1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/notifier.h> 41 #include <linux/memory.h> 42 #include <linux/printk.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/moduleparam.h> 45 #include <linux/pkeys.h> 46 47 #include <asm/uaccess.h> 48 #include <asm/cacheflush.h> 49 #include <asm/tlb.h> 50 #include <asm/mmu_context.h> 51 52 #include "internal.h" 53 54 #ifndef arch_mmap_check 55 #define arch_mmap_check(addr, len, flags) (0) 56 #endif 57 58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 59 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 60 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 61 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 62 #endif 63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 64 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 65 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 66 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 67 #endif 68 69 static bool ignore_rlimit_data; 70 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 71 72 static void unmap_region(struct mm_struct *mm, 73 struct vm_area_struct *vma, struct vm_area_struct *prev, 74 unsigned long start, unsigned long end); 75 76 /* description of effects of mapping type and prot in current implementation. 77 * this is due to the limited x86 page protection hardware. The expected 78 * behavior is in parens: 79 * 80 * map_type prot 81 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 82 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 83 * w: (no) no w: (no) no w: (yes) yes w: (no) no 84 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 85 * 86 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (copy) copy w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 */ 91 pgprot_t protection_map[16] = { 92 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 93 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 94 }; 95 96 pgprot_t vm_get_page_prot(unsigned long vm_flags) 97 { 98 return __pgprot(pgprot_val(protection_map[vm_flags & 99 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 100 pgprot_val(arch_vm_get_page_prot(vm_flags))); 101 } 102 EXPORT_SYMBOL(vm_get_page_prot); 103 104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 105 { 106 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 107 } 108 109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 110 void vma_set_page_prot(struct vm_area_struct *vma) 111 { 112 unsigned long vm_flags = vma->vm_flags; 113 114 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 115 if (vma_wants_writenotify(vma)) { 116 vm_flags &= ~VM_SHARED; 117 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 118 vm_flags); 119 } 120 } 121 122 /* 123 * Requires inode->i_mapping->i_mmap_rwsem 124 */ 125 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 126 struct file *file, struct address_space *mapping) 127 { 128 if (vma->vm_flags & VM_DENYWRITE) 129 atomic_inc(&file_inode(file)->i_writecount); 130 if (vma->vm_flags & VM_SHARED) 131 mapping_unmap_writable(mapping); 132 133 flush_dcache_mmap_lock(mapping); 134 vma_interval_tree_remove(vma, &mapping->i_mmap); 135 flush_dcache_mmap_unlock(mapping); 136 } 137 138 /* 139 * Unlink a file-based vm structure from its interval tree, to hide 140 * vma from rmap and vmtruncate before freeing its page tables. 141 */ 142 void unlink_file_vma(struct vm_area_struct *vma) 143 { 144 struct file *file = vma->vm_file; 145 146 if (file) { 147 struct address_space *mapping = file->f_mapping; 148 i_mmap_lock_write(mapping); 149 __remove_shared_vm_struct(vma, file, mapping); 150 i_mmap_unlock_write(mapping); 151 } 152 } 153 154 /* 155 * Close a vm structure and free it, returning the next. 156 */ 157 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 158 { 159 struct vm_area_struct *next = vma->vm_next; 160 161 might_sleep(); 162 if (vma->vm_ops && vma->vm_ops->close) 163 vma->vm_ops->close(vma); 164 if (vma->vm_file) 165 fput(vma->vm_file); 166 mpol_put(vma_policy(vma)); 167 kmem_cache_free(vm_area_cachep, vma); 168 return next; 169 } 170 171 static unsigned long do_brk(unsigned long addr, unsigned long len); 172 173 SYSCALL_DEFINE1(brk, unsigned long, brk) 174 { 175 unsigned long retval; 176 unsigned long newbrk, oldbrk; 177 struct mm_struct *mm = current->mm; 178 unsigned long min_brk; 179 bool populate; 180 181 down_write(&mm->mmap_sem); 182 183 #ifdef CONFIG_COMPAT_BRK 184 /* 185 * CONFIG_COMPAT_BRK can still be overridden by setting 186 * randomize_va_space to 2, which will still cause mm->start_brk 187 * to be arbitrarily shifted 188 */ 189 if (current->brk_randomized) 190 min_brk = mm->start_brk; 191 else 192 min_brk = mm->end_data; 193 #else 194 min_brk = mm->start_brk; 195 #endif 196 if (brk < min_brk) 197 goto out; 198 199 /* 200 * Check against rlimit here. If this check is done later after the test 201 * of oldbrk with newbrk then it can escape the test and let the data 202 * segment grow beyond its set limit the in case where the limit is 203 * not page aligned -Ram Gupta 204 */ 205 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 206 mm->end_data, mm->start_data)) 207 goto out; 208 209 newbrk = PAGE_ALIGN(brk); 210 oldbrk = PAGE_ALIGN(mm->brk); 211 if (oldbrk == newbrk) 212 goto set_brk; 213 214 /* Always allow shrinking brk. */ 215 if (brk <= mm->brk) { 216 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 217 goto set_brk; 218 goto out; 219 } 220 221 /* Check against existing mmap mappings. */ 222 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 223 goto out; 224 225 /* Ok, looks good - let it rip. */ 226 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 227 goto out; 228 229 set_brk: 230 mm->brk = brk; 231 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 232 up_write(&mm->mmap_sem); 233 if (populate) 234 mm_populate(oldbrk, newbrk - oldbrk); 235 return brk; 236 237 out: 238 retval = mm->brk; 239 up_write(&mm->mmap_sem); 240 return retval; 241 } 242 243 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 244 { 245 unsigned long max, subtree_gap; 246 max = vma->vm_start; 247 if (vma->vm_prev) 248 max -= vma->vm_prev->vm_end; 249 if (vma->vm_rb.rb_left) { 250 subtree_gap = rb_entry(vma->vm_rb.rb_left, 251 struct vm_area_struct, vm_rb)->rb_subtree_gap; 252 if (subtree_gap > max) 253 max = subtree_gap; 254 } 255 if (vma->vm_rb.rb_right) { 256 subtree_gap = rb_entry(vma->vm_rb.rb_right, 257 struct vm_area_struct, vm_rb)->rb_subtree_gap; 258 if (subtree_gap > max) 259 max = subtree_gap; 260 } 261 return max; 262 } 263 264 #ifdef CONFIG_DEBUG_VM_RB 265 static int browse_rb(struct mm_struct *mm) 266 { 267 struct rb_root *root = &mm->mm_rb; 268 int i = 0, j, bug = 0; 269 struct rb_node *nd, *pn = NULL; 270 unsigned long prev = 0, pend = 0; 271 272 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 273 struct vm_area_struct *vma; 274 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 275 if (vma->vm_start < prev) { 276 pr_emerg("vm_start %lx < prev %lx\n", 277 vma->vm_start, prev); 278 bug = 1; 279 } 280 if (vma->vm_start < pend) { 281 pr_emerg("vm_start %lx < pend %lx\n", 282 vma->vm_start, pend); 283 bug = 1; 284 } 285 if (vma->vm_start > vma->vm_end) { 286 pr_emerg("vm_start %lx > vm_end %lx\n", 287 vma->vm_start, vma->vm_end); 288 bug = 1; 289 } 290 spin_lock(&mm->page_table_lock); 291 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 292 pr_emerg("free gap %lx, correct %lx\n", 293 vma->rb_subtree_gap, 294 vma_compute_subtree_gap(vma)); 295 bug = 1; 296 } 297 spin_unlock(&mm->page_table_lock); 298 i++; 299 pn = nd; 300 prev = vma->vm_start; 301 pend = vma->vm_end; 302 } 303 j = 0; 304 for (nd = pn; nd; nd = rb_prev(nd)) 305 j++; 306 if (i != j) { 307 pr_emerg("backwards %d, forwards %d\n", j, i); 308 bug = 1; 309 } 310 return bug ? -1 : i; 311 } 312 313 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 314 { 315 struct rb_node *nd; 316 317 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 318 struct vm_area_struct *vma; 319 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 320 VM_BUG_ON_VMA(vma != ignore && 321 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 322 vma); 323 } 324 } 325 326 static void validate_mm(struct mm_struct *mm) 327 { 328 int bug = 0; 329 int i = 0; 330 unsigned long highest_address = 0; 331 struct vm_area_struct *vma = mm->mmap; 332 333 while (vma) { 334 struct anon_vma *anon_vma = vma->anon_vma; 335 struct anon_vma_chain *avc; 336 337 if (anon_vma) { 338 anon_vma_lock_read(anon_vma); 339 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 340 anon_vma_interval_tree_verify(avc); 341 anon_vma_unlock_read(anon_vma); 342 } 343 344 highest_address = vma->vm_end; 345 vma = vma->vm_next; 346 i++; 347 } 348 if (i != mm->map_count) { 349 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 350 bug = 1; 351 } 352 if (highest_address != mm->highest_vm_end) { 353 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 354 mm->highest_vm_end, highest_address); 355 bug = 1; 356 } 357 i = browse_rb(mm); 358 if (i != mm->map_count) { 359 if (i != -1) 360 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 361 bug = 1; 362 } 363 VM_BUG_ON_MM(bug, mm); 364 } 365 #else 366 #define validate_mm_rb(root, ignore) do { } while (0) 367 #define validate_mm(mm) do { } while (0) 368 #endif 369 370 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 371 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 372 373 /* 374 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 375 * vma->vm_prev->vm_end values changed, without modifying the vma's position 376 * in the rbtree. 377 */ 378 static void vma_gap_update(struct vm_area_struct *vma) 379 { 380 /* 381 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 382 * function that does exacltly what we want. 383 */ 384 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 385 } 386 387 static inline void vma_rb_insert(struct vm_area_struct *vma, 388 struct rb_root *root) 389 { 390 /* All rb_subtree_gap values must be consistent prior to insertion */ 391 validate_mm_rb(root, NULL); 392 393 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 394 } 395 396 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 397 { 398 /* 399 * All rb_subtree_gap values must be consistent prior to erase, 400 * with the possible exception of the vma being erased. 401 */ 402 validate_mm_rb(root, vma); 403 404 /* 405 * Note rb_erase_augmented is a fairly large inline function, 406 * so make sure we instantiate it only once with our desired 407 * augmented rbtree callbacks. 408 */ 409 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 410 } 411 412 /* 413 * vma has some anon_vma assigned, and is already inserted on that 414 * anon_vma's interval trees. 415 * 416 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 417 * vma must be removed from the anon_vma's interval trees using 418 * anon_vma_interval_tree_pre_update_vma(). 419 * 420 * After the update, the vma will be reinserted using 421 * anon_vma_interval_tree_post_update_vma(). 422 * 423 * The entire update must be protected by exclusive mmap_sem and by 424 * the root anon_vma's mutex. 