xref: /linux/mm/mmap.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 
37 #include "internal.h"
38 
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags)	(0)
41 #endif
42 
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len)		(addr)
45 #endif
46 
47 static void unmap_region(struct mm_struct *mm,
48 		struct vm_area_struct *vma, struct vm_area_struct *prev,
49 		unsigned long start, unsigned long end);
50 
51 /*
52  * WARNING: the debugging will use recursive algorithms so never enable this
53  * unless you know what you are doing.
54  */
55 #undef DEBUG_MM_RB
56 
57 /* description of effects of mapping type and prot in current implementation.
58  * this is due to the limited x86 page protection hardware.  The expected
59  * behavior is in parens:
60  *
61  * map_type	prot
62  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66  *
67  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70  *
71  */
72 pgprot_t protection_map[16] = {
73 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76 
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 	return __pgprot(pgprot_val(protection_map[vm_flags &
80 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84 
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50;	/* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89 
90 /*
91  * Check that a process has enough memory to allocate a new virtual
92  * mapping. 0 means there is enough memory for the allocation to
93  * succeed and -ENOMEM implies there is not.
94  *
95  * We currently support three overcommit policies, which are set via the
96  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97  *
98  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99  * Additional code 2002 Jul 20 by Robert Love.
100  *
101  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102  *
103  * Note this is a helper function intended to be used by LSMs which
104  * wish to use this logic.
105  */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 	unsigned long free, allowed;
109 
110 	vm_acct_memory(pages);
111 
112 	/*
113 	 * Sometimes we want to use more memory than we have
114 	 */
115 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 		return 0;
117 
118 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 		unsigned long n;
120 
121 		free = global_page_state(NR_FILE_PAGES);
122 		free += nr_swap_pages;
123 
124 		/*
125 		 * Any slabs which are created with the
126 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 		 * which are reclaimable, under pressure.  The dentry
128 		 * cache and most inode caches should fall into this
129 		 */
130 		free += global_page_state(NR_SLAB_RECLAIMABLE);
131 
132 		/*
133 		 * Leave the last 3% for root
134 		 */
135 		if (!cap_sys_admin)
136 			free -= free / 32;
137 
138 		if (free > pages)
139 			return 0;
140 
141 		/*
142 		 * nr_free_pages() is very expensive on large systems,
143 		 * only call if we're about to fail.
144 		 */
145 		n = nr_free_pages();
146 
147 		/*
148 		 * Leave reserved pages. The pages are not for anonymous pages.
149 		 */
150 		if (n <= totalreserve_pages)
151 			goto error;
152 		else
153 			n -= totalreserve_pages;
154 
155 		/*
156 		 * Leave the last 3% for root
157 		 */
158 		if (!cap_sys_admin)
159 			n -= n / 32;
160 		free += n;
161 
162 		if (free > pages)
163 			return 0;
164 
165 		goto error;
166 	}
167 
168 	allowed = (totalram_pages - hugetlb_total_pages())
169 	       	* sysctl_overcommit_ratio / 100;
170 	/*
171 	 * Leave the last 3% for root
172 	 */
173 	if (!cap_sys_admin)
174 		allowed -= allowed / 32;
175 	allowed += total_swap_pages;
176 
177 	/* Don't let a single process grow too big:
178 	   leave 3% of the size of this process for other processes */
179 	if (mm)
180 		allowed -= mm->total_vm / 32;
181 
182 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 		return 0;
184 error:
185 	vm_unacct_memory(pages);
186 
187 	return -ENOMEM;
188 }
189 
190 /*
191  * Requires inode->i_mapping->i_mmap_lock
192  */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 		struct file *file, struct address_space *mapping)
195 {
196 	if (vma->vm_flags & VM_DENYWRITE)
197 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 	if (vma->vm_flags & VM_SHARED)
199 		mapping->i_mmap_writable--;
200 
201 	flush_dcache_mmap_lock(mapping);
202 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 		list_del_init(&vma->shared.vm_set.list);
204 	else
205 		vma_prio_tree_remove(vma, &mapping->i_mmap);
206 	flush_dcache_mmap_unlock(mapping);
207 }
208 
209 /*
210  * Unlink a file-based vm structure from its prio_tree, to hide
211  * vma from rmap and vmtruncate before freeing its page tables.
212  */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 	struct file *file = vma->vm_file;
216 
217 	if (file) {
218 		struct address_space *mapping = file->f_mapping;
219 		spin_lock(&mapping->i_mmap_lock);
220 		__remove_shared_vm_struct(vma, file, mapping);
221 		spin_unlock(&mapping->i_mmap_lock);
222 	}
223 }
224 
225 /*
226  * Close a vm structure and free it, returning the next.
227  */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 	struct vm_area_struct *next = vma->vm_next;
231 
232 	might_sleep();
233 	if (vma->vm_ops && vma->vm_ops->close)
234 		vma->vm_ops->close(vma);
235 	if (vma->vm_file) {
236 		fput(vma->vm_file);
237 		if (vma->vm_flags & VM_EXECUTABLE)
238 			removed_exe_file_vma(vma->vm_mm);
239 	}
240 	mpol_put(vma_policy(vma));
241 	kmem_cache_free(vm_area_cachep, vma);
242 	return next;
243 }
244 
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 	unsigned long rlim, retval;
248 	unsigned long newbrk, oldbrk;
249 	struct mm_struct *mm = current->mm;
250 	unsigned long min_brk;
251 
252 	down_write(&mm->mmap_sem);
253 
254 #ifdef CONFIG_COMPAT_BRK
255 	min_brk = mm->end_code;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = rlimit(RLIMIT_DATA);
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *tmp = mm->mmap;
335 	while (tmp) {
336 		tmp = tmp->vm_next;
337 		i++;
338 	}
339 	if (i != mm->map_count)
340 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 	i = browse_rb(&mm->mm_rb);
342 	if (i != mm->map_count)
343 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 	BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349 
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 		struct rb_node ** rb_parent)
354 {
355 	struct vm_area_struct * vma;
356 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 
358 	__rb_link = &mm->mm_rb.rb_node;
359 	rb_prev = __rb_parent = NULL;
360 	vma = NULL;
361 
362 	while (*__rb_link) {
363 		struct vm_area_struct *vma_tmp;
364 
365 		__rb_parent = *__rb_link;
366 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 
368 		if (vma_tmp->vm_end > addr) {
369 			vma = vma_tmp;
370 			if (vma_tmp->vm_start <= addr)
371 				break;
372 			__rb_link = &__rb_parent->rb_left;
373 		} else {
374 			rb_prev = __rb_parent;
375 			__rb_link = &__rb_parent->rb_right;
376 		}
377 	}
378 
379 	*pprev = NULL;
380 	if (rb_prev)
381 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 	*rb_link = __rb_link;
383 	*rb_parent = __rb_parent;
384 	return vma;
385 }
386 
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 	if (prev) {
392 		vma->vm_next = prev->vm_next;
393 		prev->vm_next = vma;
394 	} else {
395 		mm->mmap = vma;
396 		if (rb_parent)
397 			vma->vm_next = rb_entry(rb_parent,
398 					struct vm_area_struct, vm_rb);
399 		else
400 			vma->vm_next = NULL;
401 	}
402 }
403 
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 		struct rb_node **rb_link, struct rb_node *rb_parent)
406 {
407 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 }
410 
411 static void __vma_link_file(struct vm_area_struct *vma)
412 {
413 	struct file *file;
414 
415 	file = vma->vm_file;
416 	if (file) {
417 		struct address_space *mapping = file->f_mapping;
418 
419 		if (vma->vm_flags & VM_DENYWRITE)
420 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 		if (vma->vm_flags & VM_SHARED)
422 			mapping->i_mmap_writable++;
423 
424 		flush_dcache_mmap_lock(mapping);
425 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 		else
428 			vma_prio_tree_insert(vma, &mapping->i_mmap);
429 		flush_dcache_mmap_unlock(mapping);
430 	}
431 }
432 
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 	struct vm_area_struct *prev, struct rb_node **rb_link,
436 	struct rb_node *rb_parent)
437 {
438 	__vma_link_list(mm, vma, prev, rb_parent);
439 	__vma_link_rb(mm, vma, rb_link, rb_parent);
440 }
441 
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 			struct vm_area_struct *prev, struct rb_node **rb_link,
444 			struct rb_node *rb_parent)
445 {
446 	struct address_space *mapping = NULL;
447 
448 	if (vma->vm_file)
449 		mapping = vma->vm_file->f_mapping;
450 
451 	if (mapping) {
452 		spin_lock(&mapping->i_mmap_lock);
453 		vma->vm_truncate_count = mapping->truncate_count;
454 	}
455 	anon_vma_lock(vma);
456 
457 	__vma_link(mm, vma, prev, rb_link, rb_parent);
458 	__vma_link_file(vma);
459 
460 	anon_vma_unlock(vma);
461 	if (mapping)
462 		spin_unlock(&mapping->i_mmap_lock);
463 
464 	mm->map_count++;
465 	validate_mm(mm);
466 }
467 
468 /*
469  * Helper for vma_adjust in the split_vma insert case:
470  * insert vm structure into list and rbtree and anon_vma,
471  * but it has already been inserted into prio_tree earlier.
472  */
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
474 {
475 	struct vm_area_struct *__vma, *prev;
476 	struct rb_node **rb_link, *rb_parent;
477 
478 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 	__vma_link(mm, vma, prev, rb_link, rb_parent);
481 	mm->map_count++;
482 }
483 
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 		struct vm_area_struct *prev)
487 {
488 	prev->vm_next = vma->vm_next;
489 	rb_erase(&vma->vm_rb, &mm->mm_rb);
490 	if (mm->mmap_cache == vma)
491 		mm->mmap_cache = prev;
492 }
493 
494 /*
495  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496  * is already present in an i_mmap tree without adjusting the tree.
