1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/shm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/syscalls.h> 16 #include <linux/init.h> 17 #include <linux/file.h> 18 #include <linux/fs.h> 19 #include <linux/personality.h> 20 #include <linux/security.h> 21 #include <linux/hugetlb.h> 22 #include <linux/profile.h> 23 #include <linux/module.h> 24 #include <linux/mount.h> 25 #include <linux/mempolicy.h> 26 #include <linux/rmap.h> 27 28 #include <asm/uaccess.h> 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 32 static void unmap_region(struct mm_struct *mm, 33 struct vm_area_struct *vma, struct vm_area_struct *prev, 34 unsigned long start, unsigned long end); 35 36 /* 37 * WARNING: the debugging will use recursive algorithms so never enable this 38 * unless you know what you are doing. 39 */ 40 #undef DEBUG_MM_RB 41 42 /* description of effects of mapping type and prot in current implementation. 43 * this is due to the limited x86 page protection hardware. The expected 44 * behavior is in parens: 45 * 46 * map_type prot 47 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 48 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 49 * w: (no) no w: (no) no w: (yes) yes w: (no) no 50 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 51 * 52 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 53 * w: (no) no w: (no) no w: (copy) copy w: (no) no 54 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 55 * 56 */ 57 pgprot_t protection_map[16] = { 58 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 59 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 60 }; 61 62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 63 int sysctl_overcommit_ratio = 50; /* default is 50% */ 64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 65 atomic_t vm_committed_space = ATOMIC_INIT(0); 66 67 /* 68 * Check that a process has enough memory to allocate a new virtual 69 * mapping. 0 means there is enough memory for the allocation to 70 * succeed and -ENOMEM implies there is not. 71 * 72 * We currently support three overcommit policies, which are set via the 73 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 74 * 75 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 76 * Additional code 2002 Jul 20 by Robert Love. 77 * 78 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 79 * 80 * Note this is a helper function intended to be used by LSMs which 81 * wish to use this logic. 82 */ 83 int __vm_enough_memory(long pages, int cap_sys_admin) 84 { 85 unsigned long free, allowed; 86 87 vm_acct_memory(pages); 88 89 /* 90 * Sometimes we want to use more memory than we have 91 */ 92 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 93 return 0; 94 95 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 96 unsigned long n; 97 98 free = get_page_cache_size(); 99 free += nr_swap_pages; 100 101 /* 102 * Any slabs which are created with the 103 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 104 * which are reclaimable, under pressure. The dentry 105 * cache and most inode caches should fall into this 106 */ 107 free += atomic_read(&slab_reclaim_pages); 108 109 /* 110 * Leave the last 3% for root 111 */ 112 if (!cap_sys_admin) 113 free -= free / 32; 114 115 if (free > pages) 116 return 0; 117 118 /* 119 * nr_free_pages() is very expensive on large systems, 120 * only call if we're about to fail. 121 */ 122 n = nr_free_pages(); 123 if (!cap_sys_admin) 124 n -= n / 32; 125 free += n; 126 127 if (free > pages) 128 return 0; 129 vm_unacct_memory(pages); 130 return -ENOMEM; 131 } 132 133 allowed = (totalram_pages - hugetlb_total_pages()) 134 * sysctl_overcommit_ratio / 100; 135 /* 136 * Leave the last 3% for root 137 */ 138 if (!cap_sys_admin) 139 allowed -= allowed / 32; 140 allowed += total_swap_pages; 141 142 /* Don't let a single process grow too big: 143 leave 3% of the size of this process for other processes */ 144 allowed -= current->mm->total_vm / 32; 145 146 /* 147 * cast `allowed' as a signed long because vm_committed_space 148 * sometimes has a negative value 149 */ 150 if (atomic_read(&vm_committed_space) < (long)allowed) 151 return 0; 152 153 vm_unacct_memory(pages); 154 155 return -ENOMEM; 156 } 157 158 EXPORT_SYMBOL(sysctl_overcommit_memory); 159 EXPORT_SYMBOL(sysctl_overcommit_ratio); 160 EXPORT_SYMBOL(sysctl_max_map_count); 161 EXPORT_SYMBOL(vm_committed_space); 162 EXPORT_SYMBOL(__vm_enough_memory); 163 164 /* 165 * Requires inode->i_mapping->i_mmap_lock 166 */ 167 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 168 struct file *file, struct address_space *mapping) 169 { 170 if (vma->vm_flags & VM_DENYWRITE) 171 atomic_inc(&file->f_dentry->d_inode->i_writecount); 172 if (vma->vm_flags & VM_SHARED) 173 mapping->i_mmap_writable--; 174 175 flush_dcache_mmap_lock(mapping); 176 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 177 list_del_init(&vma->shared.vm_set.list); 178 else 179 vma_prio_tree_remove(vma, &mapping->i_mmap); 180 flush_dcache_mmap_unlock(mapping); 181 } 182 183 /* 184 * Remove one vm structure and free it. 185 */ 186 static void remove_vm_struct(struct vm_area_struct *vma) 187 { 188 struct file *file = vma->vm_file; 189 190 might_sleep(); 191 if (file) { 192 struct address_space *mapping = file->f_mapping; 193 spin_lock(&mapping->i_mmap_lock); 194 __remove_shared_vm_struct(vma, file, mapping); 195 spin_unlock(&mapping->i_mmap_lock); 196 } 197 if (vma->vm_ops && vma->vm_ops->close) 198 vma->vm_ops->close(vma); 199 if (file) 200 fput(file); 201 anon_vma_unlink(vma); 202 mpol_free(vma_policy(vma)); 203 kmem_cache_free(vm_area_cachep, vma); 204 } 205 206 /* 207 * sys_brk() for the most part doesn't need the global kernel 208 * lock, except when an application is doing something nasty 209 * like trying to un-brk an area that has already been mapped 210 * to a regular file. in this case, the unmapping will need 211 * to invoke file system routines that need the global lock. 212 */ 213 asmlinkage unsigned long sys_brk(unsigned long brk) 214 { 215 unsigned long rlim, retval; 216 unsigned long newbrk, oldbrk; 217 struct mm_struct *mm = current->mm; 218 219 down_write(&mm->mmap_sem); 220 221 if (brk < mm->end_code) 222 goto out; 223 newbrk = PAGE_ALIGN(brk); 224 oldbrk = PAGE_ALIGN(mm->brk); 225 if (oldbrk == newbrk) 226 goto set_brk; 227 228 /* Always allow shrinking brk. */ 229 if (brk <= mm->brk) { 230 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 231 goto set_brk; 232 goto out; 233 } 234 235 /* Check against rlimit.. */ 236 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 237 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim) 238 goto out; 239 240 /* Check against existing mmap mappings. */ 241 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 242 goto out; 243 244 /* Ok, looks good - let it rip. */ 245 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 246 goto out; 247 set_brk: 248 mm->brk = brk; 249 out: 250 retval = mm->brk; 251 up_write(&mm->mmap_sem); 252 return retval; 253 } 254 255 #ifdef DEBUG_MM_RB 256 static int browse_rb(struct rb_root *root) 257 { 258 int i = 0, j; 259 struct rb_node *nd, *pn = NULL; 260 unsigned long prev = 0, pend = 0; 261 262 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 263 struct vm_area_struct *vma; 264 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 265 if (vma->vm_start < prev) 266 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 267 if (vma->vm_start < pend) 268 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 