xref: /linux/mm/mmap.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95 
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 	unsigned long free, allowed;
115 
116 	vm_acct_memory(pages);
117 
118 	/*
119 	 * Sometimes we want to use more memory than we have
120 	 */
121 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 		return 0;
123 
124 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 		unsigned long n;
126 
127 		free = global_page_state(NR_FILE_PAGES);
128 		free += nr_swap_pages;
129 
130 		/*
131 		 * Any slabs which are created with the
132 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
133 		 * which are reclaimable, under pressure.  The dentry
134 		 * cache and most inode caches should fall into this
135 		 */
136 		free += global_page_state(NR_SLAB_RECLAIMABLE);
137 
138 		/*
139 		 * Leave the last 3% for root
140 		 */
141 		if (!cap_sys_admin)
142 			free -= free / 32;
143 
144 		if (free > pages)
145 			return 0;
146 
147 		/*
148 		 * nr_free_pages() is very expensive on large systems,
149 		 * only call if we're about to fail.
150 		 */
151 		n = nr_free_pages();
152 
153 		/*
154 		 * Leave reserved pages. The pages are not for anonymous pages.
155 		 */
156 		if (n <= totalreserve_pages)
157 			goto error;
158 		else
159 			n -= totalreserve_pages;
160 
161 		/*
162 		 * Leave the last 3% for root
163 		 */
164 		if (!cap_sys_admin)
165 			n -= n / 32;
166 		free += n;
167 
168 		if (free > pages)
169 			return 0;
170 
171 		goto error;
172 	}
173 
174 	allowed = (totalram_pages - hugetlb_total_pages())
175 	       	* sysctl_overcommit_ratio / 100;
176 	/*
177 	 * Leave the last 3% for root
178 	 */
179 	if (!cap_sys_admin)
180 		allowed -= allowed / 32;
181 	allowed += total_swap_pages;
182 
183 	/* Don't let a single process grow too big:
184 	   leave 3% of the size of this process for other processes */
185 	if (mm)
186 		allowed -= mm->total_vm / 32;
187 
188 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
189 		return 0;
190 error:
191 	vm_unacct_memory(pages);
192 
193 	return -ENOMEM;
194 }
195 
196 /*
197  * Requires inode->i_mapping->i_mmap_mutex
198  */
199 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200 		struct file *file, struct address_space *mapping)
201 {
202 	if (vma->vm_flags & VM_DENYWRITE)
203 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204 	if (vma->vm_flags & VM_SHARED)
205 		mapping->i_mmap_writable--;
206 
207 	flush_dcache_mmap_lock(mapping);
208 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
209 		list_del_init(&vma->shared.vm_set.list);
210 	else
211 		vma_prio_tree_remove(vma, &mapping->i_mmap);
212 	flush_dcache_mmap_unlock(mapping);
213 }
214 
215 /*
216  * Unlink a file-based vm structure from its prio_tree, to hide
217  * vma from rmap and vmtruncate before freeing its page tables.
218  */
219 void unlink_file_vma(struct vm_area_struct *vma)
220 {
221 	struct file *file = vma->vm_file;
222 
223 	if (file) {
224 		struct address_space *mapping = file->f_mapping;
225 		mutex_lock(&mapping->i_mmap_mutex);
226 		__remove_shared_vm_struct(vma, file, mapping);
227 		mutex_unlock(&mapping->i_mmap_mutex);
228 	}
229 }
230 
231 /*
232  * Close a vm structure and free it, returning the next.
233  */
234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 {
236 	struct vm_area_struct *next = vma->vm_next;
237 
238 	might_sleep();
239 	if (vma->vm_ops && vma->vm_ops->close)
240 		vma->vm_ops->close(vma);
241 	if (vma->vm_file) {
242 		fput(vma->vm_file);
243 		if (vma->vm_flags & VM_EXECUTABLE)
244 			removed_exe_file_vma(vma->vm_mm);
245 	}
246 	mpol_put(vma_policy(vma));
247 	kmem_cache_free(vm_area_cachep, vma);
248 	return next;
249 }
250 
251 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 {
253 	unsigned long rlim, retval;
254 	unsigned long newbrk, oldbrk;
255 	struct mm_struct *mm = current->mm;
256 	unsigned long min_brk;
257 
258 	down_write(&mm->mmap_sem);
259 
260 #ifdef CONFIG_COMPAT_BRK
261 	/*
262 	 * CONFIG_COMPAT_BRK can still be overridden by setting
263 	 * randomize_va_space to 2, which will still cause mm->start_brk
264 	 * to be arbitrarily shifted
265 	 */
266 	if (current->brk_randomized)
267 		min_brk = mm->start_brk;
268 	else
269 		min_brk = mm->end_data;
270 #else
271 	min_brk = mm->start_brk;
272 #endif
273 	if (brk < min_brk)
274 		goto out;
275 
276 	/*
277 	 * Check against rlimit here. If this check is done later after the test
278 	 * of oldbrk with newbrk then it can escape the test and let the data
279 	 * segment grow beyond its set limit the in case where the limit is
280 	 * not page aligned -Ram Gupta
281 	 */
282 	rlim = rlimit(RLIMIT_DATA);
283 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
284 			(mm->end_data - mm->start_data) > rlim)
285 		goto out;
286 
287 	newbrk = PAGE_ALIGN(brk);
288 	oldbrk = PAGE_ALIGN(mm->brk);
289 	if (oldbrk == newbrk)
290 		goto set_brk;
291 
292 	/* Always allow shrinking brk. */
293 	if (brk <= mm->brk) {
294 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295 			goto set_brk;
296 		goto out;
297 	}
298 
299 	/* Check against existing mmap mappings. */
300 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
301 		goto out;
302 
303 	/* Ok, looks good - let it rip. */
304 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
305 		goto out;
306 set_brk:
307 	mm->brk = brk;
308 out:
309 	retval = mm->brk;
310 	up_write(&mm->mmap_sem);
311 	return retval;
312 }
313 
314 #ifdef DEBUG_MM_RB
315 static int browse_rb(struct rb_root *root)
316 {
317 	int i = 0, j;
318 	struct rb_node *nd, *pn = NULL;
319 	unsigned long prev = 0, pend = 0;
320 
321 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322 		struct vm_area_struct *vma;
323 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324 		if (vma->vm_start < prev)
325 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
326 		if (vma->vm_start < pend)
327 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
328 		if (vma->vm_start > vma->vm_end)
329 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
330 		i++;
331 		pn = nd;
332 		prev = vma->vm_start;
333 		pend = vma->vm_end;
334 	}
335 	j = 0;
336 	for (nd = pn; nd; nd = rb_prev(nd)) {
337 		j++;
338 	}
339 	if (i != j)
340 		printk("backwards %d, forwards %d\n", j, i), i = 0;
341 	return i;
342 }
343 
344 void validate_mm(struct mm_struct *mm)
345 {
346 	int bug = 0;
347 	int i = 0;
348 	struct vm_area_struct *tmp = mm->mmap;
349 	while (tmp) {
350 		tmp = tmp->vm_next;
351 		i++;
352 	}
353 	if (i != mm->map_count)
354 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
355 	i = browse_rb(&mm->mm_rb);
356 	if (i != mm->map_count)
357 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
358 	BUG_ON(bug);
359 }
360 #else
361 #define validate_mm(mm) do { } while (0)
362 #endif
363 
364 static struct vm_area_struct *
365 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
366 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
367 		struct rb_node ** rb_parent)
368 {
369 	struct vm_area_struct * vma;
370 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
371 
372 	__rb_link = &mm->mm_rb.rb_node;
373 	rb_prev = __rb_parent = NULL;
374 	vma = NULL;
375 
376 	while (*__rb_link) {
377 		struct vm_area_struct *vma_tmp;
378 
379 		__rb_parent = *__rb_link;
380 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
381 
382 		if (vma_tmp->vm_end > addr) {
383 			vma = vma_tmp;
384 			if (vma_tmp->vm_start <= addr)
385 				break;
386 			__rb_link = &__rb_parent->rb_left;
387 		} else {
388 			rb_prev = __rb_parent;
389 			__rb_link = &__rb_parent->rb_right;
390 		}
391 	}
392 
393 	*pprev = NULL;
394 	if (rb_prev)
395 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
396 	*rb_link = __rb_link;
397 	*rb_parent = __rb_parent;
398 	return vma;
399 }
400 
401 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
402 		struct rb_node **rb_link, struct rb_node *rb_parent)
403 {
404 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
405 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
406 }
407 
408 static void __vma_link_file(struct vm_area_struct *vma)
409 {
410 	struct file *file;
411 
412 	file = vma->vm_file;
413 	if (file) {
414 		struct address_space *mapping = file->f_mapping;
415 
416 		if (vma->vm_flags & VM_DENYWRITE)
417 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
418 		if (vma->vm_flags & VM_SHARED)
419 			mapping->i_mmap_writable++;
420 
421 		flush_dcache_mmap_lock(mapping);
422 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
423 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
424 		else
425 			vma_prio_tree_insert(vma, &mapping->i_mmap);
426 		flush_dcache_mmap_unlock(mapping);
427 	}
428 }
429 
430 static void
431 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 	struct vm_area_struct *prev, struct rb_node **rb_link,
433 	struct rb_node *rb_parent)
434 {
435 	__vma_link_list(mm, vma, prev, rb_parent);
436 	__vma_link_rb(mm, vma, rb_link, rb_parent);
437 }
438 
439 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
440 			struct vm_area_struct *prev, struct rb_node **rb_link,
441 			struct rb_node *rb_parent)
442 {
443 	struct address_space *mapping = NULL;
444 
445 	if (vma->vm_file)
446 		mapping = vma->vm_file->f_mapping;
447 
448 	if (mapping)
449 		mutex_lock(&mapping->i_mmap_mutex);
450 
451 	__vma_link(mm, vma, prev, rb_link, rb_parent);
452 	__vma_link_file(vma);
453 
454 	if (mapping)
455 		mutex_unlock(&mapping->i_mmap_mutex);
456 
457 	mm->map_count++;
458 	validate_mm(mm);
459 }
460 
461 /*
462  * Helper for vma_adjust in the split_vma insert case:
463  * insert vm structure into list and rbtree and anon_vma,
464  * but it has already been inserted into prio_tree earlier.
