xref: /linux/mm/mmap.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
46 
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51 
52 #include "internal.h"
53 
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)	(0)
56 #endif
57 
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
60 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
61 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
65 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
66 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
67 #endif
68 
69 static bool ignore_rlimit_data;
70 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
71 
72 static void unmap_region(struct mm_struct *mm,
73 		struct vm_area_struct *vma, struct vm_area_struct *prev,
74 		unsigned long start, unsigned long end);
75 
76 /* description of effects of mapping type and prot in current implementation.
77  * this is due to the limited x86 page protection hardware.  The expected
78  * behavior is in parens:
79  *
80  * map_type	prot
81  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
82  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
83  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
84  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
85  *
86  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  */
91 pgprot_t protection_map[16] = {
92 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95 
96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98 	return __pgprot(pgprot_val(protection_map[vm_flags &
99 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103 
104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108 
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112 	unsigned long vm_flags = vma->vm_flags;
113 
114 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
115 	if (vma_wants_writenotify(vma)) {
116 		vm_flags &= ~VM_SHARED;
117 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
118 						     vm_flags);
119 	}
120 }
121 
122 /*
123  * Requires inode->i_mapping->i_mmap_rwsem
124  */
125 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
126 		struct file *file, struct address_space *mapping)
127 {
128 	if (vma->vm_flags & VM_DENYWRITE)
129 		atomic_inc(&file_inode(file)->i_writecount);
130 	if (vma->vm_flags & VM_SHARED)
131 		mapping_unmap_writable(mapping);
132 
133 	flush_dcache_mmap_lock(mapping);
134 	vma_interval_tree_remove(vma, &mapping->i_mmap);
135 	flush_dcache_mmap_unlock(mapping);
136 }
137 
138 /*
139  * Unlink a file-based vm structure from its interval tree, to hide
140  * vma from rmap and vmtruncate before freeing its page tables.
141  */
142 void unlink_file_vma(struct vm_area_struct *vma)
143 {
144 	struct file *file = vma->vm_file;
145 
146 	if (file) {
147 		struct address_space *mapping = file->f_mapping;
148 		i_mmap_lock_write(mapping);
149 		__remove_shared_vm_struct(vma, file, mapping);
150 		i_mmap_unlock_write(mapping);
151 	}
152 }
153 
154 /*
155  * Close a vm structure and free it, returning the next.
156  */
157 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
158 {
159 	struct vm_area_struct *next = vma->vm_next;
160 
161 	might_sleep();
162 	if (vma->vm_ops && vma->vm_ops->close)
163 		vma->vm_ops->close(vma);
164 	if (vma->vm_file)
165 		fput(vma->vm_file);
166 	mpol_put(vma_policy(vma));
167 	kmem_cache_free(vm_area_cachep, vma);
168 	return next;
169 }
170 
171 static unsigned long do_brk(unsigned long addr, unsigned long len);
172 
173 SYSCALL_DEFINE1(brk, unsigned long, brk)
174 {
175 	unsigned long retval;
176 	unsigned long newbrk, oldbrk;
177 	struct mm_struct *mm = current->mm;
178 	unsigned long min_brk;
179 	bool populate;
180 
181 	down_write(&mm->mmap_sem);
182 
183 #ifdef CONFIG_COMPAT_BRK
184 	/*
185 	 * CONFIG_COMPAT_BRK can still be overridden by setting
186 	 * randomize_va_space to 2, which will still cause mm->start_brk
187 	 * to be arbitrarily shifted
188 	 */
189 	if (current->brk_randomized)
190 		min_brk = mm->start_brk;
191 	else
192 		min_brk = mm->end_data;
193 #else
194 	min_brk = mm->start_brk;
195 #endif
196 	if (brk < min_brk)
197 		goto out;
198 
199 	/*
200 	 * Check against rlimit here. If this check is done later after the test
201 	 * of oldbrk with newbrk then it can escape the test and let the data
202 	 * segment grow beyond its set limit the in case where the limit is
203 	 * not page aligned -Ram Gupta
204 	 */
205 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
206 			      mm->end_data, mm->start_data))
207 		goto out;
208 
209 	newbrk = PAGE_ALIGN(brk);
210 	oldbrk = PAGE_ALIGN(mm->brk);
211 	if (oldbrk == newbrk)
212 		goto set_brk;
213 
214 	/* Always allow shrinking brk. */
215 	if (brk <= mm->brk) {
216 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
217 			goto set_brk;
218 		goto out;
219 	}
220 
221 	/* Check against existing mmap mappings. */
222 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
223 		goto out;
224 
225 	/* Ok, looks good - let it rip. */
226 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
227 		goto out;
228 
229 set_brk:
230 	mm->brk = brk;
231 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
232 	up_write(&mm->mmap_sem);
233 	if (populate)
234 		mm_populate(oldbrk, newbrk - oldbrk);
235 	return brk;
236 
237 out:
238 	retval = mm->brk;
239 	up_write(&mm->mmap_sem);
240 	return retval;
241 }
242 
243 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
244 {
245 	unsigned long max, subtree_gap;
246 	max = vma->vm_start;
247 	if (vma->vm_prev)
248 		max -= vma->vm_prev->vm_end;
249 	if (vma->vm_rb.rb_left) {
250 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
251 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
252 		if (subtree_gap > max)
253 			max = subtree_gap;
254 	}
255 	if (vma->vm_rb.rb_right) {
256 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
257 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
258 		if (subtree_gap > max)
259 			max = subtree_gap;
260 	}
261 	return max;
262 }
263 
264 #ifdef CONFIG_DEBUG_VM_RB
265 static int browse_rb(struct mm_struct *mm)
266 {
267 	struct rb_root *root = &mm->mm_rb;
268 	int i = 0, j, bug = 0;
269 	struct rb_node *nd, *pn = NULL;
270 	unsigned long prev = 0, pend = 0;
271 
272 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
273 		struct vm_area_struct *vma;
274 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
275 		if (vma->vm_start < prev) {
276 			pr_emerg("vm_start %lx < prev %lx\n",
277 				  vma->vm_start, prev);
278 			bug = 1;
279 		}
280 		if (vma->vm_start < pend) {
281 			pr_emerg("vm_start %lx < pend %lx\n",
282 				  vma->vm_start, pend);
283 			bug = 1;
284 		}
285 		if (vma->vm_start > vma->vm_end) {
286 			pr_emerg("vm_start %lx > vm_end %lx\n",
287 				  vma->vm_start, vma->vm_end);
288 			bug = 1;
289 		}
290 		spin_lock(&mm->page_table_lock);
291 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
292 			pr_emerg("free gap %lx, correct %lx\n",
293 			       vma->rb_subtree_gap,
294 			       vma_compute_subtree_gap(vma));
295 			bug = 1;
296 		}
297 		spin_unlock(&mm->page_table_lock);
298 		i++;
299 		pn = nd;
300 		prev = vma->vm_start;
301 		pend = vma->vm_end;
302 	}
303 	j = 0;
304 	for (nd = pn; nd; nd = rb_prev(nd))
305 		j++;
306 	if (i != j) {
307 		pr_emerg("backwards %d, forwards %d\n", j, i);
308 		bug = 1;
309 	}
310 	return bug ? -1 : i;
311 }
312 
313 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
314 {
315 	struct rb_node *nd;
316 
317 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
318 		struct vm_area_struct *vma;
319 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
320 		VM_BUG_ON_VMA(vma != ignore &&
321 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
322 			vma);
323 	}
324 }
325 
326 static void validate_mm(struct mm_struct *mm)
327 {
328 	int bug = 0;
329 	int i = 0;
330 	unsigned long highest_address = 0;
331 	struct vm_area_struct *vma = mm->mmap;
332 
333 	while (vma) {
334 		struct anon_vma *anon_vma = vma->anon_vma;
335 		struct anon_vma_chain *avc;
336 
337 		if (anon_vma) {
338 			anon_vma_lock_read(anon_vma);
339 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
340 				anon_vma_interval_tree_verify(avc);
341 			anon_vma_unlock_read(anon_vma);
342 		}
343 
344 		highest_address = vma->vm_end;
345 		vma = vma->vm_next;
346 		i++;
347 	}
348 	if (i != mm->map_count) {
349 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
350 		bug = 1;
351 	}
352 	if (highest_address != mm->highest_vm_end) {
353 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
354 			  mm->highest_vm_end, highest_address);
355 		bug = 1;
356 	}
357 	i = browse_rb(mm);
358 	if (i != mm->map_count) {
359 		if (i != -1)
360 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
361 		bug = 1;
362 	}
363 	VM_BUG_ON_MM(bug, mm);
364 }
365 #else
366 #define validate_mm_rb(root, ignore) do { } while (0)
367 #define validate_mm(mm) do { } while (0)
368 #endif
369 
370 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
371 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
372 
373 /*
374  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
375  * vma->vm_prev->vm_end values changed, without modifying the vma's position
376  * in the rbtree.
377  */
378 static void vma_gap_update(struct vm_area_struct *vma)
379 {
380 	/*
381 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
382 	 * function that does exacltly what we want.
383 	 */
384 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
385 }
386 
387 static inline void vma_rb_insert(struct vm_area_struct *vma,
388 				 struct rb_root *root)
389 {
390 	/* All rb_subtree_gap values must be consistent prior to insertion */
391 	validate_mm_rb(root, NULL);
392 
393 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
394 }
395 
396 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
397 {
398 	/*
399 	 * All rb_subtree_gap values must be consistent prior to erase,
400 	 * with the possible exception of the vma being erased.
401 	 */
402 	validate_mm_rb(root, vma);
403 
404 	/*
405 	 * Note rb_erase_augmented is a fairly large inline function,
406 	 * so make sure we instantiate it only once with our desired
407 	 * augmented rbtree callbacks.
408 	 */
409 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
410 }
411 
412 /*
413  * vma has some anon_vma assigned, and is already inserted on that
414  * anon_vma's interval trees.
415  *
416  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
417  * vma must be removed from the anon_vma's interval trees using
418  * anon_vma_interval_tree_pre_update_vma().
419  *
420  * After the update, the vma will be reinserted using
421  * anon_vma_interval_tree_post_update_vma().
422  *
423  * The entire update must be protected by exclusive mmap_sem and by
424  * the root anon_vma's mutex.
425  */
426 static inline void
427 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
428 {
429 	struct anon_vma_chain *avc;
430 
431 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
432 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
433 }
434 
435 static inline void
436 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
437 {
438 	struct anon_vma_chain *avc;
439 
440 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
441 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
442 }
443 
444 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
445 		unsigned long end, struct vm_area_struct **pprev,
446 		struct rb_node ***rb_link, struct rb_node **rb_parent)
447 {
448 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
449 
450 	__rb_link = &mm->mm_rb.rb_node;
451 	rb_prev = __rb_parent = NULL;
452 
453 	while (*__rb_link) {
454 		struct vm_area_struct *vma_tmp;
455 
456 		__rb_parent = *__rb_link;
457 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
458 
459 		if (vma_tmp->vm_end > addr) {
460 			/* Fail if an existing vma overlaps the area */
461 			if (vma_tmp->vm_start < end)
462 				return -ENOMEM;
463 			__rb_link = &__rb_parent->rb_left;
464 		} else {
465 			rb_prev = __rb_parent;
466 			__rb_link = &__rb_parent->rb_right;
467 		}
468 	}
469 
470 	*pprev = NULL;
471 	if (rb_prev)
472 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
473 	*rb_link = __rb_link;
474 	*rb_parent = __rb_parent;
475 	return 0;
476 }
477 
478 static unsigned long count_vma_pages_range(struct mm_struct *mm,
479 		unsigned long addr, unsigned long end)
480 {
481 	unsigned long nr_pages = 0;
482 	struct vm_area_struct *vma;
483 
484 	/* Find first overlaping mapping */
485 	vma = find_vma_intersection(mm, addr, end);
486 	if (!vma)
487 		return 0;
488 
489 	nr_pages = (min(end, vma->vm_end) -
490 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
491 
492 	/* Iterate over the rest of the overlaps */
493 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
494 		unsigned long overlap_len;
495 
496 		if (vma->vm_start > end)
497 			break;
498 
499 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
500 		nr_pages += overlap_len >> PAGE_SHIFT;
501 	}
502 
503 	return nr_pages;
504 }
505 
506 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
507 		struct rb_node **rb_link, struct rb_node *rb_parent)
508 {
509 	/* Update tracking information for the gap following the new vma. */
510 	if (vma->vm_next)
511 		vma_gap_update(vma->vm_next);
512 	else
513 		mm->highest_vm_end = vma->vm_end;
514 
515 	/*
516 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
517 	 * correct insertion point for that vma. As a result, we could not
518 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
519 	 * So, we first insert the vma with a zero rb_subtree_gap value
520 	 * (to be consistent with what we did on the way down), and then
521 	 * immediately update the gap to the correct value. Finally we
522 	 * rebalance the rbtree after all augmented values have been set.