269 if (vma->vm_start > vma->vm_end) 270 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 271 i++; 272 pn = nd; 273 } 274 j = 0; 275 for (nd = pn; nd; nd = rb_prev(nd)) { 276 j++; 277 } 278 if (i != j) 279 printk("backwards %d, forwards %d\n", j, i), i = 0; 280 return i; 281 } 282 283 void validate_mm(struct mm_struct *mm) 284 { 285 int bug = 0; 286 int i = 0; 287 struct vm_area_struct *tmp = mm->mmap; 288 while (tmp) { 289 tmp = tmp->vm_next; 290 i++; 291 } 292 if (i != mm->map_count) 293 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 294 i = browse_rb(&mm->mm_rb); 295 if (i != mm->map_count) 296 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 297 if (bug) 298 BUG(); 299 } 300 #else 301 #define validate_mm(mm) do { } while (0) 302 #endif 303 304 static struct vm_area_struct * 305 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 306 struct vm_area_struct **pprev, struct rb_node ***rb_link, 307 struct rb_node ** rb_parent) 308 { 309 struct vm_area_struct * vma; 310 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 311 312 __rb_link = &mm->mm_rb.rb_node; 313 rb_prev = __rb_parent = NULL; 314 vma = NULL; 315 316 while (*__rb_link) { 317 struct vm_area_struct *vma_tmp; 318 319 __rb_parent = *__rb_link; 320 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 321 322 if (vma_tmp->vm_end > addr) { 323 vma = vma_tmp; 324 if (vma_tmp->vm_start <= addr) 325 return vma; 326 __rb_link = &__rb_parent->rb_left; 327 } else { 328 rb_prev = __rb_parent; 329 __rb_link = &__rb_parent->rb_right; 330 } 331 } 332 333 *pprev = NULL; 334 if (rb_prev) 335 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 336 *rb_link = __rb_link; 337 *rb_parent = __rb_parent; 338 return vma; 339 } 340 341 static inline void 342 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 343 struct vm_area_struct *prev, struct rb_node *rb_parent) 344 { 345 if (prev) { 346 vma->vm_next = prev->vm_next; 347 prev->vm_next = vma; 348 } else { 349 mm->mmap = vma; 350 if (rb_parent) 351 vma->vm_next = rb_entry(rb_parent, 352 struct vm_area_struct, vm_rb); 353 else 354 vma->vm_next = NULL; 355 } 356 } 357 358 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 359 struct rb_node **rb_link, struct rb_node *rb_parent) 360 { 361 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 362 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 363 } 364 365 static inline void __vma_link_file(struct vm_area_struct *vma) 366 { 367 struct file * file; 368 369 file = vma->vm_file; 370 if (file) { 371 struct address_space *mapping = file->f_mapping; 372 373 if (vma->vm_flags & VM_DENYWRITE) 374 atomic_dec(&file->f_dentry->d_inode->i_writecount); 375 if (vma->vm_flags & VM_SHARED) 376 mapping->i_mmap_writable++; 377 378 flush_dcache_mmap_lock(mapping); 379 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 380 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 381 else 382 vma_prio_tree_insert(vma, &mapping->i_mmap); 383 flush_dcache_mmap_unlock(mapping); 384 } 385 } 386 387 static void 388 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 389 struct vm_area_struct *prev, struct rb_node **rb_link, 390 struct rb_node *rb_parent) 391 { 392 __vma_link_list(mm, vma, prev, rb_parent); 393 __vma_link_rb(mm, vma, rb_link, rb_parent); 394 __anon_vma_link(vma); 395 } 396 397 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 398 struct vm_area_struct *prev, struct rb_node **rb_link, 399 struct rb_node *rb_parent) 400 { 401 struct address_space *mapping = NULL; 402 403 if (vma->vm_file) 404 mapping = vma->vm_file->f_mapping; 405 406 if (mapping) { 407 spin_lock(&mapping->i_mmap_lock); 408 vma->vm_truncate_count = mapping->truncate_count; 409 } 410 anon_vma_lock(vma); 411 412 __vma_link(mm, vma, prev, rb_link, rb_parent); 413 __vma_link_file(vma); 414 415 anon_vma_unlock(vma); 416 if (mapping) 417 spin_unlock(&mapping->i_mmap_lock); 418 419 mm->map_count++; 420 validate_mm(mm); 421 } 422 423 /* 424 * Helper for vma_adjust in the split_vma insert case: 425 * insert vm structure into list and rbtree and anon_vma, 426 * but it has already been inserted into prio_tree earlier. 427 */ 428 static void 429 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 430 { 431 struct vm_area_struct * __vma, * prev; 432 struct rb_node ** rb_link, * rb_parent; 433 434 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 435 if (__vma && __vma->vm_start < vma->vm_end) 436 BUG(); 437 __vma_link(mm, vma, prev, rb_link, rb_parent); 438 mm->map_count++; 439 } 440 441 static inline void 442 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 443 struct vm_area_struct *prev) 444 { 445 prev->vm_next = vma->vm_next; 446 rb_erase(&vma->vm_rb, &mm->mm_rb); 447 if (mm->mmap_cache == vma) 448 mm->mmap_cache = prev; 449 } 450 451 /* 452 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 453 * is already present in an i_mmap tree without adjusting the tree. 454 * The following helper function should be used when such adjustments 455 * are necessary. The "insert" vma (if any) is to be inserted 456 * before we drop the necessary locks. 457 */ 458 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 459 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 460 { 461 struct mm_struct *mm = vma->vm_mm; 462 struct vm_area_struct *next = vma->vm_next; 463 struct vm_area_struct *importer = NULL; 464 struct address_space *mapping = NULL; 465 struct prio_tree_root *root = NULL; 466 struct file *file = vma->vm_file; 467 struct anon_vma *anon_vma = NULL; 468 long adjust_next = 0; 469 int remove_next = 0; 470 471 if (next && !insert) { 472 if (end >= next->vm_end) { 473 /* 474 * vma expands, overlapping all the next, and 475 * perhaps the one after too (mprotect case 6). 476 */ 477 again: remove_next = 1 + (end > next->vm_end); 478 end = next->vm_end; 479 anon_vma = next->anon_vma; 480 importer = vma; 481 } else if (end > next->vm_start) { 482 /* 483 * vma expands, overlapping part of the next: 484 * mprotect case 5 shifting the boundary up. 485 */ 486 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 487 anon_vma = next->anon_vma; 488 importer = vma; 489 } else if (end < vma->vm_end) { 490 /* 491 * vma shrinks, and !insert tells it's not 492 * split_vma inserting another: so it must be 493 * mprotect case 4 shifting the boundary down. 494 */ 495 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 496 anon_vma = next->anon_vma; 497 importer = next; 498 } 499 } 500 501 if (file) { 502 mapping = file->f_mapping; 503 if (!(vma->vm_flags & VM_NONLINEAR)) 504 root = &mapping->i_mmap; 505 spin_lock(&mapping->i_mmap_lock); 506 if (importer && 507 vma->vm_truncate_count != next->vm_truncate_count) { 508 /* 509 * unmap_mapping_range might be in progress: 510 * ensure that the expanding vma is rescanned. 511 */ 512 importer->vm_truncate_count = 0; 513 } 514 if (insert) { 515 insert->vm_truncate_count = vma->vm_truncate_count; 516 /* 517 * Put into prio_tree now, so instantiated pages 518 * are visible to arm/parisc __flush_dcache_page 519 * throughout; but we cannot insert into address 520 * space until vma start or end is updated. 521 */ 522 __vma_link_file(insert); 523 } 524 } 525 526 /* 527 * When changing only vma->vm_end, we don't really need 528 * anon_vma lock: but is that case worth optimizing out? 529 */ 530 if (vma->anon_vma) 531 anon_vma = vma->anon_vma; 532 if (anon_vma) { 533 spin_lock(&anon_vma->lock); 534 /* 535 * Easily overlooked: when mprotect shifts the boundary, 536 * make sure the expanding vma has anon_vma set if the 537 * shrinking vma had, to cover any anon pages imported. 