xref: /linux/mm/mmap.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/mount.h>
25 #include <linux/mempolicy.h>
26 #include <linux/rmap.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 
32 static void unmap_region(struct mm_struct *mm,
33 		struct vm_area_struct *vma, struct vm_area_struct *prev,
34 		unsigned long start, unsigned long end);
35 
36 /*
37  * WARNING: the debugging will use recursive algorithms so never enable this
38  * unless you know what you are doing.
39  */
40 #undef DEBUG_MM_RB
41 
42 /* description of effects of mapping type and prot in current implementation.
43  * this is due to the limited x86 page protection hardware.  The expected
44  * behavior is in parens:
45  *
46  * map_type	prot
47  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
48  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
49  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
50  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
51  *
52  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
53  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
54  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
55  *
56  */
57 pgprot_t protection_map[16] = {
58 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
59 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
60 };
61 
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50;	/* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 atomic_t vm_committed_space = ATOMIC_INIT(0);
66 
67 /*
68  * Check that a process has enough memory to allocate a new virtual
69  * mapping. 0 means there is enough memory for the allocation to
70  * succeed and -ENOMEM implies there is not.
71  *
72  * We currently support three overcommit policies, which are set via the
73  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
74  *
75  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
76  * Additional code 2002 Jul 20 by Robert Love.
77  *
78  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
79  *
80  * Note this is a helper function intended to be used by LSMs which
81  * wish to use this logic.
82  */
83 int __vm_enough_memory(long pages, int cap_sys_admin)
84 {
85 	unsigned long free, allowed;
86 
87 	vm_acct_memory(pages);
88 
89 	/*
90 	 * Sometimes we want to use more memory than we have
91 	 */
92 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
93 		return 0;
94 
95 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
96 		unsigned long n;
97 
98 		free = get_page_cache_size();
99 		free += nr_swap_pages;
100 
101 		/*
102 		 * Any slabs which are created with the
103 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
104 		 * which are reclaimable, under pressure.  The dentry
105 		 * cache and most inode caches should fall into this
106 		 */
107 		free += atomic_read(&slab_reclaim_pages);
108 
109 		/*
110 		 * Leave the last 3% for root
111 		 */
112 		if (!cap_sys_admin)
113 			free -= free / 32;
114 
115 		if (free > pages)
116 			return 0;
117 
118 		/*
119 		 * nr_free_pages() is very expensive on large systems,
120 		 * only call if we're about to fail.
121 		 */
122 		n = nr_free_pages();
123 		if (!cap_sys_admin)
124 			n -= n / 32;
125 		free += n;
126 
127 		if (free > pages)
128 			return 0;
129 		vm_unacct_memory(pages);
130 		return -ENOMEM;
131 	}
132 
133 	allowed = (totalram_pages - hugetlb_total_pages())
134 	       	* sysctl_overcommit_ratio / 100;
135 	/*
136 	 * Leave the last 3% for root
137 	 */
138 	if (!cap_sys_admin)
139 		allowed -= allowed / 32;
140 	allowed += total_swap_pages;
141 
142 	/* Don't let a single process grow too big:
143 	   leave 3% of the size of this process for other processes */
144 	allowed -= current->mm->total_vm / 32;
145 
146 	/*
147 	 * cast `allowed' as a signed long because vm_committed_space
148 	 * sometimes has a negative value
149 	 */
150 	if (atomic_read(&vm_committed_space) < (long)allowed)
151 		return 0;
152 
153 	vm_unacct_memory(pages);
154 
155 	return -ENOMEM;
156 }
157 
158 EXPORT_SYMBOL(sysctl_overcommit_memory);
159 EXPORT_SYMBOL(sysctl_overcommit_ratio);
160 EXPORT_SYMBOL(sysctl_max_map_count);
161 EXPORT_SYMBOL(vm_committed_space);
162 EXPORT_SYMBOL(__vm_enough_memory);
163 
164 /*
165  * Requires inode->i_mapping->i_mmap_lock
166  */
167 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
168 		struct file *file, struct address_space *mapping)
169 {
170 	if (vma->vm_flags & VM_DENYWRITE)
171 		atomic_inc(&file->f_dentry->d_inode->i_writecount);
172 	if (vma->vm_flags & VM_SHARED)
173 		mapping->i_mmap_writable--;
174 
175 	flush_dcache_mmap_lock(mapping);
176 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
177 		list_del_init(&vma->shared.vm_set.list);
178 	else
179 		vma_prio_tree_remove(vma, &mapping->i_mmap);
180 	flush_dcache_mmap_unlock(mapping);
181 }
182 
183 /*
184  * Remove one vm structure and free it.
185  */
186 static void remove_vm_struct(struct vm_area_struct *vma)
187 {
188 	struct file *file = vma->vm_file;
189 
190 	might_sleep();
191 	if (file) {
192 		struct address_space *mapping = file->f_mapping;
193 		spin_lock(&mapping->i_mmap_lock);
194 		__remove_shared_vm_struct(vma, file, mapping);
195 		spin_unlock(&mapping->i_mmap_lock);
196 	}
197 	if (vma->vm_ops && vma->vm_ops->close)
198 		vma->vm_ops->close(vma);
199 	if (file)
200 		fput(file);
201 	anon_vma_unlink(vma);
202 	mpol_free(vma_policy(vma));
203 	kmem_cache_free(vm_area_cachep, vma);
204 }
205 
206 /*
207  *  sys_brk() for the most part doesn't need the global kernel
208  *  lock, except when an application is doing something nasty
209  *  like trying to un-brk an area that has already been mapped
210  *  to a regular file.  in this case, the unmapping will need
211  *  to invoke file system routines that need the global lock.
212  */
213 asmlinkage unsigned long sys_brk(unsigned long brk)
214 {
215 	unsigned long rlim, retval;
216 	unsigned long newbrk, oldbrk;
217 	struct mm_struct *mm = current->mm;
218 
219 	down_write(&mm->mmap_sem);
220 
221 	if (brk < mm->end_code)
222 		goto out;
223 	newbrk = PAGE_ALIGN(brk);
224 	oldbrk = PAGE_ALIGN(mm->brk);
225 	if (oldbrk == newbrk)
226 		goto set_brk;
227 
228 	/* Always allow shrinking brk. */
229 	if (brk <= mm->brk) {
230 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
231 			goto set_brk;
232 		goto out;
233 	}
234 
235 	/* Check against rlimit.. */
236 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
237 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
238 		goto out;
239 
240 	/* Check against existing mmap mappings. */
241 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
242 		goto out;
243 
244 	/* Ok, looks good - let it rip. */
245 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
246 		goto out;
247 set_brk:
248 	mm->brk = brk;
249 out:
250 	retval = mm->brk;
251 	up_write(&mm->mmap_sem);
252 	return retval;
253 }
254 
255 #ifdef DEBUG_MM_RB
256 static int browse_rb(struct rb_root *root)
257 {
258 	int i = 0, j;
259 	struct rb_node *nd, *pn = NULL;
260 	unsigned long prev = 0, pend = 0;
261 
262 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
263 		struct vm_area_struct *vma;
264 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
265 		if (vma->vm_start < prev)
266 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
267 		if (vma->vm_start < pend)
268 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
269 		if (vma->vm_start > vma->vm_end)
270 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
271 		i++;
272 		pn = nd;
273 	}
274 	j = 0;
275 	for (nd = pn; nd; nd = rb_prev(nd)) {
276 		j++;
277 	}
278 	if (i != j)
279 		printk("backwards %d, forwards %d\n", j, i), i = 0;
280 	return i;
281 }
282 
283 void validate_mm(struct mm_struct *mm)
284 {
285 	int bug = 0;
286 	int i = 0;
287 	struct vm_area_struct *tmp = mm->mmap;
288 	while (tmp) {
289 		tmp = tmp->vm_next;
290 		i++;
291 	}
292 	if (i != mm->map_count)
293 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
294 	i = browse_rb(&mm->mm_rb);
295 	if (i != mm->map_count)
296 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