425 */ 426 static inline void 427 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 428 { 429 struct anon_vma_chain *avc; 430 431 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 432 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 433 } 434 435 static inline void 436 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 437 { 438 struct anon_vma_chain *avc; 439 440 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 441 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 442 } 443 444 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 445 unsigned long end, struct vm_area_struct **pprev, 446 struct rb_node ***rb_link, struct rb_node **rb_parent) 447 { 448 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 449 450 __rb_link = &mm->mm_rb.rb_node; 451 rb_prev = __rb_parent = NULL; 452 453 while (*__rb_link) { 454 struct vm_area_struct *vma_tmp; 455 456 __rb_parent = *__rb_link; 457 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 458 459 if (vma_tmp->vm_end > addr) { 460 /* Fail if an existing vma overlaps the area */ 461 if (vma_tmp->vm_start < end) 462 return -ENOMEM; 463 __rb_link = &__rb_parent->rb_left; 464 } else { 465 rb_prev = __rb_parent; 466 __rb_link = &__rb_parent->rb_right; 467 } 468 } 469 470 *pprev = NULL; 471 if (rb_prev) 472 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 473 *rb_link = __rb_link; 474 *rb_parent = __rb_parent; 475 return 0; 476 } 477 478 static unsigned long count_vma_pages_range(struct mm_struct *mm, 479 unsigned long addr, unsigned long end) 480 { 481 unsigned long nr_pages = 0; 482 struct vm_area_struct *vma; 483 484 /* Find first overlaping mapping */ 485 vma = find_vma_intersection(mm, addr, end); 486 if (!vma) 487 return 0; 488 489 nr_pages = (min(end, vma->vm_end) - 490 max(addr, vma->vm_start)) >> PAGE_SHIFT; 491 492 /* Iterate over the rest of the overlaps */ 493 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 494 unsigned long overlap_len; 495 496 if (vma->vm_start > end) 497 break; 498 499 overlap_len = min(end, vma->vm_end) - vma->vm_start; 500 nr_pages += overlap_len >> PAGE_SHIFT; 501 } 502 503 return nr_pages; 504 } 505 506 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 507 struct rb_node **rb_link, struct rb_node *rb_parent) 508 { 509 /* Update tracking information for the gap following the new vma. */ 510 if (vma->vm_next) 511 vma_gap_update(vma->vm_next); 512 else 513 mm->highest_vm_end = vma->vm_end; 514 515 /* 516 * vma->vm_prev wasn't known when we followed the rbtree to find the 517 * correct insertion point for that vma. As a result, we could not 518 * update the vma vm_rb parents rb_subtree_gap values on the way down. 519 * So, we first insert the vma with a zero rb_subtree_gap value 520 * (to be consistent with what we did on the way down), and then 521 * immediately update the gap to the correct value. Finally we 522 * rebalance the rbtree after all augmented values have been set. 523 */ 524 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 525 vma->rb_subtree_gap = 0; 526 vma_gap_update(vma); 527 vma_rb_insert(vma, &mm->mm_rb); 528 } 529 530 static void __vma_link_file(struct vm_area_struct *vma) 531 { 532 struct file *file; 533 534 file = vma->vm_file; 535 if (file) { 536 struct address_space *mapping = file->f_mapping; 537 538 if (vma->vm_flags & VM_DENYWRITE) 539 atomic_dec(&file_inode(file)->i_writecount); 540 if (vma->vm_flags & VM_SHARED) 541 atomic_inc(&mapping->i_mmap_writable); 542 543 flush_dcache_mmap_lock(mapping); 544 vma_interval_tree_insert(vma, &mapping->i_mmap); 545 flush_dcache_mmap_unlock(mapping); 546 } 547 } 548 549 static void 550 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 551 struct vm_area_struct *prev, struct rb_node **rb_link, 552 struct rb_node *rb_parent) 553 { 554 __vma_link_list(mm, vma, prev, rb_parent); 555 __vma_link_rb(mm, vma, rb_link, rb_parent); 556 } 557 558 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 559 struct vm_area_struct *prev, struct rb_node **rb_link, 560 struct rb_node *rb_parent) 561 { 562 struct address_space *mapping = NULL; 563 564 if (vma->vm_file) { 565 mapping = vma->vm_file->f_mapping; 566 i_mmap_lock_write(mapping); 567 } 568 569 __vma_link(mm, vma, prev, rb_link, rb_parent); 570 __vma_link_file(vma); 571 572 if (mapping) 573 i_mmap_unlock_write(mapping); 574 575 mm->map_count++; 576 validate_mm(mm); 577 } 578 579 /* 580 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 581 * mm's list and rbtree. It has already been inserted into the interval tree. 582 */ 583 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 584 { 585 struct vm_area_struct *prev; 586 struct rb_node **rb_link, *rb_parent; 587 588 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 589 &prev, &rb_link, &rb_parent)) 590 BUG(); 591 __vma_link(mm, vma, prev, rb_link, rb_parent); 592 mm->map_count++; 593 } 594 595 static inline void 596 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 597 struct vm_area_struct *prev) 598 { 599 struct vm_area_struct *next; 600 601 vma_rb_erase(vma, &mm->mm_rb); 602 prev->vm_next = next = vma->vm_next; 603 if (next) 604 next->vm_prev = prev; 605 606 /* Kill the cache */ 607 vmacache_invalidate(mm); 608 } 609 610 /* 611 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 612 * is already present in an i_mmap tree without adjusting the tree. 613 * The following helper function should be used when such adjustments 614 * are necessary. The "insert" vma (if any) is to be inserted 615 * before we drop the necessary locks. 616 */ 617 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 618 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 619 { 620 struct mm_struct *mm = vma->vm_mm; 621 struct vm_area_struct *next = vma->vm_next; 622 struct vm_area_struct *importer = NULL; 623 struct address_space *mapping = NULL; 624 struct rb_root *root = NULL; 625 struct anon_vma *anon_vma = NULL; 626 struct file *file = vma->vm_file; 627 bool start_changed = false, end_changed = false; 628 long adjust_next = 0; 629 int remove_next = 0; 630 631 if (next && !insert) { 632 struct vm_area_struct *exporter = NULL; 633 634 if (end >= next->vm_end) { 635 /* 636 * vma expands, overlapping all the next, and 637 * perhaps the one after too (mprotect case 6). 638 */ 639 again: remove_next = 1 + (end > next->vm_end); 640 end = next->vm_end; 641 exporter = next; 642 importer = vma; 643 } else if (end > next->vm_start) { 644 /* 645 * vma expands, overlapping part of the next: 646 * mprotect case 5 shifting the boundary up. 647 */ 648 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 649 exporter = next; 650 importer = vma; 651 } else if (end < vma->vm_end) { 652 /* 653 * vma shrinks, and !insert tells it's not 654 * split_vma inserting another: so it must be 655 * mprotect case 4 shifting the boundary down. 656 */ 657 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 658 exporter = vma; 659 importer = next; 660 } 661 662 /* 663 * Easily overlooked: when mprotect shifts the boundary, 664 * make sure the expanding vma has anon_vma set if the 665 * shrinking vma had, to cover any anon pages imported. 666 */ 667 if (exporter && exporter->anon_vma && !importer->anon_vma) { 668 int error; 669 670 importer->anon_vma = exporter->anon_vma; 671 error = anon_vma_clone(importer, exporter); 672 if (error) 673 return error; 674 } 675 } 676 677 if (file) { 678 mapping = file->f_mapping; 679 root = &mapping->i_mmap; 680 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 681 682 if (adjust_next) 683 uprobe_munmap(next, next->vm_start, next->vm_end); 684 685 i_mmap_lock_write(mapping); 686 if (insert) { 687 /* 688 * Put into interval tree now, so instantiated pages 689 * are visible to arm/parisc __flush_dcache_page 690 * throughout; but we cannot insert into address 691 * space until vma start or end is updated. 692 */ 693 __vma_link_file(insert); 694 } 695 } 696 697 vma_adjust_trans_huge(vma, start, end, adjust_next); 698 699 anon_vma = vma->anon_vma; 700 if (!anon_vma && adjust_next) 701 anon_vma = next->anon_vma; 702 if (anon_vma) { 703 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 704 anon_vma != next->anon_vma, next); 705 anon_vma_lock_write(anon_vma); 706 anon_vma_interval_tree_pre_update_vma(vma); 707 if (adjust_next) 708 anon_vma_interval_tree_pre_update_vma(next); 709 } 710 711 if (root) { 712 flush_dcache_mmap_lock(mapping); 713 vma_interval_tree_remove(vma, root); 714 if (adjust_next) 715 vma_interval_tree_remove(next, root); 716 } 717 718 if (start != vma->vm_start) { 719 vma->vm_start = start; 720 start_changed = true; 721 } 722 if (end != vma->vm_end) { 723 vma->vm_end = end; 724 end_changed = true; 725 } 726 vma->vm_pgoff = pgoff; 727 if (adjust_next) { 728 next->vm_start += adjust_next << PAGE_SHIFT; 729 next->vm_pgoff += adjust_next; 730 } 731 732 if (root) { 733 if (adjust_next) 734 vma_interval_tree_insert(next, root); 735 vma_interval_tree_insert(vma, root); 736 flush_dcache_mmap_unlock(mapping); 737 } 738 739 if (remove_next) { 740 /* 741 * vma_merge has merged next into vma, and needs 742 * us to remove next before dropping the locks. 743 */ 744 __vma_unlink(mm, next, vma); 745 if (file) 746 __remove_shared_vm_struct(next, file, mapping); 747 } else if (insert) { 748 /* 749 * split_vma has split insert from vma, and needs 750 * us to insert it before dropping the locks 751 * (it may either follow vma or precede it). 752 */ 753 __insert_vm_struct(mm, insert); 754 } else { 755 if (start_changed) 756 vma_gap_update(vma); 757 if (end_changed) { 758 if (!next) 759 mm->highest_vm_end = end; 760 else if (!adjust_next) 761 vma_gap_update(next); 762 } 763 } 764 765 if (anon_vma) { 766 anon_vma_interval_tree_post_update_vma(vma); 767 if (adjust_next) 768 anon_vma_interval_tree_post_update_vma(next); 769 anon_vma_unlock_write(anon_vma); 770 } 771 if (mapping) 772 i_mmap_unlock_write(mapping); 773 774 if (root) { 775 uprobe_mmap(vma); 776 777 if (adjust_next) 778 uprobe_mmap(next); 779 } 780 781 if (remove_next) { 782 if (file) { 783 uprobe_munmap(next, next->vm_start, next->vm_end); 784 fput(file); 785 } 786 if (next->anon_vma) 787 anon_vma_merge(vma, next); 788 mm->map_count--; 789 mpol_put(vma_policy(next)); 790 kmem_cache_free(vm_area_cachep, next); 791 /* 792 * In mprotect's case 6 (see comments on vma_merge), 793 * we must remove another next too. It would clutter 794 * up the code too much to do both in one go. 795 */ 796 next = vma->vm_next; 797 if (remove_next == 2) 798 goto again; 799 else if (next) 800 vma_gap_update(next); 801 else 802 mm->highest_vm_end = end; 803 } 804 if (insert && file) 805 uprobe_mmap(insert); 806 807 validate_mm(mm); 808 809 return 0; 810 } 811 812 /* 813 * If the vma has a ->close operation then the driver probably needs to release 814 * per-vma resources, so we don't attempt to merge those. 815 */ 816 static inline int is_mergeable_vma(struct vm_area_struct *vma, 817 struct file *file, unsigned long vm_flags, 818 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 819 { 820 /* 821 * VM_SOFTDIRTY should not prevent from VMA merging, if we 822 * match the flags but dirty bit -- the caller should mark 823 * merged VMA as dirty. If dirty bit won't be excluded from 824 * comparison, we increase pressue on the memory system forcing 825 * the kernel to generate new VMAs when old one could be 826 * extended instead. 