497  * The following helper function should be used when such adjustments
498  * are necessary.  The "insert" vma (if any) is to be inserted
499  * before we drop the necessary locks.
500  */
501 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
503 {
504 	struct mm_struct *mm = vma->vm_mm;
505 	struct vm_area_struct *next = vma->vm_next;
506 	struct vm_area_struct *importer = NULL;
507 	struct address_space *mapping = NULL;
508 	struct prio_tree_root *root = NULL;
509 	struct file *file = vma->vm_file;
510 	long adjust_next = 0;
511 	int remove_next = 0;
512 
513 	if (next && !insert) {
514 		struct vm_area_struct *exporter = NULL;
515 
516 		if (end >= next->vm_end) {
517 			/*
518 			 * vma expands, overlapping all the next, and
519 			 * perhaps the one after too (mprotect case 6).
520 			 */
521 again:			remove_next = 1 + (end > next->vm_end);
522 			end = next->vm_end;
523 			exporter = next;
524 			importer = vma;
525 		} else if (end > next->vm_start) {
526 			/*
527 			 * vma expands, overlapping part of the next:
528 			 * mprotect case 5 shifting the boundary up.
529 			 */
530 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
531 			exporter = next;
532 			importer = vma;
533 		} else if (end < vma->vm_end) {
534 			/*
535 			 * vma shrinks, and !insert tells it's not
536 			 * split_vma inserting another: so it must be
537 			 * mprotect case 4 shifting the boundary down.
538 			 */
539 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
540 			exporter = vma;
541 			importer = next;
542 		}
543 
544 		/*
545 		 * Easily overlooked: when mprotect shifts the boundary,
546 		 * make sure the expanding vma has anon_vma set if the
547 		 * shrinking vma had, to cover any anon pages imported.
548 		 */
549 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
550 			if (anon_vma_clone(importer, exporter))
551 				return -ENOMEM;
552 			importer->anon_vma = exporter->anon_vma;
553 		}
554 	}
555 
556 	if (file) {
557 		mapping = file->f_mapping;
558 		if (!(vma->vm_flags & VM_NONLINEAR))
559 			root = &mapping->i_mmap;
560 		spin_lock(&mapping->i_mmap_lock);
561 		if (importer &&
562 		    vma->vm_truncate_count != next->vm_truncate_count) {
563 			/*
564 			 * unmap_mapping_range might be in progress:
565 			 * ensure that the expanding vma is rescanned.
566 			 */
567 			importer->vm_truncate_count = 0;
568 		}
569 		if (insert) {
570 			insert->vm_truncate_count = vma->vm_truncate_count;
571 			/*
572 			 * Put into prio_tree now, so instantiated pages
573 			 * are visible to arm/parisc __flush_dcache_page
574 			 * throughout; but we cannot insert into address
575 			 * space until vma start or end is updated.
576 			 */
577 			__vma_link_file(insert);
578 		}
579 	}
580 
581 	if (root) {
582 		flush_dcache_mmap_lock(mapping);
583 		vma_prio_tree_remove(vma, root);
584 		if (adjust_next)
585 			vma_prio_tree_remove(next, root);
586 	}
587 
588 	vma->vm_start = start;
589 	vma->vm_end = end;
590 	vma->vm_pgoff = pgoff;
591 	if (adjust_next) {
592 		next->vm_start += adjust_next << PAGE_SHIFT;
593 		next->vm_pgoff += adjust_next;
594 	}
595 
596 	if (root) {
597 		if (adjust_next)
598 			vma_prio_tree_insert(next, root);
599 		vma_prio_tree_insert(vma, root);
600 		flush_dcache_mmap_unlock(mapping);
601 	}
602 
603 	if (remove_next) {
604 		/*
605 		 * vma_merge has merged next into vma, and needs
606 		 * us to remove next before dropping the locks.
607 		 */
608 		__vma_unlink(mm, next, vma);
609 		if (file)
610 			__remove_shared_vm_struct(next, file, mapping);
611 	} else if (insert) {
612 		/*
613 		 * split_vma has split insert from vma, and needs
614 		 * us to insert it before dropping the locks
615 		 * (it may either follow vma or precede it).
616 		 */
617 		__insert_vm_struct(mm, insert);
618 	}
619 
620 	if (mapping)
621 		spin_unlock(&mapping->i_mmap_lock);
622 
623 	if (remove_next) {
624 		if (file) {
625 			fput(file);
626 			if (next->vm_flags & VM_EXECUTABLE)
627 				removed_exe_file_vma(mm);
628 		}
629 		if (next->anon_vma)
630 			anon_vma_merge(vma, next);
631 		mm->map_count--;
632 		mpol_put(vma_policy(next));
633 		kmem_cache_free(vm_area_cachep, next);
634 		/*
635 		 * In mprotect's case 6 (see comments on vma_merge),
636 		 * we must remove another next too. It would clutter
637 		 * up the code too much to do both in one go.
638 		 */
639 		if (remove_next == 2) {
640 			next = vma->vm_next;
641 			goto again;
642 		}
643 	}
644 
645 	validate_mm(mm);
646 
647 	return 0;
648 }
649 
650 /*
651  * If the vma has a ->close operation then the driver probably needs to release
652  * per-vma resources, so we don't attempt to merge those.
653  */
654 static inline int is_mergeable_vma(struct vm_area_struct *vma,
655 			struct file *file, unsigned long vm_flags)
656 {
657 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
658 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
659 		return 0;
660 	if (vma->vm_file != file)
661 		return 0;
662 	if (vma->vm_ops && vma->vm_ops->close)
663 		return 0;
664 	return 1;
665 }
666 
667 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
668 					struct anon_vma *anon_vma2)
669 {
670 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
671 }
672 
673 /*
674  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
675  * in front of (at a lower virtual address and file offset than) the vma.
676  *
677  * We cannot merge two vmas if they have differently assigned (non-NULL)
678  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
679  *
680  * We don't check here for the merged mmap wrapping around the end of pagecache
681  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
682  * wrap, nor mmaps which cover the final page at index -1UL.
683  */
684 static int
685 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
686 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
687 {
688 	if (is_mergeable_vma(vma, file, vm_flags) &&
689 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
690 		if (vma->vm_pgoff == vm_pgoff)
691 			return 1;
692 	}
693 	return 0;
694 }
695 
696 /*
697  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698  * beyond (at a higher virtual address and file offset than) the vma.
699  *
700  * We cannot merge two vmas if they have differently assigned (non-NULL)
701  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702  */
703 static int
704 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
705 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
706 {
707 	if (is_mergeable_vma(vma, file, vm_flags) &&
708 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
709 		pgoff_t vm_pglen;
710 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
711 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
712 			return 1;
713 	}
714 	return 0;
715 }
716 
717 /*
718  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
719  * whether that can be merged with its predecessor or its successor.
720  * Or both (it neatly fills a hole).
721  *
722  * In most cases - when called for mmap, brk or mremap - [addr,end) is
723  * certain not to be mapped by the time vma_merge is called; but when
724  * called for mprotect, it is certain to be already mapped (either at
725  * an offset within prev, or at the start of next), and the flags of
726  * this area are about to be changed to vm_flags - and the no-change
727  * case has already been eliminated.
728  *
729  * The following mprotect cases have to be considered, where AAAA is
730  * the area passed down from mprotect_fixup, never extending beyond one
731  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
732  *
733  *     AAAA             AAAA                AAAA          AAAA
734  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
735  *    cannot merge    might become    might become    might become
736  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
737  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
738  *    mremap move:                                    PPPPNNNNNNNN 8
739  *        AAAA
740  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
741  *    might become    case 1 below    case 2 below    case 3 below
742  *
743  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
744  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
745  */
746 struct vm_area_struct *vma_merge(struct mm_struct *mm,
747 			struct vm_area_struct *prev, unsigned long addr,
748 			unsigned long end, unsigned long vm_flags,
749 		     	struct anon_vma *anon_vma, struct file *file,
750 			pgoff_t pgoff, struct mempolicy *policy)
751 {
752 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
753 	struct vm_area_struct *area, *next;
754 	int err;
755 
756 	/*
757 	 * We later require that vma->vm_flags == vm_flags,
758 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
759 	 */
760 	if (vm_flags & VM_SPECIAL)
761 		return NULL;
762 
763 	if (prev)
764 		next = prev->vm_next;
765 	else
766 		next = mm->mmap;
767 	area = next;
768 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
769 		next = next->vm_next;
770 
771 	/*
772 	 * Can it merge with the predecessor?
773 	 */
774 	if (prev && prev->vm_end == addr &&
775   			mpol_equal(vma_policy(prev), policy) &&
776 			can_vma_merge_after(prev, vm_flags,
777 						anon_vma, file, pgoff)) {
778 		/*
779 		 * OK, it can.  Can we now merge in the successor as well?
780 		 */
781 		if (next && end == next->vm_start &&
782 				mpol_equal(policy, vma_policy(next)) &&
783 				can_vma_merge_before(next, vm_flags,
784 					anon_vma, file, pgoff+pglen) &&
785 				is_mergeable_anon_vma(prev->anon_vma,
786 						      next->anon_vma)) {
787 							/* cases 1, 6 */
788 			err = vma_adjust(prev, prev->vm_start,
789 				next->vm_end, prev->vm_pgoff, NULL);
790 		} else					/* cases 2, 5, 7 */
791 			err = vma_adjust(prev, prev->vm_start,
792 				end, prev->vm_pgoff, NULL);
793 		if (err)
794 			return NULL;
795 		return prev;
796 	}
797 
798 	/*
799 	 * Can this new request be merged in front of next?