465  */
466 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
467 {
468 	struct vm_area_struct *__vma, *prev;
469 	struct rb_node **rb_link, *rb_parent;
470 
471 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
472 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
473 	__vma_link(mm, vma, prev, rb_link, rb_parent);
474 	mm->map_count++;
475 }
476 
477 static inline void
478 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
479 		struct vm_area_struct *prev)
480 {
481 	struct vm_area_struct *next = vma->vm_next;
482 
483 	prev->vm_next = next;
484 	if (next)
485 		next->vm_prev = prev;
486 	rb_erase(&vma->vm_rb, &mm->mm_rb);
487 	if (mm->mmap_cache == vma)
488 		mm->mmap_cache = prev;
489 }
490 
491 /*
492  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
493  * is already present in an i_mmap tree without adjusting the tree.
494  * The following helper function should be used when such adjustments
495  * are necessary.  The "insert" vma (if any) is to be inserted
496  * before we drop the necessary locks.
497  */
498 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
499 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	struct vm_area_struct *next = vma->vm_next;
503 	struct vm_area_struct *importer = NULL;
504 	struct address_space *mapping = NULL;
505 	struct prio_tree_root *root = NULL;
506 	struct anon_vma *anon_vma = NULL;
507 	struct file *file = vma->vm_file;
508 	long adjust_next = 0;
509 	int remove_next = 0;
510 
511 	if (next && !insert) {
512 		struct vm_area_struct *exporter = NULL;
513 
514 		if (end >= next->vm_end) {
515 			/*
516 			 * vma expands, overlapping all the next, and
517 			 * perhaps the one after too (mprotect case 6).
518 			 */
519 again:			remove_next = 1 + (end > next->vm_end);
520 			end = next->vm_end;
521 			exporter = next;
522 			importer = vma;
523 		} else if (end > next->vm_start) {
524 			/*
525 			 * vma expands, overlapping part of the next:
526 			 * mprotect case 5 shifting the boundary up.
527 			 */
528 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
529 			exporter = next;
530 			importer = vma;
531 		} else if (end < vma->vm_end) {
532 			/*
533 			 * vma shrinks, and !insert tells it's not
534 			 * split_vma inserting another: so it must be
535 			 * mprotect case 4 shifting the boundary down.
536 			 */
537 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
538 			exporter = vma;
539 			importer = next;
540 		}
541 
542 		/*
543 		 * Easily overlooked: when mprotect shifts the boundary,
544 		 * make sure the expanding vma has anon_vma set if the
545 		 * shrinking vma had, to cover any anon pages imported.
546 		 */
547 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
548 			if (anon_vma_clone(importer, exporter))
549 				return -ENOMEM;
550 			importer->anon_vma = exporter->anon_vma;
551 		}
552 	}
553 
554 	if (file) {
555 		mapping = file->f_mapping;
556 		if (!(vma->vm_flags & VM_NONLINEAR))
557 			root = &mapping->i_mmap;
558 		mutex_lock(&mapping->i_mmap_mutex);
559 		if (insert) {
560 			/*
561 			 * Put into prio_tree now, so instantiated pages
562 			 * are visible to arm/parisc __flush_dcache_page
563 			 * throughout; but we cannot insert into address
564 			 * space until vma start or end is updated.
565 			 */
566 			__vma_link_file(insert);
567 		}
568 	}
569 
570 	vma_adjust_trans_huge(vma, start, end, adjust_next);
571 
572 	/*
573 	 * When changing only vma->vm_end, we don't really need anon_vma
574 	 * lock. This is a fairly rare case by itself, but the anon_vma
575 	 * lock may be shared between many sibling processes.  Skipping
576 	 * the lock for brk adjustments makes a difference sometimes.
577 	 */
578 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
579 		anon_vma = vma->anon_vma;
580 		anon_vma_lock(anon_vma);
581 	}
582 
583 	if (root) {
584 		flush_dcache_mmap_lock(mapping);
585 		vma_prio_tree_remove(vma, root);
586 		if (adjust_next)
587 			vma_prio_tree_remove(next, root);
588 	}
589 
590 	vma->vm_start = start;
591 	vma->vm_end = end;
592 	vma->vm_pgoff = pgoff;
593 	if (adjust_next) {
594 		next->vm_start += adjust_next << PAGE_SHIFT;
595 		next->vm_pgoff += adjust_next;
596 	}
597 
598 	if (root) {
599 		if (adjust_next)
600 			vma_prio_tree_insert(next, root);
601 		vma_prio_tree_insert(vma, root);
602 		flush_dcache_mmap_unlock(mapping);
603 	}
604 
605 	if (remove_next) {
606 		/*
607 		 * vma_merge has merged next into vma, and needs
608 		 * us to remove next before dropping the locks.
609 		 */
610 		__vma_unlink(mm, next, vma);
611 		if (file)
612 			__remove_shared_vm_struct(next, file, mapping);
613 	} else if (insert) {
614 		/*
615 		 * split_vma has split insert from vma, and needs
616 		 * us to insert it before dropping the locks
617 		 * (it may either follow vma or precede it).
618 		 */
619 		__insert_vm_struct(mm, insert);
620 	}
621 
622 	if (anon_vma)
623 		anon_vma_unlock(anon_vma);
624 	if (mapping)
625 		mutex_unlock(&mapping->i_mmap_mutex);
626 
627 	if (remove_next) {
628 		if (file) {
629 			fput(file);
630 			if (next->vm_flags & VM_EXECUTABLE)
631 				removed_exe_file_vma(mm);
632 		}
633 		if (next->anon_vma)
634 			anon_vma_merge(vma, next);
635 		mm->map_count--;
636 		mpol_put(vma_policy(next));
637 		kmem_cache_free(vm_area_cachep, next);
638 		/*
639 		 * In mprotect's case 6 (see comments on vma_merge),
640 		 * we must remove another next too. It would clutter
641 		 * up the code too much to do both in one go.
642 		 */
643 		if (remove_next == 2) {
644 			next = vma->vm_next;
645 			goto again;
646 		}
647 	}
648 
649 	validate_mm(mm);
650 
651 	return 0;
652 }
653 
654 /*
655  * If the vma has a ->close operation then the driver probably needs to release
656  * per-vma resources, so we don't attempt to merge those.
657  */
658 static inline int is_mergeable_vma(struct vm_area_struct *vma,
659 			struct file *file, unsigned long vm_flags)
660 {
661 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
662 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
663 		return 0;
664 	if (vma->vm_file != file)
665 		return 0;
666 	if (vma->vm_ops && vma->vm_ops->close)
667 		return 0;
668 	return 1;
669 }
670 
671 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
672 					struct anon_vma *anon_vma2,
673 					struct vm_area_struct *vma)
674 {
675 	/*
676 	 * The list_is_singular() test is to avoid merging VMA cloned from
677 	 * parents. This can improve scalability caused by anon_vma lock.
678 	 */
679 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
680 		list_is_singular(&vma->anon_vma_chain)))
681 		return 1;
682 	return anon_vma1 == anon_vma2;
683 }
684 
685 /*
686  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687  * in front of (at a lower virtual address and file offset than) the vma.
688  *
689  * We cannot merge two vmas if they have differently assigned (non-NULL)
690  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691  *
692  * We don't check here for the merged mmap wrapping around the end of pagecache
693  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694  * wrap, nor mmaps which cover the final page at index -1UL.
695  */
696 static int
697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 {
700 	if (is_mergeable_vma(vma, file, vm_flags) &&
701 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
702 		if (vma->vm_pgoff == vm_pgoff)
703 			return 1;
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710  * beyond (at a higher virtual address and file offset than) the vma.
711  *
712  * We cannot merge two vmas if they have differently assigned (non-NULL)
713  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714  */
715 static int
716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718 {
719 	if (is_mergeable_vma(vma, file, vm_flags) &&
720 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
721 		pgoff_t vm_pglen;
722 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724 			return 1;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731  * whether that can be merged with its predecessor or its successor.
732  * Or both (it neatly fills a hole).
733  *
734  * In most cases - when called for mmap, brk or mremap - [addr,end) is
735  * certain not to be mapped by the time vma_merge is called; but when
736  * called for mprotect, it is certain to be already mapped (either at
737  * an offset within prev, or at the start of next), and the flags of
738  * this area are about to be changed to vm_flags - and the no-change
739  * case has already been eliminated.
740  *
741  * The following mprotect cases have to be considered, where AAAA is
742  * the area passed down from mprotect_fixup, never extending beyond one
743  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744  *
745  *     AAAA             AAAA                AAAA          AAAA
746  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
747  *    cannot merge    might become    might become    might become
748  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
749  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
750  *    mremap move:                                    PPPPNNNNNNNN 8
751  *        AAAA
752  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
753  *    might become    case 1 below    case 2 below    case 3 below
754  *
755  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757  */
758 struct vm_area_struct *vma_merge(struct mm_struct *mm,
759 			struct vm_area_struct *prev, unsigned long addr,
760 			unsigned long end, unsigned long vm_flags,
761 		     	struct anon_vma *anon_vma, struct file *file,
762 			pgoff_t pgoff, struct mempolicy *policy)
763 {
764 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765 	struct vm_area_struct *area, *next;
766 	int err;
767 
768 	/*
769 	 * We later require that vma->vm_flags == vm_flags,
770 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
771 	 */
772 	if (vm_flags & VM_SPECIAL)
773 		return NULL;
774 
775 	if (prev)
776 		next = prev->vm_next;
777 	else
778 		next = mm->mmap;
779 	area = next;
780 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
781 		next = next->vm_next;
782 
783 	/*
784 	 * Can it merge with the predecessor?
