xref: /linux/mm/mmap.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 				      struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397 	struct file *file = vma->vm_file;
398 	struct address_space *mapping;
399 
400 	if (file) {
401 		mapping = file->f_mapping;
402 		i_mmap_lock_write(mapping);
403 		__vma_link_file(vma, mapping);
404 		i_mmap_unlock_write(mapping);
405 	}
406 }
407 
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410 	VMA_ITERATOR(vmi, mm, 0);
411 
412 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413 	if (vma_iter_prealloc(&vmi, vma))
414 		return -ENOMEM;
415 
416 	vma_start_write(vma);
417 	vma_iter_store(&vmi, vma);
418 	vma_link_file(vma);
419 	mm->map_count++;
420 	validate_mm(mm);
421 	return 0;
422 }
423 
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433 		struct vm_area_struct *vma, struct vm_area_struct *next,
434 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436 	memset(vp, 0, sizeof(struct vma_prepare));
437 	vp->vma = vma;
438 	vp->anon_vma = vma->anon_vma;
439 	vp->remove = remove;
440 	vp->remove2 = remove2;
441 	vp->adj_next = next;
442 	if (!vp->anon_vma && next)
443 		vp->anon_vma = next->anon_vma;
444 
445 	vp->file = vma->vm_file;
446 	if (vp->file)
447 		vp->mapping = vma->vm_file->f_mapping;
448 
449 }
450 
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457 				 struct vm_area_struct *vma)
458 {
459 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461 
462 
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469 	if (vp->file) {
470 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471 
472 		if (vp->adj_next)
473 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474 				      vp->adj_next->vm_end);
475 
476 		i_mmap_lock_write(vp->mapping);
477 		if (vp->insert && vp->insert->vm_file) {
478 			/*
479 			 * Put into interval tree now, so instantiated pages
480 			 * are visible to arm/parisc __flush_dcache_page
481 			 * throughout; but we cannot insert into address
482 			 * space until vma start or end is updated.
483 			 */
484 			__vma_link_file(vp->insert,
485 					vp->insert->vm_file->f_mapping);
486 		}
487 	}
488 
489 	if (vp->anon_vma) {
490 		anon_vma_lock_write(vp->anon_vma);
491 		anon_vma_interval_tree_pre_update_vma(vp->vma);
492 		if (vp->adj_next)
493 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494 	}
495 
496 	if (vp->file) {
497 		flush_dcache_mmap_lock(vp->mapping);
498 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499 		if (vp->adj_next)
500 			vma_interval_tree_remove(vp->adj_next,
501 						 &vp->mapping->i_mmap);
502 	}
503 
504 }
505 
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515 				struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517 	if (vp->file) {
518 		if (vp->adj_next)
519 			vma_interval_tree_insert(vp->adj_next,
520 						 &vp->mapping->i_mmap);
521 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522 		flush_dcache_mmap_unlock(vp->mapping);
523 	}
524 
525 	if (vp->remove && vp->file) {
526 		__remove_shared_vm_struct(vp->remove, vp->mapping);
527 		if (vp->remove2)
528 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
529 	} else if (vp->insert) {
530 		/*
531 		 * split_vma has split insert from vma, and needs
532 		 * us to insert it before dropping the locks
533 		 * (it may either follow vma or precede it).
534 		 */
535 		vma_iter_store(vmi, vp->insert);
536 		mm->map_count++;
537 	}
538 
539 	if (vp->anon_vma) {
540 		anon_vma_interval_tree_post_update_vma(vp->vma);
541 		if (vp->adj_next)
542 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
543 		anon_vma_unlock_write(vp->anon_vma);
544 	}
545 
546 	if (vp->file) {
547 		i_mmap_unlock_write(vp->mapping);
548 		uprobe_mmap(vp->vma);
549 
550 		if (vp->adj_next)
551 			uprobe_mmap(vp->adj_next);
552 	}
553 
554 	if (vp->remove) {
555 again:
556 		vma_mark_detached(vp->remove, true);
557 		if (vp->file) {
558 			uprobe_munmap(vp->remove, vp->remove->vm_start,
559 				      vp->remove->vm_end);
560 			fput(vp->file);
561 		}
562 		if (vp->remove->anon_vma)
563 			anon_vma_merge(vp->vma, vp->remove);
564 		mm->map_count--;
565 		mpol_put(vma_policy(vp->remove));
566 		if (!vp->remove2)
567 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568 		vm_area_free(vp->remove);
569 
570 		/*
571 		 * In mprotect's case 6 (see comments on vma_merge),
572 		 * we are removing both mid and next vmas
573 		 */
574 		if (vp->remove2) {
575 			vp->remove = vp->remove2;
576 			vp->remove2 = NULL;
577 			goto again;
578 		}
579 	}
580 	if (vp->insert && vp->file)
581 		uprobe_mmap(vp->insert);
582 	validate_mm(mm);
583 }
584 
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594 		struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596 	/*
597 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
598 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599 	 * anon pages imported.
600 	 */
601 	if (src->anon_vma && !dst->anon_vma) {
602 		int ret;
603 
604 		vma_assert_write_locked(dst);
605 		dst->anon_vma = src->anon_vma;
606 		ret = anon_vma_clone(dst, src);
607 		if (ret)
608 			return ret;
609 
610 		*dup = dst;
611 	}
612 
613 	return 0;
614 }
615 
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634 	       unsigned long start, unsigned long end, pgoff_t pgoff,
635 	       struct vm_area_struct *next)
636 {
637 	struct vm_area_struct *anon_dup = NULL;
638 	bool remove_next = false;
639 	struct vma_prepare vp;
640 
641 	vma_start_write(vma);
642 	if (next && (vma != next) && (end == next->vm_end)) {
643 		int ret;
644 
645 		remove_next = true;
646 		vma_start_write(next);
647 		ret = dup_anon_vma(vma, next, &anon_dup);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653 	/* Not merging but overwriting any part of next is not handled. */
654 	VM_WARN_ON(next && !vp.remove &&
655 		  next != vma && end > next->vm_start);
656 	/* Only handles expanding */
657 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658 
659 	/* Note: vma iterator must be pointing to 'start' */
660 	vma_iter_config(vmi, start, end);
661 	if (vma_iter_prealloc(vmi, vma))
662 		goto nomem;
663 
664 	vma_prepare(&vp);
665 	vma_adjust_trans_huge(vma, start, end, 0);
666 	vma_set_range(vma, start, end, pgoff);
667 	vma_iter_store(vmi, vma);
668 
669 	vma_complete(&vp, vmi, vma->vm_mm);
670 	return 0;
671 
672 nomem:
673 	if (anon_dup)
674 		unlink_anon_vmas(anon_dup);
675 	return -ENOMEM;
676 }
677 
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688 	       unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690 	struct vma_prepare vp;
691 
692 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693 
694 	if (vma->vm_start < start)
695 		vma_iter_config(vmi, vma->vm_start, start);
696 	else
697 		vma_iter_config(vmi, end, vma->vm_end);
698 
699 	if (vma_iter_prealloc(vmi, NULL))
700 		return -ENOMEM;
701 
702 	vma_start_write(vma);
703 
704 	init_vma_prep(&vp, vma);
705 	vma_prepare(&vp);
706 	vma_adjust_trans_huge(vma, start, end, 0);
707 
708 	vma_iter_clear(vmi);
709 	vma_set_range(vma, start, end, pgoff);
710 	vma_complete(&vp, vmi, vma->vm_mm);
711 	return 0;
712 }
713 
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720 		struct file *file, unsigned long vm_flags,
721 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722 		struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724 	/*
725 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726 	 * match the flags but dirty bit -- the caller should mark
727 	 * merged VMA as dirty. If dirty bit won't be excluded from
728 	 * comparison, we increase pressure on the memory system forcing
729 	 * the kernel to generate new VMAs when old one could be
730 	 * extended instead.
731 	 */
732 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733 		return false;
734 	if (vma->vm_file != file)
735 		return false;
736 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737 		return false;
738 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739 		return false;
740 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741 		return false;
742 	return true;
743 }
744 
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748 	/*
749 	 * The list_is_singular() test is to avoid merging VMA cloned from
750 	 * parents. This can improve scalability caused by anon_vma lock.
751 	 */
752 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
753 		list_is_singular(&vma->anon_vma_chain)))
754 		return true;
755 	return anon_vma1 == anon_vma2;
756 }
757 
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773 		struct anon_vma *anon_vma, struct file *file,
774 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775 		struct anon_vma_name *anon_name)
776 {
777 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779 		if (vma->vm_pgoff == vm_pgoff)
780 			return true;
781 	}
782 	return false;
783 }
784 
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796 		struct anon_vma *anon_vma, struct file *file,
797 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798 		struct anon_vma_name *anon_name)
799 {
800 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802 		pgoff_t vm_pglen;
803 		vm_pglen = vma_pages(vma);
804 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805 			return true;
806 	}
807 	return false;
808 }
809 
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
865 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867 	   struct anon_vma_name *anon_name)
868 {
869 	struct mm_struct *mm = src->vm_mm;
870 	struct anon_vma *anon_vma = src->anon_vma;
871 	struct file *file = src->vm_file;
872 	struct vm_area_struct *curr, *next, *res;
873 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
874 	struct vm_area_struct *anon_dup = NULL;
875 	struct vma_prepare vp;
876 	pgoff_t vma_pgoff;
877 	int err = 0;
878 	bool merge_prev = false;
879 	bool merge_next = false;
880 	bool vma_expanded = false;
881 	unsigned long vma_start = addr;
882 	unsigned long vma_end = end;
883 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884 	long adj_start = 0;
885 
886 	/*
887 	 * We later require that vma->vm_flags == vm_flags,
888 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
889 	 */
890 	if (vm_flags & VM_SPECIAL)
891 		return NULL;
892 
893 	/* Does the input range span an existing VMA? (cases 5 - 8) */
894 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895 
896 	if (!curr ||			/* cases 1 - 4 */
897 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
898 		next = vma_lookup(mm, end);
899 	else
900 		next = NULL;		/* case 5 */
901 
902 	if (prev) {
903 		vma_start = prev->vm_start;
904 		vma_pgoff = prev->vm_pgoff;
905 
906 		/* Can we merge the predecessor? */
907 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
910 			merge_prev = true;
911 			vma_prev(vmi);
912 		}
913 	}
914 
915 	/* Can we merge the successor? */
916 	if (next && mpol_equal(policy, vma_policy(next)) &&
917 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918 				 vm_userfaultfd_ctx, anon_name)) {
919 		merge_next = true;
920 	}
921 
922 	/* Verify some invariant that must be enforced by the caller. */
923 	VM_WARN_ON(prev && addr <= prev->vm_start);
924 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925 	VM_WARN_ON(addr >= end);
926 
927 	if (!merge_prev && !merge_next)
928 		return NULL; /* Not mergeable. */
929 
930 	if (merge_prev)
931 		vma_start_write(prev);
932 
933 	res = vma = prev;
934 	remove = remove2 = adjust = NULL;
935 
936 	/* Can we merge both the predecessor and the successor? */
937 	if (merge_prev && merge_next &&
938 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939 		vma_start_write(next);
940 		remove = next;				/* case 1 */
941 		vma_end = next->vm_end;
942 		err = dup_anon_vma(prev, next, &anon_dup);
943 		if (curr) {				/* case 6 */
944 			vma_start_write(curr);
945 			remove = curr;
946 			remove2 = next;
947 			/*
948 			 * Note that the dup_anon_vma below cannot overwrite err
949 			 * since the first caller would do nothing unless next
950 			 * has an anon_vma.
951 			 */
952 			if (!next->anon_vma)
953 				err = dup_anon_vma(prev, curr, &anon_dup);
954 		}
955 	} else if (merge_prev) {			/* case 2 */
956 		if (curr) {
957 			vma_start_write(curr);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				/*
960 				 * can_vma_merge_after() assumed we would not be
961 				 * removing prev vma, so it skipped the check
962 				 * for vm_ops->close, but we are removing curr
963 				 */
964 				if (curr->vm_ops && curr->vm_ops->close)
965 					err = -EINVAL;
966 				remove = curr;
967 			} else {			/* case 5 */
968 				adjust = curr;
969 				adj_start = (end - curr->vm_start);
970 			}
971 			if (!err)
972 				err = dup_anon_vma(prev, curr, &anon_dup);
973 		}
974 	} else { /* merge_next */
975 		vma_start_write(next);
976 		res = next;
977 		if (prev && addr < prev->vm_end) {	/* case 4 */
978 			vma_start_write(prev);
979 			vma_end = addr;
980 			adjust = next;
981 			adj_start = -(prev->vm_end - addr);
982 			err = dup_anon_vma(next, prev, &anon_dup);
983 		} else {
984 			/*
985 			 * Note that cases 3 and 8 are the ONLY ones where prev
986 			 * is permitted to be (but is not necessarily) NULL.