297 	if (bug)
298 		BUG();
299 }
300 #else
301 #define validate_mm(mm) do { } while (0)
302 #endif
303 
304 static struct vm_area_struct *
305 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
306 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
307 		struct rb_node ** rb_parent)
308 {
309 	struct vm_area_struct * vma;
310 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
311 
312 	__rb_link = &mm->mm_rb.rb_node;
313 	rb_prev = __rb_parent = NULL;
314 	vma = NULL;
315 
316 	while (*__rb_link) {
317 		struct vm_area_struct *vma_tmp;
318 
319 		__rb_parent = *__rb_link;
320 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
321 
322 		if (vma_tmp->vm_end > addr) {
323 			vma = vma_tmp;
324 			if (vma_tmp->vm_start <= addr)
325 				return vma;
326 			__rb_link = &__rb_parent->rb_left;
327 		} else {
328 			rb_prev = __rb_parent;
329 			__rb_link = &__rb_parent->rb_right;
330 		}
331 	}
332 
333 	*pprev = NULL;
334 	if (rb_prev)
335 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
336 	*rb_link = __rb_link;
337 	*rb_parent = __rb_parent;
338 	return vma;
339 }
340 
341 static inline void
342 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
343 		struct vm_area_struct *prev, struct rb_node *rb_parent)
344 {
345 	if (prev) {
346 		vma->vm_next = prev->vm_next;
347 		prev->vm_next = vma;
348 	} else {
349 		mm->mmap = vma;
350 		if (rb_parent)
351 			vma->vm_next = rb_entry(rb_parent,
352 					struct vm_area_struct, vm_rb);
353 		else
354 			vma->vm_next = NULL;
355 	}
356 }
357 
358 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
359 		struct rb_node **rb_link, struct rb_node *rb_parent)
360 {
361 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
362 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
363 }
364 
365 static inline void __vma_link_file(struct vm_area_struct *vma)
366 {
367 	struct file * file;
368 
369 	file = vma->vm_file;
370 	if (file) {
371 		struct address_space *mapping = file->f_mapping;
372 
373 		if (vma->vm_flags & VM_DENYWRITE)
374 			atomic_dec(&file->f_dentry->d_inode->i_writecount);
375 		if (vma->vm_flags & VM_SHARED)
376 			mapping->i_mmap_writable++;
377 
378 		flush_dcache_mmap_lock(mapping);
379 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
380 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
381 		else
382 			vma_prio_tree_insert(vma, &mapping->i_mmap);
383 		flush_dcache_mmap_unlock(mapping);
384 	}
385 }
386 
387 static void
388 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
389 	struct vm_area_struct *prev, struct rb_node **rb_link,
390 	struct rb_node *rb_parent)
391 {
392 	__vma_link_list(mm, vma, prev, rb_parent);
393 	__vma_link_rb(mm, vma, rb_link, rb_parent);
394 	__anon_vma_link(vma);
395 }
396 
397 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
398 			struct vm_area_struct *prev, struct rb_node **rb_link,
399 			struct rb_node *rb_parent)
400 {
401 	struct address_space *mapping = NULL;
402 
403 	if (vma->vm_file)
404 		mapping = vma->vm_file->f_mapping;
405 
406 	if (mapping) {
407 		spin_lock(&mapping->i_mmap_lock);
408 		vma->vm_truncate_count = mapping->truncate_count;
409 	}
410 	anon_vma_lock(vma);
411 
412 	__vma_link(mm, vma, prev, rb_link, rb_parent);
413 	__vma_link_file(vma);
414 
415 	anon_vma_unlock(vma);
416 	if (mapping)
417 		spin_unlock(&mapping->i_mmap_lock);
418 
419 	mm->map_count++;
420 	validate_mm(mm);
421 }
422 
423 /*
424  * Helper for vma_adjust in the split_vma insert case:
425  * insert vm structure into list and rbtree and anon_vma,
426  * but it has already been inserted into prio_tree earlier.
427  */
428 static void
429 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
430 {
431 	struct vm_area_struct * __vma, * prev;
432 	struct rb_node ** rb_link, * rb_parent;
433 
434 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
435 	if (__vma && __vma->vm_start < vma->vm_end)
436 		BUG();
437 	__vma_link(mm, vma, prev, rb_link, rb_parent);
438 	mm->map_count++;
439 }
440 
441 static inline void
442 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
443 		struct vm_area_struct *prev)
444 {
445 	prev->vm_next = vma->vm_next;
446 	rb_erase(&vma->vm_rb, &mm->mm_rb);
447 	if (mm->mmap_cache == vma)
448 		mm->mmap_cache = prev;
449 }
450 
451 /*
452  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
453  * is already present in an i_mmap tree without adjusting the tree.
454  * The following helper function should be used when such adjustments
455  * are necessary.  The "insert" vma (if any) is to be inserted
456  * before we drop the necessary locks.
457  */
458 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
459 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
460 {
461 	struct mm_struct *mm = vma->vm_mm;
462 	struct vm_area_struct *next = vma->vm_next;
463 	struct vm_area_struct *importer = NULL;
464 	struct address_space *mapping = NULL;
465 	struct prio_tree_root *root = NULL;
466 	struct file *file = vma->vm_file;
467 	struct anon_vma *anon_vma = NULL;
468 	long adjust_next = 0;
469 	int remove_next = 0;
470 
471 	if (next && !insert) {
472 		if (end >= next->vm_end) {
473 			/*
474 			 * vma expands, overlapping all the next, and
475 			 * perhaps the one after too (mprotect case 6).
476 			 */
477 again:			remove_next = 1 + (end > next->vm_end);
478 			end = next->vm_end;
479 			anon_vma = next->anon_vma;
480 			importer = vma;
481 		} else if (end > next->vm_start) {
482 			/*
483 			 * vma expands, overlapping part of the next:
484 			 * mprotect case 5 shifting the boundary up.
485 			 */
486 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
487 			anon_vma = next->anon_vma;
488 			importer = vma;
489 		} else if (end < vma->vm_end) {
490 			/*
491 			 * vma shrinks, and !insert tells it's not
492 			 * split_vma inserting another: so it must be
493 			 * mprotect case 4 shifting the boundary down.
494 			 */
495 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
496 			anon_vma = next->anon_vma;
497 			importer = next;
498 		}
499 	}
500 
501 	if (file) {
502 		mapping = file->f_mapping;
503 		if (!(vma->vm_flags & VM_NONLINEAR))
504 			root = &mapping->i_mmap;
505 		spin_lock(&mapping->i_mmap_lock);
506 		if (importer &&
507 		    vma->vm_truncate_count != next->vm_truncate_count) {
508 			/*
509 			 * unmap_mapping_range might be in progress:
510 			 * ensure that the expanding vma is rescanned.
511 			 */
512 			importer->vm_truncate_count = 0;
513 		}
514 		if (insert) {
515 			insert->vm_truncate_count = vma->vm_truncate_count;
516 			/*
517 			 * Put into prio_tree now, so instantiated pages
518 			 * are visible to arm/parisc __flush_dcache_page
519 			 * throughout; but we cannot insert into address
520 			 * space until vma start or end is updated.
521 			 */
522 			__vma_link_file(insert);
523 		}
524 	}
525 
526 	/*
527 	 * When changing only vma->vm_end, we don't really need
528 	 * anon_vma lock: but is that case worth optimizing out?
529 	 */
530 	if (vma->anon_vma)
531 		anon_vma = vma->anon_vma;
532 	if (anon_vma) {
533 		spin_lock(&anon_vma->lock);
534 		/*
535 		 * Easily overlooked: when mprotect shifts the boundary,
536 		 * make sure the expanding vma has anon_vma set if the
537 		 * shrinking vma had, to cover any anon pages imported.
538 		 */
539 		if (importer && !importer->anon_vma) {
540 			importer->anon_vma = anon_vma;
541 			__anon_vma_link(importer);
542 		}
543 	}
544 
545 	if (root) {
546 		flush_dcache_mmap_lock(mapping);
547 		vma_prio_tree_remove(vma, root);
548 		if (adjust_next)
549 			vma_prio_tree_remove(next, root);
550 	}
551 
552 	vma->vm_start = start;
553 	vma->vm_end = end;
554 	vma->vm_pgoff = pgoff;
555 	if (adjust_next) {
556 		next->vm_start += adjust_next << PAGE_SHIFT;
557 		next->vm_pgoff += adjust_next;
558 	}
559 
560 	if (root) {
561 		if (adjust_next)
562 			vma_prio_tree_insert(next, root);
563 		vma_prio_tree_insert(vma, root);
564 		flush_dcache_mmap_unlock(mapping);
565 	}
566 
567 	if (remove_next) {
568 		/*
569 		 * vma_merge has merged next into vma, and needs
570 		 * us to remove next before dropping the locks.