785 	 */
786 	if (prev && prev->vm_end == addr &&
787   			mpol_equal(vma_policy(prev), policy) &&
788 			can_vma_merge_after(prev, vm_flags,
789 						anon_vma, file, pgoff)) {
790 		/*
791 		 * OK, it can.  Can we now merge in the successor as well?
792 		 */
793 		if (next && end == next->vm_start &&
794 				mpol_equal(policy, vma_policy(next)) &&
795 				can_vma_merge_before(next, vm_flags,
796 					anon_vma, file, pgoff+pglen) &&
797 				is_mergeable_anon_vma(prev->anon_vma,
798 						      next->anon_vma, NULL)) {
799 							/* cases 1, 6 */
800 			err = vma_adjust(prev, prev->vm_start,
801 				next->vm_end, prev->vm_pgoff, NULL);
802 		} else					/* cases 2, 5, 7 */
803 			err = vma_adjust(prev, prev->vm_start,
804 				end, prev->vm_pgoff, NULL);
805 		if (err)
806 			return NULL;
807 		khugepaged_enter_vma_merge(prev);
808 		return prev;
809 	}
810 
811 	/*
812 	 * Can this new request be merged in front of next?
813 	 */
814 	if (next && end == next->vm_start &&
815  			mpol_equal(policy, vma_policy(next)) &&
816 			can_vma_merge_before(next, vm_flags,
817 					anon_vma, file, pgoff+pglen)) {
818 		if (prev && addr < prev->vm_end)	/* case 4 */
819 			err = vma_adjust(prev, prev->vm_start,
820 				addr, prev->vm_pgoff, NULL);
821 		else					/* cases 3, 8 */
822 			err = vma_adjust(area, addr, next->vm_end,
823 				next->vm_pgoff - pglen, NULL);
824 		if (err)
825 			return NULL;
826 		khugepaged_enter_vma_merge(area);
827 		return area;
828 	}
829 
830 	return NULL;
831 }
832 
833 /*
834  * Rough compatbility check to quickly see if it's even worth looking
835  * at sharing an anon_vma.
836  *
837  * They need to have the same vm_file, and the flags can only differ
838  * in things that mprotect may change.
839  *
840  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
841  * we can merge the two vma's. For example, we refuse to merge a vma if
842  * there is a vm_ops->close() function, because that indicates that the
843  * driver is doing some kind of reference counting. But that doesn't
844  * really matter for the anon_vma sharing case.
845  */
846 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
847 {
848 	return a->vm_end == b->vm_start &&
849 		mpol_equal(vma_policy(a), vma_policy(b)) &&
850 		a->vm_file == b->vm_file &&
851 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
852 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
853 }
854 
855 /*
856  * Do some basic sanity checking to see if we can re-use the anon_vma
857  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
858  * the same as 'old', the other will be the new one that is trying
859  * to share the anon_vma.
860  *
861  * NOTE! This runs with mm_sem held for reading, so it is possible that
862  * the anon_vma of 'old' is concurrently in the process of being set up
863  * by another page fault trying to merge _that_. But that's ok: if it
864  * is being set up, that automatically means that it will be a singleton
865  * acceptable for merging, so we can do all of this optimistically. But
866  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
867  *
868  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
869  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
870  * is to return an anon_vma that is "complex" due to having gone through
871  * a fork).
872  *
873  * We also make sure that the two vma's are compatible (adjacent,
874  * and with the same memory policies). That's all stable, even with just
875  * a read lock on the mm_sem.
876  */
877 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
878 {
879 	if (anon_vma_compatible(a, b)) {
880 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
881 
882 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
883 			return anon_vma;
884 	}
885 	return NULL;
886 }
887 
888 /*
889  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
890  * neighbouring vmas for a suitable anon_vma, before it goes off
891  * to allocate a new anon_vma.  It checks because a repetitive
892  * sequence of mprotects and faults may otherwise lead to distinct
893  * anon_vmas being allocated, preventing vma merge in subsequent
894  * mprotect.
895  */
896 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
897 {
898 	struct anon_vma *anon_vma;
899 	struct vm_area_struct *near;
900 
901 	near = vma->vm_next;
902 	if (!near)
903 		goto try_prev;
904 
905 	anon_vma = reusable_anon_vma(near, vma, near);
906 	if (anon_vma)
907 		return anon_vma;
908 try_prev:
909 	/*
910 	 * It is potentially slow to have to call find_vma_prev here.
911 	 * But it's only on the first write fault on the vma, not
912 	 * every time, and we could devise a way to avoid it later
913 	 * (e.g. stash info in next's anon_vma_node when assigning
914 	 * an anon_vma, or when trying vma_merge).  Another time.
915 	 */
916 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
917 	if (!near)
918 		goto none;
919 
920 	anon_vma = reusable_anon_vma(near, near, vma);
921 	if (anon_vma)
922 		return anon_vma;
923 none:
924 	/*
925 	 * There's no absolute need to look only at touching neighbours:
926 	 * we could search further afield for "compatible" anon_vmas.
927 	 * But it would probably just be a waste of time searching,
928 	 * or lead to too many vmas hanging off the same anon_vma.
929 	 * We're trying to allow mprotect remerging later on,
930 	 * not trying to minimize memory used for anon_vmas.
931 	 */
932 	return NULL;
933 }
934 
935 #ifdef CONFIG_PROC_FS
936 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
937 						struct file *file, long pages)
938 {
939 	const unsigned long stack_flags
940 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
941 
942 	if (file) {
943 		mm->shared_vm += pages;
944 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
945 			mm->exec_vm += pages;
946 	} else if (flags & stack_flags)
947 		mm->stack_vm += pages;
948 	if (flags & (VM_RESERVED|VM_IO))
949 		mm->reserved_vm += pages;
950 }
951 #endif /* CONFIG_PROC_FS */
952 
953 /*
954  * The caller must hold down_write(&current->mm->mmap_sem).
955  */
956 
957 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
958 			unsigned long len, unsigned long prot,
959 			unsigned long flags, unsigned long pgoff)
960 {
961 	struct mm_struct * mm = current->mm;
962 	struct inode *inode;
963 	vm_flags_t vm_flags;
964 	int error;
965 	unsigned long reqprot = prot;
966 
967 	/*
968 	 * Does the application expect PROT_READ to imply PROT_EXEC?
969 	 *
970 	 * (the exception is when the underlying filesystem is noexec
971 	 *  mounted, in which case we dont add PROT_EXEC.)
972 	 */
973 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
974 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
975 			prot |= PROT_EXEC;
976 
977 	if (!len)
978 		return -EINVAL;
979 
980 	if (!(flags & MAP_FIXED))
981 		addr = round_hint_to_min(addr);
982 
983 	/* Careful about overflows.. */
984 	len = PAGE_ALIGN(len);
985 	if (!len)
986 		return -ENOMEM;
987 
988 	/* offset overflow? */
989 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
990                return -EOVERFLOW;
991 
992 	/* Too many mappings? */
993 	if (mm->map_count > sysctl_max_map_count)
994 		return -ENOMEM;
995 
996 	/* Obtain the address to map to. we verify (or select) it and ensure
997 	 * that it represents a valid section of the address space.
998 	 */
999 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1000 	if (addr & ~PAGE_MASK)
1001 		return addr;
1002 
1003 	/* Do simple checking here so the lower-level routines won't have
1004 	 * to. we assume access permissions have been handled by the open
1005 	 * of the memory object, so we don't do any here.
1006 	 */
1007 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1008 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1009 
1010 	if (flags & MAP_LOCKED)
1011 		if (!can_do_mlock())
1012 			return -EPERM;
1013 
1014 	/* mlock MCL_FUTURE? */
1015 	if (vm_flags & VM_LOCKED) {
1016 		unsigned long locked, lock_limit;
1017 		locked = len >> PAGE_SHIFT;
1018 		locked += mm->locked_vm;
1019 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1020 		lock_limit >>= PAGE_SHIFT;
1021 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1022 			return -EAGAIN;
1023 	}
1024 
1025 	inode = file ? file->f_path.dentry->d_inode : NULL;
1026 
1027 	if (file) {
1028 		switch (flags & MAP_TYPE) {
1029 		case MAP_SHARED:
1030 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1031 				return -EACCES;
1032 
1033 			/*
1034 			 * Make sure we don't allow writing to an append-only
1035 			 * file..
1036 			 */
1037 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1038 				return -EACCES;
1039 
1040 			/*
1041 			 * Make sure there are no mandatory locks on the file.
1042 			 */
1043 			if (locks_verify_locked(inode))
1044 				return -EAGAIN;
1045 
1046 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1047 			if (!(file->f_mode & FMODE_WRITE))
1048 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1049 
1050 			/* fall through */
1051 		case MAP_PRIVATE:
1052 			if (!(file->f_mode & FMODE_READ))
1053 				return -EACCES;
1054 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1055 				if (vm_flags & VM_EXEC)
1056 					return -EPERM;
1057 				vm_flags &= ~VM_MAYEXEC;
1058 			}
1059 
1060 			if (!file->f_op || !file->f_op->mmap)
1061 				return -ENODEV;
1062 			break;
1063 
1064 		default:
1065 			return -EINVAL;
1066 		}
1067 	} else {
1068 		switch (flags & MAP_TYPE) {
1069 		case MAP_SHARED:
1070 			/*
1071 			 * Ignore pgoff.
1072 			 */
1073 			pgoff = 0;
1074 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1075 			break;
1076 		case MAP_PRIVATE:
1077 			/*
1078 			 * Set pgoff according to addr for anon_vma.