800 	 */
801 	if (next && end == next->vm_start &&
802  			mpol_equal(policy, vma_policy(next)) &&
803 			can_vma_merge_before(next, vm_flags,
804 					anon_vma, file, pgoff+pglen)) {
805 		if (prev && addr < prev->vm_end)	/* case 4 */
806 			err = vma_adjust(prev, prev->vm_start,
807 				addr, prev->vm_pgoff, NULL);
808 		else					/* cases 3, 8 */
809 			err = vma_adjust(area, addr, next->vm_end,
810 				next->vm_pgoff - pglen, NULL);
811 		if (err)
812 			return NULL;
813 		return area;
814 	}
815 
816 	return NULL;
817 }
818 
819 /*
820  * Rough compatbility check to quickly see if it's even worth looking
821  * at sharing an anon_vma.
822  *
823  * They need to have the same vm_file, and the flags can only differ
824  * in things that mprotect may change.
825  *
826  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
827  * we can merge the two vma's. For example, we refuse to merge a vma if
828  * there is a vm_ops->close() function, because that indicates that the
829  * driver is doing some kind of reference counting. But that doesn't
830  * really matter for the anon_vma sharing case.
831  */
832 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
833 {
834 	return a->vm_end == b->vm_start &&
835 		mpol_equal(vma_policy(a), vma_policy(b)) &&
836 		a->vm_file == b->vm_file &&
837 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
838 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
839 }
840 
841 /*
842  * Do some basic sanity checking to see if we can re-use the anon_vma
843  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
844  * the same as 'old', the other will be the new one that is trying
845  * to share the anon_vma.
846  *
847  * NOTE! This runs with mm_sem held for reading, so it is possible that
848  * the anon_vma of 'old' is concurrently in the process of being set up
849  * by another page fault trying to merge _that_. But that's ok: if it
850  * is being set up, that automatically means that it will be a singleton
851  * acceptable for merging, so we can do all of this optimistically. But
852  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
853  *
854  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
855  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
856  * is to return an anon_vma that is "complex" due to having gone through
857  * a fork).
858  *
859  * We also make sure that the two vma's are compatible (adjacent,
860  * and with the same memory policies). That's all stable, even with just
861  * a read lock on the mm_sem.
862  */
863 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
864 {
865 	if (anon_vma_compatible(a, b)) {
866 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
867 
868 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
869 			return anon_vma;
870 	}
871 	return NULL;
872 }
873 
874 /*
875  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
876  * neighbouring vmas for a suitable anon_vma, before it goes off
877  * to allocate a new anon_vma.  It checks because a repetitive
878  * sequence of mprotects and faults may otherwise lead to distinct
879  * anon_vmas being allocated, preventing vma merge in subsequent
880  * mprotect.
881  */
882 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
883 {
884 	struct anon_vma *anon_vma;
885 	struct vm_area_struct *near;
886 
887 	near = vma->vm_next;
888 	if (!near)
889 		goto try_prev;
890 
891 	anon_vma = reusable_anon_vma(near, vma, near);
892 	if (anon_vma)
893 		return anon_vma;
894 try_prev:
895 	/*
896 	 * It is potentially slow to have to call find_vma_prev here.
897 	 * But it's only on the first write fault on the vma, not
898 	 * every time, and we could devise a way to avoid it later
899 	 * (e.g. stash info in next's anon_vma_node when assigning
900 	 * an anon_vma, or when trying vma_merge).  Another time.
901 	 */
902 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
903 	if (!near)
904 		goto none;
905 
906 	anon_vma = reusable_anon_vma(near, near, vma);
907 	if (anon_vma)
908 		return anon_vma;
909 none:
910 	/*
911 	 * There's no absolute need to look only at touching neighbours:
912 	 * we could search further afield for "compatible" anon_vmas.
913 	 * But it would probably just be a waste of time searching,
914 	 * or lead to too many vmas hanging off the same anon_vma.
915 	 * We're trying to allow mprotect remerging later on,
916 	 * not trying to minimize memory used for anon_vmas.
917 	 */
918 	return NULL;
919 }
920 
921 #ifdef CONFIG_PROC_FS
922 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
923 						struct file *file, long pages)
924 {
925 	const unsigned long stack_flags
926 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
927 
928 	if (file) {
929 		mm->shared_vm += pages;
930 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
931 			mm->exec_vm += pages;
932 	} else if (flags & stack_flags)
933 		mm->stack_vm += pages;
934 	if (flags & (VM_RESERVED|VM_IO))
935 		mm->reserved_vm += pages;
936 }
937 #endif /* CONFIG_PROC_FS */
938 
939 /*
940  * The caller must hold down_write(&current->mm->mmap_sem).
941  */
942 
943 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
944 			unsigned long len, unsigned long prot,
945 			unsigned long flags, unsigned long pgoff)
946 {
947 	struct mm_struct * mm = current->mm;
948 	struct inode *inode;
949 	unsigned int vm_flags;
950 	int error;
951 	unsigned long reqprot = prot;
952 
953 	/*
954 	 * Does the application expect PROT_READ to imply PROT_EXEC?
955 	 *
956 	 * (the exception is when the underlying filesystem is noexec
957 	 *  mounted, in which case we dont add PROT_EXEC.)
958 	 */
959 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
960 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
961 			prot |= PROT_EXEC;
962 
963 	if (!len)
964 		return -EINVAL;
965 
966 	if (!(flags & MAP_FIXED))
967 		addr = round_hint_to_min(addr);
968 
969 	/* Careful about overflows.. */
970 	len = PAGE_ALIGN(len);
971 	if (!len)
972 		return -ENOMEM;
973 
974 	/* offset overflow? */
975 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
976                return -EOVERFLOW;
977 
978 	/* Too many mappings? */
979 	if (mm->map_count > sysctl_max_map_count)
980 		return -ENOMEM;
981 
982 	/* Obtain the address to map to. we verify (or select) it and ensure
983 	 * that it represents a valid section of the address space.
984 	 */
985 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
986 	if (addr & ~PAGE_MASK)
987 		return addr;
988 
989 	/* Do simple checking here so the lower-level routines won't have
990 	 * to. we assume access permissions have been handled by the open
991 	 * of the memory object, so we don't do any here.
992 	 */
993 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
994 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
995 
996 	if (flags & MAP_LOCKED)
997 		if (!can_do_mlock())
998 			return -EPERM;
999 
1000 	/* mlock MCL_FUTURE? */
1001 	if (vm_flags & VM_LOCKED) {
1002 		unsigned long locked, lock_limit;
1003 		locked = len >> PAGE_SHIFT;
1004 		locked += mm->locked_vm;
1005 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1006 		lock_limit >>= PAGE_SHIFT;
1007 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1008 			return -EAGAIN;
1009 	}
1010 
1011 	inode = file ? file->f_path.dentry->d_inode : NULL;
1012 
1013 	if (file) {
1014 		switch (flags & MAP_TYPE) {
1015 		case MAP_SHARED:
1016 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1017 				return -EACCES;
1018 
1019 			/*
1020 			 * Make sure we don't allow writing to an append-only
1021 			 * file..
1022 			 */
1023 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1024 				return -EACCES;
1025 
1026 			/*
1027 			 * Make sure there are no mandatory locks on the file.
1028 			 */
1029 			if (locks_verify_locked(inode))
1030 				return -EAGAIN;
1031 
1032 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1033 			if (!(file->f_mode & FMODE_WRITE))
1034 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1035 
1036 			/* fall through */
1037 		case MAP_PRIVATE:
1038 			if (!(file->f_mode & FMODE_READ))
1039 				return -EACCES;
1040 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1041 				if (vm_flags & VM_EXEC)
1042 					return -EPERM;
1043 				vm_flags &= ~VM_MAYEXEC;
1044 			}
1045 
1046 			if (!file->f_op || !file->f_op->mmap)
1047 				return -ENODEV;
1048 			break;
1049 
1050 		default:
1051 			return -EINVAL;
1052 		}
1053 	} else {
1054 		switch (flags & MAP_TYPE) {
1055 		case MAP_SHARED:
1056 			/*
1057 			 * Ignore pgoff.
1058 			 */
1059 			pgoff = 0;
1060 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1061 			break;
1062 		case MAP_PRIVATE:
1063 			/*
1064 			 * Set pgoff according to addr for anon_vma.
1065 			 */
1066 			pgoff = addr >> PAGE_SHIFT;
1067 			break;
1068 		default:
1069 			return -EINVAL;
1070 		}
1071 	}
1072 
1073 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1074 	if (error)
1075 		return error;
1076 
1077 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1078 }
1079 EXPORT_SYMBOL(do_mmap_pgoff);
1080 
1081 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1082 		unsigned long, prot, unsigned long, flags,
1083 		unsigned long, fd, unsigned long, pgoff)
1084 {
1085 	struct file *file = NULL;
1086 	unsigned long retval = -EBADF;
1087 
1088 	if (!(flags & MAP_ANONYMOUS)) {
1089 		if (unlikely(flags & MAP_HUGETLB))
1090 			return -EINVAL;
1091 		file = fget(fd);
1092 		if (!file)
1093 			goto out;
1094 	} else if (flags & MAP_HUGETLB) {
1095 		struct user_struct *user = NULL;
1096 		/*
1097 		 * VM_NORESERVE is used because the reservations will be
1098 		 * taken when vm_ops->mmap() is called
1099 		 * A dummy user value is used because we are not locking
1100 		 * memory so no accounting is necessary
1101 		 */
1102 		len = ALIGN(len, huge_page_size(&default_hstate));
1103 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104 						&user, HUGETLB_ANONHUGE_INODE);
1105 		if (IS_ERR(file))
1106 			return PTR_ERR(file);
1107 	}
1108 
1109 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110 
1111 	down_write(&current->mm->mmap_sem);
1112 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113 	up_write(&current->mm->mmap_sem);
1114 
1115 	if (file)
1116 		fput(file);
1117 out:
1118 	return retval;
1119 }
1120 
1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1122 struct mmap_arg_struct {
1123 	unsigned long addr;
1124 	unsigned long len;
1125 	unsigned long prot;
1126 	unsigned long flags;
1127 	unsigned long fd;
1128 	unsigned long offset;
1129 };
1130 
1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132 {
1133 	struct mmap_arg_struct a;
1134 
1135 	if (copy_from_user(&a, arg, sizeof(a)))
1136 		return -EFAULT;
1137 	if (a.offset & ~PAGE_MASK)
1138 		return -EINVAL;
1139 
1140 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141 			      a.offset >> PAGE_SHIFT);
1142 }
1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144 
1145 /*
1146  * Some shared mappigns will want the pages marked read-only
1147  * to track write events. If so, we'll downgrade vm_page_prot
1148  * to the private version (using protection_map[] without the
1149  * VM_SHARED bit).