987 			 */
988 			vma = next;			/* case 3 */
989 			vma_start = addr;
990 			vma_end = next->vm_end;
991 			vma_pgoff = next->vm_pgoff - pglen;
992 			if (curr) {			/* case 8 */
993 				vma_pgoff = curr->vm_pgoff;
994 				vma_start_write(curr);
995 				remove = curr;
996 				err = dup_anon_vma(next, curr, &anon_dup);
997 			}
998 		}
999 	}
1000 
1001 	/* Error in anon_vma clone. */
1002 	if (err)
1003 		goto anon_vma_fail;
1004 
1005 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006 		vma_expanded = true;
1007 
1008 	if (vma_expanded) {
1009 		vma_iter_config(vmi, vma_start, vma_end);
1010 	} else {
1011 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012 				adjust->vm_end);
1013 	}
1014 
1015 	if (vma_iter_prealloc(vmi, vma))
1016 		goto prealloc_fail;
1017 
1018 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020 		   vp.anon_vma != adjust->anon_vma);
1021 
1022 	vma_prepare(&vp);
1023 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025 
1026 	if (vma_expanded)
1027 		vma_iter_store(vmi, vma);
1028 
1029 	if (adj_start) {
1030 		adjust->vm_start += adj_start;
1031 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032 		if (adj_start < 0) {
1033 			WARN_ON(vma_expanded);
1034 			vma_iter_store(vmi, next);
1035 		}
1036 	}
1037 
1038 	vma_complete(&vp, vmi, mm);
1039 	khugepaged_enter_vma(res, vm_flags);
1040 	return res;
1041 
1042 prealloc_fail:
1043 	if (anon_dup)
1044 		unlink_anon_vmas(anon_dup);
1045 
1046 anon_vma_fail:
1047 	vma_iter_set(vmi, addr);
1048 	vma_iter_load(vmi);
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067 	return a->vm_end == b->vm_start &&
1068 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069 		a->vm_file == b->vm_file &&
1070 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073 
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098 	if (anon_vma_compatible(a, b)) {
1099 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100 
1101 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102 			return anon_vma;
1103 	}
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1118 	struct anon_vma *anon_vma = NULL;
1119 	struct vm_area_struct *prev, *next;
1120 
1121 	/* Try next first. */
1122 	next = mas_walk(&mas);
1123 	if (next) {
1124 		anon_vma = reusable_anon_vma(next, vma, next);
1125 		if (anon_vma)
1126 			return anon_vma;
1127 	}
1128 
1129 	prev = mas_prev(&mas, 0);
1130 	VM_BUG_ON_VMA(prev != vma, vma);
1131 	prev = mas_prev(&mas, 0);
1132 	/* Try prev next. */
1133 	if (prev)
1134 		anon_vma = reusable_anon_vma(prev, prev, vma);
1135 
1136 	/*
1137 	 * We might reach here with anon_vma == NULL if we can't find
1138 	 * any reusable anon_vma.
1139 	 * There's no absolute need to look only at touching neighbours:
1140 	 * we could search further afield for "compatible" anon_vmas.
1141 	 * But it would probably just be a waste of time searching,
1142 	 * or lead to too many vmas hanging off the same anon_vma.
1143 	 * We're trying to allow mprotect remerging later on,
1144 	 * not trying to minimize memory used for anon_vmas.
1145 	 */
1146 	return anon_vma;
1147 }
1148 
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155 	hint &= PAGE_MASK;
1156 	if (((void *)hint != NULL) &&
1157 	    (hint < mmap_min_addr))
1158 		return PAGE_ALIGN(mmap_min_addr);
1159 	return hint;
1160 }
1161 
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163 			unsigned long bytes)
1164 {
1165 	unsigned long locked_pages, limit_pages;
1166 
1167 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168 		return true;
1169 
1170 	locked_pages = bytes >> PAGE_SHIFT;
1171 	locked_pages += mm->locked_vm;
1172 
1173 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174 	limit_pages >>= PAGE_SHIFT;
1175 
1176 	return locked_pages <= limit_pages;
1177 }
1178 
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181 	if (S_ISREG(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	if (S_ISBLK(inode->i_mode))
1185 		return MAX_LFS_FILESIZE;
1186 
1187 	if (S_ISSOCK(inode->i_mode))
1188 		return MAX_LFS_FILESIZE;
1189 
1190 	/* Special "we do even unsigned file positions" case */
1191 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192 		return 0;
1193 
1194 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195 	return ULONG_MAX;
1196 }
1197 
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199 				unsigned long pgoff, unsigned long len)
1200 {
1201 	u64 maxsize = file_mmap_size_max(file, inode);
1202 
1203 	if (maxsize && len > maxsize)
1204 		return false;
1205 	maxsize -= len;
1206 	if (pgoff > maxsize >> PAGE_SHIFT)
1207 		return false;
1208 	return true;
1209 }
1210 
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215 			unsigned long len, unsigned long prot,
1216 			unsigned long flags, vm_flags_t vm_flags,
1217 			unsigned long pgoff, unsigned long *populate,
1218 			struct list_head *uf)
1219 {
1220 	struct mm_struct *mm = current->mm;
1221 	int pkey = 0;
1222 
1223 	*populate = 0;
1224 
1225 	if (!len)
1226 		return -EINVAL;
1227 
1228 	/*
1229 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230 	 *
1231 	 * (the exception is when the underlying filesystem is noexec
1232 	 *  mounted, in which case we don't add PROT_EXEC.)
1233 	 */
1234 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235 		if (!(file && path_noexec(&file->f_path)))
1236 			prot |= PROT_EXEC;
1237 
1238 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239 	if (flags & MAP_FIXED_NOREPLACE)
1240 		flags |= MAP_FIXED;
1241 
1242 	if (!(flags & MAP_FIXED))
1243 		addr = round_hint_to_min(addr);
1244 
1245 	/* Careful about overflows.. */
1246 	len = PAGE_ALIGN(len);
1247 	if (!len)
1248 		return -ENOMEM;
1249 
1250 	/* offset overflow? */
1251 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252 		return -EOVERFLOW;
1253 
1254 	/* Too many mappings? */
1255 	if (mm->map_count > sysctl_max_map_count)
1256 		return -ENOMEM;
1257 
1258 	/* Obtain the address to map to. we verify (or select) it and ensure
1259 	 * that it represents a valid section of the address space.
1260 	 */
1261 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1262 	if (IS_ERR_VALUE(addr))
1263 		return addr;
1264 
1265 	if (flags & MAP_FIXED_NOREPLACE) {
1266 		if (find_vma_intersection(mm, addr, addr + len))
1267 			return -EEXIST;
1268 	}
1269 
1270 	if (prot == PROT_EXEC) {
1271 		pkey = execute_only_pkey(mm);
1272 		if (pkey < 0)
1273 			pkey = 0;
1274 	}
1275 
1276 	/* Do simple checking here so the lower-level routines won't have
1277 	 * to. we assume access permissions have been handled by the open
1278 	 * of the memory object, so we don't do any here.
1279 	 */
1280 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1281 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1282 
1283 	if (flags & MAP_LOCKED)
1284 		if (!can_do_mlock())
1285 			return -EPERM;
1286 
1287 	if (!mlock_future_ok(mm, vm_flags, len))
1288 		return -EAGAIN;
1289 
1290 	if (file) {
1291 		struct inode *inode = file_inode(file);
1292 		unsigned long flags_mask;
1293 
1294 		if (!file_mmap_ok(file, inode, pgoff, len))
1295 			return -EOVERFLOW;
1296 
1297 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1298 
1299 		switch (flags & MAP_TYPE) {
1300 		case MAP_SHARED:
1301 			/*
1302 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1303 			 * flags. E.g. MAP_SYNC is dangerous to use with
1304 			 * MAP_SHARED as you don't know which consistency model
1305 			 * you will get. We silently ignore unsupported flags
1306 			 * with MAP_SHARED to preserve backward compatibility.
1307 			 */
1308 			flags &= LEGACY_MAP_MASK;
1309 			fallthrough;
1310 		case MAP_SHARED_VALIDATE:
1311 			if (flags & ~flags_mask)
1312 				return -EOPNOTSUPP;
1313 			if (prot & PROT_WRITE) {
1314 				if (!(file->f_mode & FMODE_WRITE))
1315 					return -EACCES;
1316 				if (IS_SWAPFILE(file->f_mapping->host))
1317 					return -ETXTBSY;
1318 			}
1319 
1320 			/*
1321 			 * Make sure we don't allow writing to an append-only
1322 			 * file..
1323 			 */
1324 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1325 				return -EACCES;
1326 
1327 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1328 			if (!(file->f_mode & FMODE_WRITE))
1329 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1330 			fallthrough;
1331 		case MAP_PRIVATE:
1332 			if (!(file->f_mode & FMODE_READ))
1333 				return -EACCES;
1334 			if (path_noexec(&file->f_path)) {
1335 				if (vm_flags & VM_EXEC)
1336 					return -EPERM;
1337 				vm_flags &= ~VM_MAYEXEC;
1338 			}
1339 
1340 			if (!file->f_op->mmap)
1341 				return -ENODEV;
1342 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1343 				return -EINVAL;
1344 			break;
1345 
1346 		default:
1347 			return -EINVAL;
1348 		}
1349 	} else {
1350 		switch (flags & MAP_TYPE) {
1351 		case MAP_SHARED:
1352 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353 				return -EINVAL;
1354 			/*
1355 			 * Ignore pgoff.
1356 			 */
1357 			pgoff = 0;
1358 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1359 			break;
1360 		case MAP_PRIVATE:
1361 			/*
1362 			 * Set pgoff according to addr for anon_vma.
1363 			 */
1364 			pgoff = addr >> PAGE_SHIFT;
1365 			break;
1366 		default:
1367 			return -EINVAL;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Set 'VM_NORESERVE' if we should not account for the
1373 	 * memory use of this mapping.
1374 	 */
1375 	if (flags & MAP_NORESERVE) {
1376 		/* We honor MAP_NORESERVE if allowed to overcommit */
1377 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1378 			vm_flags |= VM_NORESERVE;
1379 
1380 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1381 		if (file && is_file_hugepages(file))
1382 			vm_flags |= VM_NORESERVE;
1383 	}
1384 
1385 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1386 	if (!IS_ERR_VALUE(addr) &&
1387 	    ((vm_flags & VM_LOCKED) ||
1388 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1389 		*populate = len;
1390 	return addr;
1391 }
1392 
1393 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1394 			      unsigned long prot, unsigned long flags,
1395 			      unsigned long fd, unsigned long pgoff)
1396 {
1397 	struct file *file = NULL;
1398 	unsigned long retval;
1399 
1400 	if (!(flags & MAP_ANONYMOUS)) {
1401 		audit_mmap_fd(fd, flags);
1402 		file = fget(fd);
1403 		if (!file)
1404 			return -EBADF;
1405 		if (is_file_hugepages(file)) {
1406 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1407 		} else if (unlikely(flags & MAP_HUGETLB)) {
1408 			retval = -EINVAL;
1409 			goto out_fput;
1410 		}
1411 	} else if (flags & MAP_HUGETLB) {
1412 		struct hstate *hs;
1413 
1414 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415 		if (!hs)
1416 			return -EINVAL;
1417 
1418 		len = ALIGN(len, huge_page_size(hs));
1419 		/*
1420 		 * VM_NORESERVE is used because the reservations will be
1421 		 * taken when vm_ops->mmap() is called
1422 		 */
1423 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1424 				VM_NORESERVE,
1425 				HUGETLB_ANONHUGE_INODE,
1426 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427 		if (IS_ERR(file))
1428 			return PTR_ERR(file);
1429 	}
1430 
1431 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1432 out_fput:
1433 	if (file)
1434 		fput(file);
1435 	return retval;
1436 }
1437 
1438 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1439 		unsigned long, prot, unsigned long, flags,
1440 		unsigned long, fd, unsigned long, pgoff)
1441 {
1442 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1443 }
1444 
1445 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1446 struct mmap_arg_struct {
1447 	unsigned long addr;
1448 	unsigned long len;
1449 	unsigned long prot;
1450 	unsigned long flags;
1451 	unsigned long fd;
1452 	unsigned long offset;
1453 };
1454 
1455 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1456 {
1457 	struct mmap_arg_struct a;
1458 
1459 	if (copy_from_user(&a, arg, sizeof(a)))
1460 		return -EFAULT;
1461 	if (offset_in_page(a.offset))
1462 		return -EINVAL;
1463 
1464 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1465 			       a.offset >> PAGE_SHIFT);
1466 }
1467 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1468 
1469 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1470 {
1471 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1472 }
1473 
1474 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1475 {
1476 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1477 		(VM_WRITE | VM_SHARED);
1478 }
1479 
1480 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1481 {
1482 	/* No managed pages to writeback. */
1483 	if (vma->vm_flags & VM_PFNMAP)
1484 		return false;
1485 
1486 	return vma->vm_file && vma->vm_file->f_mapping &&
1487 		mapping_can_writeback(vma->vm_file->f_mapping);
1488 }
1489 
1490 /*
1491  * Does this VMA require the underlying folios to have their dirty state
1492  * tracked?
