3199 		vma_iter_next_range(vmi);
3200 	/* create a vma struct for an anonymous mapping */
3201 	vma = vm_area_alloc(mm);
3202 	if (!vma)
3203 		goto unacct_fail;
3204 
3205 	vma_set_anonymous(vma);
3206 	vma->vm_start = addr;
3207 	vma->vm_end = addr + len;
3208 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3209 	vm_flags_init(vma, flags);
3210 	vma->vm_page_prot = vm_get_page_prot(flags);
3211 	vma_start_write(vma);
3212 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3213 		goto mas_store_fail;
3214 
3215 	mm->map_count++;
3216 	validate_mm(mm);
3217 	ksm_add_vma(vma);
3218 out:
3219 	perf_event_mmap(vma);
3220 	mm->total_vm += len >> PAGE_SHIFT;
3221 	mm->data_vm += len >> PAGE_SHIFT;
3222 	if (flags & VM_LOCKED)
3223 		mm->locked_vm += (len >> PAGE_SHIFT);
3224 	vm_flags_set(vma, VM_SOFTDIRTY);
3225 	return 0;
3226 
3227 mas_store_fail:
3228 	vm_area_free(vma);
3229 unacct_fail:
3230 	vm_unacct_memory(len >> PAGE_SHIFT);
3231 	return -ENOMEM;
3232 }
3233 
3234 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3235 {
3236 	struct mm_struct *mm = current->mm;
3237 	struct vm_area_struct *vma = NULL;
3238 	unsigned long len;
3239 	int ret;
3240 	bool populate;
3241 	LIST_HEAD(uf);
3242 	VMA_ITERATOR(vmi, mm, addr);
3243 
3244 	len = PAGE_ALIGN(request);
3245 	if (len < request)
3246 		return -ENOMEM;
3247 	if (!len)
3248 		return 0;
3249 
3250 	/* Until we need other flags, refuse anything except VM_EXEC. */
3251 	if ((flags & (~VM_EXEC)) != 0)
3252 		return -EINVAL;
3253 
3254 	if (mmap_write_lock_killable(mm))
3255 		return -EINTR;
3256 
3257 	ret = check_brk_limits(addr, len);
3258 	if (ret)
3259 		goto limits_failed;
3260 
3261 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3262 	if (ret)
3263 		goto munmap_failed;
3264 
3265 	vma = vma_prev(&vmi);
3266 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3267 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3268 	mmap_write_unlock(mm);
3269 	userfaultfd_unmap_complete(mm, &uf);
3270 	if (populate && !ret)
3271 		mm_populate(addr, len);
3272 	return ret;
3273 
3274 munmap_failed:
3275 limits_failed:
3276 	mmap_write_unlock(mm);
3277 	return ret;
3278 }
3279 EXPORT_SYMBOL(vm_brk_flags);
3280 
3281 /* Release all mmaps. */
3282 void exit_mmap(struct mm_struct *mm)
3283 {
3284 	struct mmu_gather tlb;
3285 	struct vm_area_struct *vma;
3286 	unsigned long nr_accounted = 0;
3287 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3288 	int count = 0;
3289 
3290 	/* mm's last user has gone, and its about to be pulled down */
3291 	mmu_notifier_release(mm);
3292 
3293 	mmap_read_lock(mm);
3294 	arch_exit_mmap(mm);
3295 
3296 	vma = mas_find(&mas, ULONG_MAX);
3297 	if (!vma) {
3298 		/* Can happen if dup_mmap() received an OOM */
3299 		mmap_read_unlock(mm);
3300 		return;
3301 	}
3302 
3303 	lru_add_drain();
3304 	flush_cache_mm(mm);
3305 	tlb_gather_mmu_fullmm(&tlb, mm);
3306 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3307 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3308 	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3309 	mmap_read_unlock(mm);
3310 
3311 	/*
3312 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3313 	 * because the memory has been already freed.
3314 	 */
3315 	set_bit(MMF_OOM_SKIP, &mm->flags);
3316 	mmap_write_lock(mm);
3317 	mt_clear_in_rcu(&mm->mm_mt);
3318 	mas_set(&mas, vma->vm_end);
3319 	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3320 		      USER_PGTABLES_CEILING, true);
3321 	tlb_finish_mmu(&tlb);
3322 
3323 	/*
3324 	 * Walk the list again, actually closing and freeing it, with preemption
3325 	 * enabled, without holding any MM locks besides the unreachable
3326 	 * mmap_write_lock.