1150  */
1151 int vma_wants_writenotify(struct vm_area_struct *vma)
1152 {
1153 	unsigned int vm_flags = vma->vm_flags;
1154 
1155 	/* If it was private or non-writable, the write bit is already clear */
1156 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157 		return 0;
1158 
1159 	/* The backer wishes to know when pages are first written to? */
1160 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161 		return 1;
1162 
1163 	/* The open routine did something to the protections already? */
1164 	if (pgprot_val(vma->vm_page_prot) !=
1165 	    pgprot_val(vm_get_page_prot(vm_flags)))
1166 		return 0;
1167 
1168 	/* Specialty mapping? */
1169 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170 		return 0;
1171 
1172 	/* Can the mapping track the dirty pages? */
1173 	return vma->vm_file && vma->vm_file->f_mapping &&
1174 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175 }
1176 
1177 /*
1178  * We account for memory if it's a private writeable mapping,
1179  * not hugepages and VM_NORESERVE wasn't set.
1180  */
1181 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1182 {
1183 	/*
1184 	 * hugetlb has its own accounting separate from the core VM
1185 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186 	 */
1187 	if (file && is_file_hugepages(file))
1188 		return 0;
1189 
1190 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191 }
1192 
1193 unsigned long mmap_region(struct file *file, unsigned long addr,
1194 			  unsigned long len, unsigned long flags,
1195 			  unsigned int vm_flags, unsigned long pgoff)
1196 {
1197 	struct mm_struct *mm = current->mm;
1198 	struct vm_area_struct *vma, *prev;
1199 	int correct_wcount = 0;
1200 	int error;
1201 	struct rb_node **rb_link, *rb_parent;
1202 	unsigned long charged = 0;
1203 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1204 
1205 	/* Clear old maps */
1206 	error = -ENOMEM;
1207 munmap_back:
1208 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209 	if (vma && vma->vm_start < addr + len) {
1210 		if (do_munmap(mm, addr, len))
1211 			return -ENOMEM;
1212 		goto munmap_back;
1213 	}
1214 
1215 	/* Check against address space limit. */
1216 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217 		return -ENOMEM;
1218 
1219 	/*
1220 	 * Set 'VM_NORESERVE' if we should not account for the
1221 	 * memory use of this mapping.
1222 	 */
1223 	if ((flags & MAP_NORESERVE)) {
1224 		/* We honor MAP_NORESERVE if allowed to overcommit */
1225 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226 			vm_flags |= VM_NORESERVE;
1227 
1228 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229 		if (file && is_file_hugepages(file))
1230 			vm_flags |= VM_NORESERVE;
1231 	}
1232 
1233 	/*
1234 	 * Private writable mapping: check memory availability
1235 	 */
1236 	if (accountable_mapping(file, vm_flags)) {
1237 		charged = len >> PAGE_SHIFT;
1238 		if (security_vm_enough_memory(charged))
1239 			return -ENOMEM;
1240 		vm_flags |= VM_ACCOUNT;
1241 	}
1242 
1243 	/*
1244 	 * Can we just expand an old mapping?
1245 	 */
1246 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247 	if (vma)
1248 		goto out;
1249 
1250 	/*
1251 	 * Determine the object being mapped and call the appropriate
1252 	 * specific mapper. the address has already been validated, but
1253 	 * not unmapped, but the maps are removed from the list.
1254 	 */
1255 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256 	if (!vma) {
1257 		error = -ENOMEM;
1258 		goto unacct_error;
1259 	}
1260 
1261 	vma->vm_mm = mm;
1262 	vma->vm_start = addr;
1263 	vma->vm_end = addr + len;
1264 	vma->vm_flags = vm_flags;
1265 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266 	vma->vm_pgoff = pgoff;
1267 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1268 
1269 	if (file) {
1270 		error = -EINVAL;
1271 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272 			goto free_vma;
1273 		if (vm_flags & VM_DENYWRITE) {
1274 			error = deny_write_access(file);
1275 			if (error)
1276 				goto free_vma;
1277 			correct_wcount = 1;
1278 		}
1279 		vma->vm_file = file;
1280 		get_file(file);
1281 		error = file->f_op->mmap(file, vma);
1282 		if (error)
1283 			goto unmap_and_free_vma;
1284 		if (vm_flags & VM_EXECUTABLE)
1285 			added_exe_file_vma(mm);
1286 
1287 		/* Can addr have changed??
1288 		 *
1289 		 * Answer: Yes, several device drivers can do it in their
1290 		 *         f_op->mmap method. -DaveM
1291 		 */
1292 		addr = vma->vm_start;
1293 		pgoff = vma->vm_pgoff;
1294 		vm_flags = vma->vm_flags;
1295 	} else if (vm_flags & VM_SHARED) {
1296 		error = shmem_zero_setup(vma);
1297 		if (error)
1298 			goto free_vma;
1299 	}
1300 
1301 	if (vma_wants_writenotify(vma)) {
1302 		pgprot_t pprot = vma->vm_page_prot;
1303 
1304 		/* Can vma->vm_page_prot have changed??
1305 		 *
1306 		 * Answer: Yes, drivers may have changed it in their
1307 		 *         f_op->mmap method.
1308 		 *
1309 		 * Ensures that vmas marked as uncached stay that way.
1310 		 */
1311 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1312 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1313 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314 	}
1315 
1316 	vma_link(mm, vma, prev, rb_link, rb_parent);
1317 	file = vma->vm_file;
1318 
1319 	/* Once vma denies write, undo our temporary denial count */
1320 	if (correct_wcount)
1321 		atomic_inc(&inode->i_writecount);
1322 out:
1323 	perf_event_mmap(vma);
1324 
1325 	mm->total_vm += len >> PAGE_SHIFT;
1326 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1327 	if (vm_flags & VM_LOCKED) {
1328 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1329 			mm->locked_vm += (len >> PAGE_SHIFT);
1330 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1331 		make_pages_present(addr, addr + len);
1332 	return addr;
1333 
1334 unmap_and_free_vma:
1335 	if (correct_wcount)
1336 		atomic_inc(&inode->i_writecount);
1337 	vma->vm_file = NULL;
1338 	fput(file);
1339 
1340 	/* Undo any partial mapping done by a device driver. */
1341 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1342 	charged = 0;
1343 free_vma:
1344 	kmem_cache_free(vm_area_cachep, vma);
1345 unacct_error:
1346 	if (charged)
1347 		vm_unacct_memory(charged);
1348 	return error;
1349 }
1350 
1351 /* Get an address range which is currently unmapped.
1352  * For shmat() with addr=0.
1353  *
1354  * Ugly calling convention alert:
1355  * Return value with the low bits set means error value,
1356  * ie
1357  *	if (ret & ~PAGE_MASK)
1358  *		error = ret;
1359  *
1360  * This function "knows" that -ENOMEM has the bits set.
1361  */
1362 #ifndef HAVE_ARCH_UNMAPPED_AREA
1363 unsigned long
1364 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1365 		unsigned long len, unsigned long pgoff, unsigned long flags)
1366 {
1367 	struct mm_struct *mm = current->mm;
1368 	struct vm_area_struct *vma;
1369 	unsigned long start_addr;
1370 
1371 	if (len > TASK_SIZE)
1372 		return -ENOMEM;
1373 
1374 	if (flags & MAP_FIXED)
1375 		return addr;
1376 
1377 	if (addr) {
1378 		addr = PAGE_ALIGN(addr);
1379 		vma = find_vma(mm, addr);
1380 		if (TASK_SIZE - len >= addr &&
1381 		    (!vma || addr + len <= vma->vm_start))
1382 			return addr;
1383 	}
1384 	if (len > mm->cached_hole_size) {
1385 	        start_addr = addr = mm->free_area_cache;
1386 	} else {
1387 	        start_addr = addr = TASK_UNMAPPED_BASE;
1388 	        mm->cached_hole_size = 0;
1389 	}
1390 
1391 full_search:
1392 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1393 		/* At this point:  (!vma || addr < vma->vm_end). */
1394 		if (TASK_SIZE - len < addr) {
1395 			/*
1396 			 * Start a new search - just in case we missed
1397 			 * some holes.
1398 			 */
1399 			if (start_addr != TASK_UNMAPPED_BASE) {
1400 				addr = TASK_UNMAPPED_BASE;
1401 			        start_addr = addr;
1402 				mm->cached_hole_size = 0;
1403 				goto full_search;
1404 			}
1405 			return -ENOMEM;
1406 		}
1407 		if (!vma || addr + len <= vma->vm_start) {
1408 			/*
1409 			 * Remember the place where we stopped the search:
1410 			 */
1411 			mm->free_area_cache = addr + len;
1412 			return addr;
1413 		}
1414 		if (addr + mm->cached_hole_size < vma->vm_start)
1415 		        mm->cached_hole_size = vma->vm_start - addr;
1416 		addr = vma->vm_end;
1417 	}
1418 }
1419 #endif
1420 
1421 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1422 {
1423 	/*
1424 	 * Is this a new hole at the lowest possible address?