1493  */
1494 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1495 {
1496 	/* Only shared, writable VMAs require dirty tracking. */
1497 	if (!vma_is_shared_writable(vma))
1498 		return false;
1499 
1500 	/* Does the filesystem need to be notified? */
1501 	if (vm_ops_needs_writenotify(vma->vm_ops))
1502 		return true;
1503 
1504 	/*
1505 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1506 	 * can writeback, dirty tracking is still required.
1507 	 */
1508 	return vma_fs_can_writeback(vma);
1509 }
1510 
1511 /*
1512  * Some shared mappings will want the pages marked read-only
1513  * to track write events. If so, we'll downgrade vm_page_prot
1514  * to the private version (using protection_map[] without the
1515  * VM_SHARED bit).
1516  */
1517 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1518 {
1519 	/* If it was private or non-writable, the write bit is already clear */
1520 	if (!vma_is_shared_writable(vma))
1521 		return 0;
1522 
1523 	/* The backer wishes to know when pages are first written to? */
1524 	if (vm_ops_needs_writenotify(vma->vm_ops))
1525 		return 1;
1526 
1527 	/* The open routine did something to the protections that pgprot_modify
1528 	 * won't preserve? */
1529 	if (pgprot_val(vm_page_prot) !=
1530 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1531 		return 0;
1532 
1533 	/*
1534 	 * Do we need to track softdirty? hugetlb does not support softdirty
1535 	 * tracking yet.
1536 	 */
1537 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1538 		return 1;
1539 
1540 	/* Do we need write faults for uffd-wp tracking? */
1541 	if (userfaultfd_wp(vma))
1542 		return 1;
1543 
1544 	/* Can the mapping track the dirty pages? */
1545 	return vma_fs_can_writeback(vma);
1546 }
1547 
1548 /*
1549  * We account for memory if it's a private writeable mapping,
1550  * not hugepages and VM_NORESERVE wasn't set.
1551  */
1552 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553 {
1554 	/*
1555 	 * hugetlb has its own accounting separate from the core VM
1556 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1557 	 */
1558 	if (file && is_file_hugepages(file))
1559 		return 0;
1560 
1561 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562 }
1563 
1564 /**
1565  * unmapped_area() - Find an area between the low_limit and the high_limit with
1566  * the correct alignment and offset, all from @info. Note: current->mm is used
1567  * for the search.
1568  *
1569  * @info: The unmapped area information including the range [low_limit -
1570  * high_limit), the alignment offset and mask.
1571  *
1572  * Return: A memory address or -ENOMEM.
1573  */
1574 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1575 {
1576 	unsigned long length, gap;
1577 	unsigned long low_limit, high_limit;
1578 	struct vm_area_struct *tmp;
1579 
1580 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1581 
1582 	/* Adjust search length to account for worst case alignment overhead */
1583 	length = info->length + info->align_mask;
1584 	if (length < info->length)
1585 		return -ENOMEM;
1586 
1587 	low_limit = info->low_limit;
1588 	if (low_limit < mmap_min_addr)
1589 		low_limit = mmap_min_addr;
1590 	high_limit = info->high_limit;
1591 retry:
1592 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1593 		return -ENOMEM;
1594 
1595 	gap = mas.index;
1596 	gap += (info->align_offset - gap) & info->align_mask;
1597 	tmp = mas_next(&mas, ULONG_MAX);
1598 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1599 		if (vm_start_gap(tmp) < gap + length - 1) {
1600 			low_limit = tmp->vm_end;
1601 			mas_reset(&mas);
1602 			goto retry;
1603 		}
1604 	} else {
1605 		tmp = mas_prev(&mas, 0);
1606 		if (tmp && vm_end_gap(tmp) > gap) {
1607 			low_limit = vm_end_gap(tmp);
1608 			mas_reset(&mas);
1609 			goto retry;
1610 		}
1611 	}
1612 
1613 	return gap;
1614 }
1615 
1616 /**
1617  * unmapped_area_topdown() - Find an area between the low_limit and the
1618  * high_limit with the correct alignment and offset at the highest available
1619  * address, all from @info. Note: current->mm is used for the search.
1620  *
1621  * @info: The unmapped area information including the range [low_limit -
1622  * high_limit), the alignment offset and mask.
1623  *
1624  * Return: A memory address or -ENOMEM.
1625  */
1626 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1627 {
1628 	unsigned long length, gap, gap_end;
1629 	unsigned long low_limit, high_limit;
1630 	struct vm_area_struct *tmp;
1631 
1632 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1633 	/* Adjust search length to account for worst case alignment overhead */
1634 	length = info->length + info->align_mask;
1635 	if (length < info->length)
1636 		return -ENOMEM;
1637 
1638 	low_limit = info->low_limit;
1639 	if (low_limit < mmap_min_addr)
1640 		low_limit = mmap_min_addr;
1641 	high_limit = info->high_limit;
1642 retry:
1643 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1644 		return -ENOMEM;
1645 
1646 	gap = mas.last + 1 - info->length;
1647 	gap -= (gap - info->align_offset) & info->align_mask;
1648 	gap_end = mas.last;
1649 	tmp = mas_next(&mas, ULONG_MAX);
1650 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1651 		if (vm_start_gap(tmp) <= gap_end) {
1652 			high_limit = vm_start_gap(tmp);
1653 			mas_reset(&mas);
1654 			goto retry;
1655 		}
1656 	} else {
1657 		tmp = mas_prev(&mas, 0);
1658 		if (tmp && vm_end_gap(tmp) > gap) {
1659 			high_limit = tmp->vm_start;
1660 			mas_reset(&mas);
1661 			goto retry;
1662 		}
1663 	}
1664 
1665 	return gap;
1666 }
1667 
1668 /*
1669  * Search for an unmapped address range.
1670  *
1671  * We are looking for a range that:
1672  * - does not intersect with any VMA;
1673  * - is contained within the [low_limit, high_limit) interval;
1674  * - is at least the desired size.
1675  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1676  */
1677 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1678 {
1679 	unsigned long addr;
1680 
1681 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1682 		addr = unmapped_area_topdown(info);
1683 	else
1684 		addr = unmapped_area(info);
1685 
1686 	trace_vm_unmapped_area(addr, info);
1687 	return addr;
1688 }
1689 
1690 /* Get an address range which is currently unmapped.
1691  * For shmat() with addr=0.
1692  *
1693  * Ugly calling convention alert:
1694  * Return value with the low bits set means error value,
1695  * ie
1696  *	if (ret & ~PAGE_MASK)
1697  *		error = ret;
1698  *
1699  * This function "knows" that -ENOMEM has the bits set.
1700  */
1701 unsigned long
1702 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1703 			  unsigned long len, unsigned long pgoff,
1704 			  unsigned long flags)
1705 {
1706 	struct mm_struct *mm = current->mm;
1707 	struct vm_area_struct *vma, *prev;
1708 	struct vm_unmapped_area_info info;
1709 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1710 
1711 	if (len > mmap_end - mmap_min_addr)
1712 		return -ENOMEM;
1713 
1714 	if (flags & MAP_FIXED)
1715 		return addr;
1716 
1717 	if (addr) {
1718 		addr = PAGE_ALIGN(addr);
1719 		vma = find_vma_prev(mm, addr, &prev);
1720 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1721 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1722 		    (!prev || addr >= vm_end_gap(prev)))
1723 			return addr;
1724 	}
1725 
1726 	info.flags = 0;
1727 	info.length = len;
1728 	info.low_limit = mm->mmap_base;
1729 	info.high_limit = mmap_end;
1730 	info.align_mask = 0;
1731 	info.align_offset = 0;
1732 	return vm_unmapped_area(&info);
1733 }
1734 
1735 #ifndef HAVE_ARCH_UNMAPPED_AREA
1736 unsigned long
1737 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1738 		       unsigned long len, unsigned long pgoff,
1739 		       unsigned long flags)
1740 {
1741 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1742 }
1743 #endif
1744 
1745 /*
1746  * This mmap-allocator allocates new areas top-down from below the
1747  * stack's low limit (the base):
1748  */
1749 unsigned long
1750 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1751 				  unsigned long len, unsigned long pgoff,
1752 				  unsigned long flags)
1753 {
1754 	struct vm_area_struct *vma, *prev;
1755 	struct mm_struct *mm = current->mm;
1756 	struct vm_unmapped_area_info info;
1757 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1758 
1759 	/* requested length too big for entire address space */
1760 	if (len > mmap_end - mmap_min_addr)
1761 		return -ENOMEM;
1762 
1763 	if (flags & MAP_FIXED)
1764 		return addr;
1765 
1766 	/* requesting a specific address */
1767 	if (addr) {
1768 		addr = PAGE_ALIGN(addr);
1769 		vma = find_vma_prev(mm, addr, &prev);
1770 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1771 				(!vma || addr + len <= vm_start_gap(vma)) &&
1772 				(!prev || addr >= vm_end_gap(prev)))
1773 			return addr;
1774 	}
1775 
1776 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1777 	info.length = len;
1778 	info.low_limit = PAGE_SIZE;
1779 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1780 	info.align_mask = 0;
1781 	info.align_offset = 0;
1782 	addr = vm_unmapped_area(&info);
1783 
1784 	/*
1785 	 * A failed mmap() very likely causes application failure,
1786 	 * so fall back to the bottom-up function here. This scenario
1787 	 * can happen with large stack limits and large mmap()
1788 	 * allocations.
1789 	 */
1790 	if (offset_in_page(addr)) {
1791 		VM_BUG_ON(addr != -ENOMEM);
1792 		info.flags = 0;
1793 		info.low_limit = TASK_UNMAPPED_BASE;
1794 		info.high_limit = mmap_end;
1795 		addr = vm_unmapped_area(&info);
1796 	}
1797 
1798 	return addr;
1799 }
1800 
1801 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1802 unsigned long
1803 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1804 			       unsigned long len, unsigned long pgoff,
1805 			       unsigned long flags)
1806 {
1807 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1808 }
1809 #endif
1810 
1811 unsigned long
1812 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1813 		unsigned long pgoff, unsigned long flags)
1814 {
1815 	unsigned long (*get_area)(struct file *, unsigned long,
1816 				  unsigned long, unsigned long, unsigned long);
1817 
1818 	unsigned long error = arch_mmap_check(addr, len, flags);
1819 	if (error)
1820 		return error;
1821 
1822 	/* Careful about overflows.. */
1823 	if (len > TASK_SIZE)
1824 		return -ENOMEM;
1825 
1826 	get_area = current->mm->get_unmapped_area;
1827 	if (file) {
1828 		if (file->f_op->get_unmapped_area)
1829 			get_area = file->f_op->get_unmapped_area;
1830 	} else if (flags & MAP_SHARED) {
1831 		/*
1832 		 * mmap_region() will call shmem_zero_setup() to create a file,
1833 		 * so use shmem's get_unmapped_area in case it can be huge.
1834 		 */
1835 		get_area = shmem_get_unmapped_area;
1836 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1837 		/* Ensures that larger anonymous mappings are THP aligned. */
1838 		get_area = thp_get_unmapped_area;
1839 	}
1840 
1841 	/* Always treat pgoff as zero for anonymous memory. */
1842 	if (!file)
1843 		pgoff = 0;
1844 
1845 	addr = get_area(file, addr, len, pgoff, flags);
1846 	if (IS_ERR_VALUE(addr))
1847 		return addr;
1848 
1849 	if (addr > TASK_SIZE - len)
1850 		return -ENOMEM;
1851 	if (offset_in_page(addr))
1852 		return -EINVAL;
1853 
1854 	error = security_mmap_addr(addr);
1855 	return error ? error : addr;
1856 }
1857 
1858 EXPORT_SYMBOL(get_unmapped_area);
1859 
1860 /**
1861  * find_vma_intersection() - Look up the first VMA which intersects the interval
1862  * @mm: The process address space.
1863  * @start_addr: The inclusive start user address.
1864  * @end_addr: The exclusive end user address.
1865  *
1866  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1867  * start_addr < end_addr.
1868  */
1869 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1870 					     unsigned long start_addr,
1871 					     unsigned long end_addr)
1872 {
1873 	unsigned long index = start_addr;
1874 
1875 	mmap_assert_locked(mm);
1876 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1877 }
1878 EXPORT_SYMBOL(find_vma_intersection);
1879 
1880 /**
1881  * find_vma() - Find the VMA for a given address, or the next VMA.
1882  * @mm: The mm_struct to check
1883  * @addr: The address
1884  *
1885  * Returns: The VMA associated with addr, or the next VMA.
1886  * May return %NULL in the case of no VMA at addr or above.
1887  */
1888 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1889 {
1890 	unsigned long index = addr;
1891 
1892 	mmap_assert_locked(mm);
1893 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1894 }
1895 EXPORT_SYMBOL(find_vma);
1896 
1897 /**
1898  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1899  * set %pprev to the previous VMA, if any.
1900  * @mm: The mm_struct to check
1901  * @addr: The address
1902  * @pprev: The pointer to set to the previous VMA
1903  *
1904  * Note that RCU lock is missing here since the external mmap_lock() is used
1905  * instead.
1906  *
1907  * Returns: The VMA associated with @addr, or the next vma.
1908  * May return %NULL in the case of no vma at addr or above.