523 	 */
524 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
525 	vma->rb_subtree_gap = 0;
526 	vma_gap_update(vma);
527 	vma_rb_insert(vma, &mm->mm_rb);
528 }
529 
530 static void __vma_link_file(struct vm_area_struct *vma)
531 {
532 	struct file *file;
533 
534 	file = vma->vm_file;
535 	if (file) {
536 		struct address_space *mapping = file->f_mapping;
537 
538 		if (vma->vm_flags & VM_DENYWRITE)
539 			atomic_dec(&file_inode(file)->i_writecount);
540 		if (vma->vm_flags & VM_SHARED)
541 			atomic_inc(&mapping->i_mmap_writable);
542 
543 		flush_dcache_mmap_lock(mapping);
544 		vma_interval_tree_insert(vma, &mapping->i_mmap);
545 		flush_dcache_mmap_unlock(mapping);
546 	}
547 }
548 
549 static void
550 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
551 	struct vm_area_struct *prev, struct rb_node **rb_link,
552 	struct rb_node *rb_parent)
553 {
554 	__vma_link_list(mm, vma, prev, rb_parent);
555 	__vma_link_rb(mm, vma, rb_link, rb_parent);
556 }
557 
558 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
559 			struct vm_area_struct *prev, struct rb_node **rb_link,
560 			struct rb_node *rb_parent)
561 {
562 	struct address_space *mapping = NULL;
563 
564 	if (vma->vm_file) {
565 		mapping = vma->vm_file->f_mapping;
566 		i_mmap_lock_write(mapping);
567 	}
568 
569 	__vma_link(mm, vma, prev, rb_link, rb_parent);
570 	__vma_link_file(vma);
571 
572 	if (mapping)
573 		i_mmap_unlock_write(mapping);
574 
575 	mm->map_count++;
576 	validate_mm(mm);
577 }
578 
579 /*
580  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
581  * mm's list and rbtree.  It has already been inserted into the interval tree.
582  */
583 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
584 {
585 	struct vm_area_struct *prev;
586 	struct rb_node **rb_link, *rb_parent;
587 
588 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
589 			   &prev, &rb_link, &rb_parent))
590 		BUG();
591 	__vma_link(mm, vma, prev, rb_link, rb_parent);
592 	mm->map_count++;
593 }
594 
595 static inline void
596 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
597 		struct vm_area_struct *prev)
598 {
599 	struct vm_area_struct *next;
600 
601 	vma_rb_erase(vma, &mm->mm_rb);
602 	prev->vm_next = next = vma->vm_next;
603 	if (next)
604 		next->vm_prev = prev;
605 
606 	/* Kill the cache */
607 	vmacache_invalidate(mm);
608 }
609 
610 /*
611  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
612  * is already present in an i_mmap tree without adjusting the tree.
613  * The following helper function should be used when such adjustments
614  * are necessary.  The "insert" vma (if any) is to be inserted
615  * before we drop the necessary locks.
616  */
617 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
618 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
619 {
620 	struct mm_struct *mm = vma->vm_mm;
621 	struct vm_area_struct *next = vma->vm_next;
622 	struct vm_area_struct *importer = NULL;
623 	struct address_space *mapping = NULL;
624 	struct rb_root *root = NULL;
625 	struct anon_vma *anon_vma = NULL;
626 	struct file *file = vma->vm_file;
627 	bool start_changed = false, end_changed = false;
628 	long adjust_next = 0;
629 	int remove_next = 0;
630 
631 	if (next && !insert) {
632 		struct vm_area_struct *exporter = NULL;
633 
634 		if (end >= next->vm_end) {
635 			/*
636 			 * vma expands, overlapping all the next, and
637 			 * perhaps the one after too (mprotect case 6).
638 			 */
639 again:			remove_next = 1 + (end > next->vm_end);
640 			end = next->vm_end;
641 			exporter = next;
642 			importer = vma;
643 		} else if (end > next->vm_start) {
644 			/*
645 			 * vma expands, overlapping part of the next:
646 			 * mprotect case 5 shifting the boundary up.
647 			 */
648 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
649 			exporter = next;
650 			importer = vma;
651 		} else if (end < vma->vm_end) {
652 			/*
653 			 * vma shrinks, and !insert tells it's not
654 			 * split_vma inserting another: so it must be
655 			 * mprotect case 4 shifting the boundary down.
656 			 */
657 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
658 			exporter = vma;
659 			importer = next;
660 		}
661 
662 		/*
663 		 * Easily overlooked: when mprotect shifts the boundary,
664 		 * make sure the expanding vma has anon_vma set if the
665 		 * shrinking vma had, to cover any anon pages imported.
666 		 */
667 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
668 			int error;
669 
670 			importer->anon_vma = exporter->anon_vma;
671 			error = anon_vma_clone(importer, exporter);
672 			if (error)
673 				return error;
674 		}
675 	}
676 
677 	if (file) {
678 		mapping = file->f_mapping;
679 		root = &mapping->i_mmap;
680 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
681 
682 		if (adjust_next)
683 			uprobe_munmap(next, next->vm_start, next->vm_end);
684 
685 		i_mmap_lock_write(mapping);
686 		if (insert) {
687 			/*
688 			 * Put into interval tree now, so instantiated pages
689 			 * are visible to arm/parisc __flush_dcache_page
690 			 * throughout; but we cannot insert into address
691 			 * space until vma start or end is updated.
692 			 */
693 			__vma_link_file(insert);
694 		}
695 	}
696 
697 	vma_adjust_trans_huge(vma, start, end, adjust_next);
698 
699 	anon_vma = vma->anon_vma;
700 	if (!anon_vma && adjust_next)
701 		anon_vma = next->anon_vma;
702 	if (anon_vma) {
703 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
704 			  anon_vma != next->anon_vma, next);
705 		anon_vma_lock_write(anon_vma);
706 		anon_vma_interval_tree_pre_update_vma(vma);
707 		if (adjust_next)
708 			anon_vma_interval_tree_pre_update_vma(next);
709 	}
710 
711 	if (root) {
712 		flush_dcache_mmap_lock(mapping);
713 		vma_interval_tree_remove(vma, root);
714 		if (adjust_next)
715 			vma_interval_tree_remove(next, root);
716 	}
717 
718 	if (start != vma->vm_start) {
719 		vma->vm_start = start;
720 		start_changed = true;
721 	}
722 	if (end != vma->vm_end) {
723 		vma->vm_end = end;
724 		end_changed = true;
725 	}
726 	vma->vm_pgoff = pgoff;
727 	if (adjust_next) {
728 		next->vm_start += adjust_next << PAGE_SHIFT;
729 		next->vm_pgoff += adjust_next;
730 	}
731 
732 	if (root) {
733 		if (adjust_next)
734 			vma_interval_tree_insert(next, root);
735 		vma_interval_tree_insert(vma, root);
736 		flush_dcache_mmap_unlock(mapping);
737 	}
738 
739 	if (remove_next) {
740 		/*
741 		 * vma_merge has merged next into vma, and needs
742 		 * us to remove next before dropping the locks.
743 		 */
744 		__vma_unlink(mm, next, vma);
745 		if (file)
746 			__remove_shared_vm_struct(next, file, mapping);
747 	} else if (insert) {
748 		/*
749 		 * split_vma has split insert from vma, and needs
750 		 * us to insert it before dropping the locks
751 		 * (it may either follow vma or precede it).
752 		 */
753 		__insert_vm_struct(mm, insert);
754 	} else {
755 		if (start_changed)
756 			vma_gap_update(vma);
757 		if (end_changed) {
758 			if (!next)
759 				mm->highest_vm_end = end;
760 			else if (!adjust_next)
761 				vma_gap_update(next);
762 		}
763 	}
764 
765 	if (anon_vma) {
766 		anon_vma_interval_tree_post_update_vma(vma);
767 		if (adjust_next)
768 			anon_vma_interval_tree_post_update_vma(next);
769 		anon_vma_unlock_write(anon_vma);
770 	}
771 	if (mapping)
772 		i_mmap_unlock_write(mapping);
773 
774 	if (root) {
775 		uprobe_mmap(vma);
776 
777 		if (adjust_next)
778 			uprobe_mmap(next);
779 	}
780 
781 	if (remove_next) {
782 		if (file) {
783 			uprobe_munmap(next, next->vm_start, next->vm_end);
784 			fput(file);
785 		}
786 		if (next->anon_vma)
787 			anon_vma_merge(vma, next);
788 		mm->map_count--;
789 		mpol_put(vma_policy(next));
790 		kmem_cache_free(vm_area_cachep, next);
791 		/*
792 		 * In mprotect's case 6 (see comments on vma_merge),
793 		 * we must remove another next too. It would clutter
794 		 * up the code too much to do both in one go.
795 		 */
796 		next = vma->vm_next;
797 		if (remove_next == 2)
798 			goto again;
799 		else if (next)
800 			vma_gap_update(next);
801 		else
802 			mm->highest_vm_end = end;
803 	}
804 	if (insert && file)
805 		uprobe_mmap(insert);
806 
807 	validate_mm(mm);
808 
809 	return 0;
810 }
811 
812 /*
813  * If the vma has a ->close operation then the driver probably needs to release
814  * per-vma resources, so we don't attempt to merge those.
815  */
816 static inline int is_mergeable_vma(struct vm_area_struct *vma,
817 				struct file *file, unsigned long vm_flags,
818 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
819 {
820 	/*
821 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
822 	 * match the flags but dirty bit -- the caller should mark
823 	 * merged VMA as dirty. If dirty bit won't be excluded from
824 	 * comparison, we increase pressue on the memory system forcing
825 	 * the kernel to generate new VMAs when old one could be
826 	 * extended instead.
827 	 */
828 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
829 		return 0;
830 	if (vma->vm_file != file)
831 		return 0;
832 	if (vma->vm_ops && vma->vm_ops->close)
833 		return 0;
834 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
835 		return 0;
836 	return 1;
837 }
838 
839 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
840 					struct anon_vma *anon_vma2,
841 					struct vm_area_struct *vma)
842 {
843 	/*
844 	 * The list_is_singular() test is to avoid merging VMA cloned from
845 	 * parents. This can improve scalability caused by anon_vma lock.
846 	 */
847 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
848 		list_is_singular(&vma->anon_vma_chain)))
849 		return 1;
850 	return anon_vma1 == anon_vma2;
851 }
852 
853 /*
854  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
855  * in front of (at a lower virtual address and file offset than) the vma.
856  *
857  * We cannot merge two vmas if they have differently assigned (non-NULL)
858  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
859  *
860  * We don't check here for the merged mmap wrapping around the end of pagecache
861  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
862  * wrap, nor mmaps which cover the final page at index -1UL.
863  */
864 static int
865 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
866 		     struct anon_vma *anon_vma, struct file *file,
867 		     pgoff_t vm_pgoff,
868 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
869 {
870 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
871 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
872 		if (vma->vm_pgoff == vm_pgoff)
873 			return 1;
874 	}
875 	return 0;
876 }
877 
878 /*
879  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
880  * beyond (at a higher virtual address and file offset than) the vma.
881  *
882  * We cannot merge two vmas if they have differently assigned (non-NULL)
883  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
884  */
885 static int
886 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
887 		    struct anon_vma *anon_vma, struct file *file,
888 		    pgoff_t vm_pgoff,
889 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
890 {
891 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
892 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
893 		pgoff_t vm_pglen;
894 		vm_pglen = vma_pages(vma);
895 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
896 			return 1;
897 	}
898 	return 0;
899 }
900 
901 /*
902  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
903  * whether that can be merged with its predecessor or its successor.
904  * Or both (it neatly fills a hole).
905  *
906  * In most cases - when called for mmap, brk or mremap - [addr,end) is
907  * certain not to be mapped by the time vma_merge is called; but when
908  * called for mprotect, it is certain to be already mapped (either at
909  * an offset within prev, or at the start of next), and the flags of
910  * this area are about to be changed to vm_flags - and the no-change
911  * case has already been eliminated.