1425 	 */
1426 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1427 		mm->free_area_cache = addr;
1428 		mm->cached_hole_size = ~0UL;
1429 	}
1430 }
1431 
1432 /*
1433  * This mmap-allocator allocates new areas top-down from below the
1434  * stack's low limit (the base):
1435  */
1436 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437 unsigned long
1438 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439 			  const unsigned long len, const unsigned long pgoff,
1440 			  const unsigned long flags)
1441 {
1442 	struct vm_area_struct *vma;
1443 	struct mm_struct *mm = current->mm;
1444 	unsigned long addr = addr0;
1445 
1446 	/* requested length too big for entire address space */
1447 	if (len > TASK_SIZE)
1448 		return -ENOMEM;
1449 
1450 	if (flags & MAP_FIXED)
1451 		return addr;
1452 
1453 	/* requesting a specific address */
1454 	if (addr) {
1455 		addr = PAGE_ALIGN(addr);
1456 		vma = find_vma(mm, addr);
1457 		if (TASK_SIZE - len >= addr &&
1458 				(!vma || addr + len <= vma->vm_start))
1459 			return addr;
1460 	}
1461 
1462 	/* check if free_area_cache is useful for us */
1463 	if (len <= mm->cached_hole_size) {
1464  	        mm->cached_hole_size = 0;
1465  		mm->free_area_cache = mm->mmap_base;
1466  	}
1467 
1468 	/* either no address requested or can't fit in requested address hole */
1469 	addr = mm->free_area_cache;
1470 
1471 	/* make sure it can fit in the remaining address space */
1472 	if (addr > len) {
1473 		vma = find_vma(mm, addr-len);
1474 		if (!vma || addr <= vma->vm_start)
1475 			/* remember the address as a hint for next time */
1476 			return (mm->free_area_cache = addr-len);
1477 	}
1478 
1479 	if (mm->mmap_base < len)
1480 		goto bottomup;
1481 
1482 	addr = mm->mmap_base-len;
1483 
1484 	do {
1485 		/*
1486 		 * Lookup failure means no vma is above this address,
1487 		 * else if new region fits below vma->vm_start,
1488 		 * return with success:
1489 		 */
1490 		vma = find_vma(mm, addr);
1491 		if (!vma || addr+len <= vma->vm_start)
1492 			/* remember the address as a hint for next time */
1493 			return (mm->free_area_cache = addr);
1494 
1495  		/* remember the largest hole we saw so far */
1496  		if (addr + mm->cached_hole_size < vma->vm_start)
1497  		        mm->cached_hole_size = vma->vm_start - addr;
1498 
1499 		/* try just below the current vma->vm_start */
1500 		addr = vma->vm_start-len;
1501 	} while (len < vma->vm_start);
1502 
1503 bottomup:
1504 	/*
1505 	 * A failed mmap() very likely causes application failure,
1506 	 * so fall back to the bottom-up function here. This scenario
1507 	 * can happen with large stack limits and large mmap()
1508 	 * allocations.
1509 	 */
1510 	mm->cached_hole_size = ~0UL;
1511   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1512 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1513 	/*
1514 	 * Restore the topdown base:
1515 	 */
1516 	mm->free_area_cache = mm->mmap_base;
1517 	mm->cached_hole_size = ~0UL;
1518 
1519 	return addr;
1520 }
1521 #endif
1522 
1523 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1524 {
1525 	/*
1526 	 * Is this a new hole at the highest possible address?
1527 	 */
1528 	if (addr > mm->free_area_cache)
1529 		mm->free_area_cache = addr;
1530 
1531 	/* dont allow allocations above current base */
1532 	if (mm->free_area_cache > mm->mmap_base)
1533 		mm->free_area_cache = mm->mmap_base;
1534 }
1535 
1536 unsigned long
1537 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1538 		unsigned long pgoff, unsigned long flags)
1539 {
1540 	unsigned long (*get_area)(struct file *, unsigned long,
1541 				  unsigned long, unsigned long, unsigned long);
1542 
1543 	unsigned long error = arch_mmap_check(addr, len, flags);
1544 	if (error)
1545 		return error;
1546 
1547 	/* Careful about overflows.. */
1548 	if (len > TASK_SIZE)
1549 		return -ENOMEM;
1550 
1551 	get_area = current->mm->get_unmapped_area;
1552 	if (file && file->f_op && file->f_op->get_unmapped_area)
1553 		get_area = file->f_op->get_unmapped_area;
1554 	addr = get_area(file, addr, len, pgoff, flags);
1555 	if (IS_ERR_VALUE(addr))
1556 		return addr;
1557 
1558 	if (addr > TASK_SIZE - len)
1559 		return -ENOMEM;
1560 	if (addr & ~PAGE_MASK)
1561 		return -EINVAL;
1562 
1563 	return arch_rebalance_pgtables(addr, len);
1564 }
1565 
1566 EXPORT_SYMBOL(get_unmapped_area);
1567 
1568 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1569 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1570 {
1571 	struct vm_area_struct *vma = NULL;
1572 
1573 	if (mm) {
1574 		/* Check the cache first. */
1575 		/* (Cache hit rate is typically around 35%.) */
1576 		vma = mm->mmap_cache;
1577 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1578 			struct rb_node * rb_node;
1579 
1580 			rb_node = mm->mm_rb.rb_node;
1581 			vma = NULL;
1582 
1583 			while (rb_node) {
1584 				struct vm_area_struct * vma_tmp;
1585 
1586 				vma_tmp = rb_entry(rb_node,
1587 						struct vm_area_struct, vm_rb);
1588 
1589 				if (vma_tmp->vm_end > addr) {
1590 					vma = vma_tmp;
1591 					if (vma_tmp->vm_start <= addr)
1592 						break;
1593 					rb_node = rb_node->rb_left;
1594 				} else
1595 					rb_node = rb_node->rb_right;
1596 			}
1597 			if (vma)
1598 				mm->mmap_cache = vma;
1599 		}
1600 	}
1601 	return vma;
1602 }
1603 
1604 EXPORT_SYMBOL(find_vma);
1605 
1606 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1607 struct vm_area_struct *
1608 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1609 			struct vm_area_struct **pprev)
1610 {
1611 	struct vm_area_struct *vma = NULL, *prev = NULL;
1612 	struct rb_node *rb_node;
1613 	if (!mm)
1614 		goto out;
1615 
1616 	/* Guard against addr being lower than the first VMA */
1617 	vma = mm->mmap;
1618 
1619 	/* Go through the RB tree quickly. */
1620 	rb_node = mm->mm_rb.rb_node;
1621 
1622 	while (rb_node) {
1623 		struct vm_area_struct *vma_tmp;
1624 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1625 
1626 		if (addr < vma_tmp->vm_end) {
1627 			rb_node = rb_node->rb_left;
1628 		} else {
1629 			prev = vma_tmp;
1630 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1631 				break;
1632 			rb_node = rb_node->rb_right;
1633 		}
1634 	}
1635 
1636 out:
1637 	*pprev = prev;
1638 	return prev ? prev->vm_next : vma;
1639 }
1640 
1641 /*
1642  * Verify that the stack growth is acceptable and
1643  * update accounting. This is shared with both the
1644  * grow-up and grow-down cases.
1645  */
1646 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1647 {
1648 	struct mm_struct *mm = vma->vm_mm;
1649 	struct rlimit *rlim = current->signal->rlim;
1650 	unsigned long new_start;
1651 
1652 	/* address space limit tests */
1653 	if (!may_expand_vm(mm, grow))
1654 		return -ENOMEM;
1655 
1656 	/* Stack limit test */
1657 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1658 		return -ENOMEM;
1659 
1660 	/* mlock limit tests */
1661 	if (vma->vm_flags & VM_LOCKED) {
1662 		unsigned long locked;
1663 		unsigned long limit;
1664 		locked = mm->locked_vm + grow;
1665 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1666 		limit >>= PAGE_SHIFT;
1667 		if (locked > limit && !capable(CAP_IPC_LOCK))
1668 			return -ENOMEM;
1669 	}
1670 
1671 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1672 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1673 			vma->vm_end - size;
1674 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1675 		return -EFAULT;
1676 
1677 	/*
1678 	 * Overcommit..  This must be the final test, as it will
1679 	 * update security statistics.
1680 	 */
1681 	if (security_vm_enough_memory_mm(mm, grow))
1682 		return -ENOMEM;
1683 
1684 	/* Ok, everything looks good - let it rip */
1685 	mm->total_vm += grow;
1686 	if (vma->vm_flags & VM_LOCKED)
1687 		mm->locked_vm += grow;
1688 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1689 	return 0;
1690 }
1691 
1692 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1693 /*
1694  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1695  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1696  */
1697 #ifndef CONFIG_IA64
1698 static
1699 #endif
1700 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1701 {
1702 	int error;
1703 
1704 	if (!(vma->vm_flags & VM_GROWSUP))
1705 		return -EFAULT;
1706 
1707 	/*
1708 	 * We must make sure the anon_vma is allocated
1709 	 * so that the anon_vma locking is not a noop.
1710 	 */
1711 	if (unlikely(anon_vma_prepare(vma)))
1712 		return -ENOMEM;
1713 	anon_vma_lock(vma);
1714 
1715 	/*
1716 	 * vma->vm_start/vm_end cannot change under us because the caller
1717 	 * is required to hold the mmap_sem in read mode.  We need the
1718 	 * anon_vma lock to serialize against concurrent expand_stacks.