1909  */
1910 struct vm_area_struct *
1911 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1912 			struct vm_area_struct **pprev)
1913 {
1914 	struct vm_area_struct *vma;
1915 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1916 
1917 	vma = mas_walk(&mas);
1918 	*pprev = mas_prev(&mas, 0);
1919 	if (!vma)
1920 		vma = mas_next(&mas, ULONG_MAX);
1921 	return vma;
1922 }
1923 
1924 /*
1925  * Verify that the stack growth is acceptable and
1926  * update accounting. This is shared with both the
1927  * grow-up and grow-down cases.
1928  */
1929 static int acct_stack_growth(struct vm_area_struct *vma,
1930 			     unsigned long size, unsigned long grow)
1931 {
1932 	struct mm_struct *mm = vma->vm_mm;
1933 	unsigned long new_start;
1934 
1935 	/* address space limit tests */
1936 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1937 		return -ENOMEM;
1938 
1939 	/* Stack limit test */
1940 	if (size > rlimit(RLIMIT_STACK))
1941 		return -ENOMEM;
1942 
1943 	/* mlock limit tests */
1944 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1945 		return -ENOMEM;
1946 
1947 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1948 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1949 			vma->vm_end - size;
1950 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1951 		return -EFAULT;
1952 
1953 	/*
1954 	 * Overcommit..  This must be the final test, as it will
1955 	 * update security statistics.
1956 	 */
1957 	if (security_vm_enough_memory_mm(mm, grow))
1958 		return -ENOMEM;
1959 
1960 	return 0;
1961 }
1962 
1963 #if defined(CONFIG_STACK_GROWSUP)
1964 /*
1965  * PA-RISC uses this for its stack.
1966  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1967  */
1968 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1969 {
1970 	struct mm_struct *mm = vma->vm_mm;
1971 	struct vm_area_struct *next;
1972 	unsigned long gap_addr;
1973 	int error = 0;
1974 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1975 
1976 	if (!(vma->vm_flags & VM_GROWSUP))
1977 		return -EFAULT;
1978 
1979 	/* Guard against exceeding limits of the address space. */
1980 	address &= PAGE_MASK;
1981 	if (address >= (TASK_SIZE & PAGE_MASK))
1982 		return -ENOMEM;
1983 	address += PAGE_SIZE;
1984 
1985 	/* Enforce stack_guard_gap */
1986 	gap_addr = address + stack_guard_gap;
1987 
1988 	/* Guard against overflow */
1989 	if (gap_addr < address || gap_addr > TASK_SIZE)
1990 		gap_addr = TASK_SIZE;
1991 
1992 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1993 	if (next && vma_is_accessible(next)) {
1994 		if (!(next->vm_flags & VM_GROWSUP))
1995 			return -ENOMEM;
1996 		/* Check that both stack segments have the same anon_vma? */
1997 	}
1998 
1999 	if (next)
2000 		mas_prev_range(&mas, address);
2001 
2002 	__mas_set_range(&mas, vma->vm_start, address - 1);
2003 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2004 		return -ENOMEM;
2005 
2006 	/* We must make sure the anon_vma is allocated. */
2007 	if (unlikely(anon_vma_prepare(vma))) {
2008 		mas_destroy(&mas);
2009 		return -ENOMEM;
2010 	}
2011 
2012 	/* Lock the VMA before expanding to prevent concurrent page faults */
2013 	vma_start_write(vma);
2014 	/*
2015 	 * vma->vm_start/vm_end cannot change under us because the caller
2016 	 * is required to hold the mmap_lock in read mode.  We need the
2017 	 * anon_vma lock to serialize against concurrent expand_stacks.
2018 	 */
2019 	anon_vma_lock_write(vma->anon_vma);
2020 
2021 	/* Somebody else might have raced and expanded it already */
2022 	if (address > vma->vm_end) {
2023 		unsigned long size, grow;
2024 
2025 		size = address - vma->vm_start;
2026 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2027 
2028 		error = -ENOMEM;
2029 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2030 			error = acct_stack_growth(vma, size, grow);
2031 			if (!error) {
2032 				/*
2033 				 * We only hold a shared mmap_lock lock here, so
2034 				 * we need to protect against concurrent vma
2035 				 * expansions.  anon_vma_lock_write() doesn't
2036 				 * help here, as we don't guarantee that all
2037 				 * growable vmas in a mm share the same root
2038 				 * anon vma.  So, we reuse mm->page_table_lock
2039 				 * to guard against concurrent vma expansions.
2040 				 */
2041 				spin_lock(&mm->page_table_lock);
2042 				if (vma->vm_flags & VM_LOCKED)
2043 					mm->locked_vm += grow;
2044 				vm_stat_account(mm, vma->vm_flags, grow);
2045 				anon_vma_interval_tree_pre_update_vma(vma);
2046 				vma->vm_end = address;
2047 				/* Overwrite old entry in mtree. */
2048 				mas_store_prealloc(&mas, vma);
2049 				anon_vma_interval_tree_post_update_vma(vma);
2050 				spin_unlock(&mm->page_table_lock);
2051 
2052 				perf_event_mmap(vma);
2053 			}
2054 		}
2055 	}
2056 	anon_vma_unlock_write(vma->anon_vma);
2057 	mas_destroy(&mas);
2058 	validate_mm(mm);
2059 	return error;
2060 }
2061 #endif /* CONFIG_STACK_GROWSUP */
2062 
2063 /*
2064  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2065  * mmap_lock held for writing.
2066  */
2067 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2068 {
2069 	struct mm_struct *mm = vma->vm_mm;
2070 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2071 	struct vm_area_struct *prev;
2072 	int error = 0;
2073 
2074 	if (!(vma->vm_flags & VM_GROWSDOWN))
2075 		return -EFAULT;
2076 
2077 	address &= PAGE_MASK;
2078 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2079 		return -EPERM;
2080 
2081 	/* Enforce stack_guard_gap */
2082 	prev = mas_prev(&mas, 0);
2083 	/* Check that both stack segments have the same anon_vma? */
2084 	if (prev) {
2085 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2086 		    vma_is_accessible(prev) &&
2087 		    (address - prev->vm_end < stack_guard_gap))
2088 			return -ENOMEM;
2089 	}
2090 
2091 	if (prev)
2092 		mas_next_range(&mas, vma->vm_start);
2093 
2094 	__mas_set_range(&mas, address, vma->vm_end - 1);
2095 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2096 		return -ENOMEM;
2097 
2098 	/* We must make sure the anon_vma is allocated. */
2099 	if (unlikely(anon_vma_prepare(vma))) {
2100 		mas_destroy(&mas);
2101 		return -ENOMEM;
2102 	}
2103 
2104 	/* Lock the VMA before expanding to prevent concurrent page faults */
2105 	vma_start_write(vma);
2106 	/*
2107 	 * vma->vm_start/vm_end cannot change under us because the caller
2108 	 * is required to hold the mmap_lock in read mode.  We need the
2109 	 * anon_vma lock to serialize against concurrent expand_stacks.
2110 	 */
2111 	anon_vma_lock_write(vma->anon_vma);
2112 
2113 	/* Somebody else might have raced and expanded it already */
2114 	if (address < vma->vm_start) {
2115 		unsigned long size, grow;
2116 
2117 		size = vma->vm_end - address;
2118 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2119 
2120 		error = -ENOMEM;
2121 		if (grow <= vma->vm_pgoff) {
2122 			error = acct_stack_growth(vma, size, grow);
2123 			if (!error) {
2124 				/*
2125 				 * We only hold a shared mmap_lock lock here, so
2126 				 * we need to protect against concurrent vma
2127 				 * expansions.  anon_vma_lock_write() doesn't
2128 				 * help here, as we don't guarantee that all
2129 				 * growable vmas in a mm share the same root
2130 				 * anon vma.  So, we reuse mm->page_table_lock
2131 				 * to guard against concurrent vma expansions.
2132 				 */
2133 				spin_lock(&mm->page_table_lock);
2134 				if (vma->vm_flags & VM_LOCKED)
2135 					mm->locked_vm += grow;
2136 				vm_stat_account(mm, vma->vm_flags, grow);
2137 				anon_vma_interval_tree_pre_update_vma(vma);
2138 				vma->vm_start = address;
2139 				vma->vm_pgoff -= grow;
2140 				/* Overwrite old entry in mtree. */
2141 				mas_store_prealloc(&mas, vma);
2142 				anon_vma_interval_tree_post_update_vma(vma);
2143 				spin_unlock(&mm->page_table_lock);
2144 
2145 				perf_event_mmap(vma);
2146 			}
2147 		}
2148 	}
2149 	anon_vma_unlock_write(vma->anon_vma);
2150 	mas_destroy(&mas);
2151 	validate_mm(mm);
2152 	return error;
2153 }
2154 
2155 /* enforced gap between the expanding stack and other mappings. */
2156 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2157 
2158 static int __init cmdline_parse_stack_guard_gap(char *p)
2159 {
2160 	unsigned long val;
2161 	char *endptr;
2162 
2163 	val = simple_strtoul(p, &endptr, 10);
2164 	if (!*endptr)
2165 		stack_guard_gap = val << PAGE_SHIFT;
2166 
2167 	return 1;
2168 }
2169 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2170 
2171 #ifdef CONFIG_STACK_GROWSUP
2172 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2173 {
2174 	return expand_upwards(vma, address);
2175 }
2176 
2177 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2178 {
2179 	struct vm_area_struct *vma, *prev;
2180 
2181 	addr &= PAGE_MASK;
2182 	vma = find_vma_prev(mm, addr, &prev);
2183 	if (vma && (vma->vm_start <= addr))
2184 		return vma;
2185 	if (!prev)
2186 		return NULL;
2187 	if (expand_stack_locked(prev, addr))
2188 		return NULL;
2189 	if (prev->vm_flags & VM_LOCKED)
2190 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2191 	return prev;
2192 }
2193 #else
2194 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2195 {
2196 	return expand_downwards(vma, address);
2197 }
2198 
2199 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2200 {
2201 	struct vm_area_struct *vma;
2202 	unsigned long start;
2203 
2204 	addr &= PAGE_MASK;
2205 	vma = find_vma(mm, addr);
2206 	if (!vma)
2207 		return NULL;
2208 	if (vma->vm_start <= addr)
2209 		return vma;
2210 	start = vma->vm_start;
2211 	if (expand_stack_locked(vma, addr))
2212 		return NULL;
2213 	if (vma->vm_flags & VM_LOCKED)
2214 		populate_vma_page_range(vma, addr, start, NULL);
2215 	return vma;
2216 }
2217 #endif
2218 
2219 #if defined(CONFIG_STACK_GROWSUP)
2220 
2221 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2222 #define vma_expand_down(vma, addr) (-EFAULT)
2223 
2224 #else
2225 
2226 #define vma_expand_up(vma,addr) (-EFAULT)
2227 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2228 
2229 #endif
2230 
2231 /*
2232  * expand_stack(): legacy interface for page faulting. Don't use unless
2233  * you have to.
2234  *
2235  * This is called with the mm locked for reading, drops the lock, takes
2236  * the lock for writing, tries to look up a vma again, expands it if
2237  * necessary, and downgrades the lock to reading again.
2238  *
2239  * If no vma is found or it can't be expanded, it returns NULL and has
2240  * dropped the lock.
2241  */
2242 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2243 {
2244 	struct vm_area_struct *vma, *prev;
2245 
2246 	mmap_read_unlock(mm);
2247 	if (mmap_write_lock_killable(mm))
2248 		return NULL;
2249 
2250 	vma = find_vma_prev(mm, addr, &prev);
2251 	if (vma && vma->vm_start <= addr)
2252 		goto success;
2253 
2254 	if (prev && !vma_expand_up(prev, addr)) {
2255 		vma = prev;
2256 		goto success;
2257 	}
2258 
2259 	if (vma && !vma_expand_down(vma, addr))
2260 		goto success;
2261 
2262 	mmap_write_unlock(mm);
2263 	return NULL;
2264 
2265 success:
2266 	mmap_write_downgrade(mm);
2267 	return vma;
2268 }
2269 
2270 /*
2271  * Ok - we have the memory areas we should free on a maple tree so release them,
2272  * and do the vma updates.
2273  *
2274  * Called with the mm semaphore held.
2275  */
2276 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2277 {
2278 	unsigned long nr_accounted = 0;
2279 	struct vm_area_struct *vma;
2280 
2281 	/* Update high watermark before we lower total_vm */
2282 	update_hiwater_vm(mm);
2283 	mas_for_each(mas, vma, ULONG_MAX) {
2284 		long nrpages = vma_pages(vma);
2285 
2286 		if (vma->vm_flags & VM_ACCOUNT)
2287 			nr_accounted += nrpages;
2288 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2289 		remove_vma(vma, false);
2290 	}
2291 	vm_unacct_memory(nr_accounted);
2292 }
2293 
2294 /*
2295  * Get rid of page table information in the indicated region.
2296  *
2297  * Called with the mm semaphore held.