1079 			 */
1080 			pgoff = addr >> PAGE_SHIFT;
1081 			break;
1082 		default:
1083 			return -EINVAL;
1084 		}
1085 	}
1086 
1087 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1088 	if (error)
1089 		return error;
1090 
1091 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1092 }
1093 EXPORT_SYMBOL(do_mmap_pgoff);
1094 
1095 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1096 		unsigned long, prot, unsigned long, flags,
1097 		unsigned long, fd, unsigned long, pgoff)
1098 {
1099 	struct file *file = NULL;
1100 	unsigned long retval = -EBADF;
1101 
1102 	if (!(flags & MAP_ANONYMOUS)) {
1103 		audit_mmap_fd(fd, flags);
1104 		if (unlikely(flags & MAP_HUGETLB))
1105 			return -EINVAL;
1106 		file = fget(fd);
1107 		if (!file)
1108 			goto out;
1109 	} else if (flags & MAP_HUGETLB) {
1110 		struct user_struct *user = NULL;
1111 		/*
1112 		 * VM_NORESERVE is used because the reservations will be
1113 		 * taken when vm_ops->mmap() is called
1114 		 * A dummy user value is used because we are not locking
1115 		 * memory so no accounting is necessary
1116 		 */
1117 		len = ALIGN(len, huge_page_size(&default_hstate));
1118 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1119 						&user, HUGETLB_ANONHUGE_INODE);
1120 		if (IS_ERR(file))
1121 			return PTR_ERR(file);
1122 	}
1123 
1124 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1125 
1126 	down_write(&current->mm->mmap_sem);
1127 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1128 	up_write(&current->mm->mmap_sem);
1129 
1130 	if (file)
1131 		fput(file);
1132 out:
1133 	return retval;
1134 }
1135 
1136 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1137 struct mmap_arg_struct {
1138 	unsigned long addr;
1139 	unsigned long len;
1140 	unsigned long prot;
1141 	unsigned long flags;
1142 	unsigned long fd;
1143 	unsigned long offset;
1144 };
1145 
1146 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1147 {
1148 	struct mmap_arg_struct a;
1149 
1150 	if (copy_from_user(&a, arg, sizeof(a)))
1151 		return -EFAULT;
1152 	if (a.offset & ~PAGE_MASK)
1153 		return -EINVAL;
1154 
1155 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1156 			      a.offset >> PAGE_SHIFT);
1157 }
1158 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1159 
1160 /*
1161  * Some shared mappigns will want the pages marked read-only
1162  * to track write events. If so, we'll downgrade vm_page_prot
1163  * to the private version (using protection_map[] without the
1164  * VM_SHARED bit).
1165  */
1166 int vma_wants_writenotify(struct vm_area_struct *vma)
1167 {
1168 	vm_flags_t vm_flags = vma->vm_flags;
1169 
1170 	/* If it was private or non-writable, the write bit is already clear */
1171 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1172 		return 0;
1173 
1174 	/* The backer wishes to know when pages are first written to? */
1175 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1176 		return 1;
1177 
1178 	/* The open routine did something to the protections already? */
1179 	if (pgprot_val(vma->vm_page_prot) !=
1180 	    pgprot_val(vm_get_page_prot(vm_flags)))
1181 		return 0;
1182 
1183 	/* Specialty mapping? */
1184 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1185 		return 0;
1186 
1187 	/* Can the mapping track the dirty pages? */
1188 	return vma->vm_file && vma->vm_file->f_mapping &&
1189 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1190 }
1191 
1192 /*
1193  * We account for memory if it's a private writeable mapping,
1194  * not hugepages and VM_NORESERVE wasn't set.
1195  */
1196 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1197 {
1198 	/*
1199 	 * hugetlb has its own accounting separate from the core VM
1200 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1201 	 */
1202 	if (file && is_file_hugepages(file))
1203 		return 0;
1204 
1205 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1206 }
1207 
1208 unsigned long mmap_region(struct file *file, unsigned long addr,
1209 			  unsigned long len, unsigned long flags,
1210 			  vm_flags_t vm_flags, unsigned long pgoff)
1211 {
1212 	struct mm_struct *mm = current->mm;
1213 	struct vm_area_struct *vma, *prev;
1214 	int correct_wcount = 0;
1215 	int error;
1216 	struct rb_node **rb_link, *rb_parent;
1217 	unsigned long charged = 0;
1218 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1219 
1220 	/* Clear old maps */
1221 	error = -ENOMEM;
1222 munmap_back:
1223 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1224 	if (vma && vma->vm_start < addr + len) {
1225 		if (do_munmap(mm, addr, len))
1226 			return -ENOMEM;
1227 		goto munmap_back;
1228 	}
1229 
1230 	/* Check against address space limit. */
1231 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1232 		return -ENOMEM;
1233 
1234 	/*
1235 	 * Set 'VM_NORESERVE' if we should not account for the
1236 	 * memory use of this mapping.
1237 	 */
1238 	if ((flags & MAP_NORESERVE)) {
1239 		/* We honor MAP_NORESERVE if allowed to overcommit */
1240 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1241 			vm_flags |= VM_NORESERVE;
1242 
1243 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1244 		if (file && is_file_hugepages(file))
1245 			vm_flags |= VM_NORESERVE;
1246 	}
1247 
1248 	/*
1249 	 * Private writable mapping: check memory availability
1250 	 */
1251 	if (accountable_mapping(file, vm_flags)) {
1252 		charged = len >> PAGE_SHIFT;
1253 		if (security_vm_enough_memory(charged))
1254 			return -ENOMEM;
1255 		vm_flags |= VM_ACCOUNT;
1256 	}
1257 
1258 	/*
1259 	 * Can we just expand an old mapping?
1260 	 */
1261 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1262 	if (vma)
1263 		goto out;
1264 
1265 	/*
1266 	 * Determine the object being mapped and call the appropriate
1267 	 * specific mapper. the address has already been validated, but
1268 	 * not unmapped, but the maps are removed from the list.
1269 	 */
1270 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1271 	if (!vma) {
1272 		error = -ENOMEM;
1273 		goto unacct_error;
1274 	}
1275 
1276 	vma->vm_mm = mm;
1277 	vma->vm_start = addr;
1278 	vma->vm_end = addr + len;
1279 	vma->vm_flags = vm_flags;
1280 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1281 	vma->vm_pgoff = pgoff;
1282 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1283 
1284 	if (file) {
1285 		error = -EINVAL;
1286 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1287 			goto free_vma;
1288 		if (vm_flags & VM_DENYWRITE) {
1289 			error = deny_write_access(file);
1290 			if (error)
1291 				goto free_vma;
1292 			correct_wcount = 1;
1293 		}
1294 		vma->vm_file = file;
1295 		get_file(file);
1296 		error = file->f_op->mmap(file, vma);
1297 		if (error)
1298 			goto unmap_and_free_vma;
1299 		if (vm_flags & VM_EXECUTABLE)
1300 			added_exe_file_vma(mm);
1301 
1302 		/* Can addr have changed??
1303 		 *
1304 		 * Answer: Yes, several device drivers can do it in their
1305 		 *         f_op->mmap method. -DaveM
1306 		 */
1307 		addr = vma->vm_start;
1308 		pgoff = vma->vm_pgoff;
1309 		vm_flags = vma->vm_flags;
1310 	} else if (vm_flags & VM_SHARED) {
1311 		error = shmem_zero_setup(vma);
1312 		if (error)
1313 			goto free_vma;
1314 	}
1315 
1316 	if (vma_wants_writenotify(vma)) {
1317 		pgprot_t pprot = vma->vm_page_prot;
1318 
1319 		/* Can vma->vm_page_prot have changed??
1320 		 *
1321 		 * Answer: Yes, drivers may have changed it in their
1322 		 *         f_op->mmap method.
1323 		 *
1324 		 * Ensures that vmas marked as uncached stay that way.
1325 		 */
1326 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1327 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1328 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1329 	}
1330 
1331 	vma_link(mm, vma, prev, rb_link, rb_parent);
1332 	file = vma->vm_file;
1333 
1334 	/* Once vma denies write, undo our temporary denial count */
1335 	if (correct_wcount)
1336 		atomic_inc(&inode->i_writecount);
1337 out:
1338 	perf_event_mmap(vma);
1339 
1340 	mm->total_vm += len >> PAGE_SHIFT;
1341 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1342 	if (vm_flags & VM_LOCKED) {
1343 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1344 			mm->locked_vm += (len >> PAGE_SHIFT);
1345 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1346 		make_pages_present(addr, addr + len);
1347 	return addr;
1348 
1349 unmap_and_free_vma:
1350 	if (correct_wcount)
1351 		atomic_inc(&inode->i_writecount);
1352 	vma->vm_file = NULL;
1353 	fput(file);
1354 
1355 	/* Undo any partial mapping done by a device driver. */
1356 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1357 	charged = 0;
1358 free_vma:
1359 	kmem_cache_free(vm_area_cachep, vma);
1360 unacct_error:
1361 	if (charged)
1362 		vm_unacct_memory(charged);
1363 	return error;
1364 }
1365 
1366 /* Get an address range which is currently unmapped.
1367  * For shmat() with addr=0.
1368  *
1369  * Ugly calling convention alert:
1370  * Return value with the low bits set means error value,
1371  * ie
1372  *	if (ret & ~PAGE_MASK)
1373  *		error = ret;
1374  *
1375  * This function "knows" that -ENOMEM has the bits set.
1376  */
1377 #ifndef HAVE_ARCH_UNMAPPED_AREA
1378 unsigned long
1379 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1380 		unsigned long len, unsigned long pgoff, unsigned long flags)
1381 {
1382 	struct mm_struct *mm = current->mm;
1383 	struct vm_area_struct *vma;
1384 	unsigned long start_addr;
1385 
1386 	if (len > TASK_SIZE)
1387 		return -ENOMEM;
1388 
1389 	if (flags & MAP_FIXED)
1390 		return addr;
1391 
1392 	if (addr) {
1393 		addr = PAGE_ALIGN(addr);
1394 		vma = find_vma(mm, addr);
1395 		if (TASK_SIZE - len >= addr &&
1396 		    (!vma || addr + len <= vma->vm_start))
1397 			return addr;
1398 	}
1399 	if (len > mm->cached_hole_size) {
1400 	        start_addr = addr = mm->free_area_cache;
1401 	} else {
1402 	        start_addr = addr = TASK_UNMAPPED_BASE;
1403 	        mm->cached_hole_size = 0;
1404 	}
1405 
1406 full_search:
1407 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1408 		/* At this point:  (!vma || addr < vma->vm_end). */
1409 		if (TASK_SIZE - len < addr) {
1410 			/*
1411 			 * Start a new search - just in case we missed
1412 			 * some holes.