1719 	 * Also guard against wrapping around to address 0.
1720 	 */
1721 	if (address < PAGE_ALIGN(address+4))
1722 		address = PAGE_ALIGN(address+4);
1723 	else {
1724 		anon_vma_unlock(vma);
1725 		return -ENOMEM;
1726 	}
1727 	error = 0;
1728 
1729 	/* Somebody else might have raced and expanded it already */
1730 	if (address > vma->vm_end) {
1731 		unsigned long size, grow;
1732 
1733 		size = address - vma->vm_start;
1734 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1735 
1736 		error = acct_stack_growth(vma, size, grow);
1737 		if (!error) {
1738 			vma->vm_end = address;
1739 			perf_event_mmap(vma);
1740 		}
1741 	}
1742 	anon_vma_unlock(vma);
1743 	return error;
1744 }
1745 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1746 
1747 /*
1748  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1749  */
1750 static int expand_downwards(struct vm_area_struct *vma,
1751 				   unsigned long address)
1752 {
1753 	int error;
1754 
1755 	/*
1756 	 * We must make sure the anon_vma is allocated
1757 	 * so that the anon_vma locking is not a noop.
1758 	 */
1759 	if (unlikely(anon_vma_prepare(vma)))
1760 		return -ENOMEM;
1761 
1762 	address &= PAGE_MASK;
1763 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1764 	if (error)
1765 		return error;
1766 
1767 	anon_vma_lock(vma);
1768 
1769 	/*
1770 	 * vma->vm_start/vm_end cannot change under us because the caller
1771 	 * is required to hold the mmap_sem in read mode.  We need the
1772 	 * anon_vma lock to serialize against concurrent expand_stacks.
1773 	 */
1774 
1775 	/* Somebody else might have raced and expanded it already */
1776 	if (address < vma->vm_start) {
1777 		unsigned long size, grow;
1778 
1779 		size = vma->vm_end - address;
1780 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1781 
1782 		error = acct_stack_growth(vma, size, grow);
1783 		if (!error) {
1784 			vma->vm_start = address;
1785 			vma->vm_pgoff -= grow;
1786 			perf_event_mmap(vma);
1787 		}
1788 	}
1789 	anon_vma_unlock(vma);
1790 	return error;
1791 }
1792 
1793 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1794 {
1795 	return expand_downwards(vma, address);
1796 }
1797 
1798 #ifdef CONFIG_STACK_GROWSUP
1799 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1800 {
1801 	return expand_upwards(vma, address);
1802 }
1803 
1804 struct vm_area_struct *
1805 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1806 {
1807 	struct vm_area_struct *vma, *prev;
1808 
1809 	addr &= PAGE_MASK;
1810 	vma = find_vma_prev(mm, addr, &prev);
1811 	if (vma && (vma->vm_start <= addr))
1812 		return vma;
1813 	if (!prev || expand_stack(prev, addr))
1814 		return NULL;
1815 	if (prev->vm_flags & VM_LOCKED) {
1816 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1817 	}
1818 	return prev;
1819 }
1820 #else
1821 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822 {
1823 	return expand_downwards(vma, address);
1824 }
1825 
1826 struct vm_area_struct *
1827 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1828 {
1829 	struct vm_area_struct * vma;
1830 	unsigned long start;
1831 
1832 	addr &= PAGE_MASK;
1833 	vma = find_vma(mm,addr);
1834 	if (!vma)
1835 		return NULL;
1836 	if (vma->vm_start <= addr)
1837 		return vma;
1838 	if (!(vma->vm_flags & VM_GROWSDOWN))
1839 		return NULL;
1840 	start = vma->vm_start;
1841 	if (expand_stack(vma, addr))
1842 		return NULL;
1843 	if (vma->vm_flags & VM_LOCKED) {
1844 		mlock_vma_pages_range(vma, addr, start);
1845 	}
1846 	return vma;
1847 }
1848 #endif
1849 
1850 /*
1851  * Ok - we have the memory areas we should free on the vma list,
1852  * so release them, and do the vma updates.
1853  *
1854  * Called with the mm semaphore held.
1855  */
1856 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1857 {
1858 	/* Update high watermark before we lower total_vm */
1859 	update_hiwater_vm(mm);
1860 	do {
1861 		long nrpages = vma_pages(vma);
1862 
1863 		mm->total_vm -= nrpages;
1864 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1865 		vma = remove_vma(vma);
1866 	} while (vma);
1867 	validate_mm(mm);
1868 }
1869 
1870 /*
1871  * Get rid of page table information in the indicated region.
1872  *
1873  * Called with the mm semaphore held.
1874  */
1875 static void unmap_region(struct mm_struct *mm,
1876 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1877 		unsigned long start, unsigned long end)
1878 {
1879 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1880 	struct mmu_gather *tlb;
1881 	unsigned long nr_accounted = 0;
1882 
1883 	lru_add_drain();
1884 	tlb = tlb_gather_mmu(mm, 0);
1885 	update_hiwater_rss(mm);
1886 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1887 	vm_unacct_memory(nr_accounted);
1888 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1889 				 next? next->vm_start: 0);
1890 	tlb_finish_mmu(tlb, start, end);
1891 }
1892 
1893 /*
1894  * Create a list of vma's touched by the unmap, removing them from the mm's
1895  * vma list as we go..
1896  */
1897 static void
1898 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1899 	struct vm_area_struct *prev, unsigned long end)
1900 {
1901 	struct vm_area_struct **insertion_point;
1902 	struct vm_area_struct *tail_vma = NULL;
1903 	unsigned long addr;
1904 
1905 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1906 	do {
1907 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1908 		mm->map_count--;
1909 		tail_vma = vma;
1910 		vma = vma->vm_next;
1911 	} while (vma && vma->vm_start < end);
1912 	*insertion_point = vma;
1913 	tail_vma->vm_next = NULL;
1914 	if (mm->unmap_area == arch_unmap_area)
1915 		addr = prev ? prev->vm_end : mm->mmap_base;
1916 	else
1917 		addr = vma ?  vma->vm_start : mm->mmap_base;
1918 	mm->unmap_area(mm, addr);
1919 	mm->mmap_cache = NULL;		/* Kill the cache. */
1920 }
1921 
1922 /*
1923  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1924  * munmap path where it doesn't make sense to fail.
1925  */
1926 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1927 	      unsigned long addr, int new_below)
1928 {
1929 	struct mempolicy *pol;
1930 	struct vm_area_struct *new;
1931 	int err = -ENOMEM;
1932 
1933 	if (is_vm_hugetlb_page(vma) && (addr &
1934 					~(huge_page_mask(hstate_vma(vma)))))
1935 		return -EINVAL;
1936 
1937 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1938 	if (!new)
1939 		goto out_err;
1940 
1941 	/* most fields are the same, copy all, and then fixup */
1942 	*new = *vma;
1943 
1944 	INIT_LIST_HEAD(&new->anon_vma_chain);
1945 
1946 	if (new_below)
1947 		new->vm_end = addr;
1948 	else {
1949 		new->vm_start = addr;
1950 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1951 	}
1952 
1953 	pol = mpol_dup(vma_policy(vma));
1954 	if (IS_ERR(pol)) {
1955 		err = PTR_ERR(pol);
1956 		goto out_free_vma;
1957 	}
1958 	vma_set_policy(new, pol);
1959 
1960 	if (anon_vma_clone(new, vma))
1961 		goto out_free_mpol;
1962 
1963 	if (new->vm_file) {
1964 		get_file(new->vm_file);
1965 		if (vma->vm_flags & VM_EXECUTABLE)
1966 			added_exe_file_vma(mm);
1967 	}
1968 
1969 	if (new->vm_ops && new->vm_ops->open)
1970 		new->vm_ops->open(new);
1971 
1972 	if (new_below)
1973 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1974 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1975 	else
1976 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1977 
1978 	/* Success. */
1979 	if (!err)
1980 		return 0;
1981 
1982 	/* Clean everything up if vma_adjust failed. */
1983 	if (new->vm_ops && new->vm_ops->close)
1984 		new->vm_ops->close(new);
1985 	if (new->vm_file) {
1986 		if (vma->vm_flags & VM_EXECUTABLE)
1987 			removed_exe_file_vma(mm);
1988 		fput(new->vm_file);
1989 	}
1990  out_free_mpol:
1991 	mpol_put(pol);
1992  out_free_vma:
1993 	kmem_cache_free(vm_area_cachep, new);
1994  out_err:
1995 	return err;
1996 }
1997 
1998 /*
1999  * Split a vma into two pieces at address 'addr', a new vma is allocated
2000  * either for the first part or the tail.
2001  */
2002 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2003 	      unsigned long addr, int new_below)
2004 {
2005 	if (mm->map_count >= sysctl_max_map_count)
2006 		return -ENOMEM;
2007 
2008 	return __split_vma(mm, vma, addr, new_below);
2009 }
2010 
2011 /* Munmap is split into 2 main parts -- this part which finds
2012  * what needs doing, and the areas themselves, which do the
2013  * work.  This now handles partial unmappings.
2014  * Jeremy Fitzhardinge <jeremy@goop.org>
2015  */
2016 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2017 {
2018 	unsigned long end;
2019 	struct vm_area_struct *vma, *prev, *last;
2020 
2021 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2022 		return -EINVAL;
2023 
2024 	if ((len = PAGE_ALIGN(len)) == 0)
2025 		return -EINVAL;
2026 
2027 	/* Find the first overlapping VMA */
2028 	vma = find_vma_prev(mm, start, &prev);
2029 	if (!vma)
2030 		return 0;
2031 	/* we have  start < vma->vm_end  */
2032 
2033 	/* if it doesn't overlap, we have nothing.. */
2034 	end = start + len;
2035 	if (vma->vm_start >= end)
2036 		return 0;
2037 
2038 	/*
2039 	 * If we need to split any vma, do it now to save pain later.
