xref: /linux/mm/mmap.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #include "internal.h"
57 
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)	(0)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  */
94 pgprot_t protection_map[16] __ro_after_init = {
95 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98 
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102 	return prot;
103 }
104 #endif
105 
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
111 
112 	return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115 
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120 
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124 	unsigned long vm_flags = vma->vm_flags;
125 	pgprot_t vm_page_prot;
126 
127 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 	if (vma_wants_writenotify(vma, vm_page_prot)) {
129 		vm_flags &= ~VM_SHARED;
130 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 	}
132 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135 
136 /*
137  * Requires inode->i_mapping->i_mmap_rwsem
138  */
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 		struct file *file, struct address_space *mapping)
141 {
142 	if (vma->vm_flags & VM_DENYWRITE)
143 		atomic_inc(&file_inode(file)->i_writecount);
144 	if (vma->vm_flags & VM_SHARED)
145 		mapping_unmap_writable(mapping);
146 
147 	flush_dcache_mmap_lock(mapping);
148 	vma_interval_tree_remove(vma, &mapping->i_mmap);
149 	flush_dcache_mmap_unlock(mapping);
150 }
151 
152 /*
153  * Unlink a file-based vm structure from its interval tree, to hide
154  * vma from rmap and vmtruncate before freeing its page tables.
155  */
156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158 	struct file *file = vma->vm_file;
159 
160 	if (file) {
161 		struct address_space *mapping = file->f_mapping;
162 		i_mmap_lock_write(mapping);
163 		__remove_shared_vm_struct(vma, file, mapping);
164 		i_mmap_unlock_write(mapping);
165 	}
166 }
167 
168 /*
169  * Close a vm structure and free it, returning the next.
170  */
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173 	struct vm_area_struct *next = vma->vm_next;
174 
175 	might_sleep();
176 	if (vma->vm_ops && vma->vm_ops->close)
177 		vma->vm_ops->close(vma);
178 	if (vma->vm_file)
179 		fput(vma->vm_file);
180 	mpol_put(vma_policy(vma));
181 	vm_area_free(vma);
182 	return next;
183 }
184 
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 		struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189 	unsigned long retval;
190 	unsigned long newbrk, oldbrk, origbrk;
191 	struct mm_struct *mm = current->mm;
192 	struct vm_area_struct *next;
193 	unsigned long min_brk;
194 	bool populate;
195 	bool downgraded = false;
196 	LIST_HEAD(uf);
197 
198 	brk = untagged_addr(brk);
199 
200 	if (down_write_killable(&mm->mmap_sem))
201 		return -EINTR;
202 
203 	origbrk = mm->brk;
204 
205 #ifdef CONFIG_COMPAT_BRK
206 	/*
207 	 * CONFIG_COMPAT_BRK can still be overridden by setting
208 	 * randomize_va_space to 2, which will still cause mm->start_brk
209 	 * to be arbitrarily shifted
210 	 */
211 	if (current->brk_randomized)
212 		min_brk = mm->start_brk;
213 	else
214 		min_brk = mm->end_data;
215 #else
216 	min_brk = mm->start_brk;
217 #endif
218 	if (brk < min_brk)
219 		goto out;
220 
221 	/*
222 	 * Check against rlimit here. If this check is done later after the test
223 	 * of oldbrk with newbrk then it can escape the test and let the data
224 	 * segment grow beyond its set limit the in case where the limit is
225 	 * not page aligned -Ram Gupta
226 	 */
227 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 			      mm->end_data, mm->start_data))
229 		goto out;
230 
231 	newbrk = PAGE_ALIGN(brk);
232 	oldbrk = PAGE_ALIGN(mm->brk);
233 	if (oldbrk == newbrk) {
234 		mm->brk = brk;
235 		goto success;
236 	}
237 
238 	/*
239 	 * Always allow shrinking brk.
240 	 * __do_munmap() may downgrade mmap_sem to read.
241 	 */
242 	if (brk <= mm->brk) {
243 		int ret;
244 
245 		/*
246 		 * mm->brk must to be protected by write mmap_sem so update it
247 		 * before downgrading mmap_sem. When __do_munmap() fails,
248 		 * mm->brk will be restored from origbrk.
249 		 */
250 		mm->brk = brk;
251 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
252 		if (ret < 0) {
253 			mm->brk = origbrk;
254 			goto out;
255 		} else if (ret == 1) {
256 			downgraded = true;
257 		}
258 		goto success;
259 	}
260 
261 	/* Check against existing mmap mappings. */
262 	next = find_vma(mm, oldbrk);
263 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
264 		goto out;
265 
266 	/* Ok, looks good - let it rip. */
267 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
268 		goto out;
269 	mm->brk = brk;
270 
271 success:
272 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
273 	if (downgraded)
274 		up_read(&mm->mmap_sem);
275 	else
276 		up_write(&mm->mmap_sem);
277 	userfaultfd_unmap_complete(mm, &uf);
278 	if (populate)
279 		mm_populate(oldbrk, newbrk - oldbrk);
280 	return brk;
281 
282 out:
283 	retval = origbrk;
284 	up_write(&mm->mmap_sem);
285 	return retval;
286 }
287 
288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
289 {
290 	unsigned long gap, prev_end;
291 
292 	/*
293 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
294 	 * allow two stack_guard_gaps between them here, and when choosing
295 	 * an unmapped area; whereas when expanding we only require one.
296 	 * That's a little inconsistent, but keeps the code here simpler.
297 	 */
298 	gap = vm_start_gap(vma);
299 	if (vma->vm_prev) {
300 		prev_end = vm_end_gap(vma->vm_prev);
301 		if (gap > prev_end)
302 			gap -= prev_end;
303 		else
304 			gap = 0;
305 	}
306 	return gap;
307 }
308 
309 #ifdef CONFIG_DEBUG_VM_RB
310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
311 {
312 	unsigned long max = vma_compute_gap(vma), subtree_gap;
313 	if (vma->vm_rb.rb_left) {
314 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
315 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
316 		if (subtree_gap > max)
317 			max = subtree_gap;
318 	}
319 	if (vma->vm_rb.rb_right) {
320 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
321 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 		if (subtree_gap > max)
323 			max = subtree_gap;
324 	}
325 	return max;
326 }
327 
328 static int browse_rb(struct mm_struct *mm)
329 {
330 	struct rb_root *root = &mm->mm_rb;
331 	int i = 0, j, bug = 0;
332 	struct rb_node *nd, *pn = NULL;
333 	unsigned long prev = 0, pend = 0;
334 
335 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
336 		struct vm_area_struct *vma;
337 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
338 		if (vma->vm_start < prev) {
339 			pr_emerg("vm_start %lx < prev %lx\n",
340 				  vma->vm_start, prev);
341 			bug = 1;
342 		}
343 		if (vma->vm_start < pend) {
344 			pr_emerg("vm_start %lx < pend %lx\n",
345 				  vma->vm_start, pend);
346 			bug = 1;
347 		}
348 		if (vma->vm_start > vma->vm_end) {
349 			pr_emerg("vm_start %lx > vm_end %lx\n",
350 				  vma->vm_start, vma->vm_end);
351 			bug = 1;
352 		}
353 		spin_lock(&mm->page_table_lock);
354 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
355 			pr_emerg("free gap %lx, correct %lx\n",
356 			       vma->rb_subtree_gap,
357 			       vma_compute_subtree_gap(vma));
358 			bug = 1;
359 		}
360 		spin_unlock(&mm->page_table_lock);
361 		i++;
362 		pn = nd;
363 		prev = vma->vm_start;
364 		pend = vma->vm_end;
365 	}
366 	j = 0;
367 	for (nd = pn; nd; nd = rb_prev(nd))
368 		j++;
369 	if (i != j) {
370 		pr_emerg("backwards %d, forwards %d\n", j, i);
371 		bug = 1;
372 	}
373 	return bug ? -1 : i;
374 }
375 
376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
377 {
378 	struct rb_node *nd;
379 
380 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
381 		struct vm_area_struct *vma;
382 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
383 		VM_BUG_ON_VMA(vma != ignore &&
384 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
385 			vma);
386 	}
387 }
388 
389 static void validate_mm(struct mm_struct *mm)
390 {
391 	int bug = 0;
392 	int i = 0;
393 	unsigned long highest_address = 0;
394 	struct vm_area_struct *vma = mm->mmap;
395 
396 	while (vma) {
397 		struct anon_vma *anon_vma = vma->anon_vma;
398 		struct anon_vma_chain *avc;
399 
400 		if (anon_vma) {
401 			anon_vma_lock_read(anon_vma);
402 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403 				anon_vma_interval_tree_verify(avc);
404 			anon_vma_unlock_read(anon_vma);
405 		}
406 
407 		highest_address = vm_end_gap(vma);
408 		vma = vma->vm_next;
409 		i++;
410 	}
411 	if (i != mm->map_count) {
412 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
413 		bug = 1;
414 	}
415 	if (highest_address != mm->highest_vm_end) {
416 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
417 			  mm->highest_vm_end, highest_address);
418 		bug = 1;
419 	}
420 	i = browse_rb(mm);
421 	if (i != mm->map_count) {
422 		if (i != -1)
423 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
424 		bug = 1;
425 	}
426 	VM_BUG_ON_MM(bug, mm);
427 }
428 #else
429 #define validate_mm_rb(root, ignore) do { } while (0)
430 #define validate_mm(mm) do { } while (0)
431 #endif
432 
433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
434 			 struct vm_area_struct, vm_rb,
435 			 unsigned long, rb_subtree_gap, vma_compute_gap)
436 
437 /*
438  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
439  * vma->vm_prev->vm_end values changed, without modifying the vma's position
440  * in the rbtree.
441  */
442 static void vma_gap_update(struct vm_area_struct *vma)
443 {
444 	/*
445 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
446 	 * a callback function that does exactly what we want.
447 	 */
448 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
449 }
450 
451 static inline void vma_rb_insert(struct vm_area_struct *vma,
452 				 struct rb_root *root)
453 {
454 	/* All rb_subtree_gap values must be consistent prior to insertion */
455 	validate_mm_rb(root, NULL);
456 
457 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
458 }
459 
460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
461 {
462 	/*
463 	 * Note rb_erase_augmented is a fairly large inline function,
464 	 * so make sure we instantiate it only once with our desired
465 	 * augmented rbtree callbacks.
466 	 */
467 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
468 }
469 
470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
471 						struct rb_root *root,
472 						struct vm_area_struct *ignore)
473 {
474 	/*
475 	 * All rb_subtree_gap values must be consistent prior to erase,
476 	 * with the possible exception of the "next" vma being erased if
477 	 * next->vm_start was reduced.
478 	 */
479 	validate_mm_rb(root, ignore);
480 
481 	__vma_rb_erase(vma, root);
482 }
483 
484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
485 					 struct rb_root *root)
486 {
487 	/*
488 	 * All rb_subtree_gap values must be consistent prior to erase,
489 	 * with the possible exception of the vma being erased.
490 	 */
491 	validate_mm_rb(root, vma);
492 
493 	__vma_rb_erase(vma, root);
494 }
495 
496 /*
497  * vma has some anon_vma assigned, and is already inserted on that
498  * anon_vma's interval trees.
499  *
500  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501  * vma must be removed from the anon_vma's interval trees using
502  * anon_vma_interval_tree_pre_update_vma().
503  *
504  * After the update, the vma will be reinserted using
505  * anon_vma_interval_tree_post_update_vma().
506  *
507  * The entire update must be protected by exclusive mmap_sem and by
508  * the root anon_vma's mutex.
509  */
510 static inline void
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
512 {
513 	struct anon_vma_chain *avc;
514 
515 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 }
518 
519 static inline void
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
521 {
522 	struct anon_vma_chain *avc;
523 
524 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526 }
527 
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529 		unsigned long end, struct vm_area_struct **pprev,
530 		struct rb_node ***rb_link, struct rb_node **rb_parent)
531 {
532 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
533 
534 	__rb_link = &mm->mm_rb.rb_node;
535 	rb_prev = __rb_parent = NULL;
536 
537 	while (*__rb_link) {
538 		struct vm_area_struct *vma_tmp;
539 
540 		__rb_parent = *__rb_link;
541 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
542 
543 		if (vma_tmp->vm_end > addr) {
544 			/* Fail if an existing vma overlaps the area */
545 			if (vma_tmp->vm_start < end)
546 				return -ENOMEM;
547 			__rb_link = &__rb_parent->rb_left;
548 		} else {
549 			rb_prev = __rb_parent;
550 			__rb_link = &__rb_parent->rb_right;
551 		}
552 	}
553 
554 	*pprev = NULL;
555 	if (rb_prev)
556 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557 	*rb_link = __rb_link;
558 	*rb_parent = __rb_parent;
559 	return 0;
560 }
561 
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563 		unsigned long addr, unsigned long end)
564 {
565 	unsigned long nr_pages = 0;
566 	struct vm_area_struct *vma;
567 
568 	/* Find first overlaping mapping */
569 	vma = find_vma_intersection(mm, addr, end);
570 	if (!vma)
571 		return 0;
572 
573 	nr_pages = (min(end, vma->vm_end) -
574 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
575 
576 	/* Iterate over the rest of the overlaps */
577 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578 		unsigned long overlap_len;
579 
580 		if (vma->vm_start > end)
581 			break;
582 
583 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
584 		nr_pages += overlap_len >> PAGE_SHIFT;
585 	}
586 
587 	return nr_pages;
588 }
589 
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591 		struct rb_node **rb_link, struct rb_node *rb_parent)
592 {
593 	/* Update tracking information for the gap following the new vma. */
594 	if (vma->vm_next)
595 		vma_gap_update(vma->vm_next);
596 	else
597 		mm->highest_vm_end = vm_end_gap(vma);
598 
599 	/*
600 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 	 * correct insertion point for that vma. As a result, we could not
602 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 	 * So, we first insert the vma with a zero rb_subtree_gap value
604 	 * (to be consistent with what we did on the way down), and then
605 	 * immediately update the gap to the correct value. Finally we
606 	 * rebalance the rbtree after all augmented values have been set.