827 */ 828 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 829 return 0; 830 if (vma->vm_file != file) 831 return 0; 832 if (vma->vm_ops && vma->vm_ops->close) 833 return 0; 834 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 835 return 0; 836 return 1; 837 } 838 839 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 840 struct anon_vma *anon_vma2, 841 struct vm_area_struct *vma) 842 { 843 /* 844 * The list_is_singular() test is to avoid merging VMA cloned from 845 * parents. This can improve scalability caused by anon_vma lock. 846 */ 847 if ((!anon_vma1 || !anon_vma2) && (!vma || 848 list_is_singular(&vma->anon_vma_chain))) 849 return 1; 850 return anon_vma1 == anon_vma2; 851 } 852 853 /* 854 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 855 * in front of (at a lower virtual address and file offset than) the vma. 856 * 857 * We cannot merge two vmas if they have differently assigned (non-NULL) 858 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 859 * 860 * We don't check here for the merged mmap wrapping around the end of pagecache 861 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 862 * wrap, nor mmaps which cover the final page at index -1UL. 863 */ 864 static int 865 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 866 struct anon_vma *anon_vma, struct file *file, 867 pgoff_t vm_pgoff, 868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 869 { 870 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 871 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 872 if (vma->vm_pgoff == vm_pgoff) 873 return 1; 874 } 875 return 0; 876 } 877 878 /* 879 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 880 * beyond (at a higher virtual address and file offset than) the vma. 881 * 882 * We cannot merge two vmas if they have differently assigned (non-NULL) 883 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 884 */ 885 static int 886 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 887 struct anon_vma *anon_vma, struct file *file, 888 pgoff_t vm_pgoff, 889 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 890 { 891 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 892 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 893 pgoff_t vm_pglen; 894 vm_pglen = vma_pages(vma); 895 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 896 return 1; 897 } 898 return 0; 899 } 900 901 /* 902 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 903 * whether that can be merged with its predecessor or its successor. 904 * Or both (it neatly fills a hole). 905 * 906 * In most cases - when called for mmap, brk or mremap - [addr,end) is 907 * certain not to be mapped by the time vma_merge is called; but when 908 * called for mprotect, it is certain to be already mapped (either at 909 * an offset within prev, or at the start of next), and the flags of 910 * this area are about to be changed to vm_flags - and the no-change 911 * case has already been eliminated. 912 * 913 * The following mprotect cases have to be considered, where AAAA is 914 * the area passed down from mprotect_fixup, never extending beyond one 915 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 916 * 917 * AAAA AAAA AAAA AAAA 918 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 919 * cannot merge might become might become might become 920 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 921 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 922 * mremap move: PPPPNNNNNNNN 8 923 * AAAA 924 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 925 * might become case 1 below case 2 below case 3 below 926 * 927 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 928 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 929 */ 930 struct vm_area_struct *vma_merge(struct mm_struct *mm, 931 struct vm_area_struct *prev, unsigned long addr, 932 unsigned long end, unsigned long vm_flags, 933 struct anon_vma *anon_vma, struct file *file, 934 pgoff_t pgoff, struct mempolicy *policy, 935 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 936 { 937 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 938 struct vm_area_struct *area, *next; 939 int err; 940 941 /* 942 * We later require that vma->vm_flags == vm_flags, 943 * so this tests vma->vm_flags & VM_SPECIAL, too. 944 */ 945 if (vm_flags & VM_SPECIAL) 946 return NULL; 947 948 if (prev) 949 next = prev->vm_next; 950 else 951 next = mm->mmap; 952 area = next; 953 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 954 next = next->vm_next; 955 956 /* 957 * Can it merge with the predecessor? 958 */ 959 if (prev && prev->vm_end == addr && 960 mpol_equal(vma_policy(prev), policy) && 961 can_vma_merge_after(prev, vm_flags, 962 anon_vma, file, pgoff, 963 vm_userfaultfd_ctx)) { 964 /* 965 * OK, it can. Can we now merge in the successor as well? 966 */ 967 if (next && end == next->vm_start && 968 mpol_equal(policy, vma_policy(next)) && 969 can_vma_merge_before(next, vm_flags, 970 anon_vma, file, 971 pgoff+pglen, 972 vm_userfaultfd_ctx) && 973 is_mergeable_anon_vma(prev->anon_vma, 974 next->anon_vma, NULL)) { 975 /* cases 1, 6 */ 976 err = vma_adjust(prev, prev->vm_start, 977 next->vm_end, prev->vm_pgoff, NULL); 978 } else /* cases 2, 5, 7 */ 979 err = vma_adjust(prev, prev->vm_start, 980 end, prev->vm_pgoff, NULL); 981 if (err) 982 return NULL; 983 khugepaged_enter_vma_merge(prev, vm_flags); 984 return prev; 985 } 986 987 /* 988 * Can this new request be merged in front of next? 989 */ 990 if (next && end == next->vm_start && 991 mpol_equal(policy, vma_policy(next)) && 992 can_vma_merge_before(next, vm_flags, 993 anon_vma, file, pgoff+pglen, 994 vm_userfaultfd_ctx)) { 995 if (prev && addr < prev->vm_end) /* case 4 */ 996 err = vma_adjust(prev, prev->vm_start, 997 addr, prev->vm_pgoff, NULL); 998 else /* cases 3, 8 */ 999 err = vma_adjust(area, addr, next->vm_end, 1000 next->vm_pgoff - pglen, NULL); 1001 if (err) 1002 return NULL; 1003 khugepaged_enter_vma_merge(area, vm_flags); 1004 return area; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 /* 1011 * Rough compatbility check to quickly see if it's even worth looking 1012 * at sharing an anon_vma. 1013 * 1014 * They need to have the same vm_file, and the flags can only differ 1015 * in things that mprotect may change. 1016 * 1017 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1018 * we can merge the two vma's. For example, we refuse to merge a vma if 1019 * there is a vm_ops->close() function, because that indicates that the 1020 * driver is doing some kind of reference counting. But that doesn't 1021 * really matter for the anon_vma sharing case. 1022 */ 1023 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1024 { 1025 return a->vm_end == b->vm_start && 1026 mpol_equal(vma_policy(a), vma_policy(b)) && 1027 a->vm_file == b->vm_file && 1028 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1029 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1030 } 1031 1032 /* 1033 * Do some basic sanity checking to see if we can re-use the anon_vma 1034 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1035 * the same as 'old', the other will be the new one that is trying 1036 * to share the anon_vma. 1037 * 1038 * NOTE! This runs with mm_sem held for reading, so it is possible that 1039 * the anon_vma of 'old' is concurrently in the process of being set up 1040 * by another page fault trying to merge _that_. But that's ok: if it 1041 * is being set up, that automatically means that it will be a singleton 1042 * acceptable for merging, so we can do all of this optimistically. But 1043 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1044 * 1045 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1046 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1047 * is to return an anon_vma that is "complex" due to having gone through 1048 * a fork). 1049 * 1050 * We also make sure that the two vma's are compatible (adjacent, 1051 * and with the same memory policies). That's all stable, even with just 1052 * a read lock on the mm_sem. 1053 */ 1054 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1055 { 1056 if (anon_vma_compatible(a, b)) { 1057 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1058 1059 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1060 return anon_vma; 1061 } 1062 return NULL; 1063 } 1064 1065 /* 1066 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1067 * neighbouring vmas for a suitable anon_vma, before it goes off 1068 * to allocate a new anon_vma. It checks because a repetitive 1069 * sequence of mprotects and faults may otherwise lead to distinct 1070 * anon_vmas being allocated, preventing vma merge in subsequent 1071 * mprotect. 1072 */ 1073 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1074 { 1075 struct anon_vma *anon_vma; 1076 struct vm_area_struct *near; 1077 1078 near = vma->vm_next; 1079 if (!near) 1080 goto try_prev; 1081 1082 anon_vma = reusable_anon_vma(near, vma, near); 1083 if (anon_vma) 1084 return anon_vma; 1085 try_prev: 1086 near = vma->vm_prev; 1087 if (!near) 1088 goto none; 1089 1090 anon_vma = reusable_anon_vma(near, near, vma); 1091 if (anon_vma) 1092 return anon_vma; 1093 none: 1094 /* 1095 * There's no absolute need to look only at touching neighbours: 1096 * we could search further afield for "compatible" anon_vmas. 1097 * But it would probably just be a waste of time searching, 1098 * or lead to too many vmas hanging off the same anon_vma. 1099 * We're trying to allow mprotect remerging later on, 1100 * not trying to minimize memory used for anon_vmas. 1101 */ 1102 return NULL; 1103 } 1104 1105 /* 1106 * If a hint addr is less than mmap_min_addr change hint to be as 1107 * low as possible but still greater than mmap_min_addr 1108 */ 1109 static inline unsigned long round_hint_to_min(unsigned long hint) 1110 { 1111 hint &= PAGE_MASK; 1112 if (((void *)hint != NULL) && 1113 (hint < mmap_min_addr)) 1114 return PAGE_ALIGN(mmap_min_addr); 1115 return hint; 1116 } 1117 1118 static inline int mlock_future_check(struct mm_struct *mm, 1119 unsigned long flags, 1120 unsigned long len) 1121 { 1122 unsigned long locked, lock_limit; 1123 1124 /* mlock MCL_FUTURE? */ 1125 if (flags & VM_LOCKED) { 1126 locked = len >> PAGE_SHIFT; 1127 locked += mm->locked_vm; 1128 lock_limit = rlimit(RLIMIT_MEMLOCK); 1129 lock_limit >>= PAGE_SHIFT; 1130 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1131 return -EAGAIN; 1132 } 1133 return 0; 1134 } 1135 1136 /* 1137 * The caller must hold down_write(¤t->mm->mmap_sem). 1138 */ 1139 unsigned long do_mmap(struct file *file, unsigned long addr, 1140 unsigned long len, unsigned long prot, 1141 unsigned long flags, vm_flags_t vm_flags, 1142 unsigned long pgoff, unsigned long *populate) 1143 { 1144 struct mm_struct *mm = current->mm; 1145 int pkey = 0; 1146 1147 *populate = 0; 1148 1149 if (!len) 1150 return -EINVAL; 1151 1152 /* 1153 * Does the application expect PROT_READ to imply PROT_EXEC? 1154 * 1155 * (the exception is when the underlying filesystem is noexec 1156 * mounted, in which case we dont add PROT_EXEC.) 1157 */ 1158 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1159 if (!(file && path_noexec(&file->f_path))) 1160 prot |= PROT_EXEC; 1161 1162 if (!(flags & MAP_FIXED)) 1163 addr = round_hint_to_min(addr); 1164 1165 /* Careful about overflows.. */ 1166 len = PAGE_ALIGN(len); 1167 if (!len) 1168 return -ENOMEM; 1169 1170 /* offset overflow? */ 1171 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1172 return -EOVERFLOW; 1173 1174 /* Too many mappings? */ 1175 if (mm->map_count > sysctl_max_map_count) 1176 return -ENOMEM; 1177 1178 /* Obtain the address to map to. we verify (or select) it and ensure 1179 * that it represents a valid section of the address space. 