1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/cacheflush.h> 36 #include <asm/tlb.h> 37 #include <asm/mmu_context.h> 38 39 #include "internal.h" 40 41 #ifndef arch_mmap_check 42 #define arch_mmap_check(addr, len, flags) (0) 43 #endif 44 45 #ifndef arch_rebalance_pgtables 46 #define arch_rebalance_pgtables(addr, len) (addr) 47 #endif 48 49 static void unmap_region(struct mm_struct *mm, 50 struct vm_area_struct *vma, struct vm_area_struct *prev, 51 unsigned long start, unsigned long end); 52 53 /* 54 * WARNING: the debugging will use recursive algorithms so never enable this 55 * unless you know what you are doing. 56 */ 57 #undef DEBUG_MM_RB 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 /* 91 * Make sure vm_committed_as in one cacheline and not cacheline shared with 92 * other variables. It can be updated by several CPUs frequently. 93 */ 94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 95 96 /* 97 * Check that a process has enough memory to allocate a new virtual 98 * mapping. 0 means there is enough memory for the allocation to 99 * succeed and -ENOMEM implies there is not. 100 * 101 * We currently support three overcommit policies, which are set via the 102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 103 * 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 105 * Additional code 2002 Jul 20 by Robert Love. 106 * 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 108 * 109 * Note this is a helper function intended to be used by LSMs which 110 * wish to use this logic. 111 */ 112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 113 { 114 unsigned long free, allowed; 115 116 vm_acct_memory(pages); 117 118 /* 119 * Sometimes we want to use more memory than we have 120 */ 121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 122 return 0; 123 124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 125 unsigned long n; 126 127 free = global_page_state(NR_FILE_PAGES); 128 free += nr_swap_pages; 129 130 /* 131 * Any slabs which are created with the 132 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 133 * which are reclaimable, under pressure. The dentry 134 * cache and most inode caches should fall into this 135 */ 136 free += global_page_state(NR_SLAB_RECLAIMABLE); 137 138 /* 139 * Leave the last 3% for root 140 */ 141 if (!cap_sys_admin) 142 free -= free / 32; 143 144 if (free > pages) 145 return 0; 146 147 /* 148 * nr_free_pages() is very expensive on large systems, 149 * only call if we're about to fail. 150 */ 151 n = nr_free_pages(); 152 153 /* 154 * Leave reserved pages. The pages are not for anonymous pages. 155 */ 156 if (n <= totalreserve_pages) 157 goto error; 158 else 159 n -= totalreserve_pages; 160 161 /* 162 * Leave the last 3% for root 163 */ 164 if (!cap_sys_admin) 165 n -= n / 32; 166 free += n; 167 168 if (free > pages) 169 return 0; 170 171 goto error; 172 } 173 174 allowed = (totalram_pages - hugetlb_total_pages()) 175 * sysctl_overcommit_ratio / 100; 176 /* 177 * Leave the last 3% for root 178 */ 179 if (!cap_sys_admin) 180 allowed -= allowed / 32; 181 allowed += total_swap_pages; 182 183 /* Don't let a single process grow too big: 184 leave 3% of the size of this process for other processes */ 185 if (mm) 186 allowed -= mm->total_vm / 32; 187 188 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 189 return 0; 190 error: 191 vm_unacct_memory(pages); 192 193 return -ENOMEM; 194 } 195 196 /* 197 * Requires inode->i_mapping->i_mmap_mutex 198 */ 199 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 200 struct file *file, struct address_space *mapping) 201 { 202 if (vma->vm_flags & VM_DENYWRITE) 203 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 204 if (vma->vm_flags & VM_SHARED) 205 mapping->i_mmap_writable--; 206 207 flush_dcache_mmap_lock(mapping); 208 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 209 list_del_init(&vma->shared.vm_set.list); 210 else 211 vma_prio_tree_remove(vma, &mapping->i_mmap); 212 flush_dcache_mmap_unlock(mapping); 213 } 214 215 /* 216 * Unlink a file-based vm structure from its prio_tree, to hide 217 * vma from rmap and vmtruncate before freeing its page tables. 218 */ 219 void unlink_file_vma(struct vm_area_struct *vma) 220 { 221 struct file *file = vma->vm_file; 222 223 if (file) { 224 struct address_space *mapping = file->f_mapping; 225 mutex_lock(&mapping->i_mmap_mutex); 226 __remove_shared_vm_struct(vma, file, mapping); 227 mutex_unlock(&mapping->i_mmap_mutex); 228 } 229 } 230 231 /* 232 * Close a vm structure and free it, returning the next. 233 */ 234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 235 { 236 struct vm_area_struct *next = vma->vm_next; 237 238 might_sleep(); 239 if (vma->vm_ops && vma->vm_ops->close) 240 vma->vm_ops->close(vma); 241 if (vma->vm_file) { 242 fput(vma->vm_file); 243 if (vma->vm_flags & VM_EXECUTABLE) 244 removed_exe_file_vma(vma->vm_mm); 245 } 246 mpol_put(vma_policy(vma)); 247 kmem_cache_free(vm_area_cachep, vma); 248 return next; 249 } 250 251 SYSCALL_DEFINE1(brk, unsigned long, brk) 252 { 253 unsigned long rlim, retval; 254 unsigned long newbrk, oldbrk; 255 struct mm_struct *mm = current->mm; 256 unsigned long min_brk; 257 258 down_write(&mm->mmap_sem); 259 260 #ifdef CONFIG_COMPAT_BRK 261 /* 262 * CONFIG_COMPAT_BRK can still be overridden by setting 263 * randomize_va_space to 2, which will still cause mm->start_brk 264 * to be arbitrarily shifted 265 */ 266 if (current->brk_randomized) 267 min_brk = mm->start_brk; 268 else 269 min_brk = mm->end_data; 270 #else 271 min_brk = mm->start_brk; 272 #endif 273 if (brk < min_brk) 274 goto out; 275 276 /* 277 * Check against rlimit here. If this check is done later after the test 278 * of oldbrk with newbrk then it can escape the test and let the data 279 * segment grow beyond its set limit the in case where the limit is 280 * not page aligned -Ram Gupta 281 */ 282 rlim = rlimit(RLIMIT_DATA); 283 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 284 (mm->end_data - mm->start_data) > rlim) 285 goto out; 286 287 newbrk = PAGE_ALIGN(brk); 288 oldbrk = PAGE_ALIGN(mm->brk); 289 if (oldbrk == newbrk) 290 goto set_brk; 291 292 /* Always allow shrinking brk. */ 293 if (brk <= mm->brk) { 294 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 295 goto set_brk; 296 goto out; 297 } 298 299 /* Check against existing mmap mappings. */ 300 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 301 goto out; 302 303 /* Ok, looks good - let it rip. */ 304 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 305 goto out; 306 set_brk: 307 mm->brk = brk; 308 out: 309 retval = mm->brk; 310 up_write(&mm->mmap_sem); 311 return retval; 312 } 313 314 #ifdef DEBUG_MM_RB 315 static int browse_rb(struct rb_root *root) 316 { 317 int i = 0, j; 318 struct rb_node *nd, *pn = NULL; 319 unsigned long prev = 0, pend = 0; 320 321 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 322 struct vm_area_struct *vma; 323 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 324 if (vma->vm_start < prev) 325 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 326 if (vma->vm_start < pend) 327 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 328 if (vma->vm_start > vma->vm_end) 329 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 330 i++; 331 pn = nd; 332 prev = vma->vm_start; 333 pend = vma->vm_end; 334 } 335 j = 0; 336 for (nd = pn; nd; nd = rb_prev(nd)) { 337 j++; 338 } 339 if (i != j) 340 printk("backwards %d, forwards %d\n", j, i), i = 0; 341 return i; 342 } 343 344 void validate_mm(struct mm_struct *mm) 345 { 346 int bug = 0; 347 int i = 0; 348 struct vm_area_struct *tmp = mm->mmap; 349 while (tmp) { 350 tmp = tmp->vm_next; 351 i++; 352 } 353 if (i != mm->map_count) 354 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 355 i = browse_rb(&mm->mm_rb); 356 if (i != mm->map_count) 357 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 358 BUG_ON(bug); 359 } 360 #else 361 #define validate_mm(mm) do { } while (0) 362 #endif 363 364 static struct vm_area_struct * 365 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 366 struct vm_area_struct **pprev, struct rb_node ***rb_link, 367 struct rb_node ** rb_parent) 368 { 369 struct vm_area_struct * vma; 370 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 371 372 __rb_link = &mm->mm_rb.rb_node; 373 rb_prev = __rb_parent = NULL; 374 vma = NULL; 375 376 while (*__rb_link) { 377 struct vm_area_struct *vma_tmp; 378 379 __rb_parent = *__rb_link; 380 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 381 382 if (vma_tmp->vm_end > addr) { 383 vma = vma_tmp; 384 if (vma_tmp->vm_start <= addr) 385 break; 386 __rb_link = &__rb_parent->rb_left; 387 } else { 388 rb_prev = __rb_parent; 389 __rb_link = &__rb_parent->rb_right; 390 } 391 } 392 393 *pprev = NULL; 394 if (rb_prev) 395 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 396 *rb_link = __rb_link; 397 *rb_parent = __rb_parent; 398 return vma; 399 } 400 401 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 402 struct rb_node **rb_link, struct rb_node *rb_parent) 403 { 404 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 405 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 406 } 407 408 static void __vma_link_file(struct vm_area_struct *vma) 409 { 410 struct file *file; 411 412 file = vma->vm_file; 413 if (file) { 414 struct address_space *mapping = file->f_mapping; 415 416 if (vma->vm_flags & VM_DENYWRITE) 417 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 418 if (vma->vm_flags & VM_SHARED) 419 mapping->i_mmap_writable++; 420 421 flush_dcache_mmap_lock(mapping); 422 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 423 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 424 else 425 vma_prio_tree_insert(vma, &mapping->i_mmap); 426 flush_dcache_mmap_unlock(mapping); 427 } 428 } 429 430 static void 431 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 432 struct vm_area_struct *prev, struct rb_node **rb_link, 433 struct rb_node *rb_parent) 434 { 435 __vma_link_list(mm, vma, prev, rb_parent); 436 __vma_link_rb(mm, vma, rb_link, rb_parent); 437 } 438 439 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 440 struct vm_area_struct *prev, struct rb_node **rb_link, 441 struct rb_node *rb_parent) 442 { 443 struct address_space *mapping = NULL; 444 445 if (vma->vm_file) 446 mapping = vma->vm_file->f_mapping; 447 448 if (mapping) 449 mutex_lock(&mapping->i_mmap_mutex); 450 451 __vma_link(mm, vma, prev, rb_link, rb_parent); 452 __vma_link_file(vma); 453 454 if (mapping) 455 mutex_unlock(&mapping->i_mmap_mutex); 456 457 mm->map_count++; 458 validate_mm(mm); 459 } 460 461 /* 462 * Helper for vma_adjust in the split_vma insert case: 463 * insert vm structure into list and rbtree and anon_vma, 464 * but it has already been inserted into prio_tree earlier. 