607 	 */
608 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609 	vma->rb_subtree_gap = 0;
610 	vma_gap_update(vma);
611 	vma_rb_insert(vma, &mm->mm_rb);
612 }
613 
614 static void __vma_link_file(struct vm_area_struct *vma)
615 {
616 	struct file *file;
617 
618 	file = vma->vm_file;
619 	if (file) {
620 		struct address_space *mapping = file->f_mapping;
621 
622 		if (vma->vm_flags & VM_DENYWRITE)
623 			atomic_dec(&file_inode(file)->i_writecount);
624 		if (vma->vm_flags & VM_SHARED)
625 			atomic_inc(&mapping->i_mmap_writable);
626 
627 		flush_dcache_mmap_lock(mapping);
628 		vma_interval_tree_insert(vma, &mapping->i_mmap);
629 		flush_dcache_mmap_unlock(mapping);
630 	}
631 }
632 
633 static void
634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
635 	struct vm_area_struct *prev, struct rb_node **rb_link,
636 	struct rb_node *rb_parent)
637 {
638 	__vma_link_list(mm, vma, prev);
639 	__vma_link_rb(mm, vma, rb_link, rb_parent);
640 }
641 
642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643 			struct vm_area_struct *prev, struct rb_node **rb_link,
644 			struct rb_node *rb_parent)
645 {
646 	struct address_space *mapping = NULL;
647 
648 	if (vma->vm_file) {
649 		mapping = vma->vm_file->f_mapping;
650 		i_mmap_lock_write(mapping);
651 	}
652 
653 	__vma_link(mm, vma, prev, rb_link, rb_parent);
654 	__vma_link_file(vma);
655 
656 	if (mapping)
657 		i_mmap_unlock_write(mapping);
658 
659 	mm->map_count++;
660 	validate_mm(mm);
661 }
662 
663 /*
664  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
665  * mm's list and rbtree.  It has already been inserted into the interval tree.
666  */
667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
668 {
669 	struct vm_area_struct *prev;
670 	struct rb_node **rb_link, *rb_parent;
671 
672 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
673 			   &prev, &rb_link, &rb_parent))
674 		BUG();
675 	__vma_link(mm, vma, prev, rb_link, rb_parent);
676 	mm->map_count++;
677 }
678 
679 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
680 						struct vm_area_struct *vma,
681 						struct vm_area_struct *ignore)
682 {
683 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684 	__vma_unlink_list(mm, vma);
685 	/* Kill the cache */
686 	vmacache_invalidate(mm);
687 }
688 
689 /*
690  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691  * is already present in an i_mmap tree without adjusting the tree.
692  * The following helper function should be used when such adjustments
693  * are necessary.  The "insert" vma (if any) is to be inserted
694  * before we drop the necessary locks.
695  */
696 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
698 	struct vm_area_struct *expand)
699 {
700 	struct mm_struct *mm = vma->vm_mm;
701 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
702 	struct address_space *mapping = NULL;
703 	struct rb_root_cached *root = NULL;
704 	struct anon_vma *anon_vma = NULL;
705 	struct file *file = vma->vm_file;
706 	bool start_changed = false, end_changed = false;
707 	long adjust_next = 0;
708 	int remove_next = 0;
709 
710 	if (next && !insert) {
711 		struct vm_area_struct *exporter = NULL, *importer = NULL;
712 
713 		if (end >= next->vm_end) {
714 			/*
715 			 * vma expands, overlapping all the next, and
716 			 * perhaps the one after too (mprotect case 6).
717 			 * The only other cases that gets here are
718 			 * case 1, case 7 and case 8.
719 			 */
720 			if (next == expand) {
721 				/*
722 				 * The only case where we don't expand "vma"
723 				 * and we expand "next" instead is case 8.
724 				 */
725 				VM_WARN_ON(end != next->vm_end);
726 				/*
727 				 * remove_next == 3 means we're
728 				 * removing "vma" and that to do so we
729 				 * swapped "vma" and "next".
730 				 */
731 				remove_next = 3;
732 				VM_WARN_ON(file != next->vm_file);
733 				swap(vma, next);
734 			} else {
735 				VM_WARN_ON(expand != vma);
736 				/*
737 				 * case 1, 6, 7, remove_next == 2 is case 6,
738 				 * remove_next == 1 is case 1 or 7.
739 				 */
740 				remove_next = 1 + (end > next->vm_end);
741 				VM_WARN_ON(remove_next == 2 &&
742 					   end != next->vm_next->vm_end);
743 				/* trim end to next, for case 6 first pass */
744 				end = next->vm_end;
745 			}
746 
747 			exporter = next;
748 			importer = vma;
749 
750 			/*
751 			 * If next doesn't have anon_vma, import from vma after
752 			 * next, if the vma overlaps with it.
753 			 */
754 			if (remove_next == 2 && !next->anon_vma)
755 				exporter = next->vm_next;
756 
757 		} else if (end > next->vm_start) {
758 			/*
759 			 * vma expands, overlapping part of the next:
760 			 * mprotect case 5 shifting the boundary up.
761 			 */
762 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
763 			exporter = next;
764 			importer = vma;
765 			VM_WARN_ON(expand != importer);
766 		} else if (end < vma->vm_end) {
767 			/*
768 			 * vma shrinks, and !insert tells it's not
769 			 * split_vma inserting another: so it must be
770 			 * mprotect case 4 shifting the boundary down.
771 			 */
772 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
773 			exporter = vma;
774 			importer = next;
775 			VM_WARN_ON(expand != importer);
776 		}
777 
778 		/*
779 		 * Easily overlooked: when mprotect shifts the boundary,
780 		 * make sure the expanding vma has anon_vma set if the
781 		 * shrinking vma had, to cover any anon pages imported.
782 		 */
783 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
784 			int error;
785 
786 			importer->anon_vma = exporter->anon_vma;
787 			error = anon_vma_clone(importer, exporter);
788 			if (error)
789 				return error;
790 		}
791 	}
792 again:
793 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
794 
795 	if (file) {
796 		mapping = file->f_mapping;
797 		root = &mapping->i_mmap;
798 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
799 
800 		if (adjust_next)
801 			uprobe_munmap(next, next->vm_start, next->vm_end);
802 
803 		i_mmap_lock_write(mapping);
804 		if (insert) {
805 			/*
806 			 * Put into interval tree now, so instantiated pages
807 			 * are visible to arm/parisc __flush_dcache_page
808 			 * throughout; but we cannot insert into address
809 			 * space until vma start or end is updated.
810 			 */
811 			__vma_link_file(insert);
812 		}
813 	}
814 
815 	anon_vma = vma->anon_vma;
816 	if (!anon_vma && adjust_next)
817 		anon_vma = next->anon_vma;
818 	if (anon_vma) {
819 		VM_WARN_ON(adjust_next && next->anon_vma &&
820 			   anon_vma != next->anon_vma);
821 		anon_vma_lock_write(anon_vma);
822 		anon_vma_interval_tree_pre_update_vma(vma);
823 		if (adjust_next)
824 			anon_vma_interval_tree_pre_update_vma(next);
825 	}
826 
827 	if (root) {
828 		flush_dcache_mmap_lock(mapping);
829 		vma_interval_tree_remove(vma, root);
830 		if (adjust_next)
831 			vma_interval_tree_remove(next, root);
832 	}
833 
834 	if (start != vma->vm_start) {
835 		vma->vm_start = start;
836 		start_changed = true;
837 	}
838 	if (end != vma->vm_end) {
839 		vma->vm_end = end;
840 		end_changed = true;
841 	}
842 	vma->vm_pgoff = pgoff;
843 	if (adjust_next) {
844 		next->vm_start += adjust_next << PAGE_SHIFT;
845 		next->vm_pgoff += adjust_next;
846 	}
847 
848 	if (root) {
849 		if (adjust_next)
850 			vma_interval_tree_insert(next, root);
851 		vma_interval_tree_insert(vma, root);
852 		flush_dcache_mmap_unlock(mapping);
853 	}
854 
855 	if (remove_next) {
856 		/*
857 		 * vma_merge has merged next into vma, and needs
858 		 * us to remove next before dropping the locks.
859 		 */
860 		if (remove_next != 3)
861 			__vma_unlink_common(mm, next, next);
862 		else
863 			/*
864 			 * vma is not before next if they've been
865 			 * swapped.
866 			 *
867 			 * pre-swap() next->vm_start was reduced so
868 			 * tell validate_mm_rb to ignore pre-swap()
869 			 * "next" (which is stored in post-swap()
870 			 * "vma").
871 			 */
872 			__vma_unlink_common(mm, next, vma);
873 		if (file)
874 			__remove_shared_vm_struct(next, file, mapping);
875 	} else if (insert) {
876 		/*
877 		 * split_vma has split insert from vma, and needs
878 		 * us to insert it before dropping the locks
879 		 * (it may either follow vma or precede it).
880 		 */
881 		__insert_vm_struct(mm, insert);
882 	} else {
883 		if (start_changed)
884 			vma_gap_update(vma);
885 		if (end_changed) {
886 			if (!next)
887 				mm->highest_vm_end = vm_end_gap(vma);
888 			else if (!adjust_next)
889 				vma_gap_update(next);
890 		}
891 	}
892 
893 	if (anon_vma) {
894 		anon_vma_interval_tree_post_update_vma(vma);
895 		if (adjust_next)
896 			anon_vma_interval_tree_post_update_vma(next);
897 		anon_vma_unlock_write(anon_vma);
898 	}
899 	if (mapping)
900 		i_mmap_unlock_write(mapping);
901 
902 	if (root) {
903 		uprobe_mmap(vma);
904 
905 		if (adjust_next)
906 			uprobe_mmap(next);
907 	}
908 
909 	if (remove_next) {
910 		if (file) {
911 			uprobe_munmap(next, next->vm_start, next->vm_end);
912 			fput(file);
913 		}
914 		if (next->anon_vma)
915 			anon_vma_merge(vma, next);
916 		mm->map_count--;
917 		mpol_put(vma_policy(next));
918 		vm_area_free(next);
919 		/*
920 		 * In mprotect's case 6 (see comments on vma_merge),
921 		 * we must remove another next too. It would clutter
922 		 * up the code too much to do both in one go.
923 		 */
924 		if (remove_next != 3) {
925 			/*
926 			 * If "next" was removed and vma->vm_end was
927 			 * expanded (up) over it, in turn
928 			 * "next->vm_prev->vm_end" changed and the
929 			 * "vma->vm_next" gap must be updated.
930 			 */
931 			next = vma->vm_next;
932 		} else {
933 			/*
934 			 * For the scope of the comment "next" and
935 			 * "vma" considered pre-swap(): if "vma" was
936 			 * removed, next->vm_start was expanded (down)
937 			 * over it and the "next" gap must be updated.
938 			 * Because of the swap() the post-swap() "vma"
939 			 * actually points to pre-swap() "next"
940 			 * (post-swap() "next" as opposed is now a
941 			 * dangling pointer).
942 			 */
943 			next = vma;
944 		}
945 		if (remove_next == 2) {
946 			remove_next = 1;
947 			end = next->vm_end;
948 			goto again;
949 		}
950 		else if (next)
951 			vma_gap_update(next);
952 		else {
953 			/*
954 			 * If remove_next == 2 we obviously can't
955 			 * reach this path.
956 			 *
957 			 * If remove_next == 3 we can't reach this
958 			 * path because pre-swap() next is always not
959 			 * NULL. pre-swap() "next" is not being
960 			 * removed and its next->vm_end is not altered
961 			 * (and furthermore "end" already matches
962 			 * next->vm_end in remove_next == 3).
963 			 *
964 			 * We reach this only in the remove_next == 1
965 			 * case if the "next" vma that was removed was
966 			 * the highest vma of the mm. However in such
967 			 * case next->vm_end == "end" and the extended
968 			 * "vma" has vma->vm_end == next->vm_end so
969 			 * mm->highest_vm_end doesn't need any update
970 			 * in remove_next == 1 case.
971 			 */
972 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
973 		}
974 	}
975 	if (insert && file)
976 		uprobe_mmap(insert);
977 
978 	validate_mm(mm);
979 
980 	return 0;
981 }
982 
983 /*
984  * If the vma has a ->close operation then the driver probably needs to release
985  * per-vma resources, so we don't attempt to merge those.
986  */
987 static inline int is_mergeable_vma(struct vm_area_struct *vma,
988 				struct file *file, unsigned long vm_flags,
989 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
990 {
991 	/*
992 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
993 	 * match the flags but dirty bit -- the caller should mark
994 	 * merged VMA as dirty. If dirty bit won't be excluded from
995 	 * comparison, we increase pressure on the memory system forcing
996 	 * the kernel to generate new VMAs when old one could be
997 	 * extended instead.
998 	 */
999 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1000 		return 0;
1001 	if (vma->vm_file != file)
1002 		return 0;
1003 	if (vma->vm_ops && vma->vm_ops->close)
1004 		return 0;
1005 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1006 		return 0;
1007 	return 1;
1008 }
1009 
1010 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1011 					struct anon_vma *anon_vma2,
1012 					struct vm_area_struct *vma)
1013 {
1014 	/*
1015 	 * The list_is_singular() test is to avoid merging VMA cloned from
1016 	 * parents. This can improve scalability caused by anon_vma lock.
1017 	 */
1018 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1019 		list_is_singular(&vma->anon_vma_chain)))
1020 		return 1;
1021 	return anon_vma1 == anon_vma2;
1022 }
1023 
1024 /*
1025  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1026  * in front of (at a lower virtual address and file offset than) the vma.
1027  *
1028  * We cannot merge two vmas if they have differently assigned (non-NULL)
1029  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1030  *
1031  * We don't check here for the merged mmap wrapping around the end of pagecache
1032  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1033  * wrap, nor mmaps which cover the final page at index -1UL.
1034  */
1035 static int
1036 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1037 		     struct anon_vma *anon_vma, struct file *file,
1038 		     pgoff_t vm_pgoff,
1039 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1040 {
1041 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1042 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1043 		if (vma->vm_pgoff == vm_pgoff)
1044 			return 1;
1045 	}
1046 	return 0;
1047 }
1048 
1049 /*
1050  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1051  * beyond (at a higher virtual address and file offset than) the vma.
1052  *
1053  * We cannot merge two vmas if they have differently assigned (non-NULL)
1054  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1055  */
1056 static int
1057 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1058 		    struct anon_vma *anon_vma, struct file *file,
1059 		    pgoff_t vm_pgoff,
1060 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061 {
1062 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1064 		pgoff_t vm_pglen;
1065 		vm_pglen = vma_pages(vma);
1066 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1067 			return 1;
1068 	}
1069 	return 0;
1070 }
1071 
1072 /*
1073  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1074  * whether that can be merged with its predecessor or its successor.