1413 			 */
1414 			if (start_addr != TASK_UNMAPPED_BASE) {
1415 				addr = TASK_UNMAPPED_BASE;
1416 			        start_addr = addr;
1417 				mm->cached_hole_size = 0;
1418 				goto full_search;
1419 			}
1420 			return -ENOMEM;
1421 		}
1422 		if (!vma || addr + len <= vma->vm_start) {
1423 			/*
1424 			 * Remember the place where we stopped the search:
1425 			 */
1426 			mm->free_area_cache = addr + len;
1427 			return addr;
1428 		}
1429 		if (addr + mm->cached_hole_size < vma->vm_start)
1430 		        mm->cached_hole_size = vma->vm_start - addr;
1431 		addr = vma->vm_end;
1432 	}
1433 }
1434 #endif
1435 
1436 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1437 {
1438 	/*
1439 	 * Is this a new hole at the lowest possible address?
1440 	 */
1441 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1442 		mm->free_area_cache = addr;
1443 		mm->cached_hole_size = ~0UL;
1444 	}
1445 }
1446 
1447 /*
1448  * This mmap-allocator allocates new areas top-down from below the
1449  * stack's low limit (the base):
1450  */
1451 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1452 unsigned long
1453 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1454 			  const unsigned long len, const unsigned long pgoff,
1455 			  const unsigned long flags)
1456 {
1457 	struct vm_area_struct *vma;
1458 	struct mm_struct *mm = current->mm;
1459 	unsigned long addr = addr0;
1460 
1461 	/* requested length too big for entire address space */
1462 	if (len > TASK_SIZE)
1463 		return -ENOMEM;
1464 
1465 	if (flags & MAP_FIXED)
1466 		return addr;
1467 
1468 	/* requesting a specific address */
1469 	if (addr) {
1470 		addr = PAGE_ALIGN(addr);
1471 		vma = find_vma(mm, addr);
1472 		if (TASK_SIZE - len >= addr &&
1473 				(!vma || addr + len <= vma->vm_start))
1474 			return addr;
1475 	}
1476 
1477 	/* check if free_area_cache is useful for us */
1478 	if (len <= mm->cached_hole_size) {
1479  	        mm->cached_hole_size = 0;
1480  		mm->free_area_cache = mm->mmap_base;
1481  	}
1482 
1483 	/* either no address requested or can't fit in requested address hole */
1484 	addr = mm->free_area_cache;
1485 
1486 	/* make sure it can fit in the remaining address space */
1487 	if (addr > len) {
1488 		vma = find_vma(mm, addr-len);
1489 		if (!vma || addr <= vma->vm_start)
1490 			/* remember the address as a hint for next time */
1491 			return (mm->free_area_cache = addr-len);
1492 	}
1493 
1494 	if (mm->mmap_base < len)
1495 		goto bottomup;
1496 
1497 	addr = mm->mmap_base-len;
1498 
1499 	do {
1500 		/*
1501 		 * Lookup failure means no vma is above this address,
1502 		 * else if new region fits below vma->vm_start,
1503 		 * return with success:
1504 		 */
1505 		vma = find_vma(mm, addr);
1506 		if (!vma || addr+len <= vma->vm_start)
1507 			/* remember the address as a hint for next time */
1508 			return (mm->free_area_cache = addr);
1509 
1510  		/* remember the largest hole we saw so far */
1511  		if (addr + mm->cached_hole_size < vma->vm_start)
1512  		        mm->cached_hole_size = vma->vm_start - addr;
1513 
1514 		/* try just below the current vma->vm_start */
1515 		addr = vma->vm_start-len;
1516 	} while (len < vma->vm_start);
1517 
1518 bottomup:
1519 	/*
1520 	 * A failed mmap() very likely causes application failure,
1521 	 * so fall back to the bottom-up function here. This scenario
1522 	 * can happen with large stack limits and large mmap()
1523 	 * allocations.
1524 	 */
1525 	mm->cached_hole_size = ~0UL;
1526   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1527 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1528 	/*
1529 	 * Restore the topdown base:
1530 	 */
1531 	mm->free_area_cache = mm->mmap_base;
1532 	mm->cached_hole_size = ~0UL;
1533 
1534 	return addr;
1535 }
1536 #endif
1537 
1538 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1539 {
1540 	/*
1541 	 * Is this a new hole at the highest possible address?
1542 	 */
1543 	if (addr > mm->free_area_cache)
1544 		mm->free_area_cache = addr;
1545 
1546 	/* dont allow allocations above current base */
1547 	if (mm->free_area_cache > mm->mmap_base)
1548 		mm->free_area_cache = mm->mmap_base;
1549 }
1550 
1551 unsigned long
1552 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1553 		unsigned long pgoff, unsigned long flags)
1554 {
1555 	unsigned long (*get_area)(struct file *, unsigned long,
1556 				  unsigned long, unsigned long, unsigned long);
1557 
1558 	unsigned long error = arch_mmap_check(addr, len, flags);
1559 	if (error)
1560 		return error;
1561 
1562 	/* Careful about overflows.. */
1563 	if (len > TASK_SIZE)
1564 		return -ENOMEM;
1565 
1566 	get_area = current->mm->get_unmapped_area;
1567 	if (file && file->f_op && file->f_op->get_unmapped_area)
1568 		get_area = file->f_op->get_unmapped_area;
1569 	addr = get_area(file, addr, len, pgoff, flags);
1570 	if (IS_ERR_VALUE(addr))
1571 		return addr;
1572 
1573 	if (addr > TASK_SIZE - len)
1574 		return -ENOMEM;
1575 	if (addr & ~PAGE_MASK)
1576 		return -EINVAL;
1577 
1578 	return arch_rebalance_pgtables(addr, len);
1579 }
1580 
1581 EXPORT_SYMBOL(get_unmapped_area);
1582 
1583 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1584 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1585 {
1586 	struct vm_area_struct *vma = NULL;
1587 
1588 	if (mm) {
1589 		/* Check the cache first. */
1590 		/* (Cache hit rate is typically around 35%.) */
1591 		vma = mm->mmap_cache;
1592 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1593 			struct rb_node * rb_node;
1594 
1595 			rb_node = mm->mm_rb.rb_node;
1596 			vma = NULL;
1597 
1598 			while (rb_node) {
1599 				struct vm_area_struct * vma_tmp;
1600 
1601 				vma_tmp = rb_entry(rb_node,
1602 						struct vm_area_struct, vm_rb);
1603 
1604 				if (vma_tmp->vm_end > addr) {
1605 					vma = vma_tmp;
1606 					if (vma_tmp->vm_start <= addr)
1607 						break;
1608 					rb_node = rb_node->rb_left;
1609 				} else
1610 					rb_node = rb_node->rb_right;
1611 			}
1612 			if (vma)
1613 				mm->mmap_cache = vma;
1614 		}
1615 	}
1616 	return vma;
1617 }
1618 
1619 EXPORT_SYMBOL(find_vma);
1620 
1621 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1622 struct vm_area_struct *
1623 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1624 			struct vm_area_struct **pprev)
1625 {
1626 	struct vm_area_struct *vma = NULL, *prev = NULL;
1627 	struct rb_node *rb_node;
1628 	if (!mm)
1629 		goto out;
1630 
1631 	/* Guard against addr being lower than the first VMA */
1632 	vma = mm->mmap;
1633 
1634 	/* Go through the RB tree quickly. */
1635 	rb_node = mm->mm_rb.rb_node;
1636 
1637 	while (rb_node) {
1638 		struct vm_area_struct *vma_tmp;
1639 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1640 
1641 		if (addr < vma_tmp->vm_end) {
1642 			rb_node = rb_node->rb_left;
1643 		} else {
1644 			prev = vma_tmp;
1645 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1646 				break;
1647 			rb_node = rb_node->rb_right;
1648 		}
1649 	}
1650 
1651 out:
1652 	*pprev = prev;
1653 	return prev ? prev->vm_next : vma;
1654 }
1655 
1656 /*
1657  * Verify that the stack growth is acceptable and
1658  * update accounting. This is shared with both the
1659  * grow-up and grow-down cases.
1660  */
1661 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1662 {
1663 	struct mm_struct *mm = vma->vm_mm;
1664 	struct rlimit *rlim = current->signal->rlim;
1665 	unsigned long new_start;
1666 
1667 	/* address space limit tests */
1668 	if (!may_expand_vm(mm, grow))
1669 		return -ENOMEM;
1670 
1671 	/* Stack limit test */
1672 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1673 		return -ENOMEM;
1674 
1675 	/* mlock limit tests */
1676 	if (vma->vm_flags & VM_LOCKED) {
1677 		unsigned long locked;
1678 		unsigned long limit;
1679 		locked = mm->locked_vm + grow;
1680 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1681 		limit >>= PAGE_SHIFT;
1682 		if (locked > limit && !capable(CAP_IPC_LOCK))
1683 			return -ENOMEM;
1684 	}
1685 
1686 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1687 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1688 			vma->vm_end - size;
1689 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1690 		return -EFAULT;
1691 
1692 	/*
1693 	 * Overcommit..  This must be the final test, as it will
1694 	 * update security statistics.
1695 	 */
1696 	if (security_vm_enough_memory_mm(mm, grow))
1697 		return -ENOMEM;
1698 
1699 	/* Ok, everything looks good - let it rip */
1700 	mm->total_vm += grow;
1701 	if (vma->vm_flags & VM_LOCKED)
1702 		mm->locked_vm += grow;
1703 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1704 	return 0;
1705 }
1706 
1707 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1708 /*
1709  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1710  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1711  */
1712 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1713 {
1714 	int error;
1715 
1716 	if (!(vma->vm_flags & VM_GROWSUP))
1717 		return -EFAULT;
1718 
1719 	/*
1720 	 * We must make sure the anon_vma is allocated
1721 	 * so that the anon_vma locking is not a noop.
