xref: /linux/mm/mmap.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *								r: (no) no
100  *								w: (no) no
101  *								x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107 
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 	return prot;
112 }
113 #endif
114 
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
120 
121 	return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124 
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129 
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 	unsigned long vm_flags = vma->vm_flags;
134 	pgprot_t vm_page_prot;
135 
136 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 	if (vma_wants_writenotify(vma, vm_page_prot)) {
138 		vm_flags &= ~VM_SHARED;
139 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 	}
141 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144 
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 		struct file *file, struct address_space *mapping)
150 {
151 	if (vma->vm_flags & VM_DENYWRITE)
152 		allow_write_access(file);
153 	if (vma->vm_flags & VM_SHARED)
154 		mapping_unmap_writable(mapping);
155 
156 	flush_dcache_mmap_lock(mapping);
157 	vma_interval_tree_remove(vma, &mapping->i_mmap);
158 	flush_dcache_mmap_unlock(mapping);
159 }
160 
161 /*
162  * Unlink a file-based vm structure from its interval tree, to hide
163  * vma from rmap and vmtruncate before freeing its page tables.
164  */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167 	struct file *file = vma->vm_file;
168 
169 	if (file) {
170 		struct address_space *mapping = file->f_mapping;
171 		i_mmap_lock_write(mapping);
172 		__remove_shared_vm_struct(vma, file, mapping);
173 		i_mmap_unlock_write(mapping);
174 	}
175 }
176 
177 /*
178  * Close a vm structure and free it, returning the next.
179  */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182 	struct vm_area_struct *next = vma->vm_next;
183 
184 	might_sleep();
185 	if (vma->vm_ops && vma->vm_ops->close)
186 		vma->vm_ops->close(vma);
187 	if (vma->vm_file)
188 		fput(vma->vm_file);
189 	mpol_put(vma_policy(vma));
190 	vm_area_free(vma);
191 	return next;
192 }
193 
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 		struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198 	unsigned long newbrk, oldbrk, origbrk;
199 	struct mm_struct *mm = current->mm;
200 	struct vm_area_struct *next;
201 	unsigned long min_brk;
202 	bool populate;
203 	bool downgraded = false;
204 	LIST_HEAD(uf);
205 
206 	if (mmap_write_lock_killable(mm))
207 		return -EINTR;
208 
209 	origbrk = mm->brk;
210 
211 #ifdef CONFIG_COMPAT_BRK
212 	/*
213 	 * CONFIG_COMPAT_BRK can still be overridden by setting
214 	 * randomize_va_space to 2, which will still cause mm->start_brk
215 	 * to be arbitrarily shifted
216 	 */
217 	if (current->brk_randomized)
218 		min_brk = mm->start_brk;
219 	else
220 		min_brk = mm->end_data;
221 #else
222 	min_brk = mm->start_brk;
223 #endif
224 	if (brk < min_brk)
225 		goto out;
226 
227 	/*
228 	 * Check against rlimit here. If this check is done later after the test
229 	 * of oldbrk with newbrk then it can escape the test and let the data
230 	 * segment grow beyond its set limit the in case where the limit is
231 	 * not page aligned -Ram Gupta
232 	 */
233 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 			      mm->end_data, mm->start_data))
235 		goto out;
236 
237 	newbrk = PAGE_ALIGN(brk);
238 	oldbrk = PAGE_ALIGN(mm->brk);
239 	if (oldbrk == newbrk) {
240 		mm->brk = brk;
241 		goto success;
242 	}
243 
244 	/*
245 	 * Always allow shrinking brk.
246 	 * __do_munmap() may downgrade mmap_lock to read.
247 	 */
248 	if (brk <= mm->brk) {
249 		int ret;
250 
251 		/*
252 		 * mm->brk must to be protected by write mmap_lock so update it
253 		 * before downgrading mmap_lock. When __do_munmap() fails,
254 		 * mm->brk will be restored from origbrk.
255 		 */
256 		mm->brk = brk;
257 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 		if (ret < 0) {
259 			mm->brk = origbrk;
260 			goto out;
261 		} else if (ret == 1) {
262 			downgraded = true;
263 		}
264 		goto success;
265 	}
266 
267 	/* Check against existing mmap mappings. */
268 	next = find_vma(mm, oldbrk);
269 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 		goto out;
271 
272 	/* Ok, looks good - let it rip. */
273 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 		goto out;
275 	mm->brk = brk;
276 
277 success:
278 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 	if (downgraded)
280 		mmap_read_unlock(mm);
281 	else
282 		mmap_write_unlock(mm);
283 	userfaultfd_unmap_complete(mm, &uf);
284 	if (populate)
285 		mm_populate(oldbrk, newbrk - oldbrk);
286 	return brk;
287 
288 out:
289 	mmap_write_unlock(mm);
290 	return origbrk;
291 }
292 
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 	unsigned long gap, prev_end;
296 
297 	/*
298 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 	 * allow two stack_guard_gaps between them here, and when choosing
300 	 * an unmapped area; whereas when expanding we only require one.
301 	 * That's a little inconsistent, but keeps the code here simpler.
302 	 */
303 	gap = vm_start_gap(vma);
304 	if (vma->vm_prev) {
305 		prev_end = vm_end_gap(vma->vm_prev);
306 		if (gap > prev_end)
307 			gap -= prev_end;
308 		else
309 			gap = 0;
310 	}
311 	return gap;
312 }
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 	unsigned long max = vma_compute_gap(vma), subtree_gap;
318 	if (vma->vm_rb.rb_left) {
319 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 		if (subtree_gap > max)
322 			max = subtree_gap;
323 	}
324 	if (vma->vm_rb.rb_right) {
325 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 		if (subtree_gap > max)
328 			max = subtree_gap;
329 	}
330 	return max;
331 }
332 
333 static int browse_rb(struct mm_struct *mm)
334 {
335 	struct rb_root *root = &mm->mm_rb;
336 	int i = 0, j, bug = 0;
337 	struct rb_node *nd, *pn = NULL;
338 	unsigned long prev = 0, pend = 0;
339 
340 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 		struct vm_area_struct *vma;
342 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 		if (vma->vm_start < prev) {
344 			pr_emerg("vm_start %lx < prev %lx\n",
345 				  vma->vm_start, prev);
346 			bug = 1;
347 		}
348 		if (vma->vm_start < pend) {
349 			pr_emerg("vm_start %lx < pend %lx\n",
350 				  vma->vm_start, pend);
351 			bug = 1;
352 		}
353 		if (vma->vm_start > vma->vm_end) {
354 			pr_emerg("vm_start %lx > vm_end %lx\n",
355 				  vma->vm_start, vma->vm_end);
356 			bug = 1;
357 		}
358 		spin_lock(&mm->page_table_lock);
359 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 			pr_emerg("free gap %lx, correct %lx\n",
361 			       vma->rb_subtree_gap,
362 			       vma_compute_subtree_gap(vma));
363 			bug = 1;
364 		}
365 		spin_unlock(&mm->page_table_lock);
366 		i++;
367 		pn = nd;
368 		prev = vma->vm_start;
369 		pend = vma->vm_end;
370 	}
371 	j = 0;
372 	for (nd = pn; nd; nd = rb_prev(nd))
373 		j++;
374 	if (i != j) {
375 		pr_emerg("backwards %d, forwards %d\n", j, i);
376 		bug = 1;
377 	}
378 	return bug ? -1 : i;
379 }
380 
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 	struct rb_node *nd;
384 
385 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 		struct vm_area_struct *vma;
387 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 		VM_BUG_ON_VMA(vma != ignore &&
389 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 			vma);
391 	}
392 }
393 
394 static void validate_mm(struct mm_struct *mm)
395 {
396 	int bug = 0;
397 	int i = 0;
398 	unsigned long highest_address = 0;
399 	struct vm_area_struct *vma = mm->mmap;
400 
401 	while (vma) {
402 		struct anon_vma *anon_vma = vma->anon_vma;
403 		struct anon_vma_chain *avc;
404 
405 		if (anon_vma) {
406 			anon_vma_lock_read(anon_vma);
407 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 				anon_vma_interval_tree_verify(avc);
409 			anon_vma_unlock_read(anon_vma);
410 		}
411 
412 		highest_address = vm_end_gap(vma);
413 		vma = vma->vm_next;
414 		i++;
415 	}
416 	if (i != mm->map_count) {
417 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 		bug = 1;
419 	}
420 	if (highest_address != mm->highest_vm_end) {
421 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 			  mm->highest_vm_end, highest_address);
423 		bug = 1;
424 	}
425 	i = browse_rb(mm);
426 	if (i != mm->map_count) {
427 		if (i != -1)
428 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 		bug = 1;
430 	}
431 	VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437 
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 			 struct vm_area_struct, vm_rb,
440 			 unsigned long, rb_subtree_gap, vma_compute_gap)
441 
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 	/*
450 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 	 * a callback function that does exactly what we want.
452 	 */
453 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455 
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 				 struct rb_root *root)
458 {
459 	/* All rb_subtree_gap values must be consistent prior to insertion */
460 	validate_mm_rb(root, NULL);
461 
462 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464 
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 	/*
468 	 * Note rb_erase_augmented is a fairly large inline function,
469 	 * so make sure we instantiate it only once with our desired
470 	 * augmented rbtree callbacks.
471 	 */
472 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474 
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 						struct rb_root *root,
477 						struct vm_area_struct *ignore)
478 {
479 	/*
480 	 * All rb_subtree_gap values must be consistent prior to erase,
481 	 * with the possible exception of
482 	 *
483 	 * a. the "next" vma being erased if next->vm_start was reduced in
484 	 *    __vma_adjust() -> __vma_unlink()
485 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 	 *    vma_rb_erase()
487 	 */
488 	validate_mm_rb(root, ignore);
489 
490 	__vma_rb_erase(vma, root);
491 }
492 
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 					 struct rb_root *root)
495 {
496 	vma_rb_erase_ignore(vma, root, vma);
497 }
498 
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 	struct anon_vma_chain *avc;
517 
518 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521 
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 	struct anon_vma_chain *avc;
526 
527 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530 
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 		unsigned long end, struct vm_area_struct **pprev,
533 		struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536 
537 	__rb_link = &mm->mm_rb.rb_node;
538 	rb_prev = __rb_parent = NULL;
539 
540 	while (*__rb_link) {
541 		struct vm_area_struct *vma_tmp;
542 
543 		__rb_parent = *__rb_link;
544 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545 
546 		if (vma_tmp->vm_end > addr) {
547 			/* Fail if an existing vma overlaps the area */
548 			if (vma_tmp->vm_start < end)
549 				return -ENOMEM;
550 			__rb_link = &__rb_parent->rb_left;
551 		} else {
552 			rb_prev = __rb_parent;
553 			__rb_link = &__rb_parent->rb_right;
554 		}
555 	}
556 
557 	*pprev = NULL;
558 	if (rb_prev)
559 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 	*rb_link = __rb_link;
561 	*rb_parent = __rb_parent;
562 	return 0;
563 }
564 
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 					 struct vm_area_struct *vma)
576 {
577 	if (!vma)
578 		return mm->mmap;
579 
580 	return vma->vm_next;
581 }
582 
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 		 struct vm_area_struct **pprev, struct rb_node ***link,
600 		 struct rb_node **parent, struct list_head *uf)
601 {
602 
603 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 		if (do_munmap(mm, start, len, uf))
605 			return -ENOMEM;
606 
607 	return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 		unsigned long addr, unsigned long end)
611 {
612 	unsigned long nr_pages = 0;
613 	struct vm_area_struct *vma;
614 
615 	/* Find first overlapping mapping */
616 	vma = find_vma_intersection(mm, addr, end);
617 	if (!vma)
618 		return 0;
619 
620 	nr_pages = (min(end, vma->vm_end) -
621 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
622 
623 	/* Iterate over the rest of the overlaps */
624 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 		unsigned long overlap_len;
626 
627 		if (vma->vm_start > end)
628 			break;
629 
630 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 		nr_pages += overlap_len >> PAGE_SHIFT;
632 	}
633 
634 	return nr_pages;
635 }
636 
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 		struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 	/* Update tracking information for the gap following the new vma. */
641 	if (vma->vm_next)
642 		vma_gap_update(vma->vm_next);
643 	else
644 		mm->highest_vm_end = vm_end_gap(vma);
645 
646 	/*
647 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 	 * correct insertion point for that vma. As a result, we could not
649 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 	 * So, we first insert the vma with a zero rb_subtree_gap value
651 	 * (to be consistent with what we did on the way down), and then
652 	 * immediately update the gap to the correct value. Finally we
653 	 * rebalance the rbtree after all augmented values have been set.
654 	 */
655 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 	vma->rb_subtree_gap = 0;
657 	vma_gap_update(vma);
658 	vma_rb_insert(vma, &mm->mm_rb);
659 }
660 
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 	struct file *file;
664 
665 	file = vma->vm_file;
666 	if (file) {
667 		struct address_space *mapping = file->f_mapping;
668 
669 		if (vma->vm_flags & VM_DENYWRITE)
670 			put_write_access(file_inode(file));
671 		if (vma->vm_flags & VM_SHARED)
672 			mapping_allow_writable(mapping);
673 
674 		flush_dcache_mmap_lock(mapping);
675 		vma_interval_tree_insert(vma, &mapping->i_mmap);
676 		flush_dcache_mmap_unlock(mapping);
677 	}
678 }
679 
680 static void
681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 	struct vm_area_struct *prev, struct rb_node **rb_link,
683 	struct rb_node *rb_parent)
684 {
685 	__vma_link_list(mm, vma, prev);
686 	__vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688 
689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 			struct vm_area_struct *prev, struct rb_node **rb_link,
691 			struct rb_node *rb_parent)
692 {
693 	struct address_space *mapping = NULL;
694 
695 	if (vma->vm_file) {
696 		mapping = vma->vm_file->f_mapping;
697 		i_mmap_lock_write(mapping);
698 	}
699 
700 	__vma_link(mm, vma, prev, rb_link, rb_parent);
701 	__vma_link_file(vma);
702 
703 	if (mapping)
704 		i_mmap_unlock_write(mapping);
705 
706 	mm->map_count++;
707 	validate_mm(mm);
708 }
709 
710 /*
711  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712  * mm's list and rbtree.  It has already been inserted into the interval tree.
