1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlb.h> 35 #include <asm/mmu_context.h> 36 37 #include "internal.h" 38 39 #ifndef arch_mmap_check 40 #define arch_mmap_check(addr, len, flags) (0) 41 #endif 42 43 #ifndef arch_rebalance_pgtables 44 #define arch_rebalance_pgtables(addr, len) (addr) 45 #endif 46 47 static void unmap_region(struct mm_struct *mm, 48 struct vm_area_struct *vma, struct vm_area_struct *prev, 49 unsigned long start, unsigned long end); 50 51 /* 52 * WARNING: the debugging will use recursive algorithms so never enable this 53 * unless you know what you are doing. 54 */ 55 #undef DEBUG_MM_RB 56 57 /* description of effects of mapping type and prot in current implementation. 58 * this is due to the limited x86 page protection hardware. The expected 59 * behavior is in parens: 60 * 61 * map_type prot 62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 64 * w: (no) no w: (no) no w: (yes) yes w: (no) no 65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 66 * 67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 68 * w: (no) no w: (no) no w: (copy) copy w: (no) no 69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 70 * 71 */ 72 pgprot_t protection_map[16] = { 73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 75 }; 76 77 pgprot_t vm_get_page_prot(unsigned long vm_flags) 78 { 79 return __pgprot(pgprot_val(protection_map[vm_flags & 80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 81 pgprot_val(arch_vm_get_page_prot(vm_flags))); 82 } 83 EXPORT_SYMBOL(vm_get_page_prot); 84 85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 86 int sysctl_overcommit_ratio = 50; /* default is 50% */ 87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 88 struct percpu_counter vm_committed_as; 89 90 /* 91 * Check that a process has enough memory to allocate a new virtual 92 * mapping. 0 means there is enough memory for the allocation to 93 * succeed and -ENOMEM implies there is not. 94 * 95 * We currently support three overcommit policies, which are set via the 96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 97 * 98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 99 * Additional code 2002 Jul 20 by Robert Love. 100 * 101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 102 * 103 * Note this is a helper function intended to be used by LSMs which 104 * wish to use this logic. 105 */ 106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 107 { 108 unsigned long free, allowed; 109 110 vm_acct_memory(pages); 111 112 /* 113 * Sometimes we want to use more memory than we have 114 */ 115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 116 return 0; 117 118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 119 unsigned long n; 120 121 free = global_page_state(NR_FILE_PAGES); 122 free += nr_swap_pages; 123 124 /* 125 * Any slabs which are created with the 126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 127 * which are reclaimable, under pressure. The dentry 128 * cache and most inode caches should fall into this 129 */ 130 free += global_page_state(NR_SLAB_RECLAIMABLE); 131 132 /* 133 * Leave the last 3% for root 134 */ 135 if (!cap_sys_admin) 136 free -= free / 32; 137 138 if (free > pages) 139 return 0; 140 141 /* 142 * nr_free_pages() is very expensive on large systems, 143 * only call if we're about to fail. 144 */ 145 n = nr_free_pages(); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (n <= totalreserve_pages) 151 goto error; 152 else 153 n -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 n -= n / 32; 160 free += n; 161 162 if (free > pages) 163 return 0; 164 165 goto error; 166 } 167 168 allowed = (totalram_pages - hugetlb_total_pages()) 169 * sysctl_overcommit_ratio / 100; 170 /* 171 * Leave the last 3% for root 172 */ 173 if (!cap_sys_admin) 174 allowed -= allowed / 32; 175 allowed += total_swap_pages; 176 177 /* Don't let a single process grow too big: 178 leave 3% of the size of this process for other processes */ 179 if (mm) 180 allowed -= mm->total_vm / 32; 181 182 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 183 return 0; 184 error: 185 vm_unacct_memory(pages); 186 187 return -ENOMEM; 188 } 189 190 /* 191 * Requires inode->i_mapping->i_mmap_lock 192 */ 193 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 194 struct file *file, struct address_space *mapping) 195 { 196 if (vma->vm_flags & VM_DENYWRITE) 197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 198 if (vma->vm_flags & VM_SHARED) 199 mapping->i_mmap_writable--; 200 201 flush_dcache_mmap_lock(mapping); 202 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 203 list_del_init(&vma->shared.vm_set.list); 204 else 205 vma_prio_tree_remove(vma, &mapping->i_mmap); 206 flush_dcache_mmap_unlock(mapping); 207 } 208 209 /* 210 * Unlink a file-based vm structure from its prio_tree, to hide 211 * vma from rmap and vmtruncate before freeing its page tables. 212 */ 213 void unlink_file_vma(struct vm_area_struct *vma) 214 { 215 struct file *file = vma->vm_file; 216 217 if (file) { 218 struct address_space *mapping = file->f_mapping; 219 spin_lock(&mapping->i_mmap_lock); 220 __remove_shared_vm_struct(vma, file, mapping); 221 spin_unlock(&mapping->i_mmap_lock); 222 } 223 } 224 225 /* 226 * Close a vm structure and free it, returning the next. 227 */ 228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 229 { 230 struct vm_area_struct *next = vma->vm_next; 231 232 might_sleep(); 233 if (vma->vm_ops && vma->vm_ops->close) 234 vma->vm_ops->close(vma); 235 if (vma->vm_file) { 236 fput(vma->vm_file); 237 if (vma->vm_flags & VM_EXECUTABLE) 238 removed_exe_file_vma(vma->vm_mm); 239 } 240 mpol_put(vma_policy(vma)); 241 kmem_cache_free(vm_area_cachep, vma); 242 return next; 243 } 244 245 SYSCALL_DEFINE1(brk, unsigned long, brk) 246 { 247 unsigned long rlim, retval; 248 unsigned long newbrk, oldbrk; 249 struct mm_struct *mm = current->mm; 250 unsigned long min_brk; 251 252 down_write(&mm->mmap_sem); 253 254 #ifdef CONFIG_COMPAT_BRK 255 min_brk = mm->end_code; 256 #else 257 min_brk = mm->start_brk; 258 #endif 259 if (brk < min_brk) 260 goto out; 261 262 /* 263 * Check against rlimit here. If this check is done later after the test 264 * of oldbrk with newbrk then it can escape the test and let the data 265 * segment grow beyond its set limit the in case where the limit is 266 * not page aligned -Ram Gupta 267 */ 268 rlim = rlimit(RLIMIT_DATA); 269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 270 (mm->end_data - mm->start_data) > rlim) 271 goto out; 272 273 newbrk = PAGE_ALIGN(brk); 274 oldbrk = PAGE_ALIGN(mm->brk); 275 if (oldbrk == newbrk) 276 goto set_brk; 277 278 /* Always allow shrinking brk. */ 279 if (brk <= mm->brk) { 280 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 281 goto set_brk; 282 goto out; 283 } 284 285 /* Check against existing mmap mappings. */ 286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 287 goto out; 288 289 /* Ok, looks good - let it rip. */ 290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 291 goto out; 292 set_brk: 293 mm->brk = brk; 294 out: 295 retval = mm->brk; 296 up_write(&mm->mmap_sem); 297 return retval; 298 } 299 300 #ifdef DEBUG_MM_RB 301 static int browse_rb(struct rb_root *root) 302 { 303 int i = 0, j; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) 311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 312 if (vma->vm_start < pend) 313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 314 if (vma->vm_start > vma->vm_end) 315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 316 i++; 317 pn = nd; 318 prev = vma->vm_start; 319 pend = vma->vm_end; 320 } 321 j = 0; 322 for (nd = pn; nd; nd = rb_prev(nd)) { 323 j++; 324 } 325 if (i != j) 326 printk("backwards %d, forwards %d\n", j, i), i = 0; 327 return i; 328 } 329 330 void validate_mm(struct mm_struct *mm) 331 { 332 int bug = 0; 333 int i = 0; 334 struct vm_area_struct *tmp = mm->mmap; 335 while (tmp) { 336 tmp = tmp->vm_next; 337 i++; 338 } 339 if (i != mm->map_count) 340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 341 i = browse_rb(&mm->mm_rb); 342 if (i != mm->map_count) 343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 344 BUG_ON(bug); 345 } 346 #else 347 #define validate_mm(mm) do { } while (0) 348 #endif 349 350 static struct vm_area_struct * 351 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 352 struct vm_area_struct **pprev, struct rb_node ***rb_link, 353 struct rb_node ** rb_parent) 354 { 355 struct vm_area_struct * vma; 356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 357 358 __rb_link = &mm->mm_rb.rb_node; 359 rb_prev = __rb_parent = NULL; 360 vma = NULL; 361 362 while (*__rb_link) { 363 struct vm_area_struct *vma_tmp; 364 365 __rb_parent = *__rb_link; 366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 367 368 if (vma_tmp->vm_end > addr) { 369 vma = vma_tmp; 370 if (vma_tmp->vm_start <= addr) 371 break; 372 __rb_link = &__rb_parent->rb_left; 373 } else { 374 rb_prev = __rb_parent; 375 __rb_link = &__rb_parent->rb_right; 376 } 377 } 378 379 *pprev = NULL; 380 if (rb_prev) 381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 382 *rb_link = __rb_link; 383 *rb_parent = __rb_parent; 384 return vma; 385 } 386 387 static inline void 388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 389 struct vm_area_struct *prev, struct rb_node *rb_parent) 390 { 391 if (prev) { 392 vma->vm_next = prev->vm_next; 393 prev->vm_next = vma; 394 } else { 395 