2298  */
2299 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2300 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2301 		struct vm_area_struct *next, unsigned long start,
2302 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2303 {
2304 	struct mmu_gather tlb;
2305 	unsigned long mt_start = mas->index;
2306 
2307 	lru_add_drain();
2308 	tlb_gather_mmu(&tlb, mm);
2309 	update_hiwater_rss(mm);
2310 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2311 	mas_set(mas, mt_start);
2312 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2313 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2314 				 mm_wr_locked);
2315 	tlb_finish_mmu(&tlb);
2316 }
2317 
2318 /*
2319  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2320  * has already been checked or doesn't make sense to fail.
2321  * VMA Iterator will point to the end VMA.
2322  */
2323 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2324 		       unsigned long addr, int new_below)
2325 {
2326 	struct vma_prepare vp;
2327 	struct vm_area_struct *new;
2328 	int err;
2329 
2330 	WARN_ON(vma->vm_start >= addr);
2331 	WARN_ON(vma->vm_end <= addr);
2332 
2333 	if (vma->vm_ops && vma->vm_ops->may_split) {
2334 		err = vma->vm_ops->may_split(vma, addr);
2335 		if (err)
2336 			return err;
2337 	}
2338 
2339 	new = vm_area_dup(vma);
2340 	if (!new)
2341 		return -ENOMEM;
2342 
2343 	if (new_below) {
2344 		new->vm_end = addr;
2345 	} else {
2346 		new->vm_start = addr;
2347 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2348 	}
2349 
2350 	err = -ENOMEM;
2351 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2352 	if (vma_iter_prealloc(vmi, new))
2353 		goto out_free_vma;
2354 
2355 	err = vma_dup_policy(vma, new);
2356 	if (err)
2357 		goto out_free_vmi;
2358 
2359 	err = anon_vma_clone(new, vma);
2360 	if (err)
2361 		goto out_free_mpol;
2362 
2363 	if (new->vm_file)
2364 		get_file(new->vm_file);
2365 
2366 	if (new->vm_ops && new->vm_ops->open)
2367 		new->vm_ops->open(new);
2368 
2369 	vma_start_write(vma);
2370 	vma_start_write(new);
2371 
2372 	init_vma_prep(&vp, vma);
2373 	vp.insert = new;
2374 	vma_prepare(&vp);
2375 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2376 
2377 	if (new_below) {
2378 		vma->vm_start = addr;
2379 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2380 	} else {
2381 		vma->vm_end = addr;
2382 	}
2383 
2384 	/* vma_complete stores the new vma */
2385 	vma_complete(&vp, vmi, vma->vm_mm);
2386 
2387 	/* Success. */
2388 	if (new_below)
2389 		vma_next(vmi);
2390 	return 0;
2391 
2392 out_free_mpol:
2393 	mpol_put(vma_policy(new));
2394 out_free_vmi:
2395 	vma_iter_free(vmi);
2396 out_free_vma:
2397 	vm_area_free(new);
2398 	return err;
2399 }
2400 
2401 /*
2402  * Split a vma into two pieces at address 'addr', a new vma is allocated
2403  * either for the first part or the tail.
2404  */
2405 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2406 		     unsigned long addr, int new_below)
2407 {
2408 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2409 		return -ENOMEM;
2410 
2411 	return __split_vma(vmi, vma, addr, new_below);
2412 }
2413 
2414 /*
2415  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2416  * context and anonymous VMA name within the range [start, end).
2417  *
2418  * As a result, we might be able to merge the newly modified VMA range with an
2419  * adjacent VMA with identical properties.
2420  *
2421  * If no merge is possible and the range does not span the entirety of the VMA,
2422  * we then need to split the VMA to accommodate the change.
2423  *
2424  * The function returns either the merged VMA, the original VMA if a split was
2425  * required instead, or an error if the split failed.
2426  */
2427 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2428 				  struct vm_area_struct *prev,
2429 				  struct vm_area_struct *vma,
2430 				  unsigned long start, unsigned long end,
2431 				  unsigned long vm_flags,
2432 				  struct mempolicy *policy,
2433 				  struct vm_userfaultfd_ctx uffd_ctx,
2434 				  struct anon_vma_name *anon_name)
2435 {
2436 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2437 	struct vm_area_struct *merged;
2438 
2439 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2440 			   pgoff, policy, uffd_ctx, anon_name);
2441 	if (merged)
2442 		return merged;
2443 
2444 	if (vma->vm_start < start) {
2445 		int err = split_vma(vmi, vma, start, 1);
2446 
2447 		if (err)
2448 			return ERR_PTR(err);
2449 	}
2450 
2451 	if (vma->vm_end > end) {
2452 		int err = split_vma(vmi, vma, end, 0);
2453 
2454 		if (err)
2455 			return ERR_PTR(err);
2456 	}
2457 
2458 	return vma;
2459 }
2460 
2461 /*
2462  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2463  * must ensure that [start, end) does not overlap any existing VMA.
2464  */
2465 static struct vm_area_struct
2466 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2467 		   struct vm_area_struct *vma, unsigned long start,
2468 		   unsigned long end, pgoff_t pgoff)
2469 {
2470 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2471 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2472 }
2473 
2474 /*
2475  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2476  * VMA with identical properties.
2477  */
2478 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2479 					struct vm_area_struct *vma,
2480 					unsigned long delta)
2481 {
2482 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2483 
2484 	/* vma is specified as prev, so case 1 or 2 will apply. */
2485 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2486 			 vma->vm_flags, pgoff, vma_policy(vma),
2487 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2488 }
2489 
2490 /*
2491  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2492  * @vmi: The vma iterator
2493  * @vma: The starting vm_area_struct
2494  * @mm: The mm_struct
2495  * @start: The aligned start address to munmap.
2496  * @end: The aligned end address to munmap.
2497  * @uf: The userfaultfd list_head
2498  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2499  * success.
2500  *
2501  * Return: 0 on success and drops the lock if so directed, error and leaves the
2502  * lock held otherwise.
2503  */
2504 static int
2505 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2506 		    struct mm_struct *mm, unsigned long start,
2507 		    unsigned long end, struct list_head *uf, bool unlock)
2508 {
2509 	struct vm_area_struct *prev, *next = NULL;
2510 	struct maple_tree mt_detach;
2511 	int count = 0;
2512 	int error = -ENOMEM;
2513 	unsigned long locked_vm = 0;
2514 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2515 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2516 	mt_on_stack(mt_detach);
2517 
2518 	/*
2519 	 * If we need to split any vma, do it now to save pain later.
2520 	 *
2521 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2522 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2523 	 * places tmp vma above, and higher split_vma places tmp vma below.
2524 	 */
2525 
2526 	/* Does it split the first one? */
2527 	if (start > vma->vm_start) {
2528 
2529 		/*
2530 		 * Make sure that map_count on return from munmap() will
2531 		 * not exceed its limit; but let map_count go just above
2532 		 * its limit temporarily, to help free resources as expected.
2533 		 */
2534 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2535 			goto map_count_exceeded;
2536 
2537 		error = __split_vma(vmi, vma, start, 1);
2538 		if (error)
2539 			goto start_split_failed;
2540 	}
2541 
2542 	/*
2543 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2544 	 * it is always overwritten.
2545 	 */
2546 	next = vma;
2547 	do {
2548 		/* Does it split the end? */
2549 		if (next->vm_end > end) {
2550 			error = __split_vma(vmi, next, end, 0);
2551 			if (error)
2552 				goto end_split_failed;
2553 		}
2554 		vma_start_write(next);
2555 		mas_set(&mas_detach, count);
2556 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2557 		if (error)
2558 			goto munmap_gather_failed;
2559 		vma_mark_detached(next, true);
2560 		if (next->vm_flags & VM_LOCKED)
2561 			locked_vm += vma_pages(next);
2562 
2563 		count++;
2564 		if (unlikely(uf)) {
2565 			/*
2566 			 * If userfaultfd_unmap_prep returns an error the vmas
2567 			 * will remain split, but userland will get a
2568 			 * highly unexpected error anyway. This is no
2569 			 * different than the case where the first of the two
2570 			 * __split_vma fails, but we don't undo the first
2571 			 * split, despite we could. This is unlikely enough
2572 			 * failure that it's not worth optimizing it for.
2573 			 */
2574 			error = userfaultfd_unmap_prep(next, start, end, uf);
2575 
2576 			if (error)
2577 				goto userfaultfd_error;
2578 		}
2579 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2580 		BUG_ON(next->vm_start < start);
2581 		BUG_ON(next->vm_start > end);
2582 #endif
2583 	} for_each_vma_range(*vmi, next, end);
2584 
2585 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2586 	/* Make sure no VMAs are about to be lost. */
2587 	{
2588 		MA_STATE(test, &mt_detach, 0, 0);
2589 		struct vm_area_struct *vma_mas, *vma_test;
2590 		int test_count = 0;
2591 
2592 		vma_iter_set(vmi, start);
2593 		rcu_read_lock();
2594 		vma_test = mas_find(&test, count - 1);
2595 		for_each_vma_range(*vmi, vma_mas, end) {
2596 			BUG_ON(vma_mas != vma_test);
2597 			test_count++;
2598 			vma_test = mas_next(&test, count - 1);
2599 		}
2600 		rcu_read_unlock();
2601 		BUG_ON(count != test_count);
2602 	}
2603 #endif
2604 
2605 	while (vma_iter_addr(vmi) > start)
2606 		vma_iter_prev_range(vmi);
2607 
2608 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2609 	if (error)
2610 		goto clear_tree_failed;
2611 
2612 	/* Point of no return */
2613 	mm->locked_vm -= locked_vm;
2614 	mm->map_count -= count;
2615 	if (unlock)
2616 		mmap_write_downgrade(mm);
2617 
2618 	prev = vma_iter_prev_range(vmi);
2619 	next = vma_next(vmi);
2620 	if (next)
2621 		vma_iter_prev_range(vmi);
2622 
2623 	/*
2624 	 * We can free page tables without write-locking mmap_lock because VMAs
2625 	 * were isolated before we downgraded mmap_lock.
2626 	 */
2627 	mas_set(&mas_detach, 1);
2628 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2629 		     !unlock);
2630 	/* Statistics and freeing VMAs */
2631 	mas_set(&mas_detach, 0);
2632 	remove_mt(mm, &mas_detach);
2633 	validate_mm(mm);
2634 	if (unlock)
2635 		mmap_read_unlock(mm);
2636 
2637 	__mt_destroy(&mt_detach);
2638 	return 0;
2639 
2640 clear_tree_failed:
2641 userfaultfd_error:
2642 munmap_gather_failed:
2643 end_split_failed:
2644 	mas_set(&mas_detach, 0);
2645 	mas_for_each(&mas_detach, next, end)
2646 		vma_mark_detached(next, false);
2647 
2648 	__mt_destroy(&mt_detach);
2649 start_split_failed:
2650 map_count_exceeded:
2651 	validate_mm(mm);
2652 	return error;
2653 }
2654 
2655 /*
2656  * do_vmi_munmap() - munmap a given range.
2657  * @vmi: The vma iterator
2658  * @mm: The mm_struct
2659  * @start: The start address to munmap
2660  * @len: The length of the range to munmap
2661  * @uf: The userfaultfd list_head
2662  * @unlock: set to true if the user wants to drop the mmap_lock on success
2663  *
2664  * This function takes a @mas that is either pointing to the previous VMA or set
2665  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2666  * aligned and any arch_unmap work will be preformed.
2667  *
2668  * Return: 0 on success and drops the lock if so directed, error and leaves the
2669  * lock held otherwise.
2670  */
2671 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2672 		  unsigned long start, size_t len, struct list_head *uf,
2673 		  bool unlock)
2674 {
2675 	unsigned long end;
2676 	struct vm_area_struct *vma;
2677 
2678 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2679 		return -EINVAL;
2680 
2681 	end = start + PAGE_ALIGN(len);
2682 	if (end == start)
2683 		return -EINVAL;
2684 
2685 	 /* arch_unmap() might do unmaps itself.  */
2686 	arch_unmap(mm, start, end);
2687 
2688 	/* Find the first overlapping VMA */
2689 	vma = vma_find(vmi, end);
2690 	if (!vma) {
2691 		if (unlock)
2692 			mmap_write_unlock(mm);
2693 		return 0;
2694 	}
2695 
2696 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2697 }
2698 
2699 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2700  * @mm: The mm_struct
2701  * @start: The start address to munmap
2702  * @len: The length to be munmapped.
2703  * @uf: The userfaultfd list_head
2704  *
2705  * Return: 0 on success, error otherwise.
2706  */
2707 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2708 	      struct list_head *uf)
2709 {
2710 	VMA_ITERATOR(vmi, mm, start);
2711 
2712 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2713 }
2714 
2715 unsigned long mmap_region(struct file *file, unsigned long addr,
2716 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2717 		struct list_head *uf)
2718 {
2719 	struct mm_struct *mm = current->mm;
2720 	struct vm_area_struct *vma = NULL;
2721 	struct vm_area_struct *next, *prev, *merge;
2722 	pgoff_t pglen = len >> PAGE_SHIFT;
2723 	unsigned long charged = 0;
2724 	unsigned long end = addr + len;
2725 	unsigned long merge_start = addr, merge_end = end;
2726 	bool writable_file_mapping = false;
2727 	pgoff_t vm_pgoff;
2728 	int error;
2729 	VMA_ITERATOR(vmi, mm, addr);
2730 
2731 	/* Check against address space limit. */
2732 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2733 		unsigned long nr_pages;
2734 
2735 		/*
2736 		 * MAP_FIXED may remove pages of mappings that intersects with
2737 		 * requested mapping. Account for the pages it would unmap.