713  */
714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 	struct vm_area_struct *prev;
717 	struct rb_node **rb_link, *rb_parent;
718 
719 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 			   &prev, &rb_link, &rb_parent))
721 		BUG();
722 	__vma_link(mm, vma, prev, rb_link, rb_parent);
723 	mm->map_count++;
724 }
725 
726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 						struct vm_area_struct *vma,
728 						struct vm_area_struct *ignore)
729 {
730 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 	__vma_unlink_list(mm, vma);
732 	/* Kill the cache */
733 	vmacache_invalidate(mm);
734 }
735 
736 /*
737  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738  * is already present in an i_mmap tree without adjusting the tree.
739  * The following helper function should be used when such adjustments
740  * are necessary.  The "insert" vma (if any) is to be inserted
741  * before we drop the necessary locks.
742  */
743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 	struct vm_area_struct *expand)
746 {
747 	struct mm_struct *mm = vma->vm_mm;
748 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 	struct address_space *mapping = NULL;
750 	struct rb_root_cached *root = NULL;
751 	struct anon_vma *anon_vma = NULL;
752 	struct file *file = vma->vm_file;
753 	bool start_changed = false, end_changed = false;
754 	long adjust_next = 0;
755 	int remove_next = 0;
756 
757 	if (next && !insert) {
758 		struct vm_area_struct *exporter = NULL, *importer = NULL;
759 
760 		if (end >= next->vm_end) {
761 			/*
762 			 * vma expands, overlapping all the next, and
763 			 * perhaps the one after too (mprotect case 6).
764 			 * The only other cases that gets here are
765 			 * case 1, case 7 and case 8.
766 			 */
767 			if (next == expand) {
768 				/*
769 				 * The only case where we don't expand "vma"
770 				 * and we expand "next" instead is case 8.
771 				 */
772 				VM_WARN_ON(end != next->vm_end);
773 				/*
774 				 * remove_next == 3 means we're
775 				 * removing "vma" and that to do so we
776 				 * swapped "vma" and "next".
777 				 */
778 				remove_next = 3;
779 				VM_WARN_ON(file != next->vm_file);
780 				swap(vma, next);
781 			} else {
782 				VM_WARN_ON(expand != vma);
783 				/*
784 				 * case 1, 6, 7, remove_next == 2 is case 6,
785 				 * remove_next == 1 is case 1 or 7.
786 				 */
787 				remove_next = 1 + (end > next->vm_end);
788 				VM_WARN_ON(remove_next == 2 &&
789 					   end != next->vm_next->vm_end);
790 				/* trim end to next, for case 6 first pass */
791 				end = next->vm_end;
792 			}
793 
794 			exporter = next;
795 			importer = vma;
796 
797 			/*
798 			 * If next doesn't have anon_vma, import from vma after
799 			 * next, if the vma overlaps with it.
800 			 */
801 			if (remove_next == 2 && !next->anon_vma)
802 				exporter = next->vm_next;
803 
804 		} else if (end > next->vm_start) {
805 			/*
806 			 * vma expands, overlapping part of the next:
807 			 * mprotect case 5 shifting the boundary up.
808 			 */
809 			adjust_next = (end - next->vm_start);
810 			exporter = next;
811 			importer = vma;
812 			VM_WARN_ON(expand != importer);
813 		} else if (end < vma->vm_end) {
814 			/*
815 			 * vma shrinks, and !insert tells it's not
816 			 * split_vma inserting another: so it must be
817 			 * mprotect case 4 shifting the boundary down.
818 			 */
819 			adjust_next = -(vma->vm_end - end);
820 			exporter = vma;
821 			importer = next;
822 			VM_WARN_ON(expand != importer);
823 		}
824 
825 		/*
826 		 * Easily overlooked: when mprotect shifts the boundary,
827 		 * make sure the expanding vma has anon_vma set if the
828 		 * shrinking vma had, to cover any anon pages imported.
829 		 */
830 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 			int error;
832 
833 			importer->anon_vma = exporter->anon_vma;
834 			error = anon_vma_clone(importer, exporter);
835 			if (error)
836 				return error;
837 		}
838 	}
839 again:
840 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841 
842 	if (file) {
843 		mapping = file->f_mapping;
844 		root = &mapping->i_mmap;
845 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846 
847 		if (adjust_next)
848 			uprobe_munmap(next, next->vm_start, next->vm_end);
849 
850 		i_mmap_lock_write(mapping);
851 		if (insert) {
852 			/*
853 			 * Put into interval tree now, so instantiated pages
854 			 * are visible to arm/parisc __flush_dcache_page
855 			 * throughout; but we cannot insert into address
856 			 * space until vma start or end is updated.
857 			 */
858 			__vma_link_file(insert);
859 		}
860 	}
861 
862 	anon_vma = vma->anon_vma;
863 	if (!anon_vma && adjust_next)
864 		anon_vma = next->anon_vma;
865 	if (anon_vma) {
866 		VM_WARN_ON(adjust_next && next->anon_vma &&
867 			   anon_vma != next->anon_vma);
868 		anon_vma_lock_write(anon_vma);
869 		anon_vma_interval_tree_pre_update_vma(vma);
870 		if (adjust_next)
871 			anon_vma_interval_tree_pre_update_vma(next);
872 	}
873 
874 	if (file) {
875 		flush_dcache_mmap_lock(mapping);
876 		vma_interval_tree_remove(vma, root);
877 		if (adjust_next)
878 			vma_interval_tree_remove(next, root);
879 	}
880 
881 	if (start != vma->vm_start) {
882 		vma->vm_start = start;
883 		start_changed = true;
884 	}
885 	if (end != vma->vm_end) {
886 		vma->vm_end = end;
887 		end_changed = true;
888 	}
889 	vma->vm_pgoff = pgoff;
890 	if (adjust_next) {
891 		next->vm_start += adjust_next;
892 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 	}
894 
895 	if (file) {
896 		if (adjust_next)
897 			vma_interval_tree_insert(next, root);
898 		vma_interval_tree_insert(vma, root);
899 		flush_dcache_mmap_unlock(mapping);
900 	}
901 
902 	if (remove_next) {
903 		/*
904 		 * vma_merge has merged next into vma, and needs
905 		 * us to remove next before dropping the locks.
906 		 */
907 		if (remove_next != 3)
908 			__vma_unlink(mm, next, next);
909 		else
910 			/*
911 			 * vma is not before next if they've been
912 			 * swapped.
913 			 *
914 			 * pre-swap() next->vm_start was reduced so
915 			 * tell validate_mm_rb to ignore pre-swap()
916 			 * "next" (which is stored in post-swap()
917 			 * "vma").
918 			 */
919 			__vma_unlink(mm, next, vma);
920 		if (file)
921 			__remove_shared_vm_struct(next, file, mapping);
922 	} else if (insert) {
923 		/*
924 		 * split_vma has split insert from vma, and needs
925 		 * us to insert it before dropping the locks
926 		 * (it may either follow vma or precede it).
927 		 */
928 		__insert_vm_struct(mm, insert);
929 	} else {
930 		if (start_changed)
931 			vma_gap_update(vma);
932 		if (end_changed) {
933 			if (!next)
934 				mm->highest_vm_end = vm_end_gap(vma);
935 			else if (!adjust_next)
936 				vma_gap_update(next);
937 		}
938 	}
939 
940 	if (anon_vma) {
941 		anon_vma_interval_tree_post_update_vma(vma);
942 		if (adjust_next)
943 			anon_vma_interval_tree_post_update_vma(next);
944 		anon_vma_unlock_write(anon_vma);
945 	}
946 
947 	if (file) {
948 		i_mmap_unlock_write(mapping);
949 		uprobe_mmap(vma);
950 
951 		if (adjust_next)
952 			uprobe_mmap(next);
953 	}
954 
955 	if (remove_next) {
956 		if (file) {
957 			uprobe_munmap(next, next->vm_start, next->vm_end);
958 			fput(file);
959 		}
960 		if (next->anon_vma)
961 			anon_vma_merge(vma, next);
962 		mm->map_count--;
963 		mpol_put(vma_policy(next));
964 		vm_area_free(next);
965 		/*
966 		 * In mprotect's case 6 (see comments on vma_merge),
967 		 * we must remove another next too. It would clutter
968 		 * up the code too much to do both in one go.
969 		 */
970 		if (remove_next != 3) {
971 			/*
972 			 * If "next" was removed and vma->vm_end was
973 			 * expanded (up) over it, in turn
974 			 * "next->vm_prev->vm_end" changed and the
975 			 * "vma->vm_next" gap must be updated.
976 			 */
977 			next = vma->vm_next;
978 		} else {
979 			/*
980 			 * For the scope of the comment "next" and
981 			 * "vma" considered pre-swap(): if "vma" was
982 			 * removed, next->vm_start was expanded (down)
983 			 * over it and the "next" gap must be updated.
984 			 * Because of the swap() the post-swap() "vma"
985 			 * actually points to pre-swap() "next"
986 			 * (post-swap() "next" as opposed is now a
987 			 * dangling pointer).
988 			 */
989 			next = vma;
990 		}
991 		if (remove_next == 2) {
992 			remove_next = 1;
993 			end = next->vm_end;
994 			goto again;
995 		}
996 		else if (next)
997 			vma_gap_update(next);
998 		else {
999 			/*
1000 			 * If remove_next == 2 we obviously can't
1001 			 * reach this path.
1002 			 *
1003 			 * If remove_next == 3 we can't reach this
1004 			 * path because pre-swap() next is always not
1005 			 * NULL. pre-swap() "next" is not being
1006 			 * removed and its next->vm_end is not altered
1007 			 * (and furthermore "end" already matches
1008 			 * next->vm_end in remove_next == 3).
1009 			 *
1010 			 * We reach this only in the remove_next == 1
1011 			 * case if the "next" vma that was removed was
1012 			 * the highest vma of the mm. However in such
1013 			 * case next->vm_end == "end" and the extended
1014 			 * "vma" has vma->vm_end == next->vm_end so
1015 			 * mm->highest_vm_end doesn't need any update
1016 			 * in remove_next == 1 case.
1017 			 */
1018 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 		}
1020 	}
1021 	if (insert && file)
1022 		uprobe_mmap(insert);
1023 
1024 	validate_mm(mm);
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 				struct file *file, unsigned long vm_flags,
1035 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 	/*
1038 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039 	 * match the flags but dirty bit -- the caller should mark
1040 	 * merged VMA as dirty. If dirty bit won't be excluded from
1041 	 * comparison, we increase pressure on the memory system forcing
1042 	 * the kernel to generate new VMAs when old one could be
1043 	 * extended instead.
1044 	 */
1045 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046 		return 0;
1047 	if (vma->vm_file != file)
1048 		return 0;
1049 	if (vma->vm_ops && vma->vm_ops->close)
1050 		return 0;
1051 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052 		return 0;
1053 	return 1;
1054 }
1055 
1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057 					struct anon_vma *anon_vma2,
1058 					struct vm_area_struct *vma)
1059 {
1060 	/*
1061 	 * The list_is_singular() test is to avoid merging VMA cloned from
1062 	 * parents. This can improve scalability caused by anon_vma lock.
1063 	 */
1064 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065 		list_is_singular(&vma->anon_vma_chain)))
1066 		return 1;
1067 	return anon_vma1 == anon_vma2;
1068 }
1069 
1070 /*
1071  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072  * in front of (at a lower virtual address and file offset than) the vma.
1073  *
1074  * We cannot merge two vmas if they have differently assigned (non-NULL)
1075  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076  *
1077  * We don't check here for the merged mmap wrapping around the end of pagecache
1078  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079  * wrap, nor mmaps which cover the final page at index -1UL.
1080  */
1081 static int
1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083 		     struct anon_vma *anon_vma, struct file *file,
1084 		     pgoff_t vm_pgoff,
1085 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086 {
1087 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089 		if (vma->vm_pgoff == vm_pgoff)
1090 			return 1;
1091 	}
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097  * beyond (at a higher virtual address and file offset than) the vma.
1098  *
1099  * We cannot merge two vmas if they have differently assigned (non-NULL)
1100  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101  */
1102 static int
1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104 		    struct anon_vma *anon_vma, struct file *file,
1105 		    pgoff_t vm_pgoff,
1106 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 {
1108 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110 		pgoff_t vm_pglen;
1111 		vm_pglen = vma_pages(vma);
1112 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113 			return 1;
1114 	}
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120  * whether that can be merged with its predecessor or its successor.
1121  * Or both (it neatly fills a hole).
1122  *
1123  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124  * certain not to be mapped by the time vma_merge is called; but when
1125  * called for mprotect, it is certain to be already mapped (either at
1126  * an offset within prev, or at the start of next), and the flags of
1127  * this area are about to be changed to vm_flags - and the no-change
1128  * case has already been eliminated.
1129  *
1130  * The following mprotect cases have to be considered, where AAAA is
1131  * the area passed down from mprotect_fixup, never extending beyond one
1132  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133  *
1134  *     AAAA             AAAA                   AAAA
1135  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136  *    cannot merge    might become       might become
1137  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138  *    mmap, brk or    case 4 below       case 5 below
1139  *    mremap move:
1140  *                        AAAA               AAAA
1141  *                    PPPP    NNNN       PPPPNNNNXXXX
1142  *                    might become       might become
1143  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146  *
1147  * It is important for case 8 that the vma NNNN overlapping the
1148  * region AAAA is never going to extended over XXXX. Instead XXXX must
1149  * be extended in region AAAA and NNNN must be removed. This way in
1150  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151  * rmap_locks, the properties of the merged vma will be already
1152  * correct for the whole merged range. Some of those properties like
1153  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154  * be correct for the whole merged range immediately after the
1155  * rmap_locks are released. Otherwise if XXXX would be removed and
1156  * NNNN would be extended over the XXXX range, remove_migration_ptes
1157  * or other rmap walkers (if working on addresses beyond the "end"
1158  * parameter) may establish ptes with the wrong permissions of NNNN
1159  * instead of the right permissions of XXXX.