mm->mmap = vma; 396 if (rb_parent) 397 vma->vm_next = rb_entry(rb_parent, 398 struct vm_area_struct, vm_rb); 399 else 400 vma->vm_next = NULL; 401 } 402 } 403 404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 405 struct rb_node **rb_link, struct rb_node *rb_parent) 406 { 407 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 408 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 409 } 410 411 static void __vma_link_file(struct vm_area_struct *vma) 412 { 413 struct file *file; 414 415 file = vma->vm_file; 416 if (file) { 417 struct address_space *mapping = file->f_mapping; 418 419 if (vma->vm_flags & VM_DENYWRITE) 420 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 421 if (vma->vm_flags & VM_SHARED) 422 mapping->i_mmap_writable++; 423 424 flush_dcache_mmap_lock(mapping); 425 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 426 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 427 else 428 vma_prio_tree_insert(vma, &mapping->i_mmap); 429 flush_dcache_mmap_unlock(mapping); 430 } 431 } 432 433 static void 434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 435 struct vm_area_struct *prev, struct rb_node **rb_link, 436 struct rb_node *rb_parent) 437 { 438 __vma_link_list(mm, vma, prev, rb_parent); 439 __vma_link_rb(mm, vma, rb_link, rb_parent); 440 } 441 442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 443 struct vm_area_struct *prev, struct rb_node **rb_link, 444 struct rb_node *rb_parent) 445 { 446 struct address_space *mapping = NULL; 447 448 if (vma->vm_file) 449 mapping = vma->vm_file->f_mapping; 450 451 if (mapping) { 452 spin_lock(&mapping->i_mmap_lock); 453 vma->vm_truncate_count = mapping->truncate_count; 454 } 455 anon_vma_lock(vma); 456 457 __vma_link(mm, vma, prev, rb_link, rb_parent); 458 __vma_link_file(vma); 459 460 anon_vma_unlock(vma); 461 if (mapping) 462 spin_unlock(&mapping->i_mmap_lock); 463 464 mm->map_count++; 465 validate_mm(mm); 466 } 467 468 /* 469 * Helper for vma_adjust in the split_vma insert case: 470 * insert vm structure into list and rbtree and anon_vma, 471 * but it has already been inserted into prio_tree earlier. 472 */ 473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 474 { 475 struct vm_area_struct *__vma, *prev; 476 struct rb_node **rb_link, *rb_parent; 477 478 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 479 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 480 __vma_link(mm, vma, prev, rb_link, rb_parent); 481 mm->map_count++; 482 } 483 484 static inline void 485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 486 struct vm_area_struct *prev) 487 { 488 prev->vm_next = vma->vm_next; 489 rb_erase(&vma->vm_rb, &mm->mm_rb); 490 if (mm->mmap_cache == vma) 491 mm->mmap_cache = prev; 492 } 493 494 /* 495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 496 * is already present in an i_mmap tree without adjusting the tree. 497 * The following helper function should be used when such adjustments 498 * are necessary. The "insert" vma (if any) is to be inserted 499 * before we drop the necessary locks. 500 */ 501 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 502 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 503 { 504 struct mm_struct *mm = vma->vm_mm; 505 struct vm_area_struct *next = vma->vm_next; 506 struct vm_area_struct *importer = NULL; 507 struct address_space *mapping = NULL; 508 struct prio_tree_root *root = NULL; 509 struct file *file = vma->vm_file; 510 long adjust_next = 0; 511 int remove_next = 0; 512 513 if (next && !insert) { 514 struct vm_area_struct *exporter = NULL; 515 516 if (end >= next->vm_end) { 517 /* 518 * vma expands, overlapping all the next, and 519 * perhaps the one after too (mprotect case 6). 520 */ 521 again: remove_next = 1 + (end > next->vm_end); 522 end = next->vm_end; 523 exporter = next; 524 importer = vma; 525 } else if (end > next->vm_start) { 526 /* 527 * vma expands, overlapping part of the next: 528 * mprotect case 5 shifting the boundary up. 529 */ 530 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 531 exporter = next; 532 importer = vma; 533 } else if (end < vma->vm_end) { 534 /* 535 * vma shrinks, and !insert tells it's not 536 * split_vma inserting another: so it must be 537 * mprotect case 4 shifting the boundary down. 538 */ 539 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 540 exporter = vma; 541 importer = next; 542 } 543 544 /* 545 * Easily overlooked: when mprotect shifts the boundary, 546 * make sure the expanding vma has anon_vma set if the 547 * shrinking vma had, to cover any anon pages imported. 548 */ 549 if (exporter && exporter->anon_vma && !importer->anon_vma) { 550 if (anon_vma_clone(importer, exporter)) 551 return -ENOMEM; 552 importer->anon_vma = exporter->anon_vma; 553 } 554 } 555 556 if (file) { 557 mapping = file->f_mapping; 558 if (!(vma->vm_flags & VM_NONLINEAR)) 559 root = &mapping->i_mmap; 560 spin_lock(&mapping->i_mmap_lock); 561 if (importer && 562 vma->vm_truncate_count != next->vm_truncate_count) { 563 /* 564 * unmap_mapping_range might be in progress: 565 * ensure that the expanding vma is rescanned. 566 */ 567 importer->vm_truncate_count = 0; 568 } 569 if (insert) { 570 insert->vm_truncate_count = vma->vm_truncate_count; 571 /* 572 * Put into prio_tree now, so instantiated pages 573 * are visible to arm/parisc __flush_dcache_page 574 * throughout; but we cannot insert into address 575 * space until vma start or end is updated. 576 */ 577 __vma_link_file(insert); 578 } 579 } 580 581 if (root) { 582 flush_dcache_mmap_lock(mapping); 583 vma_prio_tree_remove(vma, root); 584 if (adjust_next) 585 vma_prio_tree_remove(next, root); 586 } 587 588 vma->vm_start = start; 589 vma->vm_end = end; 590 vma->vm_pgoff = pgoff; 591 if (adjust_next) { 592 next->vm_start += adjust_next << PAGE_SHIFT; 593 next->vm_pgoff += adjust_next; 594 } 595 596 if (root) { 597 if (adjust_next) 598 vma_prio_tree_insert(next, root); 599 vma_prio_tree_insert(vma, root); 600 flush_dcache_mmap_unlock(mapping); 601 } 602 603 if (remove_next) { 604 /* 605 * vma_merge has merged next into vma, and needs 606 * us to remove next before dropping the locks. 607 */ 608 __vma_unlink(mm, next, vma); 609 if (file) 610 __remove_shared_vm_struct(next, file, mapping); 611 } else if (insert) { 612 /* 613 * split_vma has split insert from vma, and needs 614 * us to insert it before dropping the locks 615 * (it may either follow vma or precede it). 616 */ 617 __insert_vm_struct(mm, insert); 618 } 619 620 if (mapping) 621 spin_unlock(&mapping->i_mmap_lock); 622 623 if (remove_next) { 624 if (file) { 625 fput(file); 626 if (next->vm_flags & VM_EXECUTABLE) 627 removed_exe_file_vma(mm); 628 } 629 if (next->anon_vma) 630 anon_vma_merge(vma, next); 631 mm->map_count--; 632 mpol_put(vma_policy(next)); 633 kmem_cache_free(vm_area_cachep, next); 634 /* 635 * In mprotect's case 6 (see comments on vma_merge), 636 * we must remove another next too. It would clutter 637 * up the code too much to do both in one go. 638 */ 639 if (remove_next == 2) { 640 next = vma->vm_next; 641 goto again; 642 } 643 } 644 645 validate_mm(mm); 646 647 return 0; 648 } 649 650 /* 651 * If the vma has a ->close operation then the driver probably needs to release 652 * per-vma resources, so we don't attempt to merge those. 653 */ 654 static inline int is_mergeable_vma(struct vm_area_struct *vma, 655 struct file *file, unsigned long vm_flags) 656 { 657 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 658 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 659 return 0; 660 if (vma->vm_file != file) 661 return 0; 662 if (vma->vm_ops && vma->vm_ops->close) 663 return 0; 664 return 1; 665 } 666 667 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 668 struct anon_vma *anon_vma2) 669 { 670 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 671 } 672 673 /* 674 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 675 * in front of (at a lower virtual address and file offset than) the vma. 676 * 677 * We cannot merge two vmas if they have differently assigned (non-NULL) 678 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 679 * 680 * We don't check here for the merged mmap wrapping around the end of pagecache 681 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 682 * wrap, nor mmaps which cover the final page at index -1UL. 683 */ 684 static int 685 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 686 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 687 { 688 if (is_mergeable_vma(vma, file, vm_flags) && 689 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 690 if (vma->vm_pgoff == vm_pgoff) 691 return 1; 692 } 693 return 0; 694 } 695 696 /* 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 698 * beyond (at a higher virtual address and file offset than) the vma. 699 * 700 * We cannot merge two vmas if they have differently assigned (non-NULL) 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 702 */ 703 static int 704 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 705 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 706 { 707 if (is_mergeable_vma(vma, file, vm_flags) && 708 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 709 pgoff_t vm_pglen; 710 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 711 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 712 return 1; 713 } 714 return 0; 715 } 716 717 /* 718 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 719 * whether that can be merged with its predecessor or its successor. 