571 		 */
572 		__vma_unlink(mm, next, vma);
573 		if (file)
574 			__remove_shared_vm_struct(next, file, mapping);
575 		if (next->anon_vma)
576 			__anon_vma_merge(vma, next);
577 	} else if (insert) {
578 		/*
579 		 * split_vma has split insert from vma, and needs
580 		 * us to insert it before dropping the locks
581 		 * (it may either follow vma or precede it).
582 		 */
583 		__insert_vm_struct(mm, insert);
584 	}
585 
586 	if (anon_vma)
587 		spin_unlock(&anon_vma->lock);
588 	if (mapping)
589 		spin_unlock(&mapping->i_mmap_lock);
590 
591 	if (remove_next) {
592 		if (file)
593 			fput(file);
594 		mm->map_count--;
595 		mpol_free(vma_policy(next));
596 		kmem_cache_free(vm_area_cachep, next);
597 		/*
598 		 * In mprotect's case 6 (see comments on vma_merge),
599 		 * we must remove another next too. It would clutter
600 		 * up the code too much to do both in one go.
601 		 */
602 		if (remove_next == 2) {
603 			next = vma->vm_next;
604 			goto again;
605 		}
606 	}
607 
608 	validate_mm(mm);
609 }
610 
611 /*
612  * If the vma has a ->close operation then the driver probably needs to release
613  * per-vma resources, so we don't attempt to merge those.
614  */
615 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
616 
617 static inline int is_mergeable_vma(struct vm_area_struct *vma,
618 			struct file *file, unsigned long vm_flags)
619 {
620 	if (vma->vm_flags != vm_flags)
621 		return 0;
622 	if (vma->vm_file != file)
623 		return 0;
624 	if (vma->vm_ops && vma->vm_ops->close)
625 		return 0;
626 	return 1;
627 }
628 
629 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
630 					struct anon_vma *anon_vma2)
631 {
632 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
633 }
634 
635 /*
636  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
637  * in front of (at a lower virtual address and file offset than) the vma.
638  *
639  * We cannot merge two vmas if they have differently assigned (non-NULL)
640  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
641  *
642  * We don't check here for the merged mmap wrapping around the end of pagecache
643  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
644  * wrap, nor mmaps which cover the final page at index -1UL.
645  */
646 static int
647 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
648 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
649 {
650 	if (is_mergeable_vma(vma, file, vm_flags) &&
651 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
652 		if (vma->vm_pgoff == vm_pgoff)
653 			return 1;
654 	}
655 	return 0;
656 }
657 
658 /*
659  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
660  * beyond (at a higher virtual address and file offset than) the vma.
661  *
662  * We cannot merge two vmas if they have differently assigned (non-NULL)
663  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
664  */
665 static int
666 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
667 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
668 {
669 	if (is_mergeable_vma(vma, file, vm_flags) &&
670 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
671 		pgoff_t vm_pglen;
672 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
673 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
674 			return 1;
675 	}
676 	return 0;
677 }
678 
679 /*
680  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
681  * whether that can be merged with its predecessor or its successor.
682  * Or both (it neatly fills a hole).
683  *
684  * In most cases - when called for mmap, brk or mremap - [addr,end) is
685  * certain not to be mapped by the time vma_merge is called; but when
686  * called for mprotect, it is certain to be already mapped (either at
687  * an offset within prev, or at the start of next), and the flags of
688  * this area are about to be changed to vm_flags - and the no-change
689  * case has already been eliminated.
690  *
691  * The following mprotect cases have to be considered, where AAAA is
692  * the area passed down from mprotect_fixup, never extending beyond one
693  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
694  *
695  *     AAAA             AAAA                AAAA          AAAA
696  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
697  *    cannot merge    might become    might become    might become
698  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
699  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
700  *    mremap move:                                    PPPPNNNNNNNN 8
701  *        AAAA
702  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
703  *    might become    case 1 below    case 2 below    case 3 below
704  *
705  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
706  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
707  */
708 struct vm_area_struct *vma_merge(struct mm_struct *mm,
709 			struct vm_area_struct *prev, unsigned long addr,
710 			unsigned long end, unsigned long vm_flags,
711 		     	struct anon_vma *anon_vma, struct file *file,
712 			pgoff_t pgoff, struct mempolicy *policy)
713 {
714 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
715 	struct vm_area_struct *area, *next;
716 
717 	/*
718 	 * We later require that vma->vm_flags == vm_flags,
719 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
720 	 */
721 	if (vm_flags & VM_SPECIAL)
722 		return NULL;
723 
724 	if (prev)
725 		next = prev->vm_next;
726 	else
727 		next = mm->mmap;
728 	area = next;
729 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
730 		next = next->vm_next;
731 
732 	/*
733 	 * Can it merge with the predecessor?
734 	 */
735 	if (prev && prev->vm_end == addr &&
736   			mpol_equal(vma_policy(prev), policy) &&
737 			can_vma_merge_after(prev, vm_flags,
738 						anon_vma, file, pgoff)) {
739 		/*
740 		 * OK, it can.  Can we now merge in the successor as well?
741 		 */
742 		if (next && end == next->vm_start &&
743 				mpol_equal(policy, vma_policy(next)) &&
744 				can_vma_merge_before(next, vm_flags,
745 					anon_vma, file, pgoff+pglen) &&
746 				is_mergeable_anon_vma(prev->anon_vma,
747 						      next->anon_vma)) {
748 							/* cases 1, 6 */
749 			vma_adjust(prev, prev->vm_start,
750 				next->vm_end, prev->vm_pgoff, NULL);
751 		} else					/* cases 2, 5, 7 */
752 			vma_adjust(prev, prev->vm_start,
753 				end, prev->vm_pgoff, NULL);
754 		return prev;
755 	}
756 
757 	/*
758 	 * Can this new request be merged in front of next?
759 	 */
760 	if (next && end == next->vm_start &&
761  			mpol_equal(policy, vma_policy(next)) &&
762 			can_vma_merge_before(next, vm_flags,
763 					anon_vma, file, pgoff+pglen)) {
764 		if (prev && addr < prev->vm_end)	/* case 4 */
765 			vma_adjust(prev, prev->vm_start,
766 				addr, prev->vm_pgoff, NULL);
767 		else					/* cases 3, 8 */
768 			vma_adjust(area, addr, next->vm_end,
769 				next->vm_pgoff - pglen, NULL);
770 		return area;
771 	}
772 
773 	return NULL;
774 }
775 
776 /*
777  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
778  * neighbouring vmas for a suitable anon_vma, before it goes off
779  * to allocate a new anon_vma.  It checks because a repetitive
780  * sequence of mprotects and faults may otherwise lead to distinct
781  * anon_vmas being allocated, preventing vma merge in subsequent
782  * mprotect.
783  */
784 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
785 {
786 	struct vm_area_struct *near;
787 	unsigned long vm_flags;
788 
789 	near = vma->vm_next;
790 	if (!near)
791 		goto try_prev;
792 
793 	/*
794 	 * Since only mprotect tries to remerge vmas, match flags
795 	 * which might be mprotected into each other later on.
796 	 * Neither mlock nor madvise tries to remerge at present,
797 	 * so leave their flags as obstructing a merge.
798 	 */
799 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
800 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
801 
802 	if (near->anon_vma && vma->vm_end == near->vm_start &&
803  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
804 			can_vma_merge_before(near, vm_flags,
805 				NULL, vma->vm_file, vma->vm_pgoff +
806 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
807 		return near->anon_vma;
808 try_prev:
809 	/*
810 	 * It is potentially slow to have to call find_vma_prev here.
811 	 * But it's only on the first write fault on the vma, not
812 	 * every time, and we could devise a way to avoid it later
813 	 * (e.g. stash info in next's anon_vma_node when assigning
814 	 * an anon_vma, or when trying vma_merge).  Another time.