2040 	 *
2041 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2042 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2043 	 * places tmp vma above, and higher split_vma places tmp vma below.
2044 	 */
2045 	if (start > vma->vm_start) {
2046 		int error;
2047 
2048 		/*
2049 		 * Make sure that map_count on return from munmap() will
2050 		 * not exceed its limit; but let map_count go just above
2051 		 * its limit temporarily, to help free resources as expected.
2052 		 */
2053 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2054 			return -ENOMEM;
2055 
2056 		error = __split_vma(mm, vma, start, 0);
2057 		if (error)
2058 			return error;
2059 		prev = vma;
2060 	}
2061 
2062 	/* Does it split the last one? */
2063 	last = find_vma(mm, end);
2064 	if (last && end > last->vm_start) {
2065 		int error = __split_vma(mm, last, end, 1);
2066 		if (error)
2067 			return error;
2068 	}
2069 	vma = prev? prev->vm_next: mm->mmap;
2070 
2071 	/*
2072 	 * unlock any mlock()ed ranges before detaching vmas
2073 	 */
2074 	if (mm->locked_vm) {
2075 		struct vm_area_struct *tmp = vma;
2076 		while (tmp && tmp->vm_start < end) {
2077 			if (tmp->vm_flags & VM_LOCKED) {
2078 				mm->locked_vm -= vma_pages(tmp);
2079 				munlock_vma_pages_all(tmp);
2080 			}
2081 			tmp = tmp->vm_next;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * Remove the vma's, and unmap the actual pages
2087 	 */
2088 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2089 	unmap_region(mm, vma, prev, start, end);
2090 
2091 	/* Fix up all other VM information */
2092 	remove_vma_list(mm, vma);
2093 
2094 	return 0;
2095 }
2096 
2097 EXPORT_SYMBOL(do_munmap);
2098 
2099 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2100 {
2101 	int ret;
2102 	struct mm_struct *mm = current->mm;
2103 
2104 	profile_munmap(addr);
2105 
2106 	down_write(&mm->mmap_sem);
2107 	ret = do_munmap(mm, addr, len);
2108 	up_write(&mm->mmap_sem);
2109 	return ret;
2110 }
2111 
2112 static inline void verify_mm_writelocked(struct mm_struct *mm)
2113 {
2114 #ifdef CONFIG_DEBUG_VM
2115 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2116 		WARN_ON(1);
2117 		up_read(&mm->mmap_sem);
2118 	}
2119 #endif
2120 }
2121 
2122 /*
2123  *  this is really a simplified "do_mmap".  it only handles
2124  *  anonymous maps.  eventually we may be able to do some
2125  *  brk-specific accounting here.
2126  */
2127 unsigned long do_brk(unsigned long addr, unsigned long len)
2128 {
2129 	struct mm_struct * mm = current->mm;
2130 	struct vm_area_struct * vma, * prev;
2131 	unsigned long flags;
2132 	struct rb_node ** rb_link, * rb_parent;
2133 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2134 	int error;
2135 
2136 	len = PAGE_ALIGN(len);
2137 	if (!len)
2138 		return addr;
2139 
2140 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2141 	if (error)
2142 		return error;
2143 
2144 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2145 
2146 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2147 	if (error & ~PAGE_MASK)
2148 		return error;
2149 
2150 	/*
2151 	 * mlock MCL_FUTURE?
2152 	 */
2153 	if (mm->def_flags & VM_LOCKED) {
2154 		unsigned long locked, lock_limit;
2155 		locked = len >> PAGE_SHIFT;
2156 		locked += mm->locked_vm;
2157 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2158 		lock_limit >>= PAGE_SHIFT;
2159 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2160 			return -EAGAIN;
2161 	}
2162 
2163 	/*
2164 	 * mm->mmap_sem is required to protect against another thread
2165 	 * changing the mappings in case we sleep.
2166 	 */
2167 	verify_mm_writelocked(mm);
2168 
2169 	/*
2170 	 * Clear old maps.  this also does some error checking for us
2171 	 */
2172  munmap_back:
2173 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2174 	if (vma && vma->vm_start < addr + len) {
2175 		if (do_munmap(mm, addr, len))
2176 			return -ENOMEM;
2177 		goto munmap_back;
2178 	}
2179 
2180 	/* Check against address space limits *after* clearing old maps... */
2181 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2182 		return -ENOMEM;
2183 
2184 	if (mm->map_count > sysctl_max_map_count)
2185 		return -ENOMEM;
2186 
2187 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2188 		return -ENOMEM;
2189 
2190 	/* Can we just expand an old private anonymous mapping? */
2191 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2192 					NULL, NULL, pgoff, NULL);
2193 	if (vma)
2194 		goto out;
2195 
2196 	/*
2197 	 * create a vma struct for an anonymous mapping
2198 	 */
2199 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2200 	if (!vma) {
2201 		vm_unacct_memory(len >> PAGE_SHIFT);
2202 		return -ENOMEM;
2203 	}
2204 
2205 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2206 	vma->vm_mm = mm;
2207 	vma->vm_start = addr;
2208 	vma->vm_end = addr + len;
2209 	vma->vm_pgoff = pgoff;
2210 	vma->vm_flags = flags;
2211 	vma->vm_page_prot = vm_get_page_prot(flags);
2212 	vma_link(mm, vma, prev, rb_link, rb_parent);
2213 out:
2214 	perf_event_mmap(vma);
2215 	mm->total_vm += len >> PAGE_SHIFT;
2216 	if (flags & VM_LOCKED) {
2217 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2218 			mm->locked_vm += (len >> PAGE_SHIFT);
2219 	}
2220 	return addr;
2221 }
2222 
2223 EXPORT_SYMBOL(do_brk);
2224 
2225 /* Release all mmaps. */
2226 void exit_mmap(struct mm_struct *mm)
2227 {
2228 	struct mmu_gather *tlb;
2229 	struct vm_area_struct *vma;
2230 	unsigned long nr_accounted = 0;
2231 	unsigned long end;
2232 
2233 	/* mm's last user has gone, and its about to be pulled down */
2234 	mmu_notifier_release(mm);
2235 
2236 	if (mm->locked_vm) {
2237 		vma = mm->mmap;
2238 		while (vma) {
2239 			if (vma->vm_flags & VM_LOCKED)
2240 				munlock_vma_pages_all(vma);
2241 			vma = vma->vm_next;
2242 		}
2243 	}
2244 
2245 	arch_exit_mmap(mm);
2246 
2247 	vma = mm->mmap;
2248 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2249 		return;
2250 
2251 	lru_add_drain();
2252 	flush_cache_mm(mm);
2253 	tlb = tlb_gather_mmu(mm, 1);
2254 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2255 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2256 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2257 	vm_unacct_memory(nr_accounted);
2258 
2259 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2260 	tlb_finish_mmu(tlb, 0, end);
2261 
2262 	/*
2263 	 * Walk the list again, actually closing and freeing it,
2264 	 * with preemption enabled, without holding any MM locks.
2265 	 */
2266 	while (vma)
2267 		vma = remove_vma(vma);
2268 
2269 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2270 }
2271 
2272 /* Insert vm structure into process list sorted by address
2273  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2274  * then i_mmap_lock is taken here.
2275  */
2276 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2277 {
2278 	struct vm_area_struct * __vma, * prev;
2279 	struct rb_node ** rb_link, * rb_parent;
2280 
2281 	/*
2282 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2283 	 * until its first write fault, when page's anon_vma and index
2284 	 * are set.  But now set the vm_pgoff it will almost certainly
2285 	 * end up with (unless mremap moves it elsewhere before that
2286 	 * first wfault), so /proc/pid/maps tells a consistent story.
2287 	 *
2288 	 * By setting it to reflect the virtual start address of the
2289 	 * vma, merges and splits can happen in a seamless way, just
2290 	 * using the existing file pgoff checks and manipulations.
2291 	 * Similarly in do_mmap_pgoff and in do_brk.
2292 	 */
2293 	if (!vma->vm_file) {
2294 		BUG_ON(vma->anon_vma);
2295 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2296 	}
2297 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2298 	if (__vma && __vma->vm_start < vma->vm_end)
2299 		return -ENOMEM;
2300 	if ((vma->vm_flags & VM_ACCOUNT) &&
2301 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2302 		return -ENOMEM;
2303 	vma_link(mm, vma, prev, rb_link, rb_parent);
2304 	return 0;
2305 }
2306 
2307 /*
2308  * Copy the vma structure to a new location in the same mm,
2309  * prior to moving page table entries, to effect an mremap move.
2310  */
2311 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2312 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2313 {
2314 	struct vm_area_struct *vma = *vmap;
2315 	unsigned long vma_start = vma->vm_start;
2316 	struct mm_struct *mm = vma->vm_mm;
2317 	struct vm_area_struct *new_vma, *prev;
2318 	struct rb_node **rb_link, *rb_parent;
2319 	struct mempolicy *pol;
2320 
2321 	/*
2322 	 * If anonymous vma has not yet been faulted, update new pgoff
2323 	 * to match new location, to increase its chance of merging.