3327 	 */
3328 	mas_set(&mas, vma->vm_end);
3329 	do {
3330 		if (vma->vm_flags & VM_ACCOUNT)
3331 			nr_accounted += vma_pages(vma);
3332 		remove_vma(vma, true);
3333 		count++;
3334 		cond_resched();
3335 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3336 
3337 	BUG_ON(count != mm->map_count);
3338 
3339 	trace_exit_mmap(mm);
3340 	__mt_destroy(&mm->mm_mt);
3341 	mmap_write_unlock(mm);
3342 	vm_unacct_memory(nr_accounted);
3343 }
3344 
3345 /* Insert vm structure into process list sorted by address
3346  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3347  * then i_mmap_rwsem is taken here.
3348  */
3349 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3350 {
3351 	unsigned long charged = vma_pages(vma);
3352 
3353 
3354 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3355 		return -ENOMEM;
3356 
3357 	if ((vma->vm_flags & VM_ACCOUNT) &&
3358 	     security_vm_enough_memory_mm(mm, charged))
3359 		return -ENOMEM;
3360 
3361 	/*
3362 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3363 	 * until its first write fault, when page's anon_vma and index
3364 	 * are set.  But now set the vm_pgoff it will almost certainly
3365 	 * end up with (unless mremap moves it elsewhere before that
3366 	 * first wfault), so /proc/pid/maps tells a consistent story.
3367 	 *
3368 	 * By setting it to reflect the virtual start address of the
3369 	 * vma, merges and splits can happen in a seamless way, just
3370 	 * using the existing file pgoff checks and manipulations.
3371 	 * Similarly in do_mmap and in do_brk_flags.
3372 	 */
3373 	if (vma_is_anonymous(vma)) {
3374 		BUG_ON(vma->anon_vma);
3375 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3376 	}
3377 
3378 	if (vma_link(mm, vma)) {
3379 		if (vma->vm_flags & VM_ACCOUNT)
3380 			vm_unacct_memory(charged);
3381 		return -ENOMEM;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 /*
3388  * Copy the vma structure to a new location in the same mm,
3389  * prior to moving page table entries, to effect an mremap move.
3390  */
3391 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3392 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3393 	bool *need_rmap_locks)
3394 {
3395 	struct vm_area_struct *vma = *vmap;
3396 	unsigned long vma_start = vma->vm_start;
3397 	struct mm_struct *mm = vma->vm_mm;
3398 	struct vm_area_struct *new_vma, *prev;
3399 	bool faulted_in_anon_vma = true;
3400 	VMA_ITERATOR(vmi, mm, addr);
3401 
3402 	/*
3403 	 * If anonymous vma has not yet been faulted, update new pgoff
3404 	 * to match new location, to increase its chance of merging.
3405 	 */
3406 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3407 		pgoff = addr >> PAGE_SHIFT;
3408 		faulted_in_anon_vma = false;
3409 	}
3410 
3411 	new_vma = find_vma_prev(mm, addr, &prev);
3412 	if (new_vma && new_vma->vm_start < addr + len)
3413 		return NULL;	/* should never get here */
3414 
3415 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3416 	if (new_vma) {
3417 		/*
3418 		 * Source vma may have been merged into new_vma
3419 		 */
3420 		if (unlikely(vma_start >= new_vma->vm_start &&
3421 			     vma_start < new_vma->vm_end)) {
3422 			/*
3423 			 * The only way we can get a vma_merge with
3424 			 * self during an mremap is if the vma hasn't
3425 			 * been faulted in yet and we were allowed to
3426 			 * reset the dst vma->vm_pgoff to the
3427 			 * destination address of the mremap to allow
3428 			 * the merge to happen. mremap must change the
3429 			 * vm_pgoff linearity between src and dst vmas
3430 			 * (in turn preventing a vma_merge) to be
3431 			 * safe. It is only safe to keep the vm_pgoff
3432 			 * linear if there are no pages mapped yet.