2738 		 */
2739 		nr_pages = count_vma_pages_range(mm, addr, end);
2740 
2741 		if (!may_expand_vm(mm, vm_flags,
2742 					(len >> PAGE_SHIFT) - nr_pages))
2743 			return -ENOMEM;
2744 	}
2745 
2746 	/* Unmap any existing mapping in the area */
2747 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2748 		return -ENOMEM;
2749 
2750 	/*
2751 	 * Private writable mapping: check memory availability
2752 	 */
2753 	if (accountable_mapping(file, vm_flags)) {
2754 		charged = len >> PAGE_SHIFT;
2755 		if (security_vm_enough_memory_mm(mm, charged))
2756 			return -ENOMEM;
2757 		vm_flags |= VM_ACCOUNT;
2758 	}
2759 
2760 	next = vma_next(&vmi);
2761 	prev = vma_prev(&vmi);
2762 	if (vm_flags & VM_SPECIAL) {
2763 		if (prev)
2764 			vma_iter_next_range(&vmi);
2765 		goto cannot_expand;
2766 	}
2767 
2768 	/* Attempt to expand an old mapping */
2769 	/* Check next */
2770 	if (next && next->vm_start == end && !vma_policy(next) &&
2771 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2772 				 NULL_VM_UFFD_CTX, NULL)) {
2773 		merge_end = next->vm_end;
2774 		vma = next;
2775 		vm_pgoff = next->vm_pgoff - pglen;
2776 	}
2777 
2778 	/* Check prev */
2779 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2780 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2781 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2782 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2783 				       NULL_VM_UFFD_CTX, NULL))) {
2784 		merge_start = prev->vm_start;
2785 		vma = prev;
2786 		vm_pgoff = prev->vm_pgoff;
2787 	} else if (prev) {
2788 		vma_iter_next_range(&vmi);
2789 	}
2790 
2791 	/* Actually expand, if possible */
2792 	if (vma &&
2793 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2794 		khugepaged_enter_vma(vma, vm_flags);
2795 		goto expanded;
2796 	}
2797 
2798 	if (vma == prev)
2799 		vma_iter_set(&vmi, addr);
2800 cannot_expand:
2801 
2802 	/*
2803 	 * Determine the object being mapped and call the appropriate
2804 	 * specific mapper. the address has already been validated, but
2805 	 * not unmapped, but the maps are removed from the list.
2806 	 */
2807 	vma = vm_area_alloc(mm);
2808 	if (!vma) {
2809 		error = -ENOMEM;
2810 		goto unacct_error;
2811 	}
2812 
2813 	vma_iter_config(&vmi, addr, end);
2814 	vma_set_range(vma, addr, end, pgoff);
2815 	vm_flags_init(vma, vm_flags);
2816 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2817 
2818 	if (file) {
2819 		vma->vm_file = get_file(file);
2820 		error = call_mmap(file, vma);
2821 		if (error)
2822 			goto unmap_and_free_vma;
2823 
2824 		if (vma_is_shared_maywrite(vma)) {
2825 			error = mapping_map_writable(file->f_mapping);
2826 			if (error)
2827 				goto close_and_free_vma;
2828 
2829 			writable_file_mapping = true;
2830 		}
2831 
2832 		/*
2833 		 * Expansion is handled above, merging is handled below.
2834 		 * Drivers should not alter the address of the VMA.
2835 		 */
2836 		error = -EINVAL;
2837 		if (WARN_ON((addr != vma->vm_start)))
2838 			goto close_and_free_vma;
2839 
2840 		vma_iter_config(&vmi, addr, end);
2841 		/*
2842 		 * If vm_flags changed after call_mmap(), we should try merge
2843 		 * vma again as we may succeed this time.
2844 		 */
2845 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2846 			merge = vma_merge_new_vma(&vmi, prev, vma,
2847 						  vma->vm_start, vma->vm_end,
2848 						  vma->vm_pgoff);
2849 			if (merge) {
2850 				/*
2851 				 * ->mmap() can change vma->vm_file and fput
2852 				 * the original file. So fput the vma->vm_file
2853 				 * here or we would add an extra fput for file
2854 				 * and cause general protection fault
2855 				 * ultimately.
2856 				 */
2857 				fput(vma->vm_file);
2858 				vm_area_free(vma);
2859 				vma = merge;
2860 				/* Update vm_flags to pick up the change. */
2861 				vm_flags = vma->vm_flags;
2862 				goto unmap_writable;
2863 			}
2864 		}
2865 
2866 		vm_flags = vma->vm_flags;
2867 	} else if (vm_flags & VM_SHARED) {
2868 		error = shmem_zero_setup(vma);
2869 		if (error)
2870 			goto free_vma;
2871 	} else {
2872 		vma_set_anonymous(vma);
2873 	}
2874 
2875 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2876 		error = -EACCES;
2877 		goto close_and_free_vma;
2878 	}
2879 
2880 	/* Allow architectures to sanity-check the vm_flags */
2881 	error = -EINVAL;
2882 	if (!arch_validate_flags(vma->vm_flags))
2883 		goto close_and_free_vma;
2884 
2885 	error = -ENOMEM;
2886 	if (vma_iter_prealloc(&vmi, vma))
2887 		goto close_and_free_vma;
2888 
2889 	/* Lock the VMA since it is modified after insertion into VMA tree */
2890 	vma_start_write(vma);
2891 	vma_iter_store(&vmi, vma);
2892 	mm->map_count++;
2893 	vma_link_file(vma);
2894 
2895 	/*
2896 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2897 	 * call covers the non-merge case.
2898 	 */
2899 	khugepaged_enter_vma(vma, vma->vm_flags);
2900 
2901 	/* Once vma denies write, undo our temporary denial count */
2902 unmap_writable:
2903 	if (writable_file_mapping)
2904 		mapping_unmap_writable(file->f_mapping);
2905 	file = vma->vm_file;
2906 	ksm_add_vma(vma);
2907 expanded:
2908 	perf_event_mmap(vma);
2909 
2910 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2911 	if (vm_flags & VM_LOCKED) {
2912 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2913 					is_vm_hugetlb_page(vma) ||
2914 					vma == get_gate_vma(current->mm))
2915 			vm_flags_clear(vma, VM_LOCKED_MASK);
2916 		else
2917 			mm->locked_vm += (len >> PAGE_SHIFT);
2918 	}
2919 
2920 	if (file)
2921 		uprobe_mmap(vma);
2922 
2923 	/*
2924 	 * New (or expanded) vma always get soft dirty status.
2925 	 * Otherwise user-space soft-dirty page tracker won't
2926 	 * be able to distinguish situation when vma area unmapped,
2927 	 * then new mapped in-place (which must be aimed as
2928 	 * a completely new data area).
2929 	 */
2930 	vm_flags_set(vma, VM_SOFTDIRTY);
2931 
2932 	vma_set_page_prot(vma);
2933 
2934 	validate_mm(mm);
2935 	return addr;
2936 
2937 close_and_free_vma:
2938 	if (file && vma->vm_ops && vma->vm_ops->close)
2939 		vma->vm_ops->close(vma);
2940 
2941 	if (file || vma->vm_file) {
2942 unmap_and_free_vma:
2943 		fput(vma->vm_file);
2944 		vma->vm_file = NULL;
2945 
2946 		vma_iter_set(&vmi, vma->vm_end);
2947 		/* Undo any partial mapping done by a device driver. */
2948 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2949 			     vma->vm_end, vma->vm_end, true);
2950 	}
2951 	if (writable_file_mapping)
2952 		mapping_unmap_writable(file->f_mapping);
2953 free_vma:
2954 	vm_area_free(vma);
2955 unacct_error:
2956 	if (charged)
2957 		vm_unacct_memory(charged);
2958 	validate_mm(mm);
2959 	return error;
2960 }
2961 
2962 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2963 {
2964 	int ret;
2965 	struct mm_struct *mm = current->mm;
2966 	LIST_HEAD(uf);
2967 	VMA_ITERATOR(vmi, mm, start);
2968 
2969 	if (mmap_write_lock_killable(mm))
2970 		return -EINTR;
2971 
2972 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2973 	if (ret || !unlock)
2974 		mmap_write_unlock(mm);
2975 
2976 	userfaultfd_unmap_complete(mm, &uf);
2977 	return ret;
2978 }
2979 
2980 int vm_munmap(unsigned long start, size_t len)
2981 {
2982 	return __vm_munmap(start, len, false);
2983 }
2984 EXPORT_SYMBOL(vm_munmap);
2985 
2986 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2987 {
2988 	addr = untagged_addr(addr);
2989 	return __vm_munmap(addr, len, true);
2990 }
2991 
2992 
2993 /*
2994  * Emulation of deprecated remap_file_pages() syscall.
2995  */
2996 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2997 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2998 {
2999 
3000 	struct mm_struct *mm = current->mm;
3001 	struct vm_area_struct *vma;
3002 	unsigned long populate = 0;
3003 	unsigned long ret = -EINVAL;
3004 	struct file *file;
3005 
3006 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3007 		     current->comm, current->pid);
3008 
3009 	if (prot)
3010 		return ret;
3011 	start = start & PAGE_MASK;
3012 	size = size & PAGE_MASK;
3013 
3014 	if (start + size <= start)
3015 		return ret;
3016 
3017 	/* Does pgoff wrap? */
3018 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3019 		return ret;
3020 
3021 	if (mmap_write_lock_killable(mm))
3022 		return -EINTR;
3023 
3024 	vma = vma_lookup(mm, start);
3025 
3026 	if (!vma || !(vma->vm_flags & VM_SHARED))
3027 		goto out;
3028 
3029 	if (start + size > vma->vm_end) {
3030 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3031 		struct vm_area_struct *next, *prev = vma;
3032 
3033 		for_each_vma_range(vmi, next, start + size) {
3034 			/* hole between vmas ? */
3035 			if (next->vm_start != prev->vm_end)
3036 				goto out;
3037 
3038 			if (next->vm_file != vma->vm_file)
3039 				goto out;
3040 
3041 			if (next->vm_flags != vma->vm_flags)
3042 				goto out;
3043 
3044 			if (start + size <= next->vm_end)
3045 				break;
3046 
3047 			prev = next;
3048 		}
3049 
3050 		if (!next)
3051 			goto out;
3052 	}
3053 
3054 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3055 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3056 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3057 
3058 	flags &= MAP_NONBLOCK;
3059 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3060 	if (vma->vm_flags & VM_LOCKED)
3061 		flags |= MAP_LOCKED;
3062 
3063 	file = get_file(vma->vm_file);
3064 	ret = do_mmap(vma->vm_file, start, size,
3065 			prot, flags, 0, pgoff, &populate, NULL);
3066 	fput(file);
3067 out:
3068 	mmap_write_unlock(mm);
3069 	if (populate)
3070 		mm_populate(ret, populate);
3071 	if (!IS_ERR_VALUE(ret))
3072 		ret = 0;
3073 	return ret;
3074 }
3075 
3076 /*
3077  * do_vma_munmap() - Unmap a full or partial vma.
3078  * @vmi: The vma iterator pointing at the vma
3079  * @vma: The first vma to be munmapped
3080  * @start: the start of the address to unmap
3081  * @end: The end of the address to unmap
3082  * @uf: The userfaultfd list_head
3083  * @unlock: Drop the lock on success
3084  *
3085  * unmaps a VMA mapping when the vma iterator is already in position.
3086  * Does not handle alignment.
3087  *
3088  * Return: 0 on success drops the lock of so directed, error on failure and will
3089  * still hold the lock.
3090  */
3091 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3092 		unsigned long start, unsigned long end, struct list_head *uf,
3093 		bool unlock)
3094 {
3095 	struct mm_struct *mm = vma->vm_mm;
3096 
3097 	arch_unmap(mm, start, end);
3098 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3099 }
3100 
3101 /*
3102  * do_brk_flags() - Increase the brk vma if the flags match.
3103  * @vmi: The vma iterator
3104  * @addr: The start address
3105  * @len: The length of the increase
3106  * @vma: The vma,
3107  * @flags: The VMA Flags
3108  *
3109  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3110  * do not match then create a new anonymous VMA.  Eventually we may be able to
3111  * do some brk-specific accounting here.
3112  */
3113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3114 		unsigned long addr, unsigned long len, unsigned long flags)
3115 {
3116 	struct mm_struct *mm = current->mm;
3117 	struct vma_prepare vp;
3118 
3119 	/*
3120 	 * Check against address space limits by the changed size
3121 	 * Note: This happens *after* clearing old mappings in some code paths.