1160  */
1161 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162 			struct vm_area_struct *prev, unsigned long addr,
1163 			unsigned long end, unsigned long vm_flags,
1164 			struct anon_vma *anon_vma, struct file *file,
1165 			pgoff_t pgoff, struct mempolicy *policy,
1166 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167 {
1168 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169 	struct vm_area_struct *area, *next;
1170 	int err;
1171 
1172 	/*
1173 	 * We later require that vma->vm_flags == vm_flags,
1174 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1175 	 */
1176 	if (vm_flags & VM_SPECIAL)
1177 		return NULL;
1178 
1179 	next = vma_next(mm, prev);
1180 	area = next;
1181 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1182 		next = next->vm_next;
1183 
1184 	/* verify some invariant that must be enforced by the caller */
1185 	VM_WARN_ON(prev && addr <= prev->vm_start);
1186 	VM_WARN_ON(area && end > area->vm_end);
1187 	VM_WARN_ON(addr >= end);
1188 
1189 	/*
1190 	 * Can it merge with the predecessor?
1191 	 */
1192 	if (prev && prev->vm_end == addr &&
1193 			mpol_equal(vma_policy(prev), policy) &&
1194 			can_vma_merge_after(prev, vm_flags,
1195 					    anon_vma, file, pgoff,
1196 					    vm_userfaultfd_ctx)) {
1197 		/*
1198 		 * OK, it can.  Can we now merge in the successor as well?
1199 		 */
1200 		if (next && end == next->vm_start &&
1201 				mpol_equal(policy, vma_policy(next)) &&
1202 				can_vma_merge_before(next, vm_flags,
1203 						     anon_vma, file,
1204 						     pgoff+pglen,
1205 						     vm_userfaultfd_ctx) &&
1206 				is_mergeable_anon_vma(prev->anon_vma,
1207 						      next->anon_vma, NULL)) {
1208 							/* cases 1, 6 */
1209 			err = __vma_adjust(prev, prev->vm_start,
1210 					 next->vm_end, prev->vm_pgoff, NULL,
1211 					 prev);
1212 		} else					/* cases 2, 5, 7 */
1213 			err = __vma_adjust(prev, prev->vm_start,
1214 					 end, prev->vm_pgoff, NULL, prev);
1215 		if (err)
1216 			return NULL;
1217 		khugepaged_enter_vma_merge(prev, vm_flags);
1218 		return prev;
1219 	}
1220 
1221 	/*
1222 	 * Can this new request be merged in front of next?
1223 	 */
1224 	if (next && end == next->vm_start &&
1225 			mpol_equal(policy, vma_policy(next)) &&
1226 			can_vma_merge_before(next, vm_flags,
1227 					     anon_vma, file, pgoff+pglen,
1228 					     vm_userfaultfd_ctx)) {
1229 		if (prev && addr < prev->vm_end)	/* case 4 */
1230 			err = __vma_adjust(prev, prev->vm_start,
1231 					 addr, prev->vm_pgoff, NULL, next);
1232 		else {					/* cases 3, 8 */
1233 			err = __vma_adjust(area, addr, next->vm_end,
1234 					 next->vm_pgoff - pglen, NULL, next);
1235 			/*
1236 			 * In case 3 area is already equal to next and
1237 			 * this is a noop, but in case 8 "area" has
1238 			 * been removed and next was expanded over it.
1239 			 */
1240 			area = next;
1241 		}
1242 		if (err)
1243 			return NULL;
1244 		khugepaged_enter_vma_merge(area, vm_flags);
1245 		return area;
1246 	}
1247 
1248 	return NULL;
1249 }
1250 
1251 /*
1252  * Rough compatibility check to quickly see if it's even worth looking
1253  * at sharing an anon_vma.
1254  *
1255  * They need to have the same vm_file, and the flags can only differ
1256  * in things that mprotect may change.
1257  *
1258  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259  * we can merge the two vma's. For example, we refuse to merge a vma if
1260  * there is a vm_ops->close() function, because that indicates that the
1261  * driver is doing some kind of reference counting. But that doesn't
1262  * really matter for the anon_vma sharing case.
1263  */
1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265 {
1266 	return a->vm_end == b->vm_start &&
1267 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1268 		a->vm_file == b->vm_file &&
1269 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271 }
1272 
1273 /*
1274  * Do some basic sanity checking to see if we can re-use the anon_vma
1275  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276  * the same as 'old', the other will be the new one that is trying
1277  * to share the anon_vma.
1278  *
1279  * NOTE! This runs with mm_sem held for reading, so it is possible that
1280  * the anon_vma of 'old' is concurrently in the process of being set up
1281  * by another page fault trying to merge _that_. But that's ok: if it
1282  * is being set up, that automatically means that it will be a singleton
1283  * acceptable for merging, so we can do all of this optimistically. But
1284  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285  *
1286  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288  * is to return an anon_vma that is "complex" due to having gone through
1289  * a fork).
1290  *
1291  * We also make sure that the two vma's are compatible (adjacent,
1292  * and with the same memory policies). That's all stable, even with just
1293  * a read lock on the mm_sem.
1294  */
1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296 {
1297 	if (anon_vma_compatible(a, b)) {
1298 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299 
1300 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301 			return anon_vma;
1302 	}
1303 	return NULL;
1304 }
1305 
1306 /*
1307  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308  * neighbouring vmas for a suitable anon_vma, before it goes off
1309  * to allocate a new anon_vma.  It checks because a repetitive
1310  * sequence of mprotects and faults may otherwise lead to distinct
1311  * anon_vmas being allocated, preventing vma merge in subsequent
1312  * mprotect.
1313  */
1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316 	struct anon_vma *anon_vma = NULL;
1317 
1318 	/* Try next first. */
1319 	if (vma->vm_next) {
1320 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321 		if (anon_vma)
1322 			return anon_vma;
1323 	}
1324 
1325 	/* Try prev next. */
1326 	if (vma->vm_prev)
1327 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328 
1329 	/*
1330 	 * We might reach here with anon_vma == NULL if we can't find
1331 	 * any reusable anon_vma.
1332 	 * There's no absolute need to look only at touching neighbours:
1333 	 * we could search further afield for "compatible" anon_vmas.
1334 	 * But it would probably just be a waste of time searching,
1335 	 * or lead to too many vmas hanging off the same anon_vma.
1336 	 * We're trying to allow mprotect remerging later on,
1337 	 * not trying to minimize memory used for anon_vmas.
1338 	 */
1339 	return anon_vma;
1340 }
1341 
1342 /*
1343  * If a hint addr is less than mmap_min_addr change hint to be as
1344  * low as possible but still greater than mmap_min_addr
1345  */
1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348 	hint &= PAGE_MASK;
1349 	if (((void *)hint != NULL) &&
1350 	    (hint < mmap_min_addr))
1351 		return PAGE_ALIGN(mmap_min_addr);
1352 	return hint;
1353 }
1354 
1355 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1356 		       unsigned long len)
1357 {
1358 	unsigned long locked, lock_limit;
1359 
1360 	/*  mlock MCL_FUTURE? */
1361 	if (flags & VM_LOCKED) {
1362 		locked = len >> PAGE_SHIFT;
1363 		locked += mm->locked_vm;
1364 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1365 		lock_limit >>= PAGE_SHIFT;
1366 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1367 			return -EAGAIN;
1368 	}
1369 	return 0;
1370 }
1371 
1372 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1373 {
1374 	if (S_ISREG(inode->i_mode))
1375 		return MAX_LFS_FILESIZE;
1376 
1377 	if (S_ISBLK(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	if (S_ISSOCK(inode->i_mode))
1381 		return MAX_LFS_FILESIZE;
1382 
1383 	/* Special "we do even unsigned file positions" case */
1384 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1385 		return 0;
1386 
1387 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1388 	return ULONG_MAX;
1389 }
1390 
1391 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1392 				unsigned long pgoff, unsigned long len)
1393 {
1394 	u64 maxsize = file_mmap_size_max(file, inode);
1395 
1396 	if (maxsize && len > maxsize)
1397 		return false;
1398 	maxsize -= len;
1399 	if (pgoff > maxsize >> PAGE_SHIFT)
1400 		return false;
1401 	return true;
1402 }
1403 
1404 /*
1405  * The caller must write-lock current->mm->mmap_lock.
1406  */
1407 unsigned long do_mmap(struct file *file, unsigned long addr,
1408 			unsigned long len, unsigned long prot,
1409 			unsigned long flags, unsigned long pgoff,
1410 			unsigned long *populate, struct list_head *uf)
1411 {
1412 	struct mm_struct *mm = current->mm;
1413 	vm_flags_t vm_flags;
1414 	int pkey = 0;
1415 
1416 	*populate = 0;
1417 
1418 	if (!len)
1419 		return -EINVAL;
1420 
1421 	/*
1422 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1423 	 *
1424 	 * (the exception is when the underlying filesystem is noexec
1425 	 *  mounted, in which case we dont add PROT_EXEC.)
1426 	 */
1427 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1428 		if (!(file && path_noexec(&file->f_path)))
1429 			prot |= PROT_EXEC;
1430 
1431 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1432 	if (flags & MAP_FIXED_NOREPLACE)
1433 		flags |= MAP_FIXED;
1434 
1435 	if (!(flags & MAP_FIXED))
1436 		addr = round_hint_to_min(addr);
1437 
1438 	/* Careful about overflows.. */
1439 	len = PAGE_ALIGN(len);
1440 	if (!len)
1441 		return -ENOMEM;
1442 
1443 	/* offset overflow? */
1444 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1445 		return -EOVERFLOW;
1446 
1447 	/* Too many mappings? */
1448 	if (mm->map_count > sysctl_max_map_count)
1449 		return -ENOMEM;
1450 
1451 	/* Obtain the address to map to. we verify (or select) it and ensure
1452 	 * that it represents a valid section of the address space.
1453 	 */
1454 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1455 	if (IS_ERR_VALUE(addr))
1456 		return addr;
1457 
1458 	if (flags & MAP_FIXED_NOREPLACE) {
1459 		if (find_vma_intersection(mm, addr, addr + len))
1460 			return -EEXIST;
1461 	}
1462 
1463 	if (prot == PROT_EXEC) {
1464 		pkey = execute_only_pkey(mm);
1465 		if (pkey < 0)
1466 			pkey = 0;
1467 	}
1468 
1469 	/* Do simple checking here so the lower-level routines won't have
1470 	 * to. we assume access permissions have been handled by the open
1471 	 * of the memory object, so we don't do any here.
1472 	 */
1473 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1474 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1475 
1476 	if (flags & MAP_LOCKED)
1477 		if (!can_do_mlock())
1478 			return -EPERM;
1479 
1480 	if (mlock_future_check(mm, vm_flags, len))
1481 		return -EAGAIN;
1482 
1483 	if (file) {
1484 		struct inode *inode = file_inode(file);
1485 		unsigned long flags_mask;
1486 
1487 		if (!file_mmap_ok(file, inode, pgoff, len))
1488 			return -EOVERFLOW;
1489 
1490 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1491 
1492 		switch (flags & MAP_TYPE) {
1493 		case MAP_SHARED:
1494 			/*
1495 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1496 			 * flags. E.g. MAP_SYNC is dangerous to use with
1497 			 * MAP_SHARED as you don't know which consistency model
1498 			 * you will get. We silently ignore unsupported flags
1499 			 * with MAP_SHARED to preserve backward compatibility.
1500 			 */
1501 			flags &= LEGACY_MAP_MASK;
1502 			fallthrough;
1503 		case MAP_SHARED_VALIDATE:
1504 			if (flags & ~flags_mask)
1505 				return -EOPNOTSUPP;
1506 			if (prot & PROT_WRITE) {
1507 				if (!(file->f_mode & FMODE_WRITE))
1508 					return -EACCES;
1509 				if (IS_SWAPFILE(file->f_mapping->host))
1510 					return -ETXTBSY;
1511 			}
1512 
1513 			/*
1514 			 * Make sure we don't allow writing to an append-only
1515 			 * file..
1516 			 */
1517 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1518 				return -EACCES;
1519 
1520 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1521 			if (!(file->f_mode & FMODE_WRITE))
1522 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1523 			fallthrough;
1524 		case MAP_PRIVATE:
1525 			if (!(file->f_mode & FMODE_READ))
1526 				return -EACCES;
1527 			if (path_noexec(&file->f_path)) {
1528 				if (vm_flags & VM_EXEC)
1529 					return -EPERM;
1530 				vm_flags &= ~VM_MAYEXEC;
1531 			}
1532 
1533 			if (!file->f_op->mmap)
1534 				return -ENODEV;
1535 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1536 				return -EINVAL;
1537 			break;
1538 
1539 		default:
1540 			return -EINVAL;
1541 		}
1542 	} else {
1543 		switch (flags & MAP_TYPE) {
1544 		case MAP_SHARED:
1545 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1546 				return -EINVAL;
1547 			/*
1548 			 * Ignore pgoff.
1549 			 */
1550 			pgoff = 0;
1551 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1552 			break;
1553 		case MAP_PRIVATE:
1554 			/*
1555 			 * Set pgoff according to addr for anon_vma.
1556 			 */
1557 			pgoff = addr >> PAGE_SHIFT;
1558 			break;
1559 		default:
1560 			return -EINVAL;
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * Set 'VM_NORESERVE' if we should not account for the
1566 	 * memory use of this mapping.