3433 			 */
3434 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3435 			*vmap = vma = new_vma;
3436 		}
3437 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3438 	} else {
3439 		new_vma = vm_area_dup(vma);
3440 		if (!new_vma)
3441 			goto out;
3442 		new_vma->vm_start = addr;
3443 		new_vma->vm_end = addr + len;
3444 		new_vma->vm_pgoff = pgoff;
3445 		if (vma_dup_policy(vma, new_vma))
3446 			goto out_free_vma;
3447 		if (anon_vma_clone(new_vma, vma))
3448 			goto out_free_mempol;
3449 		if (new_vma->vm_file)
3450 			get_file(new_vma->vm_file);
3451 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3452 			new_vma->vm_ops->open(new_vma);
3453 		if (vma_link(mm, new_vma))
3454 			goto out_vma_link;
3455 		*need_rmap_locks = false;
3456 	}
3457 	return new_vma;
3458 
3459 out_vma_link:
3460 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3461 		new_vma->vm_ops->close(new_vma);
3462 
3463 	if (new_vma->vm_file)
3464 		fput(new_vma->vm_file);
3465 
3466 	unlink_anon_vmas(new_vma);
3467 out_free_mempol:
3468 	mpol_put(vma_policy(new_vma));
3469 out_free_vma:
3470 	vm_area_free(new_vma);
3471 out:
3472 	return NULL;
3473 }
3474 
3475 /*
3476  * Return true if the calling process may expand its vm space by the passed
3477  * number of pages
3478  */
3479 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3480 {
3481 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3482 		return false;
3483 
3484 	if (is_data_mapping(flags) &&
3485 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3486 		/* Workaround for Valgrind */
3487 		if (rlimit(RLIMIT_DATA) == 0 &&
3488 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3489 			return true;
3490 
3491 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3492 			     current->comm, current->pid,
3493 			     (mm->data_vm + npages) << PAGE_SHIFT,
3494 			     rlimit(RLIMIT_DATA),
3495 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3496 
3497 		if (!ignore_rlimit_data)
3498 			return false;
3499 	}
3500 
3501 	return true;
3502 }
3503 
3504 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3505 {
3506 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3507 
3508 	if (is_exec_mapping(flags))
3509 		mm->exec_vm += npages;
3510 	else if (is_stack_mapping(flags))
3511 		mm->stack_vm += npages;
3512 	else if (is_data_mapping(flags))
3513 		mm->data_vm += npages;
3514 }
3515 
3516 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3517 
3518 /*
3519  * Having a close hook prevents vma merging regardless of flags.
3520  */
3521 static void special_mapping_close(struct vm_area_struct *vma)
3522 {
3523 }
3524 
3525 static const char *special_mapping_name(struct vm_area_struct *vma)
3526 {
3527 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3528 }
3529 
3530 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3531 {
3532 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3533 
3534 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3535 		return -EFAULT;
3536 
3537 	if (sm->mremap)
3538 		return sm->mremap(sm, new_vma);
3539 
3540 	return 0;
3541 }
3542 
3543 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3544 {
3545 	/*
3546 	 * Forbid splitting special mappings - kernel has expectations over
3547 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3548 	 * the size of vma should stay the same over the special mapping's
3549 	 * lifetime.