538 */ 539 if (importer && !importer->anon_vma) { 540 importer->anon_vma = anon_vma; 541 __anon_vma_link(importer); 542 } 543 } 544 545 if (root) { 546 flush_dcache_mmap_lock(mapping); 547 vma_prio_tree_remove(vma, root); 548 if (adjust_next) 549 vma_prio_tree_remove(next, root); 550 } 551 552 vma->vm_start = start; 553 vma->vm_end = end; 554 vma->vm_pgoff = pgoff; 555 if (adjust_next) { 556 next->vm_start += adjust_next << PAGE_SHIFT; 557 next->vm_pgoff += adjust_next; 558 } 559 560 if (root) { 561 if (adjust_next) 562 vma_prio_tree_insert(next, root); 563 vma_prio_tree_insert(vma, root); 564 flush_dcache_mmap_unlock(mapping); 565 } 566 567 if (remove_next) { 568 /* 569 * vma_merge has merged next into vma, and needs 570 * us to remove next before dropping the locks. 571 */ 572 __vma_unlink(mm, next, vma); 573 if (file) 574 __remove_shared_vm_struct(next, file, mapping); 575 if (next->anon_vma) 576 __anon_vma_merge(vma, next); 577 } else if (insert) { 578 /* 579 * split_vma has split insert from vma, and needs 580 * us to insert it before dropping the locks 581 * (it may either follow vma or precede it). 582 */ 583 __insert_vm_struct(mm, insert); 584 } 585 586 if (anon_vma) 587 spin_unlock(&anon_vma->lock); 588 if (mapping) 589 spin_unlock(&mapping->i_mmap_lock); 590 591 if (remove_next) { 592 if (file) 593 fput(file); 594 mm->map_count--; 595 mpol_free(vma_policy(next)); 596 kmem_cache_free(vm_area_cachep, next); 597 /* 598 * In mprotect's case 6 (see comments on vma_merge), 599 * we must remove another next too. It would clutter 600 * up the code too much to do both in one go. 601 */ 602 if (remove_next == 2) { 603 next = vma->vm_next; 604 goto again; 605 } 606 } 607 608 validate_mm(mm); 609 } 610 611 /* 612 * If the vma has a ->close operation then the driver probably needs to release 613 * per-vma resources, so we don't attempt to merge those. 614 */ 615 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED) 616 617 static inline int is_mergeable_vma(struct vm_area_struct *vma, 618 struct file *file, unsigned long vm_flags) 619 { 620 if (vma->vm_flags != vm_flags) 621 return 0; 622 if (vma->vm_file != file) 623 return 0; 624 if (vma->vm_ops && vma->vm_ops->close) 625 return 0; 626 return 1; 627 } 628 629 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 630 struct anon_vma *anon_vma2) 631 { 632 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 633 } 634 635 /* 636 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 637 * in front of (at a lower virtual address and file offset than) the vma. 638 * 639 * We cannot merge two vmas if they have differently assigned (non-NULL) 640 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 641 * 642 * We don't check here for the merged mmap wrapping around the end of pagecache 643 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 644 * wrap, nor mmaps which cover the final page at index -1UL. 645 */ 646 static int 647 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 648 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 649 { 650 if (is_mergeable_vma(vma, file, vm_flags) && 651 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 652 if (vma->vm_pgoff == vm_pgoff) 653 return 1; 654 } 655 return 0; 656 } 657 658 /* 659 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 660 * beyond (at a higher virtual address and file offset than) the vma. 661 * 662 * We cannot merge two vmas if they have differently assigned (non-NULL) 663 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 664 */ 665 static int 666 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 667 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 668 { 669 if (is_mergeable_vma(vma, file, vm_flags) && 670 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 671 pgoff_t vm_pglen; 672 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 673 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 674 return 1; 675 } 676 return 0; 677 } 678 679 /* 680 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 681 * whether that can be merged with its predecessor or its successor. 682 * Or both (it neatly fills a hole). 683 * 684 * In most cases - when called for mmap, brk or mremap - [addr,end) is 685 * certain not to be mapped by the time vma_merge is called; but when 686 * called for mprotect, it is certain to be already mapped (either at 687 * an offset within prev, or at the start of next), and the flags of 688 * this area are about to be changed to vm_flags - and the no-change 689 * case has already been eliminated. 690 * 691 * The following mprotect cases have to be considered, where AAAA is 692 * the area passed down from mprotect_fixup, never extending beyond one 693 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 694 * 695 * AAAA AAAA AAAA AAAA 696 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 697 * cannot merge might become might become might become 698 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 699 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 700 * mremap move: PPPPNNNNNNNN 8 701 * AAAA 702 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 703 * might become case 1 below case 2 below case 3 below 704 * 705 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 706 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 707 */ 708 struct vm_area_struct *vma_merge(struct mm_struct *mm, 709 struct vm_area_struct *prev, unsigned long addr, 710 unsigned long end, unsigned long vm_flags, 711 struct anon_vma *anon_vma, struct file *file, 712 pgoff_t pgoff, struct mempolicy *policy) 713 { 714 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 715 struct vm_area_struct *area, *next; 716 717 /* 718 * We later require that vma->vm_flags == vm_flags, 719 * so this tests vma->vm_flags & VM_SPECIAL, too. 720 */ 721 if (vm_flags & VM_SPECIAL) 722 return NULL; 723 724 if (prev) 725 next = prev->vm_next; 726 else 727 next = mm->mmap; 728 area = next; 729 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 730 next = next->vm_next; 731 732 /* 733 * Can it merge with the predecessor? 734 */ 735 if (prev && prev->vm_end == addr && 736 mpol_equal(vma_policy(prev), policy) && 737 can_vma_merge_after(prev, vm_flags, 738 anon_vma, file, pgoff)) { 739 /* 740 * OK, it can. Can we now merge in the successor as well? 741 */ 742 if (next && end == next->vm_start && 743 mpol_equal(policy, vma_policy(next)) && 744 can_vma_merge_before(next, vm_flags, 745 anon_vma, file, pgoff+pglen) && 746 is_mergeable_anon_vma(prev->anon_vma, 747 next->anon_vma)) { 748 /* cases 1, 6 */ 749 vma_adjust(prev, prev->vm_start, 750 next->vm_end, prev->vm_pgoff, NULL); 751 } else /* cases 2, 5, 7 */ 752 vma_adjust(prev, prev->vm_start, 753 end, prev->vm_pgoff, NULL); 754 return prev; 755 } 756 757 /* 758 * Can this new request be merged in front of next? 759 */ 760 if (next && end == next->vm_start && 761 mpol_equal(policy, vma_policy(next)) && 762 can_vma_merge_before(next, vm_flags, 763 anon_vma, file, pgoff+pglen)) { 764 if (prev && addr < prev->vm_end) /* case 4 */ 765 vma_adjust(prev, prev->vm_start, 766 addr, prev->vm_pgoff, NULL); 767 else /* cases 3, 8 */ 768 vma_adjust(area, addr, next->vm_end, 769 next->vm_pgoff - pglen, NULL); 770 return area; 771 } 772 773 return NULL; 774 } 775 776 /* 777 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 778 * neighbouring vmas for a suitable anon_vma, before it goes off 779 * to allocate a new anon_vma. It checks because a repetitive 780 * sequence of mprotects and faults may otherwise lead to distinct 781 * anon_vmas being allocated, preventing vma merge in subsequent 782 * mprotect. 