720 * Or both (it neatly fills a hole). 721 * 722 * In most cases - when called for mmap, brk or mremap - [addr,end) is 723 * certain not to be mapped by the time vma_merge is called; but when 724 * called for mprotect, it is certain to be already mapped (either at 725 * an offset within prev, or at the start of next), and the flags of 726 * this area are about to be changed to vm_flags - and the no-change 727 * case has already been eliminated. 728 * 729 * The following mprotect cases have to be considered, where AAAA is 730 * the area passed down from mprotect_fixup, never extending beyond one 731 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 732 * 733 * AAAA AAAA AAAA AAAA 734 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 735 * cannot merge might become might become might become 736 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 737 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 738 * mremap move: PPPPNNNNNNNN 8 739 * AAAA 740 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 741 * might become case 1 below case 2 below case 3 below 742 * 743 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 744 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 745 */ 746 struct vm_area_struct *vma_merge(struct mm_struct *mm, 747 struct vm_area_struct *prev, unsigned long addr, 748 unsigned long end, unsigned long vm_flags, 749 struct anon_vma *anon_vma, struct file *file, 750 pgoff_t pgoff, struct mempolicy *policy) 751 { 752 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 753 struct vm_area_struct *area, *next; 754 int err; 755 756 /* 757 * We later require that vma->vm_flags == vm_flags, 758 * so this tests vma->vm_flags & VM_SPECIAL, too. 759 */ 760 if (vm_flags & VM_SPECIAL) 761 return NULL; 762 763 if (prev) 764 next = prev->vm_next; 765 else 766 next = mm->mmap; 767 area = next; 768 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 769 next = next->vm_next; 770 771 /* 772 * Can it merge with the predecessor? 773 */ 774 if (prev && prev->vm_end == addr && 775 mpol_equal(vma_policy(prev), policy) && 776 can_vma_merge_after(prev, vm_flags, 777 anon_vma, file, pgoff)) { 778 /* 779 * OK, it can. Can we now merge in the successor as well? 780 */ 781 if (next && end == next->vm_start && 782 mpol_equal(policy, vma_policy(next)) && 783 can_vma_merge_before(next, vm_flags, 784 anon_vma, file, pgoff+pglen) && 785 is_mergeable_anon_vma(prev->anon_vma, 786 next->anon_vma)) { 787 /* cases 1, 6 */ 788 err = vma_adjust(prev, prev->vm_start, 789 next->vm_end, prev->vm_pgoff, NULL); 790 } else /* cases 2, 5, 7 */ 791 err = vma_adjust(prev, prev->vm_start, 792 end, prev->vm_pgoff, NULL); 793 if (err) 794 return NULL; 795 return prev; 796 } 797 798 /* 799 * Can this new request be merged in front of next? 800 */ 801 if (next && end == next->vm_start && 802 mpol_equal(policy, vma_policy(next)) && 803 can_vma_merge_before(next, vm_flags, 804 anon_vma, file, pgoff+pglen)) { 805 if (prev && addr < prev->vm_end) /* case 4 */ 806 err = vma_adjust(prev, prev->vm_start, 807 addr, prev->vm_pgoff, NULL); 808 else /* cases 3, 8 */ 809 err = vma_adjust(area, addr, next->vm_end, 810 next->vm_pgoff - pglen, NULL); 811 if (err) 812 return NULL; 813 return area; 814 } 815 816 return NULL; 817 } 818 819 /* 820 * Rough compatbility check to quickly see if it's even worth looking 821 * at sharing an anon_vma. 822 * 823 * They need to have the same vm_file, and the flags can only differ 824 * in things that mprotect may change. 825 * 826 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 827 * we can merge the two vma's. For example, we refuse to merge a vma if 828 * there is a vm_ops->close() function, because that indicates that the 829 * driver is doing some kind of reference counting. But that doesn't 830 * really matter for the anon_vma sharing case. 831 */ 832 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 833 { 834 return a->vm_end == b->vm_start && 835 mpol_equal(vma_policy(a), vma_policy(b)) && 836 a->vm_file == b->vm_file && 837 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 838 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 839 } 840 841 /* 842 * Do some basic sanity checking to see if we can re-use the anon_vma 843 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 844 * the same as 'old', the other will be the new one that is trying 845 * to share the anon_vma. 846 * 847 * NOTE! This runs with mm_sem held for reading, so it is possible that 848 * the anon_vma of 'old' is concurrently in the process of being set up 849 * by another page fault trying to merge _that_. But that's ok: if it 850 * is being set up, that automatically means that it will be a singleton 851 * acceptable for merging, so we can do all of this optimistically. But 852 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 853 * 854 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 855 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 856 * is to return an anon_vma that is "complex" due to having gone through 857 * a fork). 858 * 859 * We also make sure that the two vma's are compatible (adjacent, 860 * and with the same memory policies). That's all stable, even with just 861 * a read lock on the mm_sem. 862 */ 863 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 864 { 865 if (anon_vma_compatible(a, b)) { 866 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 867 868 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 869 return anon_vma; 870 } 871 return NULL; 872 } 873 874 /* 875 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 876 * neighbouring vmas for a suitable anon_vma, before it goes off 877 * to allocate a new anon_vma. It checks because a repetitive 878 * sequence of mprotects and faults may otherwise lead to distinct 879 * anon_vmas being allocated, preventing vma merge in subsequent 880 * mprotect. 881 */ 882 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 883 { 884 struct anon_vma *anon_vma; 885 struct vm_area_struct *near; 886 887 near = vma->vm_next; 888 if (!near) 889 goto try_prev; 890 891 anon_vma = reusable_anon_vma(near, vma, near); 892 if (anon_vma) 893 return anon_vma; 894 try_prev: 895 /* 896 * It is potentially slow to have to call find_vma_prev here. 897 * But it's only on the first write fault on the vma, not 898 * every time, and we could devise a way to avoid it later 899 * (e.g. stash info in next's anon_vma_node when assigning 900 * an anon_vma, or when trying vma_merge). Another time. 901 */ 902 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 903 if (!near) 904 goto none; 905 906 anon_vma = reusable_anon_vma(near, near, vma); 907 if (anon_vma) 908 return anon_vma; 909 none: 910 /* 911 * There's no absolute need to look only at touching neighbours: 912 * we could search further afield for "compatible" anon_vmas. 913 * But it would probably just be a waste of time searching, 914 * or lead to too many vmas hanging off the same anon_vma. 915 * We're trying to allow mprotect remerging later on, 916 * not trying to minimize memory used for anon_vmas. 917 */ 918 return NULL; 919 } 920 921 #ifdef CONFIG_PROC_FS 922 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 923 struct file *file, long pages) 924 { 925 const unsigned long stack_flags 926 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 927 928 if (file) { 929 mm->shared_vm += pages; 930 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 931 mm->exec_vm += pages; 932 } else if (flags & stack_flags) 933 mm->stack_vm += pages; 934 if (flags & (VM_RESERVED|VM_IO)) 935 mm->reserved_vm += pages; 936 } 937 #endif /* CONFIG_PROC_FS */ 938 939 /* 940 * The caller must hold down_write(¤t->mm->mmap_sem). 941 */ 942 943 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 944 unsigned long len, unsigned long prot, 945 unsigned long flags, unsigned long pgoff) 946 { 947 struct mm_struct * mm = current->mm; 948 struct inode *inode; 949 unsigned int vm_flags; 950 int error; 951 unsigned long reqprot = prot; 952 953 /* 954 * Does the application expect PROT_READ to imply PROT_EXEC? 955 * 956 * (the exception is when the underlying filesystem is noexec 957 * mounted, in which case we dont add PROT_EXEC.) 958 */ 959 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 960 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 961 prot |= PROT_EXEC; 962 963 if (!len) 964 return -EINVAL; 965 966 if (!(flags & MAP_FIXED)) 967 addr = round_hint_to_min(addr); 968 969 /* Careful about overflows.. */ 970 len = PAGE_ALIGN(len); 971 if (!len) 972 return -ENOMEM; 973 974 /* offset overflow? */ 975 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 976 return -EOVERFLOW; 977 978 /* Too many mappings? */ 979 if (mm->map_count > sysctl_max_map_count) 980 return -ENOMEM; 981 982 /* Obtain the address to map to. we verify (or select) it and ensure 983 * that it represents a valid section of the address space. 