3550 	 */
3551 	return -EINVAL;
3552 }
3553 
3554 static const struct vm_operations_struct special_mapping_vmops = {
3555 	.close = special_mapping_close,
3556 	.fault = special_mapping_fault,
3557 	.mremap = special_mapping_mremap,
3558 	.name = special_mapping_name,
3559 	/* vDSO code relies that VVAR can't be accessed remotely */
3560 	.access = NULL,
3561 	.may_split = special_mapping_split,
3562 };
3563 
3564 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3565 	.close = special_mapping_close,
3566 	.fault = special_mapping_fault,
3567 };
3568 
3569 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3570 {
3571 	struct vm_area_struct *vma = vmf->vma;
3572 	pgoff_t pgoff;
3573 	struct page **pages;
3574 
3575 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3576 		pages = vma->vm_private_data;
3577 	} else {
3578 		struct vm_special_mapping *sm = vma->vm_private_data;
3579 
3580 		if (sm->fault)
3581 			return sm->fault(sm, vmf->vma, vmf);
3582 
3583 		pages = sm->pages;
3584 	}
3585 
3586 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3587 		pgoff--;
3588 
3589 	if (*pages) {
3590 		struct page *page = *pages;
3591 		get_page(page);
3592 		vmf->page = page;
3593 		return 0;
3594 	}
3595 
3596 	return VM_FAULT_SIGBUS;
3597 }
3598 
3599 static struct vm_area_struct *__install_special_mapping(
3600 	struct mm_struct *mm,
3601 	unsigned long addr, unsigned long len,
3602 	unsigned long vm_flags, void *priv,
3603 	const struct vm_operations_struct *ops)
3604 {
3605 	int ret;
3606 	struct vm_area_struct *vma;
3607 
3608 	vma = vm_area_alloc(mm);
3609 	if (unlikely(vma == NULL))
3610 		return ERR_PTR(-ENOMEM);
3611 
3612 	vma->vm_start = addr;
3613 	vma->vm_end = addr + len;
3614 
3615 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3616 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3617 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3618 
3619 	vma->vm_ops = ops;
3620 	vma->vm_private_data = priv;
3621 
3622 	ret = insert_vm_struct(mm, vma);
3623 	if (ret)
3624 		goto out;
3625 
3626 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3627 
3628 	perf_event_mmap(vma);
3629 
3630 	return vma;
3631 
3632 out:
3633 	vm_area_free(vma);
3634 	return ERR_PTR(ret);
3635 }
3636 
3637 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3638 	const struct vm_special_mapping *sm)
3639 {
3640 	return vma->vm_private_data == sm &&
3641 		(vma->vm_ops == &special_mapping_vmops ||
3642 		 vma->vm_ops == &legacy_special_mapping_vmops);
3643 }
3644 
3645 /*
3646  * Called with mm->mmap_lock held for writing.
3647  * Insert a new vma covering the given region, with the given flags.
3648  * Its pages are supplied by the given array of struct page *.
3649  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3650  * The region past the last page supplied will always produce SIGBUS.
3651  * The array pointer and the pages it points to are assumed to stay alive
3652  * for as long as this mapping might exist.
3653  */
3654 struct vm_area_struct *_install_special_mapping(
3655 	struct mm_struct *mm,
3656 	unsigned long addr, unsigned long len,
3657 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3658 {
3659 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3660 					&special_mapping_vmops);
3661 }
3662 
3663 int install_special_mapping(struct mm_struct *mm,
3664 			    unsigned long addr, unsigned long len,
3665 			    unsigned long vm_flags, struct page **pages)
3666 {
3667 	struct vm_area_struct *vma = __install_special_mapping(
3668 		mm, addr, len, vm_flags, (void *)pages,
3669 		&legacy_special_mapping_vmops);
3670 
3671 	return PTR_ERR_OR_ZERO(vma);
3672 }
3673 
3674 static DEFINE_MUTEX(mm_all_locks_mutex);
3675 
3676 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3677 {
3678 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3679 		/*
3680 		 * The LSB of head.next can't change from under us
3681 		 * because we hold the mm_all_locks_mutex.
3682 		 */
3683 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3684 		/*
3685 		 * We can safely modify head.next after taking the
3686 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3687 		 * the same anon_vma we won't take it again.
3688 		 *
3689 		 * No need of atomic instructions here, head.next
3690 		 * can't change from under us thanks to the
3691 		 * anon_vma->root->rwsem.
3692 		 */
3693 		if (__test_and_set_bit(0, (unsigned long *)
3694 				       &anon_vma->root->rb_root.rb_root.rb_node))
3695 			BUG();
3696 	}
3697 }
3698 
3699 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3700 {
3701 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3702 		/*
3703 		 * AS_MM_ALL_LOCKS can't change from under us because
3704 		 * we hold the mm_all_locks_mutex.
3705 		 *
3706 		 * Operations on ->flags have to be atomic because
3707 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3708 		 * mm_all_locks_mutex, there may be other cpus
3709 		 * changing other bitflags in parallel to us.
3710 		 */
3711 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3712 			BUG();
3713 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3714 	}
3715 }
3716 
3717 /*
3718  * This operation locks against the VM for all pte/vma/mm related
3719  * operations that could ever happen on a certain mm. This includes
3720  * vmtruncate, try_to_unmap, and all page faults.