1075  * Or both (it neatly fills a hole).
1076  *
1077  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1078  * certain not to be mapped by the time vma_merge is called; but when
1079  * called for mprotect, it is certain to be already mapped (either at
1080  * an offset within prev, or at the start of next), and the flags of
1081  * this area are about to be changed to vm_flags - and the no-change
1082  * case has already been eliminated.
1083  *
1084  * The following mprotect cases have to be considered, where AAAA is
1085  * the area passed down from mprotect_fixup, never extending beyond one
1086  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1087  *
1088  *     AAAA             AAAA                   AAAA
1089  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1090  *    cannot merge    might become       might become
1091  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1092  *    mmap, brk or    case 4 below       case 5 below
1093  *    mremap move:
1094  *                        AAAA               AAAA
1095  *                    PPPP    NNNN       PPPPNNNNXXXX
1096  *                    might become       might become
1097  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1098  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1099  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1100  *
1101  * It is important for case 8 that the vma NNNN overlapping the
1102  * region AAAA is never going to extended over XXXX. Instead XXXX must
1103  * be extended in region AAAA and NNNN must be removed. This way in
1104  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1105  * rmap_locks, the properties of the merged vma will be already
1106  * correct for the whole merged range. Some of those properties like
1107  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1108  * be correct for the whole merged range immediately after the
1109  * rmap_locks are released. Otherwise if XXXX would be removed and
1110  * NNNN would be extended over the XXXX range, remove_migration_ptes
1111  * or other rmap walkers (if working on addresses beyond the "end"
1112  * parameter) may establish ptes with the wrong permissions of NNNN
1113  * instead of the right permissions of XXXX.
1114  */
1115 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1116 			struct vm_area_struct *prev, unsigned long addr,
1117 			unsigned long end, unsigned long vm_flags,
1118 			struct anon_vma *anon_vma, struct file *file,
1119 			pgoff_t pgoff, struct mempolicy *policy,
1120 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1121 {
1122 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1123 	struct vm_area_struct *area, *next;
1124 	int err;
1125 
1126 	/*
1127 	 * We later require that vma->vm_flags == vm_flags,
1128 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1129 	 */
1130 	if (vm_flags & VM_SPECIAL)
1131 		return NULL;
1132 
1133 	if (prev)
1134 		next = prev->vm_next;
1135 	else
1136 		next = mm->mmap;
1137 	area = next;
1138 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1139 		next = next->vm_next;
1140 
1141 	/* verify some invariant that must be enforced by the caller */
1142 	VM_WARN_ON(prev && addr <= prev->vm_start);
1143 	VM_WARN_ON(area && end > area->vm_end);
1144 	VM_WARN_ON(addr >= end);
1145 
1146 	/*
1147 	 * Can it merge with the predecessor?
1148 	 */
1149 	if (prev && prev->vm_end == addr &&
1150 			mpol_equal(vma_policy(prev), policy) &&
1151 			can_vma_merge_after(prev, vm_flags,
1152 					    anon_vma, file, pgoff,
1153 					    vm_userfaultfd_ctx)) {
1154 		/*
1155 		 * OK, it can.  Can we now merge in the successor as well?
1156 		 */
1157 		if (next && end == next->vm_start &&
1158 				mpol_equal(policy, vma_policy(next)) &&
1159 				can_vma_merge_before(next, vm_flags,
1160 						     anon_vma, file,
1161 						     pgoff+pglen,
1162 						     vm_userfaultfd_ctx) &&
1163 				is_mergeable_anon_vma(prev->anon_vma,
1164 						      next->anon_vma, NULL)) {
1165 							/* cases 1, 6 */
1166 			err = __vma_adjust(prev, prev->vm_start,
1167 					 next->vm_end, prev->vm_pgoff, NULL,
1168 					 prev);
1169 		} else					/* cases 2, 5, 7 */
1170 			err = __vma_adjust(prev, prev->vm_start,
1171 					 end, prev->vm_pgoff, NULL, prev);
1172 		if (err)
1173 			return NULL;
1174 		khugepaged_enter_vma_merge(prev, vm_flags);
1175 		return prev;
1176 	}
1177 
1178 	/*
1179 	 * Can this new request be merged in front of next?
1180 	 */
1181 	if (next && end == next->vm_start &&
1182 			mpol_equal(policy, vma_policy(next)) &&
1183 			can_vma_merge_before(next, vm_flags,
1184 					     anon_vma, file, pgoff+pglen,
1185 					     vm_userfaultfd_ctx)) {
1186 		if (prev && addr < prev->vm_end)	/* case 4 */
1187 			err = __vma_adjust(prev, prev->vm_start,
1188 					 addr, prev->vm_pgoff, NULL, next);
1189 		else {					/* cases 3, 8 */
1190 			err = __vma_adjust(area, addr, next->vm_end,
1191 					 next->vm_pgoff - pglen, NULL, next);
1192 			/*
1193 			 * In case 3 area is already equal to next and
1194 			 * this is a noop, but in case 8 "area" has
1195 			 * been removed and next was expanded over it.
1196 			 */
1197 			area = next;
1198 		}
1199 		if (err)
1200 			return NULL;
1201 		khugepaged_enter_vma_merge(area, vm_flags);
1202 		return area;
1203 	}
1204 
1205 	return NULL;
1206 }
1207 
1208 /*
1209  * Rough compatbility check to quickly see if it's even worth looking
1210  * at sharing an anon_vma.
1211  *
1212  * They need to have the same vm_file, and the flags can only differ
1213  * in things that mprotect may change.
1214  *
1215  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1216  * we can merge the two vma's. For example, we refuse to merge a vma if
1217  * there is a vm_ops->close() function, because that indicates that the
1218  * driver is doing some kind of reference counting. But that doesn't
1219  * really matter for the anon_vma sharing case.
1220  */
1221 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1222 {
1223 	return a->vm_end == b->vm_start &&
1224 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1225 		a->vm_file == b->vm_file &&
1226 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1227 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1228 }
1229 
1230 /*
1231  * Do some basic sanity checking to see if we can re-use the anon_vma
1232  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1233  * the same as 'old', the other will be the new one that is trying
1234  * to share the anon_vma.
1235  *
1236  * NOTE! This runs with mm_sem held for reading, so it is possible that
1237  * the anon_vma of 'old' is concurrently in the process of being set up
1238  * by another page fault trying to merge _that_. But that's ok: if it
1239  * is being set up, that automatically means that it will be a singleton
1240  * acceptable for merging, so we can do all of this optimistically. But
1241  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1242  *
1243  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1244  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1245  * is to return an anon_vma that is "complex" due to having gone through
1246  * a fork).
1247  *
1248  * We also make sure that the two vma's are compatible (adjacent,
1249  * and with the same memory policies). That's all stable, even with just
1250  * a read lock on the mm_sem.
1251  */
1252 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1253 {
1254 	if (anon_vma_compatible(a, b)) {
1255 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1256 
1257 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1258 			return anon_vma;
1259 	}
1260 	return NULL;
1261 }
1262 
1263 /*
1264  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1265  * neighbouring vmas for a suitable anon_vma, before it goes off
1266  * to allocate a new anon_vma.  It checks because a repetitive
1267  * sequence of mprotects and faults may otherwise lead to distinct
1268  * anon_vmas being allocated, preventing vma merge in subsequent
1269  * mprotect.
1270  */
1271 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1272 {
1273 	struct anon_vma *anon_vma = NULL;
1274 
1275 	/* Try next first. */
1276 	if (vma->vm_next) {
1277 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1278 		if (anon_vma)
1279 			return anon_vma;
1280 	}
1281 
1282 	/* Try prev next. */
1283 	if (vma->vm_prev)
1284 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1285 
1286 	/*
1287 	 * We might reach here with anon_vma == NULL if we can't find
1288 	 * any reusable anon_vma.
1289 	 * There's no absolute need to look only at touching neighbours:
1290 	 * we could search further afield for "compatible" anon_vmas.
1291 	 * But it would probably just be a waste of time searching,
1292 	 * or lead to too many vmas hanging off the same anon_vma.
1293 	 * We're trying to allow mprotect remerging later on,
1294 	 * not trying to minimize memory used for anon_vmas.
1295 	 */
1296 	return anon_vma;
1297 }
1298 
1299 /*
1300  * If a hint addr is less than mmap_min_addr change hint to be as
1301  * low as possible but still greater than mmap_min_addr
1302  */
1303 static inline unsigned long round_hint_to_min(unsigned long hint)
1304 {
1305 	hint &= PAGE_MASK;
1306 	if (((void *)hint != NULL) &&
1307 	    (hint < mmap_min_addr))
1308 		return PAGE_ALIGN(mmap_min_addr);
1309 	return hint;
1310 }
1311 
1312 static inline int mlock_future_check(struct mm_struct *mm,
1313 				     unsigned long flags,
1314 				     unsigned long len)
1315 {
1316 	unsigned long locked, lock_limit;
1317 
1318 	/*  mlock MCL_FUTURE? */
1319 	if (flags & VM_LOCKED) {
1320 		locked = len >> PAGE_SHIFT;
1321 		locked += mm->locked_vm;
1322 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1323 		lock_limit >>= PAGE_SHIFT;
1324 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1325 			return -EAGAIN;
1326 	}
1327 	return 0;
1328 }
1329 
1330 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1331 {
1332 	if (S_ISREG(inode->i_mode))
1333 		return MAX_LFS_FILESIZE;
1334 
1335 	if (S_ISBLK(inode->i_mode))
1336 		return MAX_LFS_FILESIZE;
1337 
1338 	if (S_ISSOCK(inode->i_mode))
1339 		return MAX_LFS_FILESIZE;
1340 
1341 	/* Special "we do even unsigned file positions" case */
1342 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1343 		return 0;
1344 
1345 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1346 	return ULONG_MAX;
1347 }
1348 
1349 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1350 				unsigned long pgoff, unsigned long len)
1351 {
1352 	u64 maxsize = file_mmap_size_max(file, inode);
1353 
1354 	if (maxsize && len > maxsize)
1355 		return false;
1356 	maxsize -= len;
1357 	if (pgoff > maxsize >> PAGE_SHIFT)
1358 		return false;
1359 	return true;
1360 }
1361 
1362 /*
1363  * The caller must hold down_write(&current->mm->mmap_sem).
1364  */
1365 unsigned long do_mmap(struct file *file, unsigned long addr,
1366 			unsigned long len, unsigned long prot,
1367 			unsigned long flags, vm_flags_t vm_flags,
1368 			unsigned long pgoff, unsigned long *populate,
1369 			struct list_head *uf)
1370 {
1371 	struct mm_struct *mm = current->mm;
1372 	int pkey = 0;
1373 
1374 	*populate = 0;
1375 
1376 	if (!len)
1377 		return -EINVAL;
1378 
1379 	/*
1380 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1381 	 *
1382 	 * (the exception is when the underlying filesystem is noexec
1383 	 *  mounted, in which case we dont add PROT_EXEC.)
1384 	 */
1385 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1386 		if (!(file && path_noexec(&file->f_path)))
1387 			prot |= PROT_EXEC;
1388 
1389 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1390 	if (flags & MAP_FIXED_NOREPLACE)
1391 		flags |= MAP_FIXED;
1392 
1393 	if (!(flags & MAP_FIXED))
1394 		addr = round_hint_to_min(addr);
1395 
1396 	/* Careful about overflows.. */
1397 	len = PAGE_ALIGN(len);
1398 	if (!len)
1399 		return -ENOMEM;
1400 
1401 	/* offset overflow? */
1402 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1403 		return -EOVERFLOW;
1404 
1405 	/* Too many mappings? */
1406 	if (mm->map_count > sysctl_max_map_count)
1407 		return -ENOMEM;
1408 
1409 	/* Obtain the address to map to. we verify (or select) it and ensure
1410 	 * that it represents a valid section of the address space.
1411 	 */
1412 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1413 	if (IS_ERR_VALUE(addr))
1414 		return addr;
1415 
1416 	if (flags & MAP_FIXED_NOREPLACE) {
1417 		struct vm_area_struct *vma = find_vma(mm, addr);
1418 
1419 		if (vma && vma->vm_start < addr + len)
1420 			return -EEXIST;
1421 	}
1422 
1423 	if (prot == PROT_EXEC) {
1424 		pkey = execute_only_pkey(mm);
1425 		if (pkey < 0)
1426 			pkey = 0;
1427 	}
1428 
1429 	/* Do simple checking here so the lower-level routines won't have
1430 	 * to. we assume access permissions have been handled by the open
1431 	 * of the memory object, so we don't do any here.
1432 	 */
1433 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1434 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1435 
1436 	if (flags & MAP_LOCKED)
1437 		if (!can_do_mlock())
1438 			return -EPERM;
1439 
1440 	if (mlock_future_check(mm, vm_flags, len))
1441 		return -EAGAIN;
1442 
1443 	if (file) {
1444 		struct inode *inode = file_inode(file);
1445 		unsigned long flags_mask;
1446 
1447 		if (!file_mmap_ok(file, inode, pgoff, len))
1448 			return -EOVERFLOW;
1449 
1450 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1451 
1452 		switch (flags & MAP_TYPE) {
1453 		case MAP_SHARED:
1454 			/*
1455 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1456 			 * flags. E.g. MAP_SYNC is dangerous to use with
1457 			 * MAP_SHARED as you don't know which consistency model
1458 			 * you will get. We silently ignore unsupported flags
1459 			 * with MAP_SHARED to preserve backward compatibility.
1460 			 */
1461 			flags &= LEGACY_MAP_MASK;
1462 			/* fall through */
1463 		case MAP_SHARED_VALIDATE:
1464 			if (flags & ~flags_mask)
1465 				return -EOPNOTSUPP;
1466 			if (prot & PROT_WRITE) {
1467 				if (!(file->f_mode & FMODE_WRITE))
1468 					return -EACCES;
1469 				if (IS_SWAPFILE(file->f_mapping->host))
1470 					return -ETXTBSY;
1471 			}
1472 
1473 			/*
1474 			 * Make sure we don't allow writing to an append-only
1475 			 * file..