465 */ 466 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 467 { 468 struct vm_area_struct *__vma, *prev; 469 struct rb_node **rb_link, *rb_parent; 470 471 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 472 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 473 __vma_link(mm, vma, prev, rb_link, rb_parent); 474 mm->map_count++; 475 } 476 477 static inline void 478 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 479 struct vm_area_struct *prev) 480 { 481 struct vm_area_struct *next = vma->vm_next; 482 483 prev->vm_next = next; 484 if (next) 485 next->vm_prev = prev; 486 rb_erase(&vma->vm_rb, &mm->mm_rb); 487 if (mm->mmap_cache == vma) 488 mm->mmap_cache = prev; 489 } 490 491 /* 492 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 493 * is already present in an i_mmap tree without adjusting the tree. 494 * The following helper function should be used when such adjustments 495 * are necessary. The "insert" vma (if any) is to be inserted 496 * before we drop the necessary locks. 497 */ 498 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 499 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 500 { 501 struct mm_struct *mm = vma->vm_mm; 502 struct vm_area_struct *next = vma->vm_next; 503 struct vm_area_struct *importer = NULL; 504 struct address_space *mapping = NULL; 505 struct prio_tree_root *root = NULL; 506 struct anon_vma *anon_vma = NULL; 507 struct file *file = vma->vm_file; 508 long adjust_next = 0; 509 int remove_next = 0; 510 511 if (next && !insert) { 512 struct vm_area_struct *exporter = NULL; 513 514 if (end >= next->vm_end) { 515 /* 516 * vma expands, overlapping all the next, and 517 * perhaps the one after too (mprotect case 6). 518 */ 519 again: remove_next = 1 + (end > next->vm_end); 520 end = next->vm_end; 521 exporter = next; 522 importer = vma; 523 } else if (end > next->vm_start) { 524 /* 525 * vma expands, overlapping part of the next: 526 * mprotect case 5 shifting the boundary up. 527 */ 528 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 529 exporter = next; 530 importer = vma; 531 } else if (end < vma->vm_end) { 532 /* 533 * vma shrinks, and !insert tells it's not 534 * split_vma inserting another: so it must be 535 * mprotect case 4 shifting the boundary down. 536 */ 537 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 538 exporter = vma; 539 importer = next; 540 } 541 542 /* 543 * Easily overlooked: when mprotect shifts the boundary, 544 * make sure the expanding vma has anon_vma set if the 545 * shrinking vma had, to cover any anon pages imported. 546 */ 547 if (exporter && exporter->anon_vma && !importer->anon_vma) { 548 if (anon_vma_clone(importer, exporter)) 549 return -ENOMEM; 550 importer->anon_vma = exporter->anon_vma; 551 } 552 } 553 554 if (file) { 555 mapping = file->f_mapping; 556 if (!(vma->vm_flags & VM_NONLINEAR)) 557 root = &mapping->i_mmap; 558 mutex_lock(&mapping->i_mmap_mutex); 559 if (insert) { 560 /* 561 * Put into prio_tree now, so instantiated pages 562 * are visible to arm/parisc __flush_dcache_page 563 * throughout; but we cannot insert into address 564 * space until vma start or end is updated. 565 */ 566 __vma_link_file(insert); 567 } 568 } 569 570 vma_adjust_trans_huge(vma, start, end, adjust_next); 571 572 /* 573 * When changing only vma->vm_end, we don't really need anon_vma 574 * lock. This is a fairly rare case by itself, but the anon_vma 575 * lock may be shared between many sibling processes. Skipping 576 * the lock for brk adjustments makes a difference sometimes. 577 */ 578 if (vma->anon_vma && (importer || start != vma->vm_start)) { 579 anon_vma = vma->anon_vma; 580 anon_vma_lock(anon_vma); 581 } 582 583 if (root) { 584 flush_dcache_mmap_lock(mapping); 585 vma_prio_tree_remove(vma, root); 586 if (adjust_next) 587 vma_prio_tree_remove(next, root); 588 } 589 590 vma->vm_start = start; 591 vma->vm_end = end; 592 vma->vm_pgoff = pgoff; 593 if (adjust_next) { 594 next->vm_start += adjust_next << PAGE_SHIFT; 595 next->vm_pgoff += adjust_next; 596 } 597 598 if (root) { 599 if (adjust_next) 600 vma_prio_tree_insert(next, root); 601 vma_prio_tree_insert(vma, root); 602 flush_dcache_mmap_unlock(mapping); 603 } 604 605 if (remove_next) { 606 /* 607 * vma_merge has merged next into vma, and needs 608 * us to remove next before dropping the locks. 609 */ 610 __vma_unlink(mm, next, vma); 611 if (file) 612 __remove_shared_vm_struct(next, file, mapping); 613 } else if (insert) { 614 /* 615 * split_vma has split insert from vma, and needs 616 * us to insert it before dropping the locks 617 * (it may either follow vma or precede it). 618 */ 619 __insert_vm_struct(mm, insert); 620 } 621 622 if (anon_vma) 623 anon_vma_unlock(anon_vma); 624 if (mapping) 625 mutex_unlock(&mapping->i_mmap_mutex); 626 627 if (remove_next) { 628 if (file) { 629 fput(file); 630 if (next->vm_flags & VM_EXECUTABLE) 631 removed_exe_file_vma(mm); 632 } 633 if (next->anon_vma) 634 anon_vma_merge(vma, next); 635 mm->map_count--; 636 mpol_put(vma_policy(next)); 637 kmem_cache_free(vm_area_cachep, next); 638 /* 639 * In mprotect's case 6 (see comments on vma_merge), 640 * we must remove another next too. It would clutter 641 * up the code too much to do both in one go. 642 */ 643 if (remove_next == 2) { 644 next = vma->vm_next; 645 goto again; 646 } 647 } 648 649 validate_mm(mm); 650 651 return 0; 652 } 653 654 /* 655 * If the vma has a ->close operation then the driver probably needs to release 656 * per-vma resources, so we don't attempt to merge those. 657 */ 658 static inline int is_mergeable_vma(struct vm_area_struct *vma, 659 struct file *file, unsigned long vm_flags) 660 { 661 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 662 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 663 return 0; 664 if (vma->vm_file != file) 665 return 0; 666 if (vma->vm_ops && vma->vm_ops->close) 667 return 0; 668 return 1; 669 } 670 671 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 672 struct anon_vma *anon_vma2, 673 struct vm_area_struct *vma) 674 { 675 /* 676 * The list_is_singular() test is to avoid merging VMA cloned from 677 * parents. This can improve scalability caused by anon_vma lock. 678 */ 679 if ((!anon_vma1 || !anon_vma2) && (!vma || 680 list_is_singular(&vma->anon_vma_chain))) 681 return 1; 682 return anon_vma1 == anon_vma2; 683 } 684 685 /* 686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 687 * in front of (at a lower virtual address and file offset than) the vma. 688 * 689 * We cannot merge two vmas if they have differently assigned (non-NULL) 690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 691 * 692 * We don't check here for the merged mmap wrapping around the end of pagecache 693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 694 * wrap, nor mmaps which cover the final page at index -1UL. 695 */ 696 static int 697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 698 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 699 { 700 if (is_mergeable_vma(vma, file, vm_flags) && 701 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 702 if (vma->vm_pgoff == vm_pgoff) 703 return 1; 704 } 705 return 0; 706 } 707 708 /* 709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 710 * beyond (at a higher virtual address and file offset than) the vma. 711 * 712 * We cannot merge two vmas if they have differently assigned (non-NULL) 713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 714 */ 715 static int 716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 717 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 718 { 719 if (is_mergeable_vma(vma, file, vm_flags) && 720 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 721 pgoff_t vm_pglen; 722 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 723 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 724 return 1; 725 } 726 return 0; 727 } 728 729 /* 730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 731 * whether that can be merged with its predecessor or its successor. 732 * Or both (it neatly fills a hole). 