3721  *
3722  * The caller must take the mmap_lock in write mode before calling
3723  * mm_take_all_locks(). The caller isn't allowed to release the
3724  * mmap_lock until mm_drop_all_locks() returns.
3725  *
3726  * mmap_lock in write mode is required in order to block all operations
3727  * that could modify pagetables and free pages without need of
3728  * altering the vma layout. It's also needed in write mode to avoid new
3729  * anon_vmas to be associated with existing vmas.
3730  *
3731  * A single task can't take more than one mm_take_all_locks() in a row
3732  * or it would deadlock.
3733  *
3734  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3735  * mapping->flags avoid to take the same lock twice, if more than one
3736  * vma in this mm is backed by the same anon_vma or address_space.
3737  *
3738  * We take locks in following order, accordingly to comment at beginning
3739  * of mm/rmap.c:
3740  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3741  *     hugetlb mapping);
3742  *   - all vmas marked locked
3743  *   - all i_mmap_rwsem locks;
3744  *   - all anon_vma->rwseml
3745  *
3746  * We can take all locks within these types randomly because the VM code
3747  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3748  * mm_all_locks_mutex.
3749  *
3750  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3751  * that may have to take thousand of locks.
3752  *
3753  * mm_take_all_locks() can fail if it's interrupted by signals.
3754  */
3755 int mm_take_all_locks(struct mm_struct *mm)
3756 {
3757 	struct vm_area_struct *vma;
3758 	struct anon_vma_chain *avc;
3759 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3760 
3761 	mmap_assert_write_locked(mm);
3762 
3763 	mutex_lock(&mm_all_locks_mutex);
3764 
3765 	/*
3766 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3767 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3768 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3769 	 * is reached.
3770 	 */
3771 	mas_for_each(&mas, vma, ULONG_MAX) {
3772 		if (signal_pending(current))
3773 			goto out_unlock;
3774 		vma_start_write(vma);
3775 	}
3776 
3777 	mas_set(&mas, 0);
3778 	mas_for_each(&mas, vma, ULONG_MAX) {
3779 		if (signal_pending(current))
3780 			goto out_unlock;
3781 		if (vma->vm_file && vma->vm_file->f_mapping &&
3782 				is_vm_hugetlb_page(vma))
3783 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3784 	}
3785 
3786 	mas_set(&mas, 0);
3787 	mas_for_each(&mas, vma, ULONG_MAX) {
3788 		if (signal_pending(current))
3789 			goto out_unlock;
3790 		if (vma->vm_file && vma->vm_file->f_mapping &&
3791 				!is_vm_hugetlb_page(vma))
3792 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3793 	}
3794 
3795 	mas_set(&mas, 0);
3796 	mas_for_each(&mas, vma, ULONG_MAX) {
3797 		if (signal_pending(current))
3798 			goto out_unlock;
3799 		if (vma->anon_vma)
3800 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3801 				vm_lock_anon_vma(mm, avc->anon_vma);
3802 	}
3803 
3804 	return 0;
3805 
3806 out_unlock:
3807 	mm_drop_all_locks(mm);
3808 	return -EINTR;
3809 }
3810 
3811 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3812 {
3813 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3814 		/*
3815 		 * The LSB of head.next can't change to 0 from under
3816 		 * us because we hold the mm_all_locks_mutex.
3817 		 *
3818 		 * We must however clear the bitflag before unlocking
3819 		 * the vma so the users using the anon_vma->rb_root will
3820 		 * never see our bitflag.
3821 		 *
3822 		 * No need of atomic instructions here, head.next
3823 		 * can't change from under us until we release the
3824 		 * anon_vma->root->rwsem.
3825 		 */
3826 		if (!__test_and_clear_bit(0, (unsigned long *)
3827 					  &anon_vma->root->rb_root.rb_root.rb_node))
3828 			BUG();
3829 		anon_vma_unlock_write(anon_vma);
3830 	}
3831 }
3832 
3833 static void vm_unlock_mapping(struct address_space *mapping)
3834 {
3835 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3836 		/*
3837 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3838 		 * because we hold the mm_all_locks_mutex.
3839 		 */
3840 		i_mmap_unlock_write(mapping);
3841 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3842 					&mapping->flags))
3843 			BUG();
3844 	}
3845 }
3846 
3847 /*
3848  * The mmap_lock cannot be released by the caller until
3849  * mm_drop_all_locks() returns.