912  *
913  * The following mprotect cases have to be considered, where AAAA is
914  * the area passed down from mprotect_fixup, never extending beyond one
915  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
916  *
917  *     AAAA             AAAA                AAAA          AAAA
918  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
919  *    cannot merge    might become    might become    might become
920  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
921  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
922  *    mremap move:                                    PPPPNNNNNNNN 8
923  *        AAAA
924  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
925  *    might become    case 1 below    case 2 below    case 3 below
926  *
927  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
928  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
929  */
930 struct vm_area_struct *vma_merge(struct mm_struct *mm,
931 			struct vm_area_struct *prev, unsigned long addr,
932 			unsigned long end, unsigned long vm_flags,
933 			struct anon_vma *anon_vma, struct file *file,
934 			pgoff_t pgoff, struct mempolicy *policy,
935 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
936 {
937 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
938 	struct vm_area_struct *area, *next;
939 	int err;
940 
941 	/*
942 	 * We later require that vma->vm_flags == vm_flags,
943 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
944 	 */
945 	if (vm_flags & VM_SPECIAL)
946 		return NULL;
947 
948 	if (prev)
949 		next = prev->vm_next;
950 	else
951 		next = mm->mmap;
952 	area = next;
953 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
954 		next = next->vm_next;
955 
956 	/*
957 	 * Can it merge with the predecessor?
958 	 */
959 	if (prev && prev->vm_end == addr &&
960 			mpol_equal(vma_policy(prev), policy) &&
961 			can_vma_merge_after(prev, vm_flags,
962 					    anon_vma, file, pgoff,
963 					    vm_userfaultfd_ctx)) {
964 		/*
965 		 * OK, it can.  Can we now merge in the successor as well?
966 		 */
967 		if (next && end == next->vm_start &&
968 				mpol_equal(policy, vma_policy(next)) &&
969 				can_vma_merge_before(next, vm_flags,
970 						     anon_vma, file,
971 						     pgoff+pglen,
972 						     vm_userfaultfd_ctx) &&
973 				is_mergeable_anon_vma(prev->anon_vma,
974 						      next->anon_vma, NULL)) {
975 							/* cases 1, 6 */
976 			err = vma_adjust(prev, prev->vm_start,
977 				next->vm_end, prev->vm_pgoff, NULL);
978 		} else					/* cases 2, 5, 7 */
979 			err = vma_adjust(prev, prev->vm_start,
980 				end, prev->vm_pgoff, NULL);
981 		if (err)
982 			return NULL;
983 		khugepaged_enter_vma_merge(prev, vm_flags);
984 		return prev;
985 	}
986 
987 	/*
988 	 * Can this new request be merged in front of next?
989 	 */
990 	if (next && end == next->vm_start &&
991 			mpol_equal(policy, vma_policy(next)) &&
992 			can_vma_merge_before(next, vm_flags,
993 					     anon_vma, file, pgoff+pglen,
994 					     vm_userfaultfd_ctx)) {
995 		if (prev && addr < prev->vm_end)	/* case 4 */
996 			err = vma_adjust(prev, prev->vm_start,
997 				addr, prev->vm_pgoff, NULL);
998 		else					/* cases 3, 8 */
999 			err = vma_adjust(area, addr, next->vm_end,
1000 				next->vm_pgoff - pglen, NULL);
1001 		if (err)
1002 			return NULL;
1003 		khugepaged_enter_vma_merge(area, vm_flags);
1004 		return area;
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 /*
1011  * Rough compatbility check to quickly see if it's even worth looking
1012  * at sharing an anon_vma.
1013  *
1014  * They need to have the same vm_file, and the flags can only differ
1015  * in things that mprotect may change.
1016  *
1017  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1018  * we can merge the two vma's. For example, we refuse to merge a vma if
1019  * there is a vm_ops->close() function, because that indicates that the
1020  * driver is doing some kind of reference counting. But that doesn't
1021  * really matter for the anon_vma sharing case.
1022  */
1023 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1024 {
1025 	return a->vm_end == b->vm_start &&
1026 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1027 		a->vm_file == b->vm_file &&
1028 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1029 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1030 }
1031 
1032 /*
1033  * Do some basic sanity checking to see if we can re-use the anon_vma
1034  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1035  * the same as 'old', the other will be the new one that is trying
1036  * to share the anon_vma.
1037  *
1038  * NOTE! This runs with mm_sem held for reading, so it is possible that
1039  * the anon_vma of 'old' is concurrently in the process of being set up
1040  * by another page fault trying to merge _that_. But that's ok: if it
1041  * is being set up, that automatically means that it will be a singleton
1042  * acceptable for merging, so we can do all of this optimistically. But
1043  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1044  *
1045  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1046  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1047  * is to return an anon_vma that is "complex" due to having gone through
1048  * a fork).
1049  *
1050  * We also make sure that the two vma's are compatible (adjacent,
1051  * and with the same memory policies). That's all stable, even with just
1052  * a read lock on the mm_sem.
1053  */
1054 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1055 {
1056 	if (anon_vma_compatible(a, b)) {
1057 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1058 
1059 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1060 			return anon_vma;
1061 	}
1062 	return NULL;
1063 }
1064 
1065 /*
1066  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1067  * neighbouring vmas for a suitable anon_vma, before it goes off
1068  * to allocate a new anon_vma.  It checks because a repetitive
1069  * sequence of mprotects and faults may otherwise lead to distinct
1070  * anon_vmas being allocated, preventing vma merge in subsequent
1071  * mprotect.
1072  */
1073 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1074 {
1075 	struct anon_vma *anon_vma;
1076 	struct vm_area_struct *near;
1077 
1078 	near = vma->vm_next;
1079 	if (!near)
1080 		goto try_prev;
1081 
1082 	anon_vma = reusable_anon_vma(near, vma, near);
1083 	if (anon_vma)
1084 		return anon_vma;
1085 try_prev:
1086 	near = vma->vm_prev;
1087 	if (!near)
1088 		goto none;
1089 
1090 	anon_vma = reusable_anon_vma(near, near, vma);
1091 	if (anon_vma)
1092 		return anon_vma;
1093 none:
1094 	/*
1095 	 * There's no absolute need to look only at touching neighbours:
1096 	 * we could search further afield for "compatible" anon_vmas.
1097 	 * But it would probably just be a waste of time searching,
1098 	 * or lead to too many vmas hanging off the same anon_vma.
1099 	 * We're trying to allow mprotect remerging later on,
1100 	 * not trying to minimize memory used for anon_vmas.
1101 	 */
1102 	return NULL;
1103 }
1104 
1105 /*
1106  * If a hint addr is less than mmap_min_addr change hint to be as
1107  * low as possible but still greater than mmap_min_addr
1108  */
1109 static inline unsigned long round_hint_to_min(unsigned long hint)
1110 {
1111 	hint &= PAGE_MASK;
1112 	if (((void *)hint != NULL) &&
1113 	    (hint < mmap_min_addr))
1114 		return PAGE_ALIGN(mmap_min_addr);
1115 	return hint;
1116 }
1117 
1118 static inline int mlock_future_check(struct mm_struct *mm,
1119 				     unsigned long flags,
1120 				     unsigned long len)
1121 {
1122 	unsigned long locked, lock_limit;
1123 
1124 	/*  mlock MCL_FUTURE? */
1125 	if (flags & VM_LOCKED) {
1126 		locked = len >> PAGE_SHIFT;
1127 		locked += mm->locked_vm;
1128 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1129 		lock_limit >>= PAGE_SHIFT;
1130 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1131 			return -EAGAIN;
1132 	}
1133 	return 0;
1134 }
1135 
1136 /*
1137  * The caller must hold down_write(&current->mm->mmap_sem).
1138  */
1139 unsigned long do_mmap(struct file *file, unsigned long addr,
1140 			unsigned long len, unsigned long prot,
1141 			unsigned long flags, vm_flags_t vm_flags,
1142 			unsigned long pgoff, unsigned long *populate)
1143 {
1144 	struct mm_struct *mm = current->mm;
1145 	int pkey = 0;
1146 
1147 	*populate = 0;
1148 
1149 	if (!len)
1150 		return -EINVAL;
1151 
1152 	/*
1153 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1154 	 *
1155 	 * (the exception is when the underlying filesystem is noexec
1156 	 *  mounted, in which case we dont add PROT_EXEC.)
1157 	 */
1158 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1159 		if (!(file && path_noexec(&file->f_path)))
1160 			prot |= PROT_EXEC;
1161 
1162 	if (!(flags & MAP_FIXED))
1163 		addr = round_hint_to_min(addr);
1164 
1165 	/* Careful about overflows.. */
1166 	len = PAGE_ALIGN(len);
1167 	if (!len)
1168 		return -ENOMEM;
1169 
1170 	/* offset overflow? */
1171 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1172 		return -EOVERFLOW;
1173 
1174 	/* Too many mappings? */
1175 	if (mm->map_count > sysctl_max_map_count)
1176 		return -ENOMEM;
1177 
1178 	/* Obtain the address to map to. we verify (or select) it and ensure
1179 	 * that it represents a valid section of the address space.
1180 	 */
1181 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1182 	if (offset_in_page(addr))
1183 		return addr;
1184 
1185 	if (prot == PROT_EXEC) {
1186 		pkey = execute_only_pkey(mm);
1187 		if (pkey < 0)
1188 			pkey = 0;
1189 	}
1190 
1191 	/* Do simple checking here so the lower-level routines won't have
1192 	 * to. we assume access permissions have been handled by the open
1193 	 * of the memory object, so we don't do any here.
1194 	 */
1195 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1196 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1197 
1198 	if (flags & MAP_LOCKED)
1199 		if (!can_do_mlock())
1200 			return -EPERM;
1201 
1202 	if (mlock_future_check(mm, vm_flags, len))
1203 		return -EAGAIN;
1204 
1205 	if (file) {
1206 		struct inode *inode = file_inode(file);
1207 
1208 		switch (flags & MAP_TYPE) {
1209 		case MAP_SHARED:
1210 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1211 				return -EACCES;
1212 
1213 			/*
1214 			 * Make sure we don't allow writing to an append-only
1215 			 * file..
1216 			 */
1217 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1218 				return -EACCES;
1219 
1220 			/*
1221 			 * Make sure there are no mandatory locks on the file.
1222 			 */
1223 			if (locks_verify_locked(file))
1224 				return -EAGAIN;
1225 
1226 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1227 			if (!(file->f_mode & FMODE_WRITE))
1228 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1229 
1230 			/* fall through */
1231 		case MAP_PRIVATE:
1232 			if (!(file->f_mode & FMODE_READ))
1233 				return -EACCES;
1234 			if (path_noexec(&file->f_path)) {
1235 				if (vm_flags & VM_EXEC)
1236 					return -EPERM;
1237 				vm_flags &= ~VM_MAYEXEC;
1238 			}
1239 
1240 			if (!file->f_op->mmap)
1241 				return -ENODEV;
1242 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1243 				return -EINVAL;
1244 			break;
1245 
1246 		default:
1247 			return -EINVAL;
1248 		}
1249 	} else {
1250 		switch (flags & MAP_TYPE) {
1251 		case MAP_SHARED:
1252 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1253 				return -EINVAL;
1254 			/*
1255 			 * Ignore pgoff.
1256 			 */
1257 			pgoff = 0;
1258 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1259 			break;
1260 		case MAP_PRIVATE:
1261 			/*
1262 			 * Set pgoff according to addr for anon_vma.
1263 			 */
1264 			pgoff = addr >> PAGE_SHIFT;
1265 			break;
1266 		default:
1267 			return -EINVAL;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * Set 'VM_NORESERVE' if we should not account for the
1273 	 * memory use of this mapping.
1274 	 */
1275 	if (flags & MAP_NORESERVE) {
1276 		/* We honor MAP_NORESERVE if allowed to overcommit */
1277 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1278 			vm_flags |= VM_NORESERVE;
1279 
1280 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1281 		if (file && is_file_hugepages(file))
1282 			vm_flags |= VM_NORESERVE;
1283 	}
1284 
1285 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1286 	if (!IS_ERR_VALUE(addr) &&
1287 	    ((vm_flags & VM_LOCKED) ||
1288 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1289 		*populate = len;
1290 	return addr;
1291 }
1292 
1293 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1294 		unsigned long, prot, unsigned long, flags,
1295 		unsigned long, fd, unsigned long, pgoff)
1296 {
1297 	struct file *file = NULL;
1298 	unsigned long retval;
1299 
1300 	if (!(flags & MAP_ANONYMOUS)) {
1301 		audit_mmap_fd(fd, flags);
1302 		file = fget(fd);
1303 		if (!file)
1304 			return -EBADF;
1305 		if (is_file_hugepages(file))
1306 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1307 		retval = -EINVAL;
1308 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1309 			goto out_fput;
1310 	} else if (flags & MAP_HUGETLB) {
1311 		struct user_struct *user = NULL;
1312 		struct hstate *hs;
1313 
1314 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1315 		if (!hs)
1316 			return -EINVAL;
1317 
1318 		len = ALIGN(len, huge_page_size(hs));
1319 		/*
1320 		 * VM_NORESERVE is used because the reservations will be
1321 		 * taken when vm_ops->mmap() is called
1322 		 * A dummy user value is used because we are not locking
1323 		 * memory so no accounting is necessary
1324 		 */
1325 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1326 				VM_NORESERVE,
1327 				&user, HUGETLB_ANONHUGE_INODE,
1328 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1329 		if (IS_ERR(file))
1330 			return PTR_ERR(file);
1331 	}
1332 
1333 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1334 
1335 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1336 out_fput:
1337 	if (file)
1338 		fput(file);
1339 	return retval;
1340 }
1341 
1342 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1343 struct mmap_arg_struct {
1344 	unsigned long addr;
1345 	unsigned long len;
1346 	unsigned long prot;
1347 	unsigned long flags;
1348 	unsigned long fd;
1349 	unsigned long offset;
1350 };
1351 
1352 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1353 {
1354 	struct mmap_arg_struct a;
1355 
1356 	if (copy_from_user(&a, arg, sizeof(a)))
1357 		return -EFAULT;
1358 	if (offset_in_page(a.offset))
1359 		return -EINVAL;
1360 
1361 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1362 			      a.offset >> PAGE_SHIFT);
1363 }
1364 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1365 
1366 /*
1367  * Some shared mappigns will want the pages marked read-only
1368  * to track write events. If so, we'll downgrade vm_page_prot
1369  * to the private version (using protection_map[] without the
1370  * VM_SHARED bit).