1722 	 */
1723 	if (unlikely(anon_vma_prepare(vma)))
1724 		return -ENOMEM;
1725 	vma_lock_anon_vma(vma);
1726 
1727 	/*
1728 	 * vma->vm_start/vm_end cannot change under us because the caller
1729 	 * is required to hold the mmap_sem in read mode.  We need the
1730 	 * anon_vma lock to serialize against concurrent expand_stacks.
1731 	 * Also guard against wrapping around to address 0.
1732 	 */
1733 	if (address < PAGE_ALIGN(address+4))
1734 		address = PAGE_ALIGN(address+4);
1735 	else {
1736 		vma_unlock_anon_vma(vma);
1737 		return -ENOMEM;
1738 	}
1739 	error = 0;
1740 
1741 	/* Somebody else might have raced and expanded it already */
1742 	if (address > vma->vm_end) {
1743 		unsigned long size, grow;
1744 
1745 		size = address - vma->vm_start;
1746 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1747 
1748 		error = -ENOMEM;
1749 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1750 			error = acct_stack_growth(vma, size, grow);
1751 			if (!error) {
1752 				vma->vm_end = address;
1753 				perf_event_mmap(vma);
1754 			}
1755 		}
1756 	}
1757 	vma_unlock_anon_vma(vma);
1758 	khugepaged_enter_vma_merge(vma);
1759 	return error;
1760 }
1761 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1762 
1763 /*
1764  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1765  */
1766 int expand_downwards(struct vm_area_struct *vma,
1767 				   unsigned long address)
1768 {
1769 	int error;
1770 
1771 	/*
1772 	 * We must make sure the anon_vma is allocated
1773 	 * so that the anon_vma locking is not a noop.
1774 	 */
1775 	if (unlikely(anon_vma_prepare(vma)))
1776 		return -ENOMEM;
1777 
1778 	address &= PAGE_MASK;
1779 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1780 	if (error)
1781 		return error;
1782 
1783 	vma_lock_anon_vma(vma);
1784 
1785 	/*
1786 	 * vma->vm_start/vm_end cannot change under us because the caller
1787 	 * is required to hold the mmap_sem in read mode.  We need the
1788 	 * anon_vma lock to serialize against concurrent expand_stacks.
1789 	 */
1790 
1791 	/* Somebody else might have raced and expanded it already */
1792 	if (address < vma->vm_start) {
1793 		unsigned long size, grow;
1794 
1795 		size = vma->vm_end - address;
1796 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1797 
1798 		error = -ENOMEM;
1799 		if (grow <= vma->vm_pgoff) {
1800 			error = acct_stack_growth(vma, size, grow);
1801 			if (!error) {
1802 				vma->vm_start = address;
1803 				vma->vm_pgoff -= grow;
1804 				perf_event_mmap(vma);
1805 			}
1806 		}
1807 	}
1808 	vma_unlock_anon_vma(vma);
1809 	khugepaged_enter_vma_merge(vma);
1810 	return error;
1811 }
1812 
1813 #ifdef CONFIG_STACK_GROWSUP
1814 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1815 {
1816 	return expand_upwards(vma, address);
1817 }
1818 
1819 struct vm_area_struct *
1820 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1821 {
1822 	struct vm_area_struct *vma, *prev;
1823 
1824 	addr &= PAGE_MASK;
1825 	vma = find_vma_prev(mm, addr, &prev);
1826 	if (vma && (vma->vm_start <= addr))
1827 		return vma;
1828 	if (!prev || expand_stack(prev, addr))
1829 		return NULL;
1830 	if (prev->vm_flags & VM_LOCKED) {
1831 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1832 	}
1833 	return prev;
1834 }
1835 #else
1836 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1837 {
1838 	return expand_downwards(vma, address);
1839 }
1840 
1841 struct vm_area_struct *
1842 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1843 {
1844 	struct vm_area_struct * vma;
1845 	unsigned long start;
1846 
1847 	addr &= PAGE_MASK;
1848 	vma = find_vma(mm,addr);
1849 	if (!vma)
1850 		return NULL;
1851 	if (vma->vm_start <= addr)
1852 		return vma;
1853 	if (!(vma->vm_flags & VM_GROWSDOWN))
1854 		return NULL;
1855 	start = vma->vm_start;
1856 	if (expand_stack(vma, addr))
1857 		return NULL;
1858 	if (vma->vm_flags & VM_LOCKED) {
1859 		mlock_vma_pages_range(vma, addr, start);
1860 	}
1861 	return vma;
1862 }
1863 #endif
1864 
1865 /*
1866  * Ok - we have the memory areas we should free on the vma list,
1867  * so release them, and do the vma updates.
1868  *
1869  * Called with the mm semaphore held.
1870  */
1871 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1872 {
1873 	/* Update high watermark before we lower total_vm */
1874 	update_hiwater_vm(mm);
1875 	do {
1876 		long nrpages = vma_pages(vma);
1877 
1878 		mm->total_vm -= nrpages;
1879 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1880 		vma = remove_vma(vma);
1881 	} while (vma);
1882 	validate_mm(mm);
1883 }
1884 
1885 /*
1886  * Get rid of page table information in the indicated region.
1887  *
1888  * Called with the mm semaphore held.
1889  */
1890 static void unmap_region(struct mm_struct *mm,
1891 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1892 		unsigned long start, unsigned long end)
1893 {
1894 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1895 	struct mmu_gather tlb;
1896 	unsigned long nr_accounted = 0;
1897 
1898 	lru_add_drain();
1899 	tlb_gather_mmu(&tlb, mm, 0);
1900 	update_hiwater_rss(mm);
1901 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1902 	vm_unacct_memory(nr_accounted);
1903 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1904 				 next ? next->vm_start : 0);
1905 	tlb_finish_mmu(&tlb, start, end);
1906 }
1907 
1908 /*
1909  * Create a list of vma's touched by the unmap, removing them from the mm's
1910  * vma list as we go..
1911  */
1912 static void
1913 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1914 	struct vm_area_struct *prev, unsigned long end)
1915 {
1916 	struct vm_area_struct **insertion_point;
1917 	struct vm_area_struct *tail_vma = NULL;
1918 	unsigned long addr;
1919 
1920 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1921 	vma->vm_prev = NULL;
1922 	do {
1923 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1924 		mm->map_count--;
1925 		tail_vma = vma;
1926 		vma = vma->vm_next;
1927 	} while (vma && vma->vm_start < end);
1928 	*insertion_point = vma;
1929 	if (vma)
1930 		vma->vm_prev = prev;
1931 	tail_vma->vm_next = NULL;
1932 	if (mm->unmap_area == arch_unmap_area)
1933 		addr = prev ? prev->vm_end : mm->mmap_base;
1934 	else
1935 		addr = vma ?  vma->vm_start : mm->mmap_base;
1936 	mm->unmap_area(mm, addr);
1937 	mm->mmap_cache = NULL;		/* Kill the cache. */
1938 }
1939 
1940 /*
1941  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1942  * munmap path where it doesn't make sense to fail.
1943  */
1944 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1945 	      unsigned long addr, int new_below)
1946 {
1947 	struct mempolicy *pol;
1948 	struct vm_area_struct *new;
1949 	int err = -ENOMEM;
1950 
1951 	if (is_vm_hugetlb_page(vma) && (addr &
1952 					~(huge_page_mask(hstate_vma(vma)))))
1953 		return -EINVAL;
1954 
1955 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1956 	if (!new)
1957 		goto out_err;
1958 
1959 	/* most fields are the same, copy all, and then fixup */
1960 	*new = *vma;
1961 
1962 	INIT_LIST_HEAD(&new->anon_vma_chain);
1963 
1964 	if (new_below)
1965 		new->vm_end = addr;
1966 	else {
1967 		new->vm_start = addr;
1968 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1969 	}
1970 
1971 	pol = mpol_dup(vma_policy(vma));
1972 	if (IS_ERR(pol)) {
1973 		err = PTR_ERR(pol);
1974 		goto out_free_vma;
1975 	}
1976 	vma_set_policy(new, pol);
1977 
1978 	if (anon_vma_clone(new, vma))
1979 		goto out_free_mpol;
1980 
1981 	if (new->vm_file) {
1982 		get_file(new->vm_file);
1983 		if (vma->vm_flags & VM_EXECUTABLE)
1984 			added_exe_file_vma(mm);
1985 	}
1986 
1987 	if (new->vm_ops && new->vm_ops->open)
1988 		new->vm_ops->open(new);
1989 
1990 	if (new_below)
1991 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1992 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1993 	else
1994 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1995 
1996 	/* Success. */
1997 	if (!err)
1998 		return 0;
1999 
2000 	/* Clean everything up if vma_adjust failed. */
2001 	if (new->vm_ops && new->vm_ops->close)
2002 		new->vm_ops->close(new);
2003 	if (new->vm_file) {
2004 		if (vma->vm_flags & VM_EXECUTABLE)
2005 			removed_exe_file_vma(mm);
2006 		fput(new->vm_file);
2007 	}
2008 	unlink_anon_vmas(new);
2009  out_free_mpol:
2010 	mpol_put(pol);
2011  out_free_vma:
2012 	kmem_cache_free(vm_area_cachep, new);
2013  out_err:
2014 	return err;
2015 }
2016 
2017 /*
2018  * Split a vma into two pieces at address 'addr', a new vma is allocated
2019  * either for the first part or the tail.
2020  */
2021 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2022 	      unsigned long addr, int new_below)
2023 {
2024 	if (mm->map_count >= sysctl_max_map_count)
2025 		return -ENOMEM;
2026 
2027 	return __split_vma(mm, vma, addr, new_below);
2028 }
2029 
2030 /* Munmap is split into 2 main parts -- this part which finds
2031  * what needs doing, and the areas themselves, which do the
2032  * work.  This now handles partial unmappings.