1476 			 */
1477 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1478 				return -EACCES;
1479 
1480 			/*
1481 			 * Make sure there are no mandatory locks on the file.
1482 			 */
1483 			if (locks_verify_locked(file))
1484 				return -EAGAIN;
1485 
1486 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1487 			if (!(file->f_mode & FMODE_WRITE))
1488 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1489 
1490 			/* fall through */
1491 		case MAP_PRIVATE:
1492 			if (!(file->f_mode & FMODE_READ))
1493 				return -EACCES;
1494 			if (path_noexec(&file->f_path)) {
1495 				if (vm_flags & VM_EXEC)
1496 					return -EPERM;
1497 				vm_flags &= ~VM_MAYEXEC;
1498 			}
1499 
1500 			if (!file->f_op->mmap)
1501 				return -ENODEV;
1502 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 				return -EINVAL;
1504 			break;
1505 
1506 		default:
1507 			return -EINVAL;
1508 		}
1509 	} else {
1510 		switch (flags & MAP_TYPE) {
1511 		case MAP_SHARED:
1512 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513 				return -EINVAL;
1514 			/*
1515 			 * Ignore pgoff.
1516 			 */
1517 			pgoff = 0;
1518 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519 			break;
1520 		case MAP_PRIVATE:
1521 			/*
1522 			 * Set pgoff according to addr for anon_vma.
1523 			 */
1524 			pgoff = addr >> PAGE_SHIFT;
1525 			break;
1526 		default:
1527 			return -EINVAL;
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * Set 'VM_NORESERVE' if we should not account for the
1533 	 * memory use of this mapping.
1534 	 */
1535 	if (flags & MAP_NORESERVE) {
1536 		/* We honor MAP_NORESERVE if allowed to overcommit */
1537 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538 			vm_flags |= VM_NORESERVE;
1539 
1540 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 		if (file && is_file_hugepages(file))
1542 			vm_flags |= VM_NORESERVE;
1543 	}
1544 
1545 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546 	if (!IS_ERR_VALUE(addr) &&
1547 	    ((vm_flags & VM_LOCKED) ||
1548 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549 		*populate = len;
1550 	return addr;
1551 }
1552 
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554 			      unsigned long prot, unsigned long flags,
1555 			      unsigned long fd, unsigned long pgoff)
1556 {
1557 	struct file *file = NULL;
1558 	unsigned long retval;
1559 
1560 	addr = untagged_addr(addr);
1561 
1562 	if (!(flags & MAP_ANONYMOUS)) {
1563 		audit_mmap_fd(fd, flags);
1564 		file = fget(fd);
1565 		if (!file)
1566 			return -EBADF;
1567 		if (is_file_hugepages(file))
1568 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1569 		retval = -EINVAL;
1570 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1571 			goto out_fput;
1572 	} else if (flags & MAP_HUGETLB) {
1573 		struct user_struct *user = NULL;
1574 		struct hstate *hs;
1575 
1576 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1577 		if (!hs)
1578 			return -EINVAL;
1579 
1580 		len = ALIGN(len, huge_page_size(hs));
1581 		/*
1582 		 * VM_NORESERVE is used because the reservations will be
1583 		 * taken when vm_ops->mmap() is called
1584 		 * A dummy user value is used because we are not locking
1585 		 * memory so no accounting is necessary
1586 		 */
1587 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1588 				VM_NORESERVE,
1589 				&user, HUGETLB_ANONHUGE_INODE,
1590 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1591 		if (IS_ERR(file))
1592 			return PTR_ERR(file);
1593 	}
1594 
1595 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1596 
1597 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1598 out_fput:
1599 	if (file)
1600 		fput(file);
1601 	return retval;
1602 }
1603 
1604 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1605 		unsigned long, prot, unsigned long, flags,
1606 		unsigned long, fd, unsigned long, pgoff)
1607 {
1608 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1609 }
1610 
1611 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1612 struct mmap_arg_struct {
1613 	unsigned long addr;
1614 	unsigned long len;
1615 	unsigned long prot;
1616 	unsigned long flags;
1617 	unsigned long fd;
1618 	unsigned long offset;
1619 };
1620 
1621 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1622 {
1623 	struct mmap_arg_struct a;
1624 
1625 	if (copy_from_user(&a, arg, sizeof(a)))
1626 		return -EFAULT;
1627 	if (offset_in_page(a.offset))
1628 		return -EINVAL;
1629 
1630 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1631 			       a.offset >> PAGE_SHIFT);
1632 }
1633 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1634 
1635 /*
1636  * Some shared mappings will want the pages marked read-only
1637  * to track write events. If so, we'll downgrade vm_page_prot
1638  * to the private version (using protection_map[] without the
1639  * VM_SHARED bit).
1640  */
1641 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1642 {
1643 	vm_flags_t vm_flags = vma->vm_flags;
1644 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1645 
1646 	/* If it was private or non-writable, the write bit is already clear */
1647 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1648 		return 0;
1649 
1650 	/* The backer wishes to know when pages are first written to? */
1651 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1652 		return 1;
1653 
1654 	/* The open routine did something to the protections that pgprot_modify
1655 	 * won't preserve? */
1656 	if (pgprot_val(vm_page_prot) !=
1657 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1658 		return 0;
1659 
1660 	/* Do we need to track softdirty? */
1661 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1662 		return 1;
1663 
1664 	/* Specialty mapping? */
1665 	if (vm_flags & VM_PFNMAP)
1666 		return 0;
1667 
1668 	/* Can the mapping track the dirty pages? */
1669 	return vma->vm_file && vma->vm_file->f_mapping &&
1670 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1671 }
1672 
1673 /*
1674  * We account for memory if it's a private writeable mapping,
1675  * not hugepages and VM_NORESERVE wasn't set.
1676  */
1677 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1678 {
1679 	/*
1680 	 * hugetlb has its own accounting separate from the core VM
1681 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1682 	 */
1683 	if (file && is_file_hugepages(file))
1684 		return 0;
1685 
1686 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1687 }
1688 
1689 unsigned long mmap_region(struct file *file, unsigned long addr,
1690 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1691 		struct list_head *uf)
1692 {
1693 	struct mm_struct *mm = current->mm;
1694 	struct vm_area_struct *vma, *prev;
1695 	int error;
1696 	struct rb_node **rb_link, *rb_parent;
1697 	unsigned long charged = 0;
1698 
1699 	/* Check against address space limit. */
1700 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1701 		unsigned long nr_pages;
1702 
1703 		/*
1704 		 * MAP_FIXED may remove pages of mappings that intersects with
1705 		 * requested mapping. Account for the pages it would unmap.
1706 		 */
1707 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1708 
1709 		if (!may_expand_vm(mm, vm_flags,
1710 					(len >> PAGE_SHIFT) - nr_pages))
1711 			return -ENOMEM;
1712 	}
1713 
1714 	/* Clear old maps */
1715 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1716 			      &rb_parent)) {
1717 		if (do_munmap(mm, addr, len, uf))
1718 			return -ENOMEM;
1719 	}
1720 
1721 	/*
1722 	 * Private writable mapping: check memory availability
1723 	 */
1724 	if (accountable_mapping(file, vm_flags)) {
1725 		charged = len >> PAGE_SHIFT;
1726 		if (security_vm_enough_memory_mm(mm, charged))
1727 			return -ENOMEM;
1728 		vm_flags |= VM_ACCOUNT;
1729 	}
1730 
1731 	/*
1732 	 * Can we just expand an old mapping?
1733 	 */
1734 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1735 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1736 	if (vma)
1737 		goto out;
1738 
1739 	/*
1740 	 * Determine the object being mapped and call the appropriate
1741 	 * specific mapper. the address has already been validated, but
1742 	 * not unmapped, but the maps are removed from the list.
1743 	 */
1744 	vma = vm_area_alloc(mm);
1745 	if (!vma) {
1746 		error = -ENOMEM;
1747 		goto unacct_error;
1748 	}
1749 
1750 	vma->vm_start = addr;
1751 	vma->vm_end = addr + len;
1752 	vma->vm_flags = vm_flags;
1753 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1754 	vma->vm_pgoff = pgoff;
1755 
1756 	if (file) {
1757 		if (vm_flags & VM_DENYWRITE) {
1758 			error = deny_write_access(file);
1759 			if (error)
1760 				goto free_vma;
1761 		}
1762 		if (vm_flags & VM_SHARED) {
1763 			error = mapping_map_writable(file->f_mapping);
1764 			if (error)
1765 				goto allow_write_and_free_vma;
1766 		}
1767 
1768 		/* ->mmap() can change vma->vm_file, but must guarantee that
1769 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1770 		 * and map writably if VM_SHARED is set. This usually means the
1771 		 * new file must not have been exposed to user-space, yet.
1772 		 */
1773 		vma->vm_file = get_file(file);
1774 		error = call_mmap(file, vma);
1775 		if (error)
1776 			goto unmap_and_free_vma;
1777 
1778 		/* Can addr have changed??
1779 		 *
1780 		 * Answer: Yes, several device drivers can do it in their
1781 		 *         f_op->mmap method. -DaveM
1782 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1783 		 *      be updated for vma_link()
1784 		 */
1785 		WARN_ON_ONCE(addr != vma->vm_start);
1786 
1787 		addr = vma->vm_start;
1788 		vm_flags = vma->vm_flags;
1789 	} else if (vm_flags & VM_SHARED) {
1790 		error = shmem_zero_setup(vma);
1791 		if (error)
1792 			goto free_vma;
1793 	} else {
1794 		vma_set_anonymous(vma);
1795 	}
1796 
1797 	vma_link(mm, vma, prev, rb_link, rb_parent);
1798 	/* Once vma denies write, undo our temporary denial count */
1799 	if (file) {
1800 		if (vm_flags & VM_SHARED)
1801 			mapping_unmap_writable(file->f_mapping);
1802 		if (vm_flags & VM_DENYWRITE)
1803 			allow_write_access(file);
1804 	}
1805 	file = vma->vm_file;
1806 out:
1807 	perf_event_mmap(vma);
1808 
1809 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1810 	if (vm_flags & VM_LOCKED) {
1811 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1812 					is_vm_hugetlb_page(vma) ||
1813 					vma == get_gate_vma(current->mm))
1814 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1815 		else
1816 			mm->locked_vm += (len >> PAGE_SHIFT);
1817 	}
1818 
1819 	if (file)
1820 		uprobe_mmap(vma);
1821 
1822 	/*
1823 	 * New (or expanded) vma always get soft dirty status.
1824 	 * Otherwise user-space soft-dirty page tracker won't
1825 	 * be able to distinguish situation when vma area unmapped,
1826 	 * then new mapped in-place (which must be aimed as
1827 	 * a completely new data area).
1828 	 */
1829 	vma->vm_flags |= VM_SOFTDIRTY;
1830 
1831 	vma_set_page_prot(vma);
1832 
1833 	return addr;
1834 
1835 unmap_and_free_vma:
1836 	vma->vm_file = NULL;
1837 	fput(file);
1838 
1839 	/* Undo any partial mapping done by a device driver. */
1840 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1841 	charged = 0;
1842 	if (vm_flags & VM_SHARED)
1843 		mapping_unmap_writable(file->f_mapping);
1844 allow_write_and_free_vma:
1845 	if (vm_flags & VM_DENYWRITE)
1846 		allow_write_access(file);
1847 free_vma:
1848 	vm_area_free(vma);
1849 unacct_error:
1850 	if (charged)
1851 		vm_unacct_memory(charged);
1852 	return error;
1853 }
1854 
1855 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1856 {
1857 	/*
1858 	 * We implement the search by looking for an rbtree node that
1859 	 * immediately follows a suitable gap. That is,
1860 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1861 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1862 	 * - gap_end - gap_start >= length
1863 	 */
1864 
1865 	struct mm_struct *mm = current->mm;
1866 	struct vm_area_struct *vma;
1867 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1868 
1869 	/* Adjust search length to account for worst case alignment overhead */
1870 	length = info->length + info->align_mask;
1871 	if (length < info->length)
1872 		return -ENOMEM;
1873 
1874 	/* Adjust search limits by the desired length */
1875 	if (info->high_limit < length)
1876 		return -ENOMEM;
1877 	high_limit = info->high_limit - length;
1878 
1879 	if (info->low_limit > high_limit)
1880 		return -ENOMEM;
1881 	low_limit = info->low_limit + length;
1882 
1883 	/* Check if rbtree root looks promising */
1884 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1885 		goto check_highest;
1886 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1887 	if (vma->rb_subtree_gap < length)
1888 		goto check_highest;
1889 
1890 	while (true) {
1891 		/* Visit left subtree if it looks promising */
1892 		gap_end = vm_start_gap(vma);
1893 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1894 			struct vm_area_struct *left =
1895 				rb_entry(vma->vm_rb.rb_left,
1896 					 struct vm_area_struct, vm_rb);
1897 			if (left->rb_subtree_gap >= length) {
1898 				vma = left;
1899 				continue;
1900 			}
1901 		}
1902 
1903 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1904 check_current:
1905 		/* Check if current node has a suitable gap */
1906 		if (gap_start > high_limit)
1907 			return -ENOMEM;
1908 		if (gap_end >= low_limit &&
1909 		    gap_end > gap_start && gap_end - gap_start >= length)
1910 			goto found;
1911 
1912 		/* Visit right subtree if it looks promising */
1913 		if (vma->vm_rb.rb_right) {
1914 			struct vm_area_struct *right =
1915 				rb_entry(vma->vm_rb.rb_right,
1916 					 struct vm_area_struct, vm_rb);
1917 			if (right->rb_subtree_gap >= length) {
1918 				vma = right;
1919 				continue;
1920 			}
1921 		}
1922 
1923 		/* Go back up the rbtree to find next candidate node */
1924 		while (true) {
1925 			struct rb_node *prev = &vma->vm_rb;
1926 			if (!rb_parent(prev))
1927 				goto check_highest;
1928 			vma = rb_entry(rb_parent(prev),
1929 				       struct vm_area_struct, vm_rb);
1930 			if (prev == vma->vm_rb.rb_left) {
1931 				gap_start = vm_end_gap(vma->vm_prev);
1932 				gap_end = vm_start_gap(vma);
1933 				goto check_current;
1934 			}
1935 		}
1936 	}
1937 
1938 check_highest:
1939 	/* Check highest gap, which does not precede any rbtree node */
1940 	gap_start = mm->highest_vm_end;
1941 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1942 	if (gap_start > high_limit)
1943 		return -ENOMEM;
1944 
1945 found:
1946 	/* We found a suitable gap. Clip it with the original low_limit. */
1947 	if (gap_start < info->low_limit)
1948 		gap_start = info->low_limit;
1949 
1950 	/* Adjust gap address to the desired alignment */
1951 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1952 
1953 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1954 	VM_BUG_ON(gap_start + info->length > gap_end);
1955 	return gap_start;
1956 }
1957 
1958 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1959 {
1960 	struct mm_struct *mm = current->mm;
1961 	struct vm_area_struct *vma;
1962 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1963 
1964 	/* Adjust search length to account for worst case alignment overhead */
1965 	length = info->length + info->align_mask;
1966 	if (length < info->length)
1967 		return -ENOMEM;
1968 
1969 	/*
1970 	 * Adjust search limits by the desired length.