2324 	 */
2325 	if (!vma->vm_file && !vma->anon_vma)
2326 		pgoff = addr >> PAGE_SHIFT;
2327 
2328 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2329 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2330 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2331 	if (new_vma) {
2332 		/*
2333 		 * Source vma may have been merged into new_vma
2334 		 */
2335 		if (vma_start >= new_vma->vm_start &&
2336 		    vma_start < new_vma->vm_end)
2337 			*vmap = new_vma;
2338 	} else {
2339 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2340 		if (new_vma) {
2341 			*new_vma = *vma;
2342 			pol = mpol_dup(vma_policy(vma));
2343 			if (IS_ERR(pol))
2344 				goto out_free_vma;
2345 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2346 			if (anon_vma_clone(new_vma, vma))
2347 				goto out_free_mempol;
2348 			vma_set_policy(new_vma, pol);
2349 			new_vma->vm_start = addr;
2350 			new_vma->vm_end = addr + len;
2351 			new_vma->vm_pgoff = pgoff;
2352 			if (new_vma->vm_file) {
2353 				get_file(new_vma->vm_file);
2354 				if (vma->vm_flags & VM_EXECUTABLE)
2355 					added_exe_file_vma(mm);
2356 			}
2357 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2358 				new_vma->vm_ops->open(new_vma);
2359 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2360 		}
2361 	}
2362 	return new_vma;
2363 
2364  out_free_mempol:
2365 	mpol_put(pol);
2366  out_free_vma:
2367 	kmem_cache_free(vm_area_cachep, new_vma);
2368 	return NULL;
2369 }
2370 
2371 /*
2372  * Return true if the calling process may expand its vm space by the passed
2373  * number of pages
2374  */
2375 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2376 {
2377 	unsigned long cur = mm->total_vm;	/* pages */
2378 	unsigned long lim;
2379 
2380 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2381 
2382 	if (cur + npages > lim)
2383 		return 0;
2384 	return 1;
2385 }
2386 
2387 
2388 static int special_mapping_fault(struct vm_area_struct *vma,
2389 				struct vm_fault *vmf)
2390 {
2391 	pgoff_t pgoff;
2392 	struct page **pages;
2393 
2394 	/*
2395 	 * special mappings have no vm_file, and in that case, the mm
2396 	 * uses vm_pgoff internally. So we have to subtract it from here.
2397 	 * We are allowed to do this because we are the mm; do not copy
2398 	 * this code into drivers!
2399 	 */
2400 	pgoff = vmf->pgoff - vma->vm_pgoff;
2401 
2402 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2403 		pgoff--;
2404 
2405 	if (*pages) {
2406 		struct page *page = *pages;
2407 		get_page(page);
2408 		vmf->page = page;
2409 		return 0;
2410 	}
2411 
2412 	return VM_FAULT_SIGBUS;
2413 }
2414 
2415 /*
2416  * Having a close hook prevents vma merging regardless of flags.
2417  */
2418 static void special_mapping_close(struct vm_area_struct *vma)
2419 {
2420 }
2421 
2422 static const struct vm_operations_struct special_mapping_vmops = {
2423 	.close = special_mapping_close,
2424 	.fault = special_mapping_fault,
2425 };
2426 
2427 /*
2428  * Called with mm->mmap_sem held for writing.
2429  * Insert a new vma covering the given region, with the given flags.
2430  * Its pages are supplied by the given array of struct page *.
2431  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2432  * The region past the last page supplied will always produce SIGBUS.
2433  * The array pointer and the pages it points to are assumed to stay alive
2434  * for as long as this mapping might exist.
2435  */
2436 int install_special_mapping(struct mm_struct *mm,
2437 			    unsigned long addr, unsigned long len,
2438 			    unsigned long vm_flags, struct page **pages)
2439 {
2440 	struct vm_area_struct *vma;
2441 
2442 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2443 	if (unlikely(vma == NULL))
2444 		return -ENOMEM;
2445 
2446 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2447 	vma->vm_mm = mm;
2448 	vma->vm_start = addr;
2449 	vma->vm_end = addr + len;
2450 
2451 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2452 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2453 
2454 	vma->vm_ops = &special_mapping_vmops;
2455 	vma->vm_private_data = pages;
2456 
2457 	if (unlikely(insert_vm_struct(mm, vma))) {
2458 		kmem_cache_free(vm_area_cachep, vma);
2459 		return -ENOMEM;
2460 	}
2461 
2462 	mm->total_vm += len >> PAGE_SHIFT;
2463 
2464 	perf_event_mmap(vma);
2465 
2466 	return 0;
2467 }
2468 
2469 static DEFINE_MUTEX(mm_all_locks_mutex);
2470 
2471 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2472 {
2473 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2474 		/*
2475 		 * The LSB of head.next can't change from under us
2476 		 * because we hold the mm_all_locks_mutex.
2477 		 */
2478 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2479 		/*
2480 		 * We can safely modify head.next after taking the
2481 		 * anon_vma->lock. If some other vma in this mm shares
2482 		 * the same anon_vma we won't take it again.
2483 		 *
2484 		 * No need of atomic instructions here, head.next
2485 		 * can't change from under us thanks to the
2486 		 * anon_vma->lock.
2487 		 */
2488 		if (__test_and_set_bit(0, (unsigned long *)
2489 				       &anon_vma->head.next))
2490 			BUG();
2491 	}
2492 }
2493 
2494 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2495 {
2496 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2497 		/*
2498 		 * AS_MM_ALL_LOCKS can't change from under us because
2499 		 * we hold the mm_all_locks_mutex.
2500 		 *
2501 		 * Operations on ->flags have to be atomic because
2502 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2503 		 * mm_all_locks_mutex, there may be other cpus
2504 		 * changing other bitflags in parallel to us.
2505 		 */
2506 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2507 			BUG();
2508 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2509 	}
2510 }
2511 
2512 /*
2513  * This operation locks against the VM for all pte/vma/mm related
2514  * operations that could ever happen on a certain mm. This includes
2515  * vmtruncate, try_to_unmap, and all page faults.
2516  *
2517  * The caller must take the mmap_sem in write mode before calling
2518  * mm_take_all_locks(). The caller isn't allowed to release the
2519  * mmap_sem until mm_drop_all_locks() returns.
2520  *
2521  * mmap_sem in write mode is required in order to block all operations
2522  * that could modify pagetables and free pages without need of
2523  * altering the vma layout (for example populate_range() with
2524  * nonlinear vmas). It's also needed in write mode to avoid new
2525  * anon_vmas to be associated with existing vmas.
2526  *
2527  * A single task can't take more than one mm_take_all_locks() in a row
2528  * or it would deadlock.
2529  *
2530  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2531  * mapping->flags avoid to take the same lock twice, if more than one
2532  * vma in this mm is backed by the same anon_vma or address_space.
2533  *
2534  * We can take all the locks in random order because the VM code
2535  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2536  * takes more than one of them in a row. Secondly we're protected
2537  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2538  *
2539  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2540  * that may have to take thousand of locks.
2541  *
2542  * mm_take_all_locks() can fail if it's interrupted by signals.
2543  */
2544 int mm_take_all_locks(struct mm_struct *mm)
2545 {
2546 	struct vm_area_struct *vma;
2547 	struct anon_vma_chain *avc;
2548 	int ret = -EINTR;
2549 
2550 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2551 
2552 	mutex_lock(&mm_all_locks_mutex);
2553 
2554 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2555 		if (signal_pending(current))
2556 			goto out_unlock;
2557 		if (vma->vm_file && vma->vm_file->f_mapping)
2558 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2559 	}
2560 
2561 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2562 		if (signal_pending(current))
2563 			goto out_unlock;
2564 		if (vma->anon_vma)
2565 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2566 				vm_lock_anon_vma(mm, avc->anon_vma);
2567 	}
2568 
2569 	ret = 0;
2570 
2571 out_unlock:
2572 	if (ret)
2573 		mm_drop_all_locks(mm);
2574 
2575 	return ret;
2576 }
2577 
2578 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2579 {
2580 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2581 		/*
2582 		 * The LSB of head.next can't change to 0 from under
2583 		 * us because we hold the mm_all_locks_mutex.
2584 		 *
2585 		 * We must however clear the bitflag before unlocking
2586 		 * the vma so the users using the anon_vma->head will
2587 		 * never see our bitflag.
2588 		 *
2589 		 * No need of atomic instructions here, head.next
2590 		 * can't change from under us until we release the
2591 		 * anon_vma->lock.
2592 		 */
2593 		if (!__test_and_clear_bit(0, (unsigned long *)
2594 					  &anon_vma->head.next))
2595 			BUG();
2596 		spin_unlock(&anon_vma->lock);
2597 	}
2598 }
2599 
2600 static void vm_unlock_mapping(struct address_space *mapping)
2601 {
2602 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2603 		/*
2604 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2605 		 * because we hold the mm_all_locks_mutex.
2606 		 */
2607 		spin_unlock(&mapping->i_mmap_lock);
2608 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2609 					&mapping->flags))
2610 			BUG();
2611 	}
2612 }
2613 
2614 /*
2615  * The mmap_sem cannot be released by the caller until
2616  * mm_drop_all_locks() returns.
2617  */
2618 void mm_drop_all_locks(struct mm_struct *mm)
2619 {
2620 	struct vm_area_struct *vma;
2621 	struct anon_vma_chain *avc;
2622 
2623 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2624 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2625 
2626 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2627 		if (vma->anon_vma)
2628 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2629 				vm_unlock_anon_vma(avc->anon_vma);
2630 		if (vma->vm_file && vma->vm_file->f_mapping)
2631 			vm_unlock_mapping(vma->vm_file->f_mapping);
2632 	}
2633 
2634 	mutex_unlock(&mm_all_locks_mutex);
2635 }
2636 
2637 /*
2638  * initialise the VMA slab
2639  */
2640 void __init mmap_init(void)
2641 {
2642 	int ret;
2643 
2644 	ret = percpu_counter_init(&vm_committed_as, 0);
2645 	VM_BUG_ON(ret);
2646 }
2647