815 	 */
816 	if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
817 		BUG();
818 	if (!near)
819 		goto none;
820 
821 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
822 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
823 
824 	if (near->anon_vma && near->vm_end == vma->vm_start &&
825   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
826 			can_vma_merge_after(near, vm_flags,
827 				NULL, vma->vm_file, vma->vm_pgoff))
828 		return near->anon_vma;
829 none:
830 	/*
831 	 * There's no absolute need to look only at touching neighbours:
832 	 * we could search further afield for "compatible" anon_vmas.
833 	 * But it would probably just be a waste of time searching,
834 	 * or lead to too many vmas hanging off the same anon_vma.
835 	 * We're trying to allow mprotect remerging later on,
836 	 * not trying to minimize memory used for anon_vmas.
837 	 */
838 	return NULL;
839 }
840 
841 #ifdef CONFIG_PROC_FS
842 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
843 						struct file *file, long pages)
844 {
845 	const unsigned long stack_flags
846 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
847 
848 #ifdef CONFIG_HUGETLB
849 	if (flags & VM_HUGETLB) {
850 		if (!(flags & VM_DONTCOPY))
851 			mm->shared_vm += pages;
852 		return;
853 	}
854 #endif /* CONFIG_HUGETLB */
855 
856 	if (file) {
857 		mm->shared_vm += pages;
858 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
859 			mm->exec_vm += pages;
860 	} else if (flags & stack_flags)
861 		mm->stack_vm += pages;
862 	if (flags & (VM_RESERVED|VM_IO))
863 		mm->reserved_vm += pages;
864 }
865 #endif /* CONFIG_PROC_FS */
866 
867 /*
868  * The caller must hold down_write(current->mm->mmap_sem).
869  */
870 
871 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
872 			unsigned long len, unsigned long prot,
873 			unsigned long flags, unsigned long pgoff)
874 {
875 	struct mm_struct * mm = current->mm;
876 	struct vm_area_struct * vma, * prev;
877 	struct inode *inode;
878 	unsigned int vm_flags;
879 	int correct_wcount = 0;
880 	int error;
881 	struct rb_node ** rb_link, * rb_parent;
882 	int accountable = 1;
883 	unsigned long charged = 0, reqprot = prot;
884 
885 	if (file) {
886 		if (is_file_hugepages(file))
887 			accountable = 0;
888 
889 		if (!file->f_op || !file->f_op->mmap)
890 			return -ENODEV;
891 
892 		if ((prot & PROT_EXEC) &&
893 		    (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
894 			return -EPERM;
895 	}
896 	/*
897 	 * Does the application expect PROT_READ to imply PROT_EXEC?
898 	 *
899 	 * (the exception is when the underlying filesystem is noexec
900 	 *  mounted, in which case we dont add PROT_EXEC.)
901 	 */
902 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
903 		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
904 			prot |= PROT_EXEC;
905 
906 	if (!len)
907 		return -EINVAL;
908 
909 	/* Careful about overflows.. */
910 	len = PAGE_ALIGN(len);
911 	if (!len || len > TASK_SIZE)
912 		return -ENOMEM;
913 
914 	/* offset overflow? */
915 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
916                return -EOVERFLOW;
917 
918 	/* Too many mappings? */
919 	if (mm->map_count > sysctl_max_map_count)
920 		return -ENOMEM;
921 
922 	/* Obtain the address to map to. we verify (or select) it and ensure
923 	 * that it represents a valid section of the address space.
924 	 */
925 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
926 	if (addr & ~PAGE_MASK)
927 		return addr;
928 
929 	/* Do simple checking here so the lower-level routines won't have
930 	 * to. we assume access permissions have been handled by the open
931 	 * of the memory object, so we don't do any here.
932 	 */
933 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
934 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
935 
936 	if (flags & MAP_LOCKED) {
937 		if (!can_do_mlock())
938 			return -EPERM;
939 		vm_flags |= VM_LOCKED;
940 	}
941 	/* mlock MCL_FUTURE? */
942 	if (vm_flags & VM_LOCKED) {
943 		unsigned long locked, lock_limit;
944 		locked = len >> PAGE_SHIFT;
945 		locked += mm->locked_vm;
946 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
947 		lock_limit >>= PAGE_SHIFT;
948 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
949 			return -EAGAIN;
950 	}
951 
952 	inode = file ? file->f_dentry->d_inode : NULL;
953 
954 	if (file) {
955 		switch (flags & MAP_TYPE) {
956 		case MAP_SHARED:
957 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
958 				return -EACCES;
959 
960 			/*
961 			 * Make sure we don't allow writing to an append-only
962 			 * file..
963 			 */
964 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
965 				return -EACCES;
966 
967 			/*
968 			 * Make sure there are no mandatory locks on the file.
969 			 */
970 			if (locks_verify_locked(inode))
971 				return -EAGAIN;
972 
973 			vm_flags |= VM_SHARED | VM_MAYSHARE;
974 			if (!(file->f_mode & FMODE_WRITE))
975 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
976 
977 			/* fall through */
978 		case MAP_PRIVATE:
979 			if (!(file->f_mode & FMODE_READ))
980 				return -EACCES;
981 			break;
982 
983 		default:
984 			return -EINVAL;
985 		}
986 	} else {
987 		switch (flags & MAP_TYPE) {
988 		case MAP_SHARED:
989 			vm_flags |= VM_SHARED | VM_MAYSHARE;
990 			break;
991 		case MAP_PRIVATE:
992 			/*
993 			 * Set pgoff according to addr for anon_vma.
994 			 */
995 			pgoff = addr >> PAGE_SHIFT;
996 			break;
997 		default:
998 			return -EINVAL;
999 		}
1000 	}
1001 
1002 	error = security_file_mmap(file, reqprot, prot, flags);
1003 	if (error)
1004 		return error;
1005 
1006 	/* Clear old maps */
1007 	error = -ENOMEM;
1008 munmap_back:
1009 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1010 	if (vma && vma->vm_start < addr + len) {
1011 		if (do_munmap(mm, addr, len))
1012 			return -ENOMEM;
1013 		goto munmap_back;
1014 	}
1015 
1016 	/* Check against address space limit. */
1017 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1018 		return -ENOMEM;
1019 
1020 	if (accountable && (!(flags & MAP_NORESERVE) ||
1021 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1022 		if (vm_flags & VM_SHARED) {
1023 			/* Check memory availability in shmem_file_setup? */
1024 			vm_flags |= VM_ACCOUNT;
1025 		} else if (vm_flags & VM_WRITE) {
1026 			/*
1027 			 * Private writable mapping: check memory availability
1028 			 */
1029 			charged = len >> PAGE_SHIFT;
1030 			if (security_vm_enough_memory(charged))
1031 				return -ENOMEM;
1032 			vm_flags |= VM_ACCOUNT;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Can we just expand an old private anonymous mapping?
1038 	 * The VM_SHARED test is necessary because shmem_zero_setup
1039 	 * will create the file object for a shared anonymous map below.
1040 	 */
1041 	if (!file && !(vm_flags & VM_SHARED) &&
1042 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1043 					NULL, NULL, pgoff, NULL))
1044 		goto out;
1045 
1046 	/*
1047 	 * Determine the object being mapped and call the appropriate
1048 	 * specific mapper. the address has already been validated, but
1049 	 * not unmapped, but the maps are removed from the list.
1050 	 */
1051 	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1052 	if (!vma) {
1053 		error = -ENOMEM;
1054 		goto unacct_error;
1055 	}
1056 	memset(vma, 0, sizeof(*vma));
1057 
1058 	vma->vm_mm = mm;
1059 	vma->vm_start = addr;
1060 	vma->vm_end = addr + len;
1061 	vma->vm_flags = vm_flags;
1062 	vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1063 	vma->vm_pgoff = pgoff;
1064 
1065 	if (file) {
1066 		error = -EINVAL;
1067 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1068 			goto free_vma;
1069 		if (vm_flags & VM_DENYWRITE) {
1070 			error = deny_write_access(file);
1071 			if (error)
1072 				goto free_vma;
1073 			correct_wcount = 1;
1074 		}
1075 		vma->vm_file = file;
1076 		get_file(file);
1077 		error = file->f_op->mmap(file, vma);
1078 		if (error)
1079 			goto unmap_and_free_vma;
1080 	} else if (vm_flags & VM_SHARED) {
1081 		error = shmem_zero_setup(vma);
1082 		if (error)
1083 			goto free_vma;
1084 	}
1085 
1086 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1087 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1088 	 * that memory reservation must be checked; but that reservation
1089 	 * belongs to shared memory object, not to vma: so now clear it.