783 */ 784 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 785 { 786 struct vm_area_struct *near; 787 unsigned long vm_flags; 788 789 near = vma->vm_next; 790 if (!near) 791 goto try_prev; 792 793 /* 794 * Since only mprotect tries to remerge vmas, match flags 795 * which might be mprotected into each other later on. 796 * Neither mlock nor madvise tries to remerge at present, 797 * so leave their flags as obstructing a merge. 798 */ 799 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 800 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 801 802 if (near->anon_vma && vma->vm_end == near->vm_start && 803 mpol_equal(vma_policy(vma), vma_policy(near)) && 804 can_vma_merge_before(near, vm_flags, 805 NULL, vma->vm_file, vma->vm_pgoff + 806 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 807 return near->anon_vma; 808 try_prev: 809 /* 810 * It is potentially slow to have to call find_vma_prev here. 811 * But it's only on the first write fault on the vma, not 812 * every time, and we could devise a way to avoid it later 813 * (e.g. stash info in next's anon_vma_node when assigning 814 * an anon_vma, or when trying vma_merge). Another time. 815 */ 816 if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma) 817 BUG(); 818 if (!near) 819 goto none; 820 821 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 822 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 823 824 if (near->anon_vma && near->vm_end == vma->vm_start && 825 mpol_equal(vma_policy(near), vma_policy(vma)) && 826 can_vma_merge_after(near, vm_flags, 827 NULL, vma->vm_file, vma->vm_pgoff)) 828 return near->anon_vma; 829 none: 830 /* 831 * There's no absolute need to look only at touching neighbours: 832 * we could search further afield for "compatible" anon_vmas. 833 * But it would probably just be a waste of time searching, 834 * or lead to too many vmas hanging off the same anon_vma. 835 * We're trying to allow mprotect remerging later on, 836 * not trying to minimize memory used for anon_vmas. 837 */ 838 return NULL; 839 } 840 841 #ifdef CONFIG_PROC_FS 842 void __vm_stat_account(struct mm_struct *mm, unsigned long flags, 843 struct file *file, long pages) 844 { 845 const unsigned long stack_flags 846 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 847 848 #ifdef CONFIG_HUGETLB 849 if (flags & VM_HUGETLB) { 850 if (!(flags & VM_DONTCOPY)) 851 mm->shared_vm += pages; 852 return; 853 } 854 #endif /* CONFIG_HUGETLB */ 855 856 if (file) { 857 mm->shared_vm += pages; 858 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 859 mm->exec_vm += pages; 860 } else if (flags & stack_flags) 861 mm->stack_vm += pages; 862 if (flags & (VM_RESERVED|VM_IO)) 863 mm->reserved_vm += pages; 864 } 865 #endif /* CONFIG_PROC_FS */ 866 867 /* 868 * The caller must hold down_write(current->mm->mmap_sem). 869 */ 870 871 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 872 unsigned long len, unsigned long prot, 873 unsigned long flags, unsigned long pgoff) 874 { 875 struct mm_struct * mm = current->mm; 876 struct vm_area_struct * vma, * prev; 877 struct inode *inode; 878 unsigned int vm_flags; 879 int correct_wcount = 0; 880 int error; 881 struct rb_node ** rb_link, * rb_parent; 882 int accountable = 1; 883 unsigned long charged = 0, reqprot = prot; 884 885 if (file) { 886 if (is_file_hugepages(file)) 887 accountable = 0; 888 889 if (!file->f_op || !file->f_op->mmap) 890 return -ENODEV; 891 892 if ((prot & PROT_EXEC) && 893 (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)) 894 return -EPERM; 895 } 896 /* 897 * Does the application expect PROT_READ to imply PROT_EXEC? 898 * 899 * (the exception is when the underlying filesystem is noexec 900 * mounted, in which case we dont add PROT_EXEC.) 901 */ 902 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 903 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))) 904 prot |= PROT_EXEC; 905 906 if (!len) 907 return -EINVAL; 908 909 /* Careful about overflows.. */ 910 len = PAGE_ALIGN(len); 911 if (!len || len > TASK_SIZE) 912 return -ENOMEM; 913 914 /* offset overflow? */ 915 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 916 return -EOVERFLOW; 917 918 /* Too many mappings? */ 919 if (mm->map_count > sysctl_max_map_count) 920 return -ENOMEM; 921 922 /* Obtain the address to map to. we verify (or select) it and ensure 923 * that it represents a valid section of the address space. 924 */ 925 addr = get_unmapped_area(file, addr, len, pgoff, flags); 926 if (addr & ~PAGE_MASK) 927 return addr; 928 929 /* Do simple checking here so the lower-level routines won't have 930 * to. we assume access permissions have been handled by the open 931 * of the memory object, so we don't do any here. 932 */ 933 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 934 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 935 936 if (flags & MAP_LOCKED) { 937 if (!can_do_mlock()) 938 return -EPERM; 939 vm_flags |= VM_LOCKED; 940 } 941 /* mlock MCL_FUTURE? */ 942 if (vm_flags & VM_LOCKED) { 943 unsigned long locked, lock_limit; 944 locked = len >> PAGE_SHIFT; 945 locked += mm->locked_vm; 946 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 947 lock_limit >>= PAGE_SHIFT; 948 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 949 return -EAGAIN; 950 } 951 952 inode = file ? file->f_dentry->d_inode : NULL; 953 954 if (file) { 955 switch (flags & MAP_TYPE) { 956 case MAP_SHARED: 957 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 958 return -EACCES; 959 960 /* 961 * Make sure we don't allow writing to an append-only 962 * file.. 963 */ 964 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 965 return -EACCES; 966 967 /* 968 * Make sure there are no mandatory locks on the file. 969 */ 970 if (locks_verify_locked(inode)) 971 return -EAGAIN; 972 973 vm_flags |= VM_SHARED | VM_MAYSHARE; 974 if (!(file->f_mode & FMODE_WRITE)) 975 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 976 977 /* fall through */ 978 case MAP_PRIVATE: 979 if (!(file->f_mode & FMODE_READ)) 980 return -EACCES; 981 break; 982 983 default: 984 return -EINVAL; 985 } 986 } else { 987 switch (flags & MAP_TYPE) { 988 case MAP_SHARED: 989 vm_flags |= VM_SHARED | VM_MAYSHARE; 990 break; 991 case MAP_PRIVATE: 992 /* 993 * Set pgoff according to addr for anon_vma. 994 */ 995 pgoff = addr >> PAGE_SHIFT; 996 break; 997 default: 998 return -EINVAL; 999 } 1000 } 1001 1002 error = security_file_mmap(file, reqprot, prot, flags); 1003 if (error) 1004 return error; 1005 1006 /* Clear old maps */ 1007 error = -ENOMEM; 1008 munmap_back: 1009 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1010 if (vma && vma->vm_start < addr + len) { 1011 if (do_munmap(mm, addr, len)) 1012 return -ENOMEM; 1013 goto munmap_back; 1014 } 1015 1016 /* Check against address space limit. */ 1017 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1018 return -ENOMEM; 1019 1020 if (accountable && (!(flags & MAP_NORESERVE) || 1021 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1022 if (vm_flags & VM_SHARED) { 1023 /* Check memory availability in shmem_file_setup? */ 1024 vm_flags |= VM_ACCOUNT; 1025 } else if (vm_flags & VM_WRITE) { 1026 /* 1027 * Private writable mapping: check memory availability 1028 */ 1029 charged = len >> PAGE_SHIFT; 1030 if (security_vm_enough_memory(charged)) 1031 return -ENOMEM; 1032 vm_flags |= VM_ACCOUNT; 1033 } 1034 } 1035 1036 /* 1037 * Can we just expand an old private anonymous mapping? 