1971 	 * See implementation comment at top of unmapped_area().
1972 	 */
1973 	gap_end = info->high_limit;
1974 	if (gap_end < length)
1975 		return -ENOMEM;
1976 	high_limit = gap_end - length;
1977 
1978 	if (info->low_limit > high_limit)
1979 		return -ENOMEM;
1980 	low_limit = info->low_limit + length;
1981 
1982 	/* Check highest gap, which does not precede any rbtree node */
1983 	gap_start = mm->highest_vm_end;
1984 	if (gap_start <= high_limit)
1985 		goto found_highest;
1986 
1987 	/* Check if rbtree root looks promising */
1988 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1989 		return -ENOMEM;
1990 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1991 	if (vma->rb_subtree_gap < length)
1992 		return -ENOMEM;
1993 
1994 	while (true) {
1995 		/* Visit right subtree if it looks promising */
1996 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1997 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1998 			struct vm_area_struct *right =
1999 				rb_entry(vma->vm_rb.rb_right,
2000 					 struct vm_area_struct, vm_rb);
2001 			if (right->rb_subtree_gap >= length) {
2002 				vma = right;
2003 				continue;
2004 			}
2005 		}
2006 
2007 check_current:
2008 		/* Check if current node has a suitable gap */
2009 		gap_end = vm_start_gap(vma);
2010 		if (gap_end < low_limit)
2011 			return -ENOMEM;
2012 		if (gap_start <= high_limit &&
2013 		    gap_end > gap_start && gap_end - gap_start >= length)
2014 			goto found;
2015 
2016 		/* Visit left subtree if it looks promising */
2017 		if (vma->vm_rb.rb_left) {
2018 			struct vm_area_struct *left =
2019 				rb_entry(vma->vm_rb.rb_left,
2020 					 struct vm_area_struct, vm_rb);
2021 			if (left->rb_subtree_gap >= length) {
2022 				vma = left;
2023 				continue;
2024 			}
2025 		}
2026 
2027 		/* Go back up the rbtree to find next candidate node */
2028 		while (true) {
2029 			struct rb_node *prev = &vma->vm_rb;
2030 			if (!rb_parent(prev))
2031 				return -ENOMEM;
2032 			vma = rb_entry(rb_parent(prev),
2033 				       struct vm_area_struct, vm_rb);
2034 			if (prev == vma->vm_rb.rb_right) {
2035 				gap_start = vma->vm_prev ?
2036 					vm_end_gap(vma->vm_prev) : 0;
2037 				goto check_current;
2038 			}
2039 		}
2040 	}
2041 
2042 found:
2043 	/* We found a suitable gap. Clip it with the original high_limit. */
2044 	if (gap_end > info->high_limit)
2045 		gap_end = info->high_limit;
2046 
2047 found_highest:
2048 	/* Compute highest gap address at the desired alignment */
2049 	gap_end -= info->length;
2050 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2051 
2052 	VM_BUG_ON(gap_end < info->low_limit);
2053 	VM_BUG_ON(gap_end < gap_start);
2054 	return gap_end;
2055 }
2056 
2057 
2058 #ifndef arch_get_mmap_end
2059 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2060 #endif
2061 
2062 #ifndef arch_get_mmap_base
2063 #define arch_get_mmap_base(addr, base) (base)
2064 #endif
2065 
2066 /* Get an address range which is currently unmapped.
2067  * For shmat() with addr=0.
2068  *
2069  * Ugly calling convention alert:
2070  * Return value with the low bits set means error value,
2071  * ie
2072  *	if (ret & ~PAGE_MASK)
2073  *		error = ret;
2074  *
2075  * This function "knows" that -ENOMEM has the bits set.
2076  */
2077 #ifndef HAVE_ARCH_UNMAPPED_AREA
2078 unsigned long
2079 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2080 		unsigned long len, unsigned long pgoff, unsigned long flags)
2081 {
2082 	struct mm_struct *mm = current->mm;
2083 	struct vm_area_struct *vma, *prev;
2084 	struct vm_unmapped_area_info info;
2085 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2086 
2087 	if (len > mmap_end - mmap_min_addr)
2088 		return -ENOMEM;
2089 
2090 	if (flags & MAP_FIXED)
2091 		return addr;
2092 
2093 	if (addr) {
2094 		addr = PAGE_ALIGN(addr);
2095 		vma = find_vma_prev(mm, addr, &prev);
2096 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2097 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2098 		    (!prev || addr >= vm_end_gap(prev)))
2099 			return addr;
2100 	}
2101 
2102 	info.flags = 0;
2103 	info.length = len;
2104 	info.low_limit = mm->mmap_base;
2105 	info.high_limit = mmap_end;
2106 	info.align_mask = 0;
2107 	return vm_unmapped_area(&info);
2108 }
2109 #endif
2110 
2111 /*
2112  * This mmap-allocator allocates new areas top-down from below the
2113  * stack's low limit (the base):
2114  */
2115 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2116 unsigned long
2117 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2118 			  unsigned long len, unsigned long pgoff,
2119 			  unsigned long flags)
2120 {
2121 	struct vm_area_struct *vma, *prev;
2122 	struct mm_struct *mm = current->mm;
2123 	struct vm_unmapped_area_info info;
2124 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2125 
2126 	/* requested length too big for entire address space */
2127 	if (len > mmap_end - mmap_min_addr)
2128 		return -ENOMEM;
2129 
2130 	if (flags & MAP_FIXED)
2131 		return addr;
2132 
2133 	/* requesting a specific address */
2134 	if (addr) {
2135 		addr = PAGE_ALIGN(addr);
2136 		vma = find_vma_prev(mm, addr, &prev);
2137 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2138 				(!vma || addr + len <= vm_start_gap(vma)) &&
2139 				(!prev || addr >= vm_end_gap(prev)))
2140 			return addr;
2141 	}
2142 
2143 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2144 	info.length = len;
2145 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2146 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2147 	info.align_mask = 0;
2148 	addr = vm_unmapped_area(&info);
2149 
2150 	/*
2151 	 * A failed mmap() very likely causes application failure,
2152 	 * so fall back to the bottom-up function here. This scenario
2153 	 * can happen with large stack limits and large mmap()
2154 	 * allocations.
2155 	 */
2156 	if (offset_in_page(addr)) {
2157 		VM_BUG_ON(addr != -ENOMEM);
2158 		info.flags = 0;
2159 		info.low_limit = TASK_UNMAPPED_BASE;
2160 		info.high_limit = mmap_end;
2161 		addr = vm_unmapped_area(&info);
2162 	}
2163 
2164 	return addr;
2165 }
2166 #endif
2167 
2168 unsigned long
2169 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2170 		unsigned long pgoff, unsigned long flags)
2171 {
2172 	unsigned long (*get_area)(struct file *, unsigned long,
2173 				  unsigned long, unsigned long, unsigned long);
2174 
2175 	unsigned long error = arch_mmap_check(addr, len, flags);
2176 	if (error)
2177 		return error;
2178 
2179 	/* Careful about overflows.. */
2180 	if (len > TASK_SIZE)
2181 		return -ENOMEM;
2182 
2183 	get_area = current->mm->get_unmapped_area;
2184 	if (file) {
2185 		if (file->f_op->get_unmapped_area)
2186 			get_area = file->f_op->get_unmapped_area;
2187 	} else if (flags & MAP_SHARED) {
2188 		/*
2189 		 * mmap_region() will call shmem_zero_setup() to create a file,
2190 		 * so use shmem's get_unmapped_area in case it can be huge.
2191 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2192 		 */
2193 		pgoff = 0;
2194 		get_area = shmem_get_unmapped_area;
2195 	}
2196 
2197 	addr = get_area(file, addr, len, pgoff, flags);
2198 	if (IS_ERR_VALUE(addr))
2199 		return addr;
2200 
2201 	if (addr > TASK_SIZE - len)
2202 		return -ENOMEM;
2203 	if (offset_in_page(addr))
2204 		return -EINVAL;
2205 
2206 	error = security_mmap_addr(addr);
2207 	return error ? error : addr;
2208 }
2209 
2210 EXPORT_SYMBOL(get_unmapped_area);
2211 
2212 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2213 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2214 {
2215 	struct rb_node *rb_node;
2216 	struct vm_area_struct *vma;
2217 
2218 	/* Check the cache first. */
2219 	vma = vmacache_find(mm, addr);
2220 	if (likely(vma))
2221 		return vma;
2222 
2223 	rb_node = mm->mm_rb.rb_node;
2224 
2225 	while (rb_node) {
2226 		struct vm_area_struct *tmp;
2227 
2228 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2229 
2230 		if (tmp->vm_end > addr) {
2231 			vma = tmp;
2232 			if (tmp->vm_start <= addr)
2233 				break;
2234 			rb_node = rb_node->rb_left;
2235 		} else
2236 			rb_node = rb_node->rb_right;
2237 	}
2238 
2239 	if (vma)
2240 		vmacache_update(addr, vma);
2241 	return vma;
2242 }
2243 
2244 EXPORT_SYMBOL(find_vma);
2245 
2246 /*
2247  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2248  */
2249 struct vm_area_struct *
2250 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2251 			struct vm_area_struct **pprev)
2252 {
2253 	struct vm_area_struct *vma;
2254 
2255 	vma = find_vma(mm, addr);
2256 	if (vma) {
2257 		*pprev = vma->vm_prev;
2258 	} else {
2259 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2260 
2261 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2262 	}
2263 	return vma;
2264 }
2265 
2266 /*
2267  * Verify that the stack growth is acceptable and
2268  * update accounting. This is shared with both the
2269  * grow-up and grow-down cases.
2270  */
2271 static int acct_stack_growth(struct vm_area_struct *vma,
2272 			     unsigned long size, unsigned long grow)
2273 {
2274 	struct mm_struct *mm = vma->vm_mm;
2275 	unsigned long new_start;
2276 
2277 	/* address space limit tests */
2278 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2279 		return -ENOMEM;
2280 
2281 	/* Stack limit test */
2282 	if (size > rlimit(RLIMIT_STACK))
2283 		return -ENOMEM;
2284 
2285 	/* mlock limit tests */
2286 	if (vma->vm_flags & VM_LOCKED) {
2287 		unsigned long locked;
2288 		unsigned long limit;
2289 		locked = mm->locked_vm + grow;
2290 		limit = rlimit(RLIMIT_MEMLOCK);
2291 		limit >>= PAGE_SHIFT;
2292 		if (locked > limit && !capable(CAP_IPC_LOCK))
2293 			return -ENOMEM;
2294 	}
2295 
2296 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2297 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2298 			vma->vm_end - size;
2299 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2300 		return -EFAULT;
2301 
2302 	/*
2303 	 * Overcommit..  This must be the final test, as it will
2304 	 * update security statistics.
2305 	 */
2306 	if (security_vm_enough_memory_mm(mm, grow))
2307 		return -ENOMEM;
2308 
2309 	return 0;
2310 }
2311 
2312 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2313 /*
2314  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2315  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2316  */
2317 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2318 {
2319 	struct mm_struct *mm = vma->vm_mm;
2320 	struct vm_area_struct *next;
2321 	unsigned long gap_addr;
2322 	int error = 0;
2323 
2324 	if (!(vma->vm_flags & VM_GROWSUP))
2325 		return -EFAULT;
2326 
2327 	/* Guard against exceeding limits of the address space. */
2328 	address &= PAGE_MASK;
2329 	if (address >= (TASK_SIZE & PAGE_MASK))
2330 		return -ENOMEM;
2331 	address += PAGE_SIZE;
2332 
2333 	/* Enforce stack_guard_gap */
2334 	gap_addr = address + stack_guard_gap;
2335 
2336 	/* Guard against overflow */
2337 	if (gap_addr < address || gap_addr > TASK_SIZE)
2338 		gap_addr = TASK_SIZE;
2339 
2340 	next = vma->vm_next;
2341 	if (next && next->vm_start < gap_addr &&
2342 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2343 		if (!(next->vm_flags & VM_GROWSUP))
2344 			return -ENOMEM;
2345 		/* Check that both stack segments have the same anon_vma? */
2346 	}
2347 
2348 	/* We must make sure the anon_vma is allocated. */
2349 	if (unlikely(anon_vma_prepare(vma)))
2350 		return -ENOMEM;
2351 
2352 	/*
2353 	 * vma->vm_start/vm_end cannot change under us because the caller
2354 	 * is required to hold the mmap_sem in read mode.  We need the
2355 	 * anon_vma lock to serialize against concurrent expand_stacks.
2356 	 */
2357 	anon_vma_lock_write(vma->anon_vma);
2358 
2359 	/* Somebody else might have raced and expanded it already */
2360 	if (address > vma->vm_end) {
2361 		unsigned long size, grow;
2362 
2363 		size = address - vma->vm_start;
2364 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2365 
2366 		error = -ENOMEM;
2367 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2368 			error = acct_stack_growth(vma, size, grow);
2369 			if (!error) {
2370 				/*
2371 				 * vma_gap_update() doesn't support concurrent
2372 				 * updates, but we only hold a shared mmap_sem
2373 				 * lock here, so we need to protect against
2374 				 * concurrent vma expansions.
2375 				 * anon_vma_lock_write() doesn't help here, as
2376 				 * we don't guarantee that all growable vmas
2377 				 * in a mm share the same root anon vma.
2378 				 * So, we reuse mm->page_table_lock to guard
2379 				 * against concurrent vma expansions.