733 * 734 * In most cases - when called for mmap, brk or mremap - [addr,end) is 735 * certain not to be mapped by the time vma_merge is called; but when 736 * called for mprotect, it is certain to be already mapped (either at 737 * an offset within prev, or at the start of next), and the flags of 738 * this area are about to be changed to vm_flags - and the no-change 739 * case has already been eliminated. 740 * 741 * The following mprotect cases have to be considered, where AAAA is 742 * the area passed down from mprotect_fixup, never extending beyond one 743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 744 * 745 * AAAA AAAA AAAA AAAA 746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 747 * cannot merge might become might become might become 748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 750 * mremap move: PPPPNNNNNNNN 8 751 * AAAA 752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 753 * might become case 1 below case 2 below case 3 below 754 * 755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 757 */ 758 struct vm_area_struct *vma_merge(struct mm_struct *mm, 759 struct vm_area_struct *prev, unsigned long addr, 760 unsigned long end, unsigned long vm_flags, 761 struct anon_vma *anon_vma, struct file *file, 762 pgoff_t pgoff, struct mempolicy *policy) 763 { 764 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 765 struct vm_area_struct *area, *next; 766 int err; 767 768 /* 769 * We later require that vma->vm_flags == vm_flags, 770 * so this tests vma->vm_flags & VM_SPECIAL, too. 771 */ 772 if (vm_flags & VM_SPECIAL) 773 return NULL; 774 775 if (prev) 776 next = prev->vm_next; 777 else 778 next = mm->mmap; 779 area = next; 780 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 781 next = next->vm_next; 782 783 /* 784 * Can it merge with the predecessor? 785 */ 786 if (prev && prev->vm_end == addr && 787 mpol_equal(vma_policy(prev), policy) && 788 can_vma_merge_after(prev, vm_flags, 789 anon_vma, file, pgoff)) { 790 /* 791 * OK, it can. Can we now merge in the successor as well? 792 */ 793 if (next && end == next->vm_start && 794 mpol_equal(policy, vma_policy(next)) && 795 can_vma_merge_before(next, vm_flags, 796 anon_vma, file, pgoff+pglen) && 797 is_mergeable_anon_vma(prev->anon_vma, 798 next->anon_vma, NULL)) { 799 /* cases 1, 6 */ 800 err = vma_adjust(prev, prev->vm_start, 801 next->vm_end, prev->vm_pgoff, NULL); 802 } else /* cases 2, 5, 7 */ 803 err = vma_adjust(prev, prev->vm_start, 804 end, prev->vm_pgoff, NULL); 805 if (err) 806 return NULL; 807 khugepaged_enter_vma_merge(prev); 808 return prev; 809 } 810 811 /* 812 * Can this new request be merged in front of next? 813 */ 814 if (next && end == next->vm_start && 815 mpol_equal(policy, vma_policy(next)) && 816 can_vma_merge_before(next, vm_flags, 817 anon_vma, file, pgoff+pglen)) { 818 if (prev && addr < prev->vm_end) /* case 4 */ 819 err = vma_adjust(prev, prev->vm_start, 820 addr, prev->vm_pgoff, NULL); 821 else /* cases 3, 8 */ 822 err = vma_adjust(area, addr, next->vm_end, 823 next->vm_pgoff - pglen, NULL); 824 if (err) 825 return NULL; 826 khugepaged_enter_vma_merge(area); 827 return area; 828 } 829 830 return NULL; 831 } 832 833 /* 834 * Rough compatbility check to quickly see if it's even worth looking 835 * at sharing an anon_vma. 836 * 837 * They need to have the same vm_file, and the flags can only differ 838 * in things that mprotect may change. 839 * 840 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 841 * we can merge the two vma's. For example, we refuse to merge a vma if 842 * there is a vm_ops->close() function, because that indicates that the 843 * driver is doing some kind of reference counting. But that doesn't 844 * really matter for the anon_vma sharing case. 845 */ 846 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 847 { 848 return a->vm_end == b->vm_start && 849 mpol_equal(vma_policy(a), vma_policy(b)) && 850 a->vm_file == b->vm_file && 851 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 852 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 853 } 854 855 /* 856 * Do some basic sanity checking to see if we can re-use the anon_vma 857 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 858 * the same as 'old', the other will be the new one that is trying 859 * to share the anon_vma. 860 * 861 * NOTE! This runs with mm_sem held for reading, so it is possible that 862 * the anon_vma of 'old' is concurrently in the process of being set up 863 * by another page fault trying to merge _that_. But that's ok: if it 864 * is being set up, that automatically means that it will be a singleton 865 * acceptable for merging, so we can do all of this optimistically. But 866 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 867 * 868 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 869 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 870 * is to return an anon_vma that is "complex" due to having gone through 871 * a fork). 872 * 873 * We also make sure that the two vma's are compatible (adjacent, 874 * and with the same memory policies). That's all stable, even with just 875 * a read lock on the mm_sem. 876 */ 877 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 878 { 879 if (anon_vma_compatible(a, b)) { 880 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 881 882 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 883 return anon_vma; 884 } 885 return NULL; 886 } 887 888 /* 889 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 890 * neighbouring vmas for a suitable anon_vma, before it goes off 891 * to allocate a new anon_vma. It checks because a repetitive 892 * sequence of mprotects and faults may otherwise lead to distinct 893 * anon_vmas being allocated, preventing vma merge in subsequent 894 * mprotect. 895 */ 896 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 897 { 898 struct anon_vma *anon_vma; 899 struct vm_area_struct *near; 900 901 near = vma->vm_next; 902 if (!near) 903 goto try_prev; 904 905 anon_vma = reusable_anon_vma(near, vma, near); 906 if (anon_vma) 907 return anon_vma; 908 try_prev: 909 /* 910 * It is potentially slow to have to call find_vma_prev here. 911 * But it's only on the first write fault on the vma, not 912 * every time, and we could devise a way to avoid it later 913 * (e.g. stash info in next's anon_vma_node when assigning 914 * an anon_vma, or when trying vma_merge). Another time. 915 */ 916 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 917 if (!near) 918 goto none; 919 920 anon_vma = reusable_anon_vma(near, near, vma); 921 if (anon_vma) 922 return anon_vma; 923 none: 924 /* 925 * There's no absolute need to look only at touching neighbours: 926 * we could search further afield for "compatible" anon_vmas. 927 * But it would probably just be a waste of time searching, 928 * or lead to too many vmas hanging off the same anon_vma. 929 * We're trying to allow mprotect remerging later on, 930 * not trying to minimize memory used for anon_vmas. 931 */ 932 return NULL; 933 } 934 935 #ifdef CONFIG_PROC_FS 936 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 937 struct file *file, long pages) 938 { 939 const unsigned long stack_flags 940 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 941 942 if (file) { 943 mm->shared_vm += pages; 944 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 945 mm->exec_vm += pages; 946 } else if (flags & stack_flags) 947 mm->stack_vm += pages; 948 if (flags & (VM_RESERVED|VM_IO)) 949 mm->reserved_vm += pages; 950 } 951 #endif /* CONFIG_PROC_FS */ 952 953 /* 954 * The caller must hold down_write(¤t->mm->mmap_sem). 955 */ 956 957 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 958 unsigned long len, unsigned long prot, 959 unsigned long flags, unsigned long pgoff) 960 { 961 struct mm_struct * mm = current->mm; 962 struct inode *inode; 963 vm_flags_t vm_flags; 964 int error; 965 unsigned long reqprot = prot; 966 967 /* 968 * Does the application expect PROT_READ to imply PROT_EXEC? 969 * 970 * (the exception is when the underlying filesystem is noexec 971 * mounted, in which case we dont add PROT_EXEC.) 972 */ 973 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 974 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 975 prot |= PROT_EXEC; 976 977 if (!len) 978 return -EINVAL; 979 980 if (!(flags & MAP_FIXED)) 981 addr = round_hint_to_min(addr); 982 983 /* Careful about overflows.. */ 984 len = PAGE_ALIGN(len); 985 if (!len) 986 return -ENOMEM; 987 988 /* offset overflow? */ 989 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 990 return -EOVERFLOW; 991 992 /* Too many mappings? */ 993 if (mm->map_count > sysctl_max_map_count) 994 return -ENOMEM; 995 996 /* Obtain the address to map to. we verify (or select) it and ensure 997 * that it represents a valid section of the address space. 998 */ 999 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1000 if (addr & ~PAGE_MASK) 1001 return addr; 1002 1003 /* Do simple checking here so the lower-level routines won't have 1004 * to. we assume access permissions have been handled by the open 1005 * of the memory object, so we don't do any here. 1006 */ 1007 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1008 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1009 1010 if (flags & MAP_LOCKED) 1011 if (!can_do_mlock()) 1012 return -EPERM; 1013 1014 /* mlock MCL_FUTURE? */ 1015 if (vm_flags & VM_LOCKED) { 1016 unsigned long locked, lock_limit; 1017 locked = len >> PAGE_SHIFT; 1018 locked += mm->locked_vm; 1019 lock_limit = rlimit(RLIMIT_MEMLOCK); 1020 lock_limit >>= PAGE_SHIFT; 1021 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1022 return -EAGAIN; 1023 } 1024 1025 inode = file ? file->f_path.dentry->d_inode : NULL; 1026 1027 if (file) { 1028 switch (flags & MAP_TYPE) { 1029 case MAP_SHARED: 1030 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1031 return -EACCES; 1032 1033 /* 1034 * Make sure we don't allow writing to an append-only 1035 * file.. 1036 */ 1037 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1038 return -EACCES; 1039 1040 /* 1041 * Make sure there are no mandatory locks on the file. 1042 */ 1043 if (locks_verify_locked(inode)) 1044 return -EAGAIN; 1045 1046 vm_flags |= VM_SHARED | VM_MAYSHARE; 1047 if (!