984 */ 985 addr = get_unmapped_area(file, addr, len, pgoff, flags); 986 if (addr & ~PAGE_MASK) 987 return addr; 988 989 /* Do simple checking here so the lower-level routines won't have 990 * to. we assume access permissions have been handled by the open 991 * of the memory object, so we don't do any here. 992 */ 993 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 994 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 995 996 if (flags & MAP_LOCKED) 997 if (!can_do_mlock()) 998 return -EPERM; 999 1000 /* mlock MCL_FUTURE? */ 1001 if (vm_flags & VM_LOCKED) { 1002 unsigned long locked, lock_limit; 1003 locked = len >> PAGE_SHIFT; 1004 locked += mm->locked_vm; 1005 lock_limit = rlimit(RLIMIT_MEMLOCK); 1006 lock_limit >>= PAGE_SHIFT; 1007 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1008 return -EAGAIN; 1009 } 1010 1011 inode = file ? file->f_path.dentry->d_inode : NULL; 1012 1013 if (file) { 1014 switch (flags & MAP_TYPE) { 1015 case MAP_SHARED: 1016 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1017 return -EACCES; 1018 1019 /* 1020 * Make sure we don't allow writing to an append-only 1021 * file.. 1022 */ 1023 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1024 return -EACCES; 1025 1026 /* 1027 * Make sure there are no mandatory locks on the file. 1028 */ 1029 if (locks_verify_locked(inode)) 1030 return -EAGAIN; 1031 1032 vm_flags |= VM_SHARED | VM_MAYSHARE; 1033 if (!(file->f_mode & FMODE_WRITE)) 1034 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1035 1036 /* fall through */ 1037 case MAP_PRIVATE: 1038 if (!(file->f_mode & FMODE_READ)) 1039 return -EACCES; 1040 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1041 if (vm_flags & VM_EXEC) 1042 return -EPERM; 1043 vm_flags &= ~VM_MAYEXEC; 1044 } 1045 1046 if (!file->f_op || !file->f_op->mmap) 1047 return -ENODEV; 1048 break; 1049 1050 default: 1051 return -EINVAL; 1052 } 1053 } else { 1054 switch (flags & MAP_TYPE) { 1055 case MAP_SHARED: 1056 /* 1057 * Ignore pgoff. 1058 */ 1059 pgoff = 0; 1060 vm_flags |= VM_SHARED | VM_MAYSHARE; 1061 break; 1062 case MAP_PRIVATE: 1063 /* 1064 * Set pgoff according to addr for anon_vma. 1065 */ 1066 pgoff = addr >> PAGE_SHIFT; 1067 break; 1068 default: 1069 return -EINVAL; 1070 } 1071 } 1072 1073 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1074 if (error) 1075 return error; 1076 1077 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1078 } 1079 EXPORT_SYMBOL(do_mmap_pgoff); 1080 1081 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1082 unsigned long, prot, unsigned long, flags, 1083 unsigned long, fd, unsigned long, pgoff) 1084 { 1085 struct file *file = NULL; 1086 unsigned long retval = -EBADF; 1087 1088 if (!(flags & MAP_ANONYMOUS)) { 1089 if (unlikely(flags & MAP_HUGETLB)) 1090 return -EINVAL; 1091 file = fget(fd); 1092 if (!file) 1093 goto out; 1094 } else if (flags & MAP_HUGETLB) { 1095 struct user_struct *user = NULL; 1096 /* 1097 * VM_NORESERVE is used because the reservations will be 1098 * taken when vm_ops->mmap() is called 1099 * A dummy user value is used because we are not locking 1100 * memory so no accounting is necessary 1101 */ 1102 len = ALIGN(len, huge_page_size(&default_hstate)); 1103 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1104 &user, HUGETLB_ANONHUGE_INODE); 1105 if (IS_ERR(file)) 1106 return PTR_ERR(file); 1107 } 1108 1109 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1110 1111 down_write(¤t->mm->mmap_sem); 1112 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1113 up_write(¤t->mm->mmap_sem); 1114 1115 if (file) 1116 fput(file); 1117 out: 1118 return retval; 1119 } 1120 1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1122 struct mmap_arg_struct { 1123 unsigned long addr; 1124 unsigned long len; 1125 unsigned long prot; 1126 unsigned long flags; 1127 unsigned long fd; 1128 unsigned long offset; 1129 }; 1130 1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1132 { 1133 struct mmap_arg_struct a; 1134 1135 if (copy_from_user(&a, arg, sizeof(a))) 1136 return -EFAULT; 1137 if (a.offset & ~PAGE_MASK) 1138 return -EINVAL; 1139 1140 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1141 a.offset >> PAGE_SHIFT); 1142 } 1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1144 1145 /* 1146 * Some shared mappigns will want the pages marked read-only 1147 * to track write events. If so, we'll downgrade vm_page_prot 1148 * to the private version (using protection_map[] without the 1149 * VM_SHARED bit). 1150 */ 1151 int vma_wants_writenotify(struct vm_area_struct *vma) 1152 { 1153 unsigned int vm_flags = vma->vm_flags; 1154 1155 /* If it was private or non-writable, the write bit is already clear */ 1156 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1157 return 0; 1158 1159 /* The backer wishes to know when pages are first written to? */ 1160 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1161 return 1; 1162 1163 /* The open routine did something to the protections already? */ 1164 if (pgprot_val(vma->vm_page_prot) != 1165 pgprot_val(vm_get_page_prot(vm_flags))) 1166 return 0; 1167 1168 /* Specialty mapping? */ 1169 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1170 return 0; 1171 1172 /* Can the mapping track the dirty pages? */ 1173 return vma->vm_file && vma->vm_file->f_mapping && 1174 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1175 } 1176 1177 /* 1178 * We account for memory if it's a private writeable mapping, 1179 * not hugepages and VM_NORESERVE wasn't set. 1180 */ 1181 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1182 { 1183 /* 1184 * hugetlb has its own accounting separate from the core VM 1185 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1186 */ 1187 if (file && is_file_hugepages(file)) 1188 return 0; 1189 1190 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1191 } 1192 1193 unsigned long mmap_region(struct file *file, unsigned long addr, 1194 unsigned long len, unsigned long flags, 1195 unsigned int vm_flags, unsigned long pgoff) 1196 { 1197 struct mm_struct *mm = current->mm; 1198 struct vm_area_struct *vma, *prev; 1199 int correct_wcount = 0; 1200 int error; 1201 struct rb_node **rb_link, *rb_parent; 1202 unsigned long charged = 0; 1203 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1204 1205 /* Clear old maps */ 1206 error = -ENOMEM; 1207 munmap_back: 1208 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1209 if (vma && vma->vm_start < addr + len) { 1210 if (do_munmap(mm, addr, len)) 1211 return -ENOMEM; 1212 goto munmap_back; 1213 } 1214 1215 /* Check against address space limit. */ 1216 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1217 return -ENOMEM; 1218 1219 /* 1220 * Set 'VM_NORESERVE' if we should not account for the 1221 * memory use of this mapping. 1222 */ 1223 if ((flags & MAP_NORESERVE)) { 1224 /* We honor MAP_NORESERVE if allowed to overcommit */ 1225 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1226 vm_flags |= VM_NORESERVE; 1227 1228 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1229 if (file && is_file_hugepages(file)) 1230 vm_flags |= VM_NORESERVE; 1231 } 1232 1233 /* 1234 * Private writable mapping: check memory availability 1235 */ 1236 if (accountable_mapping(file, vm_flags)) { 1237 charged = len >> PAGE_SHIFT; 1238 if (security_vm_enough_memory(charged)) 1239 return -ENOMEM; 1240 vm_flags |= VM_ACCOUNT; 1241 } 1242 1243 /* 1244 * Can we just expand an old mapping? 1245 */ 1246 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1247 if (vma) 1248 goto out; 1249 1250 /* 1251 * Determine the object being mapped and call the appropriate 1252 * specific mapper. the address has already been validated, but 1253 * not unmapped, but the maps are removed from the list. 1254 */ 1255 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1256 if (!vma) { 1257 error = -ENOMEM; 1258 goto unacct_error; 1259 } 1260 1261 vma->vm_mm = mm; 1262 vma->vm_start = addr; 1263 vma->vm_end = addr + len; 1264 vma->vm_flags = vm_flags; 1265 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1266 vma->vm_pgoff = pgoff; 1267 INIT_LIST_HEAD(&vma->anon_vma_chain); 1268 1269 if (file) { 1270 error = -EINVAL; 1271 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1272 goto free_vma; 1273 if (vm_flags & VM_DENYWRITE) { 1274 error = deny_write_access(file); 1275 if (error) 1276 goto free_vma; 1277 correct_wcount = 1; 1278 } 1279 vma->vm_file = file; 1280 get_file(file); 1281 error = file->f_op->mmap(file, vma); 1282 if (error) 1283 goto unmap_and_free_vma; 1284 if (vm_flags & VM_EXECUTABLE) 1285 added_exe_file_vma(mm); 1286 1287 /* Can addr have changed?? 1288 * 1289 * Answer: Yes, several device drivers can do it in their 1290 * f_op->mmap method. -DaveM 1291 */ 1292 addr = vma->vm_start; 1293 pgoff = vma->vm_pgoff; 1294 vm_flags = vma->vm_flags; 1295 } else if (vm_flags & VM_SHARED) { 1296 error = shmem_zero_setup(vma); 1297 if (error) 1298 goto free_vma; 1299 } 1300 1301 if (vma_wants_writenotify(vma)) { 1302 pgprot_t pprot = vma->vm_page_prot; 1303 1304 /* Can vma->vm_page_prot have changed?? 1305 * 1306 * Answer: Yes, drivers may have changed it in their 1307 * f_op->mmap method. 1308 * 1309 * Ensures that vmas marked as uncached stay that way. 1310 */ 1311 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1312 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1313 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1314 } 1315 1316 vma_link(mm, vma, prev, rb_link, rb_parent); 1317 file = vma->vm_file; 1318 1319 /* Once vma denies write, undo our temporary denial count */ 1320 if (correct_wcount) 1321 atomic_inc(&inode->i_writecount); 1322 out: 1323 perf_event_mmap(vma); 1324 1325 mm->total_vm += len >> PAGE_SHIFT; 1326 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1327 if (vm_flags & VM_LOCKED) { 1328 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1329 mm->locked_vm += (len >> PAGE_SHIFT); 1330 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1331 make_pages_present(addr, addr + len); 1332 return addr; 1333 1334 unmap_and_free_vma: 1335 if (correct_wcount) 1336 atomic_inc(&inode->i_writecount); 1337 vma->vm_file = NULL; 1338 fput(file); 1339 1340 /* Undo any partial mapping done by a device driver. */ 1341 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1342 charged = 0; 1343 free_vma: 1344 kmem_cache_free(vm_area_cachep, vma); 1345 unacct_error: 1346 if (charged) 1347 vm_unacct_memory(charged); 1348 return error; 1349 } 1350 1351 /* Get an address range which is currently unmapped. 