1090 	 */
1091 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1092 		vma->vm_flags &= ~VM_ACCOUNT;
1093 
1094 	/* Can addr have changed??
1095 	 *
1096 	 * Answer: Yes, several device drivers can do it in their
1097 	 *         f_op->mmap method. -DaveM
1098 	 */
1099 	addr = vma->vm_start;
1100 	pgoff = vma->vm_pgoff;
1101 	vm_flags = vma->vm_flags;
1102 
1103 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1104 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1105 		file = vma->vm_file;
1106 		vma_link(mm, vma, prev, rb_link, rb_parent);
1107 		if (correct_wcount)
1108 			atomic_inc(&inode->i_writecount);
1109 	} else {
1110 		if (file) {
1111 			if (correct_wcount)
1112 				atomic_inc(&inode->i_writecount);
1113 			fput(file);
1114 		}
1115 		mpol_free(vma_policy(vma));
1116 		kmem_cache_free(vm_area_cachep, vma);
1117 	}
1118 out:
1119 	mm->total_vm += len >> PAGE_SHIFT;
1120 	__vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1121 	if (vm_flags & VM_LOCKED) {
1122 		mm->locked_vm += len >> PAGE_SHIFT;
1123 		make_pages_present(addr, addr + len);
1124 	}
1125 	if (flags & MAP_POPULATE) {
1126 		up_write(&mm->mmap_sem);
1127 		sys_remap_file_pages(addr, len, 0,
1128 					pgoff, flags & MAP_NONBLOCK);
1129 		down_write(&mm->mmap_sem);
1130 	}
1131 	return addr;
1132 
1133 unmap_and_free_vma:
1134 	if (correct_wcount)
1135 		atomic_inc(&inode->i_writecount);
1136 	vma->vm_file = NULL;
1137 	fput(file);
1138 
1139 	/* Undo any partial mapping done by a device driver. */
1140 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1141 	charged = 0;
1142 free_vma:
1143 	kmem_cache_free(vm_area_cachep, vma);
1144 unacct_error:
1145 	if (charged)
1146 		vm_unacct_memory(charged);
1147 	return error;
1148 }
1149 
1150 EXPORT_SYMBOL(do_mmap_pgoff);
1151 
1152 /* Get an address range which is currently unmapped.
1153  * For shmat() with addr=0.
1154  *
1155  * Ugly calling convention alert:
1156  * Return value with the low bits set means error value,
1157  * ie
1158  *	if (ret & ~PAGE_MASK)
1159  *		error = ret;
1160  *
1161  * This function "knows" that -ENOMEM has the bits set.
1162  */
1163 #ifndef HAVE_ARCH_UNMAPPED_AREA
1164 unsigned long
1165 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1166 		unsigned long len, unsigned long pgoff, unsigned long flags)
1167 {
1168 	struct mm_struct *mm = current->mm;
1169 	struct vm_area_struct *vma;
1170 	unsigned long start_addr;
1171 
1172 	if (len > TASK_SIZE)
1173 		return -ENOMEM;
1174 
1175 	if (addr) {
1176 		addr = PAGE_ALIGN(addr);
1177 		vma = find_vma(mm, addr);
1178 		if (TASK_SIZE - len >= addr &&
1179 		    (!vma || addr + len <= vma->vm_start))
1180 			return addr;
1181 	}
1182 	if (len > mm->cached_hole_size) {
1183 	        start_addr = addr = mm->free_area_cache;
1184 	} else {
1185 	        start_addr = addr = TASK_UNMAPPED_BASE;
1186 	        mm->cached_hole_size = 0;
1187 	}
1188 
1189 full_search:
1190 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1191 		/* At this point:  (!vma || addr < vma->vm_end). */
1192 		if (TASK_SIZE - len < addr) {
1193 			/*
1194 			 * Start a new search - just in case we missed
1195 			 * some holes.
1196 			 */
1197 			if (start_addr != TASK_UNMAPPED_BASE) {
1198 				addr = TASK_UNMAPPED_BASE;
1199 			        start_addr = addr;
1200 				mm->cached_hole_size = 0;
1201 				goto full_search;
1202 			}
1203 			return -ENOMEM;
1204 		}
1205 		if (!vma || addr + len <= vma->vm_start) {
1206 			/*
1207 			 * Remember the place where we stopped the search:
1208 			 */
1209 			mm->free_area_cache = addr + len;
1210 			return addr;
1211 		}
1212 		if (addr + mm->cached_hole_size < vma->vm_start)
1213 		        mm->cached_hole_size = vma->vm_start - addr;
1214 		addr = vma->vm_end;
1215 	}
1216 }
1217 #endif
1218 
1219 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1220 {
1221 	/*
1222 	 * Is this a new hole at the lowest possible address?
1223 	 */
1224 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1225 		mm->free_area_cache = addr;
1226 		mm->cached_hole_size = ~0UL;
1227 	}
1228 }
1229 
1230 /*
1231  * This mmap-allocator allocates new areas top-down from below the
1232  * stack's low limit (the base):
1233  */
1234 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1235 unsigned long
1236 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1237 			  const unsigned long len, const unsigned long pgoff,
1238 			  const unsigned long flags)
1239 {
1240 	struct vm_area_struct *vma;
1241 	struct mm_struct *mm = current->mm;
1242 	unsigned long addr = addr0;
1243 
1244 	/* requested length too big for entire address space */
1245 	if (len > TASK_SIZE)
1246 		return -ENOMEM;
1247 
1248 	/* requesting a specific address */
1249 	if (addr) {
1250 		addr = PAGE_ALIGN(addr);
1251 		vma = find_vma(mm, addr);
1252 		if (TASK_SIZE - len >= addr &&
1253 				(!vma || addr + len <= vma->vm_start))
1254 			return addr;
1255 	}
1256 
1257 	/* check if free_area_cache is useful for us */
1258 	if (len <= mm->cached_hole_size) {
1259  	        mm->cached_hole_size = 0;
1260  		mm->free_area_cache = mm->mmap_base;
1261  	}
1262 
1263 	/* either no address requested or can't fit in requested address hole */
1264 	addr = mm->free_area_cache;
1265 
1266 	/* make sure it can fit in the remaining address space */
1267 	if (addr > len) {
1268 		vma = find_vma(mm, addr-len);
1269 		if (!vma || addr <= vma->vm_start)
1270 			/* remember the address as a hint for next time */
1271 			return (mm->free_area_cache = addr-len);
1272 	}
1273 
1274 	if (mm->mmap_base < len)
1275 		goto bottomup;
1276 
1277 	addr = mm->mmap_base-len;
1278 
1279 	do {
1280 		/*
1281 		 * Lookup failure means no vma is above this address,
1282 		 * else if new region fits below vma->vm_start,
1283 		 * return with success:
1284 		 */
1285 		vma = find_vma(mm, addr);
1286 		if (!vma || addr+len <= vma->vm_start)
1287 			/* remember the address as a hint for next time */
1288 			return (mm->free_area_cache = addr);
1289 
1290  		/* remember the largest hole we saw so far */
1291  		if (addr + mm->cached_hole_size < vma->vm_start)
1292  		        mm->cached_hole_size = vma->vm_start - addr;
1293 
1294 		/* try just below the current vma->vm_start */
1295 		addr = vma->vm_start-len;
1296 	} while (len < vma->vm_start);
1297 
1298 bottomup:
1299 	/*
1300 	 * A failed mmap() very likely causes application failure,
1301 	 * so fall back to the bottom-up function here. This scenario
1302 	 * can happen with large stack limits and large mmap()
1303 	 * allocations.