(file->f_mode & FMODE_WRITE)) 1048 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1049 1050 /* fall through */ 1051 case MAP_PRIVATE: 1052 if (!(file->f_mode & FMODE_READ)) 1053 return -EACCES; 1054 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1055 if (vm_flags & VM_EXEC) 1056 return -EPERM; 1057 vm_flags &= ~VM_MAYEXEC; 1058 } 1059 1060 if (!file->f_op || !file->f_op->mmap) 1061 return -ENODEV; 1062 break; 1063 1064 default: 1065 return -EINVAL; 1066 } 1067 } else { 1068 switch (flags & MAP_TYPE) { 1069 case MAP_SHARED: 1070 /* 1071 * Ignore pgoff. 1072 */ 1073 pgoff = 0; 1074 vm_flags |= VM_SHARED | VM_MAYSHARE; 1075 break; 1076 case MAP_PRIVATE: 1077 /* 1078 * Set pgoff according to addr for anon_vma. 1079 */ 1080 pgoff = addr >> PAGE_SHIFT; 1081 break; 1082 default: 1083 return -EINVAL; 1084 } 1085 } 1086 1087 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1088 if (error) 1089 return error; 1090 1091 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1092 } 1093 EXPORT_SYMBOL(do_mmap_pgoff); 1094 1095 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1096 unsigned long, prot, unsigned long, flags, 1097 unsigned long, fd, unsigned long, pgoff) 1098 { 1099 struct file *file = NULL; 1100 unsigned long retval = -EBADF; 1101 1102 if (!(flags & MAP_ANONYMOUS)) { 1103 audit_mmap_fd(fd, flags); 1104 if (unlikely(flags & MAP_HUGETLB)) 1105 return -EINVAL; 1106 file = fget(fd); 1107 if (!file) 1108 goto out; 1109 } else if (flags & MAP_HUGETLB) { 1110 struct user_struct *user = NULL; 1111 /* 1112 * VM_NORESERVE is used because the reservations will be 1113 * taken when vm_ops->mmap() is called 1114 * A dummy user value is used because we are not locking 1115 * memory so no accounting is necessary 1116 */ 1117 len = ALIGN(len, huge_page_size(&default_hstate)); 1118 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1119 &user, HUGETLB_ANONHUGE_INODE); 1120 if (IS_ERR(file)) 1121 return PTR_ERR(file); 1122 } 1123 1124 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1125 1126 down_write(¤t->mm->mmap_sem); 1127 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1128 up_write(¤t->mm->mmap_sem); 1129 1130 if (file) 1131 fput(file); 1132 out: 1133 return retval; 1134 } 1135 1136 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1137 struct mmap_arg_struct { 1138 unsigned long addr; 1139 unsigned long len; 1140 unsigned long prot; 1141 unsigned long flags; 1142 unsigned long fd; 1143 unsigned long offset; 1144 }; 1145 1146 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1147 { 1148 struct mmap_arg_struct a; 1149 1150 if (copy_from_user(&a, arg, sizeof(a))) 1151 return -EFAULT; 1152 if (a.offset & ~PAGE_MASK) 1153 return -EINVAL; 1154 1155 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1156 a.offset >> PAGE_SHIFT); 1157 } 1158 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1159 1160 /* 1161 * Some shared mappigns will want the pages marked read-only 1162 * to track write events. If so, we'll downgrade vm_page_prot 1163 * to the private version (using protection_map[] without the 1164 * VM_SHARED bit). 1165 */ 1166 int vma_wants_writenotify(struct vm_area_struct *vma) 1167 { 1168 vm_flags_t vm_flags = vma->vm_flags; 1169 1170 /* If it was private or non-writable, the write bit is already clear */ 1171 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1172 return 0; 1173 1174 /* The backer wishes to know when pages are first written to? */ 1175 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1176 return 1; 1177 1178 /* The open routine did something to the protections already? */ 1179 if (pgprot_val(vma->vm_page_prot) != 1180 pgprot_val(vm_get_page_prot(vm_flags))) 1181 return 0; 1182 1183 /* Specialty mapping? */ 1184 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1185 return 0; 1186 1187 /* Can the mapping track the dirty pages? */ 1188 return vma->vm_file && vma->vm_file->f_mapping && 1189 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1190 } 1191 1192 /* 1193 * We account for memory if it's a private writeable mapping, 1194 * not hugepages and VM_NORESERVE wasn't set. 1195 */ 1196 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1197 { 1198 /* 1199 * hugetlb has its own accounting separate from the core VM 1200 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1201 */ 1202 if (file && is_file_hugepages(file)) 1203 return 0; 1204 1205 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1206 } 1207 1208 unsigned long mmap_region(struct file *file, unsigned long addr, 1209 unsigned long len, unsigned long flags, 1210 vm_flags_t vm_flags, unsigned long pgoff) 1211 { 1212 struct mm_struct *mm = current->mm; 1213 struct vm_area_struct *vma, *prev; 1214 int correct_wcount = 0; 1215 int error; 1216 struct rb_node **rb_link, *rb_parent; 1217 unsigned long charged = 0; 1218 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1219 1220 /* Clear old maps */ 1221 error = -ENOMEM; 1222 munmap_back: 1223 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1224 if (vma && vma->vm_start < addr + len) { 1225 if (do_munmap(mm, addr, len)) 1226 return -ENOMEM; 1227 goto munmap_back; 1228 } 1229 1230 /* Check against address space limit. */ 1231 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1232 return -ENOMEM; 1233 1234 /* 1235 * Set 'VM_NORESERVE' if we should not account for the 1236 * memory use of this mapping. 1237 */ 1238 if ((flags & MAP_NORESERVE)) { 1239 /* We honor MAP_NORESERVE if allowed to overcommit */ 1240 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1241 vm_flags |= VM_NORESERVE; 1242 1243 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1244 if (file && is_file_hugepages(file)) 1245 vm_flags |= VM_NORESERVE; 1246 } 1247 1248 /* 1249 * Private writable mapping: check memory availability 1250 */ 1251 if (accountable_mapping(file, vm_flags)) { 1252 charged = len >> PAGE_SHIFT; 1253 if (security_vm_enough_memory(charged)) 1254 return -ENOMEM; 1255 vm_flags |= VM_ACCOUNT; 1256 } 1257 1258 /* 1259 * Can we just expand an old mapping? 1260 */ 1261 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1262 if (vma) 1263 goto out; 1264 1265 /* 1266 * Determine the object being mapped and call the appropriate 1267 * specific mapper. the address has already been validated, but 1268 * not unmapped, but the maps are removed from the list. 1269 */ 1270 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1271 if (!vma) { 1272 error = -ENOMEM; 1273 goto unacct_error; 1274 } 1275 1276 vma->vm_mm = mm; 1277 vma->vm_start = addr; 1278 vma->vm_end = addr + len; 1279 vma->vm_flags = vm_flags; 1280 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1281 vma->vm_pgoff = pgoff; 1282 INIT_LIST_HEAD(&vma->anon_vma_chain); 1283 1284 if (file) { 1285 error = -EINVAL; 1286 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1287 goto free_vma; 1288 if (vm_flags & VM_DENYWRITE) { 1289 error = deny_write_access(file); 1290 if (error) 1291 goto free_vma; 1292 correct_wcount = 1; 1293 } 1294 vma->vm_file = file; 1295 get_file(file); 1296 error = file->f_op->mmap(file, vma); 1297 if (error) 1298 goto unmap_and_free_vma; 1299 if (vm_flags & VM_EXECUTABLE) 1300 added_exe_file_vma(mm); 1301 1302 /* Can addr have changed?? 1303 * 1304 * Answer: Yes, several device drivers can do it in their 1305 * f_op->mmap method. -DaveM 1306 */ 1307 addr = vma->vm_start; 1308 pgoff = vma->vm_pgoff; 1309 vm_flags = vma->vm_flags; 1310 } else if (vm_flags & VM_SHARED) { 1311 error = shmem_zero_setup(vma); 1312 if (error) 1313 goto free_vma; 1314 } 1315 1316 if (vma_wants_writenotify(vma)) { 1317 pgprot_t pprot = vma->vm_page_prot; 1318 1319 /* Can vma->vm_page_prot have changed?? 1320 * 1321 * Answer: Yes, drivers may have changed it in their 1322 * f_op->mmap method. 1323 * 1324 * Ensures that vmas marked as uncached stay that way. 1325 */ 1326 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1327 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1328 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1329 } 1330 1331 vma_link(mm, vma, prev, rb_link, rb_parent); 1332 file = vma->vm_file; 1333 1334 /* Once vma denies write, undo our temporary denial count */ 1335 if (correct_wcount) 1336 atomic_inc(&inode->i_writecount); 1337 out: 1338 perf_event_mmap(vma); 1339 1340 mm->total_vm += len >> PAGE_SHIFT; 1341 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1342 if (vm_flags & VM_LOCKED) { 1343 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1344 mm->locked_vm += (len >> PAGE_SHIFT); 1345 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1346 make_pages_present(addr, addr + len); 1347 return addr; 1348 1349 unmap_and_free_vma: 1350 if (correct_wcount) 1351 atomic_inc(&inode->i_writecount); 1352 vma->vm_file = NULL; 1353 fput(file); 1354 1355 /* Undo any partial mapping done by a device driver. */ 1356 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1357 charged = 0; 1358 free_vma: 1359 kmem_cache_free(vm_area_cachep, vma); 1360 unacct_error: 1361 if (charged) 1362 vm_unacct_memory(charged); 1363 return error; 1364 } 1365 1366 /* Get an address range which is currently unmapped. 