2380 				 */
2381 				spin_lock(&mm->page_table_lock);
2382 				if (vma->vm_flags & VM_LOCKED)
2383 					mm->locked_vm += grow;
2384 				vm_stat_account(mm, vma->vm_flags, grow);
2385 				anon_vma_interval_tree_pre_update_vma(vma);
2386 				vma->vm_end = address;
2387 				anon_vma_interval_tree_post_update_vma(vma);
2388 				if (vma->vm_next)
2389 					vma_gap_update(vma->vm_next);
2390 				else
2391 					mm->highest_vm_end = vm_end_gap(vma);
2392 				spin_unlock(&mm->page_table_lock);
2393 
2394 				perf_event_mmap(vma);
2395 			}
2396 		}
2397 	}
2398 	anon_vma_unlock_write(vma->anon_vma);
2399 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2400 	validate_mm(mm);
2401 	return error;
2402 }
2403 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2404 
2405 /*
2406  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2407  */
2408 int expand_downwards(struct vm_area_struct *vma,
2409 				   unsigned long address)
2410 {
2411 	struct mm_struct *mm = vma->vm_mm;
2412 	struct vm_area_struct *prev;
2413 	int error = 0;
2414 
2415 	address &= PAGE_MASK;
2416 	if (address < mmap_min_addr)
2417 		return -EPERM;
2418 
2419 	/* Enforce stack_guard_gap */
2420 	prev = vma->vm_prev;
2421 	/* Check that both stack segments have the same anon_vma? */
2422 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2423 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2424 		if (address - prev->vm_end < stack_guard_gap)
2425 			return -ENOMEM;
2426 	}
2427 
2428 	/* We must make sure the anon_vma is allocated. */
2429 	if (unlikely(anon_vma_prepare(vma)))
2430 		return -ENOMEM;
2431 
2432 	/*
2433 	 * vma->vm_start/vm_end cannot change under us because the caller
2434 	 * is required to hold the mmap_sem in read mode.  We need the
2435 	 * anon_vma lock to serialize against concurrent expand_stacks.
2436 	 */
2437 	anon_vma_lock_write(vma->anon_vma);
2438 
2439 	/* Somebody else might have raced and expanded it already */
2440 	if (address < vma->vm_start) {
2441 		unsigned long size, grow;
2442 
2443 		size = vma->vm_end - address;
2444 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2445 
2446 		error = -ENOMEM;
2447 		if (grow <= vma->vm_pgoff) {
2448 			error = acct_stack_growth(vma, size, grow);
2449 			if (!error) {
2450 				/*
2451 				 * vma_gap_update() doesn't support concurrent
2452 				 * updates, but we only hold a shared mmap_sem
2453 				 * lock here, so we need to protect against
2454 				 * concurrent vma expansions.
2455 				 * anon_vma_lock_write() doesn't help here, as
2456 				 * we don't guarantee that all growable vmas
2457 				 * in a mm share the same root anon vma.
2458 				 * So, we reuse mm->page_table_lock to guard
2459 				 * against concurrent vma expansions.
2460 				 */
2461 				spin_lock(&mm->page_table_lock);
2462 				if (vma->vm_flags & VM_LOCKED)
2463 					mm->locked_vm += grow;
2464 				vm_stat_account(mm, vma->vm_flags, grow);
2465 				anon_vma_interval_tree_pre_update_vma(vma);
2466 				vma->vm_start = address;
2467 				vma->vm_pgoff -= grow;
2468 				anon_vma_interval_tree_post_update_vma(vma);
2469 				vma_gap_update(vma);
2470 				spin_unlock(&mm->page_table_lock);
2471 
2472 				perf_event_mmap(vma);
2473 			}
2474 		}
2475 	}
2476 	anon_vma_unlock_write(vma->anon_vma);
2477 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2478 	validate_mm(mm);
2479 	return error;
2480 }
2481 
2482 /* enforced gap between the expanding stack and other mappings. */
2483 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2484 
2485 static int __init cmdline_parse_stack_guard_gap(char *p)
2486 {
2487 	unsigned long val;
2488 	char *endptr;
2489 
2490 	val = simple_strtoul(p, &endptr, 10);
2491 	if (!*endptr)
2492 		stack_guard_gap = val << PAGE_SHIFT;
2493 
2494 	return 0;
2495 }
2496 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2497 
2498 #ifdef CONFIG_STACK_GROWSUP
2499 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2500 {
2501 	return expand_upwards(vma, address);
2502 }
2503 
2504 struct vm_area_struct *
2505 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2506 {
2507 	struct vm_area_struct *vma, *prev;
2508 
2509 	addr &= PAGE_MASK;
2510 	vma = find_vma_prev(mm, addr, &prev);
2511 	if (vma && (vma->vm_start <= addr))
2512 		return vma;
2513 	/* don't alter vm_end if the coredump is running */
2514 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2515 		return NULL;
2516 	if (prev->vm_flags & VM_LOCKED)
2517 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2518 	return prev;
2519 }
2520 #else
2521 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2522 {
2523 	return expand_downwards(vma, address);
2524 }
2525 
2526 struct vm_area_struct *
2527 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2528 {
2529 	struct vm_area_struct *vma;
2530 	unsigned long start;
2531 
2532 	addr &= PAGE_MASK;
2533 	vma = find_vma(mm, addr);
2534 	if (!vma)
2535 		return NULL;
2536 	if (vma->vm_start <= addr)
2537 		return vma;
2538 	if (!(vma->vm_flags & VM_GROWSDOWN))
2539 		return NULL;
2540 	/* don't alter vm_start if the coredump is running */
2541 	if (!mmget_still_valid(mm))
2542 		return NULL;
2543 	start = vma->vm_start;
2544 	if (expand_stack(vma, addr))
2545 		return NULL;
2546 	if (vma->vm_flags & VM_LOCKED)
2547 		populate_vma_page_range(vma, addr, start, NULL);
2548 	return vma;
2549 }
2550 #endif
2551 
2552 EXPORT_SYMBOL_GPL(find_extend_vma);
2553 
2554 /*
2555  * Ok - we have the memory areas we should free on the vma list,
2556  * so release them, and do the vma updates.
2557  *
2558  * Called with the mm semaphore held.
2559  */
2560 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2561 {
2562 	unsigned long nr_accounted = 0;
2563 
2564 	/* Update high watermark before we lower total_vm */
2565 	update_hiwater_vm(mm);
2566 	do {
2567 		long nrpages = vma_pages(vma);
2568 
2569 		if (vma->vm_flags & VM_ACCOUNT)
2570 			nr_accounted += nrpages;
2571 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2572 		vma = remove_vma(vma);
2573 	} while (vma);
2574 	vm_unacct_memory(nr_accounted);
2575 	validate_mm(mm);
2576 }
2577 
2578 /*
2579  * Get rid of page table information in the indicated region.
2580  *
2581  * Called with the mm semaphore held.
2582  */
2583 static void unmap_region(struct mm_struct *mm,
2584 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2585 		unsigned long start, unsigned long end)
2586 {
2587 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2588 	struct mmu_gather tlb;
2589 
2590 	lru_add_drain();
2591 	tlb_gather_mmu(&tlb, mm, start, end);
2592 	update_hiwater_rss(mm);
2593 	unmap_vmas(&tlb, vma, start, end);
2594 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2595 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2596 	tlb_finish_mmu(&tlb, start, end);
2597 }
2598 
2599 /*
2600  * Create a list of vma's touched by the unmap, removing them from the mm's
2601  * vma list as we go..
2602  */
2603 static void
2604 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2605 	struct vm_area_struct *prev, unsigned long end)
2606 {
2607 	struct vm_area_struct **insertion_point;
2608 	struct vm_area_struct *tail_vma = NULL;
2609 
2610 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2611 	vma->vm_prev = NULL;
2612 	do {
2613 		vma_rb_erase(vma, &mm->mm_rb);
2614 		mm->map_count--;
2615 		tail_vma = vma;
2616 		vma = vma->vm_next;
2617 	} while (vma && vma->vm_start < end);
2618 	*insertion_point = vma;
2619 	if (vma) {
2620 		vma->vm_prev = prev;
2621 		vma_gap_update(vma);
2622 	} else
2623 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2624 	tail_vma->vm_next = NULL;
2625 
2626 	/* Kill the cache */
2627 	vmacache_invalidate(mm);
2628 }
2629 
2630 /*
2631  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2632  * has already been checked or doesn't make sense to fail.
2633  */
2634 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2635 		unsigned long addr, int new_below)
2636 {
2637 	struct vm_area_struct *new;
2638 	int err;
2639 
2640 	if (vma->vm_ops && vma->vm_ops->split) {
2641 		err = vma->vm_ops->split(vma, addr);
2642 		if (err)
2643 			return err;
2644 	}
2645 
2646 	new = vm_area_dup(vma);
2647 	if (!new)
2648 		return -ENOMEM;
2649 
2650 	if (new_below)
2651 		new->vm_end = addr;
2652 	else {
2653 		new->vm_start = addr;
2654 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2655 	}
2656 
2657 	err = vma_dup_policy(vma, new);
2658 	if (err)
2659 		goto out_free_vma;
2660 
2661 	err = anon_vma_clone(new, vma);
2662 	if (err)
2663 		goto out_free_mpol;
2664 
2665 	if (new->vm_file)
2666 		get_file(new->vm_file);
2667 
2668 	if (new->vm_ops && new->vm_ops->open)
2669 		new->vm_ops->open(new);
2670 
2671 	if (new_below)
2672 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2673 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2674 	else
2675 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2676 
2677 	/* Success. */
2678 	if (!err)
2679 		return 0;
2680 
2681 	/* Clean everything up if vma_adjust failed. */
2682 	if (new->vm_ops && new->vm_ops->close)
2683 		new->vm_ops->close(new);
2684 	if (new->vm_file)
2685 		fput(new->vm_file);
2686 	unlink_anon_vmas(new);
2687  out_free_mpol:
2688 	mpol_put(vma_policy(new));
2689  out_free_vma:
2690 	vm_area_free(new);
2691 	return err;
2692 }
2693 
2694 /*
2695  * Split a vma into two pieces at address 'addr', a new vma is allocated
2696  * either for the first part or the tail.
2697  */
2698 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2699 	      unsigned long addr, int new_below)
2700 {
2701 	if (mm->map_count >= sysctl_max_map_count)
2702 		return -ENOMEM;
2703 
2704 	return __split_vma(mm, vma, addr, new_below);
2705 }
2706 
2707 /* Munmap is split into 2 main parts -- this part which finds
2708  * what needs doing, and the areas themselves, which do the
2709  * work.  This now handles partial unmappings.
2710  * Jeremy Fitzhardinge <jeremy@goop.org>
2711  */
2712 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2713 		struct list_head *uf, bool downgrade)
2714 {
2715 	unsigned long end;
2716 	struct vm_area_struct *vma, *prev, *last;
2717 
2718 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2719 		return -EINVAL;
2720 
2721 	len = PAGE_ALIGN(len);
2722 	end = start + len;
2723 	if (len == 0)
2724 		return -EINVAL;
2725 
2726 	/*
2727 	 * arch_unmap() might do unmaps itself.  It must be called
2728 	 * and finish any rbtree manipulation before this code
2729 	 * runs and also starts to manipulate the rbtree.
2730 	 */
2731 	arch_unmap(mm, start, end);
2732 
2733 	/* Find the first overlapping VMA */
2734 	vma = find_vma(mm, start);
2735 	if (!vma)
2736 		return 0;
2737 	prev = vma->vm_prev;
2738 	/* we have  start < vma->vm_end  */
2739 
2740 	/* if it doesn't overlap, we have nothing.. */
2741 	if (vma->vm_start >= end)
2742 		return 0;
2743 
2744 	/*
2745 	 * If we need to split any vma, do it now to save pain later.
2746 	 *
2747 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2748 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2749 	 * places tmp vma above, and higher split_vma places tmp vma below.
2750 	 */
2751 	if (start > vma->vm_start) {
2752 		int error;
2753 
2754 		/*
2755 		 * Make sure that map_count on return from munmap() will
2756 		 * not exceed its limit; but let map_count go just above
2757 		 * its limit temporarily, to help free resources as expected.
2758 		 */
2759 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2760 			return -ENOMEM;
2761 
2762 		error = __split_vma(mm, vma, start, 0);
2763 		if (error)
2764 			return error;
2765 		prev = vma;
2766 	}
2767 
2768 	/* Does it split the last one? */
2769 	last = find_vma(mm, end);
2770 	if (last && end > last->vm_start) {
2771 		int error = __split_vma(mm, last, end, 1);
2772 		if (error)
2773 			return error;
2774 	}
2775 	vma = prev ? prev->vm_next : mm->mmap;
2776 
2777 	if (unlikely(uf)) {
2778 		/*
2779 		 * If userfaultfd_unmap_prep returns an error the vmas
2780 		 * will remain splitted, but userland will get a
2781 		 * highly unexpected error anyway. This is no
2782 		 * different than the case where the first of the two
2783 		 * __split_vma fails, but we don't undo the first
2784 		 * split, despite we could. This is unlikely enough
2785 		 * failure that it's not worth optimizing it for.
2786 		 */
2787 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2788 		if (error)
2789 			return error;
2790 	}
2791 
2792 	/*
2793 	 * unlock any mlock()ed ranges before detaching vmas
2794 	 */
2795 	if (mm->locked_vm) {
2796 		struct vm_area_struct *tmp = vma;
2797 		while (tmp && tmp->vm_start < end) {
2798 			if (tmp->vm_flags & VM_LOCKED) {
2799 				mm->locked_vm -= vma_pages(tmp);
2800 				munlock_vma_pages_all(tmp);
2801 			}
2802 
2803 			tmp = tmp->vm_next;
2804 		}
2805 	}
2806 
2807 	/* Detach vmas from rbtree */
2808 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2809 
2810 	if (downgrade)
2811 		downgrade_write(&mm->mmap_sem);
2812 
2813 	unmap_region(mm, vma, prev, start, end);
2814 
2815 	/* Fix up all other VM information */
2816 	remove_vma_list(mm, vma);
2817 
2818 	return downgrade ? 1 : 0;
2819 }
2820 
2821 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2822 	      struct list_head *uf)
2823 {
2824 	return __do_munmap(mm, start, len, uf, false);
2825 }
2826 
2827 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2828 {
2829 	int ret;
2830 	struct mm_struct *mm = current->mm;
2831 	LIST_HEAD(uf);
2832 
2833 	if (down_write_killable(&mm->mmap_sem))
2834 		return -EINTR;
2835 
2836 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2837 	/*
2838 	 * Returning 1 indicates mmap_sem is downgraded.