3122 	 */
3123 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3124 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3125 		return -ENOMEM;
3126 
3127 	if (mm->map_count > sysctl_max_map_count)
3128 		return -ENOMEM;
3129 
3130 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3131 		return -ENOMEM;
3132 
3133 	/*
3134 	 * Expand the existing vma if possible; Note that singular lists do not
3135 	 * occur after forking, so the expand will only happen on new VMAs.
3136 	 */
3137 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3138 	    can_vma_merge_after(vma, flags, NULL, NULL,
3139 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3140 		vma_iter_config(vmi, vma->vm_start, addr + len);
3141 		if (vma_iter_prealloc(vmi, vma))
3142 			goto unacct_fail;
3143 
3144 		vma_start_write(vma);
3145 
3146 		init_vma_prep(&vp, vma);
3147 		vma_prepare(&vp);
3148 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3149 		vma->vm_end = addr + len;
3150 		vm_flags_set(vma, VM_SOFTDIRTY);
3151 		vma_iter_store(vmi, vma);
3152 
3153 		vma_complete(&vp, vmi, mm);
3154 		khugepaged_enter_vma(vma, flags);
3155 		goto out;
3156 	}
3157 
3158 	if (vma)
3159 		vma_iter_next_range(vmi);
3160 	/* create a vma struct for an anonymous mapping */
3161 	vma = vm_area_alloc(mm);
3162 	if (!vma)
3163 		goto unacct_fail;
3164 
3165 	vma_set_anonymous(vma);
3166 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3167 	vm_flags_init(vma, flags);
3168 	vma->vm_page_prot = vm_get_page_prot(flags);
3169 	vma_start_write(vma);
3170 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3171 		goto mas_store_fail;
3172 
3173 	mm->map_count++;
3174 	validate_mm(mm);
3175 	ksm_add_vma(vma);
3176 out:
3177 	perf_event_mmap(vma);
3178 	mm->total_vm += len >> PAGE_SHIFT;
3179 	mm->data_vm += len >> PAGE_SHIFT;
3180 	if (flags & VM_LOCKED)
3181 		mm->locked_vm += (len >> PAGE_SHIFT);
3182 	vm_flags_set(vma, VM_SOFTDIRTY);
3183 	return 0;
3184 
3185 mas_store_fail:
3186 	vm_area_free(vma);
3187 unacct_fail:
3188 	vm_unacct_memory(len >> PAGE_SHIFT);
3189 	return -ENOMEM;
3190 }
3191 
3192 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3193 {
3194 	struct mm_struct *mm = current->mm;
3195 	struct vm_area_struct *vma = NULL;
3196 	unsigned long len;
3197 	int ret;
3198 	bool populate;
3199 	LIST_HEAD(uf);
3200 	VMA_ITERATOR(vmi, mm, addr);
3201 
3202 	len = PAGE_ALIGN(request);
3203 	if (len < request)
3204 		return -ENOMEM;
3205 	if (!len)
3206 		return 0;
3207 
3208 	/* Until we need other flags, refuse anything except VM_EXEC. */
3209 	if ((flags & (~VM_EXEC)) != 0)
3210 		return -EINVAL;
3211 
3212 	if (mmap_write_lock_killable(mm))
3213 		return -EINTR;
3214 
3215 	ret = check_brk_limits(addr, len);
3216 	if (ret)
3217 		goto limits_failed;
3218 
3219 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3220 	if (ret)
3221 		goto munmap_failed;
3222 
3223 	vma = vma_prev(&vmi);
3224 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3225 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3226 	mmap_write_unlock(mm);
3227 	userfaultfd_unmap_complete(mm, &uf);
3228 	if (populate && !ret)
3229 		mm_populate(addr, len);
3230 	return ret;
3231 
3232 munmap_failed:
3233 limits_failed:
3234 	mmap_write_unlock(mm);
3235 	return ret;
3236 }
3237 EXPORT_SYMBOL(vm_brk_flags);
3238 
3239 /* Release all mmaps. */
3240 void exit_mmap(struct mm_struct *mm)
3241 {
3242 	struct mmu_gather tlb;
3243 	struct vm_area_struct *vma;
3244 	unsigned long nr_accounted = 0;
3245 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3246 	int count = 0;
3247 
3248 	/* mm's last user has gone, and its about to be pulled down */
3249 	mmu_notifier_release(mm);
3250 
3251 	mmap_read_lock(mm);
3252 	arch_exit_mmap(mm);
3253 
3254 	vma = mas_find(&mas, ULONG_MAX);
3255 	if (!vma || unlikely(xa_is_zero(vma))) {
3256 		/* Can happen if dup_mmap() received an OOM */
3257 		mmap_read_unlock(mm);
3258 		mmap_write_lock(mm);
3259 		goto destroy;
3260 	}
3261 
3262 	lru_add_drain();
3263 	flush_cache_mm(mm);
3264 	tlb_gather_mmu_fullmm(&tlb, mm);
3265 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3266 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3267 	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3268 	mmap_read_unlock(mm);
3269 
3270 	/*
3271 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3272 	 * because the memory has been already freed.
3273 	 */
3274 	set_bit(MMF_OOM_SKIP, &mm->flags);
3275 	mmap_write_lock(mm);
3276 	mt_clear_in_rcu(&mm->mm_mt);
3277 	mas_set(&mas, vma->vm_end);
3278 	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3279 		      USER_PGTABLES_CEILING, true);
3280 	tlb_finish_mmu(&tlb);
3281 
3282 	/*
3283 	 * Walk the list again, actually closing and freeing it, with preemption
3284 	 * enabled, without holding any MM locks besides the unreachable
3285 	 * mmap_write_lock.
3286 	 */
3287 	mas_set(&mas, vma->vm_end);
3288 	do {
3289 		if (vma->vm_flags & VM_ACCOUNT)
3290 			nr_accounted += vma_pages(vma);
3291 		remove_vma(vma, true);
3292 		count++;
3293 		cond_resched();
3294 		vma = mas_find(&mas, ULONG_MAX);
3295 	} while (vma && likely(!xa_is_zero(vma)));
3296 
3297 	BUG_ON(count != mm->map_count);
3298 
3299 	trace_exit_mmap(mm);
3300 destroy:
3301 	__mt_destroy(&mm->mm_mt);
3302 	mmap_write_unlock(mm);
3303 	vm_unacct_memory(nr_accounted);
3304 }
3305 
3306 /* Insert vm structure into process list sorted by address
3307  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3308  * then i_mmap_rwsem is taken here.
3309  */
3310 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3311 {
3312 	unsigned long charged = vma_pages(vma);
3313 
3314 
3315 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3316 		return -ENOMEM;
3317 
3318 	if ((vma->vm_flags & VM_ACCOUNT) &&
3319 	     security_vm_enough_memory_mm(mm, charged))
3320 		return -ENOMEM;
3321 
3322 	/*
3323 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3324 	 * until its first write fault, when page's anon_vma and index
3325 	 * are set.  But now set the vm_pgoff it will almost certainly
3326 	 * end up with (unless mremap moves it elsewhere before that
3327 	 * first wfault), so /proc/pid/maps tells a consistent story.
3328 	 *
3329 	 * By setting it to reflect the virtual start address of the
3330 	 * vma, merges and splits can happen in a seamless way, just
3331 	 * using the existing file pgoff checks and manipulations.
3332 	 * Similarly in do_mmap and in do_brk_flags.
3333 	 */
3334 	if (vma_is_anonymous(vma)) {
3335 		BUG_ON(vma->anon_vma);
3336 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3337 	}
3338 
3339 	if (vma_link(mm, vma)) {
3340 		if (vma->vm_flags & VM_ACCOUNT)
3341 			vm_unacct_memory(charged);
3342 		return -ENOMEM;
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Copy the vma structure to a new location in the same mm,
3350  * prior to moving page table entries, to effect an mremap move.
3351  */
3352 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3353 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3354 	bool *need_rmap_locks)
3355 {
3356 	struct vm_area_struct *vma = *vmap;
3357 	unsigned long vma_start = vma->vm_start;
3358 	struct mm_struct *mm = vma->vm_mm;
3359 	struct vm_area_struct *new_vma, *prev;
3360 	bool faulted_in_anon_vma = true;
3361 	VMA_ITERATOR(vmi, mm, addr);
3362 
3363 	/*
3364 	 * If anonymous vma has not yet been faulted, update new pgoff
3365 	 * to match new location, to increase its chance of merging.
3366 	 */
3367 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3368 		pgoff = addr >> PAGE_SHIFT;
3369 		faulted_in_anon_vma = false;
3370 	}
3371 
3372 	new_vma = find_vma_prev(mm, addr, &prev);
3373 	if (new_vma && new_vma->vm_start < addr + len)
3374 		return NULL;	/* should never get here */
3375 
3376 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3377 	if (new_vma) {
3378 		/*
3379 		 * Source vma may have been merged into new_vma
3380 		 */
3381 		if (unlikely(vma_start >= new_vma->vm_start &&
3382 			     vma_start < new_vma->vm_end)) {
3383 			/*
3384 			 * The only way we can get a vma_merge with
3385 			 * self during an mremap is if the vma hasn't
3386 			 * been faulted in yet and we were allowed to
3387 			 * reset the dst vma->vm_pgoff to the
3388 			 * destination address of the mremap to allow
3389 			 * the merge to happen. mremap must change the
3390 			 * vm_pgoff linearity between src and dst vmas
3391 			 * (in turn preventing a vma_merge) to be
3392 			 * safe. It is only safe to keep the vm_pgoff
3393 			 * linear if there are no pages mapped yet.
3394 			 */
3395 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3396 			*vmap = vma = new_vma;
3397 		}
3398 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3399 	} else {
3400 		new_vma = vm_area_dup(vma);
3401 		if (!new_vma)
3402 			goto out;
3403 		vma_set_range(new_vma, addr, addr + len, pgoff);
3404 		if (vma_dup_policy(vma, new_vma))
3405 			goto out_free_vma;
3406 		if (anon_vma_clone(new_vma, vma))
3407 			goto out_free_mempol;
3408 		if (new_vma->vm_file)
3409 			get_file(new_vma->vm_file);
3410 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3411 			new_vma->vm_ops->open(new_vma);
3412 		if (vma_link(mm, new_vma))
3413 			goto out_vma_link;
3414 		*need_rmap_locks = false;
3415 	}
3416 	return new_vma;
3417 
3418 out_vma_link:
3419 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3420 		new_vma->vm_ops->close(new_vma);
3421 
3422 	if (new_vma->vm_file)
3423 		fput(new_vma->vm_file);
3424 
3425 	unlink_anon_vmas(new_vma);
3426 out_free_mempol:
3427 	mpol_put(vma_policy(new_vma));
3428 out_free_vma:
3429 	vm_area_free(new_vma);
3430 out:
3431 	return NULL;
3432 }
3433 
3434 /*
3435  * Return true if the calling process may expand its vm space by the passed
3436  * number of pages
3437  */
3438 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3439 {
3440 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3441 		return false;
3442 
3443 	if (is_data_mapping(flags) &&
3444 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3445 		/* Workaround for Valgrind */
3446 		if (rlimit(RLIMIT_DATA) == 0 &&
3447 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3448 			return true;
3449 
3450 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3451 			     current->comm, current->pid,
3452 			     (mm->data_vm + npages) << PAGE_SHIFT,
3453 			     rlimit(RLIMIT_DATA),
3454 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3455 
3456 		if (!ignore_rlimit_data)
3457 			return false;
3458 	}
3459 
3460 	return true;
3461 }
3462 
3463 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3464 {
3465 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3466 
3467 	if (is_exec_mapping(flags))
3468 		mm->exec_vm += npages;
3469 	else if (is_stack_mapping(flags))
3470 		mm->stack_vm += npages;
3471 	else if (is_data_mapping(flags))
3472 		mm->data_vm += npages;
3473 }
3474 
3475 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3476 
3477 /*
3478  * Having a close hook prevents vma merging regardless of flags.
3479  */
3480 static void special_mapping_close(struct vm_area_struct *vma)
3481 {
3482 }
3483 
3484 static const char *special_mapping_name(struct vm_area_struct *vma)
3485 {
3486 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3487 }
3488 
3489 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3490 {
3491 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3492 
3493 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3494 		return -EFAULT;
3495 
3496 	if (sm->mremap)
3497 		return sm->mremap(sm, new_vma);
3498 
3499 	return 0;
3500 }
3501 
3502 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3503 {
3504 	/*
3505 	 * Forbid splitting special mappings - kernel has expectations over
3506 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3507 	 * the size of vma should stay the same over the special mapping's
3508 	 * lifetime.