1304 	 */
1305 	mm->cached_hole_size = ~0UL;
1306   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1307 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1308 	/*
1309 	 * Restore the topdown base:
1310 	 */
1311 	mm->free_area_cache = mm->mmap_base;
1312 	mm->cached_hole_size = ~0UL;
1313 
1314 	return addr;
1315 }
1316 #endif
1317 
1318 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1319 {
1320 	/*
1321 	 * Is this a new hole at the highest possible address?
1322 	 */
1323 	if (addr > mm->free_area_cache)
1324 		mm->free_area_cache = addr;
1325 
1326 	/* dont allow allocations above current base */
1327 	if (mm->free_area_cache > mm->mmap_base)
1328 		mm->free_area_cache = mm->mmap_base;
1329 }
1330 
1331 unsigned long
1332 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1333 		unsigned long pgoff, unsigned long flags)
1334 {
1335 	unsigned long ret;
1336 
1337 	if (!(flags & MAP_FIXED)) {
1338 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1339 
1340 		get_area = current->mm->get_unmapped_area;
1341 		if (file && file->f_op && file->f_op->get_unmapped_area)
1342 			get_area = file->f_op->get_unmapped_area;
1343 		addr = get_area(file, addr, len, pgoff, flags);
1344 		if (IS_ERR_VALUE(addr))
1345 			return addr;
1346 	}
1347 
1348 	if (addr > TASK_SIZE - len)
1349 		return -ENOMEM;
1350 	if (addr & ~PAGE_MASK)
1351 		return -EINVAL;
1352 	if (file && is_file_hugepages(file))  {
1353 		/*
1354 		 * Check if the given range is hugepage aligned, and
1355 		 * can be made suitable for hugepages.
1356 		 */
1357 		ret = prepare_hugepage_range(addr, len);
1358 	} else {
1359 		/*
1360 		 * Ensure that a normal request is not falling in a
1361 		 * reserved hugepage range.  For some archs like IA-64,
1362 		 * there is a separate region for hugepages.
1363 		 */
1364 		ret = is_hugepage_only_range(current->mm, addr, len);
1365 	}
1366 	if (ret)
1367 		return -EINVAL;
1368 	return addr;
1369 }
1370 
1371 EXPORT_SYMBOL(get_unmapped_area);
1372 
1373 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1374 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1375 {
1376 	struct vm_area_struct *vma = NULL;
1377 
1378 	if (mm) {
1379 		/* Check the cache first. */
1380 		/* (Cache hit rate is typically around 35%.) */
1381 		vma = mm->mmap_cache;
1382 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1383 			struct rb_node * rb_node;
1384 
1385 			rb_node = mm->mm_rb.rb_node;
1386 			vma = NULL;
1387 
1388 			while (rb_node) {
1389 				struct vm_area_struct * vma_tmp;
1390 
1391 				vma_tmp = rb_entry(rb_node,
1392 						struct vm_area_struct, vm_rb);
1393 
1394 				if (vma_tmp->vm_end > addr) {
1395 					vma = vma_tmp;
1396 					if (vma_tmp->vm_start <= addr)
1397 						break;
1398 					rb_node = rb_node->rb_left;
1399 				} else
1400 					rb_node = rb_node->rb_right;
1401 			}
1402 			if (vma)
1403 				mm->mmap_cache = vma;
1404 		}
1405 	}
1406 	return vma;
1407 }
1408 
1409 EXPORT_SYMBOL(find_vma);
1410 
1411 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1412 struct vm_area_struct *
1413 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1414 			struct vm_area_struct **pprev)
1415 {
1416 	struct vm_area_struct *vma = NULL, *prev = NULL;
1417 	struct rb_node * rb_node;
1418 	if (!mm)
1419 		goto out;
1420 
1421 	/* Guard against addr being lower than the first VMA */
1422 	vma = mm->mmap;
1423 
1424 	/* Go through the RB tree quickly. */
1425 	rb_node = mm->mm_rb.rb_node;
1426 
1427 	while (rb_node) {
1428 		struct vm_area_struct *vma_tmp;
1429 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1430 
1431 		if (addr < vma_tmp->vm_end) {
1432 			rb_node = rb_node->rb_left;
1433 		} else {
1434 			prev = vma_tmp;
1435 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1436 				break;
1437 			rb_node = rb_node->rb_right;
1438 		}
1439 	}
1440 
1441 out:
1442 	*pprev = prev;
1443 	return prev ? prev->vm_next : vma;
1444 }
1445 
1446 /*
1447  * Verify that the stack growth is acceptable and
1448  * update accounting. This is shared with both the
1449  * grow-up and grow-down cases.
1450  */
1451 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1452 {
1453 	struct mm_struct *mm = vma->vm_mm;
1454 	struct rlimit *rlim = current->signal->rlim;
1455 
1456 	/* address space limit tests */
1457 	if (!may_expand_vm(mm, grow))
1458 		return -ENOMEM;
1459 
1460 	/* Stack limit test */
1461 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1462 		return -ENOMEM;
1463 
1464 	/* mlock limit tests */
1465 	if (vma->vm_flags & VM_LOCKED) {
1466 		unsigned long locked;
1467 		unsigned long limit;
1468 		locked = mm->locked_vm + grow;
1469 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1470 		if (locked > limit && !capable(CAP_IPC_LOCK))
1471 			return -ENOMEM;
1472 	}
1473 
1474 	/*
1475 	 * Overcommit..  This must be the final test, as it will
1476 	 * update security statistics.
1477 	 */
1478 	if (security_vm_enough_memory(grow))
1479 		return -ENOMEM;
1480 
1481 	/* Ok, everything looks good - let it rip */
1482 	mm->total_vm += grow;
1483 	if (vma->vm_flags & VM_LOCKED)
1484 		mm->locked_vm += grow;
1485 	__vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1486 	return 0;
1487 }
1488 
1489 #ifdef CONFIG_STACK_GROWSUP
1490 /*
1491  * vma is the first one with address > vma->vm_end.  Have to extend vma.
1492  */
1493 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1494 {
1495 	int error;
1496 
1497 	if (!(vma->vm_flags & VM_GROWSUP))
1498 		return -EFAULT;
1499 
1500 	/*
1501 	 * We must make sure the anon_vma is allocated
1502 	 * so that the anon_vma locking is not a noop.
1503 	 */
1504 	if (unlikely(anon_vma_prepare(vma)))
1505 		return -ENOMEM;
1506 	anon_vma_lock(vma);
1507 
1508 	/*
1509 	 * vma->vm_start/vm_end cannot change under us because the caller
1510 	 * is required to hold the mmap_sem in read mode.  We need the
1511 	 * anon_vma lock to serialize against concurrent expand_stacks.
1512 	 */
1513 	address += 4 + PAGE_SIZE - 1;
1514 	address &= PAGE_MASK;
1515 	error = 0;
1516 
1517 	/* Somebody else might have raced and expanded it already */
1518 	if (address > vma->vm_end) {
1519 		unsigned long size, grow;
1520 
1521 		size = address - vma->vm_start;
1522 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1523 
1524 		error = acct_stack_growth(vma, size, grow);
1525 		if (!error)
1526 			vma->vm_end = address;
1527 	}
1528 	anon_vma_unlock(vma);
1529 	return error;
1530 }
1531 
1532 struct vm_area_struct *
1533 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1534 {
1535 	struct vm_area_struct *vma, *prev;
1536 
1537 	addr &= PAGE_MASK;
1538 	vma = find_vma_prev(mm, addr, &prev);
1539 	if (vma && (vma->vm_start <= addr))
1540 		return vma;
1541 	if (!prev || expand_stack(prev, addr))
1542 		return NULL;
1543 	if (prev->vm_flags & VM_LOCKED) {
1544 		make_pages_present(addr, prev->vm_end);
1545 	}
1546 	return prev;
1547 }
1548 #else
1549 /*
1550  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1551  */
1552 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1553 {
1554 	int error;
1555 
1556 	/*
1557 	 * We must make sure the anon_vma is allocated
1558 	 * so that the anon_vma locking is not a noop.
1559 	 */
1560 	if (unlikely(anon_vma_prepare(vma)))
1561 		return -ENOMEM;
1562 	anon_vma_lock(vma);
1563 
1564 	/*
1565 	 * vma->vm_start/vm_end cannot change under us because the caller
1566 	 * is required to hold the mmap_sem in read mode.  We need the
1567 	 * anon_vma lock to serialize against concurrent expand_stacks.