1180 */ 1181 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1182 if (offset_in_page(addr)) 1183 return addr; 1184 1185 if (prot == PROT_EXEC) { 1186 pkey = execute_only_pkey(mm); 1187 if (pkey < 0) 1188 pkey = 0; 1189 } 1190 1191 /* Do simple checking here so the lower-level routines won't have 1192 * to. we assume access permissions have been handled by the open 1193 * of the memory object, so we don't do any here. 1194 */ 1195 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1196 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1197 1198 if (flags & MAP_LOCKED) 1199 if (!can_do_mlock()) 1200 return -EPERM; 1201 1202 if (mlock_future_check(mm, vm_flags, len)) 1203 return -EAGAIN; 1204 1205 if (file) { 1206 struct inode *inode = file_inode(file); 1207 1208 switch (flags & MAP_TYPE) { 1209 case MAP_SHARED: 1210 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1211 return -EACCES; 1212 1213 /* 1214 * Make sure we don't allow writing to an append-only 1215 * file.. 1216 */ 1217 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1218 return -EACCES; 1219 1220 /* 1221 * Make sure there are no mandatory locks on the file. 1222 */ 1223 if (locks_verify_locked(file)) 1224 return -EAGAIN; 1225 1226 vm_flags |= VM_SHARED | VM_MAYSHARE; 1227 if (!(file->f_mode & FMODE_WRITE)) 1228 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1229 1230 /* fall through */ 1231 case MAP_PRIVATE: 1232 if (!(file->f_mode & FMODE_READ)) 1233 return -EACCES; 1234 if (path_noexec(&file->f_path)) { 1235 if (vm_flags & VM_EXEC) 1236 return -EPERM; 1237 vm_flags &= ~VM_MAYEXEC; 1238 } 1239 1240 if (!file->f_op->mmap) 1241 return -ENODEV; 1242 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1243 return -EINVAL; 1244 break; 1245 1246 default: 1247 return -EINVAL; 1248 } 1249 } else { 1250 switch (flags & MAP_TYPE) { 1251 case MAP_SHARED: 1252 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1253 return -EINVAL; 1254 /* 1255 * Ignore pgoff. 1256 */ 1257 pgoff = 0; 1258 vm_flags |= VM_SHARED | VM_MAYSHARE; 1259 break; 1260 case MAP_PRIVATE: 1261 /* 1262 * Set pgoff according to addr for anon_vma. 1263 */ 1264 pgoff = addr >> PAGE_SHIFT; 1265 break; 1266 default: 1267 return -EINVAL; 1268 } 1269 } 1270 1271 /* 1272 * Set 'VM_NORESERVE' if we should not account for the 1273 * memory use of this mapping. 1274 */ 1275 if (flags & MAP_NORESERVE) { 1276 /* We honor MAP_NORESERVE if allowed to overcommit */ 1277 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1278 vm_flags |= VM_NORESERVE; 1279 1280 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1281 if (file && is_file_hugepages(file)) 1282 vm_flags |= VM_NORESERVE; 1283 } 1284 1285 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1286 if (!IS_ERR_VALUE(addr) && 1287 ((vm_flags & VM_LOCKED) || 1288 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1289 *populate = len; 1290 return addr; 1291 } 1292 1293 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1294 unsigned long, prot, unsigned long, flags, 1295 unsigned long, fd, unsigned long, pgoff) 1296 { 1297 struct file *file = NULL; 1298 unsigned long retval; 1299 1300 if (!(flags & MAP_ANONYMOUS)) { 1301 audit_mmap_fd(fd, flags); 1302 file = fget(fd); 1303 if (!file) 1304 return -EBADF; 1305 if (is_file_hugepages(file)) 1306 len = ALIGN(len, huge_page_size(hstate_file(file))); 1307 retval = -EINVAL; 1308 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1309 goto out_fput; 1310 } else if (flags & MAP_HUGETLB) { 1311 struct user_struct *user = NULL; 1312 struct hstate *hs; 1313 1314 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1315 if (!hs) 1316 return -EINVAL; 1317 1318 len = ALIGN(len, huge_page_size(hs)); 1319 /* 1320 * VM_NORESERVE is used because the reservations will be 1321 * taken when vm_ops->mmap() is called 1322 * A dummy user value is used because we are not locking 1323 * memory so no accounting is necessary 1324 */ 1325 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1326 VM_NORESERVE, 1327 &user, HUGETLB_ANONHUGE_INODE, 1328 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1329 if (IS_ERR(file)) 1330 return PTR_ERR(file); 1331 } 1332 1333 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1334 1335 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1336 out_fput: 1337 if (file) 1338 fput(file); 1339 return retval; 1340 } 1341 1342 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1343 struct mmap_arg_struct { 1344 unsigned long addr; 1345 unsigned long len; 1346 unsigned long prot; 1347 unsigned long flags; 1348 unsigned long fd; 1349 unsigned long offset; 1350 }; 1351 1352 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1353 { 1354 struct mmap_arg_struct a; 1355 1356 if (copy_from_user(&a, arg, sizeof(a))) 1357 return -EFAULT; 1358 if (offset_in_page(a.offset)) 1359 return -EINVAL; 1360 1361 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1362 a.offset >> PAGE_SHIFT); 1363 } 1364 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1365 1366 /* 1367 * Some shared mappigns will want the pages marked read-only 1368 * to track write events. If so, we'll downgrade vm_page_prot 1369 * to the private version (using protection_map[] without the 1370 * VM_SHARED bit). 1371 */ 1372 int vma_wants_writenotify(struct vm_area_struct *vma) 1373 { 1374 vm_flags_t vm_flags = vma->vm_flags; 1375 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1376 1377 /* If it was private or non-writable, the write bit is already clear */ 1378 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1379 return 0; 1380 1381 /* The backer wishes to know when pages are first written to? */ 1382 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1383 return 1; 1384 1385 /* The open routine did something to the protections that pgprot_modify 1386 * won't preserve? */ 1387 if (pgprot_val(vma->vm_page_prot) != 1388 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1389 return 0; 1390 1391 /* Do we need to track softdirty? */ 1392 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1393 return 1; 1394 1395 /* Specialty mapping? */ 1396 if (vm_flags & VM_PFNMAP) 1397 return 0; 1398 1399 /* Can the mapping track the dirty pages? */ 1400 return vma->vm_file && vma->vm_file->f_mapping && 1401 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1402 } 1403 1404 /* 1405 * We account for memory if it's a private writeable mapping, 1406 * not hugepages and VM_NORESERVE wasn't set. 1407 */ 1408 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1409 { 1410 /* 1411 * hugetlb has its own accounting separate from the core VM 1412 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1413 */ 1414 if (file && is_file_hugepages(file)) 1415 return 0; 1416 1417 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1418 } 1419 1420 unsigned long mmap_region(struct file *file, unsigned long addr, 1421 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1422 { 1423 struct mm_struct *mm = current->mm; 1424 struct vm_area_struct *vma, *prev; 1425 int error; 1426 struct rb_node **rb_link, *rb_parent; 1427 unsigned long charged = 0; 1428 1429 /* Check against address space limit. */ 1430 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1431 unsigned long nr_pages; 1432 1433 /* 1434 * MAP_FIXED may remove pages of mappings that intersects with 1435 * requested mapping. Account for the pages it would unmap. 1436 */ 1437 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1438 1439 if (!may_expand_vm(mm, vm_flags, 1440 (len >> PAGE_SHIFT) - nr_pages)) 1441 return -ENOMEM; 1442 } 1443 1444 /* Clear old maps */ 1445 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1446 &rb_parent)) { 1447 if (do_munmap(mm, addr, len)) 1448 return -ENOMEM; 1449 } 1450 1451 /* 1452 * Private writable mapping: check memory availability 1453 */ 1454 if (accountable_mapping(file, vm_flags)) { 1455 charged = len >> PAGE_SHIFT; 1456 if (security_vm_enough_memory_mm(mm, charged)) 1457 return -ENOMEM; 1458 vm_flags |= VM_ACCOUNT; 1459 } 1460 1461 /* 1462 * Can we just expand an old mapping? 1463 */ 1464 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1465 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1466 if (vma) 1467 goto out; 1468 1469 /* 1470 * Determine the object being mapped and call the appropriate 1471 * specific mapper. the address has already been validated, but 1472 * not unmapped, but the maps are removed from the list. 1473 */ 1474 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1475 if (!vma) { 1476 error = -ENOMEM; 1477 goto unacct_error; 1478 } 1479 1480 vma->vm_mm = mm; 1481 vma->vm_start = addr; 1482 vma->vm_end = addr + len; 1483 vma->vm_flags = vm_flags; 1484 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1485 vma->vm_pgoff = pgoff; 1486 INIT_LIST_HEAD(&vma->anon_vma_chain); 1487 1488 if (file) { 1489 if (vm_flags & VM_DENYWRITE) { 1490 error = deny_write_access(file); 1491 if (error) 1492 goto free_vma; 1493 } 1494 if (vm_flags & VM_SHARED) { 1495 error = mapping_map_writable(file->f_mapping); 1496 if (error) 1497 goto allow_write_and_free_vma; 1498 } 1499 1500 /* ->mmap() can change vma->vm_file, but must guarantee that 1501 * vma_link() below can deny write-access if VM_DENYWRITE is set 1502 * and map writably if VM_SHARED is set. This usually means the 1503 * new file must not have been exposed to user-space, yet. 1504 */ 1505 vma->vm_file = get_file(file); 1506 error = file->f_op->mmap(file, vma); 1507 if (error) 1508 goto unmap_and_free_vma; 1509 1510 /* Can addr have changed?? 1511 * 1512 * Answer: Yes, several device drivers can do it in their 1513 * f_op->mmap method. -DaveM 1514 * Bug: If addr is changed, prev, rb_link, rb_parent should 1515 * be updated for vma_link() 1516 */ 1517 WARN_ON_ONCE(addr != vma->vm_start); 1518 1519 addr = vma->vm_start; 1520 vm_flags = vma->vm_flags; 1521 } else if (vm_flags & VM_SHARED) { 1522 error = shmem_zero_setup(vma); 1523 if (error) 1524 goto free_vma; 1525 } 1526 1527 vma_link(mm, vma, prev, rb_link, rb_parent); 1528 /* Once vma denies write, undo our temporary denial count */ 1529 if (file) { 1530 if (vm_flags & VM_SHARED) 1531 mapping_unmap_writable(file->f_mapping); 1532 if (vm_flags & VM_DENYWRITE) 1533 allow_write_access(file); 1534 } 1535 file = vma->vm_file; 1536 out: 1537 perf_event_mmap(vma); 1538 1539 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1540 if (vm_flags & VM_LOCKED) { 1541 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1542 vma == get_gate_vma(current->mm))) 1543 mm->locked_vm += (len >> PAGE_SHIFT); 1544 else 1545 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1546 } 1547 1548 if (file) 1549 uprobe_mmap(vma); 1550 1551 /* 1552 * New (or expanded) vma always get soft dirty status. 1553 * Otherwise user-space soft-dirty page tracker won't 1554 * be able to distinguish situation when vma area unmapped, 1555 * then new mapped in-place (which must be aimed as 1556 * a completely new data area). 