1352 * For shmat() with addr=0. 1353 * 1354 * Ugly calling convention alert: 1355 * Return value with the low bits set means error value, 1356 * ie 1357 * if (ret & ~PAGE_MASK) 1358 * error = ret; 1359 * 1360 * This function "knows" that -ENOMEM has the bits set. 1361 */ 1362 #ifndef HAVE_ARCH_UNMAPPED_AREA 1363 unsigned long 1364 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1365 unsigned long len, unsigned long pgoff, unsigned long flags) 1366 { 1367 struct mm_struct *mm = current->mm; 1368 struct vm_area_struct *vma; 1369 unsigned long start_addr; 1370 1371 if (len > TASK_SIZE) 1372 return -ENOMEM; 1373 1374 if (flags & MAP_FIXED) 1375 return addr; 1376 1377 if (addr) { 1378 addr = PAGE_ALIGN(addr); 1379 vma = find_vma(mm, addr); 1380 if (TASK_SIZE - len >= addr && 1381 (!vma || addr + len <= vma->vm_start)) 1382 return addr; 1383 } 1384 if (len > mm->cached_hole_size) { 1385 start_addr = addr = mm->free_area_cache; 1386 } else { 1387 start_addr = addr = TASK_UNMAPPED_BASE; 1388 mm->cached_hole_size = 0; 1389 } 1390 1391 full_search: 1392 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1393 /* At this point: (!vma || addr < vma->vm_end). */ 1394 if (TASK_SIZE - len < addr) { 1395 /* 1396 * Start a new search - just in case we missed 1397 * some holes. 1398 */ 1399 if (start_addr != TASK_UNMAPPED_BASE) { 1400 addr = TASK_UNMAPPED_BASE; 1401 start_addr = addr; 1402 mm->cached_hole_size = 0; 1403 goto full_search; 1404 } 1405 return -ENOMEM; 1406 } 1407 if (!vma || addr + len <= vma->vm_start) { 1408 /* 1409 * Remember the place where we stopped the search: 1410 */ 1411 mm->free_area_cache = addr + len; 1412 return addr; 1413 } 1414 if (addr + mm->cached_hole_size < vma->vm_start) 1415 mm->cached_hole_size = vma->vm_start - addr; 1416 addr = vma->vm_end; 1417 } 1418 } 1419 #endif 1420 1421 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1422 { 1423 /* 1424 * Is this a new hole at the lowest possible address? 1425 */ 1426 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1427 mm->free_area_cache = addr; 1428 mm->cached_hole_size = ~0UL; 1429 } 1430 } 1431 1432 /* 1433 * This mmap-allocator allocates new areas top-down from below the 1434 * stack's low limit (the base): 1435 */ 1436 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1437 unsigned long 1438 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1439 const unsigned long len, const unsigned long pgoff, 1440 const unsigned long flags) 1441 { 1442 struct vm_area_struct *vma; 1443 struct mm_struct *mm = current->mm; 1444 unsigned long addr = addr0; 1445 1446 /* requested length too big for entire address space */ 1447 if (len > TASK_SIZE) 1448 return -ENOMEM; 1449 1450 if (flags & MAP_FIXED) 1451 return addr; 1452 1453 /* requesting a specific address */ 1454 if (addr) { 1455 addr = PAGE_ALIGN(addr); 1456 vma = find_vma(mm, addr); 1457 if (TASK_SIZE - len >= addr && 1458 (!vma || addr + len <= vma->vm_start)) 1459 return addr; 1460 } 1461 1462 /* check if free_area_cache is useful for us */ 1463 if (len <= mm->cached_hole_size) { 1464 mm->cached_hole_size = 0; 1465 mm->free_area_cache = mm->mmap_base; 1466 } 1467 1468 /* either no address requested or can't fit in requested address hole */ 1469 addr = mm->free_area_cache; 1470 1471 /* make sure it can fit in the remaining address space */ 1472 if (addr > len) { 1473 vma = find_vma(mm, addr-len); 1474 if (!vma || addr <= vma->vm_start) 1475 /* remember the address as a hint for next time */ 1476 return (mm->free_area_cache = addr-len); 1477 } 1478 1479 if (mm->mmap_base < len) 1480 goto bottomup; 1481 1482 addr = mm->mmap_base-len; 1483 1484 do { 1485 /* 1486 * Lookup failure means no vma is above this address, 1487 * else if new region fits below vma->vm_start, 1488 * return with success: 1489 */ 1490 vma = find_vma(mm, addr); 1491 if (!vma || addr+len <= vma->vm_start) 1492 /* remember the address as a hint for next time */ 1493 return (mm->free_area_cache = addr); 1494 1495 /* remember the largest hole we saw so far */ 1496 if (addr + mm->cached_hole_size < vma->vm_start) 1497 mm->cached_hole_size = vma->vm_start - addr; 1498 1499 /* try just below the current vma->vm_start */ 1500 addr = vma->vm_start-len; 1501 } while (len < vma->vm_start); 1502 1503 bottomup: 1504 /* 1505 * A failed mmap() very likely causes application failure, 1506 * so fall back to the bottom-up function here. This scenario 1507 * can happen with large stack limits and large mmap() 1508 * allocations. 1509 */ 1510 mm->cached_hole_size = ~0UL; 1511 mm->free_area_cache = TASK_UNMAPPED_BASE; 1512 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1513 /* 1514 * Restore the topdown base: 1515 */ 1516 mm->free_area_cache = mm->mmap_base; 1517 mm->cached_hole_size = ~0UL; 1518 1519 return addr; 1520 } 1521 #endif 1522 1523 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1524 { 1525 /* 1526 * Is this a new hole at the highest possible address? 1527 */ 1528 if (addr > mm->free_area_cache) 1529 mm->free_area_cache = addr; 1530 1531 /* dont allow allocations above current base */ 1532 if (mm->free_area_cache > mm->mmap_base) 1533 mm->free_area_cache = mm->mmap_base; 1534 } 1535 1536 unsigned long 1537 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1538 unsigned long pgoff, unsigned long flags) 1539 { 1540 unsigned long (*get_area)(struct file *, unsigned long, 1541 unsigned long, unsigned long, unsigned long); 1542 1543 unsigned long error = arch_mmap_check(addr, len, flags); 1544 if (error) 1545 return error; 1546 1547 /* Careful about overflows.. */ 1548 if (len > TASK_SIZE) 1549 return -ENOMEM; 1550 1551 get_area = current->mm->get_unmapped_area; 1552 if (file && file->f_op && file->f_op->get_unmapped_area) 1553 get_area = file->f_op->get_unmapped_area; 1554 addr = get_area(file, addr, len, pgoff, flags); 1555 if (IS_ERR_VALUE(addr)) 1556 return addr; 1557 1558 if (addr > TASK_SIZE - len) 1559 return -ENOMEM; 1560 if (addr & ~PAGE_MASK) 1561 return -EINVAL; 1562 1563 return arch_rebalance_pgtables(addr, len); 1564 } 1565 1566 EXPORT_SYMBOL(get_unmapped_area); 1567 1568 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1569 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1570 { 1571 struct vm_area_struct *vma = NULL; 1572 1573 if (mm) { 1574 /* Check the cache first. */ 1575 /* (Cache hit rate is typically around 35%.) */ 1576 vma = mm->mmap_cache; 1577 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1578 struct rb_node * rb_node; 1579 1580 rb_node = mm->mm_rb.rb_node; 1581 vma = NULL; 1582 1583 while (rb_node) { 1584 struct vm_area_struct * vma_tmp; 1585 1586 vma_tmp = rb_entry(rb_node, 1587 struct vm_area_struct, vm_rb); 1588 1589 if (vma_tmp->vm_end > addr) { 1590 vma = vma_tmp; 1591 if (vma_tmp->vm_start <= addr) 1592 break; 1593 rb_node = rb_node->rb_left; 1594 } else 1595 rb_node = rb_node->rb_right; 1596 } 1597 if (vma) 1598 mm->mmap_cache = vma; 1599 } 1600 } 1601 return vma; 1602 } 1603 1604 EXPORT_SYMBOL(find_vma); 1605 1606 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1607 struct vm_area_struct * 1608 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1609 struct vm_area_struct **pprev) 1610 { 1611 struct vm_area_struct *vma = NULL, *prev = NULL; 1612 struct rb_node *rb_node; 1613 if (!mm) 1614 goto out; 1615 1616 /* Guard against addr being lower than the first VMA */ 1617 vma = mm->mmap; 1618 1619 /* Go through the RB tree quickly. */ 1620 rb_node = mm->mm_rb.rb_node; 1621 1622 while (rb_node) { 1623 struct vm_area_struct *vma_tmp; 1624 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1625 1626 if (addr < vma_tmp->vm_end) { 1627 rb_node = rb_node->rb_left; 1628 } else { 1629 prev = vma_tmp; 1630 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1631 break; 1632 rb_node = rb_node->rb_right; 1633 } 1634 } 1635 1636 out: 1637 *pprev = prev; 1638 return prev ? prev->vm_next : vma; 1639 } 1640 1641 /* 1642 * Verify that the stack growth is acceptable and 1643 * update accounting. This is shared with both the 1644 * grow-up and grow-down cases. 1645 */ 1646 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1647 { 1648 struct mm_struct *mm = vma->vm_mm; 1649 struct rlimit *rlim = current->signal->rlim; 1650 unsigned long new_start; 1651 1652 /* address space limit tests */ 1653 if (!may_expand_vm(mm, grow)) 1654 return -ENOMEM; 1655 1656 /* Stack limit test */ 1657 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1658 return -ENOMEM; 1659 1660 /* mlock limit tests */ 1661 if (vma->vm_flags & VM_LOCKED) { 1662 unsigned long locked; 1663 unsigned long limit; 1664 locked = mm->locked_vm + grow; 1665 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1666 limit >>= PAGE_SHIFT; 1667 if (locked > limit && !capable(CAP_IPC_LOCK)) 1668 return -ENOMEM; 1669 } 1670 1671 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1672 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1673 vma->vm_end - size; 1674 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1675 return -EFAULT; 1676 1677 /* 1678 * Overcommit.. This must be the final test, as it will 1679 * update security statistics. 