1567 	 */
1568 	if (flags & MAP_NORESERVE) {
1569 		/* We honor MAP_NORESERVE if allowed to overcommit */
1570 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1571 			vm_flags |= VM_NORESERVE;
1572 
1573 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1574 		if (file && is_file_hugepages(file))
1575 			vm_flags |= VM_NORESERVE;
1576 	}
1577 
1578 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1579 	if (!IS_ERR_VALUE(addr) &&
1580 	    ((vm_flags & VM_LOCKED) ||
1581 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1582 		*populate = len;
1583 	return addr;
1584 }
1585 
1586 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1587 			      unsigned long prot, unsigned long flags,
1588 			      unsigned long fd, unsigned long pgoff)
1589 {
1590 	struct file *file = NULL;
1591 	unsigned long retval;
1592 
1593 	if (!(flags & MAP_ANONYMOUS)) {
1594 		audit_mmap_fd(fd, flags);
1595 		file = fget(fd);
1596 		if (!file)
1597 			return -EBADF;
1598 		if (is_file_hugepages(file)) {
1599 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1600 		} else if (unlikely(flags & MAP_HUGETLB)) {
1601 			retval = -EINVAL;
1602 			goto out_fput;
1603 		}
1604 	} else if (flags & MAP_HUGETLB) {
1605 		struct ucounts *ucounts = NULL;
1606 		struct hstate *hs;
1607 
1608 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609 		if (!hs)
1610 			return -EINVAL;
1611 
1612 		len = ALIGN(len, huge_page_size(hs));
1613 		/*
1614 		 * VM_NORESERVE is used because the reservations will be
1615 		 * taken when vm_ops->mmap() is called
1616 		 * A dummy user value is used because we are not locking
1617 		 * memory so no accounting is necessary
1618 		 */
1619 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1620 				VM_NORESERVE,
1621 				&ucounts, HUGETLB_ANONHUGE_INODE,
1622 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1623 		if (IS_ERR(file))
1624 			return PTR_ERR(file);
1625 	}
1626 
1627 	flags &= ~MAP_DENYWRITE;
1628 
1629 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1630 out_fput:
1631 	if (file)
1632 		fput(file);
1633 	return retval;
1634 }
1635 
1636 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1637 		unsigned long, prot, unsigned long, flags,
1638 		unsigned long, fd, unsigned long, pgoff)
1639 {
1640 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1641 }
1642 
1643 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1644 struct mmap_arg_struct {
1645 	unsigned long addr;
1646 	unsigned long len;
1647 	unsigned long prot;
1648 	unsigned long flags;
1649 	unsigned long fd;
1650 	unsigned long offset;
1651 };
1652 
1653 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1654 {
1655 	struct mmap_arg_struct a;
1656 
1657 	if (copy_from_user(&a, arg, sizeof(a)))
1658 		return -EFAULT;
1659 	if (offset_in_page(a.offset))
1660 		return -EINVAL;
1661 
1662 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1663 			       a.offset >> PAGE_SHIFT);
1664 }
1665 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1666 
1667 /*
1668  * Some shared mappings will want the pages marked read-only
1669  * to track write events. If so, we'll downgrade vm_page_prot
1670  * to the private version (using protection_map[] without the
1671  * VM_SHARED bit).
1672  */
1673 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1674 {
1675 	vm_flags_t vm_flags = vma->vm_flags;
1676 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1677 
1678 	/* If it was private or non-writable, the write bit is already clear */
1679 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1680 		return 0;
1681 
1682 	/* The backer wishes to know when pages are first written to? */
1683 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1684 		return 1;
1685 
1686 	/* The open routine did something to the protections that pgprot_modify
1687 	 * won't preserve? */
1688 	if (pgprot_val(vm_page_prot) !=
1689 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1690 		return 0;
1691 
1692 	/* Do we need to track softdirty? */
1693 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1694 		return 1;
1695 
1696 	/* Specialty mapping? */
1697 	if (vm_flags & VM_PFNMAP)
1698 		return 0;
1699 
1700 	/* Can the mapping track the dirty pages? */
1701 	return vma->vm_file && vma->vm_file->f_mapping &&
1702 		mapping_can_writeback(vma->vm_file->f_mapping);
1703 }
1704 
1705 /*
1706  * We account for memory if it's a private writeable mapping,
1707  * not hugepages and VM_NORESERVE wasn't set.
1708  */
1709 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1710 {
1711 	/*
1712 	 * hugetlb has its own accounting separate from the core VM
1713 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1714 	 */
1715 	if (file && is_file_hugepages(file))
1716 		return 0;
1717 
1718 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1719 }
1720 
1721 unsigned long mmap_region(struct file *file, unsigned long addr,
1722 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1723 		struct list_head *uf)
1724 {
1725 	struct mm_struct *mm = current->mm;
1726 	struct vm_area_struct *vma, *prev, *merge;
1727 	int error;
1728 	struct rb_node **rb_link, *rb_parent;
1729 	unsigned long charged = 0;
1730 
1731 	/* Check against address space limit. */
1732 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1733 		unsigned long nr_pages;
1734 
1735 		/*
1736 		 * MAP_FIXED may remove pages of mappings that intersects with
1737 		 * requested mapping. Account for the pages it would unmap.
1738 		 */
1739 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1740 
1741 		if (!may_expand_vm(mm, vm_flags,
1742 					(len >> PAGE_SHIFT) - nr_pages))
1743 			return -ENOMEM;
1744 	}
1745 
1746 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1747 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1748 		return -ENOMEM;
1749 	/*
1750 	 * Private writable mapping: check memory availability
1751 	 */
1752 	if (accountable_mapping(file, vm_flags)) {
1753 		charged = len >> PAGE_SHIFT;
1754 		if (security_vm_enough_memory_mm(mm, charged))
1755 			return -ENOMEM;
1756 		vm_flags |= VM_ACCOUNT;
1757 	}
1758 
1759 	/*
1760 	 * Can we just expand an old mapping?
1761 	 */
1762 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1763 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1764 	if (vma)
1765 		goto out;
1766 
1767 	/*
1768 	 * Determine the object being mapped and call the appropriate
1769 	 * specific mapper. the address has already been validated, but
1770 	 * not unmapped, but the maps are removed from the list.
1771 	 */
1772 	vma = vm_area_alloc(mm);
1773 	if (!vma) {
1774 		error = -ENOMEM;
1775 		goto unacct_error;
1776 	}
1777 
1778 	vma->vm_start = addr;
1779 	vma->vm_end = addr + len;
1780 	vma->vm_flags = vm_flags;
1781 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1782 	vma->vm_pgoff = pgoff;
1783 
1784 	if (file) {
1785 		if (vm_flags & VM_DENYWRITE) {
1786 			error = deny_write_access(file);
1787 			if (error)
1788 				goto free_vma;
1789 		}
1790 		if (vm_flags & VM_SHARED) {
1791 			error = mapping_map_writable(file->f_mapping);
1792 			if (error)
1793 				goto allow_write_and_free_vma;
1794 		}
1795 
1796 		/* ->mmap() can change vma->vm_file, but must guarantee that
1797 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1798 		 * and map writably if VM_SHARED is set. This usually means the
1799 		 * new file must not have been exposed to user-space, yet.
1800 		 */
1801 		vma->vm_file = get_file(file);
1802 		error = call_mmap(file, vma);
1803 		if (error)
1804 			goto unmap_and_free_vma;
1805 
1806 		/* Can addr have changed??
1807 		 *
1808 		 * Answer: Yes, several device drivers can do it in their
1809 		 *         f_op->mmap method. -DaveM
1810 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1811 		 *      be updated for vma_link()
1812 		 */
1813 		WARN_ON_ONCE(addr != vma->vm_start);
1814 
1815 		addr = vma->vm_start;
1816 
1817 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1818 		 * as we may succeed this time.
1819 		 */
1820 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1821 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1822 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1823 			if (merge) {
1824 				/* ->mmap() can change vma->vm_file and fput the original file. So
1825 				 * fput the vma->vm_file here or we would add an extra fput for file
1826 				 * and cause general protection fault ultimately.
1827 				 */
1828 				fput(vma->vm_file);
1829 				vm_area_free(vma);
1830 				vma = merge;
1831 				/* Update vm_flags to pick up the change. */
1832 				vm_flags = vma->vm_flags;
1833 				goto unmap_writable;
1834 			}
1835 		}
1836 
1837 		vm_flags = vma->vm_flags;
1838 	} else if (vm_flags & VM_SHARED) {
1839 		error = shmem_zero_setup(vma);
1840 		if (error)
1841 			goto free_vma;
1842 	} else {
1843 		vma_set_anonymous(vma);
1844 	}
1845 
1846 	/* Allow architectures to sanity-check the vm_flags */
1847 	if (!arch_validate_flags(vma->vm_flags)) {
1848 		error = -EINVAL;
1849 		if (file)
1850 			goto unmap_and_free_vma;
1851 		else
1852 			goto free_vma;
1853 	}
1854 
1855 	vma_link(mm, vma, prev, rb_link, rb_parent);
1856 	/* Once vma denies write, undo our temporary denial count */
1857 	if (file) {
1858 unmap_writable:
1859 		if (vm_flags & VM_SHARED)
1860 			mapping_unmap_writable(file->f_mapping);
1861 		if (vm_flags & VM_DENYWRITE)
1862 			allow_write_access(file);
1863 	}
1864 	file = vma->vm_file;
1865 out:
1866 	perf_event_mmap(vma);
1867 
1868 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1869 	if (vm_flags & VM_LOCKED) {
1870 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1871 					is_vm_hugetlb_page(vma) ||
1872 					vma == get_gate_vma(current->mm))
1873 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1874 		else
1875 			mm->locked_vm += (len >> PAGE_SHIFT);
1876 	}
1877 
1878 	if (file)
1879 		uprobe_mmap(vma);
1880 
1881 	/*
1882 	 * New (or expanded) vma always get soft dirty status.
1883 	 * Otherwise user-space soft-dirty page tracker won't
1884 	 * be able to distinguish situation when vma area unmapped,
1885 	 * then new mapped in-place (which must be aimed as
1886 	 * a completely new data area).
1887 	 */
1888 	vma->vm_flags |= VM_SOFTDIRTY;
1889 
1890 	vma_set_page_prot(vma);
1891 
1892 	return addr;
1893 
1894 unmap_and_free_vma:
1895 	fput(vma->vm_file);
1896 	vma->vm_file = NULL;
1897 
1898 	/* Undo any partial mapping done by a device driver. */
1899 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1900 	charged = 0;
1901 	if (vm_flags & VM_SHARED)
1902 		mapping_unmap_writable(file->f_mapping);
1903 allow_write_and_free_vma:
1904 	if (vm_flags & VM_DENYWRITE)
1905 		allow_write_access(file);
1906 free_vma:
1907 	vm_area_free(vma);
1908 unacct_error:
1909 	if (charged)
1910 		vm_unacct_memory(charged);
1911 	return error;
1912 }
1913 
1914 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1915 {
1916 	/*
1917 	 * We implement the search by looking for an rbtree node that
1918 	 * immediately follows a suitable gap. That is,
1919 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1920 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1921 	 * - gap_end - gap_start >= length
1922 	 */
1923 
1924 	struct mm_struct *mm = current->mm;
1925 	struct vm_area_struct *vma;
1926 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1927 
1928 	/* Adjust search length to account for worst case alignment overhead */
1929 	length = info->length + info->align_mask;
1930 	if (length < info->length)
1931 		return -ENOMEM;
1932 
1933 	/* Adjust search limits by the desired length */
1934 	if (info->high_limit < length)
1935 		return -ENOMEM;
1936 	high_limit = info->high_limit - length;
1937 
1938 	if (info->low_limit > high_limit)
1939 		return -ENOMEM;
1940 	low_limit = info->low_limit + length;
1941 
1942 	/* Check if rbtree root looks promising */
1943 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1944 		goto check_highest;
1945 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1946 	if (vma->rb_subtree_gap < length)
1947 		goto check_highest;
1948 
1949 	while (true) {
1950 		/* Visit left subtree if it looks promising */
1951 		gap_end = vm_start_gap(vma);
1952 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1953 			struct vm_area_struct *left =
1954 				rb_entry(vma->vm_rb.rb_left,
1955 					 struct vm_area_struct, vm_rb);
1956 			if (left->rb_subtree_gap >= length) {
1957 				vma = left;
1958 				continue;
1959 			}
1960 		}
1961 
1962 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1963 check_current:
1964 		/* Check if current node has a suitable gap */
1965 		if (gap_start > high_limit)
1966 			return -ENOMEM;
1967 		if (gap_end >= low_limit &&
1968 		    gap_end > gap_start && gap_end - gap_start >= length)
1969 			goto found;
1970 
1971 		/* Visit right subtree if it looks promising */
1972 		if (vma->vm_rb.rb_right) {
1973 			struct vm_area_struct *right =
1974 				rb_entry(vma->vm_rb.rb_right,
1975 					 struct vm_area_struct, vm_rb);
1976 			if (right->rb_subtree_gap >= length) {
1977 				vma = right;
1978 				continue;
1979 			}
1980 		}
1981 
1982 		/* Go back up the rbtree to find next candidate node */
1983 		while (true) {
1984 			struct rb_node *prev = &vma->vm_rb;
1985 			if (!rb_parent(prev))
1986 				goto check_highest;
1987 			vma = rb_entry(rb_parent(prev),
1988 				       struct vm_area_struct, vm_rb);
1989 			if (prev == vma->vm_rb.rb_left) {
1990 				gap_start = vm_end_gap(vma->vm_prev);
1991 				gap_end = vm_start_gap(vma);
1992 				goto check_current;
1993 			}
1994 		}
1995 	}
1996 
1997 check_highest:
1998 	/* Check highest gap, which does not precede any rbtree node */
1999 	gap_start = mm->highest_vm_end;
2000 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2001 	if (gap_start > high_limit)
2002 		return -ENOMEM;
2003 
2004 found:
2005 	/* We found a suitable gap. Clip it with the original low_limit. */
2006 	if (gap_start < info->low_limit)
2007 		gap_start = info->low_limit;
2008 
2009 	/* Adjust gap address to the desired alignment */
2010 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2011 
2012 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2013 	VM_BUG_ON(gap_start + info->length > gap_end);
2014 	return gap_start;
2015 }
2016 
2017 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2018 {
2019 	struct mm_struct *mm = current->mm;
2020 	struct vm_area_struct *vma;
2021 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2022 
2023 	/* Adjust search length to account for worst case alignment overhead */
2024 	length = info->length + info->align_mask;
2025 	if (length < info->length)
2026 		return -ENOMEM;
2027 
2028 	/*
2029 	 * Adjust search limits by the desired length.
2030 	 * See implementation comment at top of unmapped_area().