1557 */ 1558 vma->vm_flags |= VM_SOFTDIRTY; 1559 1560 vma_set_page_prot(vma); 1561 1562 return addr; 1563 1564 unmap_and_free_vma: 1565 vma->vm_file = NULL; 1566 fput(file); 1567 1568 /* Undo any partial mapping done by a device driver. */ 1569 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1570 charged = 0; 1571 if (vm_flags & VM_SHARED) 1572 mapping_unmap_writable(file->f_mapping); 1573 allow_write_and_free_vma: 1574 if (vm_flags & VM_DENYWRITE) 1575 allow_write_access(file); 1576 free_vma: 1577 kmem_cache_free(vm_area_cachep, vma); 1578 unacct_error: 1579 if (charged) 1580 vm_unacct_memory(charged); 1581 return error; 1582 } 1583 1584 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1585 { 1586 /* 1587 * We implement the search by looking for an rbtree node that 1588 * immediately follows a suitable gap. That is, 1589 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1590 * - gap_end = vma->vm_start >= info->low_limit + length; 1591 * - gap_end - gap_start >= length 1592 */ 1593 1594 struct mm_struct *mm = current->mm; 1595 struct vm_area_struct *vma; 1596 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1597 1598 /* Adjust search length to account for worst case alignment overhead */ 1599 length = info->length + info->align_mask; 1600 if (length < info->length) 1601 return -ENOMEM; 1602 1603 /* Adjust search limits by the desired length */ 1604 if (info->high_limit < length) 1605 return -ENOMEM; 1606 high_limit = info->high_limit - length; 1607 1608 if (info->low_limit > high_limit) 1609 return -ENOMEM; 1610 low_limit = info->low_limit + length; 1611 1612 /* Check if rbtree root looks promising */ 1613 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1614 goto check_highest; 1615 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1616 if (vma->rb_subtree_gap < length) 1617 goto check_highest; 1618 1619 while (true) { 1620 /* Visit left subtree if it looks promising */ 1621 gap_end = vma->vm_start; 1622 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1623 struct vm_area_struct *left = 1624 rb_entry(vma->vm_rb.rb_left, 1625 struct vm_area_struct, vm_rb); 1626 if (left->rb_subtree_gap >= length) { 1627 vma = left; 1628 continue; 1629 } 1630 } 1631 1632 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1633 check_current: 1634 /* Check if current node has a suitable gap */ 1635 if (gap_start > high_limit) 1636 return -ENOMEM; 1637 if (gap_end >= low_limit && gap_end - gap_start >= length) 1638 goto found; 1639 1640 /* Visit right subtree if it looks promising */ 1641 if (vma->vm_rb.rb_right) { 1642 struct vm_area_struct *right = 1643 rb_entry(vma->vm_rb.rb_right, 1644 struct vm_area_struct, vm_rb); 1645 if (right->rb_subtree_gap >= length) { 1646 vma = right; 1647 continue; 1648 } 1649 } 1650 1651 /* Go back up the rbtree to find next candidate node */ 1652 while (true) { 1653 struct rb_node *prev = &vma->vm_rb; 1654 if (!rb_parent(prev)) 1655 goto check_highest; 1656 vma = rb_entry(rb_parent(prev), 1657 struct vm_area_struct, vm_rb); 1658 if (prev == vma->vm_rb.rb_left) { 1659 gap_start = vma->vm_prev->vm_end; 1660 gap_end = vma->vm_start; 1661 goto check_current; 1662 } 1663 } 1664 } 1665 1666 check_highest: 1667 /* Check highest gap, which does not precede any rbtree node */ 1668 gap_start = mm->highest_vm_end; 1669 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1670 if (gap_start > high_limit) 1671 return -ENOMEM; 1672 1673 found: 1674 /* We found a suitable gap. Clip it with the original low_limit. */ 1675 if (gap_start < info->low_limit) 1676 gap_start = info->low_limit; 1677 1678 /* Adjust gap address to the desired alignment */ 1679 gap_start += (info->align_offset - gap_start) & info->align_mask; 1680 1681 VM_BUG_ON(gap_start + info->length > info->high_limit); 1682 VM_BUG_ON(gap_start + info->length > gap_end); 1683 return gap_start; 1684 } 1685 1686 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1687 { 1688 struct mm_struct *mm = current->mm; 1689 struct vm_area_struct *vma; 1690 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1691 1692 /* Adjust search length to account for worst case alignment overhead */ 1693 length = info->length + info->align_mask; 1694 if (length < info->length) 1695 return -ENOMEM; 1696 1697 /* 1698 * Adjust search limits by the desired length. 1699 * See implementation comment at top of unmapped_area(). 1700 */ 1701 gap_end = info->high_limit; 1702 if (gap_end < length) 1703 return -ENOMEM; 1704 high_limit = gap_end - length; 1705 1706 if (info->low_limit > high_limit) 1707 return -ENOMEM; 1708 low_limit = info->low_limit + length; 1709 1710 /* Check highest gap, which does not precede any rbtree node */ 1711 gap_start = mm->highest_vm_end; 1712 if (gap_start <= high_limit) 1713 goto found_highest; 1714 1715 /* Check if rbtree root looks promising */ 1716 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1717 return -ENOMEM; 1718 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1719 if (vma->rb_subtree_gap < length) 1720 return -ENOMEM; 1721 1722 while (true) { 1723 /* Visit right subtree if it looks promising */ 1724 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1725 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1726 struct vm_area_struct *right = 1727 rb_entry(vma->vm_rb.rb_right, 1728 struct vm_area_struct, vm_rb); 1729 if (right->rb_subtree_gap >= length) { 1730 vma = right; 1731 continue; 1732 } 1733 } 1734 1735 check_current: 1736 /* Check if current node has a suitable gap */ 1737 gap_end = vma->vm_start; 1738 if (gap_end < low_limit) 1739 return -ENOMEM; 1740 if (gap_start <= high_limit && gap_end - gap_start >= length) 1741 goto found; 1742 1743 /* Visit left subtree if it looks promising */ 1744 if (vma->vm_rb.rb_left) { 1745 struct vm_area_struct *left = 1746 rb_entry(vma->vm_rb.rb_left, 1747 struct vm_area_struct, vm_rb); 1748 if (left->rb_subtree_gap >= length) { 1749 vma = left; 1750 continue; 1751 } 1752 } 1753 1754 /* Go back up the rbtree to find next candidate node */ 1755 while (true) { 1756 struct rb_node *prev = &vma->vm_rb; 1757 if (!rb_parent(prev)) 1758 return -ENOMEM; 1759 vma = rb_entry(rb_parent(prev), 1760 struct vm_area_struct, vm_rb); 1761 if (prev == vma->vm_rb.rb_right) { 1762 gap_start = vma->vm_prev ? 1763 vma->vm_prev->vm_end : 0; 1764 goto check_current; 1765 } 1766 } 1767 } 1768 1769 found: 1770 /* We found a suitable gap. Clip it with the original high_limit. */ 1771 if (gap_end > info->high_limit) 1772 gap_end = info->high_limit; 1773 1774 found_highest: 1775 /* Compute highest gap address at the desired alignment */ 1776 gap_end -= info->length; 1777 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1778 1779 VM_BUG_ON(gap_end < info->low_limit); 1780 VM_BUG_ON(gap_end < gap_start); 1781 return gap_end; 1782 } 1783 1784 /* Get an address range which is currently unmapped. 1785 * For shmat() with addr=0. 1786 * 1787 * Ugly calling convention alert: 1788 * Return value with the low bits set means error value, 1789 * ie 1790 * if (ret & ~PAGE_MASK) 1791 * error = ret; 1792 * 1793 * This function "knows" that -ENOMEM has the bits set. 1794 */ 1795 #ifndef HAVE_ARCH_UNMAPPED_AREA 1796 unsigned long 1797 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1798 unsigned long len, unsigned long pgoff, unsigned long flags) 1799 { 1800 struct mm_struct *mm = current->mm; 1801 struct vm_area_struct *vma; 1802 struct vm_unmapped_area_info info; 1803 1804 if (len > TASK_SIZE - mmap_min_addr) 1805 return -ENOMEM; 1806 1807 if (flags & MAP_FIXED) 1808 return addr; 1809 1810 if (addr) { 1811 addr = PAGE_ALIGN(addr); 1812 vma = find_vma(mm, addr); 1813 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1814 (!vma || addr + len <= vma->vm_start)) 1815 return addr; 1816 } 1817 1818 info.flags = 0; 1819 info.length = len; 1820 info.low_limit = mm->mmap_base; 1821 info.high_limit = TASK_SIZE; 1822 info.align_mask = 0; 1823 return vm_unmapped_area(&info); 1824 } 1825 #endif 1826 1827 /* 1828 * This mmap-allocator allocates new areas top-down from below the 1829 * stack's low limit (the base): 1830 */ 1831 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1832 unsigned long 1833 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1834 const unsigned long len, const unsigned long pgoff, 1835 const unsigned long flags) 1836 { 1837 struct vm_area_struct *vma; 1838 struct mm_struct *mm = current->mm; 1839 unsigned long addr = addr0; 1840 struct vm_unmapped_area_info info; 1841 1842 /* requested length too big for entire address space */ 1843 if (len > TASK_SIZE - mmap_min_addr) 1844 return -ENOMEM; 1845 1846 if (flags & MAP_FIXED) 1847 return addr; 1848 1849 /* requesting a specific address */ 1850 if (addr) { 1851 addr = PAGE_ALIGN(addr); 1852 vma = find_vma(mm, addr); 1853 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1854 (!vma || addr + len <= vma->vm_start)) 1855 return addr; 1856 } 1857 1858 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1859 info.length = len; 1860 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1861 info.high_limit = mm->mmap_base; 1862 info.align_mask = 0; 1863 addr = vm_unmapped_area(&info); 1864 1865 /* 1866 * A failed mmap() very likely causes application failure, 1867 * so fall back to the bottom-up function here. This scenario 1868 * can happen with large stack limits and large mmap() 1869 * allocations. 1870 */ 1871 if (offset_in_page(addr)) { 1872 VM_BUG_ON(addr != -ENOMEM); 1873 info.flags = 0; 1874 info.low_limit = TASK_UNMAPPED_BASE; 1875 info.high_limit = TASK_SIZE; 1876 addr = vm_unmapped_area(&info); 1877 } 1878 1879 return addr; 1880 } 1881 #endif 1882 1883 unsigned long 1884 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1885 unsigned long pgoff, unsigned long flags) 1886 { 1887 unsigned long (*get_area)(struct file *, unsigned long, 1888 unsigned long, unsigned long, unsigned long); 1889 1890 unsigned long error = arch_mmap_check(addr, len, flags); 1891 if (error) 1892 return error; 1893 1894 /* Careful about overflows.. */ 1895 if (len > TASK_SIZE) 1896 return -ENOMEM; 1897 1898 get_area = current->mm->get_unmapped_area; 1899 if (file && file->f_op->get_unmapped_area) 1900 get_area = file->f_op->get_unmapped_area; 1901 addr = get_area(file, addr, len, pgoff, flags); 1902 if (IS_ERR_VALUE(addr)) 1903 return addr; 1904 1905 if (addr > TASK_SIZE - len) 1906 return -ENOMEM; 1907 if (offset_in_page(addr)) 1908 return -EINVAL; 1909 1910 error = security_mmap_addr(addr); 1911 return error ? error : addr; 1912 } 1913 1914 EXPORT_SYMBOL(get_unmapped_area); 1915 1916 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1917 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1918 { 1919 struct rb_node *rb_node; 1920 struct vm_area_struct *vma; 1921 1922 /* Check the cache first. */ 1923 vma = vmacache_find(mm, addr); 1924 if (likely(vma)) 1925 return vma; 1926 1927 rb_node = mm->mm_rb.rb_node; 1928 1929 while (rb_node) { 1930 struct vm_area_struct *tmp; 1931 1932 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1933 1934 if (tmp->vm_end > addr) { 1935 vma = tmp; 1936 if (tmp->vm_start <= addr) 1937 break; 1938 rb_node = rb_node->rb_left; 1939 } else 1940 rb_node = rb_node->rb_right; 1941 } 1942 1943 if (vma) 1944 vmacache_update(addr, vma); 1945 return vma; 1946 } 1947 1948 EXPORT_SYMBOL(find_vma); 1949 1950 /* 1951 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1952 */ 1953 struct vm_area_struct * 1954 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1955 struct vm_area_struct **pprev) 1956 { 1957 struct vm_area_struct *vma; 1958 1959 vma = find_vma(mm, addr); 1960 if (vma) { 1961 *pprev = vma->vm_prev; 1962 } else { 1963 struct rb_node *rb_node = mm->mm_rb.rb_node; 1964 *pprev = NULL; 1965 while (rb_node) { 1966 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1967 rb_node = rb_node->rb_right; 1968 } 1969 } 1970 return vma; 1971 } 1972 1973 /* 1974 * Verify that the stack growth is acceptable and 1975 * update accounting. This is shared with both the 1976 * grow-up and grow-down cases. 