1038 * The VM_SHARED test is necessary because shmem_zero_setup 1039 * will create the file object for a shared anonymous map below. 1040 */ 1041 if (!file && !(vm_flags & VM_SHARED) && 1042 vma_merge(mm, prev, addr, addr + len, vm_flags, 1043 NULL, NULL, pgoff, NULL)) 1044 goto out; 1045 1046 /* 1047 * Determine the object being mapped and call the appropriate 1048 * specific mapper. the address has already been validated, but 1049 * not unmapped, but the maps are removed from the list. 1050 */ 1051 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1052 if (!vma) { 1053 error = -ENOMEM; 1054 goto unacct_error; 1055 } 1056 memset(vma, 0, sizeof(*vma)); 1057 1058 vma->vm_mm = mm; 1059 vma->vm_start = addr; 1060 vma->vm_end = addr + len; 1061 vma->vm_flags = vm_flags; 1062 vma->vm_page_prot = protection_map[vm_flags & 0x0f]; 1063 vma->vm_pgoff = pgoff; 1064 1065 if (file) { 1066 error = -EINVAL; 1067 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1068 goto free_vma; 1069 if (vm_flags & VM_DENYWRITE) { 1070 error = deny_write_access(file); 1071 if (error) 1072 goto free_vma; 1073 correct_wcount = 1; 1074 } 1075 vma->vm_file = file; 1076 get_file(file); 1077 error = file->f_op->mmap(file, vma); 1078 if (error) 1079 goto unmap_and_free_vma; 1080 } else if (vm_flags & VM_SHARED) { 1081 error = shmem_zero_setup(vma); 1082 if (error) 1083 goto free_vma; 1084 } 1085 1086 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1087 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1088 * that memory reservation must be checked; but that reservation 1089 * belongs to shared memory object, not to vma: so now clear it. 1090 */ 1091 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1092 vma->vm_flags &= ~VM_ACCOUNT; 1093 1094 /* Can addr have changed?? 1095 * 1096 * Answer: Yes, several device drivers can do it in their 1097 * f_op->mmap method. -DaveM 1098 */ 1099 addr = vma->vm_start; 1100 pgoff = vma->vm_pgoff; 1101 vm_flags = vma->vm_flags; 1102 1103 if (!file || !vma_merge(mm, prev, addr, vma->vm_end, 1104 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1105 file = vma->vm_file; 1106 vma_link(mm, vma, prev, rb_link, rb_parent); 1107 if (correct_wcount) 1108 atomic_inc(&inode->i_writecount); 1109 } else { 1110 if (file) { 1111 if (correct_wcount) 1112 atomic_inc(&inode->i_writecount); 1113 fput(file); 1114 } 1115 mpol_free(vma_policy(vma)); 1116 kmem_cache_free(vm_area_cachep, vma); 1117 } 1118 out: 1119 mm->total_vm += len >> PAGE_SHIFT; 1120 __vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1121 if (vm_flags & VM_LOCKED) { 1122 mm->locked_vm += len >> PAGE_SHIFT; 1123 make_pages_present(addr, addr + len); 1124 } 1125 if (flags & MAP_POPULATE) { 1126 up_write(&mm->mmap_sem); 1127 sys_remap_file_pages(addr, len, 0, 1128 pgoff, flags & MAP_NONBLOCK); 1129 down_write(&mm->mmap_sem); 1130 } 1131 return addr; 1132 1133 unmap_and_free_vma: 1134 if (correct_wcount) 1135 atomic_inc(&inode->i_writecount); 1136 vma->vm_file = NULL; 1137 fput(file); 1138 1139 /* Undo any partial mapping done by a device driver. */ 1140 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1141 charged = 0; 1142 free_vma: 1143 kmem_cache_free(vm_area_cachep, vma); 1144 unacct_error: 1145 if (charged) 1146 vm_unacct_memory(charged); 1147 return error; 1148 } 1149 1150 EXPORT_SYMBOL(do_mmap_pgoff); 1151 1152 /* Get an address range which is currently unmapped. 1153 * For shmat() with addr=0. 1154 * 1155 * Ugly calling convention alert: 1156 * Return value with the low bits set means error value, 1157 * ie 1158 * if (ret & ~PAGE_MASK) 1159 * error = ret; 1160 * 1161 * This function "knows" that -ENOMEM has the bits set. 1162 */ 1163 #ifndef HAVE_ARCH_UNMAPPED_AREA 1164 unsigned long 1165 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1166 unsigned long len, unsigned long pgoff, unsigned long flags) 1167 { 1168 struct mm_struct *mm = current->mm; 1169 struct vm_area_struct *vma; 1170 unsigned long start_addr; 1171 1172 if (len > TASK_SIZE) 1173 return -ENOMEM; 1174 1175 if (addr) { 1176 addr = PAGE_ALIGN(addr); 1177 vma = find_vma(mm, addr); 1178 if (TASK_SIZE - len >= addr && 1179 (!vma || addr + len <= vma->vm_start)) 1180 return addr; 1181 } 1182 if (len > mm->cached_hole_size) { 1183 start_addr = addr = mm->free_area_cache; 1184 } else { 1185 start_addr = addr = TASK_UNMAPPED_BASE; 1186 mm->cached_hole_size = 0; 1187 } 1188 1189 full_search: 1190 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1191 /* At this point: (!vma || addr < vma->vm_end). */ 1192 if (TASK_SIZE - len < addr) { 1193 /* 1194 * Start a new search - just in case we missed 1195 * some holes. 1196 */ 1197 if (start_addr != TASK_UNMAPPED_BASE) { 1198 addr = TASK_UNMAPPED_BASE; 1199 start_addr = addr; 1200 mm->cached_hole_size = 0; 1201 goto full_search; 1202 } 1203 return -ENOMEM; 1204 } 1205 if (!vma || addr + len <= vma->vm_start) { 1206 /* 1207 * Remember the place where we stopped the search: 1208 */ 1209 mm->free_area_cache = addr + len; 1210 return addr; 1211 } 1212 if (addr + mm->cached_hole_size < vma->vm_start) 1213 mm->cached_hole_size = vma->vm_start - addr; 1214 addr = vma->vm_end; 1215 } 1216 } 1217 #endif 1218 1219 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1220 { 1221 /* 1222 * Is this a new hole at the lowest possible address? 1223 */ 1224 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1225 mm->free_area_cache = addr; 1226 mm->cached_hole_size = ~0UL; 1227 } 1228 } 1229 1230 /* 1231 * This mmap-allocator allocates new areas top-down from below the 1232 * stack's low limit (the base): 1233 */ 1234 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1235 unsigned long 1236 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1237 const unsigned long len, const unsigned long pgoff, 1238 const unsigned long flags) 1239 { 1240 struct vm_area_struct *vma; 1241 struct mm_struct *mm = current->mm; 1242 unsigned long addr = addr0; 1243 1244 /* requested length too big for entire address space */ 1245 if (len > TASK_SIZE) 1246 return -ENOMEM; 1247 1248 /* requesting a specific address */ 1249 if (addr) { 1250 addr = PAGE_ALIGN(addr); 1251 vma = find_vma(mm, addr); 1252 if (TASK_SIZE - len >= addr && 1253 (!vma || addr + len <= vma->vm_start)) 1254 return addr; 1255 } 1256 1257 /* check if free_area_cache is useful for us */ 1258 if (len <= mm->cached_hole_size) { 1259 mm->cached_hole_size = 0; 1260 mm->free_area_cache = mm->mmap_base; 1261 } 1262 1263 /* either no address requested or can't fit in requested address hole */ 1264 addr = mm->free_area_cache; 1265 1266 /* make sure it can fit in the remaining address space */ 1267 if (addr > len) { 1268 vma = find_vma(mm, addr-len); 1269 if (!vma || addr <= vma->vm_start) 1270 /* remember the address as a hint for next time */ 1271 return (mm->free_area_cache = addr-len); 1272 } 1273 1274 if (mm->mmap_base < len) 1275 goto bottomup; 1276 1277 addr = mm->mmap_base-len; 1278 1279 do { 1280 /* 1281 * Lookup failure means no vma is above this address, 1282 * else if new region fits below vma->vm_start, 1283 * return with success: 1284 */ 1285 vma = find_vma(mm, addr); 1286 if (!vma || addr+len <= vma->vm_start) 1287 /* remember the address as a hint for next time */ 1288 return (mm->free_area_cache = addr); 1289 1290 /* remember the largest hole we saw so far */ 1291 if (addr + mm->cached_hole_size < vma->vm_start) 1292 mm->cached_hole_size = vma->vm_start - addr; 1293 1294 /* try just below the current vma->vm_start */ 1295 addr = vma->vm_start-len; 1296 } while (len < vma->vm_start); 1297 1298 bottomup: 1299 /* 1300 * A failed mmap() very likely causes application failure, 1301 * so fall back to the bottom-up function here. This scenario 1302 * can happen with large stack limits and large mmap() 1303 * allocations. 