2033  * Jeremy Fitzhardinge <jeremy@goop.org>
2034  */
2035 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2036 {
2037 	unsigned long end;
2038 	struct vm_area_struct *vma, *prev, *last;
2039 
2040 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2041 		return -EINVAL;
2042 
2043 	if ((len = PAGE_ALIGN(len)) == 0)
2044 		return -EINVAL;
2045 
2046 	/* Find the first overlapping VMA */
2047 	vma = find_vma_prev(mm, start, &prev);
2048 	if (!vma)
2049 		return 0;
2050 	/* we have  start < vma->vm_end  */
2051 
2052 	/* if it doesn't overlap, we have nothing.. */
2053 	end = start + len;
2054 	if (vma->vm_start >= end)
2055 		return 0;
2056 
2057 	/*
2058 	 * If we need to split any vma, do it now to save pain later.
2059 	 *
2060 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2061 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2062 	 * places tmp vma above, and higher split_vma places tmp vma below.
2063 	 */
2064 	if (start > vma->vm_start) {
2065 		int error;
2066 
2067 		/*
2068 		 * Make sure that map_count on return from munmap() will
2069 		 * not exceed its limit; but let map_count go just above
2070 		 * its limit temporarily, to help free resources as expected.
2071 		 */
2072 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2073 			return -ENOMEM;
2074 
2075 		error = __split_vma(mm, vma, start, 0);
2076 		if (error)
2077 			return error;
2078 		prev = vma;
2079 	}
2080 
2081 	/* Does it split the last one? */
2082 	last = find_vma(mm, end);
2083 	if (last && end > last->vm_start) {
2084 		int error = __split_vma(mm, last, end, 1);
2085 		if (error)
2086 			return error;
2087 	}
2088 	vma = prev? prev->vm_next: mm->mmap;
2089 
2090 	/*
2091 	 * unlock any mlock()ed ranges before detaching vmas
2092 	 */
2093 	if (mm->locked_vm) {
2094 		struct vm_area_struct *tmp = vma;
2095 		while (tmp && tmp->vm_start < end) {
2096 			if (tmp->vm_flags & VM_LOCKED) {
2097 				mm->locked_vm -= vma_pages(tmp);
2098 				munlock_vma_pages_all(tmp);
2099 			}
2100 			tmp = tmp->vm_next;
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * Remove the vma's, and unmap the actual pages
2106 	 */
2107 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2108 	unmap_region(mm, vma, prev, start, end);
2109 
2110 	/* Fix up all other VM information */
2111 	remove_vma_list(mm, vma);
2112 
2113 	return 0;
2114 }
2115 
2116 EXPORT_SYMBOL(do_munmap);
2117 
2118 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2119 {
2120 	int ret;
2121 	struct mm_struct *mm = current->mm;
2122 
2123 	profile_munmap(addr);
2124 
2125 	down_write(&mm->mmap_sem);
2126 	ret = do_munmap(mm, addr, len);
2127 	up_write(&mm->mmap_sem);
2128 	return ret;
2129 }
2130 
2131 static inline void verify_mm_writelocked(struct mm_struct *mm)
2132 {
2133 #ifdef CONFIG_DEBUG_VM
2134 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2135 		WARN_ON(1);
2136 		up_read(&mm->mmap_sem);
2137 	}
2138 #endif
2139 }
2140 
2141 /*
2142  *  this is really a simplified "do_mmap".  it only handles
2143  *  anonymous maps.  eventually we may be able to do some
2144  *  brk-specific accounting here.
2145  */
2146 unsigned long do_brk(unsigned long addr, unsigned long len)
2147 {
2148 	struct mm_struct * mm = current->mm;
2149 	struct vm_area_struct * vma, * prev;
2150 	unsigned long flags;
2151 	struct rb_node ** rb_link, * rb_parent;
2152 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2153 	int error;
2154 
2155 	len = PAGE_ALIGN(len);
2156 	if (!len)
2157 		return addr;
2158 
2159 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2160 	if (error)
2161 		return error;
2162 
2163 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2164 
2165 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2166 	if (error & ~PAGE_MASK)
2167 		return error;
2168 
2169 	/*
2170 	 * mlock MCL_FUTURE?
2171 	 */
2172 	if (mm->def_flags & VM_LOCKED) {
2173 		unsigned long locked, lock_limit;
2174 		locked = len >> PAGE_SHIFT;
2175 		locked += mm->locked_vm;
2176 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2177 		lock_limit >>= PAGE_SHIFT;
2178 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2179 			return -EAGAIN;
2180 	}
2181 
2182 	/*
2183 	 * mm->mmap_sem is required to protect against another thread
2184 	 * changing the mappings in case we sleep.
2185 	 */
2186 	verify_mm_writelocked(mm);
2187 
2188 	/*
2189 	 * Clear old maps.  this also does some error checking for us
2190 	 */
2191  munmap_back:
2192 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2193 	if (vma && vma->vm_start < addr + len) {
2194 		if (do_munmap(mm, addr, len))
2195 			return -ENOMEM;
2196 		goto munmap_back;
2197 	}
2198 
2199 	/* Check against address space limits *after* clearing old maps... */
2200 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2201 		return -ENOMEM;
2202 
2203 	if (mm->map_count > sysctl_max_map_count)
2204 		return -ENOMEM;
2205 
2206 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2207 		return -ENOMEM;
2208 
2209 	/* Can we just expand an old private anonymous mapping? */
2210 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2211 					NULL, NULL, pgoff, NULL);
2212 	if (vma)
2213 		goto out;
2214 
2215 	/*
2216 	 * create a vma struct for an anonymous mapping
2217 	 */
2218 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2219 	if (!vma) {
2220 		vm_unacct_memory(len >> PAGE_SHIFT);
2221 		return -ENOMEM;
2222 	}
2223 
2224 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2225 	vma->vm_mm = mm;
2226 	vma->vm_start = addr;
2227 	vma->vm_end = addr + len;
2228 	vma->vm_pgoff = pgoff;
2229 	vma->vm_flags = flags;
2230 	vma->vm_page_prot = vm_get_page_prot(flags);
2231 	vma_link(mm, vma, prev, rb_link, rb_parent);
2232 out:
2233 	perf_event_mmap(vma);
2234 	mm->total_vm += len >> PAGE_SHIFT;
2235 	if (flags & VM_LOCKED) {
2236 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2237 			mm->locked_vm += (len >> PAGE_SHIFT);
2238 	}
2239 	return addr;
2240 }
2241 
2242 EXPORT_SYMBOL(do_brk);
2243 
2244 /* Release all mmaps. */
2245 void exit_mmap(struct mm_struct *mm)
2246 {
2247 	struct mmu_gather tlb;
2248 	struct vm_area_struct *vma;
2249 	unsigned long nr_accounted = 0;
2250 	unsigned long end;
2251 
2252 	/* mm's last user has gone, and its about to be pulled down */
2253 	mmu_notifier_release(mm);
2254 
2255 	if (mm->locked_vm) {
2256 		vma = mm->mmap;
2257 		while (vma) {
2258 			if (vma->vm_flags & VM_LOCKED)
2259 				munlock_vma_pages_all(vma);
2260 			vma = vma->vm_next;
2261 		}
2262 	}
2263 
2264 	arch_exit_mmap(mm);
2265 
2266 	vma = mm->mmap;
2267 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2268 		return;
2269 
2270 	lru_add_drain();
2271 	flush_cache_mm(mm);
2272 	tlb_gather_mmu(&tlb, mm, 1);
2273 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2274 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2275 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2276 	vm_unacct_memory(nr_accounted);
2277 
2278 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2279 	tlb_finish_mmu(&tlb, 0, end);
2280 
2281 	/*
2282 	 * Walk the list again, actually closing and freeing it,
2283 	 * with preemption enabled, without holding any MM locks.
2284 	 */
2285 	while (vma)
2286 		vma = remove_vma(vma);
2287 
2288 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2289 }
2290 
2291 /* Insert vm structure into process list sorted by address
2292  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2293  * then i_mmap_mutex is taken here.
2294  */
2295 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2296 {
2297 	struct vm_area_struct * __vma, * prev;
2298 	struct rb_node ** rb_link, * rb_parent;
2299 
2300 	/*
2301 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2302 	 * until its first write fault, when page's anon_vma and index
2303 	 * are set.  But now set the vm_pgoff it will almost certainly
2304 	 * end up with (unless mremap moves it elsewhere before that
2305 	 * first wfault), so /proc/pid/maps tells a consistent story.
2306 	 *
2307 	 * By setting it to reflect the virtual start address of the
2308 	 * vma, merges and splits can happen in a seamless way, just
2309 	 * using the existing file pgoff checks and manipulations.
2310 	 * Similarly in do_mmap_pgoff and in do_brk.
2311 	 */
2312 	if (!vma->vm_file) {
2313 		BUG_ON(vma->anon_vma);
2314 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2315 	}
2316 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2317 	if (__vma && __vma->vm_start < vma->vm_end)
2318 		return -ENOMEM;
2319 	if ((vma->vm_flags & VM_ACCOUNT) &&
2320 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2321 		return -ENOMEM;
2322 	vma_link(mm, vma, prev, rb_link, rb_parent);
2323 	return 0;
2324 }
2325 
2326 /*
2327  * Copy the vma structure to a new location in the same mm,
2328  * prior to moving page table entries, to effect an mremap move.
2329  */
2330 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2331 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2332 {
2333 	struct vm_area_struct *vma = *vmap;
2334 	unsigned long vma_start = vma->vm_start;
2335 	struct mm_struct *mm = vma->vm_mm;
2336 	struct vm_area_struct *new_vma, *prev;
2337 	struct rb_node **rb_link, *rb_parent;
2338 	struct mempolicy *pol;
2339 
2340 	/*
2341 	 * If anonymous vma has not yet been faulted, update new pgoff
2342 	 * to match new location, to increase its chance of merging.