1977 */ 1978 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1979 { 1980 struct mm_struct *mm = vma->vm_mm; 1981 struct rlimit *rlim = current->signal->rlim; 1982 unsigned long new_start, actual_size; 1983 1984 /* address space limit tests */ 1985 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1986 return -ENOMEM; 1987 1988 /* Stack limit test */ 1989 actual_size = size; 1990 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 1991 actual_size -= PAGE_SIZE; 1992 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1993 return -ENOMEM; 1994 1995 /* mlock limit tests */ 1996 if (vma->vm_flags & VM_LOCKED) { 1997 unsigned long locked; 1998 unsigned long limit; 1999 locked = mm->locked_vm + grow; 2000 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2001 limit >>= PAGE_SHIFT; 2002 if (locked > limit && !capable(CAP_IPC_LOCK)) 2003 return -ENOMEM; 2004 } 2005 2006 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2007 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2008 vma->vm_end - size; 2009 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2010 return -EFAULT; 2011 2012 /* 2013 * Overcommit.. This must be the final test, as it will 2014 * update security statistics. 2015 */ 2016 if (security_vm_enough_memory_mm(mm, grow)) 2017 return -ENOMEM; 2018 2019 return 0; 2020 } 2021 2022 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2023 /* 2024 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2025 * vma is the last one with address > vma->vm_end. Have to extend vma. 2026 */ 2027 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2028 { 2029 struct mm_struct *mm = vma->vm_mm; 2030 int error = 0; 2031 2032 if (!(vma->vm_flags & VM_GROWSUP)) 2033 return -EFAULT; 2034 2035 /* Guard against wrapping around to address 0. */ 2036 if (address < PAGE_ALIGN(address+4)) 2037 address = PAGE_ALIGN(address+4); 2038 else 2039 return -ENOMEM; 2040 2041 /* We must make sure the anon_vma is allocated. */ 2042 if (unlikely(anon_vma_prepare(vma))) 2043 return -ENOMEM; 2044 2045 /* 2046 * vma->vm_start/vm_end cannot change under us because the caller 2047 * is required to hold the mmap_sem in read mode. We need the 2048 * anon_vma lock to serialize against concurrent expand_stacks. 2049 */ 2050 anon_vma_lock_write(vma->anon_vma); 2051 2052 /* Somebody else might have raced and expanded it already */ 2053 if (address > vma->vm_end) { 2054 unsigned long size, grow; 2055 2056 size = address - vma->vm_start; 2057 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2058 2059 error = -ENOMEM; 2060 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2061 error = acct_stack_growth(vma, size, grow); 2062 if (!error) { 2063 /* 2064 * vma_gap_update() doesn't support concurrent 2065 * updates, but we only hold a shared mmap_sem 2066 * lock here, so we need to protect against 2067 * concurrent vma expansions. 2068 * anon_vma_lock_write() doesn't help here, as 2069 * we don't guarantee that all growable vmas 2070 * in a mm share the same root anon vma. 2071 * So, we reuse mm->page_table_lock to guard 2072 * against concurrent vma expansions. 2073 */ 2074 spin_lock(&mm->page_table_lock); 2075 if (vma->vm_flags & VM_LOCKED) 2076 mm->locked_vm += grow; 2077 vm_stat_account(mm, vma->vm_flags, grow); 2078 anon_vma_interval_tree_pre_update_vma(vma); 2079 vma->vm_end = address; 2080 anon_vma_interval_tree_post_update_vma(vma); 2081 if (vma->vm_next) 2082 vma_gap_update(vma->vm_next); 2083 else 2084 mm->highest_vm_end = address; 2085 spin_unlock(&mm->page_table_lock); 2086 2087 perf_event_mmap(vma); 2088 } 2089 } 2090 } 2091 anon_vma_unlock_write(vma->anon_vma); 2092 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2093 validate_mm(mm); 2094 return error; 2095 } 2096 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2097 2098 /* 2099 * vma is the first one with address < vma->vm_start. Have to extend vma. 2100 */ 2101 int expand_downwards(struct vm_area_struct *vma, 2102 unsigned long address) 2103 { 2104 struct mm_struct *mm = vma->vm_mm; 2105 int error; 2106 2107 address &= PAGE_MASK; 2108 error = security_mmap_addr(address); 2109 if (error) 2110 return error; 2111 2112 /* We must make sure the anon_vma is allocated. */ 2113 if (unlikely(anon_vma_prepare(vma))) 2114 return -ENOMEM; 2115 2116 /* 2117 * vma->vm_start/vm_end cannot change under us because the caller 2118 * is required to hold the mmap_sem in read mode. We need the 2119 * anon_vma lock to serialize against concurrent expand_stacks. 2120 */ 2121 anon_vma_lock_write(vma->anon_vma); 2122 2123 /* Somebody else might have raced and expanded it already */ 2124 if (address < vma->vm_start) { 2125 unsigned long size, grow; 2126 2127 size = vma->vm_end - address; 2128 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2129 2130 error = -ENOMEM; 2131 if (grow <= vma->vm_pgoff) { 2132 error = acct_stack_growth(vma, size, grow); 2133 if (!error) { 2134 /* 2135 * vma_gap_update() doesn't support concurrent 2136 * updates, but we only hold a shared mmap_sem 2137 * lock here, so we need to protect against 2138 * concurrent vma expansions. 2139 * anon_vma_lock_write() doesn't help here, as 2140 * we don't guarantee that all growable vmas 2141 * in a mm share the same root anon vma. 2142 * So, we reuse mm->page_table_lock to guard 2143 * against concurrent vma expansions. 2144 */ 2145 spin_lock(&mm->page_table_lock); 2146 if (vma->vm_flags & VM_LOCKED) 2147 mm->locked_vm += grow; 2148 vm_stat_account(mm, vma->vm_flags, grow); 2149 anon_vma_interval_tree_pre_update_vma(vma); 2150 vma->vm_start = address; 2151 vma->vm_pgoff -= grow; 2152 anon_vma_interval_tree_post_update_vma(vma); 2153 vma_gap_update(vma); 2154 spin_unlock(&mm->page_table_lock); 2155 2156 perf_event_mmap(vma); 2157 } 2158 } 2159 } 2160 anon_vma_unlock_write(vma->anon_vma); 2161 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2162 validate_mm(mm); 2163 return error; 2164 } 2165 2166 /* 2167 * Note how expand_stack() refuses to expand the stack all the way to 2168 * abut the next virtual mapping, *unless* that mapping itself is also 2169 * a stack mapping. We want to leave room for a guard page, after all 2170 * (the guard page itself is not added here, that is done by the 2171 * actual page faulting logic) 2172 * 2173 * This matches the behavior of the guard page logic (see mm/memory.c: 2174 * check_stack_guard_page()), which only allows the guard page to be 2175 * removed under these circumstances. 2176 */ 2177 #ifdef CONFIG_STACK_GROWSUP 2178 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2179 { 2180 struct vm_area_struct *next; 2181 2182 address &= PAGE_MASK; 2183 next = vma->vm_next; 2184 if (next && next->vm_start == address + PAGE_SIZE) { 2185 if (!(next->vm_flags & VM_GROWSUP)) 2186 return -ENOMEM; 2187 } 2188 return expand_upwards(vma, address); 2189 } 2190 2191 struct vm_area_struct * 2192 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2193 { 2194 struct vm_area_struct *vma, *prev; 2195 2196 addr &= PAGE_MASK; 2197 vma = find_vma_prev(mm, addr, &prev); 2198 if (vma && (vma->vm_start <= addr)) 2199 return vma; 2200 if (!prev || expand_stack(prev, addr)) 2201 return NULL; 2202 if (prev->vm_flags & VM_LOCKED) 2203 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2204 return prev; 2205 } 2206 #else 2207 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2208 { 2209 struct vm_area_struct *prev; 2210 2211 address &= PAGE_MASK; 2212 prev = vma->vm_prev; 2213 if (prev && prev->vm_end == address) { 2214 if (!(prev->vm_flags & VM_GROWSDOWN)) 2215 return -ENOMEM; 2216 } 2217 return expand_downwards(vma, address); 2218 } 2219 2220 struct vm_area_struct * 2221 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2222 { 2223 struct vm_area_struct *vma; 2224 unsigned long start; 2225 2226 addr &= PAGE_MASK; 2227 vma = find_vma(mm, addr); 2228 if (!vma) 2229 return NULL; 2230 if (vma->vm_start <= addr) 2231 return vma; 2232 if (!(vma->vm_flags & VM_GROWSDOWN)) 2233 return NULL; 2234 start = vma->vm_start; 2235 if (expand_stack(vma, addr)) 2236 return NULL; 2237 if (vma->vm_flags & VM_LOCKED) 2238 populate_vma_page_range(vma, addr, start, NULL); 2239 return vma; 2240 } 2241 #endif 2242 2243 EXPORT_SYMBOL_GPL(find_extend_vma); 2244 2245 /* 2246 * Ok - we have the memory areas we should free on the vma list, 2247 * so release them, and do the vma updates. 2248 * 2249 * Called with the mm semaphore held. 2250 */ 2251 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2252 { 2253 unsigned long nr_accounted = 0; 2254 2255 /* Update high watermark before we lower total_vm */ 2256 update_hiwater_vm(mm); 2257 do { 2258 long nrpages = vma_pages(vma); 2259 2260 if (vma->vm_flags & VM_ACCOUNT) 2261 nr_accounted += nrpages; 2262 vm_stat_account(mm, vma->vm_flags, -nrpages); 2263 vma = remove_vma(vma); 2264 } while (vma); 2265 vm_unacct_memory(nr_accounted); 2266 validate_mm(mm); 2267 } 2268 2269 /* 2270 * Get rid of page table information in the indicated region. 2271 * 2272 * Called with the mm semaphore held. 2273 */ 2274 static void unmap_region(struct mm_struct *mm, 2275 struct vm_area_struct *vma, struct vm_area_struct *prev, 2276 unsigned long start, unsigned long end) 2277 { 2278 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2279 struct mmu_gather tlb; 2280 2281 lru_add_drain(); 2282 tlb_gather_mmu(&tlb, mm, start, end); 2283 update_hiwater_rss(mm); 2284 unmap_vmas(&tlb, vma, start, end); 2285 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2286 next ? next->vm_start : USER_PGTABLES_CEILING); 2287 tlb_finish_mmu(&tlb, start, end); 2288 } 2289 2290 /* 2291 * Create a list of vma's touched by the unmap, removing them from the mm's 2292 * vma list as we go.. 2293 */ 2294 static void 2295 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2296 struct vm_area_struct *prev, unsigned long end) 2297 { 2298 struct vm_area_struct **insertion_point; 2299 struct vm_area_struct *tail_vma = NULL; 2300 2301 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2302 vma->vm_prev = NULL; 2303 do { 2304 vma_rb_erase(vma, &mm->mm_rb); 2305 mm->map_count--; 2306 tail_vma = vma; 2307 vma = vma->vm_next; 2308 } while (vma && vma->vm_start < end); 2309 *insertion_point = vma; 2310 if (vma) { 2311 vma->vm_prev = prev; 2312 vma_gap_update(vma); 2313 } else 2314 mm->highest_vm_end = prev ? prev->vm_end : 0; 2315 tail_vma->vm_next = NULL; 2316 2317 /* Kill the cache */ 2318 vmacache_invalidate(mm); 2319 } 2320 2321 /* 2322 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2323 * munmap path where it doesn't make sense to fail. 2324 */ 2325 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2326 unsigned long addr, int new_below) 2327 { 2328 struct vm_area_struct *new; 2329 int err; 2330 2331 if (is_vm_hugetlb_page(vma) && (addr & 2332 ~(huge_page_mask(hstate_vma(vma))))) 2333 return -EINVAL; 2334 2335 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2336 if (!new) 2337 return -ENOMEM; 2338 2339 /* most fields are the same, copy all, and then fixup */ 2340 *new = *vma; 2341 2342 INIT_LIST_HEAD(&new->anon_vma_chain); 2343 2344 if (new_below) 2345 new->vm_end = addr; 2346 else { 2347 new->vm_start = addr; 2348 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2349 } 2350 2351 err = vma_dup_policy(vma, new); 2352 if (err) 2353 goto out_free_vma; 2354 2355 err = anon_vma_clone(new, vma); 2356 if (err) 2357 goto out_free_mpol; 2358 2359 if (new->vm_file) 2360 get_file(new->vm_file); 2361 2362 if (new->vm_ops && new->vm_ops->open) 2363 new->vm_ops->open(new); 2364 2365 if (new_below) 2366 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2367 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2368 else 2369 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2370 2371 /* Success. */ 2372 if (!err) 2373 return 0; 2374 2375 /* Clean everything up if vma_adjust failed. */ 2376 if (new->vm_ops && new->vm_ops->close) 2377 new->vm_ops->close(new); 2378 if (new->vm_file) 2379 fput(new->vm_file); 2380 unlink_anon_vmas(new); 2381 out_free_mpol: 2382 mpol_put(vma_policy(new)); 2383 out_free_vma: 2384 kmem_cache_free(vm_area_cachep, new); 2385 return err; 2386 } 2387 2388 /* 2389 * Split a vma into two pieces at address 'addr', a new vma is allocated 2390 * either for the first part or the tail. 2391 */ 2392 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2393 unsigned long addr, int new_below) 2394 { 2395 if (mm->map_count >= sysctl_max_map_count) 2396 return -ENOMEM; 2397 2398 return __split_vma(mm, vma, addr, new_below); 2399 } 2400 2401 /* Munmap is split into 2 main parts -- this part which finds 2402 * what needs doing, and the areas themselves, which do the 2403 * work. This now handles partial unmappings. 