2031 	 */
2032 	gap_end = info->high_limit;
2033 	if (gap_end < length)
2034 		return -ENOMEM;
2035 	high_limit = gap_end - length;
2036 
2037 	if (info->low_limit > high_limit)
2038 		return -ENOMEM;
2039 	low_limit = info->low_limit + length;
2040 
2041 	/* Check highest gap, which does not precede any rbtree node */
2042 	gap_start = mm->highest_vm_end;
2043 	if (gap_start <= high_limit)
2044 		goto found_highest;
2045 
2046 	/* Check if rbtree root looks promising */
2047 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2048 		return -ENOMEM;
2049 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2050 	if (vma->rb_subtree_gap < length)
2051 		return -ENOMEM;
2052 
2053 	while (true) {
2054 		/* Visit right subtree if it looks promising */
2055 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2056 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2057 			struct vm_area_struct *right =
2058 				rb_entry(vma->vm_rb.rb_right,
2059 					 struct vm_area_struct, vm_rb);
2060 			if (right->rb_subtree_gap >= length) {
2061 				vma = right;
2062 				continue;
2063 			}
2064 		}
2065 
2066 check_current:
2067 		/* Check if current node has a suitable gap */
2068 		gap_end = vm_start_gap(vma);
2069 		if (gap_end < low_limit)
2070 			return -ENOMEM;
2071 		if (gap_start <= high_limit &&
2072 		    gap_end > gap_start && gap_end - gap_start >= length)
2073 			goto found;
2074 
2075 		/* Visit left subtree if it looks promising */
2076 		if (vma->vm_rb.rb_left) {
2077 			struct vm_area_struct *left =
2078 				rb_entry(vma->vm_rb.rb_left,
2079 					 struct vm_area_struct, vm_rb);
2080 			if (left->rb_subtree_gap >= length) {
2081 				vma = left;
2082 				continue;
2083 			}
2084 		}
2085 
2086 		/* Go back up the rbtree to find next candidate node */
2087 		while (true) {
2088 			struct rb_node *prev = &vma->vm_rb;
2089 			if (!rb_parent(prev))
2090 				return -ENOMEM;
2091 			vma = rb_entry(rb_parent(prev),
2092 				       struct vm_area_struct, vm_rb);
2093 			if (prev == vma->vm_rb.rb_right) {
2094 				gap_start = vma->vm_prev ?
2095 					vm_end_gap(vma->vm_prev) : 0;
2096 				goto check_current;
2097 			}
2098 		}
2099 	}
2100 
2101 found:
2102 	/* We found a suitable gap. Clip it with the original high_limit. */
2103 	if (gap_end > info->high_limit)
2104 		gap_end = info->high_limit;
2105 
2106 found_highest:
2107 	/* Compute highest gap address at the desired alignment */
2108 	gap_end -= info->length;
2109 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2110 
2111 	VM_BUG_ON(gap_end < info->low_limit);
2112 	VM_BUG_ON(gap_end < gap_start);
2113 	return gap_end;
2114 }
2115 
2116 /*
2117  * Search for an unmapped address range.
2118  *
2119  * We are looking for a range that:
2120  * - does not intersect with any VMA;
2121  * - is contained within the [low_limit, high_limit) interval;
2122  * - is at least the desired size.
2123  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2124  */
2125 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2126 {
2127 	unsigned long addr;
2128 
2129 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2130 		addr = unmapped_area_topdown(info);
2131 	else
2132 		addr = unmapped_area(info);
2133 
2134 	trace_vm_unmapped_area(addr, info);
2135 	return addr;
2136 }
2137 
2138 #ifndef arch_get_mmap_end
2139 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2140 #endif
2141 
2142 #ifndef arch_get_mmap_base
2143 #define arch_get_mmap_base(addr, base) (base)
2144 #endif
2145 
2146 /* Get an address range which is currently unmapped.
2147  * For shmat() with addr=0.
2148  *
2149  * Ugly calling convention alert:
2150  * Return value with the low bits set means error value,
2151  * ie
2152  *	if (ret & ~PAGE_MASK)
2153  *		error = ret;
2154  *
2155  * This function "knows" that -ENOMEM has the bits set.
2156  */
2157 #ifndef HAVE_ARCH_UNMAPPED_AREA
2158 unsigned long
2159 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2160 		unsigned long len, unsigned long pgoff, unsigned long flags)
2161 {
2162 	struct mm_struct *mm = current->mm;
2163 	struct vm_area_struct *vma, *prev;
2164 	struct vm_unmapped_area_info info;
2165 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2166 
2167 	if (len > mmap_end - mmap_min_addr)
2168 		return -ENOMEM;
2169 
2170 	if (flags & MAP_FIXED)
2171 		return addr;
2172 
2173 	if (addr) {
2174 		addr = PAGE_ALIGN(addr);
2175 		vma = find_vma_prev(mm, addr, &prev);
2176 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2177 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2178 		    (!prev || addr >= vm_end_gap(prev)))
2179 			return addr;
2180 	}
2181 
2182 	info.flags = 0;
2183 	info.length = len;
2184 	info.low_limit = mm->mmap_base;
2185 	info.high_limit = mmap_end;
2186 	info.align_mask = 0;
2187 	info.align_offset = 0;
2188 	return vm_unmapped_area(&info);
2189 }
2190 #endif
2191 
2192 /*
2193  * This mmap-allocator allocates new areas top-down from below the
2194  * stack's low limit (the base):
2195  */
2196 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2197 unsigned long
2198 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2199 			  unsigned long len, unsigned long pgoff,
2200 			  unsigned long flags)
2201 {
2202 	struct vm_area_struct *vma, *prev;
2203 	struct mm_struct *mm = current->mm;
2204 	struct vm_unmapped_area_info info;
2205 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2206 
2207 	/* requested length too big for entire address space */
2208 	if (len > mmap_end - mmap_min_addr)
2209 		return -ENOMEM;
2210 
2211 	if (flags & MAP_FIXED)
2212 		return addr;
2213 
2214 	/* requesting a specific address */
2215 	if (addr) {
2216 		addr = PAGE_ALIGN(addr);
2217 		vma = find_vma_prev(mm, addr, &prev);
2218 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2219 				(!vma || addr + len <= vm_start_gap(vma)) &&
2220 				(!prev || addr >= vm_end_gap(prev)))
2221 			return addr;
2222 	}
2223 
2224 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2225 	info.length = len;
2226 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2227 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2228 	info.align_mask = 0;
2229 	info.align_offset = 0;
2230 	addr = vm_unmapped_area(&info);
2231 
2232 	/*
2233 	 * A failed mmap() very likely causes application failure,
2234 	 * so fall back to the bottom-up function here. This scenario
2235 	 * can happen with large stack limits and large mmap()
2236 	 * allocations.
2237 	 */
2238 	if (offset_in_page(addr)) {
2239 		VM_BUG_ON(addr != -ENOMEM);
2240 		info.flags = 0;
2241 		info.low_limit = TASK_UNMAPPED_BASE;
2242 		info.high_limit = mmap_end;
2243 		addr = vm_unmapped_area(&info);
2244 	}
2245 
2246 	return addr;
2247 }
2248 #endif
2249 
2250 unsigned long
2251 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2252 		unsigned long pgoff, unsigned long flags)
2253 {
2254 	unsigned long (*get_area)(struct file *, unsigned long,
2255 				  unsigned long, unsigned long, unsigned long);
2256 
2257 	unsigned long error = arch_mmap_check(addr, len, flags);
2258 	if (error)
2259 		return error;
2260 
2261 	/* Careful about overflows.. */
2262 	if (len > TASK_SIZE)
2263 		return -ENOMEM;
2264 
2265 	get_area = current->mm->get_unmapped_area;
2266 	if (file) {
2267 		if (file->f_op->get_unmapped_area)
2268 			get_area = file->f_op->get_unmapped_area;
2269 	} else if (flags & MAP_SHARED) {
2270 		/*
2271 		 * mmap_region() will call shmem_zero_setup() to create a file,
2272 		 * so use shmem's get_unmapped_area in case it can be huge.
2273 		 * do_mmap() will clear pgoff, so match alignment.
2274 		 */
2275 		pgoff = 0;
2276 		get_area = shmem_get_unmapped_area;
2277 	}
2278 
2279 	addr = get_area(file, addr, len, pgoff, flags);
2280 	if (IS_ERR_VALUE(addr))
2281 		return addr;
2282 
2283 	if (addr > TASK_SIZE - len)
2284 		return -ENOMEM;
2285 	if (offset_in_page(addr))
2286 		return -EINVAL;
2287 
2288 	error = security_mmap_addr(addr);
2289 	return error ? error : addr;
2290 }
2291 
2292 EXPORT_SYMBOL(get_unmapped_area);
2293 
2294 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2295 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2296 {
2297 	struct rb_node *rb_node;
2298 	struct vm_area_struct *vma;
2299 
2300 	/* Check the cache first. */
2301 	vma = vmacache_find(mm, addr);
2302 	if (likely(vma))
2303 		return vma;
2304 
2305 	rb_node = mm->mm_rb.rb_node;
2306 
2307 	while (rb_node) {
2308 		struct vm_area_struct *tmp;
2309 
2310 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2311 
2312 		if (tmp->vm_end > addr) {
2313 			vma = tmp;
2314 			if (tmp->vm_start <= addr)
2315 				break;
2316 			rb_node = rb_node->rb_left;
2317 		} else
2318 			rb_node = rb_node->rb_right;
2319 	}
2320 
2321 	if (vma)
2322 		vmacache_update(addr, vma);
2323 	return vma;
2324 }
2325 
2326 EXPORT_SYMBOL(find_vma);
2327 
2328 /*
2329  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2330  */
2331 struct vm_area_struct *
2332 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2333 			struct vm_area_struct **pprev)
2334 {
2335 	struct vm_area_struct *vma;
2336 
2337 	vma = find_vma(mm, addr);
2338 	if (vma) {
2339 		*pprev = vma->vm_prev;
2340 	} else {
2341 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2342 
2343 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2344 	}
2345 	return vma;
2346 }
2347 
2348 /*
2349  * Verify that the stack growth is acceptable and
2350  * update accounting. This is shared with both the
2351  * grow-up and grow-down cases.
2352  */
2353 static int acct_stack_growth(struct vm_area_struct *vma,
2354 			     unsigned long size, unsigned long grow)
2355 {
2356 	struct mm_struct *mm = vma->vm_mm;
2357 	unsigned long new_start;
2358 
2359 	/* address space limit tests */
2360 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2361 		return -ENOMEM;
2362 
2363 	/* Stack limit test */
2364 	if (size > rlimit(RLIMIT_STACK))
2365 		return -ENOMEM;
2366 
2367 	/* mlock limit tests */
2368 	if (vma->vm_flags & VM_LOCKED) {
2369 		unsigned long locked;
2370 		unsigned long limit;
2371 		locked = mm->locked_vm + grow;
2372 		limit = rlimit(RLIMIT_MEMLOCK);
2373 		limit >>= PAGE_SHIFT;
2374 		if (locked > limit && !capable(CAP_IPC_LOCK))
2375 			return -ENOMEM;
2376 	}
2377 
2378 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2379 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2380 			vma->vm_end - size;
2381 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2382 		return -EFAULT;
2383 
2384 	/*
2385 	 * Overcommit..  This must be the final test, as it will
2386 	 * update security statistics.
2387 	 */
2388 	if (security_vm_enough_memory_mm(mm, grow))
2389 		return -ENOMEM;
2390 
2391 	return 0;
2392 }
2393 
2394 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2395 /*
2396  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2397  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2398  */
2399 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2400 {
2401 	struct mm_struct *mm = vma->vm_mm;
2402 	struct vm_area_struct *next;
2403 	unsigned long gap_addr;
2404 	int error = 0;
2405 
2406 	if (!(vma->vm_flags & VM_GROWSUP))
2407 		return -EFAULT;
2408 
2409 	/* Guard against exceeding limits of the address space. */
2410 	address &= PAGE_MASK;
2411 	if (address >= (TASK_SIZE & PAGE_MASK))
2412 		return -ENOMEM;
2413 	address += PAGE_SIZE;
2414 
2415 	/* Enforce stack_guard_gap */
2416 	gap_addr = address + stack_guard_gap;
2417 
2418 	/* Guard against overflow */
2419 	if (gap_addr < address || gap_addr > TASK_SIZE)
2420 		gap_addr = TASK_SIZE;
2421 
2422 	next = vma->vm_next;
2423 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2424 		if (!(next->vm_flags & VM_GROWSUP))
2425 			return -ENOMEM;
2426 		/* Check that both stack segments have the same anon_vma? */
2427 	}
2428 
2429 	/* We must make sure the anon_vma is allocated. */
2430 	if (unlikely(anon_vma_prepare(vma)))
2431 		return -ENOMEM;
2432 
2433 	/*
2434 	 * vma->vm_start/vm_end cannot change under us because the caller
2435 	 * is required to hold the mmap_lock in read mode.  We need the
2436 	 * anon_vma lock to serialize against concurrent expand_stacks.
2437 	 */
2438 	anon_vma_lock_write(vma->anon_vma);
2439 
2440 	/* Somebody else might have raced and expanded it already */
2441 	if (address > vma->vm_end) {
2442 		unsigned long size, grow;
2443 
2444 		size = address - vma->vm_start;
2445 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2446 
2447 		error = -ENOMEM;
2448 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2449 			error = acct_stack_growth(vma, size, grow);
2450 			if (!error) {
2451 				/*
2452 				 * vma_gap_update() doesn't support concurrent
2453 				 * updates, but we only hold a shared mmap_lock
2454 				 * lock here, so we need to protect against
2455 				 * concurrent vma expansions.
2456 				 * anon_vma_lock_write() doesn't help here, as
2457 				 * we don't guarantee that all growable vmas
2458 				 * in a mm share the same root anon vma.
2459 				 * So, we reuse mm->page_table_lock to guard
2460 				 * against concurrent vma expansions.