1371  */
1372 int vma_wants_writenotify(struct vm_area_struct *vma)
1373 {
1374 	vm_flags_t vm_flags = vma->vm_flags;
1375 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1376 
1377 	/* If it was private or non-writable, the write bit is already clear */
1378 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1379 		return 0;
1380 
1381 	/* The backer wishes to know when pages are first written to? */
1382 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1383 		return 1;
1384 
1385 	/* The open routine did something to the protections that pgprot_modify
1386 	 * won't preserve? */
1387 	if (pgprot_val(vma->vm_page_prot) !=
1388 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1389 		return 0;
1390 
1391 	/* Do we need to track softdirty? */
1392 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1393 		return 1;
1394 
1395 	/* Specialty mapping? */
1396 	if (vm_flags & VM_PFNMAP)
1397 		return 0;
1398 
1399 	/* Can the mapping track the dirty pages? */
1400 	return vma->vm_file && vma->vm_file->f_mapping &&
1401 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1402 }
1403 
1404 /*
1405  * We account for memory if it's a private writeable mapping,
1406  * not hugepages and VM_NORESERVE wasn't set.
1407  */
1408 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1409 {
1410 	/*
1411 	 * hugetlb has its own accounting separate from the core VM
1412 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1413 	 */
1414 	if (file && is_file_hugepages(file))
1415 		return 0;
1416 
1417 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1418 }
1419 
1420 unsigned long mmap_region(struct file *file, unsigned long addr,
1421 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1422 {
1423 	struct mm_struct *mm = current->mm;
1424 	struct vm_area_struct *vma, *prev;
1425 	int error;
1426 	struct rb_node **rb_link, *rb_parent;
1427 	unsigned long charged = 0;
1428 
1429 	/* Check against address space limit. */
1430 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1431 		unsigned long nr_pages;
1432 
1433 		/*
1434 		 * MAP_FIXED may remove pages of mappings that intersects with
1435 		 * requested mapping. Account for the pages it would unmap.
1436 		 */
1437 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1438 
1439 		if (!may_expand_vm(mm, vm_flags,
1440 					(len >> PAGE_SHIFT) - nr_pages))
1441 			return -ENOMEM;
1442 	}
1443 
1444 	/* Clear old maps */
1445 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1446 			      &rb_parent)) {
1447 		if (do_munmap(mm, addr, len))
1448 			return -ENOMEM;
1449 	}
1450 
1451 	/*
1452 	 * Private writable mapping: check memory availability
1453 	 */
1454 	if (accountable_mapping(file, vm_flags)) {
1455 		charged = len >> PAGE_SHIFT;
1456 		if (security_vm_enough_memory_mm(mm, charged))
1457 			return -ENOMEM;
1458 		vm_flags |= VM_ACCOUNT;
1459 	}
1460 
1461 	/*
1462 	 * Can we just expand an old mapping?
1463 	 */
1464 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1465 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1466 	if (vma)
1467 		goto out;
1468 
1469 	/*
1470 	 * Determine the object being mapped and call the appropriate
1471 	 * specific mapper. the address has already been validated, but
1472 	 * not unmapped, but the maps are removed from the list.
1473 	 */
1474 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1475 	if (!vma) {
1476 		error = -ENOMEM;
1477 		goto unacct_error;
1478 	}
1479 
1480 	vma->vm_mm = mm;
1481 	vma->vm_start = addr;
1482 	vma->vm_end = addr + len;
1483 	vma->vm_flags = vm_flags;
1484 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1485 	vma->vm_pgoff = pgoff;
1486 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1487 
1488 	if (file) {
1489 		if (vm_flags & VM_DENYWRITE) {
1490 			error = deny_write_access(file);
1491 			if (error)
1492 				goto free_vma;
1493 		}
1494 		if (vm_flags & VM_SHARED) {
1495 			error = mapping_map_writable(file->f_mapping);
1496 			if (error)
1497 				goto allow_write_and_free_vma;
1498 		}
1499 
1500 		/* ->mmap() can change vma->vm_file, but must guarantee that
1501 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1502 		 * and map writably if VM_SHARED is set. This usually means the
1503 		 * new file must not have been exposed to user-space, yet.
1504 		 */
1505 		vma->vm_file = get_file(file);
1506 		error = file->f_op->mmap(file, vma);
1507 		if (error)
1508 			goto unmap_and_free_vma;
1509 
1510 		/* Can addr have changed??
1511 		 *
1512 		 * Answer: Yes, several device drivers can do it in their
1513 		 *         f_op->mmap method. -DaveM
1514 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1515 		 *      be updated for vma_link()
1516 		 */
1517 		WARN_ON_ONCE(addr != vma->vm_start);
1518 
1519 		addr = vma->vm_start;
1520 		vm_flags = vma->vm_flags;
1521 	} else if (vm_flags & VM_SHARED) {
1522 		error = shmem_zero_setup(vma);
1523 		if (error)
1524 			goto free_vma;
1525 	}
1526 
1527 	vma_link(mm, vma, prev, rb_link, rb_parent);
1528 	/* Once vma denies write, undo our temporary denial count */
1529 	if (file) {
1530 		if (vm_flags & VM_SHARED)
1531 			mapping_unmap_writable(file->f_mapping);
1532 		if (vm_flags & VM_DENYWRITE)
1533 			allow_write_access(file);
1534 	}
1535 	file = vma->vm_file;
1536 out:
1537 	perf_event_mmap(vma);
1538 
1539 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1540 	if (vm_flags & VM_LOCKED) {
1541 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1542 					vma == get_gate_vma(current->mm)))
1543 			mm->locked_vm += (len >> PAGE_SHIFT);
1544 		else
1545 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1546 	}
1547 
1548 	if (file)
1549 		uprobe_mmap(vma);
1550 
1551 	/*
1552 	 * New (or expanded) vma always get soft dirty status.
1553 	 * Otherwise user-space soft-dirty page tracker won't
1554 	 * be able to distinguish situation when vma area unmapped,
1555 	 * then new mapped in-place (which must be aimed as
1556 	 * a completely new data area).
1557 	 */
1558 	vma->vm_flags |= VM_SOFTDIRTY;
1559 
1560 	vma_set_page_prot(vma);
1561 
1562 	return addr;
1563 
1564 unmap_and_free_vma:
1565 	vma->vm_file = NULL;
1566 	fput(file);
1567 
1568 	/* Undo any partial mapping done by a device driver. */
1569 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1570 	charged = 0;
1571 	if (vm_flags & VM_SHARED)
1572 		mapping_unmap_writable(file->f_mapping);
1573 allow_write_and_free_vma:
1574 	if (vm_flags & VM_DENYWRITE)
1575 		allow_write_access(file);
1576 free_vma:
1577 	kmem_cache_free(vm_area_cachep, vma);
1578 unacct_error:
1579 	if (charged)
1580 		vm_unacct_memory(charged);
1581 	return error;
1582 }
1583 
1584 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1585 {
1586 	/*
1587 	 * We implement the search by looking for an rbtree node that
1588 	 * immediately follows a suitable gap. That is,
1589 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1590 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1591 	 * - gap_end - gap_start >= length
1592 	 */
1593 
1594 	struct mm_struct *mm = current->mm;
1595 	struct vm_area_struct *vma;
1596 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1597 
1598 	/* Adjust search length to account for worst case alignment overhead */
1599 	length = info->length + info->align_mask;
1600 	if (length < info->length)
1601 		return -ENOMEM;
1602 
1603 	/* Adjust search limits by the desired length */
1604 	if (info->high_limit < length)
1605 		return -ENOMEM;
1606 	high_limit = info->high_limit - length;
1607 
1608 	if (info->low_limit > high_limit)
1609 		return -ENOMEM;
1610 	low_limit = info->low_limit + length;
1611 
1612 	/* Check if rbtree root looks promising */
1613 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1614 		goto check_highest;
1615 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1616 	if (vma->rb_subtree_gap < length)
1617 		goto check_highest;
1618 
1619 	while (true) {
1620 		/* Visit left subtree if it looks promising */
1621 		gap_end = vma->vm_start;
1622 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1623 			struct vm_area_struct *left =
1624 				rb_entry(vma->vm_rb.rb_left,
1625 					 struct vm_area_struct, vm_rb);
1626 			if (left->rb_subtree_gap >= length) {
1627 				vma = left;
1628 				continue;
1629 			}
1630 		}
1631 
1632 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1633 check_current:
1634 		/* Check if current node has a suitable gap */
1635 		if (gap_start > high_limit)
1636 			return -ENOMEM;
1637 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1638 			goto found;
1639 
1640 		/* Visit right subtree if it looks promising */
1641 		if (vma->vm_rb.rb_right) {
1642 			struct vm_area_struct *right =
1643 				rb_entry(vma->vm_rb.rb_right,
1644 					 struct vm_area_struct, vm_rb);
1645 			if (right->rb_subtree_gap >= length) {
1646 				vma = right;
1647 				continue;
1648 			}
1649 		}
1650 
1651 		/* Go back up the rbtree to find next candidate node */
1652 		while (true) {
1653 			struct rb_node *prev = &vma->vm_rb;
1654 			if (!rb_parent(prev))
1655 				goto check_highest;
1656 			vma = rb_entry(rb_parent(prev),
1657 				       struct vm_area_struct, vm_rb);
1658 			if (prev == vma->vm_rb.rb_left) {
1659 				gap_start = vma->vm_prev->vm_end;
1660 				gap_end = vma->vm_start;
1661 				goto check_current;
1662 			}
1663 		}
1664 	}
1665 
1666 check_highest:
1667 	/* Check highest gap, which does not precede any rbtree node */
1668 	gap_start = mm->highest_vm_end;
1669 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1670 	if (gap_start > high_limit)
1671 		return -ENOMEM;
1672 
1673 found:
1674 	/* We found a suitable gap. Clip it with the original low_limit. */
1675 	if (gap_start < info->low_limit)
1676 		gap_start = info->low_limit;
1677 
1678 	/* Adjust gap address to the desired alignment */
1679 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1680 
1681 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1682 	VM_BUG_ON(gap_start + info->length > gap_end);
1683 	return gap_start;
1684 }
1685 
1686 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1687 {
1688 	struct mm_struct *mm = current->mm;
1689 	struct vm_area_struct *vma;
1690 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1691 
1692 	/* Adjust search length to account for worst case alignment overhead */
1693 	length = info->length + info->align_mask;
1694 	if (length < info->length)
1695 		return -ENOMEM;
1696 
1697 	/*
1698 	 * Adjust search limits by the desired length.
1699 	 * See implementation comment at top of unmapped_area().