2404 * Jeremy Fitzhardinge <jeremy@goop.org> 2405 */ 2406 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2407 { 2408 unsigned long end; 2409 struct vm_area_struct *vma, *prev, *last; 2410 2411 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2412 return -EINVAL; 2413 2414 len = PAGE_ALIGN(len); 2415 if (len == 0) 2416 return -EINVAL; 2417 2418 /* Find the first overlapping VMA */ 2419 vma = find_vma(mm, start); 2420 if (!vma) 2421 return 0; 2422 prev = vma->vm_prev; 2423 /* we have start < vma->vm_end */ 2424 2425 /* if it doesn't overlap, we have nothing.. */ 2426 end = start + len; 2427 if (vma->vm_start >= end) 2428 return 0; 2429 2430 /* 2431 * If we need to split any vma, do it now to save pain later. 2432 * 2433 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2434 * unmapped vm_area_struct will remain in use: so lower split_vma 2435 * places tmp vma above, and higher split_vma places tmp vma below. 2436 */ 2437 if (start > vma->vm_start) { 2438 int error; 2439 2440 /* 2441 * Make sure that map_count on return from munmap() will 2442 * not exceed its limit; but let map_count go just above 2443 * its limit temporarily, to help free resources as expected. 2444 */ 2445 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2446 return -ENOMEM; 2447 2448 error = __split_vma(mm, vma, start, 0); 2449 if (error) 2450 return error; 2451 prev = vma; 2452 } 2453 2454 /* Does it split the last one? */ 2455 last = find_vma(mm, end); 2456 if (last && end > last->vm_start) { 2457 int error = __split_vma(mm, last, end, 1); 2458 if (error) 2459 return error; 2460 } 2461 vma = prev ? prev->vm_next : mm->mmap; 2462 2463 /* 2464 * unlock any mlock()ed ranges before detaching vmas 2465 */ 2466 if (mm->locked_vm) { 2467 struct vm_area_struct *tmp = vma; 2468 while (tmp && tmp->vm_start < end) { 2469 if (tmp->vm_flags & VM_LOCKED) { 2470 mm->locked_vm -= vma_pages(tmp); 2471 munlock_vma_pages_all(tmp); 2472 } 2473 tmp = tmp->vm_next; 2474 } 2475 } 2476 2477 /* 2478 * Remove the vma's, and unmap the actual pages 2479 */ 2480 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2481 unmap_region(mm, vma, prev, start, end); 2482 2483 arch_unmap(mm, vma, start, end); 2484 2485 /* Fix up all other VM information */ 2486 remove_vma_list(mm, vma); 2487 2488 return 0; 2489 } 2490 2491 int vm_munmap(unsigned long start, size_t len) 2492 { 2493 int ret; 2494 struct mm_struct *mm = current->mm; 2495 2496 down_write(&mm->mmap_sem); 2497 ret = do_munmap(mm, start, len); 2498 up_write(&mm->mmap_sem); 2499 return ret; 2500 } 2501 EXPORT_SYMBOL(vm_munmap); 2502 2503 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2504 { 2505 profile_munmap(addr); 2506 return vm_munmap(addr, len); 2507 } 2508 2509 2510 /* 2511 * Emulation of deprecated remap_file_pages() syscall. 2512 */ 2513 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2514 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2515 { 2516 2517 struct mm_struct *mm = current->mm; 2518 struct vm_area_struct *vma; 2519 unsigned long populate = 0; 2520 unsigned long ret = -EINVAL; 2521 struct file *file; 2522 2523 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2524 current->comm, current->pid); 2525 2526 if (prot) 2527 return ret; 2528 start = start & PAGE_MASK; 2529 size = size & PAGE_MASK; 2530 2531 if (start + size <= start) 2532 return ret; 2533 2534 /* Does pgoff wrap? */ 2535 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2536 return ret; 2537 2538 down_write(&mm->mmap_sem); 2539 vma = find_vma(mm, start); 2540 2541 if (!vma || !(vma->vm_flags & VM_SHARED)) 2542 goto out; 2543 2544 if (start < vma->vm_start) 2545 goto out; 2546 2547 if (start + size > vma->vm_end) { 2548 struct vm_area_struct *next; 2549 2550 for (next = vma->vm_next; next; next = next->vm_next) { 2551 /* hole between vmas ? */ 2552 if (next->vm_start != next->vm_prev->vm_end) 2553 goto out; 2554 2555 if (next->vm_file != vma->vm_file) 2556 goto out; 2557 2558 if (next->vm_flags != vma->vm_flags) 2559 goto out; 2560 2561 if (start + size <= next->vm_end) 2562 break; 2563 } 2564 2565 if (!next) 2566 goto out; 2567 } 2568 2569 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2570 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2571 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2572 2573 flags &= MAP_NONBLOCK; 2574 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2575 if (vma->vm_flags & VM_LOCKED) { 2576 struct vm_area_struct *tmp; 2577 flags |= MAP_LOCKED; 2578 2579 /* drop PG_Mlocked flag for over-mapped range */ 2580 for (tmp = vma; tmp->vm_start >= start + size; 2581 tmp = tmp->vm_next) { 2582 munlock_vma_pages_range(tmp, 2583 max(tmp->vm_start, start), 2584 min(tmp->vm_end, start + size)); 2585 } 2586 } 2587 2588 file = get_file(vma->vm_file); 2589 ret = do_mmap_pgoff(vma->vm_file, start, size, 2590 prot, flags, pgoff, &populate); 2591 fput(file); 2592 out: 2593 up_write(&mm->mmap_sem); 2594 if (populate) 2595 mm_populate(ret, populate); 2596 if (!IS_ERR_VALUE(ret)) 2597 ret = 0; 2598 return ret; 2599 } 2600 2601 static inline void verify_mm_writelocked(struct mm_struct *mm) 2602 { 2603 #ifdef CONFIG_DEBUG_VM 2604 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2605 WARN_ON(1); 2606 up_read(&mm->mmap_sem); 2607 } 2608 #endif 2609 } 2610 2611 /* 2612 * this is really a simplified "do_mmap". it only handles 2613 * anonymous maps. eventually we may be able to do some 2614 * brk-specific accounting here. 2615 */ 2616 static unsigned long do_brk(unsigned long addr, unsigned long len) 2617 { 2618 struct mm_struct *mm = current->mm; 2619 struct vm_area_struct *vma, *prev; 2620 unsigned long flags; 2621 struct rb_node **rb_link, *rb_parent; 2622 pgoff_t pgoff = addr >> PAGE_SHIFT; 2623 int error; 2624 2625 len = PAGE_ALIGN(len); 2626 if (!len) 2627 return addr; 2628 2629 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2630 2631 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2632 if (offset_in_page(error)) 2633 return error; 2634 2635 error = mlock_future_check(mm, mm->def_flags, len); 2636 if (error) 2637 return error; 2638 2639 /* 2640 * mm->mmap_sem is required to protect against another thread 2641 * changing the mappings in case we sleep. 2642 */ 2643 verify_mm_writelocked(mm); 2644 2645 /* 2646 * Clear old maps. this also does some error checking for us 2647 */ 2648 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2649 &rb_parent)) { 2650 if (do_munmap(mm, addr, len)) 2651 return -ENOMEM; 2652 } 2653 2654 /* Check against address space limits *after* clearing old maps... */ 2655 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2656 return -ENOMEM; 2657 2658 if (mm->map_count > sysctl_max_map_count) 2659 return -ENOMEM; 2660 2661 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2662 return -ENOMEM; 2663 2664 /* Can we just expand an old private anonymous mapping? */ 2665 vma = vma_merge(mm, prev, addr, addr + len, flags, 2666 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2667 if (vma) 2668 goto out; 2669 2670 /* 2671 * create a vma struct for an anonymous mapping 2672 */ 2673 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2674 if (!vma) { 2675 vm_unacct_memory(len >> PAGE_SHIFT); 2676 return -ENOMEM; 2677 } 2678 2679 INIT_LIST_HEAD(&vma->anon_vma_chain); 2680 vma->vm_mm = mm; 2681 vma->vm_start = addr; 2682 vma->vm_end = addr + len; 2683 vma->vm_pgoff = pgoff; 2684 vma->vm_flags = flags; 2685 vma->vm_page_prot = vm_get_page_prot(flags); 2686 vma_link(mm, vma, prev, rb_link, rb_parent); 2687 out: 2688 perf_event_mmap(vma); 2689 mm->total_vm += len >> PAGE_SHIFT; 2690 mm->data_vm += len >> PAGE_SHIFT; 2691 if (flags & VM_LOCKED) 2692 mm->locked_vm += (len >> PAGE_SHIFT); 2693 vma->vm_flags |= VM_SOFTDIRTY; 2694 return addr; 2695 } 2696 2697 unsigned long vm_brk(unsigned long addr, unsigned long len) 2698 { 2699 struct mm_struct *mm = current->mm; 2700 unsigned long ret; 2701 bool populate; 2702 2703 down_write(&mm->mmap_sem); 2704 ret = do_brk(addr, len); 2705 populate = ((mm->def_flags & VM_LOCKED) != 0); 2706 up_write(&mm->mmap_sem); 2707 if (populate) 2708 mm_populate(addr, len); 2709 return ret; 2710 } 2711 EXPORT_SYMBOL(vm_brk); 2712 2713 /* Release all mmaps. */ 2714 void exit_mmap(struct mm_struct *mm) 2715 { 2716 struct mmu_gather tlb; 2717 struct vm_area_struct *vma; 2718 unsigned long nr_accounted = 0; 2719 2720 /* mm's last user has gone, and its about to be pulled down */ 2721 mmu_notifier_release(mm); 2722 2723 if (mm->locked_vm) { 2724 vma = mm->mmap; 2725 while (vma) { 2726 if (vma->vm_flags & VM_LOCKED) 2727 munlock_vma_pages_all(vma); 2728 vma = vma->vm_next; 2729 } 2730 } 2731 2732 arch_exit_mmap(mm); 2733 2734 vma = mm->mmap; 2735 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2736 return; 2737 2738 lru_add_drain(); 2739 flush_cache_mm(mm); 2740 tlb_gather_mmu(&tlb, mm, 0, -1); 2741 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2742 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2743 unmap_vmas(&tlb, vma, 0, -1); 2744 2745 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2746 tlb_finish_mmu(&tlb, 0, -1); 2747 2748 /* 2749 * Walk the list again, actually closing and freeing it, 2750 * with preemption enabled, without holding any MM locks. 2751 */ 2752 while (vma) { 2753 if (vma->vm_flags & VM_ACCOUNT) 2754 nr_accounted += vma_pages(vma); 2755 vma = remove_vma(vma); 2756 } 2757 vm_unacct_memory(nr_accounted); 2758 } 2759 2760 /* Insert vm structure into process list sorted by address 2761 * and into the inode's i_mmap tree. If vm_file is non-NULL 2762 * then i_mmap_rwsem is taken here. 2763 */ 2764 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2765 { 2766 struct vm_area_struct *prev; 2767 struct rb_node **rb_link, *rb_parent; 2768 2769 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2770 &prev, &rb_link, &rb_parent)) 2771 return -ENOMEM; 2772 if ((vma->vm_flags & VM_ACCOUNT) && 2773 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2774 return -ENOMEM; 2775 2776 /* 2777 * The vm_pgoff of a purely anonymous vma should be irrelevant 2778 * until its first write fault, when page's anon_vma and index 2779 * are set. But now set the vm_pgoff it will almost certainly 2780 * end up with (unless mremap moves it elsewhere before that 2781 * first wfault), so /proc/pid/maps tells a consistent story. 2782 * 2783 * By setting it to reflect the virtual start address of the 2784 * vma, merges and splits can happen in a seamless way, just 2785 * using the existing file pgoff checks and manipulations. 