2461 				 */
2462 				spin_lock(&mm->page_table_lock);
2463 				if (vma->vm_flags & VM_LOCKED)
2464 					mm->locked_vm += grow;
2465 				vm_stat_account(mm, vma->vm_flags, grow);
2466 				anon_vma_interval_tree_pre_update_vma(vma);
2467 				vma->vm_end = address;
2468 				anon_vma_interval_tree_post_update_vma(vma);
2469 				if (vma->vm_next)
2470 					vma_gap_update(vma->vm_next);
2471 				else
2472 					mm->highest_vm_end = vm_end_gap(vma);
2473 				spin_unlock(&mm->page_table_lock);
2474 
2475 				perf_event_mmap(vma);
2476 			}
2477 		}
2478 	}
2479 	anon_vma_unlock_write(vma->anon_vma);
2480 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2481 	validate_mm(mm);
2482 	return error;
2483 }
2484 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2485 
2486 /*
2487  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2488  */
2489 int expand_downwards(struct vm_area_struct *vma,
2490 				   unsigned long address)
2491 {
2492 	struct mm_struct *mm = vma->vm_mm;
2493 	struct vm_area_struct *prev;
2494 	int error = 0;
2495 
2496 	address &= PAGE_MASK;
2497 	if (address < mmap_min_addr)
2498 		return -EPERM;
2499 
2500 	/* Enforce stack_guard_gap */
2501 	prev = vma->vm_prev;
2502 	/* Check that both stack segments have the same anon_vma? */
2503 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2504 			vma_is_accessible(prev)) {
2505 		if (address - prev->vm_end < stack_guard_gap)
2506 			return -ENOMEM;
2507 	}
2508 
2509 	/* We must make sure the anon_vma is allocated. */
2510 	if (unlikely(anon_vma_prepare(vma)))
2511 		return -ENOMEM;
2512 
2513 	/*
2514 	 * vma->vm_start/vm_end cannot change under us because the caller
2515 	 * is required to hold the mmap_lock in read mode.  We need the
2516 	 * anon_vma lock to serialize against concurrent expand_stacks.
2517 	 */
2518 	anon_vma_lock_write(vma->anon_vma);
2519 
2520 	/* Somebody else might have raced and expanded it already */
2521 	if (address < vma->vm_start) {
2522 		unsigned long size, grow;
2523 
2524 		size = vma->vm_end - address;
2525 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2526 
2527 		error = -ENOMEM;
2528 		if (grow <= vma->vm_pgoff) {
2529 			error = acct_stack_growth(vma, size, grow);
2530 			if (!error) {
2531 				/*
2532 				 * vma_gap_update() doesn't support concurrent
2533 				 * updates, but we only hold a shared mmap_lock
2534 				 * lock here, so we need to protect against
2535 				 * concurrent vma expansions.
2536 				 * anon_vma_lock_write() doesn't help here, as
2537 				 * we don't guarantee that all growable vmas
2538 				 * in a mm share the same root anon vma.
2539 				 * So, we reuse mm->page_table_lock to guard
2540 				 * against concurrent vma expansions.
2541 				 */
2542 				spin_lock(&mm->page_table_lock);
2543 				if (vma->vm_flags & VM_LOCKED)
2544 					mm->locked_vm += grow;
2545 				vm_stat_account(mm, vma->vm_flags, grow);
2546 				anon_vma_interval_tree_pre_update_vma(vma);
2547 				vma->vm_start = address;
2548 				vma->vm_pgoff -= grow;
2549 				anon_vma_interval_tree_post_update_vma(vma);
2550 				vma_gap_update(vma);
2551 				spin_unlock(&mm->page_table_lock);
2552 
2553 				perf_event_mmap(vma);
2554 			}
2555 		}
2556 	}
2557 	anon_vma_unlock_write(vma->anon_vma);
2558 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2559 	validate_mm(mm);
2560 	return error;
2561 }
2562 
2563 /* enforced gap between the expanding stack and other mappings. */
2564 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2565 
2566 static int __init cmdline_parse_stack_guard_gap(char *p)
2567 {
2568 	unsigned long val;
2569 	char *endptr;
2570 
2571 	val = simple_strtoul(p, &endptr, 10);
2572 	if (!*endptr)
2573 		stack_guard_gap = val << PAGE_SHIFT;
2574 
2575 	return 0;
2576 }
2577 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2578 
2579 #ifdef CONFIG_STACK_GROWSUP
2580 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 	return expand_upwards(vma, address);
2583 }
2584 
2585 struct vm_area_struct *
2586 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2587 {
2588 	struct vm_area_struct *vma, *prev;
2589 
2590 	addr &= PAGE_MASK;
2591 	vma = find_vma_prev(mm, addr, &prev);
2592 	if (vma && (vma->vm_start <= addr))
2593 		return vma;
2594 	/* don't alter vm_end if the coredump is running */
2595 	if (!prev || expand_stack(prev, addr))
2596 		return NULL;
2597 	if (prev->vm_flags & VM_LOCKED)
2598 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2599 	return prev;
2600 }
2601 #else
2602 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2603 {
2604 	return expand_downwards(vma, address);
2605 }
2606 
2607 struct vm_area_struct *
2608 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2609 {
2610 	struct vm_area_struct *vma;
2611 	unsigned long start;
2612 
2613 	addr &= PAGE_MASK;
2614 	vma = find_vma(mm, addr);
2615 	if (!vma)
2616 		return NULL;
2617 	if (vma->vm_start <= addr)
2618 		return vma;
2619 	if (!(vma->vm_flags & VM_GROWSDOWN))
2620 		return NULL;
2621 	start = vma->vm_start;
2622 	if (expand_stack(vma, addr))
2623 		return NULL;
2624 	if (vma->vm_flags & VM_LOCKED)
2625 		populate_vma_page_range(vma, addr, start, NULL);
2626 	return vma;
2627 }
2628 #endif
2629 
2630 EXPORT_SYMBOL_GPL(find_extend_vma);
2631 
2632 /*
2633  * Ok - we have the memory areas we should free on the vma list,
2634  * so release them, and do the vma updates.
2635  *
2636  * Called with the mm semaphore held.
2637  */
2638 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2639 {
2640 	unsigned long nr_accounted = 0;
2641 
2642 	/* Update high watermark before we lower total_vm */
2643 	update_hiwater_vm(mm);
2644 	do {
2645 		long nrpages = vma_pages(vma);
2646 
2647 		if (vma->vm_flags & VM_ACCOUNT)
2648 			nr_accounted += nrpages;
2649 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2650 		vma = remove_vma(vma);
2651 	} while (vma);
2652 	vm_unacct_memory(nr_accounted);
2653 	validate_mm(mm);
2654 }
2655 
2656 /*
2657  * Get rid of page table information in the indicated region.
2658  *
2659  * Called with the mm semaphore held.
2660  */
2661 static void unmap_region(struct mm_struct *mm,
2662 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2663 		unsigned long start, unsigned long end)
2664 {
2665 	struct vm_area_struct *next = vma_next(mm, prev);
2666 	struct mmu_gather tlb;
2667 
2668 	lru_add_drain();
2669 	tlb_gather_mmu(&tlb, mm);
2670 	update_hiwater_rss(mm);
2671 	unmap_vmas(&tlb, vma, start, end);
2672 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2673 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2674 	tlb_finish_mmu(&tlb);
2675 }
2676 
2677 /*
2678  * Create a list of vma's touched by the unmap, removing them from the mm's
2679  * vma list as we go..
2680  */
2681 static bool
2682 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2683 	struct vm_area_struct *prev, unsigned long end)
2684 {
2685 	struct vm_area_struct **insertion_point;
2686 	struct vm_area_struct *tail_vma = NULL;
2687 
2688 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2689 	vma->vm_prev = NULL;
2690 	do {
2691 		vma_rb_erase(vma, &mm->mm_rb);
2692 		mm->map_count--;
2693 		tail_vma = vma;
2694 		vma = vma->vm_next;
2695 	} while (vma && vma->vm_start < end);
2696 	*insertion_point = vma;
2697 	if (vma) {
2698 		vma->vm_prev = prev;
2699 		vma_gap_update(vma);
2700 	} else
2701 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2702 	tail_vma->vm_next = NULL;
2703 
2704 	/* Kill the cache */
2705 	vmacache_invalidate(mm);
2706 
2707 	/*
2708 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2709 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2710 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2711 	 */
2712 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2713 		return false;
2714 	if (prev && (prev->vm_flags & VM_GROWSUP))
2715 		return false;
2716 	return true;
2717 }
2718 
2719 /*
2720  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2721  * has already been checked or doesn't make sense to fail.
2722  */
2723 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2724 		unsigned long addr, int new_below)
2725 {
2726 	struct vm_area_struct *new;
2727 	int err;
2728 
2729 	if (vma->vm_ops && vma->vm_ops->may_split) {
2730 		err = vma->vm_ops->may_split(vma, addr);
2731 		if (err)
2732 			return err;
2733 	}
2734 
2735 	new = vm_area_dup(vma);
2736 	if (!new)
2737 		return -ENOMEM;
2738 
2739 	if (new_below)
2740 		new->vm_end = addr;
2741 	else {
2742 		new->vm_start = addr;
2743 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2744 	}
2745 
2746 	err = vma_dup_policy(vma, new);
2747 	if (err)
2748 		goto out_free_vma;
2749 
2750 	err = anon_vma_clone(new, vma);
2751 	if (err)
2752 		goto out_free_mpol;
2753 
2754 	if (new->vm_file)
2755 		get_file(new->vm_file);
2756 
2757 	if (new->vm_ops && new->vm_ops->open)
2758 		new->vm_ops->open(new);
2759 
2760 	if (new_below)
2761 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2762 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2763 	else
2764 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2765 
2766 	/* Success. */
2767 	if (!err)
2768 		return 0;
2769 
2770 	/* Clean everything up if vma_adjust failed. */
2771 	if (new->vm_ops && new->vm_ops->close)
2772 		new->vm_ops->close(new);
2773 	if (new->vm_file)
2774 		fput(new->vm_file);
2775 	unlink_anon_vmas(new);
2776  out_free_mpol:
2777 	mpol_put(vma_policy(new));
2778  out_free_vma:
2779 	vm_area_free(new);
2780 	return err;
2781 }
2782 
2783 /*
2784  * Split a vma into two pieces at address 'addr', a new vma is allocated
2785  * either for the first part or the tail.
2786  */
2787 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2788 	      unsigned long addr, int new_below)
2789 {
2790 	if (mm->map_count >= sysctl_max_map_count)
2791 		return -ENOMEM;
2792 
2793 	return __split_vma(mm, vma, addr, new_below);
2794 }
2795 
2796 static inline void
2797 unlock_range(struct vm_area_struct *start, unsigned long limit)
2798 {
2799 	struct mm_struct *mm = start->vm_mm;
2800 	struct vm_area_struct *tmp = start;
2801 
2802 	while (tmp && tmp->vm_start < limit) {
2803 		if (tmp->vm_flags & VM_LOCKED) {
2804 			mm->locked_vm -= vma_pages(tmp);
2805 			munlock_vma_pages_all(tmp);
2806 		}
2807 
2808 		tmp = tmp->vm_next;
2809 	}
2810 }
2811 
2812 /* Munmap is split into 2 main parts -- this part which finds
2813  * what needs doing, and the areas themselves, which do the
2814  * work.  This now handles partial unmappings.
2815  * Jeremy Fitzhardinge <jeremy@goop.org>
2816  */
2817 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2818 		struct list_head *uf, bool downgrade)
2819 {
2820 	unsigned long end;
2821 	struct vm_area_struct *vma, *prev, *last;
2822 
2823 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2824 		return -EINVAL;
2825 
2826 	len = PAGE_ALIGN(len);
2827 	end = start + len;
2828 	if (len == 0)
2829 		return -EINVAL;
2830 
2831 	/*
2832 	 * arch_unmap() might do unmaps itself.  It must be called
2833 	 * and finish any rbtree manipulation before this code
2834 	 * runs and also starts to manipulate the rbtree.
2835 	 */
2836 	arch_unmap(mm, start, end);
2837 
2838 	/* Find the first overlapping VMA where start < vma->vm_end */
2839 	vma = find_vma_intersection(mm, start, end);
2840 	if (!vma)
2841 		return 0;
2842 	prev = vma->vm_prev;
2843 
2844 	/*
2845 	 * If we need to split any vma, do it now to save pain later.
2846 	 *
2847 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2848 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2849 	 * places tmp vma above, and higher split_vma places tmp vma below.
2850 	 */
2851 	if (start > vma->vm_start) {
2852 		int error;
2853 
2854 		/*
2855 		 * Make sure that map_count on return from munmap() will
2856 		 * not exceed its limit; but let map_count go just above
2857 		 * its limit temporarily, to help free resources as expected.
2858 		 */
2859 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2860 			return -ENOMEM;
2861 
2862 		error = __split_vma(mm, vma, start, 0);
2863 		if (error)
2864 			return error;
2865 		prev = vma;
2866 	}
2867 
2868 	/* Does it split the last one? */
2869 	last = find_vma(mm, end);
2870 	if (last && end > last->vm_start) {
2871 		int error = __split_vma(mm, last, end, 1);
2872 		if (error)
2873 			return error;
2874 	}
2875 	vma = vma_next(mm, prev);
2876 
2877 	if (unlikely(uf)) {
2878 		/*
2879 		 * If userfaultfd_unmap_prep returns an error the vmas
2880 		 * will remain split, but userland will get a
2881 		 * highly unexpected error anyway. This is no
2882 		 * different than the case where the first of the two
2883 		 * __split_vma fails, but we don't undo the first
2884 		 * split, despite we could. This is unlikely enough
2885 		 * failure that it's not worth optimizing it for.
2886 		 */
2887 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2888 		if (error)
2889 			return error;
2890 	}
2891 
2892 	/*
2893 	 * unlock any mlock()ed ranges before detaching vmas
2894 	 */
2895 	if (mm->locked_vm)
2896 		unlock_range(vma, end);
2897 
2898 	/* Detach vmas from rbtree */
2899 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2900 		downgrade = false;
2901 
2902 	if (downgrade)
2903 		mmap_write_downgrade(mm);
2904 
2905 	unmap_region(mm, vma, prev, start, end);
2906 
2907 	/* Fix up all other VM information */
2908 	remove_vma_list(mm, vma);
2909 
2910 	return downgrade ? 1 : 0;
2911 }
2912 
2913 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2914 	      struct list_head *uf)
2915 {
2916 	return __do_munmap(mm, start, len, uf, false);
2917 }
2918 
2919 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2920 {
2921 	int ret;
2922 	struct mm_struct *mm = current->mm;
2923 	LIST_HEAD(uf);
2924 
2925 	if (mmap_write_lock_killable(mm))
2926 		return -EINTR;
2927 
2928 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2929 	/*
2930 	 * Returning 1 indicates mmap_lock is downgraded.