1367 * For shmat() with addr=0. 1368 * 1369 * Ugly calling convention alert: 1370 * Return value with the low bits set means error value, 1371 * ie 1372 * if (ret & ~PAGE_MASK) 1373 * error = ret; 1374 * 1375 * This function "knows" that -ENOMEM has the bits set. 1376 */ 1377 #ifndef HAVE_ARCH_UNMAPPED_AREA 1378 unsigned long 1379 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1380 unsigned long len, unsigned long pgoff, unsigned long flags) 1381 { 1382 struct mm_struct *mm = current->mm; 1383 struct vm_area_struct *vma; 1384 unsigned long start_addr; 1385 1386 if (len > TASK_SIZE) 1387 return -ENOMEM; 1388 1389 if (flags & MAP_FIXED) 1390 return addr; 1391 1392 if (addr) { 1393 addr = PAGE_ALIGN(addr); 1394 vma = find_vma(mm, addr); 1395 if (TASK_SIZE - len >= addr && 1396 (!vma || addr + len <= vma->vm_start)) 1397 return addr; 1398 } 1399 if (len > mm->cached_hole_size) { 1400 start_addr = addr = mm->free_area_cache; 1401 } else { 1402 start_addr = addr = TASK_UNMAPPED_BASE; 1403 mm->cached_hole_size = 0; 1404 } 1405 1406 full_search: 1407 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1408 /* At this point: (!vma || addr < vma->vm_end). */ 1409 if (TASK_SIZE - len < addr) { 1410 /* 1411 * Start a new search - just in case we missed 1412 * some holes. 1413 */ 1414 if (start_addr != TASK_UNMAPPED_BASE) { 1415 addr = TASK_UNMAPPED_BASE; 1416 start_addr = addr; 1417 mm->cached_hole_size = 0; 1418 goto full_search; 1419 } 1420 return -ENOMEM; 1421 } 1422 if (!vma || addr + len <= vma->vm_start) { 1423 /* 1424 * Remember the place where we stopped the search: 1425 */ 1426 mm->free_area_cache = addr + len; 1427 return addr; 1428 } 1429 if (addr + mm->cached_hole_size < vma->vm_start) 1430 mm->cached_hole_size = vma->vm_start - addr; 1431 addr = vma->vm_end; 1432 } 1433 } 1434 #endif 1435 1436 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1437 { 1438 /* 1439 * Is this a new hole at the lowest possible address? 1440 */ 1441 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1442 mm->free_area_cache = addr; 1443 mm->cached_hole_size = ~0UL; 1444 } 1445 } 1446 1447 /* 1448 * This mmap-allocator allocates new areas top-down from below the 1449 * stack's low limit (the base): 1450 */ 1451 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1452 unsigned long 1453 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1454 const unsigned long len, const unsigned long pgoff, 1455 const unsigned long flags) 1456 { 1457 struct vm_area_struct *vma; 1458 struct mm_struct *mm = current->mm; 1459 unsigned long addr = addr0; 1460 1461 /* requested length too big for entire address space */ 1462 if (len > TASK_SIZE) 1463 return -ENOMEM; 1464 1465 if (flags & MAP_FIXED) 1466 return addr; 1467 1468 /* requesting a specific address */ 1469 if (addr) { 1470 addr = PAGE_ALIGN(addr); 1471 vma = find_vma(mm, addr); 1472 if (TASK_SIZE - len >= addr && 1473 (!vma || addr + len <= vma->vm_start)) 1474 return addr; 1475 } 1476 1477 /* check if free_area_cache is useful for us */ 1478 if (len <= mm->cached_hole_size) { 1479 mm->cached_hole_size = 0; 1480 mm->free_area_cache = mm->mmap_base; 1481 } 1482 1483 /* either no address requested or can't fit in requested address hole */ 1484 addr = mm->free_area_cache; 1485 1486 /* make sure it can fit in the remaining address space */ 1487 if (addr > len) { 1488 vma = find_vma(mm, addr-len); 1489 if (!vma || addr <= vma->vm_start) 1490 /* remember the address as a hint for next time */ 1491 return (mm->free_area_cache = addr-len); 1492 } 1493 1494 if (mm->mmap_base < len) 1495 goto bottomup; 1496 1497 addr = mm->mmap_base-len; 1498 1499 do { 1500 /* 1501 * Lookup failure means no vma is above this address, 1502 * else if new region fits below vma->vm_start, 1503 * return with success: 1504 */ 1505 vma = find_vma(mm, addr); 1506 if (!vma || addr+len <= vma->vm_start) 1507 /* remember the address as a hint for next time */ 1508 return (mm->free_area_cache = addr); 1509 1510 /* remember the largest hole we saw so far */ 1511 if (addr + mm->cached_hole_size < vma->vm_start) 1512 mm->cached_hole_size = vma->vm_start - addr; 1513 1514 /* try just below the current vma->vm_start */ 1515 addr = vma->vm_start-len; 1516 } while (len < vma->vm_start); 1517 1518 bottomup: 1519 /* 1520 * A failed mmap() very likely causes application failure, 1521 * so fall back to the bottom-up function here. This scenario 1522 * can happen with large stack limits and large mmap() 1523 * allocations. 1524 */ 1525 mm->cached_hole_size = ~0UL; 1526 mm->free_area_cache = TASK_UNMAPPED_BASE; 1527 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1528 /* 1529 * Restore the topdown base: 1530 */ 1531 mm->free_area_cache = mm->mmap_base; 1532 mm->cached_hole_size = ~0UL; 1533 1534 return addr; 1535 } 1536 #endif 1537 1538 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1539 { 1540 /* 1541 * Is this a new hole at the highest possible address? 1542 */ 1543 if (addr > mm->free_area_cache) 1544 mm->free_area_cache = addr; 1545 1546 /* dont allow allocations above current base */ 1547 if (mm->free_area_cache > mm->mmap_base) 1548 mm->free_area_cache = mm->mmap_base; 1549 } 1550 1551 unsigned long 1552 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1553 unsigned long pgoff, unsigned long flags) 1554 { 1555 unsigned long (*get_area)(struct file *, unsigned long, 1556 unsigned long, unsigned long, unsigned long); 1557 1558 unsigned long error = arch_mmap_check(addr, len, flags); 1559 if (error) 1560 return error; 1561 1562 /* Careful about overflows.. */ 1563 if (len > TASK_SIZE) 1564 return -ENOMEM; 1565 1566 get_area = current->mm->get_unmapped_area; 1567 if (file && file->f_op && file->f_op->get_unmapped_area) 1568 get_area = file->f_op->get_unmapped_area; 1569 addr = get_area(file, addr, len, pgoff, flags); 1570 if (IS_ERR_VALUE(addr)) 1571 return addr; 1572 1573 if (addr > TASK_SIZE - len) 1574 return -ENOMEM; 1575 if (addr & ~PAGE_MASK) 1576 return -EINVAL; 1577 1578 return arch_rebalance_pgtables(addr, len); 1579 } 1580 1581 EXPORT_SYMBOL(get_unmapped_area); 1582 1583 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1584 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1585 { 1586 struct vm_area_struct *vma = NULL; 1587 1588 if (mm) { 1589 /* Check the cache first. */ 1590 /* (Cache hit rate is typically around 35%.) */ 1591 vma = mm->mmap_cache; 1592 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1593 struct rb_node * rb_node; 1594 1595 rb_node = mm->mm_rb.rb_node; 1596 vma = NULL; 1597 1598 while (rb_node) { 1599 struct vm_area_struct * vma_tmp; 1600 1601 vma_tmp = rb_entry(rb_node, 1602 struct vm_area_struct, vm_rb); 1603 1604 if (vma_tmp->vm_end > addr) { 1605 vma = vma_tmp; 1606 if (vma_tmp->vm_start <= addr) 1607 break; 1608 rb_node = rb_node->rb_left; 1609 } else 1610 rb_node = rb_node->rb_right; 1611 } 1612 if (vma) 1613 mm->mmap_cache = vma; 1614 } 1615 } 1616 return vma; 1617 } 1618 1619 EXPORT_SYMBOL(find_vma); 1620 1621 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1622 struct vm_area_struct * 1623 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1624 struct vm_area_struct **pprev) 1625 { 1626 struct vm_area_struct *vma = NULL, *prev = NULL; 1627 struct rb_node *rb_node; 1628 if (!mm) 1629 goto out; 1630 1631 /* Guard against addr being lower than the first VMA */ 1632 vma = mm->mmap; 1633 1634 /* Go through the RB tree quickly. */ 1635 rb_node = mm->mm_rb.rb_node; 1636 1637 while (rb_node) { 1638 struct vm_area_struct *vma_tmp; 1639 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1640 1641 if (addr < vma_tmp->vm_end) { 1642 rb_node = rb_node->rb_left; 1643 } else { 1644 prev = vma_tmp; 1645 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1646 break; 1647 rb_node = rb_node->rb_right; 1648 } 1649 } 1650 1651 out: 1652 *pprev = prev; 1653 return prev ? prev->vm_next : vma; 1654 } 1655 1656 /* 1657 * Verify that the stack growth is acceptable and 1658 * update accounting. This is shared with both the 1659 * grow-up and grow-down cases. 1660 */ 1661 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1662 { 1663 struct mm_struct *mm = vma->vm_mm; 1664 struct rlimit *rlim = current->signal->rlim; 1665 unsigned long new_start; 1666 1667 /* address space limit tests */ 1668 if (!may_expand_vm(mm, grow)) 1669 return -ENOMEM; 1670 1671 /* Stack limit test */ 1672 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1673 return -ENOMEM; 1674 1675 /* mlock limit tests */ 1676 if (vma->vm_flags & VM_LOCKED) { 1677 unsigned long locked; 1678 unsigned long limit; 1679 locked = mm->locked_vm + grow; 1680 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1681 limit >>= PAGE_SHIFT; 1682 if (locked > limit && !capable(CAP_IPC_LOCK)) 1683 return -ENOMEM; 1684 } 1685 1686 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1687 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1688 vma->vm_end - size; 1689 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1690 return -EFAULT; 1691 1692 /* 1693 * Overcommit.. This must be the final test, as it will 1694 * update security statistics. 