1304 */ 1305 mm->cached_hole_size = ~0UL; 1306 mm->free_area_cache = TASK_UNMAPPED_BASE; 1307 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1308 /* 1309 * Restore the topdown base: 1310 */ 1311 mm->free_area_cache = mm->mmap_base; 1312 mm->cached_hole_size = ~0UL; 1313 1314 return addr; 1315 } 1316 #endif 1317 1318 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1319 { 1320 /* 1321 * Is this a new hole at the highest possible address? 1322 */ 1323 if (addr > mm->free_area_cache) 1324 mm->free_area_cache = addr; 1325 1326 /* dont allow allocations above current base */ 1327 if (mm->free_area_cache > mm->mmap_base) 1328 mm->free_area_cache = mm->mmap_base; 1329 } 1330 1331 unsigned long 1332 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1333 unsigned long pgoff, unsigned long flags) 1334 { 1335 unsigned long ret; 1336 1337 if (!(flags & MAP_FIXED)) { 1338 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1339 1340 get_area = current->mm->get_unmapped_area; 1341 if (file && file->f_op && file->f_op->get_unmapped_area) 1342 get_area = file->f_op->get_unmapped_area; 1343 addr = get_area(file, addr, len, pgoff, flags); 1344 if (IS_ERR_VALUE(addr)) 1345 return addr; 1346 } 1347 1348 if (addr > TASK_SIZE - len) 1349 return -ENOMEM; 1350 if (addr & ~PAGE_MASK) 1351 return -EINVAL; 1352 if (file && is_file_hugepages(file)) { 1353 /* 1354 * Check if the given range is hugepage aligned, and 1355 * can be made suitable for hugepages. 1356 */ 1357 ret = prepare_hugepage_range(addr, len); 1358 } else { 1359 /* 1360 * Ensure that a normal request is not falling in a 1361 * reserved hugepage range. For some archs like IA-64, 1362 * there is a separate region for hugepages. 1363 */ 1364 ret = is_hugepage_only_range(current->mm, addr, len); 1365 } 1366 if (ret) 1367 return -EINVAL; 1368 return addr; 1369 } 1370 1371 EXPORT_SYMBOL(get_unmapped_area); 1372 1373 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1374 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1375 { 1376 struct vm_area_struct *vma = NULL; 1377 1378 if (mm) { 1379 /* Check the cache first. */ 1380 /* (Cache hit rate is typically around 35%.) */ 1381 vma = mm->mmap_cache; 1382 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1383 struct rb_node * rb_node; 1384 1385 rb_node = mm->mm_rb.rb_node; 1386 vma = NULL; 1387 1388 while (rb_node) { 1389 struct vm_area_struct * vma_tmp; 1390 1391 vma_tmp = rb_entry(rb_node, 1392 struct vm_area_struct, vm_rb); 1393 1394 if (vma_tmp->vm_end > addr) { 1395 vma = vma_tmp; 1396 if (vma_tmp->vm_start <= addr) 1397 break; 1398 rb_node = rb_node->rb_left; 1399 } else 1400 rb_node = rb_node->rb_right; 1401 } 1402 if (vma) 1403 mm->mmap_cache = vma; 1404 } 1405 } 1406 return vma; 1407 } 1408 1409 EXPORT_SYMBOL(find_vma); 1410 1411 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1412 struct vm_area_struct * 1413 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1414 struct vm_area_struct **pprev) 1415 { 1416 struct vm_area_struct *vma = NULL, *prev = NULL; 1417 struct rb_node * rb_node; 1418 if (!mm) 1419 goto out; 1420 1421 /* Guard against addr being lower than the first VMA */ 1422 vma = mm->mmap; 1423 1424 /* Go through the RB tree quickly. */ 1425 rb_node = mm->mm_rb.rb_node; 1426 1427 while (rb_node) { 1428 struct vm_area_struct *vma_tmp; 1429 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1430 1431 if (addr < vma_tmp->vm_end) { 1432 rb_node = rb_node->rb_left; 1433 } else { 1434 prev = vma_tmp; 1435 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1436 break; 1437 rb_node = rb_node->rb_right; 1438 } 1439 } 1440 1441 out: 1442 *pprev = prev; 1443 return prev ? prev->vm_next : vma; 1444 } 1445 1446 /* 1447 * Verify that the stack growth is acceptable and 1448 * update accounting. This is shared with both the 1449 * grow-up and grow-down cases. 1450 */ 1451 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1452 { 1453 struct mm_struct *mm = vma->vm_mm; 1454 struct rlimit *rlim = current->signal->rlim; 1455 1456 /* address space limit tests */ 1457 if (!may_expand_vm(mm, grow)) 1458 return -ENOMEM; 1459 1460 /* Stack limit test */ 1461 if (size > rlim[RLIMIT_STACK].rlim_cur) 1462 return -ENOMEM; 1463 1464 /* mlock limit tests */ 1465 if (vma->vm_flags & VM_LOCKED) { 1466 unsigned long locked; 1467 unsigned long limit; 1468 locked = mm->locked_vm + grow; 1469 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1470 if (locked > limit && !capable(CAP_IPC_LOCK)) 1471 return -ENOMEM; 1472 } 1473 1474 /* 1475 * Overcommit.. This must be the final test, as it will 1476 * update security statistics. 1477 */ 1478 if (security_vm_enough_memory(grow)) 1479 return -ENOMEM; 1480 1481 /* Ok, everything looks good - let it rip */ 1482 mm->total_vm += grow; 1483 if (vma->vm_flags & VM_LOCKED) 1484 mm->locked_vm += grow; 1485 __vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1486 return 0; 1487 } 1488 1489 #ifdef CONFIG_STACK_GROWSUP 1490 /* 1491 * vma is the first one with address > vma->vm_end. Have to extend vma. 1492 */ 1493 int expand_stack(struct vm_area_struct * vma, unsigned long address) 1494 { 1495 int error; 1496 1497 if (!(vma->vm_flags & VM_GROWSUP)) 1498 return -EFAULT; 1499 1500 /* 1501 * We must make sure the anon_vma is allocated 1502 * so that the anon_vma locking is not a noop. 1503 */ 1504 if (unlikely(anon_vma_prepare(vma))) 1505 return -ENOMEM; 1506 anon_vma_lock(vma); 1507 1508 /* 1509 * vma->vm_start/vm_end cannot change under us because the caller 1510 * is required to hold the mmap_sem in read mode. We need the 1511 * anon_vma lock to serialize against concurrent expand_stacks. 1512 */ 1513 address += 4 + PAGE_SIZE - 1; 1514 address &= PAGE_MASK; 1515 error = 0; 1516 1517 /* Somebody else might have raced and expanded it already */ 1518 if (address > vma->vm_end) { 1519 unsigned long size, grow; 1520 1521 size = address - vma->vm_start; 1522 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1523 1524 error = acct_stack_growth(vma, size, grow); 1525 if (!error) 1526 vma->vm_end = address; 1527 } 1528 anon_vma_unlock(vma); 1529 return error; 1530 } 1531 1532 struct vm_area_struct * 1533 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1534 { 1535 struct vm_area_struct *vma, *prev; 1536 1537 addr &= PAGE_MASK; 1538 vma = find_vma_prev(mm, addr, &prev); 1539 if (vma && (vma->vm_start <= addr)) 1540 return vma; 1541 if (!prev || expand_stack(prev, addr)) 1542 return NULL; 1543 if (prev->vm_flags & VM_LOCKED) { 1544 make_pages_present(addr, prev->vm_end); 1545 } 1546 return prev; 1547 } 1548 #else 1549 /* 1550 * vma is the first one with address < vma->vm_start. Have to extend vma. 1551 */ 1552 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1553 { 1554 int error; 1555 1556 /* 1557 * We must make sure the anon_vma is allocated 1558 * so that the anon_vma locking is not a noop. 1559 */ 1560 if (unlikely(anon_vma_prepare(vma))) 1561 return -ENOMEM; 1562 anon_vma_lock(vma); 1563 1564 /* 1565 * vma->vm_start/vm_end cannot change under us because the caller 1566 * is required to hold the mmap_sem in read mode. We need the 1567 * anon_vma lock to serialize against concurrent expand_stacks. 