2343 	 */
2344 	if (!vma->vm_file && !vma->anon_vma)
2345 		pgoff = addr >> PAGE_SHIFT;
2346 
2347 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2348 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2349 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2350 	if (new_vma) {
2351 		/*
2352 		 * Source vma may have been merged into new_vma
2353 		 */
2354 		if (vma_start >= new_vma->vm_start &&
2355 		    vma_start < new_vma->vm_end)
2356 			*vmap = new_vma;
2357 	} else {
2358 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2359 		if (new_vma) {
2360 			*new_vma = *vma;
2361 			pol = mpol_dup(vma_policy(vma));
2362 			if (IS_ERR(pol))
2363 				goto out_free_vma;
2364 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2365 			if (anon_vma_clone(new_vma, vma))
2366 				goto out_free_mempol;
2367 			vma_set_policy(new_vma, pol);
2368 			new_vma->vm_start = addr;
2369 			new_vma->vm_end = addr + len;
2370 			new_vma->vm_pgoff = pgoff;
2371 			if (new_vma->vm_file) {
2372 				get_file(new_vma->vm_file);
2373 				if (vma->vm_flags & VM_EXECUTABLE)
2374 					added_exe_file_vma(mm);
2375 			}
2376 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2377 				new_vma->vm_ops->open(new_vma);
2378 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2379 		}
2380 	}
2381 	return new_vma;
2382 
2383  out_free_mempol:
2384 	mpol_put(pol);
2385  out_free_vma:
2386 	kmem_cache_free(vm_area_cachep, new_vma);
2387 	return NULL;
2388 }
2389 
2390 /*
2391  * Return true if the calling process may expand its vm space by the passed
2392  * number of pages
2393  */
2394 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2395 {
2396 	unsigned long cur = mm->total_vm;	/* pages */
2397 	unsigned long lim;
2398 
2399 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2400 
2401 	if (cur + npages > lim)
2402 		return 0;
2403 	return 1;
2404 }
2405 
2406 
2407 static int special_mapping_fault(struct vm_area_struct *vma,
2408 				struct vm_fault *vmf)
2409 {
2410 	pgoff_t pgoff;
2411 	struct page **pages;
2412 
2413 	/*
2414 	 * special mappings have no vm_file, and in that case, the mm
2415 	 * uses vm_pgoff internally. So we have to subtract it from here.
2416 	 * We are allowed to do this because we are the mm; do not copy
2417 	 * this code into drivers!
2418 	 */
2419 	pgoff = vmf->pgoff - vma->vm_pgoff;
2420 
2421 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2422 		pgoff--;
2423 
2424 	if (*pages) {
2425 		struct page *page = *pages;
2426 		get_page(page);
2427 		vmf->page = page;
2428 		return 0;
2429 	}
2430 
2431 	return VM_FAULT_SIGBUS;
2432 }
2433 
2434 /*
2435  * Having a close hook prevents vma merging regardless of flags.
2436  */
2437 static void special_mapping_close(struct vm_area_struct *vma)
2438 {
2439 }
2440 
2441 static const struct vm_operations_struct special_mapping_vmops = {
2442 	.close = special_mapping_close,
2443 	.fault = special_mapping_fault,
2444 };
2445 
2446 /*
2447  * Called with mm->mmap_sem held for writing.
2448  * Insert a new vma covering the given region, with the given flags.
2449  * Its pages are supplied by the given array of struct page *.
2450  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2451  * The region past the last page supplied will always produce SIGBUS.
2452  * The array pointer and the pages it points to are assumed to stay alive
2453  * for as long as this mapping might exist.
2454  */
2455 int install_special_mapping(struct mm_struct *mm,
2456 			    unsigned long addr, unsigned long len,
2457 			    unsigned long vm_flags, struct page **pages)
2458 {
2459 	int ret;
2460 	struct vm_area_struct *vma;
2461 
2462 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2463 	if (unlikely(vma == NULL))
2464 		return -ENOMEM;
2465 
2466 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2467 	vma->vm_mm = mm;
2468 	vma->vm_start = addr;
2469 	vma->vm_end = addr + len;
2470 
2471 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2472 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2473 
2474 	vma->vm_ops = &special_mapping_vmops;
2475 	vma->vm_private_data = pages;
2476 
2477 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2478 	if (ret)
2479 		goto out;
2480 
2481 	ret = insert_vm_struct(mm, vma);
2482 	if (ret)
2483 		goto out;
2484 
2485 	mm->total_vm += len >> PAGE_SHIFT;
2486 
2487 	perf_event_mmap(vma);
2488 
2489 	return 0;
2490 
2491 out:
2492 	kmem_cache_free(vm_area_cachep, vma);
2493 	return ret;
2494 }
2495 
2496 static DEFINE_MUTEX(mm_all_locks_mutex);
2497 
2498 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2499 {
2500 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2501 		/*
2502 		 * The LSB of head.next can't change from under us
2503 		 * because we hold the mm_all_locks_mutex.
2504 		 */
2505 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2506 		/*
2507 		 * We can safely modify head.next after taking the
2508 		 * anon_vma->root->mutex. If some other vma in this mm shares
2509 		 * the same anon_vma we won't take it again.
2510 		 *
2511 		 * No need of atomic instructions here, head.next
2512 		 * can't change from under us thanks to the
2513 		 * anon_vma->root->mutex.
2514 		 */
2515 		if (__test_and_set_bit(0, (unsigned long *)
2516 				       &anon_vma->root->head.next))
2517 			BUG();
2518 	}
2519 }
2520 
2521 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2522 {
2523 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2524 		/*
2525 		 * AS_MM_ALL_LOCKS can't change from under us because
2526 		 * we hold the mm_all_locks_mutex.
2527 		 *
2528 		 * Operations on ->flags have to be atomic because
2529 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2530 		 * mm_all_locks_mutex, there may be other cpus
2531 		 * changing other bitflags in parallel to us.
2532 		 */
2533 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2534 			BUG();
2535 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2536 	}
2537 }
2538 
2539 /*
2540  * This operation locks against the VM for all pte/vma/mm related
2541  * operations that could ever happen on a certain mm. This includes
2542  * vmtruncate, try_to_unmap, and all page faults.
2543  *
2544  * The caller must take the mmap_sem in write mode before calling
2545  * mm_take_all_locks(). The caller isn't allowed to release the
2546  * mmap_sem until mm_drop_all_locks() returns.
2547  *
2548  * mmap_sem in write mode is required in order to block all operations
2549  * that could modify pagetables and free pages without need of
2550  * altering the vma layout (for example populate_range() with
2551  * nonlinear vmas). It's also needed in write mode to avoid new
2552  * anon_vmas to be associated with existing vmas.
2553  *
2554  * A single task can't take more than one mm_take_all_locks() in a row
2555  * or it would deadlock.
2556  *
2557  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2558  * mapping->flags avoid to take the same lock twice, if more than one
2559  * vma in this mm is backed by the same anon_vma or address_space.
2560  *
2561  * We can take all the locks in random order because the VM code
2562  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2563  * takes more than one of them in a row. Secondly we're protected
2564  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2565  *
2566  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2567  * that may have to take thousand of locks.
2568  *
2569  * mm_take_all_locks() can fail if it's interrupted by signals.
2570  */
2571 int mm_take_all_locks(struct mm_struct *mm)
2572 {
2573 	struct vm_area_struct *vma;
2574 	struct anon_vma_chain *avc;
2575 	int ret = -EINTR;
2576 
2577 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2578 
2579 	mutex_lock(&mm_all_locks_mutex);
2580 
2581 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2582 		if (signal_pending(current))
2583 			goto out_unlock;
2584 		if (vma->vm_file && vma->vm_file->f_mapping)
2585 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2586 	}
2587 
2588 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2589 		if (signal_pending(current))
2590 			goto out_unlock;
2591 		if (vma->anon_vma)
2592 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2593 				vm_lock_anon_vma(mm, avc->anon_vma);
2594 	}
2595 
2596 	ret = 0;
2597 
2598 out_unlock:
2599 	if (ret)
2600 		mm_drop_all_locks(mm);
2601 
2602 	return ret;
2603 }
2604 
2605 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2606 {
2607 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2608 		/*
2609 		 * The LSB of head.next can't change to 0 from under
2610 		 * us because we hold the mm_all_locks_mutex.
2611 		 *
2612 		 * We must however clear the bitflag before unlocking
2613 		 * the vma so the users using the anon_vma->head will
2614 		 * never see our bitflag.
2615 		 *
2616 		 * No need of atomic instructions here, head.next
2617 		 * can't change from under us until we release the
2618 		 * anon_vma->root->mutex.
2619 		 */
2620 		if (!__test_and_clear_bit(0, (unsigned long *)
2621 					  &anon_vma->root->head.next))
2622 			BUG();
2623 		anon_vma_unlock(anon_vma);
2624 	}
2625 }
2626 
2627 static void vm_unlock_mapping(struct address_space *mapping)
2628 {
2629 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2630 		/*
2631 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2632 		 * because we hold the mm_all_locks_mutex.
2633 		 */
2634 		mutex_unlock(&mapping->i_mmap_mutex);
2635 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2636 					&mapping->flags))
2637 			BUG();
2638 	}
2639 }
2640 
2641 /*
2642  * The mmap_sem cannot be released by the caller until
2643  * mm_drop_all_locks() returns.
2644  */
2645 void mm_drop_all_locks(struct mm_struct *mm)
2646 {
2647 	struct vm_area_struct *vma;
2648 	struct anon_vma_chain *avc;
2649 
2650 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2651 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2652 
2653 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2654 		if (vma->anon_vma)
2655 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2656 				vm_unlock_anon_vma(avc->anon_vma);
2657 		if (vma->vm_file && vma->vm_file->f_mapping)
2658 			vm_unlock_mapping(vma->vm_file->f_mapping);
2659 	}
2660 
2661 	mutex_unlock(&mm_all_locks_mutex);
2662 }
2663 
2664 /*
2665  * initialise the VMA slab
2666  */
2667 void __init mmap_init(void)
2668 {
2669 	int ret;
2670 
2671 	ret = percpu_counter_init(&vm_committed_as, 0);
2672 	VM_BUG_ON(ret);
2673 }
2674