1568 	 */
1569 	address &= PAGE_MASK;
1570 	error = 0;
1571 
1572 	/* Somebody else might have raced and expanded it already */
1573 	if (address < vma->vm_start) {
1574 		unsigned long size, grow;
1575 
1576 		size = vma->vm_end - address;
1577 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1578 
1579 		error = acct_stack_growth(vma, size, grow);
1580 		if (!error) {
1581 			vma->vm_start = address;
1582 			vma->vm_pgoff -= grow;
1583 		}
1584 	}
1585 	anon_vma_unlock(vma);
1586 	return error;
1587 }
1588 
1589 struct vm_area_struct *
1590 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1591 {
1592 	struct vm_area_struct * vma;
1593 	unsigned long start;
1594 
1595 	addr &= PAGE_MASK;
1596 	vma = find_vma(mm,addr);
1597 	if (!vma)
1598 		return NULL;
1599 	if (vma->vm_start <= addr)
1600 		return vma;
1601 	if (!(vma->vm_flags & VM_GROWSDOWN))
1602 		return NULL;
1603 	start = vma->vm_start;
1604 	if (expand_stack(vma, addr))
1605 		return NULL;
1606 	if (vma->vm_flags & VM_LOCKED) {
1607 		make_pages_present(addr, start);
1608 	}
1609 	return vma;
1610 }
1611 #endif
1612 
1613 /* Normal function to fix up a mapping
1614  * This function is the default for when an area has no specific
1615  * function.  This may be used as part of a more specific routine.
1616  *
1617  * By the time this function is called, the area struct has been
1618  * removed from the process mapping list.
1619  */
1620 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1621 {
1622 	size_t len = area->vm_end - area->vm_start;
1623 
1624 	area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1625 	if (area->vm_flags & VM_LOCKED)
1626 		area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1627 	vm_stat_unaccount(area);
1628 	remove_vm_struct(area);
1629 }
1630 
1631 /*
1632  * Update the VMA and inode share lists.
1633  *
1634  * Ok - we have the memory areas we should free on the 'free' list,
1635  * so release them, and do the vma updates.
1636  */
1637 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1638 {
1639 	do {
1640 		struct vm_area_struct *next = vma->vm_next;
1641 		unmap_vma(mm, vma);
1642 		vma = next;
1643 	} while (vma);
1644 	validate_mm(mm);
1645 }
1646 
1647 /*
1648  * Get rid of page table information in the indicated region.
1649  *
1650  * Called with the page table lock held.
1651  */
1652 static void unmap_region(struct mm_struct *mm,
1653 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1654 		unsigned long start, unsigned long end)
1655 {
1656 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1657 	struct mmu_gather *tlb;
1658 	unsigned long nr_accounted = 0;
1659 
1660 	lru_add_drain();
1661 	spin_lock(&mm->page_table_lock);
1662 	tlb = tlb_gather_mmu(mm, 0);
1663 	unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1664 	vm_unacct_memory(nr_accounted);
1665 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1666 				 next? next->vm_start: 0);
1667 	tlb_finish_mmu(tlb, start, end);
1668 	spin_unlock(&mm->page_table_lock);
1669 }
1670 
1671 /*
1672  * Create a list of vma's touched by the unmap, removing them from the mm's
1673  * vma list as we go..
1674  */
1675 static void
1676 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1677 	struct vm_area_struct *prev, unsigned long end)
1678 {
1679 	struct vm_area_struct **insertion_point;
1680 	struct vm_area_struct *tail_vma = NULL;
1681 	unsigned long addr;
1682 
1683 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1684 	do {
1685 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1686 		mm->map_count--;
1687 		tail_vma = vma;
1688 		vma = vma->vm_next;
1689 	} while (vma && vma->vm_start < end);
1690 	*insertion_point = vma;
1691 	tail_vma->vm_next = NULL;
1692 	if (mm->unmap_area == arch_unmap_area)
1693 		addr = prev ? prev->vm_end : mm->mmap_base;
1694 	else
1695 		addr = vma ?  vma->vm_start : mm->mmap_base;
1696 	mm->unmap_area(mm, addr);
1697 	mm->mmap_cache = NULL;		/* Kill the cache. */
1698 }
1699 
1700 /*
1701  * Split a vma into two pieces at address 'addr', a new vma is allocated
1702  * either for the first part or the the tail.
1703  */
1704 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1705 	      unsigned long addr, int new_below)
1706 {
1707 	struct mempolicy *pol;
1708 	struct vm_area_struct *new;
1709 
1710 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1711 		return -EINVAL;
1712 
1713 	if (mm->map_count >= sysctl_max_map_count)
1714 		return -ENOMEM;
1715 
1716 	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1717 	if (!new)
1718 		return -ENOMEM;
1719 
1720 	/* most fields are the same, copy all, and then fixup */
1721 	*new = *vma;
1722 
1723 	if (new_below)
1724 		new->vm_end = addr;
1725 	else {
1726 		new->vm_start = addr;
1727 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1728 	}
1729 
1730 	pol = mpol_copy(vma_policy(vma));
1731 	if (IS_ERR(pol)) {
1732 		kmem_cache_free(vm_area_cachep, new);
1733 		return PTR_ERR(pol);
1734 	}
1735 	vma_set_policy(new, pol);
1736 
1737 	if (new->vm_file)
1738 		get_file(new->vm_file);
1739 
1740 	if (new->vm_ops && new->vm_ops->open)
1741 		new->vm_ops->open(new);
1742 
1743 	if (new_below)
1744 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1745 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1746 	else
1747 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1748 
1749 	return 0;
1750 }
1751 
1752 /* Munmap is split into 2 main parts -- this part which finds
1753  * what needs doing, and the areas themselves, which do the
1754  * work.  This now handles partial unmappings.
1755  * Jeremy Fitzhardinge <jeremy@goop.org>
1756  */
1757 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1758 {
1759 	unsigned long end;
1760 	struct vm_area_struct *vma, *prev, *last;
1761 
1762 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1763 		return -EINVAL;
1764 
1765 	if ((len = PAGE_ALIGN(len)) == 0)
1766 		return -EINVAL;
1767 
1768 	/* Find the first overlapping VMA */
1769 	vma = find_vma_prev(mm, start, &prev);
1770 	if (!vma)
1771 		return 0;
1772 	/* we have  start < vma->vm_end  */
1773 
1774 	/* if it doesn't overlap, we have nothing.. */
1775 	end = start + len;
1776 	if (vma->vm_start >= end)
1777 		return 0;
1778 
1779 	/*
1780 	 * If we need to split any vma, do it now to save pain later.
1781 	 *
1782 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1783 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1784 	 * places tmp vma above, and higher split_vma places tmp vma below.
1785 	 */
1786 	if (start > vma->vm_start) {
1787 		int error = split_vma(mm, vma, start, 0);
1788 		if (error)
1789 			return error;
1790 		prev = vma;
1791 	}
1792 
1793 	/* Does it split the last one? */
1794 	last = find_vma(mm, end);
1795 	if (last && end > last->vm_start) {
1796 		int error = split_vma(mm, last, end, 1);
1797 		if (error)
1798 			return error;
1799 	}
1800 	vma = prev? prev->vm_next: mm->mmap;
1801 
1802 	/*
1803 	 * Remove the vma's, and unmap the actual pages
1804 	 */
1805 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1806 	unmap_region(mm, vma, prev, start, end);
1807 
1808 	/* Fix up all other VM information */
1809 	unmap_vma_list(mm, vma);
1810 
1811 	return 0;
1812 }
1813 
1814 EXPORT_SYMBOL(do_munmap);
1815 
1816 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1817 {
1818 	int ret;
1819 	struct mm_struct *mm = current->mm;
1820 
1821 	profile_munmap(addr);
1822 
1823 	down_write(&mm->mmap_sem);
1824 	ret = do_munmap(mm, addr, len);
1825 	up_write(&mm->mmap_sem);
1826 	return ret;
1827 }
1828 
1829 static inline void verify_mm_writelocked(struct mm_struct *mm)
1830 {
1831 #ifdef CONFIG_DEBUG_KERNEL
1832 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1833 		WARN_ON(1);
1834 		up_read(&mm->mmap_sem);
1835 	}
1836 #endif
1837 }
1838 
1839 /*
1840  *  this is really a simplified "do_mmap".  it only handles
1841  *  anonymous maps.  eventually we may be able to do some
1842  *  brk-specific accounting here.