1700 	 */
1701 	gap_end = info->high_limit;
1702 	if (gap_end < length)
1703 		return -ENOMEM;
1704 	high_limit = gap_end - length;
1705 
1706 	if (info->low_limit > high_limit)
1707 		return -ENOMEM;
1708 	low_limit = info->low_limit + length;
1709 
1710 	/* Check highest gap, which does not precede any rbtree node */
1711 	gap_start = mm->highest_vm_end;
1712 	if (gap_start <= high_limit)
1713 		goto found_highest;
1714 
1715 	/* Check if rbtree root looks promising */
1716 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1717 		return -ENOMEM;
1718 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1719 	if (vma->rb_subtree_gap < length)
1720 		return -ENOMEM;
1721 
1722 	while (true) {
1723 		/* Visit right subtree if it looks promising */
1724 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1725 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1726 			struct vm_area_struct *right =
1727 				rb_entry(vma->vm_rb.rb_right,
1728 					 struct vm_area_struct, vm_rb);
1729 			if (right->rb_subtree_gap >= length) {
1730 				vma = right;
1731 				continue;
1732 			}
1733 		}
1734 
1735 check_current:
1736 		/* Check if current node has a suitable gap */
1737 		gap_end = vma->vm_start;
1738 		if (gap_end < low_limit)
1739 			return -ENOMEM;
1740 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1741 			goto found;
1742 
1743 		/* Visit left subtree if it looks promising */
1744 		if (vma->vm_rb.rb_left) {
1745 			struct vm_area_struct *left =
1746 				rb_entry(vma->vm_rb.rb_left,
1747 					 struct vm_area_struct, vm_rb);
1748 			if (left->rb_subtree_gap >= length) {
1749 				vma = left;
1750 				continue;
1751 			}
1752 		}
1753 
1754 		/* Go back up the rbtree to find next candidate node */
1755 		while (true) {
1756 			struct rb_node *prev = &vma->vm_rb;
1757 			if (!rb_parent(prev))
1758 				return -ENOMEM;
1759 			vma = rb_entry(rb_parent(prev),
1760 				       struct vm_area_struct, vm_rb);
1761 			if (prev == vma->vm_rb.rb_right) {
1762 				gap_start = vma->vm_prev ?
1763 					vma->vm_prev->vm_end : 0;
1764 				goto check_current;
1765 			}
1766 		}
1767 	}
1768 
1769 found:
1770 	/* We found a suitable gap. Clip it with the original high_limit. */
1771 	if (gap_end > info->high_limit)
1772 		gap_end = info->high_limit;
1773 
1774 found_highest:
1775 	/* Compute highest gap address at the desired alignment */
1776 	gap_end -= info->length;
1777 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1778 
1779 	VM_BUG_ON(gap_end < info->low_limit);
1780 	VM_BUG_ON(gap_end < gap_start);
1781 	return gap_end;
1782 }
1783 
1784 /* Get an address range which is currently unmapped.
1785  * For shmat() with addr=0.
1786  *
1787  * Ugly calling convention alert:
1788  * Return value with the low bits set means error value,
1789  * ie
1790  *	if (ret & ~PAGE_MASK)
1791  *		error = ret;
1792  *
1793  * This function "knows" that -ENOMEM has the bits set.
1794  */
1795 #ifndef HAVE_ARCH_UNMAPPED_AREA
1796 unsigned long
1797 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1798 		unsigned long len, unsigned long pgoff, unsigned long flags)
1799 {
1800 	struct mm_struct *mm = current->mm;
1801 	struct vm_area_struct *vma;
1802 	struct vm_unmapped_area_info info;
1803 
1804 	if (len > TASK_SIZE - mmap_min_addr)
1805 		return -ENOMEM;
1806 
1807 	if (flags & MAP_FIXED)
1808 		return addr;
1809 
1810 	if (addr) {
1811 		addr = PAGE_ALIGN(addr);
1812 		vma = find_vma(mm, addr);
1813 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1814 		    (!vma || addr + len <= vma->vm_start))
1815 			return addr;
1816 	}
1817 
1818 	info.flags = 0;
1819 	info.length = len;
1820 	info.low_limit = mm->mmap_base;
1821 	info.high_limit = TASK_SIZE;
1822 	info.align_mask = 0;
1823 	return vm_unmapped_area(&info);
1824 }
1825 #endif
1826 
1827 /*
1828  * This mmap-allocator allocates new areas top-down from below the
1829  * stack's low limit (the base):
1830  */
1831 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1832 unsigned long
1833 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1834 			  const unsigned long len, const unsigned long pgoff,
1835 			  const unsigned long flags)
1836 {
1837 	struct vm_area_struct *vma;
1838 	struct mm_struct *mm = current->mm;
1839 	unsigned long addr = addr0;
1840 	struct vm_unmapped_area_info info;
1841 
1842 	/* requested length too big for entire address space */
1843 	if (len > TASK_SIZE - mmap_min_addr)
1844 		return -ENOMEM;
1845 
1846 	if (flags & MAP_FIXED)
1847 		return addr;
1848 
1849 	/* requesting a specific address */
1850 	if (addr) {
1851 		addr = PAGE_ALIGN(addr);
1852 		vma = find_vma(mm, addr);
1853 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1854 				(!vma || addr + len <= vma->vm_start))
1855 			return addr;
1856 	}
1857 
1858 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1859 	info.length = len;
1860 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1861 	info.high_limit = mm->mmap_base;
1862 	info.align_mask = 0;
1863 	addr = vm_unmapped_area(&info);
1864 
1865 	/*
1866 	 * A failed mmap() very likely causes application failure,
1867 	 * so fall back to the bottom-up function here. This scenario
1868 	 * can happen with large stack limits and large mmap()
1869 	 * allocations.
1870 	 */
1871 	if (offset_in_page(addr)) {
1872 		VM_BUG_ON(addr != -ENOMEM);
1873 		info.flags = 0;
1874 		info.low_limit = TASK_UNMAPPED_BASE;
1875 		info.high_limit = TASK_SIZE;
1876 		addr = vm_unmapped_area(&info);
1877 	}
1878 
1879 	return addr;
1880 }
1881 #endif
1882 
1883 unsigned long
1884 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1885 		unsigned long pgoff, unsigned long flags)
1886 {
1887 	unsigned long (*get_area)(struct file *, unsigned long,
1888 				  unsigned long, unsigned long, unsigned long);
1889 
1890 	unsigned long error = arch_mmap_check(addr, len, flags);
1891 	if (error)
1892 		return error;
1893 
1894 	/* Careful about overflows.. */
1895 	if (len > TASK_SIZE)
1896 		return -ENOMEM;
1897 
1898 	get_area = current->mm->get_unmapped_area;
1899 	if (file && file->f_op->get_unmapped_area)
1900 		get_area = file->f_op->get_unmapped_area;
1901 	addr = get_area(file, addr, len, pgoff, flags);
1902 	if (IS_ERR_VALUE(addr))
1903 		return addr;
1904 
1905 	if (addr > TASK_SIZE - len)
1906 		return -ENOMEM;
1907 	if (offset_in_page(addr))
1908 		return -EINVAL;
1909 
1910 	error = security_mmap_addr(addr);
1911 	return error ? error : addr;
1912 }
1913 
1914 EXPORT_SYMBOL(get_unmapped_area);
1915 
1916 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1917 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1918 {
1919 	struct rb_node *rb_node;
1920 	struct vm_area_struct *vma;
1921 
1922 	/* Check the cache first. */
1923 	vma = vmacache_find(mm, addr);
1924 	if (likely(vma))
1925 		return vma;
1926 
1927 	rb_node = mm->mm_rb.rb_node;
1928 
1929 	while (rb_node) {
1930 		struct vm_area_struct *tmp;
1931 
1932 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1933 
1934 		if (tmp->vm_end > addr) {
1935 			vma = tmp;
1936 			if (tmp->vm_start <= addr)
1937 				break;
1938 			rb_node = rb_node->rb_left;
1939 		} else
1940 			rb_node = rb_node->rb_right;
1941 	}
1942 
1943 	if (vma)
1944 		vmacache_update(addr, vma);
1945 	return vma;
1946 }
1947 
1948 EXPORT_SYMBOL(find_vma);
1949 
1950 /*
1951  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1952  */
1953 struct vm_area_struct *
1954 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1955 			struct vm_area_struct **pprev)
1956 {
1957 	struct vm_area_struct *vma;
1958 
1959 	vma = find_vma(mm, addr);
1960 	if (vma) {
1961 		*pprev = vma->vm_prev;
1962 	} else {
1963 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1964 		*pprev = NULL;
1965 		while (rb_node) {
1966 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1967 			rb_node = rb_node->rb_right;
1968 		}
1969 	}
1970 	return vma;
1971 }
1972 
1973 /*
1974  * Verify that the stack growth is acceptable and
1975  * update accounting. This is shared with both the
1976  * grow-up and grow-down cases.
1977  */
1978 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1979 {
1980 	struct mm_struct *mm = vma->vm_mm;
1981 	struct rlimit *rlim = current->signal->rlim;
1982 	unsigned long new_start, actual_size;
1983 
1984 	/* address space limit tests */
1985 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1986 		return -ENOMEM;
1987 
1988 	/* Stack limit test */
1989 	actual_size = size;
1990 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1991 		actual_size -= PAGE_SIZE;
1992 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1993 		return -ENOMEM;
1994 
1995 	/* mlock limit tests */
1996 	if (vma->vm_flags & VM_LOCKED) {
1997 		unsigned long locked;
1998 		unsigned long limit;
1999 		locked = mm->locked_vm + grow;
2000 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2001 		limit >>= PAGE_SHIFT;
2002 		if (locked > limit && !capable(CAP_IPC_LOCK))
2003 			return -ENOMEM;
2004 	}
2005 
2006 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2007 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2008 			vma->vm_end - size;
2009 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2010 		return -EFAULT;
2011 
2012 	/*
2013 	 * Overcommit..  This must be the final test, as it will
2014 	 * update security statistics.
2015 	 */
2016 	if (security_vm_enough_memory_mm(mm, grow))
2017 		return -ENOMEM;
2018 
2019 	return 0;
2020 }
2021 
2022 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2023 /*
2024  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2025  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2026  */
2027 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2028 {
2029 	struct mm_struct *mm = vma->vm_mm;
2030 	int error = 0;
2031 
2032 	if (!(vma->vm_flags & VM_GROWSUP))
2033 		return -EFAULT;
2034 
2035 	/* Guard against wrapping around to address 0. */
2036 	if (address < PAGE_ALIGN(address+4))
2037 		address = PAGE_ALIGN(address+4);
2038 	else
2039 		return -ENOMEM;
2040 
2041 	/* We must make sure the anon_vma is allocated. */
2042 	if (unlikely(anon_vma_prepare(vma)))
2043 		return -ENOMEM;
2044 
2045 	/*
2046 	 * vma->vm_start/vm_end cannot change under us because the caller
2047 	 * is required to hold the mmap_sem in read mode.  We need the
2048 	 * anon_vma lock to serialize against concurrent expand_stacks.
2049 	 */
2050 	anon_vma_lock_write(vma->anon_vma);
2051 
2052 	/* Somebody else might have raced and expanded it already */
2053 	if (address > vma->vm_end) {
2054 		unsigned long size, grow;
2055 
2056 		size = address - vma->vm_start;
2057 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2058 
2059 		error = -ENOMEM;
2060 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2061 			error = acct_stack_growth(vma, size, grow);
2062 			if (!error) {
2063 				/*
2064 				 * vma_gap_update() doesn't support concurrent
2065 				 * updates, but we only hold a shared mmap_sem
2066 				 * lock here, so we need to protect against
2067 				 * concurrent vma expansions.
2068 				 * anon_vma_lock_write() doesn't help here, as
2069 				 * we don't guarantee that all growable vmas
2070 				 * in a mm share the same root anon vma.
2071 				 * So, we reuse mm->page_table_lock to guard
2072 				 * against concurrent vma expansions.
2073 				 */
2074 				spin_lock(&mm->page_table_lock);
2075 				if (vma->vm_flags & VM_LOCKED)
2076 					mm->locked_vm += grow;
2077 				vm_stat_account(mm, vma->vm_flags, grow);
2078 				anon_vma_interval_tree_pre_update_vma(vma);
2079 				vma->vm_end = address;
2080 				anon_vma_interval_tree_post_update_vma(vma);
2081 				if (vma->vm_next)
2082 					vma_gap_update(vma->vm_next);
2083 				else
2084 					mm->highest_vm_end = address;
2085 				spin_unlock(&mm->page_table_lock);
2086 
2087 				perf_event_mmap(vma);
2088 			}
2089 		}
2090 	}
2091 	anon_vma_unlock_write(vma->anon_vma);
2092 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2093 	validate_mm(mm);
2094 	return error;
2095 }
2096 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2097 
2098 /*
2099  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2100  */
2101 int expand_downwards(struct vm_area_struct *vma,
2102 				   unsigned long address)
2103 {
2104 	struct mm_struct *mm = vma->vm_mm;
2105 	int error;
2106 
2107 	address &= PAGE_MASK;
2108 	error = security_mmap_addr(address);
2109 	if (error)
2110 		return error;
2111 
2112 	/* We must make sure the anon_vma is allocated. */
2113 	if (unlikely(anon_vma_prepare(vma)))
2114 		return -ENOMEM;
2115 
2116 	/*
2117 	 * vma->vm_start/vm_end cannot change under us because the caller
2118 	 * is required to hold the mmap_sem in read mode.  We need the
2119 	 * anon_vma lock to serialize against concurrent expand_stacks.