2931 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2932 	 * it to 0 before return.
2933 	 */
2934 	if (ret == 1) {
2935 		mmap_read_unlock(mm);
2936 		ret = 0;
2937 	} else
2938 		mmap_write_unlock(mm);
2939 
2940 	userfaultfd_unmap_complete(mm, &uf);
2941 	return ret;
2942 }
2943 
2944 int vm_munmap(unsigned long start, size_t len)
2945 {
2946 	return __vm_munmap(start, len, false);
2947 }
2948 EXPORT_SYMBOL(vm_munmap);
2949 
2950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2951 {
2952 	addr = untagged_addr(addr);
2953 	profile_munmap(addr);
2954 	return __vm_munmap(addr, len, true);
2955 }
2956 
2957 
2958 /*
2959  * Emulation of deprecated remap_file_pages() syscall.
2960  */
2961 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2962 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2963 {
2964 
2965 	struct mm_struct *mm = current->mm;
2966 	struct vm_area_struct *vma;
2967 	unsigned long populate = 0;
2968 	unsigned long ret = -EINVAL;
2969 	struct file *file;
2970 
2971 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2972 		     current->comm, current->pid);
2973 
2974 	if (prot)
2975 		return ret;
2976 	start = start & PAGE_MASK;
2977 	size = size & PAGE_MASK;
2978 
2979 	if (start + size <= start)
2980 		return ret;
2981 
2982 	/* Does pgoff wrap? */
2983 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2984 		return ret;
2985 
2986 	if (mmap_write_lock_killable(mm))
2987 		return -EINTR;
2988 
2989 	vma = find_vma(mm, start);
2990 
2991 	if (!vma || !(vma->vm_flags & VM_SHARED))
2992 		goto out;
2993 
2994 	if (start < vma->vm_start)
2995 		goto out;
2996 
2997 	if (start + size > vma->vm_end) {
2998 		struct vm_area_struct *next;
2999 
3000 		for (next = vma->vm_next; next; next = next->vm_next) {
3001 			/* hole between vmas ? */
3002 			if (next->vm_start != next->vm_prev->vm_end)
3003 				goto out;
3004 
3005 			if (next->vm_file != vma->vm_file)
3006 				goto out;
3007 
3008 			if (next->vm_flags != vma->vm_flags)
3009 				goto out;
3010 
3011 			if (start + size <= next->vm_end)
3012 				break;
3013 		}
3014 
3015 		if (!next)
3016 			goto out;
3017 	}
3018 
3019 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3020 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3021 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3022 
3023 	flags &= MAP_NONBLOCK;
3024 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3025 	if (vma->vm_flags & VM_LOCKED)
3026 		flags |= MAP_LOCKED;
3027 
3028 	file = get_file(vma->vm_file);
3029 	ret = do_mmap(vma->vm_file, start, size,
3030 			prot, flags, pgoff, &populate, NULL);
3031 	fput(file);
3032 out:
3033 	mmap_write_unlock(mm);
3034 	if (populate)
3035 		mm_populate(ret, populate);
3036 	if (!IS_ERR_VALUE(ret))
3037 		ret = 0;
3038 	return ret;
3039 }
3040 
3041 /*
3042  *  this is really a simplified "do_mmap".  it only handles
3043  *  anonymous maps.  eventually we may be able to do some
3044  *  brk-specific accounting here.
3045  */
3046 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3047 {
3048 	struct mm_struct *mm = current->mm;
3049 	struct vm_area_struct *vma, *prev;
3050 	struct rb_node **rb_link, *rb_parent;
3051 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3052 	int error;
3053 	unsigned long mapped_addr;
3054 
3055 	/* Until we need other flags, refuse anything except VM_EXEC. */
3056 	if ((flags & (~VM_EXEC)) != 0)
3057 		return -EINVAL;
3058 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3059 
3060 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3061 	if (IS_ERR_VALUE(mapped_addr))
3062 		return mapped_addr;
3063 
3064 	error = mlock_future_check(mm, mm->def_flags, len);
3065 	if (error)
3066 		return error;
3067 
3068 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3069 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3070 		return -ENOMEM;
3071 
3072 	/* Check against address space limits *after* clearing old maps... */
3073 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3074 		return -ENOMEM;
3075 
3076 	if (mm->map_count > sysctl_max_map_count)
3077 		return -ENOMEM;
3078 
3079 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3080 		return -ENOMEM;
3081 
3082 	/* Can we just expand an old private anonymous mapping? */
3083 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3084 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3085 	if (vma)
3086 		goto out;
3087 
3088 	/*
3089 	 * create a vma struct for an anonymous mapping
3090 	 */
3091 	vma = vm_area_alloc(mm);
3092 	if (!vma) {
3093 		vm_unacct_memory(len >> PAGE_SHIFT);
3094 		return -ENOMEM;
3095 	}
3096 
3097 	vma_set_anonymous(vma);
3098 	vma->vm_start = addr;
3099 	vma->vm_end = addr + len;
3100 	vma->vm_pgoff = pgoff;
3101 	vma->vm_flags = flags;
3102 	vma->vm_page_prot = vm_get_page_prot(flags);
3103 	vma_link(mm, vma, prev, rb_link, rb_parent);
3104 out:
3105 	perf_event_mmap(vma);
3106 	mm->total_vm += len >> PAGE_SHIFT;
3107 	mm->data_vm += len >> PAGE_SHIFT;
3108 	if (flags & VM_LOCKED)
3109 		mm->locked_vm += (len >> PAGE_SHIFT);
3110 	vma->vm_flags |= VM_SOFTDIRTY;
3111 	return 0;
3112 }
3113 
3114 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3115 {
3116 	struct mm_struct *mm = current->mm;
3117 	unsigned long len;
3118 	int ret;
3119 	bool populate;
3120 	LIST_HEAD(uf);
3121 
3122 	len = PAGE_ALIGN(request);
3123 	if (len < request)
3124 		return -ENOMEM;
3125 	if (!len)
3126 		return 0;
3127 
3128 	if (mmap_write_lock_killable(mm))
3129 		return -EINTR;
3130 
3131 	ret = do_brk_flags(addr, len, flags, &uf);
3132 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3133 	mmap_write_unlock(mm);
3134 	userfaultfd_unmap_complete(mm, &uf);
3135 	if (populate && !ret)
3136 		mm_populate(addr, len);
3137 	return ret;
3138 }
3139 EXPORT_SYMBOL(vm_brk_flags);
3140 
3141 int vm_brk(unsigned long addr, unsigned long len)
3142 {
3143 	return vm_brk_flags(addr, len, 0);
3144 }
3145 EXPORT_SYMBOL(vm_brk);
3146 
3147 /* Release all mmaps. */
3148 void exit_mmap(struct mm_struct *mm)
3149 {
3150 	struct mmu_gather tlb;
3151 	struct vm_area_struct *vma;
3152 	unsigned long nr_accounted = 0;
3153 
3154 	/* mm's last user has gone, and its about to be pulled down */
3155 	mmu_notifier_release(mm);
3156 
3157 	if (unlikely(mm_is_oom_victim(mm))) {
3158 		/*
3159 		 * Manually reap the mm to free as much memory as possible.
3160 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3161 		 * this mm from further consideration.  Taking mm->mmap_lock for
3162 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3163 		 * reaper will not run on this mm again after mmap_lock is
3164 		 * dropped.
3165 		 *
3166 		 * Nothing can be holding mm->mmap_lock here and the above call
3167 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3168 		 * __oom_reap_task_mm() will not block.
3169 		 *
3170 		 * This needs to be done before calling munlock_vma_pages_all(),
3171 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3172 		 * reliably test it.
3173 		 */
3174 		(void)__oom_reap_task_mm(mm);
3175 
3176 		set_bit(MMF_OOM_SKIP, &mm->flags);
3177 		mmap_write_lock(mm);
3178 		mmap_write_unlock(mm);
3179 	}
3180 
3181 	if (mm->locked_vm)
3182 		unlock_range(mm->mmap, ULONG_MAX);
3183 
3184 	arch_exit_mmap(mm);
3185 
3186 	vma = mm->mmap;
3187 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3188 		return;
3189 
3190 	lru_add_drain();
3191 	flush_cache_mm(mm);
3192 	tlb_gather_mmu_fullmm(&tlb, mm);
3193 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3194 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3195 	unmap_vmas(&tlb, vma, 0, -1);
3196 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3197 	tlb_finish_mmu(&tlb);
3198 
3199 	/*
3200 	 * Walk the list again, actually closing and freeing it,
3201 	 * with preemption enabled, without holding any MM locks.
3202 	 */
3203 	while (vma) {
3204 		if (vma->vm_flags & VM_ACCOUNT)
3205 			nr_accounted += vma_pages(vma);
3206 		vma = remove_vma(vma);
3207 		cond_resched();
3208 	}
3209 	vm_unacct_memory(nr_accounted);
3210 }
3211 
3212 /* Insert vm structure into process list sorted by address
3213  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3214  * then i_mmap_rwsem is taken here.
3215  */
3216 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3217 {
3218 	struct vm_area_struct *prev;
3219 	struct rb_node **rb_link, *rb_parent;
3220 
3221 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3222 			   &prev, &rb_link, &rb_parent))
3223 		return -ENOMEM;
3224 	if ((vma->vm_flags & VM_ACCOUNT) &&
3225 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3226 		return -ENOMEM;
3227 
3228 	/*
3229 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3230 	 * until its first write fault, when page's anon_vma and index
3231 	 * are set.  But now set the vm_pgoff it will almost certainly
3232 	 * end up with (unless mremap moves it elsewhere before that
3233 	 * first wfault), so /proc/pid/maps tells a consistent story.
3234 	 *
3235 	 * By setting it to reflect the virtual start address of the
3236 	 * vma, merges and splits can happen in a seamless way, just
3237 	 * using the existing file pgoff checks and manipulations.
3238 	 * Similarly in do_mmap and in do_brk_flags.
3239 	 */
3240 	if (vma_is_anonymous(vma)) {
3241 		BUG_ON(vma->anon_vma);
3242 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3243 	}
3244 
3245 	vma_link(mm, vma, prev, rb_link, rb_parent);
3246 	return 0;
3247 }
3248 
3249 /*
3250  * Copy the vma structure to a new location in the same mm,
3251  * prior to moving page table entries, to effect an mremap move.
3252  */
3253 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3254 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3255 	bool *need_rmap_locks)
3256 {
3257 	struct vm_area_struct *vma = *vmap;
3258 	unsigned long vma_start = vma->vm_start;
3259 	struct mm_struct *mm = vma->vm_mm;
3260 	struct vm_area_struct *new_vma, *prev;
3261 	struct rb_node **rb_link, *rb_parent;
3262 	bool faulted_in_anon_vma = true;
3263 
3264 	/*
3265 	 * If anonymous vma has not yet been faulted, update new pgoff
3266 	 * to match new location, to increase its chance of merging.
3267 	 */
3268 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3269 		pgoff = addr >> PAGE_SHIFT;
3270 		faulted_in_anon_vma = false;
3271 	}
3272 
3273 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3274 		return NULL;	/* should never get here */
3275 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3276 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3277 			    vma->vm_userfaultfd_ctx);
3278 	if (new_vma) {
3279 		/*
3280 		 * Source vma may have been merged into new_vma
3281 		 */
3282 		if (unlikely(vma_start >= new_vma->vm_start &&
3283 			     vma_start < new_vma->vm_end)) {
3284 			/*
3285 			 * The only way we can get a vma_merge with
3286 			 * self during an mremap is if the vma hasn't
3287 			 * been faulted in yet and we were allowed to
3288 			 * reset the dst vma->vm_pgoff to the
3289 			 * destination address of the mremap to allow
3290 			 * the merge to happen. mremap must change the
3291 			 * vm_pgoff linearity between src and dst vmas
3292 			 * (in turn preventing a vma_merge) to be
3293 			 * safe. It is only safe to keep the vm_pgoff
3294 			 * linear if there are no pages mapped yet.
3295 			 */
3296 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3297 			*vmap = vma = new_vma;
3298 		}
3299 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3300 	} else {
3301 		new_vma = vm_area_dup(vma);
3302 		if (!new_vma)
3303 			goto out;
3304 		new_vma->vm_start = addr;
3305 		new_vma->vm_end = addr + len;
3306 		new_vma->vm_pgoff = pgoff;
3307 		if (vma_dup_policy(vma, new_vma))
3308 			goto out_free_vma;
3309 		if (anon_vma_clone(new_vma, vma))
3310 			goto out_free_mempol;
3311 		if (new_vma->vm_file)
3312 			get_file(new_vma->vm_file);
3313 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3314 			new_vma->vm_ops->open(new_vma);
3315 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3316 		*need_rmap_locks = false;
3317 	}
3318 	return new_vma;
3319 
3320 out_free_mempol:
3321 	mpol_put(vma_policy(new_vma));
3322 out_free_vma:
3323 	vm_area_free(new_vma);
3324 out:
3325 	return NULL;
3326 }
3327 
3328 /*
3329  * Return true if the calling process may expand its vm space by the passed
3330  * number of pages
3331  */
3332 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3333 {
3334 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3335 		return false;
3336 
3337 	if (is_data_mapping(flags) &&
3338 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3339 		/* Workaround for Valgrind */
3340 		if (rlimit(RLIMIT_DATA) == 0 &&
3341 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3342 			return true;
3343 
3344 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3345 			     current->comm, current->pid,
3346 			     (mm->data_vm + npages) << PAGE_SHIFT,
3347 			     rlimit(RLIMIT_DATA),
3348 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3349 
3350 		if (!ignore_rlimit_data)
3351 			return false;
3352 	}
3353 
3354 	return true;
3355 }
3356 
3357 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3358 {
3359 	mm->total_vm += npages;
3360 
3361 	if (is_exec_mapping(flags))
3362 		mm->exec_vm += npages;
3363 	else if (is_stack_mapping(flags))
3364 		mm->stack_vm += npages;
3365 	else if (is_data_mapping(flags))
3366 		mm->data_vm += npages;
3367 }
3368 
3369 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3370 
3371 /*
3372  * Having a close hook prevents vma merging regardless of flags.