3509 	 */
3510 	return -EINVAL;
3511 }
3512 
3513 static const struct vm_operations_struct special_mapping_vmops = {
3514 	.close = special_mapping_close,
3515 	.fault = special_mapping_fault,
3516 	.mremap = special_mapping_mremap,
3517 	.name = special_mapping_name,
3518 	/* vDSO code relies that VVAR can't be accessed remotely */
3519 	.access = NULL,
3520 	.may_split = special_mapping_split,
3521 };
3522 
3523 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3524 	.close = special_mapping_close,
3525 	.fault = special_mapping_fault,
3526 };
3527 
3528 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3529 {
3530 	struct vm_area_struct *vma = vmf->vma;
3531 	pgoff_t pgoff;
3532 	struct page **pages;
3533 
3534 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3535 		pages = vma->vm_private_data;
3536 	} else {
3537 		struct vm_special_mapping *sm = vma->vm_private_data;
3538 
3539 		if (sm->fault)
3540 			return sm->fault(sm, vmf->vma, vmf);
3541 
3542 		pages = sm->pages;
3543 	}
3544 
3545 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3546 		pgoff--;
3547 
3548 	if (*pages) {
3549 		struct page *page = *pages;
3550 		get_page(page);
3551 		vmf->page = page;
3552 		return 0;
3553 	}
3554 
3555 	return VM_FAULT_SIGBUS;
3556 }
3557 
3558 static struct vm_area_struct *__install_special_mapping(
3559 	struct mm_struct *mm,
3560 	unsigned long addr, unsigned long len,
3561 	unsigned long vm_flags, void *priv,
3562 	const struct vm_operations_struct *ops)
3563 {
3564 	int ret;
3565 	struct vm_area_struct *vma;
3566 
3567 	vma = vm_area_alloc(mm);
3568 	if (unlikely(vma == NULL))
3569 		return ERR_PTR(-ENOMEM);
3570 
3571 	vma_set_range(vma, addr, addr + len, 0);
3572 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3573 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3574 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3575 
3576 	vma->vm_ops = ops;
3577 	vma->vm_private_data = priv;
3578 
3579 	ret = insert_vm_struct(mm, vma);
3580 	if (ret)
3581 		goto out;
3582 
3583 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3584 
3585 	perf_event_mmap(vma);
3586 
3587 	return vma;
3588 
3589 out:
3590 	vm_area_free(vma);
3591 	return ERR_PTR(ret);
3592 }
3593 
3594 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3595 	const struct vm_special_mapping *sm)
3596 {
3597 	return vma->vm_private_data == sm &&
3598 		(vma->vm_ops == &special_mapping_vmops ||
3599 		 vma->vm_ops == &legacy_special_mapping_vmops);
3600 }
3601 
3602 /*
3603  * Called with mm->mmap_lock held for writing.
3604  * Insert a new vma covering the given region, with the given flags.
3605  * Its pages are supplied by the given array of struct page *.
3606  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3607  * The region past the last page supplied will always produce SIGBUS.
3608  * The array pointer and the pages it points to are assumed to stay alive
3609  * for as long as this mapping might exist.
3610  */
3611 struct vm_area_struct *_install_special_mapping(
3612 	struct mm_struct *mm,
3613 	unsigned long addr, unsigned long len,
3614 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3615 {
3616 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3617 					&special_mapping_vmops);
3618 }
3619 
3620 int install_special_mapping(struct mm_struct *mm,
3621 			    unsigned long addr, unsigned long len,
3622 			    unsigned long vm_flags, struct page **pages)
3623 {
3624 	struct vm_area_struct *vma = __install_special_mapping(
3625 		mm, addr, len, vm_flags, (void *)pages,
3626 		&legacy_special_mapping_vmops);
3627 
3628 	return PTR_ERR_OR_ZERO(vma);
3629 }
3630 
3631 static DEFINE_MUTEX(mm_all_locks_mutex);
3632 
3633 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3634 {
3635 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3636 		/*
3637 		 * The LSB of head.next can't change from under us
3638 		 * because we hold the mm_all_locks_mutex.
3639 		 */
3640 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3641 		/*
3642 		 * We can safely modify head.next after taking the
3643 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3644 		 * the same anon_vma we won't take it again.
3645 		 *
3646 		 * No need of atomic instructions here, head.next
3647 		 * can't change from under us thanks to the
3648 		 * anon_vma->root->rwsem.
3649 		 */
3650 		if (__test_and_set_bit(0, (unsigned long *)
3651 				       &anon_vma->root->rb_root.rb_root.rb_node))
3652 			BUG();
3653 	}
3654 }
3655 
3656 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3657 {
3658 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3659 		/*
3660 		 * AS_MM_ALL_LOCKS can't change from under us because
3661 		 * we hold the mm_all_locks_mutex.
3662 		 *
3663 		 * Operations on ->flags have to be atomic because
3664 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3665 		 * mm_all_locks_mutex, there may be other cpus
3666 		 * changing other bitflags in parallel to us.
3667 		 */
3668 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3669 			BUG();
3670 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3671 	}
3672 }
3673 
3674 /*
3675  * This operation locks against the VM for all pte/vma/mm related
3676  * operations that could ever happen on a certain mm. This includes
3677  * vmtruncate, try_to_unmap, and all page faults.
3678  *
3679  * The caller must take the mmap_lock in write mode before calling
3680  * mm_take_all_locks(). The caller isn't allowed to release the
3681  * mmap_lock until mm_drop_all_locks() returns.
3682  *
3683  * mmap_lock in write mode is required in order to block all operations
3684  * that could modify pagetables and free pages without need of
3685  * altering the vma layout. It's also needed in write mode to avoid new
3686  * anon_vmas to be associated with existing vmas.
3687  *
3688  * A single task can't take more than one mm_take_all_locks() in a row
3689  * or it would deadlock.
3690  *
3691  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3692  * mapping->flags avoid to take the same lock twice, if more than one
3693  * vma in this mm is backed by the same anon_vma or address_space.
3694  *
3695  * We take locks in following order, accordingly to comment at beginning
3696  * of mm/rmap.c:
3697  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3698  *     hugetlb mapping);
3699  *   - all vmas marked locked
3700  *   - all i_mmap_rwsem locks;
3701  *   - all anon_vma->rwseml
3702  *
3703  * We can take all locks within these types randomly because the VM code
3704  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3705  * mm_all_locks_mutex.
3706  *
3707  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3708  * that may have to take thousand of locks.
3709  *
3710  * mm_take_all_locks() can fail if it's interrupted by signals.
3711  */
3712 int mm_take_all_locks(struct mm_struct *mm)
3713 {
3714 	struct vm_area_struct *vma;
3715 	struct anon_vma_chain *avc;
3716 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3717 
3718 	mmap_assert_write_locked(mm);
3719 
3720 	mutex_lock(&mm_all_locks_mutex);
3721 
3722 	/*
3723 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3724 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3725 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3726 	 * is reached.
3727 	 */
3728 	mas_for_each(&mas, vma, ULONG_MAX) {
3729 		if (signal_pending(current))
3730 			goto out_unlock;
3731 		vma_start_write(vma);
3732 	}
3733 
3734 	mas_set(&mas, 0);
3735 	mas_for_each(&mas, vma, ULONG_MAX) {
3736 		if (signal_pending(current))
3737 			goto out_unlock;
3738 		if (vma->vm_file && vma->vm_file->f_mapping &&
3739 				is_vm_hugetlb_page(vma))
3740 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3741 	}
3742 
3743 	mas_set(&mas, 0);
3744 	mas_for_each(&mas, vma, ULONG_MAX) {
3745 		if (signal_pending(current))
3746 			goto out_unlock;
3747 		if (vma->vm_file && vma->vm_file->f_mapping &&
3748 				!is_vm_hugetlb_page(vma))
3749 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3750 	}
3751 
3752 	mas_set(&mas, 0);
3753 	mas_for_each(&mas, vma, ULONG_MAX) {
3754 		if (signal_pending(current))
3755 			goto out_unlock;
3756 		if (vma->anon_vma)
3757 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3758 				vm_lock_anon_vma(mm, avc->anon_vma);
3759 	}
3760 
3761 	return 0;
3762 
3763 out_unlock:
3764 	mm_drop_all_locks(mm);
3765 	return -EINTR;
3766 }
3767 
3768 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3769 {
3770 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3771 		/*
3772 		 * The LSB of head.next can't change to 0 from under
3773 		 * us because we hold the mm_all_locks_mutex.
3774 		 *
3775 		 * We must however clear the bitflag before unlocking
3776 		 * the vma so the users using the anon_vma->rb_root will
3777 		 * never see our bitflag.
3778 		 *
3779 		 * No need of atomic instructions here, head.next
3780 		 * can't change from under us until we release the
3781 		 * anon_vma->root->rwsem.
3782 		 */
3783 		if (!__test_and_clear_bit(0, (unsigned long *)
3784 					  &anon_vma->root->rb_root.rb_root.rb_node))
3785 			BUG();
3786 		anon_vma_unlock_write(anon_vma);
3787 	}
3788 }
3789 
3790 static void vm_unlock_mapping(struct address_space *mapping)
3791 {
3792 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3793 		/*
3794 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3795 		 * because we hold the mm_all_locks_mutex.
3796 		 */
3797 		i_mmap_unlock_write(mapping);
3798 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3799 					&mapping->flags))
3800 			BUG();
3801 	}
3802 }
3803 
3804 /*
3805  * The mmap_lock cannot be released by the caller until
3806  * mm_drop_all_locks() returns.
3807  */
3808 void mm_drop_all_locks(struct mm_struct *mm)
3809 {
3810 	struct vm_area_struct *vma;
3811 	struct anon_vma_chain *avc;
3812 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3813 
3814 	mmap_assert_write_locked(mm);
3815 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3816 
3817 	mas_for_each(&mas, vma, ULONG_MAX) {
3818 		if (vma->anon_vma)
3819 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3820 				vm_unlock_anon_vma(avc->anon_vma);
3821 		if (vma->vm_file && vma->vm_file->f_mapping)
3822 			vm_unlock_mapping(vma->vm_file->f_mapping);
3823 	}
3824 
3825 	mutex_unlock(&mm_all_locks_mutex);
3826 }
3827 
3828 /*
3829  * initialise the percpu counter for VM
3830  */
3831 void __init mmap_init(void)
3832 {
3833 	int ret;
3834 
3835 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3836 	VM_BUG_ON(ret);
3837 }
3838 
3839 /*
3840  * Initialise sysctl_user_reserve_kbytes.
3841  *
3842  * This is intended to prevent a user from starting a single memory hogging
3843  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3844  * mode.
3845  *
3846  * The default value is min(3% of free memory, 128MB)
3847  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3848  */
3849 static int init_user_reserve(void)
3850 {
3851 	unsigned long free_kbytes;
3852 
3853 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3854 
3855 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3856 	return 0;
3857 }
3858 subsys_initcall(init_user_reserve);
3859 
3860 /*
3861  * Initialise sysctl_admin_reserve_kbytes.
3862  *
3863  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3864  * to log in and kill a memory hogging process.
3865  *
3866  * Systems with more than 256MB will reserve 8MB, enough to recover
3867  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3868  * only reserve 3% of free pages by default.
3869  */
3870 static int init_admin_reserve(void)
3871 {
3872 	unsigned long free_kbytes;
3873 
3874 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3875 
3876 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3877 	return 0;
3878 }
3879 subsys_initcall(init_admin_reserve);
3880 
3881 /*
3882  * Reinititalise user and admin reserves if memory is added or removed.
3883  *
3884  * The default user reserve max is 128MB, and the default max for the
3885  * admin reserve is 8MB. These are usually, but not always, enough to
3886  * enable recovery from a memory hogging process using login/sshd, a shell,
3887  * and tools like top. It may make sense to increase or even disable the
3888  * reserve depending on the existence of swap or variations in the recovery
3889  * tools. So, the admin may have changed them.
3890  *
3891  * If memory is added and the reserves have been eliminated or increased above
3892  * the default max, then we'll trust the admin.
3893  *
3894  * If memory is removed and there isn't enough free memory, then we
3895  * need to reset the reserves.
3896  *
3897  * Otherwise keep the reserve set by the admin.
3898  */
3899 static int reserve_mem_notifier(struct notifier_block *nb,
3900 			     unsigned long action, void *data)
3901 {
3902 	unsigned long tmp, free_kbytes;
3903 
3904 	switch (action) {
3905 	case MEM_ONLINE:
3906 		/* Default max is 128MB. Leave alone if modified by operator. */
3907 		tmp = sysctl_user_reserve_kbytes;
3908 		if (tmp > 0 && tmp < SZ_128K)
3909 			init_user_reserve();
3910 
3911 		/* Default max is 8MB.  Leave alone if modified by operator. */
3912 		tmp = sysctl_admin_reserve_kbytes;
3913 		if (tmp > 0 && tmp < SZ_8K)
3914 			init_admin_reserve();
3915 
3916 		break;
3917 	case MEM_OFFLINE:
3918 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3919 
3920 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3921 			init_user_reserve();
3922 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3923 				sysctl_user_reserve_kbytes);
3924 		}
3925 
3926 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3927 			init_admin_reserve();
3928 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3929 				sysctl_admin_reserve_kbytes);
3930 		}
3931 		break;
3932 	default:
3933 		break;
3934 	}
3935 	return NOTIFY_OK;
3936 }
3937 
3938 static int __meminit init_reserve_notifier(void)
3939 {
3940 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3941 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3942 
3943 	return 0;
3944 }
3945 subsys_initcall(init_reserve_notifier);
3946