2120 	 */
2121 	anon_vma_lock_write(vma->anon_vma);
2122 
2123 	/* Somebody else might have raced and expanded it already */
2124 	if (address < vma->vm_start) {
2125 		unsigned long size, grow;
2126 
2127 		size = vma->vm_end - address;
2128 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2129 
2130 		error = -ENOMEM;
2131 		if (grow <= vma->vm_pgoff) {
2132 			error = acct_stack_growth(vma, size, grow);
2133 			if (!error) {
2134 				/*
2135 				 * vma_gap_update() doesn't support concurrent
2136 				 * updates, but we only hold a shared mmap_sem
2137 				 * lock here, so we need to protect against
2138 				 * concurrent vma expansions.
2139 				 * anon_vma_lock_write() doesn't help here, as
2140 				 * we don't guarantee that all growable vmas
2141 				 * in a mm share the same root anon vma.
2142 				 * So, we reuse mm->page_table_lock to guard
2143 				 * against concurrent vma expansions.
2144 				 */
2145 				spin_lock(&mm->page_table_lock);
2146 				if (vma->vm_flags & VM_LOCKED)
2147 					mm->locked_vm += grow;
2148 				vm_stat_account(mm, vma->vm_flags, grow);
2149 				anon_vma_interval_tree_pre_update_vma(vma);
2150 				vma->vm_start = address;
2151 				vma->vm_pgoff -= grow;
2152 				anon_vma_interval_tree_post_update_vma(vma);
2153 				vma_gap_update(vma);
2154 				spin_unlock(&mm->page_table_lock);
2155 
2156 				perf_event_mmap(vma);
2157 			}
2158 		}
2159 	}
2160 	anon_vma_unlock_write(vma->anon_vma);
2161 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2162 	validate_mm(mm);
2163 	return error;
2164 }
2165 
2166 /*
2167  * Note how expand_stack() refuses to expand the stack all the way to
2168  * abut the next virtual mapping, *unless* that mapping itself is also
2169  * a stack mapping. We want to leave room for a guard page, after all
2170  * (the guard page itself is not added here, that is done by the
2171  * actual page faulting logic)
2172  *
2173  * This matches the behavior of the guard page logic (see mm/memory.c:
2174  * check_stack_guard_page()), which only allows the guard page to be
2175  * removed under these circumstances.
2176  */
2177 #ifdef CONFIG_STACK_GROWSUP
2178 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2179 {
2180 	struct vm_area_struct *next;
2181 
2182 	address &= PAGE_MASK;
2183 	next = vma->vm_next;
2184 	if (next && next->vm_start == address + PAGE_SIZE) {
2185 		if (!(next->vm_flags & VM_GROWSUP))
2186 			return -ENOMEM;
2187 	}
2188 	return expand_upwards(vma, address);
2189 }
2190 
2191 struct vm_area_struct *
2192 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2193 {
2194 	struct vm_area_struct *vma, *prev;
2195 
2196 	addr &= PAGE_MASK;
2197 	vma = find_vma_prev(mm, addr, &prev);
2198 	if (vma && (vma->vm_start <= addr))
2199 		return vma;
2200 	if (!prev || expand_stack(prev, addr))
2201 		return NULL;
2202 	if (prev->vm_flags & VM_LOCKED)
2203 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2204 	return prev;
2205 }
2206 #else
2207 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2208 {
2209 	struct vm_area_struct *prev;
2210 
2211 	address &= PAGE_MASK;
2212 	prev = vma->vm_prev;
2213 	if (prev && prev->vm_end == address) {
2214 		if (!(prev->vm_flags & VM_GROWSDOWN))
2215 			return -ENOMEM;
2216 	}
2217 	return expand_downwards(vma, address);
2218 }
2219 
2220 struct vm_area_struct *
2221 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2222 {
2223 	struct vm_area_struct *vma;
2224 	unsigned long start;
2225 
2226 	addr &= PAGE_MASK;
2227 	vma = find_vma(mm, addr);
2228 	if (!vma)
2229 		return NULL;
2230 	if (vma->vm_start <= addr)
2231 		return vma;
2232 	if (!(vma->vm_flags & VM_GROWSDOWN))
2233 		return NULL;
2234 	start = vma->vm_start;
2235 	if (expand_stack(vma, addr))
2236 		return NULL;
2237 	if (vma->vm_flags & VM_LOCKED)
2238 		populate_vma_page_range(vma, addr, start, NULL);
2239 	return vma;
2240 }
2241 #endif
2242 
2243 EXPORT_SYMBOL_GPL(find_extend_vma);
2244 
2245 /*
2246  * Ok - we have the memory areas we should free on the vma list,
2247  * so release them, and do the vma updates.
2248  *
2249  * Called with the mm semaphore held.
2250  */
2251 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2252 {
2253 	unsigned long nr_accounted = 0;
2254 
2255 	/* Update high watermark before we lower total_vm */
2256 	update_hiwater_vm(mm);
2257 	do {
2258 		long nrpages = vma_pages(vma);
2259 
2260 		if (vma->vm_flags & VM_ACCOUNT)
2261 			nr_accounted += nrpages;
2262 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2263 		vma = remove_vma(vma);
2264 	} while (vma);
2265 	vm_unacct_memory(nr_accounted);
2266 	validate_mm(mm);
2267 }
2268 
2269 /*
2270  * Get rid of page table information in the indicated region.
2271  *
2272  * Called with the mm semaphore held.
2273  */
2274 static void unmap_region(struct mm_struct *mm,
2275 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2276 		unsigned long start, unsigned long end)
2277 {
2278 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2279 	struct mmu_gather tlb;
2280 
2281 	lru_add_drain();
2282 	tlb_gather_mmu(&tlb, mm, start, end);
2283 	update_hiwater_rss(mm);
2284 	unmap_vmas(&tlb, vma, start, end);
2285 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2286 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2287 	tlb_finish_mmu(&tlb, start, end);
2288 }
2289 
2290 /*
2291  * Create a list of vma's touched by the unmap, removing them from the mm's
2292  * vma list as we go..
2293  */
2294 static void
2295 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2296 	struct vm_area_struct *prev, unsigned long end)
2297 {
2298 	struct vm_area_struct **insertion_point;
2299 	struct vm_area_struct *tail_vma = NULL;
2300 
2301 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2302 	vma->vm_prev = NULL;
2303 	do {
2304 		vma_rb_erase(vma, &mm->mm_rb);
2305 		mm->map_count--;
2306 		tail_vma = vma;
2307 		vma = vma->vm_next;
2308 	} while (vma && vma->vm_start < end);
2309 	*insertion_point = vma;
2310 	if (vma) {
2311 		vma->vm_prev = prev;
2312 		vma_gap_update(vma);
2313 	} else
2314 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2315 	tail_vma->vm_next = NULL;
2316 
2317 	/* Kill the cache */
2318 	vmacache_invalidate(mm);
2319 }
2320 
2321 /*
2322  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2323  * munmap path where it doesn't make sense to fail.
2324  */
2325 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2326 	      unsigned long addr, int new_below)
2327 {
2328 	struct vm_area_struct *new;
2329 	int err;
2330 
2331 	if (is_vm_hugetlb_page(vma) && (addr &
2332 					~(huge_page_mask(hstate_vma(vma)))))
2333 		return -EINVAL;
2334 
2335 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2336 	if (!new)
2337 		return -ENOMEM;
2338 
2339 	/* most fields are the same, copy all, and then fixup */
2340 	*new = *vma;
2341 
2342 	INIT_LIST_HEAD(&new->anon_vma_chain);
2343 
2344 	if (new_below)
2345 		new->vm_end = addr;
2346 	else {
2347 		new->vm_start = addr;
2348 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2349 	}
2350 
2351 	err = vma_dup_policy(vma, new);
2352 	if (err)
2353 		goto out_free_vma;
2354 
2355 	err = anon_vma_clone(new, vma);
2356 	if (err)
2357 		goto out_free_mpol;
2358 
2359 	if (new->vm_file)
2360 		get_file(new->vm_file);
2361 
2362 	if (new->vm_ops && new->vm_ops->open)
2363 		new->vm_ops->open(new);
2364 
2365 	if (new_below)
2366 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2367 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2368 	else
2369 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2370 
2371 	/* Success. */
2372 	if (!err)
2373 		return 0;
2374 
2375 	/* Clean everything up if vma_adjust failed. */
2376 	if (new->vm_ops && new->vm_ops->close)
2377 		new->vm_ops->close(new);
2378 	if (new->vm_file)
2379 		fput(new->vm_file);
2380 	unlink_anon_vmas(new);
2381  out_free_mpol:
2382 	mpol_put(vma_policy(new));
2383  out_free_vma:
2384 	kmem_cache_free(vm_area_cachep, new);
2385 	return err;
2386 }
2387 
2388 /*
2389  * Split a vma into two pieces at address 'addr', a new vma is allocated
2390  * either for the first part or the tail.
2391  */
2392 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2393 	      unsigned long addr, int new_below)
2394 {
2395 	if (mm->map_count >= sysctl_max_map_count)
2396 		return -ENOMEM;
2397 
2398 	return __split_vma(mm, vma, addr, new_below);
2399 }
2400 
2401 /* Munmap is split into 2 main parts -- this part which finds
2402  * what needs doing, and the areas themselves, which do the
2403  * work.  This now handles partial unmappings.
2404  * Jeremy Fitzhardinge <jeremy@goop.org>
2405  */
2406 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2407 {
2408 	unsigned long end;
2409 	struct vm_area_struct *vma, *prev, *last;
2410 
2411 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2412 		return -EINVAL;
2413 
2414 	len = PAGE_ALIGN(len);
2415 	if (len == 0)
2416 		return -EINVAL;
2417 
2418 	/* Find the first overlapping VMA */
2419 	vma = find_vma(mm, start);
2420 	if (!vma)
2421 		return 0;
2422 	prev = vma->vm_prev;
2423 	/* we have  start < vma->vm_end  */
2424 
2425 	/* if it doesn't overlap, we have nothing.. */
2426 	end = start + len;
2427 	if (vma->vm_start >= end)
2428 		return 0;
2429 
2430 	/*
2431 	 * If we need to split any vma, do it now to save pain later.
2432 	 *
2433 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2434 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2435 	 * places tmp vma above, and higher split_vma places tmp vma below.
2436 	 */
2437 	if (start > vma->vm_start) {
2438 		int error;
2439 
2440 		/*
2441 		 * Make sure that map_count on return from munmap() will
2442 		 * not exceed its limit; but let map_count go just above
2443 		 * its limit temporarily, to help free resources as expected.
2444 		 */
2445 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2446 			return -ENOMEM;
2447 
2448 		error = __split_vma(mm, vma, start, 0);
2449 		if (error)
2450 			return error;
2451 		prev = vma;
2452 	}
2453 
2454 	/* Does it split the last one? */
2455 	last = find_vma(mm, end);
2456 	if (last && end > last->vm_start) {
2457 		int error = __split_vma(mm, last, end, 1);
2458 		if (error)
2459 			return error;
2460 	}
2461 	vma = prev ? prev->vm_next : mm->mmap;
2462 
2463 	/*
2464 	 * unlock any mlock()ed ranges before detaching vmas
2465 	 */
2466 	if (mm->locked_vm) {
2467 		struct vm_area_struct *tmp = vma;
2468 		while (tmp && tmp->vm_start < end) {
2469 			if (tmp->vm_flags & VM_LOCKED) {
2470 				mm->locked_vm -= vma_pages(tmp);
2471 				munlock_vma_pages_all(tmp);
2472 			}
2473 			tmp = tmp->vm_next;
2474 		}
2475 	}
2476 
2477 	/*
2478 	 * Remove the vma's, and unmap the actual pages
2479 	 */
2480 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2481 	unmap_region(mm, vma, prev, start, end);
2482 
2483 	arch_unmap(mm, vma, start, end);
2484 
2485 	/* Fix up all other VM information */
2486 	remove_vma_list(mm, vma);
2487 
2488 	return 0;
2489 }
2490 
2491 int vm_munmap(unsigned long start, size_t len)
2492 {
2493 	int ret;
2494 	struct mm_struct *mm = current->mm;
2495 
2496 	down_write(&mm->mmap_sem);
2497 	ret = do_munmap(mm, start, len);
2498 	up_write(&mm->mmap_sem);
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL(vm_munmap);
2502 
2503 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2504 {
2505 	profile_munmap(addr);
2506 	return vm_munmap(addr, len);
2507 }
2508 
2509 
2510 /*
2511  * Emulation of deprecated remap_file_pages() syscall.