1843  */
1844 unsigned long do_brk(unsigned long addr, unsigned long len)
1845 {
1846 	struct mm_struct * mm = current->mm;
1847 	struct vm_area_struct * vma, * prev;
1848 	unsigned long flags;
1849 	struct rb_node ** rb_link, * rb_parent;
1850 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1851 
1852 	len = PAGE_ALIGN(len);
1853 	if (!len)
1854 		return addr;
1855 
1856 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1857 		return -EINVAL;
1858 
1859 	/*
1860 	 * mlock MCL_FUTURE?
1861 	 */
1862 	if (mm->def_flags & VM_LOCKED) {
1863 		unsigned long locked, lock_limit;
1864 		locked = len >> PAGE_SHIFT;
1865 		locked += mm->locked_vm;
1866 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1867 		lock_limit >>= PAGE_SHIFT;
1868 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1869 			return -EAGAIN;
1870 	}
1871 
1872 	/*
1873 	 * mm->mmap_sem is required to protect against another thread
1874 	 * changing the mappings in case we sleep.
1875 	 */
1876 	verify_mm_writelocked(mm);
1877 
1878 	/*
1879 	 * Clear old maps.  this also does some error checking for us
1880 	 */
1881  munmap_back:
1882 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1883 	if (vma && vma->vm_start < addr + len) {
1884 		if (do_munmap(mm, addr, len))
1885 			return -ENOMEM;
1886 		goto munmap_back;
1887 	}
1888 
1889 	/* Check against address space limits *after* clearing old maps... */
1890 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1891 		return -ENOMEM;
1892 
1893 	if (mm->map_count > sysctl_max_map_count)
1894 		return -ENOMEM;
1895 
1896 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1897 		return -ENOMEM;
1898 
1899 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1900 
1901 	/* Can we just expand an old private anonymous mapping? */
1902 	if (vma_merge(mm, prev, addr, addr + len, flags,
1903 					NULL, NULL, pgoff, NULL))
1904 		goto out;
1905 
1906 	/*
1907 	 * create a vma struct for an anonymous mapping
1908 	 */
1909 	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1910 	if (!vma) {
1911 		vm_unacct_memory(len >> PAGE_SHIFT);
1912 		return -ENOMEM;
1913 	}
1914 	memset(vma, 0, sizeof(*vma));
1915 
1916 	vma->vm_mm = mm;
1917 	vma->vm_start = addr;
1918 	vma->vm_end = addr + len;
1919 	vma->vm_pgoff = pgoff;
1920 	vma->vm_flags = flags;
1921 	vma->vm_page_prot = protection_map[flags & 0x0f];
1922 	vma_link(mm, vma, prev, rb_link, rb_parent);
1923 out:
1924 	mm->total_vm += len >> PAGE_SHIFT;
1925 	if (flags & VM_LOCKED) {
1926 		mm->locked_vm += len >> PAGE_SHIFT;
1927 		make_pages_present(addr, addr + len);
1928 	}
1929 	return addr;
1930 }
1931 
1932 EXPORT_SYMBOL(do_brk);
1933 
1934 /* Release all mmaps. */
1935 void exit_mmap(struct mm_struct *mm)
1936 {
1937 	struct mmu_gather *tlb;
1938 	struct vm_area_struct *vma = mm->mmap;
1939 	unsigned long nr_accounted = 0;
1940 	unsigned long end;
1941 
1942 	lru_add_drain();
1943 
1944 	spin_lock(&mm->page_table_lock);
1945 
1946 	flush_cache_mm(mm);
1947 	tlb = tlb_gather_mmu(mm, 1);
1948 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1949 	end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL);
1950 	vm_unacct_memory(nr_accounted);
1951 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1952 	tlb_finish_mmu(tlb, 0, end);
1953 
1954 	mm->mmap = mm->mmap_cache = NULL;
1955 	mm->mm_rb = RB_ROOT;
1956 	set_mm_counter(mm, rss, 0);
1957 	mm->total_vm = 0;
1958 	mm->locked_vm = 0;
1959 
1960 	spin_unlock(&mm->page_table_lock);
1961 
1962 	/*
1963 	 * Walk the list again, actually closing and freeing it
1964 	 * without holding any MM locks.
1965 	 */
1966 	while (vma) {
1967 		struct vm_area_struct *next = vma->vm_next;
1968 		remove_vm_struct(vma);
1969 		vma = next;
1970 	}
1971 
1972 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1973 }
1974 
1975 /* Insert vm structure into process list sorted by address
1976  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1977  * then i_mmap_lock is taken here.
1978  */
1979 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1980 {
1981 	struct vm_area_struct * __vma, * prev;
1982 	struct rb_node ** rb_link, * rb_parent;
1983 
1984 	/*
1985 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1986 	 * until its first write fault, when page's anon_vma and index
1987 	 * are set.  But now set the vm_pgoff it will almost certainly
1988 	 * end up with (unless mremap moves it elsewhere before that
1989 	 * first wfault), so /proc/pid/maps tells a consistent story.
1990 	 *
1991 	 * By setting it to reflect the virtual start address of the
1992 	 * vma, merges and splits can happen in a seamless way, just
1993 	 * using the existing file pgoff checks and manipulations.
1994 	 * Similarly in do_mmap_pgoff and in do_brk.
1995 	 */
1996 	if (!vma->vm_file) {
1997 		BUG_ON(vma->anon_vma);
1998 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1999 	}
2000 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2001 	if (__vma && __vma->vm_start < vma->vm_end)
2002 		return -ENOMEM;
2003 	vma_link(mm, vma, prev, rb_link, rb_parent);
2004 	return 0;
2005 }
2006 
2007 /*
2008  * Copy the vma structure to a new location in the same mm,
2009  * prior to moving page table entries, to effect an mremap move.
2010  */
2011 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2012 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2013 {
2014 	struct vm_area_struct *vma = *vmap;
2015 	unsigned long vma_start = vma->vm_start;
2016 	struct mm_struct *mm = vma->vm_mm;
2017 	struct vm_area_struct *new_vma, *prev;
2018 	struct rb_node **rb_link, *rb_parent;
2019 	struct mempolicy *pol;
2020 
2021 	/*
2022 	 * If anonymous vma has not yet been faulted, update new pgoff
2023 	 * to match new location, to increase its chance of merging.
2024 	 */
2025 	if (!vma->vm_file && !vma->anon_vma)
2026 		pgoff = addr >> PAGE_SHIFT;
2027 
2028 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2029 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2030 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2031 	if (new_vma) {
2032 		/*
2033 		 * Source vma may have been merged into new_vma
2034 		 */
2035 		if (vma_start >= new_vma->vm_start &&
2036 		    vma_start < new_vma->vm_end)
2037 			*vmap = new_vma;
2038 	} else {
2039 		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2040 		if (new_vma) {
2041 			*new_vma = *vma;
2042 			pol = mpol_copy(vma_policy(vma));
2043 			if (IS_ERR(pol)) {
2044 				kmem_cache_free(vm_area_cachep, new_vma);
2045 				return NULL;
2046 			}
2047 			vma_set_policy(new_vma, pol);
2048 			new_vma->vm_start = addr;
2049 			new_vma->vm_end = addr + len;
2050 			new_vma->vm_pgoff = pgoff;
2051 			if (new_vma->vm_file)
2052 				get_file(new_vma->vm_file);
2053 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2054 				new_vma->vm_ops->open(new_vma);
2055 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2056 		}
2057 	}
2058 	return new_vma;
2059 }
2060 
2061 /*
2062  * Return true if the calling process may expand its vm space by the passed
2063  * number of pages
2064  */
2065 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2066 {
2067 	unsigned long cur = mm->total_vm;	/* pages */
2068 	unsigned long lim;
2069 
2070 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2071 
2072 	if (cur + npages > lim)
2073 		return 0;
2074 	return 1;
2075 }
2076