1680 */ 1681 if (security_vm_enough_memory_mm(mm, grow)) 1682 return -ENOMEM; 1683 1684 /* Ok, everything looks good - let it rip */ 1685 mm->total_vm += grow; 1686 if (vma->vm_flags & VM_LOCKED) 1687 mm->locked_vm += grow; 1688 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1689 return 0; 1690 } 1691 1692 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1693 /* 1694 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1695 * vma is the last one with address > vma->vm_end. Have to extend vma. 1696 */ 1697 #ifndef CONFIG_IA64 1698 static 1699 #endif 1700 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1701 { 1702 int error; 1703 1704 if (!(vma->vm_flags & VM_GROWSUP)) 1705 return -EFAULT; 1706 1707 /* 1708 * We must make sure the anon_vma is allocated 1709 * so that the anon_vma locking is not a noop. 1710 */ 1711 if (unlikely(anon_vma_prepare(vma))) 1712 return -ENOMEM; 1713 anon_vma_lock(vma); 1714 1715 /* 1716 * vma->vm_start/vm_end cannot change under us because the caller 1717 * is required to hold the mmap_sem in read mode. We need the 1718 * anon_vma lock to serialize against concurrent expand_stacks. 1719 * Also guard against wrapping around to address 0. 1720 */ 1721 if (address < PAGE_ALIGN(address+4)) 1722 address = PAGE_ALIGN(address+4); 1723 else { 1724 anon_vma_unlock(vma); 1725 return -ENOMEM; 1726 } 1727 error = 0; 1728 1729 /* Somebody else might have raced and expanded it already */ 1730 if (address > vma->vm_end) { 1731 unsigned long size, grow; 1732 1733 size = address - vma->vm_start; 1734 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1735 1736 error = acct_stack_growth(vma, size, grow); 1737 if (!error) { 1738 vma->vm_end = address; 1739 perf_event_mmap(vma); 1740 } 1741 } 1742 anon_vma_unlock(vma); 1743 return error; 1744 } 1745 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1746 1747 /* 1748 * vma is the first one with address < vma->vm_start. Have to extend vma. 1749 */ 1750 static int expand_downwards(struct vm_area_struct *vma, 1751 unsigned long address) 1752 { 1753 int error; 1754 1755 /* 1756 * We must make sure the anon_vma is allocated 1757 * so that the anon_vma locking is not a noop. 1758 */ 1759 if (unlikely(anon_vma_prepare(vma))) 1760 return -ENOMEM; 1761 1762 address &= PAGE_MASK; 1763 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1764 if (error) 1765 return error; 1766 1767 anon_vma_lock(vma); 1768 1769 /* 1770 * vma->vm_start/vm_end cannot change under us because the caller 1771 * is required to hold the mmap_sem in read mode. We need the 1772 * anon_vma lock to serialize against concurrent expand_stacks. 1773 */ 1774 1775 /* Somebody else might have raced and expanded it already */ 1776 if (address < vma->vm_start) { 1777 unsigned long size, grow; 1778 1779 size = vma->vm_end - address; 1780 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1781 1782 error = acct_stack_growth(vma, size, grow); 1783 if (!error) { 1784 vma->vm_start = address; 1785 vma->vm_pgoff -= grow; 1786 perf_event_mmap(vma); 1787 } 1788 } 1789 anon_vma_unlock(vma); 1790 return error; 1791 } 1792 1793 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1794 { 1795 return expand_downwards(vma, address); 1796 } 1797 1798 #ifdef CONFIG_STACK_GROWSUP 1799 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1800 { 1801 return expand_upwards(vma, address); 1802 } 1803 1804 struct vm_area_struct * 1805 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1806 { 1807 struct vm_area_struct *vma, *prev; 1808 1809 addr &= PAGE_MASK; 1810 vma = find_vma_prev(mm, addr, &prev); 1811 if (vma && (vma->vm_start <= addr)) 1812 return vma; 1813 if (!prev || expand_stack(prev, addr)) 1814 return NULL; 1815 if (prev->vm_flags & VM_LOCKED) { 1816 mlock_vma_pages_range(prev, addr, prev->vm_end); 1817 } 1818 return prev; 1819 } 1820 #else 1821 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1822 { 1823 return expand_downwards(vma, address); 1824 } 1825 1826 struct vm_area_struct * 1827 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1828 { 1829 struct vm_area_struct * vma; 1830 unsigned long start; 1831 1832 addr &= PAGE_MASK; 1833 vma = find_vma(mm,addr); 1834 if (!vma) 1835 return NULL; 1836 if (vma->vm_start <= addr) 1837 return vma; 1838 if (!(vma->vm_flags & VM_GROWSDOWN)) 1839 return NULL; 1840 start = vma->vm_start; 1841 if (expand_stack(vma, addr)) 1842 return NULL; 1843 if (vma->vm_flags & VM_LOCKED) { 1844 mlock_vma_pages_range(vma, addr, start); 1845 } 1846 return vma; 1847 } 1848 #endif 1849 1850 /* 1851 * Ok - we have the memory areas we should free on the vma list, 1852 * so release them, and do the vma updates. 1853 * 1854 * Called with the mm semaphore held. 1855 */ 1856 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1857 { 1858 /* Update high watermark before we lower total_vm */ 1859 update_hiwater_vm(mm); 1860 do { 1861 long nrpages = vma_pages(vma); 1862 1863 mm->total_vm -= nrpages; 1864 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1865 vma = remove_vma(vma); 1866 } while (vma); 1867 validate_mm(mm); 1868 } 1869 1870 /* 1871 * Get rid of page table information in the indicated region. 1872 * 1873 * Called with the mm semaphore held. 1874 */ 1875 static void unmap_region(struct mm_struct *mm, 1876 struct vm_area_struct *vma, struct vm_area_struct *prev, 1877 unsigned long start, unsigned long end) 1878 { 1879 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1880 struct mmu_gather *tlb; 1881 unsigned long nr_accounted = 0; 1882 1883 lru_add_drain(); 1884 tlb = tlb_gather_mmu(mm, 0); 1885 update_hiwater_rss(mm); 1886 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1887 vm_unacct_memory(nr_accounted); 1888 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1889 next? next->vm_start: 0); 1890 tlb_finish_mmu(tlb, start, end); 1891 } 1892 1893 /* 1894 * Create a list of vma's touched by the unmap, removing them from the mm's 1895 * vma list as we go.. 1896 */ 1897 static void 1898 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1899 struct vm_area_struct *prev, unsigned long end) 1900 { 1901 struct vm_area_struct **insertion_point; 1902 struct vm_area_struct *tail_vma = NULL; 1903 unsigned long addr; 1904 1905 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1906 do { 1907 rb_erase(&vma->vm_rb, &mm->mm_rb); 1908 mm->map_count--; 1909 tail_vma = vma; 1910 vma = vma->vm_next; 1911 } while (vma && vma->vm_start < end); 1912 *insertion_point = vma; 1913 tail_vma->vm_next = NULL; 1914 if (mm->unmap_area == arch_unmap_area) 1915 addr = prev ? prev->vm_end : mm->mmap_base; 1916 else 1917 addr = vma ? vma->vm_start : mm->mmap_base; 1918 mm->unmap_area(mm, addr); 1919 mm->mmap_cache = NULL; /* Kill the cache. */ 1920 } 1921 1922 /* 1923 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1924 * munmap path where it doesn't make sense to fail. 1925 */ 1926 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1927 unsigned long addr, int new_below) 1928 { 1929 struct mempolicy *pol; 1930 struct vm_area_struct *new; 1931 int err = -ENOMEM; 1932 1933 if (is_vm_hugetlb_page(vma) && (addr & 1934 ~(huge_page_mask(hstate_vma(vma))))) 1935 return -EINVAL; 1936 1937 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1938 if (!new) 1939 goto out_err; 1940 1941 /* most fields are the same, copy all, and then fixup */ 1942 *new = *vma; 1943 1944 INIT_LIST_HEAD(&new->anon_vma_chain); 1945 1946 if (new_below) 1947 new->vm_end = addr; 1948 else { 1949 new->vm_start = addr; 1950 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1951 } 1952 1953 pol = mpol_dup(vma_policy(vma)); 1954 if (IS_ERR(pol)) { 1955 err = PTR_ERR(pol); 1956 goto out_free_vma; 1957 } 1958 vma_set_policy(new, pol); 1959 1960 if (anon_vma_clone(new, vma)) 1961 goto out_free_mpol; 1962 1963 if (new->vm_file) { 1964 get_file(new->vm_file); 1965 if (vma->vm_flags & VM_EXECUTABLE) 1966 added_exe_file_vma(mm); 1967 } 1968 1969 if (new->vm_ops && new->vm_ops->open) 1970 new->vm_ops->open(new); 1971 1972 if (new_below) 1973 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1974 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1975 else 1976 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1977 1978 /* Success. */ 1979 if (!err) 1980 return 0; 1981 1982 /* Clean everything up if vma_adjust failed. */ 1983 if (new->vm_ops && new->vm_ops->close) 1984 new->vm_ops->close(new); 1985 if (new->vm_file) { 1986 if (vma->vm_flags & VM_EXECUTABLE) 1987 removed_exe_file_vma(mm); 1988 fput(new->vm_file); 1989 } 1990 out_free_mpol: 1991 mpol_put(pol); 1992 out_free_vma: 1993 kmem_cache_free(vm_area_cachep, new); 1994 out_err: 1995 return err; 1996 } 1997 1998 /* 1999 * Split a vma into two pieces at address 'addr', a new vma is allocated 2000 * either for the first part or the tail. 2001 */ 2002 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2003 unsigned long addr, int new_below) 2004 { 2005 if (mm->map_count >= sysctl_max_map_count) 2006 return -ENOMEM; 2007 2008 return __split_vma(mm, vma, addr, new_below); 2009 } 2010 2011 /* Munmap is split into 2 main parts -- this part which finds 2012 * what needs doing, and the areas themselves, which do the 2013 * work. This now handles partial unmappings. 