1568 */ 1569 address &= PAGE_MASK; 1570 error = 0; 1571 1572 /* Somebody else might have raced and expanded it already */ 1573 if (address < vma->vm_start) { 1574 unsigned long size, grow; 1575 1576 size = vma->vm_end - address; 1577 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1578 1579 error = acct_stack_growth(vma, size, grow); 1580 if (!error) { 1581 vma->vm_start = address; 1582 vma->vm_pgoff -= grow; 1583 } 1584 } 1585 anon_vma_unlock(vma); 1586 return error; 1587 } 1588 1589 struct vm_area_struct * 1590 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1591 { 1592 struct vm_area_struct * vma; 1593 unsigned long start; 1594 1595 addr &= PAGE_MASK; 1596 vma = find_vma(mm,addr); 1597 if (!vma) 1598 return NULL; 1599 if (vma->vm_start <= addr) 1600 return vma; 1601 if (!(vma->vm_flags & VM_GROWSDOWN)) 1602 return NULL; 1603 start = vma->vm_start; 1604 if (expand_stack(vma, addr)) 1605 return NULL; 1606 if (vma->vm_flags & VM_LOCKED) { 1607 make_pages_present(addr, start); 1608 } 1609 return vma; 1610 } 1611 #endif 1612 1613 /* Normal function to fix up a mapping 1614 * This function is the default for when an area has no specific 1615 * function. This may be used as part of a more specific routine. 1616 * 1617 * By the time this function is called, the area struct has been 1618 * removed from the process mapping list. 1619 */ 1620 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area) 1621 { 1622 size_t len = area->vm_end - area->vm_start; 1623 1624 area->vm_mm->total_vm -= len >> PAGE_SHIFT; 1625 if (area->vm_flags & VM_LOCKED) 1626 area->vm_mm->locked_vm -= len >> PAGE_SHIFT; 1627 vm_stat_unaccount(area); 1628 remove_vm_struct(area); 1629 } 1630 1631 /* 1632 * Update the VMA and inode share lists. 1633 * 1634 * Ok - we have the memory areas we should free on the 'free' list, 1635 * so release them, and do the vma updates. 1636 */ 1637 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1638 { 1639 do { 1640 struct vm_area_struct *next = vma->vm_next; 1641 unmap_vma(mm, vma); 1642 vma = next; 1643 } while (vma); 1644 validate_mm(mm); 1645 } 1646 1647 /* 1648 * Get rid of page table information in the indicated region. 1649 * 1650 * Called with the page table lock held. 1651 */ 1652 static void unmap_region(struct mm_struct *mm, 1653 struct vm_area_struct *vma, struct vm_area_struct *prev, 1654 unsigned long start, unsigned long end) 1655 { 1656 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1657 struct mmu_gather *tlb; 1658 unsigned long nr_accounted = 0; 1659 1660 lru_add_drain(); 1661 spin_lock(&mm->page_table_lock); 1662 tlb = tlb_gather_mmu(mm, 0); 1663 unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL); 1664 vm_unacct_memory(nr_accounted); 1665 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1666 next? next->vm_start: 0); 1667 tlb_finish_mmu(tlb, start, end); 1668 spin_unlock(&mm->page_table_lock); 1669 } 1670 1671 /* 1672 * Create a list of vma's touched by the unmap, removing them from the mm's 1673 * vma list as we go.. 1674 */ 1675 static void 1676 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1677 struct vm_area_struct *prev, unsigned long end) 1678 { 1679 struct vm_area_struct **insertion_point; 1680 struct vm_area_struct *tail_vma = NULL; 1681 unsigned long addr; 1682 1683 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1684 do { 1685 rb_erase(&vma->vm_rb, &mm->mm_rb); 1686 mm->map_count--; 1687 tail_vma = vma; 1688 vma = vma->vm_next; 1689 } while (vma && vma->vm_start < end); 1690 *insertion_point = vma; 1691 tail_vma->vm_next = NULL; 1692 if (mm->unmap_area == arch_unmap_area) 1693 addr = prev ? prev->vm_end : mm->mmap_base; 1694 else 1695 addr = vma ? vma->vm_start : mm->mmap_base; 1696 mm->unmap_area(mm, addr); 1697 mm->mmap_cache = NULL; /* Kill the cache. */ 1698 } 1699 1700 /* 1701 * Split a vma into two pieces at address 'addr', a new vma is allocated 1702 * either for the first part or the the tail. 1703 */ 1704 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1705 unsigned long addr, int new_below) 1706 { 1707 struct mempolicy *pol; 1708 struct vm_area_struct *new; 1709 1710 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1711 return -EINVAL; 1712 1713 if (mm->map_count >= sysctl_max_map_count) 1714 return -ENOMEM; 1715 1716 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1717 if (!new) 1718 return -ENOMEM; 1719 1720 /* most fields are the same, copy all, and then fixup */ 1721 *new = *vma; 1722 1723 if (new_below) 1724 new->vm_end = addr; 1725 else { 1726 new->vm_start = addr; 1727 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1728 } 1729 1730 pol = mpol_copy(vma_policy(vma)); 1731 if (IS_ERR(pol)) { 1732 kmem_cache_free(vm_area_cachep, new); 1733 return PTR_ERR(pol); 1734 } 1735 vma_set_policy(new, pol); 1736 1737 if (new->vm_file) 1738 get_file(new->vm_file); 1739 1740 if (new->vm_ops && new->vm_ops->open) 1741 new->vm_ops->open(new); 1742 1743 if (new_below) 1744 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1745 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1746 else 1747 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1748 1749 return 0; 1750 } 1751 1752 /* Munmap is split into 2 main parts -- this part which finds 1753 * what needs doing, and the areas themselves, which do the 1754 * work. This now handles partial unmappings. 1755 * Jeremy Fitzhardinge <jeremy@goop.org> 1756 */ 1757 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1758 { 1759 unsigned long end; 1760 struct vm_area_struct *vma, *prev, *last; 1761 1762 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1763 return -EINVAL; 1764 1765 if ((len = PAGE_ALIGN(len)) == 0) 1766 return -EINVAL; 1767 1768 /* Find the first overlapping VMA */ 1769 vma = find_vma_prev(mm, start, &prev); 1770 if (!vma) 1771 return 0; 1772 /* we have start < vma->vm_end */ 1773 1774 /* if it doesn't overlap, we have nothing.. */ 1775 end = start + len; 1776 if (vma->vm_start >= end) 1777 return 0; 1778 1779 /* 1780 * If we need to split any vma, do it now to save pain later. 1781 * 1782 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1783 * unmapped vm_area_struct will remain in use: so lower split_vma 1784 * places tmp vma above, and higher split_vma places tmp vma below. 1785 */ 1786 if (start > vma->vm_start) { 1787 int error = split_vma(mm, vma, start, 0); 1788 if (error) 1789 return error; 1790 prev = vma; 1791 } 1792 1793 /* Does it split the last one? */ 1794 last = find_vma(mm, end); 1795 if (last && end > last->vm_start) { 1796 int error = split_vma(mm, last, end, 1); 1797 if (error) 1798 return error; 1799 } 1800 vma = prev? prev->vm_next: mm->mmap; 1801 1802 /* 1803 * Remove the vma's, and unmap the actual pages 1804 */ 1805 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1806 unmap_region(mm, vma, prev, start, end); 1807 1808 /* Fix up all other VM information */ 1809 unmap_vma_list(mm, vma); 1810 1811 return 0; 1812 } 1813 1814 EXPORT_SYMBOL(do_munmap); 1815 1816 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1817 { 1818 int ret; 1819 struct mm_struct *mm = current->mm; 1820 1821 profile_munmap(addr); 1822 1823 down_write(&mm->mmap_sem); 1824 ret = do_munmap(mm, addr, len); 1825 up_write(&mm->mmap_sem); 1826 return ret; 1827 } 1828 1829 static inline void verify_mm_writelocked(struct mm_struct *mm) 1830 { 1831 #ifdef CONFIG_DEBUG_KERNEL 1832 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1833 WARN_ON(1); 1834 up_read(&mm->mmap_sem); 1835 } 1836 #endif 1837 } 1838 1839 /* 1840 * this is really a simplified "do_mmap". it only handles 1841 * anonymous maps. eventually we may be able to do some 1842 * brk-specific accounting here. 1843 */ 1844 unsigned long do_brk(unsigned long addr, unsigned long len) 1845 { 1846 struct mm_struct * mm = current->mm; 1847 struct vm_area_struct * vma, * prev; 1848 unsigned long flags; 1849 struct rb_node ** rb_link, * rb_parent; 1850 pgoff_t pgoff = addr >> PAGE_SHIFT; 1851 1852 len = PAGE_ALIGN(len); 1853 if (!len) 1854 return addr; 1855 1856 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1857 return -EINVAL; 1858 1859 /* 1860 * mlock MCL_FUTURE? 