1695 */ 1696 if (security_vm_enough_memory_mm(mm, grow)) 1697 return -ENOMEM; 1698 1699 /* Ok, everything looks good - let it rip */ 1700 mm->total_vm += grow; 1701 if (vma->vm_flags & VM_LOCKED) 1702 mm->locked_vm += grow; 1703 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1704 return 0; 1705 } 1706 1707 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1708 /* 1709 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1710 * vma is the last one with address > vma->vm_end. Have to extend vma. 1711 */ 1712 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1713 { 1714 int error; 1715 1716 if (!(vma->vm_flags & VM_GROWSUP)) 1717 return -EFAULT; 1718 1719 /* 1720 * We must make sure the anon_vma is allocated 1721 * so that the anon_vma locking is not a noop. 1722 */ 1723 if (unlikely(anon_vma_prepare(vma))) 1724 return -ENOMEM; 1725 vma_lock_anon_vma(vma); 1726 1727 /* 1728 * vma->vm_start/vm_end cannot change under us because the caller 1729 * is required to hold the mmap_sem in read mode. We need the 1730 * anon_vma lock to serialize against concurrent expand_stacks. 1731 * Also guard against wrapping around to address 0. 1732 */ 1733 if (address < PAGE_ALIGN(address+4)) 1734 address = PAGE_ALIGN(address+4); 1735 else { 1736 vma_unlock_anon_vma(vma); 1737 return -ENOMEM; 1738 } 1739 error = 0; 1740 1741 /* Somebody else might have raced and expanded it already */ 1742 if (address > vma->vm_end) { 1743 unsigned long size, grow; 1744 1745 size = address - vma->vm_start; 1746 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1747 1748 error = -ENOMEM; 1749 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1750 error = acct_stack_growth(vma, size, grow); 1751 if (!error) { 1752 vma->vm_end = address; 1753 perf_event_mmap(vma); 1754 } 1755 } 1756 } 1757 vma_unlock_anon_vma(vma); 1758 khugepaged_enter_vma_merge(vma); 1759 return error; 1760 } 1761 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1762 1763 /* 1764 * vma is the first one with address < vma->vm_start. Have to extend vma. 1765 */ 1766 int expand_downwards(struct vm_area_struct *vma, 1767 unsigned long address) 1768 { 1769 int error; 1770 1771 /* 1772 * We must make sure the anon_vma is allocated 1773 * so that the anon_vma locking is not a noop. 1774 */ 1775 if (unlikely(anon_vma_prepare(vma))) 1776 return -ENOMEM; 1777 1778 address &= PAGE_MASK; 1779 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1780 if (error) 1781 return error; 1782 1783 vma_lock_anon_vma(vma); 1784 1785 /* 1786 * vma->vm_start/vm_end cannot change under us because the caller 1787 * is required to hold the mmap_sem in read mode. We need the 1788 * anon_vma lock to serialize against concurrent expand_stacks. 1789 */ 1790 1791 /* Somebody else might have raced and expanded it already */ 1792 if (address < vma->vm_start) { 1793 unsigned long size, grow; 1794 1795 size = vma->vm_end - address; 1796 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1797 1798 error = -ENOMEM; 1799 if (grow <= vma->vm_pgoff) { 1800 error = acct_stack_growth(vma, size, grow); 1801 if (!error) { 1802 vma->vm_start = address; 1803 vma->vm_pgoff -= grow; 1804 perf_event_mmap(vma); 1805 } 1806 } 1807 } 1808 vma_unlock_anon_vma(vma); 1809 khugepaged_enter_vma_merge(vma); 1810 return error; 1811 } 1812 1813 #ifdef CONFIG_STACK_GROWSUP 1814 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1815 { 1816 return expand_upwards(vma, address); 1817 } 1818 1819 struct vm_area_struct * 1820 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1821 { 1822 struct vm_area_struct *vma, *prev; 1823 1824 addr &= PAGE_MASK; 1825 vma = find_vma_prev(mm, addr, &prev); 1826 if (vma && (vma->vm_start <= addr)) 1827 return vma; 1828 if (!prev || expand_stack(prev, addr)) 1829 return NULL; 1830 if (prev->vm_flags & VM_LOCKED) { 1831 mlock_vma_pages_range(prev, addr, prev->vm_end); 1832 } 1833 return prev; 1834 } 1835 #else 1836 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1837 { 1838 return expand_downwards(vma, address); 1839 } 1840 1841 struct vm_area_struct * 1842 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1843 { 1844 struct vm_area_struct * vma; 1845 unsigned long start; 1846 1847 addr &= PAGE_MASK; 1848 vma = find_vma(mm,addr); 1849 if (!vma) 1850 return NULL; 1851 if (vma->vm_start <= addr) 1852 return vma; 1853 if (!(vma->vm_flags & VM_GROWSDOWN)) 1854 return NULL; 1855 start = vma->vm_start; 1856 if (expand_stack(vma, addr)) 1857 return NULL; 1858 if (vma->vm_flags & VM_LOCKED) { 1859 mlock_vma_pages_range(vma, addr, start); 1860 } 1861 return vma; 1862 } 1863 #endif 1864 1865 /* 1866 * Ok - we have the memory areas we should free on the vma list, 1867 * so release them, and do the vma updates. 1868 * 1869 * Called with the mm semaphore held. 1870 */ 1871 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1872 { 1873 /* Update high watermark before we lower total_vm */ 1874 update_hiwater_vm(mm); 1875 do { 1876 long nrpages = vma_pages(vma); 1877 1878 mm->total_vm -= nrpages; 1879 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1880 vma = remove_vma(vma); 1881 } while (vma); 1882 validate_mm(mm); 1883 } 1884 1885 /* 1886 * Get rid of page table information in the indicated region. 1887 * 1888 * Called with the mm semaphore held. 1889 */ 1890 static void unmap_region(struct mm_struct *mm, 1891 struct vm_area_struct *vma, struct vm_area_struct *prev, 1892 unsigned long start, unsigned long end) 1893 { 1894 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1895 struct mmu_gather tlb; 1896 unsigned long nr_accounted = 0; 1897 1898 lru_add_drain(); 1899 tlb_gather_mmu(&tlb, mm, 0); 1900 update_hiwater_rss(mm); 1901 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1902 vm_unacct_memory(nr_accounted); 1903 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1904 next ? next->vm_start : 0); 1905 tlb_finish_mmu(&tlb, start, end); 1906 } 1907 1908 /* 1909 * Create a list of vma's touched by the unmap, removing them from the mm's 1910 * vma list as we go.. 1911 */ 1912 static void 1913 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1914 struct vm_area_struct *prev, unsigned long end) 1915 { 1916 struct vm_area_struct **insertion_point; 1917 struct vm_area_struct *tail_vma = NULL; 1918 unsigned long addr; 1919 1920 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1921 vma->vm_prev = NULL; 1922 do { 1923 rb_erase(&vma->vm_rb, &mm->mm_rb); 1924 mm->map_count--; 1925 tail_vma = vma; 1926 vma = vma->vm_next; 1927 } while (vma && vma->vm_start < end); 1928 *insertion_point = vma; 1929 if (vma) 1930 vma->vm_prev = prev; 1931 tail_vma->vm_next = NULL; 1932 if (mm->unmap_area == arch_unmap_area) 1933 addr = prev ? prev->vm_end : mm->mmap_base; 1934 else 1935 addr = vma ? vma->vm_start : mm->mmap_base; 1936 mm->unmap_area(mm, addr); 1937 mm->mmap_cache = NULL; /* Kill the cache. */ 1938 } 1939 1940 /* 1941 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1942 * munmap path where it doesn't make sense to fail. 1943 */ 1944 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1945 unsigned long addr, int new_below) 1946 { 1947 struct mempolicy *pol; 1948 struct vm_area_struct *new; 1949 int err = -ENOMEM; 1950 1951 if (is_vm_hugetlb_page(vma) && (addr & 1952 ~(huge_page_mask(hstate_vma(vma))))) 1953 return -EINVAL; 1954 1955 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1956 if (!new) 1957 goto out_err; 1958 1959 /* most fields are the same, copy all, and then fixup */ 1960 *new = *vma; 1961 1962 INIT_LIST_HEAD(&new->anon_vma_chain); 1963 1964 if (new_below) 1965 new->vm_end = addr; 1966 else { 1967 new->vm_start = addr; 1968 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1969 } 1970 1971 pol = mpol_dup(vma_policy(vma)); 1972 if (IS_ERR(pol)) { 1973 err = PTR_ERR(pol); 1974 goto out_free_vma; 1975 } 1976 vma_set_policy(new, pol); 1977 1978 if (anon_vma_clone(new, vma)) 1979 goto out_free_mpol; 1980 1981 if (new->vm_file) { 1982 get_file(new->vm_file); 1983 if (vma->vm_flags & VM_EXECUTABLE) 1984 added_exe_file_vma(mm); 1985 } 1986 1987 if (new->vm_ops && new->vm_ops->open) 1988 new->vm_ops->open(new); 1989 1990 if (new_below) 1991 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1992 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1993 else 1994 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1995 1996 /* Success. */ 1997 if (!err) 1998 return 0; 1999 2000 /* Clean everything up if vma_adjust failed. */ 2001 if (new->vm_ops && new->vm_ops->close) 2002 new->vm_ops->close(new); 2003 if (new->vm_file) { 2004 if (vma->vm_flags & VM_EXECUTABLE) 2005 removed_exe_file_vma(mm); 2006 fput(new->vm_file); 2007 } 2008 unlink_anon_vmas(new); 2009 out_free_mpol: 2010 mpol_put(pol); 2011 out_free_vma: 2012 kmem_cache_free(vm_area_cachep, new); 2013 out_err: 2014 return err; 2015 } 2016 2017 /* 2018 * Split a vma into two pieces at address 'addr', a new vma is allocated 2019 * either for the first part or the tail. 2020 */ 2021 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2022 unsigned long addr, int new_below) 2023 { 2024 if (mm->map_count >= sysctl_max_map_count) 2025 return -ENOMEM; 2026 2027 return __split_vma(mm, vma, addr, new_below); 2028 } 2029 2030 /* Munmap is split into 2 main parts -- this part which finds 2031 * what needs doing, and the areas themselves, which do the 2032 * work. This now handles partial unmappings. 