2839 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2840 	 * it to 0 before return.
2841 	 */
2842 	if (ret == 1) {
2843 		up_read(&mm->mmap_sem);
2844 		ret = 0;
2845 	} else
2846 		up_write(&mm->mmap_sem);
2847 
2848 	userfaultfd_unmap_complete(mm, &uf);
2849 	return ret;
2850 }
2851 
2852 int vm_munmap(unsigned long start, size_t len)
2853 {
2854 	return __vm_munmap(start, len, false);
2855 }
2856 EXPORT_SYMBOL(vm_munmap);
2857 
2858 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2859 {
2860 	addr = untagged_addr(addr);
2861 	profile_munmap(addr);
2862 	return __vm_munmap(addr, len, true);
2863 }
2864 
2865 
2866 /*
2867  * Emulation of deprecated remap_file_pages() syscall.
2868  */
2869 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2870 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2871 {
2872 
2873 	struct mm_struct *mm = current->mm;
2874 	struct vm_area_struct *vma;
2875 	unsigned long populate = 0;
2876 	unsigned long ret = -EINVAL;
2877 	struct file *file;
2878 
2879 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2880 		     current->comm, current->pid);
2881 
2882 	if (prot)
2883 		return ret;
2884 	start = start & PAGE_MASK;
2885 	size = size & PAGE_MASK;
2886 
2887 	if (start + size <= start)
2888 		return ret;
2889 
2890 	/* Does pgoff wrap? */
2891 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2892 		return ret;
2893 
2894 	if (down_write_killable(&mm->mmap_sem))
2895 		return -EINTR;
2896 
2897 	vma = find_vma(mm, start);
2898 
2899 	if (!vma || !(vma->vm_flags & VM_SHARED))
2900 		goto out;
2901 
2902 	if (start < vma->vm_start)
2903 		goto out;
2904 
2905 	if (start + size > vma->vm_end) {
2906 		struct vm_area_struct *next;
2907 
2908 		for (next = vma->vm_next; next; next = next->vm_next) {
2909 			/* hole between vmas ? */
2910 			if (next->vm_start != next->vm_prev->vm_end)
2911 				goto out;
2912 
2913 			if (next->vm_file != vma->vm_file)
2914 				goto out;
2915 
2916 			if (next->vm_flags != vma->vm_flags)
2917 				goto out;
2918 
2919 			if (start + size <= next->vm_end)
2920 				break;
2921 		}
2922 
2923 		if (!next)
2924 			goto out;
2925 	}
2926 
2927 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2928 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2929 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2930 
2931 	flags &= MAP_NONBLOCK;
2932 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2933 	if (vma->vm_flags & VM_LOCKED) {
2934 		struct vm_area_struct *tmp;
2935 		flags |= MAP_LOCKED;
2936 
2937 		/* drop PG_Mlocked flag for over-mapped range */
2938 		for (tmp = vma; tmp->vm_start >= start + size;
2939 				tmp = tmp->vm_next) {
2940 			/*
2941 			 * Split pmd and munlock page on the border
2942 			 * of the range.
2943 			 */
2944 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2945 
2946 			munlock_vma_pages_range(tmp,
2947 					max(tmp->vm_start, start),
2948 					min(tmp->vm_end, start + size));
2949 		}
2950 	}
2951 
2952 	file = get_file(vma->vm_file);
2953 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2954 			prot, flags, pgoff, &populate, NULL);
2955 	fput(file);
2956 out:
2957 	up_write(&mm->mmap_sem);
2958 	if (populate)
2959 		mm_populate(ret, populate);
2960 	if (!IS_ERR_VALUE(ret))
2961 		ret = 0;
2962 	return ret;
2963 }
2964 
2965 /*
2966  *  this is really a simplified "do_mmap".  it only handles
2967  *  anonymous maps.  eventually we may be able to do some
2968  *  brk-specific accounting here.
2969  */
2970 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2971 {
2972 	struct mm_struct *mm = current->mm;
2973 	struct vm_area_struct *vma, *prev;
2974 	struct rb_node **rb_link, *rb_parent;
2975 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2976 	int error;
2977 	unsigned long mapped_addr;
2978 
2979 	/* Until we need other flags, refuse anything except VM_EXEC. */
2980 	if ((flags & (~VM_EXEC)) != 0)
2981 		return -EINVAL;
2982 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2983 
2984 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2985 	if (IS_ERR_VALUE(mapped_addr))
2986 		return mapped_addr;
2987 
2988 	error = mlock_future_check(mm, mm->def_flags, len);
2989 	if (error)
2990 		return error;
2991 
2992 	/*
2993 	 * Clear old maps.  this also does some error checking for us
2994 	 */
2995 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2996 			      &rb_parent)) {
2997 		if (do_munmap(mm, addr, len, uf))
2998 			return -ENOMEM;
2999 	}
3000 
3001 	/* Check against address space limits *after* clearing old maps... */
3002 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3003 		return -ENOMEM;
3004 
3005 	if (mm->map_count > sysctl_max_map_count)
3006 		return -ENOMEM;
3007 
3008 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3009 		return -ENOMEM;
3010 
3011 	/* Can we just expand an old private anonymous mapping? */
3012 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3013 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3014 	if (vma)
3015 		goto out;
3016 
3017 	/*
3018 	 * create a vma struct for an anonymous mapping
3019 	 */
3020 	vma = vm_area_alloc(mm);
3021 	if (!vma) {
3022 		vm_unacct_memory(len >> PAGE_SHIFT);
3023 		return -ENOMEM;
3024 	}
3025 
3026 	vma_set_anonymous(vma);
3027 	vma->vm_start = addr;
3028 	vma->vm_end = addr + len;
3029 	vma->vm_pgoff = pgoff;
3030 	vma->vm_flags = flags;
3031 	vma->vm_page_prot = vm_get_page_prot(flags);
3032 	vma_link(mm, vma, prev, rb_link, rb_parent);
3033 out:
3034 	perf_event_mmap(vma);
3035 	mm->total_vm += len >> PAGE_SHIFT;
3036 	mm->data_vm += len >> PAGE_SHIFT;
3037 	if (flags & VM_LOCKED)
3038 		mm->locked_vm += (len >> PAGE_SHIFT);
3039 	vma->vm_flags |= VM_SOFTDIRTY;
3040 	return 0;
3041 }
3042 
3043 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3044 {
3045 	struct mm_struct *mm = current->mm;
3046 	unsigned long len;
3047 	int ret;
3048 	bool populate;
3049 	LIST_HEAD(uf);
3050 
3051 	len = PAGE_ALIGN(request);
3052 	if (len < request)
3053 		return -ENOMEM;
3054 	if (!len)
3055 		return 0;
3056 
3057 	if (down_write_killable(&mm->mmap_sem))
3058 		return -EINTR;
3059 
3060 	ret = do_brk_flags(addr, len, flags, &uf);
3061 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3062 	up_write(&mm->mmap_sem);
3063 	userfaultfd_unmap_complete(mm, &uf);
3064 	if (populate && !ret)
3065 		mm_populate(addr, len);
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL(vm_brk_flags);
3069 
3070 int vm_brk(unsigned long addr, unsigned long len)
3071 {
3072 	return vm_brk_flags(addr, len, 0);
3073 }
3074 EXPORT_SYMBOL(vm_brk);
3075 
3076 /* Release all mmaps. */
3077 void exit_mmap(struct mm_struct *mm)
3078 {
3079 	struct mmu_gather tlb;
3080 	struct vm_area_struct *vma;
3081 	unsigned long nr_accounted = 0;
3082 
3083 	/* mm's last user has gone, and its about to be pulled down */
3084 	mmu_notifier_release(mm);
3085 
3086 	if (unlikely(mm_is_oom_victim(mm))) {
3087 		/*
3088 		 * Manually reap the mm to free as much memory as possible.
3089 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3090 		 * this mm from further consideration.  Taking mm->mmap_sem for
3091 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3092 		 * reaper will not run on this mm again after mmap_sem is
3093 		 * dropped.
3094 		 *
3095 		 * Nothing can be holding mm->mmap_sem here and the above call
3096 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3097 		 * __oom_reap_task_mm() will not block.
3098 		 *
3099 		 * This needs to be done before calling munlock_vma_pages_all(),
3100 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3101 		 * reliably test it.
3102 		 */
3103 		(void)__oom_reap_task_mm(mm);
3104 
3105 		set_bit(MMF_OOM_SKIP, &mm->flags);
3106 		down_write(&mm->mmap_sem);
3107 		up_write(&mm->mmap_sem);
3108 	}
3109 
3110 	if (mm->locked_vm) {
3111 		vma = mm->mmap;
3112 		while (vma) {
3113 			if (vma->vm_flags & VM_LOCKED)
3114 				munlock_vma_pages_all(vma);
3115 			vma = vma->vm_next;
3116 		}
3117 	}
3118 
3119 	arch_exit_mmap(mm);
3120 
3121 	vma = mm->mmap;
3122 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3123 		return;
3124 
3125 	lru_add_drain();
3126 	flush_cache_mm(mm);
3127 	tlb_gather_mmu(&tlb, mm, 0, -1);
3128 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3129 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3130 	unmap_vmas(&tlb, vma, 0, -1);
3131 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3132 	tlb_finish_mmu(&tlb, 0, -1);
3133 
3134 	/*
3135 	 * Walk the list again, actually closing and freeing it,
3136 	 * with preemption enabled, without holding any MM locks.
3137 	 */
3138 	while (vma) {
3139 		if (vma->vm_flags & VM_ACCOUNT)
3140 			nr_accounted += vma_pages(vma);
3141 		vma = remove_vma(vma);
3142 	}
3143 	vm_unacct_memory(nr_accounted);
3144 }
3145 
3146 /* Insert vm structure into process list sorted by address
3147  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3148  * then i_mmap_rwsem is taken here.
3149  */
3150 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3151 {
3152 	struct vm_area_struct *prev;
3153 	struct rb_node **rb_link, *rb_parent;
3154 
3155 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3156 			   &prev, &rb_link, &rb_parent))
3157 		return -ENOMEM;
3158 	if ((vma->vm_flags & VM_ACCOUNT) &&
3159 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3160 		return -ENOMEM;
3161 
3162 	/*
3163 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3164 	 * until its first write fault, when page's anon_vma and index
3165 	 * are set.  But now set the vm_pgoff it will almost certainly
3166 	 * end up with (unless mremap moves it elsewhere before that
3167 	 * first wfault), so /proc/pid/maps tells a consistent story.
3168 	 *
3169 	 * By setting it to reflect the virtual start address of the
3170 	 * vma, merges and splits can happen in a seamless way, just
3171 	 * using the existing file pgoff checks and manipulations.
3172 	 * Similarly in do_mmap_pgoff and in do_brk.
3173 	 */
3174 	if (vma_is_anonymous(vma)) {
3175 		BUG_ON(vma->anon_vma);
3176 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3177 	}
3178 
3179 	vma_link(mm, vma, prev, rb_link, rb_parent);
3180 	return 0;
3181 }
3182 
3183 /*
3184  * Copy the vma structure to a new location in the same mm,
3185  * prior to moving page table entries, to effect an mremap move.
3186  */
3187 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3188 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3189 	bool *need_rmap_locks)
3190 {
3191 	struct vm_area_struct *vma = *vmap;
3192 	unsigned long vma_start = vma->vm_start;
3193 	struct mm_struct *mm = vma->vm_mm;
3194 	struct vm_area_struct *new_vma, *prev;
3195 	struct rb_node **rb_link, *rb_parent;
3196 	bool faulted_in_anon_vma = true;
3197 
3198 	/*
3199 	 * If anonymous vma has not yet been faulted, update new pgoff
3200 	 * to match new location, to increase its chance of merging.
3201 	 */
3202 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3203 		pgoff = addr >> PAGE_SHIFT;
3204 		faulted_in_anon_vma = false;
3205 	}
3206 
3207 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3208 		return NULL;	/* should never get here */
3209 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3210 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3211 			    vma->vm_userfaultfd_ctx);
3212 	if (new_vma) {
3213 		/*
3214 		 * Source vma may have been merged into new_vma
3215 		 */
3216 		if (unlikely(vma_start >= new_vma->vm_start &&
3217 			     vma_start < new_vma->vm_end)) {
3218 			/*
3219 			 * The only way we can get a vma_merge with
3220 			 * self during an mremap is if the vma hasn't
3221 			 * been faulted in yet and we were allowed to
3222 			 * reset the dst vma->vm_pgoff to the
3223 			 * destination address of the mremap to allow
3224 			 * the merge to happen. mremap must change the
3225 			 * vm_pgoff linearity between src and dst vmas
3226 			 * (in turn preventing a vma_merge) to be
3227 			 * safe. It is only safe to keep the vm_pgoff
3228 			 * linear if there are no pages mapped yet.
3229 			 */
3230 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3231 			*vmap = vma = new_vma;
3232 		}
3233 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3234 	} else {
3235 		new_vma = vm_area_dup(vma);
3236 		if (!new_vma)
3237 			goto out;
3238 		new_vma->vm_start = addr;
3239 		new_vma->vm_end = addr + len;
3240 		new_vma->vm_pgoff = pgoff;
3241 		if (vma_dup_policy(vma, new_vma))
3242 			goto out_free_vma;
3243 		if (anon_vma_clone(new_vma, vma))
3244 			goto out_free_mempol;
3245 		if (new_vma->vm_file)
3246 			get_file(new_vma->vm_file);
3247 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3248 			new_vma->vm_ops->open(new_vma);
3249 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3250 		*need_rmap_locks = false;
3251 	}
3252 	return new_vma;
3253 
3254 out_free_mempol:
3255 	mpol_put(vma_policy(new_vma));
3256 out_free_vma:
3257 	vm_area_free(new_vma);
3258 out:
3259 	return NULL;
3260 }
3261 
3262 /*
3263  * Return true if the calling process may expand its vm space by the passed
3264  * number of pages
3265  */
3266 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3267 {
3268 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3269 		return false;
3270 
3271 	if (is_data_mapping(flags) &&
3272 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3273 		/* Workaround for Valgrind */
3274 		if (rlimit(RLIMIT_DATA) == 0 &&
3275 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3276 			return true;
3277 
3278 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3279 			     current->comm, current->pid,
3280 			     (mm->data_vm + npages) << PAGE_SHIFT,
3281 			     rlimit(RLIMIT_DATA),
3282 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3283 
3284 		if (!ignore_rlimit_data)
3285 			return false;
3286 	}
3287 
3288 	return true;
3289 }
3290 
3291 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3292 {
3293 	mm->total_vm += npages;
3294 
3295 	if (is_exec_mapping(flags))
3296 		mm->exec_vm += npages;
3297 	else if (is_stack_mapping(flags))
3298 		mm->stack_vm += npages;
3299 	else if (is_data_mapping(flags))
3300 		mm->data_vm += npages;
3301 }
3302 
3303 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3304 
3305 /*
3306  * Having a close hook prevents vma merging regardless of flags.