3373  */
3374 static void special_mapping_close(struct vm_area_struct *vma)
3375 {
3376 }
3377 
3378 static const char *special_mapping_name(struct vm_area_struct *vma)
3379 {
3380 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3381 }
3382 
3383 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3384 {
3385 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3386 
3387 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3388 		return -EFAULT;
3389 
3390 	if (sm->mremap)
3391 		return sm->mremap(sm, new_vma);
3392 
3393 	return 0;
3394 }
3395 
3396 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3397 {
3398 	/*
3399 	 * Forbid splitting special mappings - kernel has expectations over
3400 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3401 	 * the size of vma should stay the same over the special mapping's
3402 	 * lifetime.
3403 	 */
3404 	return -EINVAL;
3405 }
3406 
3407 static const struct vm_operations_struct special_mapping_vmops = {
3408 	.close = special_mapping_close,
3409 	.fault = special_mapping_fault,
3410 	.mremap = special_mapping_mremap,
3411 	.name = special_mapping_name,
3412 	/* vDSO code relies that VVAR can't be accessed remotely */
3413 	.access = NULL,
3414 	.may_split = special_mapping_split,
3415 };
3416 
3417 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3418 	.close = special_mapping_close,
3419 	.fault = special_mapping_fault,
3420 };
3421 
3422 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3423 {
3424 	struct vm_area_struct *vma = vmf->vma;
3425 	pgoff_t pgoff;
3426 	struct page **pages;
3427 
3428 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3429 		pages = vma->vm_private_data;
3430 	} else {
3431 		struct vm_special_mapping *sm = vma->vm_private_data;
3432 
3433 		if (sm->fault)
3434 			return sm->fault(sm, vmf->vma, vmf);
3435 
3436 		pages = sm->pages;
3437 	}
3438 
3439 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3440 		pgoff--;
3441 
3442 	if (*pages) {
3443 		struct page *page = *pages;
3444 		get_page(page);
3445 		vmf->page = page;
3446 		return 0;
3447 	}
3448 
3449 	return VM_FAULT_SIGBUS;
3450 }
3451 
3452 static struct vm_area_struct *__install_special_mapping(
3453 	struct mm_struct *mm,
3454 	unsigned long addr, unsigned long len,
3455 	unsigned long vm_flags, void *priv,
3456 	const struct vm_operations_struct *ops)
3457 {
3458 	int ret;
3459 	struct vm_area_struct *vma;
3460 
3461 	vma = vm_area_alloc(mm);
3462 	if (unlikely(vma == NULL))
3463 		return ERR_PTR(-ENOMEM);
3464 
3465 	vma->vm_start = addr;
3466 	vma->vm_end = addr + len;
3467 
3468 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3469 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3470 
3471 	vma->vm_ops = ops;
3472 	vma->vm_private_data = priv;
3473 
3474 	ret = insert_vm_struct(mm, vma);
3475 	if (ret)
3476 		goto out;
3477 
3478 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3479 
3480 	perf_event_mmap(vma);
3481 
3482 	return vma;
3483 
3484 out:
3485 	vm_area_free(vma);
3486 	return ERR_PTR(ret);
3487 }
3488 
3489 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3490 	const struct vm_special_mapping *sm)
3491 {
3492 	return vma->vm_private_data == sm &&
3493 		(vma->vm_ops == &special_mapping_vmops ||
3494 		 vma->vm_ops == &legacy_special_mapping_vmops);
3495 }
3496 
3497 /*
3498  * Called with mm->mmap_lock held for writing.
3499  * Insert a new vma covering the given region, with the given flags.
3500  * Its pages are supplied by the given array of struct page *.
3501  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3502  * The region past the last page supplied will always produce SIGBUS.
3503  * The array pointer and the pages it points to are assumed to stay alive
3504  * for as long as this mapping might exist.
3505  */
3506 struct vm_area_struct *_install_special_mapping(
3507 	struct mm_struct *mm,
3508 	unsigned long addr, unsigned long len,
3509 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3510 {
3511 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3512 					&special_mapping_vmops);
3513 }
3514 
3515 int install_special_mapping(struct mm_struct *mm,
3516 			    unsigned long addr, unsigned long len,
3517 			    unsigned long vm_flags, struct page **pages)
3518 {
3519 	struct vm_area_struct *vma = __install_special_mapping(
3520 		mm, addr, len, vm_flags, (void *)pages,
3521 		&legacy_special_mapping_vmops);
3522 
3523 	return PTR_ERR_OR_ZERO(vma);
3524 }
3525 
3526 static DEFINE_MUTEX(mm_all_locks_mutex);
3527 
3528 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3529 {
3530 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3531 		/*
3532 		 * The LSB of head.next can't change from under us
3533 		 * because we hold the mm_all_locks_mutex.
3534 		 */
3535 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3536 		/*
3537 		 * We can safely modify head.next after taking the
3538 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3539 		 * the same anon_vma we won't take it again.
3540 		 *
3541 		 * No need of atomic instructions here, head.next
3542 		 * can't change from under us thanks to the
3543 		 * anon_vma->root->rwsem.
3544 		 */
3545 		if (__test_and_set_bit(0, (unsigned long *)
3546 				       &anon_vma->root->rb_root.rb_root.rb_node))
3547 			BUG();
3548 	}
3549 }
3550 
3551 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3552 {
3553 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3554 		/*
3555 		 * AS_MM_ALL_LOCKS can't change from under us because
3556 		 * we hold the mm_all_locks_mutex.
3557 		 *
3558 		 * Operations on ->flags have to be atomic because
3559 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3560 		 * mm_all_locks_mutex, there may be other cpus
3561 		 * changing other bitflags in parallel to us.
3562 		 */
3563 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3564 			BUG();
3565 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3566 	}
3567 }
3568 
3569 /*
3570  * This operation locks against the VM for all pte/vma/mm related
3571  * operations that could ever happen on a certain mm. This includes
3572  * vmtruncate, try_to_unmap, and all page faults.
3573  *
3574  * The caller must take the mmap_lock in write mode before calling
3575  * mm_take_all_locks(). The caller isn't allowed to release the
3576  * mmap_lock until mm_drop_all_locks() returns.
3577  *
3578  * mmap_lock in write mode is required in order to block all operations
3579  * that could modify pagetables and free pages without need of
3580  * altering the vma layout. It's also needed in write mode to avoid new
3581  * anon_vmas to be associated with existing vmas.
3582  *
3583  * A single task can't take more than one mm_take_all_locks() in a row
3584  * or it would deadlock.
3585  *
3586  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3587  * mapping->flags avoid to take the same lock twice, if more than one
3588  * vma in this mm is backed by the same anon_vma or address_space.
3589  *
3590  * We take locks in following order, accordingly to comment at beginning
3591  * of mm/rmap.c:
3592  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3593  *     hugetlb mapping);
3594  *   - all i_mmap_rwsem locks;
3595  *   - all anon_vma->rwseml
3596  *
3597  * We can take all locks within these types randomly because the VM code
3598  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3599  * mm_all_locks_mutex.
3600  *
3601  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3602  * that may have to take thousand of locks.
3603  *
3604  * mm_take_all_locks() can fail if it's interrupted by signals.
3605  */
3606 int mm_take_all_locks(struct mm_struct *mm)
3607 {
3608 	struct vm_area_struct *vma;
3609 	struct anon_vma_chain *avc;
3610 
3611 	BUG_ON(mmap_read_trylock(mm));
3612 
3613 	mutex_lock(&mm_all_locks_mutex);
3614 
3615 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3616 		if (signal_pending(current))
3617 			goto out_unlock;
3618 		if (vma->vm_file && vma->vm_file->f_mapping &&
3619 				is_vm_hugetlb_page(vma))
3620 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3621 	}
3622 
3623 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3624 		if (signal_pending(current))
3625 			goto out_unlock;
3626 		if (vma->vm_file && vma->vm_file->f_mapping &&
3627 				!is_vm_hugetlb_page(vma))
3628 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3629 	}
3630 
3631 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3632 		if (signal_pending(current))
3633 			goto out_unlock;
3634 		if (vma->anon_vma)
3635 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3636 				vm_lock_anon_vma(mm, avc->anon_vma);
3637 	}
3638 
3639 	return 0;
3640 
3641 out_unlock:
3642 	mm_drop_all_locks(mm);
3643 	return -EINTR;
3644 }
3645 
3646 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3647 {
3648 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3649 		/*
3650 		 * The LSB of head.next can't change to 0 from under
3651 		 * us because we hold the mm_all_locks_mutex.
3652 		 *
3653 		 * We must however clear the bitflag before unlocking
3654 		 * the vma so the users using the anon_vma->rb_root will
3655 		 * never see our bitflag.
3656 		 *
3657 		 * No need of atomic instructions here, head.next
3658 		 * can't change from under us until we release the
3659 		 * anon_vma->root->rwsem.
3660 		 */
3661 		if (!__test_and_clear_bit(0, (unsigned long *)
3662 					  &anon_vma->root->rb_root.rb_root.rb_node))
3663 			BUG();
3664 		anon_vma_unlock_write(anon_vma);
3665 	}
3666 }
3667 
3668 static void vm_unlock_mapping(struct address_space *mapping)
3669 {
3670 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3671 		/*
3672 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3673 		 * because we hold the mm_all_locks_mutex.
3674 		 */
3675 		i_mmap_unlock_write(mapping);
3676 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3677 					&mapping->flags))
3678 			BUG();
3679 	}
3680 }
3681 
3682 /*
3683  * The mmap_lock cannot be released by the caller until
3684  * mm_drop_all_locks() returns.
3685  */
3686 void mm_drop_all_locks(struct mm_struct *mm)
3687 {
3688 	struct vm_area_struct *vma;
3689 	struct anon_vma_chain *avc;
3690 
3691 	BUG_ON(mmap_read_trylock(mm));
3692 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3693 
3694 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3695 		if (vma->anon_vma)
3696 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3697 				vm_unlock_anon_vma(avc->anon_vma);
3698 		if (vma->vm_file && vma->vm_file->f_mapping)
3699 			vm_unlock_mapping(vma->vm_file->f_mapping);
3700 	}
3701 
3702 	mutex_unlock(&mm_all_locks_mutex);
3703 }
3704 
3705 /*
3706  * initialise the percpu counter for VM
3707  */
3708 void __init mmap_init(void)
3709 {
3710 	int ret;
3711 
3712 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3713 	VM_BUG_ON(ret);
3714 }
3715 
3716 /*
3717  * Initialise sysctl_user_reserve_kbytes.
3718  *
3719  * This is intended to prevent a user from starting a single memory hogging
3720  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3721  * mode.
3722  *
3723  * The default value is min(3% of free memory, 128MB)
3724  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3725  */
3726 static int init_user_reserve(void)
3727 {
3728 	unsigned long free_kbytes;
3729 
3730 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3731 
3732 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3733 	return 0;
3734 }
3735 subsys_initcall(init_user_reserve);
3736 
3737 /*
3738  * Initialise sysctl_admin_reserve_kbytes.
3739  *
3740  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3741  * to log in and kill a memory hogging process.
3742  *
3743  * Systems with more than 256MB will reserve 8MB, enough to recover
3744  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3745  * only reserve 3% of free pages by default.
3746  */
3747 static int init_admin_reserve(void)
3748 {
3749 	unsigned long free_kbytes;
3750 
3751 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3752 
3753 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3754 	return 0;
3755 }
3756 subsys_initcall(init_admin_reserve);
3757 
3758 /*
3759  * Reinititalise user and admin reserves if memory is added or removed.
3760  *
3761  * The default user reserve max is 128MB, and the default max for the
3762  * admin reserve is 8MB. These are usually, but not always, enough to
3763  * enable recovery from a memory hogging process using login/sshd, a shell,
3764  * and tools like top. It may make sense to increase or even disable the
3765  * reserve depending on the existence of swap or variations in the recovery
3766  * tools. So, the admin may have changed them.
3767  *
3768  * If memory is added and the reserves have been eliminated or increased above
3769  * the default max, then we'll trust the admin.
3770  *
3771  * If memory is removed and there isn't enough free memory, then we
3772  * need to reset the reserves.
3773  *
3774  * Otherwise keep the reserve set by the admin.
3775  */
3776 static int reserve_mem_notifier(struct notifier_block *nb,
3777 			     unsigned long action, void *data)
3778 {
3779 	unsigned long tmp, free_kbytes;
3780 
3781 	switch (action) {
3782 	case MEM_ONLINE:
3783 		/* Default max is 128MB. Leave alone if modified by operator. */
3784 		tmp = sysctl_user_reserve_kbytes;
3785 		if (0 < tmp && tmp < (1UL << 17))
3786 			init_user_reserve();
3787 
3788 		/* Default max is 8MB.  Leave alone if modified by operator. */
3789 		tmp = sysctl_admin_reserve_kbytes;
3790 		if (0 < tmp && tmp < (1UL << 13))
3791 			init_admin_reserve();
3792 
3793 		break;
3794 	case MEM_OFFLINE:
3795 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3796 
3797 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3798 			init_user_reserve();
3799 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3800 				sysctl_user_reserve_kbytes);
3801 		}
3802 
3803 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3804 			init_admin_reserve();
3805 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3806 				sysctl_admin_reserve_kbytes);
3807 		}
3808 		break;
3809 	default:
3810 		break;
3811 	}
3812 	return NOTIFY_OK;
3813 }
3814 
3815 static struct notifier_block reserve_mem_nb = {
3816 	.notifier_call = reserve_mem_notifier,
3817 };
3818 
3819 static int __meminit init_reserve_notifier(void)
3820 {
3821 	if (register_hotmemory_notifier(&reserve_mem_nb))
3822 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3823 
3824 	return 0;
3825 }
3826 subsys_initcall(init_reserve_notifier);
3827