3850  */
3851 void mm_drop_all_locks(struct mm_struct *mm)
3852 {
3853 	struct vm_area_struct *vma;
3854 	struct anon_vma_chain *avc;
3855 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3856 
3857 	mmap_assert_write_locked(mm);
3858 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3859 
3860 	mas_for_each(&mas, vma, ULONG_MAX) {
3861 		if (vma->anon_vma)
3862 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3863 				vm_unlock_anon_vma(avc->anon_vma);
3864 		if (vma->vm_file && vma->vm_file->f_mapping)
3865 			vm_unlock_mapping(vma->vm_file->f_mapping);
3866 	}
3867 
3868 	mutex_unlock(&mm_all_locks_mutex);
3869 }
3870 
3871 /*
3872  * initialise the percpu counter for VM
3873  */
3874 void __init mmap_init(void)
3875 {
3876 	int ret;
3877 
3878 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3879 	VM_BUG_ON(ret);
3880 }
3881 
3882 /*
3883  * Initialise sysctl_user_reserve_kbytes.
3884  *
3885  * This is intended to prevent a user from starting a single memory hogging
3886  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3887  * mode.
3888  *
3889  * The default value is min(3% of free memory, 128MB)
3890  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3891  */
3892 static int init_user_reserve(void)
3893 {
3894 	unsigned long free_kbytes;
3895 
3896 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3897 
3898 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3899 	return 0;
3900 }
3901 subsys_initcall(init_user_reserve);
3902 
3903 /*
3904  * Initialise sysctl_admin_reserve_kbytes.
3905  *
3906  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3907  * to log in and kill a memory hogging process.
3908  *
3909  * Systems with more than 256MB will reserve 8MB, enough to recover
3910  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3911  * only reserve 3% of free pages by default.
3912  */
3913 static int init_admin_reserve(void)
3914 {
3915 	unsigned long free_kbytes;
3916 
3917 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3918 
3919 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3920 	return 0;
3921 }
3922 subsys_initcall(init_admin_reserve);
3923 
3924 /*
3925  * Reinititalise user and admin reserves if memory is added or removed.
3926  *
3927  * The default user reserve max is 128MB, and the default max for the
3928  * admin reserve is 8MB. These are usually, but not always, enough to
3929  * enable recovery from a memory hogging process using login/sshd, a shell,
3930  * and tools like top. It may make sense to increase or even disable the
3931  * reserve depending on the existence of swap or variations in the recovery
3932  * tools. So, the admin may have changed them.
3933  *
3934  * If memory is added and the reserves have been eliminated or increased above
3935  * the default max, then we'll trust the admin.
3936  *
3937  * If memory is removed and there isn't enough free memory, then we
3938  * need to reset the reserves.
3939  *
3940  * Otherwise keep the reserve set by the admin.
3941  */
3942 static int reserve_mem_notifier(struct notifier_block *nb,
3943 			     unsigned long action, void *data)
3944 {
3945 	unsigned long tmp, free_kbytes;
3946 
3947 	switch (action) {
3948 	case MEM_ONLINE:
3949 		/* Default max is 128MB. Leave alone if modified by operator. */
3950 		tmp = sysctl_user_reserve_kbytes;
3951 		if (0 < tmp && tmp < (1UL << 17))
3952 			init_user_reserve();
3953 
3954 		/* Default max is 8MB.  Leave alone if modified by operator. */
3955 		tmp = sysctl_admin_reserve_kbytes;
3956 		if (0 < tmp && tmp < (1UL << 13))
3957 			init_admin_reserve();
3958 
3959 		break;
3960 	case MEM_OFFLINE:
3961 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3962 
3963 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3964 			init_user_reserve();
3965 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3966 				sysctl_user_reserve_kbytes);
3967 		}
3968 
3969 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3970 			init_admin_reserve();
3971 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3972 				sysctl_admin_reserve_kbytes);
3973 		}
3974 		break;
3975 	default:
3976 		break;
3977 	}
3978 	return NOTIFY_OK;
3979 }
3980 
3981 static int __meminit init_reserve_notifier(void)
3982 {
3983 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3984 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3985 
3986 	return 0;
3987 }
3988 subsys_initcall(init_reserve_notifier);
3989