2014 * Jeremy Fitzhardinge <jeremy@goop.org> 2015 */ 2016 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2017 { 2018 unsigned long end; 2019 struct vm_area_struct *vma, *prev, *last; 2020 2021 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2022 return -EINVAL; 2023 2024 if ((len = PAGE_ALIGN(len)) == 0) 2025 return -EINVAL; 2026 2027 /* Find the first overlapping VMA */ 2028 vma = find_vma_prev(mm, start, &prev); 2029 if (!vma) 2030 return 0; 2031 /* we have start < vma->vm_end */ 2032 2033 /* if it doesn't overlap, we have nothing.. */ 2034 end = start + len; 2035 if (vma->vm_start >= end) 2036 return 0; 2037 2038 /* 2039 * If we need to split any vma, do it now to save pain later. 2040 * 2041 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2042 * unmapped vm_area_struct will remain in use: so lower split_vma 2043 * places tmp vma above, and higher split_vma places tmp vma below. 2044 */ 2045 if (start > vma->vm_start) { 2046 int error; 2047 2048 /* 2049 * Make sure that map_count on return from munmap() will 2050 * not exceed its limit; but let map_count go just above 2051 * its limit temporarily, to help free resources as expected. 2052 */ 2053 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2054 return -ENOMEM; 2055 2056 error = __split_vma(mm, vma, start, 0); 2057 if (error) 2058 return error; 2059 prev = vma; 2060 } 2061 2062 /* Does it split the last one? */ 2063 last = find_vma(mm, end); 2064 if (last && end > last->vm_start) { 2065 int error = __split_vma(mm, last, end, 1); 2066 if (error) 2067 return error; 2068 } 2069 vma = prev? prev->vm_next: mm->mmap; 2070 2071 /* 2072 * unlock any mlock()ed ranges before detaching vmas 2073 */ 2074 if (mm->locked_vm) { 2075 struct vm_area_struct *tmp = vma; 2076 while (tmp && tmp->vm_start < end) { 2077 if (tmp->vm_flags & VM_LOCKED) { 2078 mm->locked_vm -= vma_pages(tmp); 2079 munlock_vma_pages_all(tmp); 2080 } 2081 tmp = tmp->vm_next; 2082 } 2083 } 2084 2085 /* 2086 * Remove the vma's, and unmap the actual pages 2087 */ 2088 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2089 unmap_region(mm, vma, prev, start, end); 2090 2091 /* Fix up all other VM information */ 2092 remove_vma_list(mm, vma); 2093 2094 return 0; 2095 } 2096 2097 EXPORT_SYMBOL(do_munmap); 2098 2099 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2100 { 2101 int ret; 2102 struct mm_struct *mm = current->mm; 2103 2104 profile_munmap(addr); 2105 2106 down_write(&mm->mmap_sem); 2107 ret = do_munmap(mm, addr, len); 2108 up_write(&mm->mmap_sem); 2109 return ret; 2110 } 2111 2112 static inline void verify_mm_writelocked(struct mm_struct *mm) 2113 { 2114 #ifdef CONFIG_DEBUG_VM 2115 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2116 WARN_ON(1); 2117 up_read(&mm->mmap_sem); 2118 } 2119 #endif 2120 } 2121 2122 /* 2123 * this is really a simplified "do_mmap". it only handles 2124 * anonymous maps. eventually we may be able to do some 2125 * brk-specific accounting here. 2126 */ 2127 unsigned long do_brk(unsigned long addr, unsigned long len) 2128 { 2129 struct mm_struct * mm = current->mm; 2130 struct vm_area_struct * vma, * prev; 2131 unsigned long flags; 2132 struct rb_node ** rb_link, * rb_parent; 2133 pgoff_t pgoff = addr >> PAGE_SHIFT; 2134 int error; 2135 2136 len = PAGE_ALIGN(len); 2137 if (!len) 2138 return addr; 2139 2140 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2141 if (error) 2142 return error; 2143 2144 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2145 2146 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2147 if (error & ~PAGE_MASK) 2148 return error; 2149 2150 /* 2151 * mlock MCL_FUTURE? 2152 */ 2153 if (mm->def_flags & VM_LOCKED) { 2154 unsigned long locked, lock_limit; 2155 locked = len >> PAGE_SHIFT; 2156 locked += mm->locked_vm; 2157 lock_limit = rlimit(RLIMIT_MEMLOCK); 2158 lock_limit >>= PAGE_SHIFT; 2159 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2160 return -EAGAIN; 2161 } 2162 2163 /* 2164 * mm->mmap_sem is required to protect against another thread 2165 * changing the mappings in case we sleep. 2166 */ 2167 verify_mm_writelocked(mm); 2168 2169 /* 2170 * Clear old maps. this also does some error checking for us 2171 */ 2172 munmap_back: 2173 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2174 if (vma && vma->vm_start < addr + len) { 2175 if (do_munmap(mm, addr, len)) 2176 return -ENOMEM; 2177 goto munmap_back; 2178 } 2179 2180 /* Check against address space limits *after* clearing old maps... */ 2181 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2182 return -ENOMEM; 2183 2184 if (mm->map_count > sysctl_max_map_count) 2185 return -ENOMEM; 2186 2187 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2188 return -ENOMEM; 2189 2190 /* Can we just expand an old private anonymous mapping? */ 2191 vma = vma_merge(mm, prev, addr, addr + len, flags, 2192 NULL, NULL, pgoff, NULL); 2193 if (vma) 2194 goto out; 2195 2196 /* 2197 * create a vma struct for an anonymous mapping 2198 */ 2199 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2200 if (!vma) { 2201 vm_unacct_memory(len >> PAGE_SHIFT); 2202 return -ENOMEM; 2203 } 2204 2205 INIT_LIST_HEAD(&vma->anon_vma_chain); 2206 vma->vm_mm = mm; 2207 vma->vm_start = addr; 2208 vma->vm_end = addr + len; 2209 vma->vm_pgoff = pgoff; 2210 vma->vm_flags = flags; 2211 vma->vm_page_prot = vm_get_page_prot(flags); 2212 vma_link(mm, vma, prev, rb_link, rb_parent); 2213 out: 2214 perf_event_mmap(vma); 2215 mm->total_vm += len >> PAGE_SHIFT; 2216 if (flags & VM_LOCKED) { 2217 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2218 mm->locked_vm += (len >> PAGE_SHIFT); 2219 } 2220 return addr; 2221 } 2222 2223 EXPORT_SYMBOL(do_brk); 2224 2225 /* Release all mmaps. */ 2226 void exit_mmap(struct mm_struct *mm) 2227 { 2228 struct mmu_gather *tlb; 2229 struct vm_area_struct *vma; 2230 unsigned long nr_accounted = 0; 2231 unsigned long end; 2232 2233 /* mm's last user has gone, and its about to be pulled down */ 2234 mmu_notifier_release(mm); 2235 2236 if (mm->locked_vm) { 2237 vma = mm->mmap; 2238 while (vma) { 2239 if (vma->vm_flags & VM_LOCKED) 2240 munlock_vma_pages_all(vma); 2241 vma = vma->vm_next; 2242 } 2243 } 2244 2245 arch_exit_mmap(mm); 2246 2247 vma = mm->mmap; 2248 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2249 return; 2250 2251 lru_add_drain(); 2252 flush_cache_mm(mm); 2253 tlb = tlb_gather_mmu(mm, 1); 2254 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2255 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2256 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2257 vm_unacct_memory(nr_accounted); 2258 2259 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2260 tlb_finish_mmu(tlb, 0, end); 2261 2262 /* 2263 * Walk the list again, actually closing and freeing it, 2264 * with preemption enabled, without holding any MM locks. 2265 */ 2266 while (vma) 2267 vma = remove_vma(vma); 2268 2269 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2270 } 2271 2272 /* Insert vm structure into process list sorted by address 2273 * and into the inode's i_mmap tree. If vm_file is non-NULL 2274 * then i_mmap_lock is taken here. 2275 */ 2276 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2277 { 2278 struct vm_area_struct * __vma, * prev; 2279 struct rb_node ** rb_link, * rb_parent; 2280 2281 /* 2282 * The vm_pgoff of a purely anonymous vma should be irrelevant 2283 * until its first write fault, when page's anon_vma and index 2284 * are set. But now set the vm_pgoff it will almost certainly 2285 * end up with (unless mremap moves it elsewhere before that 2286 * first wfault), so /proc/pid/maps tells a consistent story. 2287 * 2288 * By setting it to reflect the virtual start address of the 2289 * vma, merges and splits can happen in a seamless way, just 2290 * using the existing file pgoff checks and manipulations. 2291 * Similarly in do_mmap_pgoff and in do_brk. 2292 */ 2293 if (!vma->vm_file) { 2294 BUG_ON(vma->anon_vma); 2295 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2296 } 2297 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2298 if (__vma && __vma->vm_start < vma->vm_end) 2299 return -ENOMEM; 2300 if ((vma->vm_flags & VM_ACCOUNT) && 2301 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2302 return -ENOMEM; 2303 vma_link(mm, vma, prev, rb_link, rb_parent); 2304 return 0; 2305 } 2306 2307 /* 2308 * Copy the vma structure to a new location in the same mm, 2309 * prior to moving page table entries, to effect an mremap move. 2310 */ 2311 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2312 unsigned long addr, unsigned long len, pgoff_t pgoff) 2313 { 2314 struct vm_area_struct *vma = *vmap; 2315 unsigned long vma_start = vma->vm_start; 2316 struct mm_struct *mm = vma->vm_mm; 2317 struct vm_area_struct *new_vma, *prev; 2318 struct rb_node **rb_link, *rb_parent; 2319 struct mempolicy *pol; 2320 2321 /* 2322 * If anonymous vma has not yet been faulted, update new pgoff 2323 * to match new location, to increase its chance of merging. 