2512  */
2513 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2514 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2515 {
2516 
2517 	struct mm_struct *mm = current->mm;
2518 	struct vm_area_struct *vma;
2519 	unsigned long populate = 0;
2520 	unsigned long ret = -EINVAL;
2521 	struct file *file;
2522 
2523 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2524 		     current->comm, current->pid);
2525 
2526 	if (prot)
2527 		return ret;
2528 	start = start & PAGE_MASK;
2529 	size = size & PAGE_MASK;
2530 
2531 	if (start + size <= start)
2532 		return ret;
2533 
2534 	/* Does pgoff wrap? */
2535 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2536 		return ret;
2537 
2538 	down_write(&mm->mmap_sem);
2539 	vma = find_vma(mm, start);
2540 
2541 	if (!vma || !(vma->vm_flags & VM_SHARED))
2542 		goto out;
2543 
2544 	if (start < vma->vm_start)
2545 		goto out;
2546 
2547 	if (start + size > vma->vm_end) {
2548 		struct vm_area_struct *next;
2549 
2550 		for (next = vma->vm_next; next; next = next->vm_next) {
2551 			/* hole between vmas ? */
2552 			if (next->vm_start != next->vm_prev->vm_end)
2553 				goto out;
2554 
2555 			if (next->vm_file != vma->vm_file)
2556 				goto out;
2557 
2558 			if (next->vm_flags != vma->vm_flags)
2559 				goto out;
2560 
2561 			if (start + size <= next->vm_end)
2562 				break;
2563 		}
2564 
2565 		if (!next)
2566 			goto out;
2567 	}
2568 
2569 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2570 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2571 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2572 
2573 	flags &= MAP_NONBLOCK;
2574 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2575 	if (vma->vm_flags & VM_LOCKED) {
2576 		struct vm_area_struct *tmp;
2577 		flags |= MAP_LOCKED;
2578 
2579 		/* drop PG_Mlocked flag for over-mapped range */
2580 		for (tmp = vma; tmp->vm_start >= start + size;
2581 				tmp = tmp->vm_next) {
2582 			munlock_vma_pages_range(tmp,
2583 					max(tmp->vm_start, start),
2584 					min(tmp->vm_end, start + size));
2585 		}
2586 	}
2587 
2588 	file = get_file(vma->vm_file);
2589 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2590 			prot, flags, pgoff, &populate);
2591 	fput(file);
2592 out:
2593 	up_write(&mm->mmap_sem);
2594 	if (populate)
2595 		mm_populate(ret, populate);
2596 	if (!IS_ERR_VALUE(ret))
2597 		ret = 0;
2598 	return ret;
2599 }
2600 
2601 static inline void verify_mm_writelocked(struct mm_struct *mm)
2602 {
2603 #ifdef CONFIG_DEBUG_VM
2604 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2605 		WARN_ON(1);
2606 		up_read(&mm->mmap_sem);
2607 	}
2608 #endif
2609 }
2610 
2611 /*
2612  *  this is really a simplified "do_mmap".  it only handles
2613  *  anonymous maps.  eventually we may be able to do some
2614  *  brk-specific accounting here.
2615  */
2616 static unsigned long do_brk(unsigned long addr, unsigned long len)
2617 {
2618 	struct mm_struct *mm = current->mm;
2619 	struct vm_area_struct *vma, *prev;
2620 	unsigned long flags;
2621 	struct rb_node **rb_link, *rb_parent;
2622 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2623 	int error;
2624 
2625 	len = PAGE_ALIGN(len);
2626 	if (!len)
2627 		return addr;
2628 
2629 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2630 
2631 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2632 	if (offset_in_page(error))
2633 		return error;
2634 
2635 	error = mlock_future_check(mm, mm->def_flags, len);
2636 	if (error)
2637 		return error;
2638 
2639 	/*
2640 	 * mm->mmap_sem is required to protect against another thread
2641 	 * changing the mappings in case we sleep.
2642 	 */
2643 	verify_mm_writelocked(mm);
2644 
2645 	/*
2646 	 * Clear old maps.  this also does some error checking for us
2647 	 */
2648 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2649 			      &rb_parent)) {
2650 		if (do_munmap(mm, addr, len))
2651 			return -ENOMEM;
2652 	}
2653 
2654 	/* Check against address space limits *after* clearing old maps... */
2655 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2656 		return -ENOMEM;
2657 
2658 	if (mm->map_count > sysctl_max_map_count)
2659 		return -ENOMEM;
2660 
2661 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2662 		return -ENOMEM;
2663 
2664 	/* Can we just expand an old private anonymous mapping? */
2665 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2666 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2667 	if (vma)
2668 		goto out;
2669 
2670 	/*
2671 	 * create a vma struct for an anonymous mapping
2672 	 */
2673 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2674 	if (!vma) {
2675 		vm_unacct_memory(len >> PAGE_SHIFT);
2676 		return -ENOMEM;
2677 	}
2678 
2679 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2680 	vma->vm_mm = mm;
2681 	vma->vm_start = addr;
2682 	vma->vm_end = addr + len;
2683 	vma->vm_pgoff = pgoff;
2684 	vma->vm_flags = flags;
2685 	vma->vm_page_prot = vm_get_page_prot(flags);
2686 	vma_link(mm, vma, prev, rb_link, rb_parent);
2687 out:
2688 	perf_event_mmap(vma);
2689 	mm->total_vm += len >> PAGE_SHIFT;
2690 	mm->data_vm += len >> PAGE_SHIFT;
2691 	if (flags & VM_LOCKED)
2692 		mm->locked_vm += (len >> PAGE_SHIFT);
2693 	vma->vm_flags |= VM_SOFTDIRTY;
2694 	return addr;
2695 }
2696 
2697 unsigned long vm_brk(unsigned long addr, unsigned long len)
2698 {
2699 	struct mm_struct *mm = current->mm;
2700 	unsigned long ret;
2701 	bool populate;
2702 
2703 	down_write(&mm->mmap_sem);
2704 	ret = do_brk(addr, len);
2705 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2706 	up_write(&mm->mmap_sem);
2707 	if (populate)
2708 		mm_populate(addr, len);
2709 	return ret;
2710 }
2711 EXPORT_SYMBOL(vm_brk);
2712 
2713 /* Release all mmaps. */
2714 void exit_mmap(struct mm_struct *mm)
2715 {
2716 	struct mmu_gather tlb;
2717 	struct vm_area_struct *vma;
2718 	unsigned long nr_accounted = 0;
2719 
2720 	/* mm's last user has gone, and its about to be pulled down */
2721 	mmu_notifier_release(mm);
2722 
2723 	if (mm->locked_vm) {
2724 		vma = mm->mmap;
2725 		while (vma) {
2726 			if (vma->vm_flags & VM_LOCKED)
2727 				munlock_vma_pages_all(vma);
2728 			vma = vma->vm_next;
2729 		}
2730 	}
2731 
2732 	arch_exit_mmap(mm);
2733 
2734 	vma = mm->mmap;
2735 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2736 		return;
2737 
2738 	lru_add_drain();
2739 	flush_cache_mm(mm);
2740 	tlb_gather_mmu(&tlb, mm, 0, -1);
2741 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2742 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2743 	unmap_vmas(&tlb, vma, 0, -1);
2744 
2745 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2746 	tlb_finish_mmu(&tlb, 0, -1);
2747 
2748 	/*
2749 	 * Walk the list again, actually closing and freeing it,
2750 	 * with preemption enabled, without holding any MM locks.
2751 	 */
2752 	while (vma) {
2753 		if (vma->vm_flags & VM_ACCOUNT)
2754 			nr_accounted += vma_pages(vma);
2755 		vma = remove_vma(vma);
2756 	}
2757 	vm_unacct_memory(nr_accounted);
2758 }
2759 
2760 /* Insert vm structure into process list sorted by address
2761  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2762  * then i_mmap_rwsem is taken here.
2763  */
2764 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2765 {
2766 	struct vm_area_struct *prev;
2767 	struct rb_node **rb_link, *rb_parent;
2768 
2769 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770 			   &prev, &rb_link, &rb_parent))
2771 		return -ENOMEM;
2772 	if ((vma->vm_flags & VM_ACCOUNT) &&
2773 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774 		return -ENOMEM;
2775 
2776 	/*
2777 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2778 	 * until its first write fault, when page's anon_vma and index
2779 	 * are set.  But now set the vm_pgoff it will almost certainly
2780 	 * end up with (unless mremap moves it elsewhere before that
2781 	 * first wfault), so /proc/pid/maps tells a consistent story.
2782 	 *
2783 	 * By setting it to reflect the virtual start address of the
2784 	 * vma, merges and splits can happen in a seamless way, just
2785 	 * using the existing file pgoff checks and manipulations.
2786 	 * Similarly in do_mmap_pgoff and in do_brk.
2787 	 */
2788 	if (vma_is_anonymous(vma)) {
2789 		BUG_ON(vma->anon_vma);
2790 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2791 	}
2792 
2793 	vma_link(mm, vma, prev, rb_link, rb_parent);
2794 	return 0;
2795 }
2796 
2797 /*
2798  * Copy the vma structure to a new location in the same mm,
2799  * prior to moving page table entries, to effect an mremap move.
2800  */
2801 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2802 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2803 	bool *need_rmap_locks)
2804 {
2805 	struct vm_area_struct *vma = *vmap;
2806 	unsigned long vma_start = vma->vm_start;
2807 	struct mm_struct *mm = vma->vm_mm;
2808 	struct vm_area_struct *new_vma, *prev;
2809 	struct rb_node **rb_link, *rb_parent;
2810 	bool faulted_in_anon_vma = true;
2811 
2812 	/*
2813 	 * If anonymous vma has not yet been faulted, update new pgoff
2814 	 * to match new location, to increase its chance of merging.
2815 	 */
2816 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2817 		pgoff = addr >> PAGE_SHIFT;
2818 		faulted_in_anon_vma = false;
2819 	}
2820 
2821 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2822 		return NULL;	/* should never get here */
2823 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2824 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2825 			    vma->vm_userfaultfd_ctx);
2826 	if (new_vma) {
2827 		/*
2828 		 * Source vma may have been merged into new_vma
2829 		 */
2830 		if (unlikely(vma_start >= new_vma->vm_start &&
2831 			     vma_start < new_vma->vm_end)) {
2832 			/*
2833 			 * The only way we can get a vma_merge with
2834 			 * self during an mremap is if the vma hasn't
2835 			 * been faulted in yet and we were allowed to
2836 			 * reset the dst vma->vm_pgoff to the
2837 			 * destination address of the mremap to allow
2838 			 * the merge to happen. mremap must change the
2839 			 * vm_pgoff linearity between src and dst vmas
2840 			 * (in turn preventing a vma_merge) to be
2841 			 * safe. It is only safe to keep the vm_pgoff
2842 			 * linear if there are no pages mapped yet.
2843 			 */
2844 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2845 			*vmap = vma = new_vma;
2846 		}
2847 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2848 	} else {
2849 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2850 		if (!new_vma)
2851 			goto out;
2852 		*new_vma = *vma;
2853 		new_vma->vm_start = addr;
2854 		new_vma->vm_end = addr + len;
2855 		new_vma->vm_pgoff = pgoff;
2856 		if (vma_dup_policy(vma, new_vma))
2857 			goto out_free_vma;
2858 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2859 		if (anon_vma_clone(new_vma, vma))
2860 			goto out_free_mempol;
2861 		if (new_vma->vm_file)
2862 			get_file(new_vma->vm_file);
2863 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2864 			new_vma->vm_ops->open(new_vma);
2865 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2866 		*need_rmap_locks = false;
2867 	}
2868 	return new_vma;
2869 
2870 out_free_mempol:
2871 	mpol_put(vma_policy(new_vma));
2872 out_free_vma:
2873 	kmem_cache_free(vm_area_cachep, new_vma);
2874 out:
2875 	return NULL;
2876 }
2877 
2878 /*
2879  * Return true if the calling process may expand its vm space by the passed
2880  * number of pages
2881  */
2882 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2883 {
2884 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2885 		return false;
2886 
2887 	if (is_data_mapping(flags) &&
2888 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2889 		/* Workaround for Valgrind */
2890 		if (rlimit(RLIMIT_DATA) == 0 &&
2891 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2892 			return true;
2893 		if (!ignore_rlimit_data) {
2894 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2895 				     current->comm, current->pid,
2896 				     (mm->data_vm + npages) << PAGE_SHIFT,
2897 				     rlimit(RLIMIT_DATA));
2898 			return false;
2899 		}
2900 	}
2901 
2902 	return true;
2903 }
2904 
2905 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2906 {
2907 	mm->total_vm += npages;
2908 
2909 	if (is_exec_mapping(flags))
2910 		mm->exec_vm += npages;
2911 	else if (is_stack_mapping(flags))
2912 		mm->stack_vm += npages;
2913 	else if (is_data_mapping(flags))
2914 		mm->data_vm += npages;
2915 }
2916 
2917 static int special_mapping_fault(struct vm_area_struct *vma,
2918 				 struct vm_fault *vmf);
2919 
2920 /*
2921  * Having a close hook prevents vma merging regardless of flags.