2033 * Jeremy Fitzhardinge <jeremy@goop.org> 2034 */ 2035 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2036 { 2037 unsigned long end; 2038 struct vm_area_struct *vma, *prev, *last; 2039 2040 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2041 return -EINVAL; 2042 2043 if ((len = PAGE_ALIGN(len)) == 0) 2044 return -EINVAL; 2045 2046 /* Find the first overlapping VMA */ 2047 vma = find_vma_prev(mm, start, &prev); 2048 if (!vma) 2049 return 0; 2050 /* we have start < vma->vm_end */ 2051 2052 /* if it doesn't overlap, we have nothing.. */ 2053 end = start + len; 2054 if (vma->vm_start >= end) 2055 return 0; 2056 2057 /* 2058 * If we need to split any vma, do it now to save pain later. 2059 * 2060 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2061 * unmapped vm_area_struct will remain in use: so lower split_vma 2062 * places tmp vma above, and higher split_vma places tmp vma below. 2063 */ 2064 if (start > vma->vm_start) { 2065 int error; 2066 2067 /* 2068 * Make sure that map_count on return from munmap() will 2069 * not exceed its limit; but let map_count go just above 2070 * its limit temporarily, to help free resources as expected. 2071 */ 2072 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2073 return -ENOMEM; 2074 2075 error = __split_vma(mm, vma, start, 0); 2076 if (error) 2077 return error; 2078 prev = vma; 2079 } 2080 2081 /* Does it split the last one? */ 2082 last = find_vma(mm, end); 2083 if (last && end > last->vm_start) { 2084 int error = __split_vma(mm, last, end, 1); 2085 if (error) 2086 return error; 2087 } 2088 vma = prev? prev->vm_next: mm->mmap; 2089 2090 /* 2091 * unlock any mlock()ed ranges before detaching vmas 2092 */ 2093 if (mm->locked_vm) { 2094 struct vm_area_struct *tmp = vma; 2095 while (tmp && tmp->vm_start < end) { 2096 if (tmp->vm_flags & VM_LOCKED) { 2097 mm->locked_vm -= vma_pages(tmp); 2098 munlock_vma_pages_all(tmp); 2099 } 2100 tmp = tmp->vm_next; 2101 } 2102 } 2103 2104 /* 2105 * Remove the vma's, and unmap the actual pages 2106 */ 2107 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2108 unmap_region(mm, vma, prev, start, end); 2109 2110 /* Fix up all other VM information */ 2111 remove_vma_list(mm, vma); 2112 2113 return 0; 2114 } 2115 2116 EXPORT_SYMBOL(do_munmap); 2117 2118 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2119 { 2120 int ret; 2121 struct mm_struct *mm = current->mm; 2122 2123 profile_munmap(addr); 2124 2125 down_write(&mm->mmap_sem); 2126 ret = do_munmap(mm, addr, len); 2127 up_write(&mm->mmap_sem); 2128 return ret; 2129 } 2130 2131 static inline void verify_mm_writelocked(struct mm_struct *mm) 2132 { 2133 #ifdef CONFIG_DEBUG_VM 2134 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2135 WARN_ON(1); 2136 up_read(&mm->mmap_sem); 2137 } 2138 #endif 2139 } 2140 2141 /* 2142 * this is really a simplified "do_mmap". it only handles 2143 * anonymous maps. eventually we may be able to do some 2144 * brk-specific accounting here. 2145 */ 2146 unsigned long do_brk(unsigned long addr, unsigned long len) 2147 { 2148 struct mm_struct * mm = current->mm; 2149 struct vm_area_struct * vma, * prev; 2150 unsigned long flags; 2151 struct rb_node ** rb_link, * rb_parent; 2152 pgoff_t pgoff = addr >> PAGE_SHIFT; 2153 int error; 2154 2155 len = PAGE_ALIGN(len); 2156 if (!len) 2157 return addr; 2158 2159 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2160 if (error) 2161 return error; 2162 2163 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2164 2165 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2166 if (error & ~PAGE_MASK) 2167 return error; 2168 2169 /* 2170 * mlock MCL_FUTURE? 2171 */ 2172 if (mm->def_flags & VM_LOCKED) { 2173 unsigned long locked, lock_limit; 2174 locked = len >> PAGE_SHIFT; 2175 locked += mm->locked_vm; 2176 lock_limit = rlimit(RLIMIT_MEMLOCK); 2177 lock_limit >>= PAGE_SHIFT; 2178 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2179 return -EAGAIN; 2180 } 2181 2182 /* 2183 * mm->mmap_sem is required to protect against another thread 2184 * changing the mappings in case we sleep. 2185 */ 2186 verify_mm_writelocked(mm); 2187 2188 /* 2189 * Clear old maps. this also does some error checking for us 2190 */ 2191 munmap_back: 2192 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2193 if (vma && vma->vm_start < addr + len) { 2194 if (do_munmap(mm, addr, len)) 2195 return -ENOMEM; 2196 goto munmap_back; 2197 } 2198 2199 /* Check against address space limits *after* clearing old maps... */ 2200 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2201 return -ENOMEM; 2202 2203 if (mm->map_count > sysctl_max_map_count) 2204 return -ENOMEM; 2205 2206 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2207 return -ENOMEM; 2208 2209 /* Can we just expand an old private anonymous mapping? */ 2210 vma = vma_merge(mm, prev, addr, addr + len, flags, 2211 NULL, NULL, pgoff, NULL); 2212 if (vma) 2213 goto out; 2214 2215 /* 2216 * create a vma struct for an anonymous mapping 2217 */ 2218 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2219 if (!vma) { 2220 vm_unacct_memory(len >> PAGE_SHIFT); 2221 return -ENOMEM; 2222 } 2223 2224 INIT_LIST_HEAD(&vma->anon_vma_chain); 2225 vma->vm_mm = mm; 2226 vma->vm_start = addr; 2227 vma->vm_end = addr + len; 2228 vma->vm_pgoff = pgoff; 2229 vma->vm_flags = flags; 2230 vma->vm_page_prot = vm_get_page_prot(flags); 2231 vma_link(mm, vma, prev, rb_link, rb_parent); 2232 out: 2233 perf_event_mmap(vma); 2234 mm->total_vm += len >> PAGE_SHIFT; 2235 if (flags & VM_LOCKED) { 2236 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2237 mm->locked_vm += (len >> PAGE_SHIFT); 2238 } 2239 return addr; 2240 } 2241 2242 EXPORT_SYMBOL(do_brk); 2243 2244 /* Release all mmaps. */ 2245 void exit_mmap(struct mm_struct *mm) 2246 { 2247 struct mmu_gather tlb; 2248 struct vm_area_struct *vma; 2249 unsigned long nr_accounted = 0; 2250 unsigned long end; 2251 2252 /* mm's last user has gone, and its about to be pulled down */ 2253 mmu_notifier_release(mm); 2254 2255 if (mm->locked_vm) { 2256 vma = mm->mmap; 2257 while (vma) { 2258 if (vma->vm_flags & VM_LOCKED) 2259 munlock_vma_pages_all(vma); 2260 vma = vma->vm_next; 2261 } 2262 } 2263 2264 arch_exit_mmap(mm); 2265 2266 vma = mm->mmap; 2267 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2268 return; 2269 2270 lru_add_drain(); 2271 flush_cache_mm(mm); 2272 tlb_gather_mmu(&tlb, mm, 1); 2273 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2274 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2275 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2276 vm_unacct_memory(nr_accounted); 2277 2278 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2279 tlb_finish_mmu(&tlb, 0, end); 2280 2281 /* 2282 * Walk the list again, actually closing and freeing it, 2283 * with preemption enabled, without holding any MM locks. 2284 */ 2285 while (vma) 2286 vma = remove_vma(vma); 2287 2288 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2289 } 2290 2291 /* Insert vm structure into process list sorted by address 2292 * and into the inode's i_mmap tree. If vm_file is non-NULL 2293 * then i_mmap_mutex is taken here. 2294 */ 2295 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2296 { 2297 struct vm_area_struct * __vma, * prev; 2298 struct rb_node ** rb_link, * rb_parent; 2299 2300 /* 2301 * The vm_pgoff of a purely anonymous vma should be irrelevant 2302 * until its first write fault, when page's anon_vma and index 2303 * are set. But now set the vm_pgoff it will almost certainly 2304 * end up with (unless mremap moves it elsewhere before that 2305 * first wfault), so /proc/pid/maps tells a consistent story. 2306 * 2307 * By setting it to reflect the virtual start address of the 2308 * vma, merges and splits can happen in a seamless way, just 2309 * using the existing file pgoff checks and manipulations. 2310 * Similarly in do_mmap_pgoff and in do_brk. 2311 */ 2312 if (!vma->vm_file) { 2313 BUG_ON(vma->anon_vma); 2314 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2315 } 2316 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2317 if (__vma && __vma->vm_start < vma->vm_end) 2318 return -ENOMEM; 2319 if ((vma->vm_flags & VM_ACCOUNT) && 2320 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2321 return -ENOMEM; 2322 vma_link(mm, vma, prev, rb_link, rb_parent); 2323 return 0; 2324 } 2325 2326 /* 2327 * Copy the vma structure to a new location in the same mm, 2328 * prior to moving page table entries, to effect an mremap move. 2329 */ 2330 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2331 unsigned long addr, unsigned long len, pgoff_t pgoff) 2332 { 2333 struct vm_area_struct *vma = *vmap; 2334 unsigned long vma_start = vma->vm_start; 2335 struct mm_struct *mm = vma->vm_mm; 2336 struct vm_area_struct *new_vma, *prev; 2337 struct rb_node **rb_link, *rb_parent; 2338 struct mempolicy *pol; 2339 2340 /* 2341 * If anonymous vma has not yet been faulted, update new pgoff 2342 * to match new location, to increase its chance of merging. 