2324 */ 2325 if (!vma->vm_file && !vma->anon_vma) 2326 pgoff = addr >> PAGE_SHIFT; 2327 2328 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2329 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2330 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2331 if (new_vma) { 2332 /* 2333 * Source vma may have been merged into new_vma 2334 */ 2335 if (vma_start >= new_vma->vm_start && 2336 vma_start < new_vma->vm_end) 2337 *vmap = new_vma; 2338 } else { 2339 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2340 if (new_vma) { 2341 *new_vma = *vma; 2342 pol = mpol_dup(vma_policy(vma)); 2343 if (IS_ERR(pol)) 2344 goto out_free_vma; 2345 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2346 if (anon_vma_clone(new_vma, vma)) 2347 goto out_free_mempol; 2348 vma_set_policy(new_vma, pol); 2349 new_vma->vm_start = addr; 2350 new_vma->vm_end = addr + len; 2351 new_vma->vm_pgoff = pgoff; 2352 if (new_vma->vm_file) { 2353 get_file(new_vma->vm_file); 2354 if (vma->vm_flags & VM_EXECUTABLE) 2355 added_exe_file_vma(mm); 2356 } 2357 if (new_vma->vm_ops && new_vma->vm_ops->open) 2358 new_vma->vm_ops->open(new_vma); 2359 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2360 } 2361 } 2362 return new_vma; 2363 2364 out_free_mempol: 2365 mpol_put(pol); 2366 out_free_vma: 2367 kmem_cache_free(vm_area_cachep, new_vma); 2368 return NULL; 2369 } 2370 2371 /* 2372 * Return true if the calling process may expand its vm space by the passed 2373 * number of pages 2374 */ 2375 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2376 { 2377 unsigned long cur = mm->total_vm; /* pages */ 2378 unsigned long lim; 2379 2380 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2381 2382 if (cur + npages > lim) 2383 return 0; 2384 return 1; 2385 } 2386 2387 2388 static int special_mapping_fault(struct vm_area_struct *vma, 2389 struct vm_fault *vmf) 2390 { 2391 pgoff_t pgoff; 2392 struct page **pages; 2393 2394 /* 2395 * special mappings have no vm_file, and in that case, the mm 2396 * uses vm_pgoff internally. So we have to subtract it from here. 2397 * We are allowed to do this because we are the mm; do not copy 2398 * this code into drivers! 2399 */ 2400 pgoff = vmf->pgoff - vma->vm_pgoff; 2401 2402 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2403 pgoff--; 2404 2405 if (*pages) { 2406 struct page *page = *pages; 2407 get_page(page); 2408 vmf->page = page; 2409 return 0; 2410 } 2411 2412 return VM_FAULT_SIGBUS; 2413 } 2414 2415 /* 2416 * Having a close hook prevents vma merging regardless of flags. 2417 */ 2418 static void special_mapping_close(struct vm_area_struct *vma) 2419 { 2420 } 2421 2422 static const struct vm_operations_struct special_mapping_vmops = { 2423 .close = special_mapping_close, 2424 .fault = special_mapping_fault, 2425 }; 2426 2427 /* 2428 * Called with mm->mmap_sem held for writing. 2429 * Insert a new vma covering the given region, with the given flags. 2430 * Its pages are supplied by the given array of struct page *. 2431 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2432 * The region past the last page supplied will always produce SIGBUS. 2433 * The array pointer and the pages it points to are assumed to stay alive 2434 * for as long as this mapping might exist. 2435 */ 2436 int install_special_mapping(struct mm_struct *mm, 2437 unsigned long addr, unsigned long len, 2438 unsigned long vm_flags, struct page **pages) 2439 { 2440 struct vm_area_struct *vma; 2441 2442 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2443 if (unlikely(vma == NULL)) 2444 return -ENOMEM; 2445 2446 INIT_LIST_HEAD(&vma->anon_vma_chain); 2447 vma->vm_mm = mm; 2448 vma->vm_start = addr; 2449 vma->vm_end = addr + len; 2450 2451 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2452 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2453 2454 vma->vm_ops = &special_mapping_vmops; 2455 vma->vm_private_data = pages; 2456 2457 if (unlikely(insert_vm_struct(mm, vma))) { 2458 kmem_cache_free(vm_area_cachep, vma); 2459 return -ENOMEM; 2460 } 2461 2462 mm->total_vm += len >> PAGE_SHIFT; 2463 2464 perf_event_mmap(vma); 2465 2466 return 0; 2467 } 2468 2469 static DEFINE_MUTEX(mm_all_locks_mutex); 2470 2471 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2472 { 2473 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2474 /* 2475 * The LSB of head.next can't change from under us 2476 * because we hold the mm_all_locks_mutex. 2477 */ 2478 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2479 /* 2480 * We can safely modify head.next after taking the 2481 * anon_vma->lock. If some other vma in this mm shares 2482 * the same anon_vma we won't take it again. 2483 * 2484 * No need of atomic instructions here, head.next 2485 * can't change from under us thanks to the 2486 * anon_vma->lock. 2487 */ 2488 if (__test_and_set_bit(0, (unsigned long *) 2489 &anon_vma->head.next)) 2490 BUG(); 2491 } 2492 } 2493 2494 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2495 { 2496 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2497 /* 2498 * AS_MM_ALL_LOCKS can't change from under us because 2499 * we hold the mm_all_locks_mutex. 2500 * 2501 * Operations on ->flags have to be atomic because 2502 * even if AS_MM_ALL_LOCKS is stable thanks to the 2503 * mm_all_locks_mutex, there may be other cpus 2504 * changing other bitflags in parallel to us. 2505 */ 2506 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2507 BUG(); 2508 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2509 } 2510 } 2511 2512 /* 2513 * This operation locks against the VM for all pte/vma/mm related 2514 * operations that could ever happen on a certain mm. This includes 2515 * vmtruncate, try_to_unmap, and all page faults. 2516 * 2517 * The caller must take the mmap_sem in write mode before calling 2518 * mm_take_all_locks(). The caller isn't allowed to release the 2519 * mmap_sem until mm_drop_all_locks() returns. 2520 * 2521 * mmap_sem in write mode is required in order to block all operations 2522 * that could modify pagetables and free pages without need of 2523 * altering the vma layout (for example populate_range() with 2524 * nonlinear vmas). It's also needed in write mode to avoid new 2525 * anon_vmas to be associated with existing vmas. 2526 * 2527 * A single task can't take more than one mm_take_all_locks() in a row 2528 * or it would deadlock. 2529 * 2530 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2531 * mapping->flags avoid to take the same lock twice, if more than one 2532 * vma in this mm is backed by the same anon_vma or address_space. 2533 * 2534 * We can take all the locks in random order because the VM code 2535 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2536 * takes more than one of them in a row. Secondly we're protected 2537 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2538 * 2539 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2540 * that may have to take thousand of locks. 2541 * 2542 * mm_take_all_locks() can fail if it's interrupted by signals. 2543 */ 2544 int mm_take_all_locks(struct mm_struct *mm) 2545 { 2546 struct vm_area_struct *vma; 2547 struct anon_vma_chain *avc; 2548 int ret = -EINTR; 2549 2550 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2551 2552 mutex_lock(&mm_all_locks_mutex); 2553 2554 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2555 if (signal_pending(current)) 2556 goto out_unlock; 2557 if (vma->vm_file && vma->vm_file->f_mapping) 2558 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2559 } 2560 2561 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2562 if (signal_pending(current)) 2563 goto out_unlock; 2564 if (vma->anon_vma) 2565 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2566 vm_lock_anon_vma(mm, avc->anon_vma); 2567 } 2568 2569 ret = 0; 2570 2571 out_unlock: 2572 if (ret) 2573 mm_drop_all_locks(mm); 2574 2575 return ret; 2576 } 2577 2578 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2579 { 2580 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2581 /* 2582 * The LSB of head.next can't change to 0 from under 2583 * us because we hold the mm_all_locks_mutex. 2584 * 2585 * We must however clear the bitflag before unlocking 2586 * the vma so the users using the anon_vma->head will 2587 * never see our bitflag. 2588 * 2589 * No need of atomic instructions here, head.next 2590 * can't change from under us until we release the 2591 * anon_vma->lock. 2592 */ 2593 if (!__test_and_clear_bit(0, (unsigned long *) 2594 &anon_vma->head.next)) 2595 BUG(); 2596 spin_unlock(&anon_vma->lock); 2597 } 2598 } 2599 2600 static void vm_unlock_mapping(struct address_space *mapping) 2601 { 2602 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2603 /* 2604 * AS_MM_ALL_LOCKS can't change to 0 from under us 2605 * because we hold the mm_all_locks_mutex. 2606 */ 2607 spin_unlock(&mapping->i_mmap_lock); 2608 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2609 &mapping->flags)) 2610 BUG(); 2611 } 2612 } 2613 2614 /* 2615 * The mmap_sem cannot be released by the caller until 2616 * mm_drop_all_locks() returns. 2617 */ 2618 void mm_drop_all_locks(struct mm_struct *mm) 2619 { 2620 struct vm_area_struct *vma; 2621 struct anon_vma_chain *avc; 2622 2623 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2624 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2625 2626 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2627 if (vma->anon_vma) 2628 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2629 vm_unlock_anon_vma(avc->anon_vma); 2630 if (vma->vm_file && vma->vm_file->f_mapping) 2631 vm_unlock_mapping(vma->vm_file->f_mapping); 2632 } 2633 2634 mutex_unlock(&mm_all_locks_mutex); 2635 } 2636 2637 /* 2638 * initialise the VMA slab 2639 */ 2640 void __init mmap_init(void) 2641 { 2642 int ret; 2643 2644 ret = percpu_counter_init(&vm_committed_as, 0); 2645 VM_BUG_ON(ret); 2646 } 2647