2922  */
2923 static void special_mapping_close(struct vm_area_struct *vma)
2924 {
2925 }
2926 
2927 static const char *special_mapping_name(struct vm_area_struct *vma)
2928 {
2929 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2930 }
2931 
2932 static const struct vm_operations_struct special_mapping_vmops = {
2933 	.close = special_mapping_close,
2934 	.fault = special_mapping_fault,
2935 	.name = special_mapping_name,
2936 };
2937 
2938 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2939 	.close = special_mapping_close,
2940 	.fault = special_mapping_fault,
2941 };
2942 
2943 static int special_mapping_fault(struct vm_area_struct *vma,
2944 				struct vm_fault *vmf)
2945 {
2946 	pgoff_t pgoff;
2947 	struct page **pages;
2948 
2949 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2950 		pages = vma->vm_private_data;
2951 	} else {
2952 		struct vm_special_mapping *sm = vma->vm_private_data;
2953 
2954 		if (sm->fault)
2955 			return sm->fault(sm, vma, vmf);
2956 
2957 		pages = sm->pages;
2958 	}
2959 
2960 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2961 		pgoff--;
2962 
2963 	if (*pages) {
2964 		struct page *page = *pages;
2965 		get_page(page);
2966 		vmf->page = page;
2967 		return 0;
2968 	}
2969 
2970 	return VM_FAULT_SIGBUS;
2971 }
2972 
2973 static struct vm_area_struct *__install_special_mapping(
2974 	struct mm_struct *mm,
2975 	unsigned long addr, unsigned long len,
2976 	unsigned long vm_flags, void *priv,
2977 	const struct vm_operations_struct *ops)
2978 {
2979 	int ret;
2980 	struct vm_area_struct *vma;
2981 
2982 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2983 	if (unlikely(vma == NULL))
2984 		return ERR_PTR(-ENOMEM);
2985 
2986 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2987 	vma->vm_mm = mm;
2988 	vma->vm_start = addr;
2989 	vma->vm_end = addr + len;
2990 
2991 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2992 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2993 
2994 	vma->vm_ops = ops;
2995 	vma->vm_private_data = priv;
2996 
2997 	ret = insert_vm_struct(mm, vma);
2998 	if (ret)
2999 		goto out;
3000 
3001 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3002 
3003 	perf_event_mmap(vma);
3004 
3005 	return vma;
3006 
3007 out:
3008 	kmem_cache_free(vm_area_cachep, vma);
3009 	return ERR_PTR(ret);
3010 }
3011 
3012 /*
3013  * Called with mm->mmap_sem held for writing.
3014  * Insert a new vma covering the given region, with the given flags.
3015  * Its pages are supplied by the given array of struct page *.
3016  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3017  * The region past the last page supplied will always produce SIGBUS.
3018  * The array pointer and the pages it points to are assumed to stay alive
3019  * for as long as this mapping might exist.
3020  */
3021 struct vm_area_struct *_install_special_mapping(
3022 	struct mm_struct *mm,
3023 	unsigned long addr, unsigned long len,
3024 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3025 {
3026 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3027 					&special_mapping_vmops);
3028 }
3029 
3030 int install_special_mapping(struct mm_struct *mm,
3031 			    unsigned long addr, unsigned long len,
3032 			    unsigned long vm_flags, struct page **pages)
3033 {
3034 	struct vm_area_struct *vma = __install_special_mapping(
3035 		mm, addr, len, vm_flags, (void *)pages,
3036 		&legacy_special_mapping_vmops);
3037 
3038 	return PTR_ERR_OR_ZERO(vma);
3039 }
3040 
3041 static DEFINE_MUTEX(mm_all_locks_mutex);
3042 
3043 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3044 {
3045 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3046 		/*
3047 		 * The LSB of head.next can't change from under us
3048 		 * because we hold the mm_all_locks_mutex.
3049 		 */
3050 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3051 		/*
3052 		 * We can safely modify head.next after taking the
3053 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3054 		 * the same anon_vma we won't take it again.
3055 		 *
3056 		 * No need of atomic instructions here, head.next
3057 		 * can't change from under us thanks to the
3058 		 * anon_vma->root->rwsem.
3059 		 */
3060 		if (__test_and_set_bit(0, (unsigned long *)
3061 				       &anon_vma->root->rb_root.rb_node))
3062 			BUG();
3063 	}
3064 }
3065 
3066 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3067 {
3068 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3069 		/*
3070 		 * AS_MM_ALL_LOCKS can't change from under us because
3071 		 * we hold the mm_all_locks_mutex.
3072 		 *
3073 		 * Operations on ->flags have to be atomic because
3074 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3075 		 * mm_all_locks_mutex, there may be other cpus
3076 		 * changing other bitflags in parallel to us.
3077 		 */
3078 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3079 			BUG();
3080 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3081 	}
3082 }
3083 
3084 /*
3085  * This operation locks against the VM for all pte/vma/mm related
3086  * operations that could ever happen on a certain mm. This includes
3087  * vmtruncate, try_to_unmap, and all page faults.
3088  *
3089  * The caller must take the mmap_sem in write mode before calling
3090  * mm_take_all_locks(). The caller isn't allowed to release the
3091  * mmap_sem until mm_drop_all_locks() returns.
3092  *
3093  * mmap_sem in write mode is required in order to block all operations
3094  * that could modify pagetables and free pages without need of
3095  * altering the vma layout. It's also needed in write mode to avoid new
3096  * anon_vmas to be associated with existing vmas.
3097  *
3098  * A single task can't take more than one mm_take_all_locks() in a row
3099  * or it would deadlock.
3100  *
3101  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3102  * mapping->flags avoid to take the same lock twice, if more than one
3103  * vma in this mm is backed by the same anon_vma or address_space.
3104  *
3105  * We take locks in following order, accordingly to comment at beginning
3106  * of mm/rmap.c:
3107  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3108  *     hugetlb mapping);
3109  *   - all i_mmap_rwsem locks;
3110  *   - all anon_vma->rwseml
3111  *
3112  * We can take all locks within these types randomly because the VM code
3113  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3114  * mm_all_locks_mutex.
3115  *
3116  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3117  * that may have to take thousand of locks.
3118  *
3119  * mm_take_all_locks() can fail if it's interrupted by signals.
3120  */
3121 int mm_take_all_locks(struct mm_struct *mm)
3122 {
3123 	struct vm_area_struct *vma;
3124 	struct anon_vma_chain *avc;
3125 
3126 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3127 
3128 	mutex_lock(&mm_all_locks_mutex);
3129 
3130 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3131 		if (signal_pending(current))
3132 			goto out_unlock;
3133 		if (vma->vm_file && vma->vm_file->f_mapping &&
3134 				is_vm_hugetlb_page(vma))
3135 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3136 	}
3137 
3138 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3139 		if (signal_pending(current))
3140 			goto out_unlock;
3141 		if (vma->vm_file && vma->vm_file->f_mapping &&
3142 				!is_vm_hugetlb_page(vma))
3143 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3144 	}
3145 
3146 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3147 		if (signal_pending(current))
3148 			goto out_unlock;
3149 		if (vma->anon_vma)
3150 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3151 				vm_lock_anon_vma(mm, avc->anon_vma);
3152 	}
3153 
3154 	return 0;
3155 
3156 out_unlock:
3157 	mm_drop_all_locks(mm);
3158 	return -EINTR;
3159 }
3160 
3161 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3162 {
3163 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3164 		/*
3165 		 * The LSB of head.next can't change to 0 from under
3166 		 * us because we hold the mm_all_locks_mutex.
3167 		 *
3168 		 * We must however clear the bitflag before unlocking
3169 		 * the vma so the users using the anon_vma->rb_root will
3170 		 * never see our bitflag.
3171 		 *
3172 		 * No need of atomic instructions here, head.next
3173 		 * can't change from under us until we release the
3174 		 * anon_vma->root->rwsem.
3175 		 */
3176 		if (!__test_and_clear_bit(0, (unsigned long *)
3177 					  &anon_vma->root->rb_root.rb_node))
3178 			BUG();
3179 		anon_vma_unlock_write(anon_vma);
3180 	}
3181 }
3182 
3183 static void vm_unlock_mapping(struct address_space *mapping)
3184 {
3185 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3186 		/*
3187 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3188 		 * because we hold the mm_all_locks_mutex.
3189 		 */
3190 		i_mmap_unlock_write(mapping);
3191 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3192 					&mapping->flags))
3193 			BUG();
3194 	}
3195 }
3196 
3197 /*
3198  * The mmap_sem cannot be released by the caller until
3199  * mm_drop_all_locks() returns.
3200  */
3201 void mm_drop_all_locks(struct mm_struct *mm)
3202 {
3203 	struct vm_area_struct *vma;
3204 	struct anon_vma_chain *avc;
3205 
3206 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3207 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3208 
3209 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3210 		if (vma->anon_vma)
3211 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3212 				vm_unlock_anon_vma(avc->anon_vma);
3213 		if (vma->vm_file && vma->vm_file->f_mapping)
3214 			vm_unlock_mapping(vma->vm_file->f_mapping);
3215 	}
3216 
3217 	mutex_unlock(&mm_all_locks_mutex);
3218 }
3219 
3220 /*
3221  * initialise the VMA slab
3222  */
3223 void __init mmap_init(void)
3224 {
3225 	int ret;
3226 
3227 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3228 	VM_BUG_ON(ret);
3229 }
3230 
3231 /*
3232  * Initialise sysctl_user_reserve_kbytes.
3233  *
3234  * This is intended to prevent a user from starting a single memory hogging
3235  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3236  * mode.
3237  *
3238  * The default value is min(3% of free memory, 128MB)
3239  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3240  */
3241 static int init_user_reserve(void)
3242 {
3243 	unsigned long free_kbytes;
3244 
3245 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3246 
3247 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3248 	return 0;
3249 }
3250 subsys_initcall(init_user_reserve);
3251 
3252 /*
3253  * Initialise sysctl_admin_reserve_kbytes.
3254  *
3255  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3256  * to log in and kill a memory hogging process.
3257  *
3258  * Systems with more than 256MB will reserve 8MB, enough to recover
3259  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3260  * only reserve 3% of free pages by default.
3261  */
3262 static int init_admin_reserve(void)
3263 {
3264 	unsigned long free_kbytes;
3265 
3266 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3267 
3268 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3269 	return 0;
3270 }
3271 subsys_initcall(init_admin_reserve);
3272 
3273 /*
3274  * Reinititalise user and admin reserves if memory is added or removed.
3275  *
3276  * The default user reserve max is 128MB, and the default max for the
3277  * admin reserve is 8MB. These are usually, but not always, enough to
3278  * enable recovery from a memory hogging process using login/sshd, a shell,
3279  * and tools like top. It may make sense to increase or even disable the
3280  * reserve depending on the existence of swap or variations in the recovery
3281  * tools. So, the admin may have changed them.
3282  *
3283  * If memory is added and the reserves have been eliminated or increased above
3284  * the default max, then we'll trust the admin.
3285  *
3286  * If memory is removed and there isn't enough free memory, then we
3287  * need to reset the reserves.
3288  *
3289  * Otherwise keep the reserve set by the admin.
3290  */
3291 static int reserve_mem_notifier(struct notifier_block *nb,
3292 			     unsigned long action, void *data)
3293 {
3294 	unsigned long tmp, free_kbytes;
3295 
3296 	switch (action) {
3297 	case MEM_ONLINE:
3298 		/* Default max is 128MB. Leave alone if modified by operator. */
3299 		tmp = sysctl_user_reserve_kbytes;
3300 		if (0 < tmp && tmp < (1UL << 17))
3301 			init_user_reserve();
3302 
3303 		/* Default max is 8MB.  Leave alone if modified by operator. */
3304 		tmp = sysctl_admin_reserve_kbytes;
3305 		if (0 < tmp && tmp < (1UL << 13))
3306 			init_admin_reserve();
3307 
3308 		break;
3309 	case MEM_OFFLINE:
3310 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3311 
3312 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3313 			init_user_reserve();
3314 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3315 				sysctl_user_reserve_kbytes);
3316 		}
3317 
3318 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3319 			init_admin_reserve();
3320 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3321 				sysctl_admin_reserve_kbytes);
3322 		}
3323 		break;
3324 	default:
3325 		break;
3326 	}
3327 	return NOTIFY_OK;
3328 }
3329 
3330 static struct notifier_block reserve_mem_nb = {
3331 	.notifier_call = reserve_mem_notifier,
3332 };
3333 
3334 static int __meminit init_reserve_notifier(void)
3335 {
3336 	if (register_hotmemory_notifier(&reserve_mem_nb))
3337 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3338 
3339 	return 0;
3340 }
3341 subsys_initcall(init_reserve_notifier);
3342