2343 */ 2344 if (!vma->vm_file && !vma->anon_vma) 2345 pgoff = addr >> PAGE_SHIFT; 2346 2347 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2348 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2349 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2350 if (new_vma) { 2351 /* 2352 * Source vma may have been merged into new_vma 2353 */ 2354 if (vma_start >= new_vma->vm_start && 2355 vma_start < new_vma->vm_end) 2356 *vmap = new_vma; 2357 } else { 2358 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2359 if (new_vma) { 2360 *new_vma = *vma; 2361 pol = mpol_dup(vma_policy(vma)); 2362 if (IS_ERR(pol)) 2363 goto out_free_vma; 2364 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2365 if (anon_vma_clone(new_vma, vma)) 2366 goto out_free_mempol; 2367 vma_set_policy(new_vma, pol); 2368 new_vma->vm_start = addr; 2369 new_vma->vm_end = addr + len; 2370 new_vma->vm_pgoff = pgoff; 2371 if (new_vma->vm_file) { 2372 get_file(new_vma->vm_file); 2373 if (vma->vm_flags & VM_EXECUTABLE) 2374 added_exe_file_vma(mm); 2375 } 2376 if (new_vma->vm_ops && new_vma->vm_ops->open) 2377 new_vma->vm_ops->open(new_vma); 2378 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2379 } 2380 } 2381 return new_vma; 2382 2383 out_free_mempol: 2384 mpol_put(pol); 2385 out_free_vma: 2386 kmem_cache_free(vm_area_cachep, new_vma); 2387 return NULL; 2388 } 2389 2390 /* 2391 * Return true if the calling process may expand its vm space by the passed 2392 * number of pages 2393 */ 2394 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2395 { 2396 unsigned long cur = mm->total_vm; /* pages */ 2397 unsigned long lim; 2398 2399 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2400 2401 if (cur + npages > lim) 2402 return 0; 2403 return 1; 2404 } 2405 2406 2407 static int special_mapping_fault(struct vm_area_struct *vma, 2408 struct vm_fault *vmf) 2409 { 2410 pgoff_t pgoff; 2411 struct page **pages; 2412 2413 /* 2414 * special mappings have no vm_file, and in that case, the mm 2415 * uses vm_pgoff internally. So we have to subtract it from here. 2416 * We are allowed to do this because we are the mm; do not copy 2417 * this code into drivers! 2418 */ 2419 pgoff = vmf->pgoff - vma->vm_pgoff; 2420 2421 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2422 pgoff--; 2423 2424 if (*pages) { 2425 struct page *page = *pages; 2426 get_page(page); 2427 vmf->page = page; 2428 return 0; 2429 } 2430 2431 return VM_FAULT_SIGBUS; 2432 } 2433 2434 /* 2435 * Having a close hook prevents vma merging regardless of flags. 2436 */ 2437 static void special_mapping_close(struct vm_area_struct *vma) 2438 { 2439 } 2440 2441 static const struct vm_operations_struct special_mapping_vmops = { 2442 .close = special_mapping_close, 2443 .fault = special_mapping_fault, 2444 }; 2445 2446 /* 2447 * Called with mm->mmap_sem held for writing. 2448 * Insert a new vma covering the given region, with the given flags. 2449 * Its pages are supplied by the given array of struct page *. 2450 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2451 * The region past the last page supplied will always produce SIGBUS. 2452 * The array pointer and the pages it points to are assumed to stay alive 2453 * for as long as this mapping might exist. 2454 */ 2455 int install_special_mapping(struct mm_struct *mm, 2456 unsigned long addr, unsigned long len, 2457 unsigned long vm_flags, struct page **pages) 2458 { 2459 int ret; 2460 struct vm_area_struct *vma; 2461 2462 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2463 if (unlikely(vma == NULL)) 2464 return -ENOMEM; 2465 2466 INIT_LIST_HEAD(&vma->anon_vma_chain); 2467 vma->vm_mm = mm; 2468 vma->vm_start = addr; 2469 vma->vm_end = addr + len; 2470 2471 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2472 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2473 2474 vma->vm_ops = &special_mapping_vmops; 2475 vma->vm_private_data = pages; 2476 2477 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2478 if (ret) 2479 goto out; 2480 2481 ret = insert_vm_struct(mm, vma); 2482 if (ret) 2483 goto out; 2484 2485 mm->total_vm += len >> PAGE_SHIFT; 2486 2487 perf_event_mmap(vma); 2488 2489 return 0; 2490 2491 out: 2492 kmem_cache_free(vm_area_cachep, vma); 2493 return ret; 2494 } 2495 2496 static DEFINE_MUTEX(mm_all_locks_mutex); 2497 2498 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2499 { 2500 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2501 /* 2502 * The LSB of head.next can't change from under us 2503 * because we hold the mm_all_locks_mutex. 2504 */ 2505 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2506 /* 2507 * We can safely modify head.next after taking the 2508 * anon_vma->root->mutex. If some other vma in this mm shares 2509 * the same anon_vma we won't take it again. 2510 * 2511 * No need of atomic instructions here, head.next 2512 * can't change from under us thanks to the 2513 * anon_vma->root->mutex. 2514 */ 2515 if (__test_and_set_bit(0, (unsigned long *) 2516 &anon_vma->root->head.next)) 2517 BUG(); 2518 } 2519 } 2520 2521 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2522 { 2523 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2524 /* 2525 * AS_MM_ALL_LOCKS can't change from under us because 2526 * we hold the mm_all_locks_mutex. 2527 * 2528 * Operations on ->flags have to be atomic because 2529 * even if AS_MM_ALL_LOCKS is stable thanks to the 2530 * mm_all_locks_mutex, there may be other cpus 2531 * changing other bitflags in parallel to us. 2532 */ 2533 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2534 BUG(); 2535 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2536 } 2537 } 2538 2539 /* 2540 * This operation locks against the VM for all pte/vma/mm related 2541 * operations that could ever happen on a certain mm. This includes 2542 * vmtruncate, try_to_unmap, and all page faults. 2543 * 2544 * The caller must take the mmap_sem in write mode before calling 2545 * mm_take_all_locks(). The caller isn't allowed to release the 2546 * mmap_sem until mm_drop_all_locks() returns. 2547 * 2548 * mmap_sem in write mode is required in order to block all operations 2549 * that could modify pagetables and free pages without need of 2550 * altering the vma layout (for example populate_range() with 2551 * nonlinear vmas). It's also needed in write mode to avoid new 2552 * anon_vmas to be associated with existing vmas. 2553 * 2554 * A single task can't take more than one mm_take_all_locks() in a row 2555 * or it would deadlock. 2556 * 2557 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2558 * mapping->flags avoid to take the same lock twice, if more than one 2559 * vma in this mm is backed by the same anon_vma or address_space. 2560 * 2561 * We can take all the locks in random order because the VM code 2562 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2563 * takes more than one of them in a row. Secondly we're protected 2564 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2565 * 2566 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2567 * that may have to take thousand of locks. 2568 * 2569 * mm_take_all_locks() can fail if it's interrupted by signals. 2570 */ 2571 int mm_take_all_locks(struct mm_struct *mm) 2572 { 2573 struct vm_area_struct *vma; 2574 struct anon_vma_chain *avc; 2575 int ret = -EINTR; 2576 2577 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2578 2579 mutex_lock(&mm_all_locks_mutex); 2580 2581 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2582 if (signal_pending(current)) 2583 goto out_unlock; 2584 if (vma->vm_file && vma->vm_file->f_mapping) 2585 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2586 } 2587 2588 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2589 if (signal_pending(current)) 2590 goto out_unlock; 2591 if (vma->anon_vma) 2592 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2593 vm_lock_anon_vma(mm, avc->anon_vma); 2594 } 2595 2596 ret = 0; 2597 2598 out_unlock: 2599 if (ret) 2600 mm_drop_all_locks(mm); 2601 2602 return ret; 2603 } 2604 2605 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2606 { 2607 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2608 /* 2609 * The LSB of head.next can't change to 0 from under 2610 * us because we hold the mm_all_locks_mutex. 2611 * 2612 * We must however clear the bitflag before unlocking 2613 * the vma so the users using the anon_vma->head will 2614 * never see our bitflag. 2615 * 2616 * No need of atomic instructions here, head.next 2617 * can't change from under us until we release the 2618 * anon_vma->root->mutex. 2619 */ 2620 if (!__test_and_clear_bit(0, (unsigned long *) 2621 &anon_vma->root->head.next)) 2622 BUG(); 2623 anon_vma_unlock(anon_vma); 2624 } 2625 } 2626 2627 static void vm_unlock_mapping(struct address_space *mapping) 2628 { 2629 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2630 /* 2631 * AS_MM_ALL_LOCKS can't change to 0 from under us 2632 * because we hold the mm_all_locks_mutex. 2633 */ 2634 mutex_unlock(&mapping->i_mmap_mutex); 2635 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2636 &mapping->flags)) 2637 BUG(); 2638 } 2639 } 2640 2641 /* 2642 * The mmap_sem cannot be released by the caller until 2643 * mm_drop_all_locks() returns. 2644 */ 2645 void mm_drop_all_locks(struct mm_struct *mm) 2646 { 2647 struct vm_area_struct *vma; 2648 struct anon_vma_chain *avc; 2649 2650 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2651 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2652 2653 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2654 if (vma->anon_vma) 2655 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2656 vm_unlock_anon_vma(avc->anon_vma); 2657 if (vma->vm_file && vma->vm_file->f_mapping) 2658 vm_unlock_mapping(vma->vm_file->f_mapping); 2659 } 2660 2661 mutex_unlock(&mm_all_locks_mutex); 2662 } 2663 2664 /* 2665 * initialise the VMA slab 2666 */ 2667 void __init mmap_init(void) 2668 { 2669 int ret; 2670 2671 ret = percpu_counter_init(&vm_committed_as, 0); 2672 VM_BUG_ON(ret); 2673 } 2674