3307  */
3308 static void special_mapping_close(struct vm_area_struct *vma)
3309 {
3310 }
3311 
3312 static const char *special_mapping_name(struct vm_area_struct *vma)
3313 {
3314 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3315 }
3316 
3317 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3318 {
3319 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3320 
3321 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3322 		return -EFAULT;
3323 
3324 	if (sm->mremap)
3325 		return sm->mremap(sm, new_vma);
3326 
3327 	return 0;
3328 }
3329 
3330 static const struct vm_operations_struct special_mapping_vmops = {
3331 	.close = special_mapping_close,
3332 	.fault = special_mapping_fault,
3333 	.mremap = special_mapping_mremap,
3334 	.name = special_mapping_name,
3335 	/* vDSO code relies that VVAR can't be accessed remotely */
3336 	.access = NULL,
3337 };
3338 
3339 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3340 	.close = special_mapping_close,
3341 	.fault = special_mapping_fault,
3342 };
3343 
3344 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3345 {
3346 	struct vm_area_struct *vma = vmf->vma;
3347 	pgoff_t pgoff;
3348 	struct page **pages;
3349 
3350 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3351 		pages = vma->vm_private_data;
3352 	} else {
3353 		struct vm_special_mapping *sm = vma->vm_private_data;
3354 
3355 		if (sm->fault)
3356 			return sm->fault(sm, vmf->vma, vmf);
3357 
3358 		pages = sm->pages;
3359 	}
3360 
3361 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3362 		pgoff--;
3363 
3364 	if (*pages) {
3365 		struct page *page = *pages;
3366 		get_page(page);
3367 		vmf->page = page;
3368 		return 0;
3369 	}
3370 
3371 	return VM_FAULT_SIGBUS;
3372 }
3373 
3374 static struct vm_area_struct *__install_special_mapping(
3375 	struct mm_struct *mm,
3376 	unsigned long addr, unsigned long len,
3377 	unsigned long vm_flags, void *priv,
3378 	const struct vm_operations_struct *ops)
3379 {
3380 	int ret;
3381 	struct vm_area_struct *vma;
3382 
3383 	vma = vm_area_alloc(mm);
3384 	if (unlikely(vma == NULL))
3385 		return ERR_PTR(-ENOMEM);
3386 
3387 	vma->vm_start = addr;
3388 	vma->vm_end = addr + len;
3389 
3390 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3391 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3392 
3393 	vma->vm_ops = ops;
3394 	vma->vm_private_data = priv;
3395 
3396 	ret = insert_vm_struct(mm, vma);
3397 	if (ret)
3398 		goto out;
3399 
3400 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3401 
3402 	perf_event_mmap(vma);
3403 
3404 	return vma;
3405 
3406 out:
3407 	vm_area_free(vma);
3408 	return ERR_PTR(ret);
3409 }
3410 
3411 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3412 	const struct vm_special_mapping *sm)
3413 {
3414 	return vma->vm_private_data == sm &&
3415 		(vma->vm_ops == &special_mapping_vmops ||
3416 		 vma->vm_ops == &legacy_special_mapping_vmops);
3417 }
3418 
3419 /*
3420  * Called with mm->mmap_sem held for writing.
3421  * Insert a new vma covering the given region, with the given flags.
3422  * Its pages are supplied by the given array of struct page *.
3423  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3424  * The region past the last page supplied will always produce SIGBUS.
3425  * The array pointer and the pages it points to are assumed to stay alive
3426  * for as long as this mapping might exist.
3427  */
3428 struct vm_area_struct *_install_special_mapping(
3429 	struct mm_struct *mm,
3430 	unsigned long addr, unsigned long len,
3431 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3432 {
3433 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3434 					&special_mapping_vmops);
3435 }
3436 
3437 int install_special_mapping(struct mm_struct *mm,
3438 			    unsigned long addr, unsigned long len,
3439 			    unsigned long vm_flags, struct page **pages)
3440 {
3441 	struct vm_area_struct *vma = __install_special_mapping(
3442 		mm, addr, len, vm_flags, (void *)pages,
3443 		&legacy_special_mapping_vmops);
3444 
3445 	return PTR_ERR_OR_ZERO(vma);
3446 }
3447 
3448 static DEFINE_MUTEX(mm_all_locks_mutex);
3449 
3450 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3451 {
3452 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3453 		/*
3454 		 * The LSB of head.next can't change from under us
3455 		 * because we hold the mm_all_locks_mutex.
3456 		 */
3457 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3458 		/*
3459 		 * We can safely modify head.next after taking the
3460 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3461 		 * the same anon_vma we won't take it again.
3462 		 *
3463 		 * No need of atomic instructions here, head.next
3464 		 * can't change from under us thanks to the
3465 		 * anon_vma->root->rwsem.
3466 		 */
3467 		if (__test_and_set_bit(0, (unsigned long *)
3468 				       &anon_vma->root->rb_root.rb_root.rb_node))
3469 			BUG();
3470 	}
3471 }
3472 
3473 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3474 {
3475 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3476 		/*
3477 		 * AS_MM_ALL_LOCKS can't change from under us because
3478 		 * we hold the mm_all_locks_mutex.
3479 		 *
3480 		 * Operations on ->flags have to be atomic because
3481 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3482 		 * mm_all_locks_mutex, there may be other cpus
3483 		 * changing other bitflags in parallel to us.
3484 		 */
3485 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3486 			BUG();
3487 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3488 	}
3489 }
3490 
3491 /*
3492  * This operation locks against the VM for all pte/vma/mm related
3493  * operations that could ever happen on a certain mm. This includes
3494  * vmtruncate, try_to_unmap, and all page faults.
3495  *
3496  * The caller must take the mmap_sem in write mode before calling
3497  * mm_take_all_locks(). The caller isn't allowed to release the
3498  * mmap_sem until mm_drop_all_locks() returns.
3499  *
3500  * mmap_sem in write mode is required in order to block all operations
3501  * that could modify pagetables and free pages without need of
3502  * altering the vma layout. It's also needed in write mode to avoid new
3503  * anon_vmas to be associated with existing vmas.
3504  *
3505  * A single task can't take more than one mm_take_all_locks() in a row
3506  * or it would deadlock.
3507  *
3508  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3509  * mapping->flags avoid to take the same lock twice, if more than one
3510  * vma in this mm is backed by the same anon_vma or address_space.
3511  *
3512  * We take locks in following order, accordingly to comment at beginning
3513  * of mm/rmap.c:
3514  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3515  *     hugetlb mapping);
3516  *   - all i_mmap_rwsem locks;
3517  *   - all anon_vma->rwseml
3518  *
3519  * We can take all locks within these types randomly because the VM code
3520  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3521  * mm_all_locks_mutex.
3522  *
3523  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3524  * that may have to take thousand of locks.
3525  *
3526  * mm_take_all_locks() can fail if it's interrupted by signals.
3527  */
3528 int mm_take_all_locks(struct mm_struct *mm)
3529 {
3530 	struct vm_area_struct *vma;
3531 	struct anon_vma_chain *avc;
3532 
3533 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3534 
3535 	mutex_lock(&mm_all_locks_mutex);
3536 
3537 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3538 		if (signal_pending(current))
3539 			goto out_unlock;
3540 		if (vma->vm_file && vma->vm_file->f_mapping &&
3541 				is_vm_hugetlb_page(vma))
3542 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3543 	}
3544 
3545 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3546 		if (signal_pending(current))
3547 			goto out_unlock;
3548 		if (vma->vm_file && vma->vm_file->f_mapping &&
3549 				!is_vm_hugetlb_page(vma))
3550 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3551 	}
3552 
3553 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3554 		if (signal_pending(current))
3555 			goto out_unlock;
3556 		if (vma->anon_vma)
3557 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3558 				vm_lock_anon_vma(mm, avc->anon_vma);
3559 	}
3560 
3561 	return 0;
3562 
3563 out_unlock:
3564 	mm_drop_all_locks(mm);
3565 	return -EINTR;
3566 }
3567 
3568 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3569 {
3570 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3571 		/*
3572 		 * The LSB of head.next can't change to 0 from under
3573 		 * us because we hold the mm_all_locks_mutex.
3574 		 *
3575 		 * We must however clear the bitflag before unlocking
3576 		 * the vma so the users using the anon_vma->rb_root will
3577 		 * never see our bitflag.
3578 		 *
3579 		 * No need of atomic instructions here, head.next
3580 		 * can't change from under us until we release the
3581 		 * anon_vma->root->rwsem.
3582 		 */
3583 		if (!__test_and_clear_bit(0, (unsigned long *)
3584 					  &anon_vma->root->rb_root.rb_root.rb_node))
3585 			BUG();
3586 		anon_vma_unlock_write(anon_vma);
3587 	}
3588 }
3589 
3590 static void vm_unlock_mapping(struct address_space *mapping)
3591 {
3592 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3593 		/*
3594 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3595 		 * because we hold the mm_all_locks_mutex.
3596 		 */
3597 		i_mmap_unlock_write(mapping);
3598 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3599 					&mapping->flags))
3600 			BUG();
3601 	}
3602 }
3603 
3604 /*
3605  * The mmap_sem cannot be released by the caller until
3606  * mm_drop_all_locks() returns.
3607  */
3608 void mm_drop_all_locks(struct mm_struct *mm)
3609 {
3610 	struct vm_area_struct *vma;
3611 	struct anon_vma_chain *avc;
3612 
3613 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3614 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3615 
3616 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3617 		if (vma->anon_vma)
3618 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3619 				vm_unlock_anon_vma(avc->anon_vma);
3620 		if (vma->vm_file && vma->vm_file->f_mapping)
3621 			vm_unlock_mapping(vma->vm_file->f_mapping);
3622 	}
3623 
3624 	mutex_unlock(&mm_all_locks_mutex);
3625 }
3626 
3627 /*
3628  * initialise the percpu counter for VM
3629  */
3630 void __init mmap_init(void)
3631 {
3632 	int ret;
3633 
3634 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3635 	VM_BUG_ON(ret);
3636 }
3637 
3638 /*
3639  * Initialise sysctl_user_reserve_kbytes.
3640  *
3641  * This is intended to prevent a user from starting a single memory hogging
3642  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3643  * mode.
3644  *
3645  * The default value is min(3% of free memory, 128MB)
3646  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3647  */
3648 static int init_user_reserve(void)
3649 {
3650 	unsigned long free_kbytes;
3651 
3652 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3653 
3654 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3655 	return 0;
3656 }
3657 subsys_initcall(init_user_reserve);
3658 
3659 /*
3660  * Initialise sysctl_admin_reserve_kbytes.
3661  *
3662  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3663  * to log in and kill a memory hogging process.
3664  *
3665  * Systems with more than 256MB will reserve 8MB, enough to recover
3666  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3667  * only reserve 3% of free pages by default.
3668  */
3669 static int init_admin_reserve(void)
3670 {
3671 	unsigned long free_kbytes;
3672 
3673 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3674 
3675 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3676 	return 0;
3677 }
3678 subsys_initcall(init_admin_reserve);
3679 
3680 /*
3681  * Reinititalise user and admin reserves if memory is added or removed.
3682  *
3683  * The default user reserve max is 128MB, and the default max for the
3684  * admin reserve is 8MB. These are usually, but not always, enough to
3685  * enable recovery from a memory hogging process using login/sshd, a shell,
3686  * and tools like top. It may make sense to increase or even disable the
3687  * reserve depending on the existence of swap or variations in the recovery
3688  * tools. So, the admin may have changed them.
3689  *
3690  * If memory is added and the reserves have been eliminated or increased above
3691  * the default max, then we'll trust the admin.
3692  *
3693  * If memory is removed and there isn't enough free memory, then we
3694  * need to reset the reserves.
3695  *
3696  * Otherwise keep the reserve set by the admin.
3697  */
3698 static int reserve_mem_notifier(struct notifier_block *nb,
3699 			     unsigned long action, void *data)
3700 {
3701 	unsigned long tmp, free_kbytes;
3702 
3703 	switch (action) {
3704 	case MEM_ONLINE:
3705 		/* Default max is 128MB. Leave alone if modified by operator. */
3706 		tmp = sysctl_user_reserve_kbytes;
3707 		if (0 < tmp && tmp < (1UL << 17))
3708 			init_user_reserve();
3709 
3710 		/* Default max is 8MB.  Leave alone if modified by operator. */
3711 		tmp = sysctl_admin_reserve_kbytes;
3712 		if (0 < tmp && tmp < (1UL << 13))
3713 			init_admin_reserve();
3714 
3715 		break;
3716 	case MEM_OFFLINE:
3717 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3718 
3719 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3720 			init_user_reserve();
3721 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3722 				sysctl_user_reserve_kbytes);
3723 		}
3724 
3725 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3726 			init_admin_reserve();
3727 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3728 				sysctl_admin_reserve_kbytes);
3729 		}
3730 		break;
3731 	default:
3732 		break;
3733 	}
3734 	return NOTIFY_OK;
3735 }
3736 
3737 static struct notifier_block reserve_mem_nb = {
3738 	.notifier_call = reserve_mem_notifier,
3739 };
3740 
3741 static int __meminit init_reserve_notifier(void)
3742 {
3743 	if (register_hotmemory_notifier(&reserve_mem_nb))
3744 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3745 
3746 	return 0;
3747 }
3748 subsys_initcall(init_reserve_notifier);
3749