1861 */ 1862 if (mm->def_flags & VM_LOCKED) { 1863 unsigned long locked, lock_limit; 1864 locked = len >> PAGE_SHIFT; 1865 locked += mm->locked_vm; 1866 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1867 lock_limit >>= PAGE_SHIFT; 1868 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1869 return -EAGAIN; 1870 } 1871 1872 /* 1873 * mm->mmap_sem is required to protect against another thread 1874 * changing the mappings in case we sleep. 1875 */ 1876 verify_mm_writelocked(mm); 1877 1878 /* 1879 * Clear old maps. this also does some error checking for us 1880 */ 1881 munmap_back: 1882 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1883 if (vma && vma->vm_start < addr + len) { 1884 if (do_munmap(mm, addr, len)) 1885 return -ENOMEM; 1886 goto munmap_back; 1887 } 1888 1889 /* Check against address space limits *after* clearing old maps... */ 1890 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1891 return -ENOMEM; 1892 1893 if (mm->map_count > sysctl_max_map_count) 1894 return -ENOMEM; 1895 1896 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 1897 return -ENOMEM; 1898 1899 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1900 1901 /* Can we just expand an old private anonymous mapping? */ 1902 if (vma_merge(mm, prev, addr, addr + len, flags, 1903 NULL, NULL, pgoff, NULL)) 1904 goto out; 1905 1906 /* 1907 * create a vma struct for an anonymous mapping 1908 */ 1909 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1910 if (!vma) { 1911 vm_unacct_memory(len >> PAGE_SHIFT); 1912 return -ENOMEM; 1913 } 1914 memset(vma, 0, sizeof(*vma)); 1915 1916 vma->vm_mm = mm; 1917 vma->vm_start = addr; 1918 vma->vm_end = addr + len; 1919 vma->vm_pgoff = pgoff; 1920 vma->vm_flags = flags; 1921 vma->vm_page_prot = protection_map[flags & 0x0f]; 1922 vma_link(mm, vma, prev, rb_link, rb_parent); 1923 out: 1924 mm->total_vm += len >> PAGE_SHIFT; 1925 if (flags & VM_LOCKED) { 1926 mm->locked_vm += len >> PAGE_SHIFT; 1927 make_pages_present(addr, addr + len); 1928 } 1929 return addr; 1930 } 1931 1932 EXPORT_SYMBOL(do_brk); 1933 1934 /* Release all mmaps. */ 1935 void exit_mmap(struct mm_struct *mm) 1936 { 1937 struct mmu_gather *tlb; 1938 struct vm_area_struct *vma = mm->mmap; 1939 unsigned long nr_accounted = 0; 1940 unsigned long end; 1941 1942 lru_add_drain(); 1943 1944 spin_lock(&mm->page_table_lock); 1945 1946 flush_cache_mm(mm); 1947 tlb = tlb_gather_mmu(mm, 1); 1948 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 1949 end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL); 1950 vm_unacct_memory(nr_accounted); 1951 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 1952 tlb_finish_mmu(tlb, 0, end); 1953 1954 mm->mmap = mm->mmap_cache = NULL; 1955 mm->mm_rb = RB_ROOT; 1956 set_mm_counter(mm, rss, 0); 1957 mm->total_vm = 0; 1958 mm->locked_vm = 0; 1959 1960 spin_unlock(&mm->page_table_lock); 1961 1962 /* 1963 * Walk the list again, actually closing and freeing it 1964 * without holding any MM locks. 1965 */ 1966 while (vma) { 1967 struct vm_area_struct *next = vma->vm_next; 1968 remove_vm_struct(vma); 1969 vma = next; 1970 } 1971 1972 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 1973 } 1974 1975 /* Insert vm structure into process list sorted by address 1976 * and into the inode's i_mmap tree. If vm_file is non-NULL 1977 * then i_mmap_lock is taken here. 1978 */ 1979 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 1980 { 1981 struct vm_area_struct * __vma, * prev; 1982 struct rb_node ** rb_link, * rb_parent; 1983 1984 /* 1985 * The vm_pgoff of a purely anonymous vma should be irrelevant 1986 * until its first write fault, when page's anon_vma and index 1987 * are set. But now set the vm_pgoff it will almost certainly 1988 * end up with (unless mremap moves it elsewhere before that 1989 * first wfault), so /proc/pid/maps tells a consistent story. 1990 * 1991 * By setting it to reflect the virtual start address of the 1992 * vma, merges and splits can happen in a seamless way, just 1993 * using the existing file pgoff checks and manipulations. 1994 * Similarly in do_mmap_pgoff and in do_brk. 1995 */ 1996 if (!vma->vm_file) { 1997 BUG_ON(vma->anon_vma); 1998 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1999 } 2000 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2001 if (__vma && __vma->vm_start < vma->vm_end) 2002 return -ENOMEM; 2003 vma_link(mm, vma, prev, rb_link, rb_parent); 2004 return 0; 2005 } 2006 2007 /* 2008 * Copy the vma structure to a new location in the same mm, 2009 * prior to moving page table entries, to effect an mremap move. 2010 */ 2011 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2012 unsigned long addr, unsigned long len, pgoff_t pgoff) 2013 { 2014 struct vm_area_struct *vma = *vmap; 2015 unsigned long vma_start = vma->vm_start; 2016 struct mm_struct *mm = vma->vm_mm; 2017 struct vm_area_struct *new_vma, *prev; 2018 struct rb_node **rb_link, *rb_parent; 2019 struct mempolicy *pol; 2020 2021 /* 2022 * If anonymous vma has not yet been faulted, update new pgoff 2023 * to match new location, to increase its chance of merging. 2024 */ 2025 if (!vma->vm_file && !vma->anon_vma) 2026 pgoff = addr >> PAGE_SHIFT; 2027 2028 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2029 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2030 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2031 if (new_vma) { 2032 /* 2033 * Source vma may have been merged into new_vma 2034 */ 2035 if (vma_start >= new_vma->vm_start && 2036 vma_start < new_vma->vm_end) 2037 *vmap = new_vma; 2038 } else { 2039 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 2040 if (new_vma) { 2041 *new_vma = *vma; 2042 pol = mpol_copy(vma_policy(vma)); 2043 if (IS_ERR(pol)) { 2044 kmem_cache_free(vm_area_cachep, new_vma); 2045 return NULL; 2046 } 2047 vma_set_policy(new_vma, pol); 2048 new_vma->vm_start = addr; 2049 new_vma->vm_end = addr + len; 2050 new_vma->vm_pgoff = pgoff; 2051 if (new_vma->vm_file) 2052 get_file(new_vma->vm_file); 2053 if (new_vma->vm_ops && new_vma->vm_ops->open) 2054 new_vma->vm_ops->open(new_vma); 2055 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2056 } 2057 } 2058 return new_vma; 2059 } 2060 2061 /* 2062 * Return true if the calling process may expand its vm space by the passed 2063 * number of pages 2064 */ 2065 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2066 { 2067 unsigned long cur = mm->total_vm; /* pages */ 2068 unsigned long lim; 2069 2070 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2071 2072 if (cur + npages > lim) 2073 return 0; 2074 return 1; 2075 } 2076