2786 * Similarly in do_mmap_pgoff and in do_brk. 2787 */ 2788 if (vma_is_anonymous(vma)) { 2789 BUG_ON(vma->anon_vma); 2790 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2791 } 2792 2793 vma_link(mm, vma, prev, rb_link, rb_parent); 2794 return 0; 2795 } 2796 2797 /* 2798 * Copy the vma structure to a new location in the same mm, 2799 * prior to moving page table entries, to effect an mremap move. 2800 */ 2801 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2802 unsigned long addr, unsigned long len, pgoff_t pgoff, 2803 bool *need_rmap_locks) 2804 { 2805 struct vm_area_struct *vma = *vmap; 2806 unsigned long vma_start = vma->vm_start; 2807 struct mm_struct *mm = vma->vm_mm; 2808 struct vm_area_struct *new_vma, *prev; 2809 struct rb_node **rb_link, *rb_parent; 2810 bool faulted_in_anon_vma = true; 2811 2812 /* 2813 * If anonymous vma has not yet been faulted, update new pgoff 2814 * to match new location, to increase its chance of merging. 2815 */ 2816 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2817 pgoff = addr >> PAGE_SHIFT; 2818 faulted_in_anon_vma = false; 2819 } 2820 2821 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2822 return NULL; /* should never get here */ 2823 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2824 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2825 vma->vm_userfaultfd_ctx); 2826 if (new_vma) { 2827 /* 2828 * Source vma may have been merged into new_vma 2829 */ 2830 if (unlikely(vma_start >= new_vma->vm_start && 2831 vma_start < new_vma->vm_end)) { 2832 /* 2833 * The only way we can get a vma_merge with 2834 * self during an mremap is if the vma hasn't 2835 * been faulted in yet and we were allowed to 2836 * reset the dst vma->vm_pgoff to the 2837 * destination address of the mremap to allow 2838 * the merge to happen. mremap must change the 2839 * vm_pgoff linearity between src and dst vmas 2840 * (in turn preventing a vma_merge) to be 2841 * safe. It is only safe to keep the vm_pgoff 2842 * linear if there are no pages mapped yet. 2843 */ 2844 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2845 *vmap = vma = new_vma; 2846 } 2847 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2848 } else { 2849 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2850 if (!new_vma) 2851 goto out; 2852 *new_vma = *vma; 2853 new_vma->vm_start = addr; 2854 new_vma->vm_end = addr + len; 2855 new_vma->vm_pgoff = pgoff; 2856 if (vma_dup_policy(vma, new_vma)) 2857 goto out_free_vma; 2858 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2859 if (anon_vma_clone(new_vma, vma)) 2860 goto out_free_mempol; 2861 if (new_vma->vm_file) 2862 get_file(new_vma->vm_file); 2863 if (new_vma->vm_ops && new_vma->vm_ops->open) 2864 new_vma->vm_ops->open(new_vma); 2865 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2866 *need_rmap_locks = false; 2867 } 2868 return new_vma; 2869 2870 out_free_mempol: 2871 mpol_put(vma_policy(new_vma)); 2872 out_free_vma: 2873 kmem_cache_free(vm_area_cachep, new_vma); 2874 out: 2875 return NULL; 2876 } 2877 2878 /* 2879 * Return true if the calling process may expand its vm space by the passed 2880 * number of pages 2881 */ 2882 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2883 { 2884 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2885 return false; 2886 2887 if (is_data_mapping(flags) && 2888 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 2889 /* Workaround for Valgrind */ 2890 if (rlimit(RLIMIT_DATA) == 0 && 2891 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 2892 return true; 2893 if (!ignore_rlimit_data) { 2894 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 2895 current->comm, current->pid, 2896 (mm->data_vm + npages) << PAGE_SHIFT, 2897 rlimit(RLIMIT_DATA)); 2898 return false; 2899 } 2900 } 2901 2902 return true; 2903 } 2904 2905 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 2906 { 2907 mm->total_vm += npages; 2908 2909 if (is_exec_mapping(flags)) 2910 mm->exec_vm += npages; 2911 else if (is_stack_mapping(flags)) 2912 mm->stack_vm += npages; 2913 else if (is_data_mapping(flags)) 2914 mm->data_vm += npages; 2915 } 2916 2917 static int special_mapping_fault(struct vm_area_struct *vma, 2918 struct vm_fault *vmf); 2919 2920 /* 2921 * Having a close hook prevents vma merging regardless of flags. 2922 */ 2923 static void special_mapping_close(struct vm_area_struct *vma) 2924 { 2925 } 2926 2927 static const char *special_mapping_name(struct vm_area_struct *vma) 2928 { 2929 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2930 } 2931 2932 static const struct vm_operations_struct special_mapping_vmops = { 2933 .close = special_mapping_close, 2934 .fault = special_mapping_fault, 2935 .name = special_mapping_name, 2936 }; 2937 2938 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2939 .close = special_mapping_close, 2940 .fault = special_mapping_fault, 2941 }; 2942 2943 static int special_mapping_fault(struct vm_area_struct *vma, 2944 struct vm_fault *vmf) 2945 { 2946 pgoff_t pgoff; 2947 struct page **pages; 2948 2949 if (vma->vm_ops == &legacy_special_mapping_vmops) { 2950 pages = vma->vm_private_data; 2951 } else { 2952 struct vm_special_mapping *sm = vma->vm_private_data; 2953 2954 if (sm->fault) 2955 return sm->fault(sm, vma, vmf); 2956 2957 pages = sm->pages; 2958 } 2959 2960 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 2961 pgoff--; 2962 2963 if (*pages) { 2964 struct page *page = *pages; 2965 get_page(page); 2966 vmf->page = page; 2967 return 0; 2968 } 2969 2970 return VM_FAULT_SIGBUS; 2971 } 2972 2973 static struct vm_area_struct *__install_special_mapping( 2974 struct mm_struct *mm, 2975 unsigned long addr, unsigned long len, 2976 unsigned long vm_flags, void *priv, 2977 const struct vm_operations_struct *ops) 2978 { 2979 int ret; 2980 struct vm_area_struct *vma; 2981 2982 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2983 if (unlikely(vma == NULL)) 2984 return ERR_PTR(-ENOMEM); 2985 2986 INIT_LIST_HEAD(&vma->anon_vma_chain); 2987 vma->vm_mm = mm; 2988 vma->vm_start = addr; 2989 vma->vm_end = addr + len; 2990 2991 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2992 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2993 2994 vma->vm_ops = ops; 2995 vma->vm_private_data = priv; 2996 2997 ret = insert_vm_struct(mm, vma); 2998 if (ret) 2999 goto out; 3000 3001 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3002 3003 perf_event_mmap(vma); 3004 3005 return vma; 3006 3007 out: 3008 kmem_cache_free(vm_area_cachep, vma); 3009 return ERR_PTR(ret); 3010 } 3011 3012 /* 3013 * Called with mm->mmap_sem held for writing. 3014 * Insert a new vma covering the given region, with the given flags. 3015 * Its pages are supplied by the given array of struct page *. 3016 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3017 * The region past the last page supplied will always produce SIGBUS. 3018 * The array pointer and the pages it points to are assumed to stay alive 3019 * for as long as this mapping might exist. 3020 */ 3021 struct vm_area_struct *_install_special_mapping( 3022 struct mm_struct *mm, 3023 unsigned long addr, unsigned long len, 3024 unsigned long vm_flags, const struct vm_special_mapping *spec) 3025 { 3026 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3027 &special_mapping_vmops); 3028 } 3029 3030 int install_special_mapping(struct mm_struct *mm, 3031 unsigned long addr, unsigned long len, 3032 unsigned long vm_flags, struct page **pages) 3033 { 3034 struct vm_area_struct *vma = __install_special_mapping( 3035 mm, addr, len, vm_flags, (void *)pages, 3036 &legacy_special_mapping_vmops); 3037 3038 return PTR_ERR_OR_ZERO(vma); 3039 } 3040 3041 static DEFINE_MUTEX(mm_all_locks_mutex); 3042 3043 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3044 { 3045 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3046 /* 3047 * The LSB of head.next can't change from under us 3048 * because we hold the mm_all_locks_mutex. 3049 */ 3050 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3051 /* 3052 * We can safely modify head.next after taking the 3053 * anon_vma->root->rwsem. If some other vma in this mm shares 3054 * the same anon_vma we won't take it again. 3055 * 3056 * No need of atomic instructions here, head.next 3057 * can't change from under us thanks to the 3058 * anon_vma->root->rwsem. 3059 */ 3060 if (__test_and_set_bit(0, (unsigned long *) 3061 &anon_vma->root->rb_root.rb_node)) 3062 BUG(); 3063 } 3064 } 3065 3066 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3067 { 3068 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3069 /* 3070 * AS_MM_ALL_LOCKS can't change from under us because 3071 * we hold the mm_all_locks_mutex. 3072 * 3073 * Operations on ->flags have to be atomic because 3074 * even if AS_MM_ALL_LOCKS is stable thanks to the 3075 * mm_all_locks_mutex, there may be other cpus 3076 * changing other bitflags in parallel to us. 3077 */ 3078 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3079 BUG(); 3080 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3081 } 3082 } 3083 3084 /* 3085 * This operation locks against the VM for all pte/vma/mm related 3086 * operations that could ever happen on a certain mm. This includes 3087 * vmtruncate, try_to_unmap, and all page faults. 3088 * 3089 * The caller must take the mmap_sem in write mode before calling 3090 * mm_take_all_locks(). The caller isn't allowed to release the 3091 * mmap_sem until mm_drop_all_locks() returns. 3092 * 3093 * mmap_sem in write mode is required in order to block all operations 3094 * that could modify pagetables and free pages without need of 3095 * altering the vma layout. It's also needed in write mode to avoid new 3096 * anon_vmas to be associated with existing vmas. 3097 * 3098 * A single task can't take more than one mm_take_all_locks() in a row 3099 * or it would deadlock. 3100 * 3101 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3102 * mapping->flags avoid to take the same lock twice, if more than one 3103 * vma in this mm is backed by the same anon_vma or address_space. 3104 * 3105 * We take locks in following order, accordingly to comment at beginning 3106 * of mm/rmap.c: 3107 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3108 * hugetlb mapping); 3109 * - all i_mmap_rwsem locks; 3110 * - all anon_vma->rwseml 3111 * 3112 * We can take all locks within these types randomly because the VM code 3113 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3114 * mm_all_locks_mutex. 3115 * 3116 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3117 * that may have to take thousand of locks. 3118 * 3119 * mm_take_all_locks() can fail if it's interrupted by signals. 3120 */ 3121 int mm_take_all_locks(struct mm_struct *mm) 3122 { 3123 struct vm_area_struct *vma; 3124 struct anon_vma_chain *avc; 3125 3126 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3127 3128 mutex_lock(&mm_all_locks_mutex); 3129 3130 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3131 if (signal_pending(current)) 3132 goto out_unlock; 3133 if (vma->vm_file && vma->vm_file->f_mapping && 3134 is_vm_hugetlb_page(vma)) 3135 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3136 } 3137 3138 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3139 if (signal_pending(current)) 3140 goto out_unlock; 3141 if (vma->vm_file && vma->vm_file->f_mapping && 3142 !is_vm_hugetlb_page(vma)) 3143 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3144 } 3145 3146 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3147 if (signal_pending(current)) 3148 goto out_unlock; 3149 if (vma->anon_vma) 3150 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3151 vm_lock_anon_vma(mm, avc->anon_vma); 3152 } 3153 3154 return 0; 3155 3156 out_unlock: 3157 mm_drop_all_locks(mm); 3158 return -EINTR; 3159 } 3160 3161 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3162 { 3163 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3164 /* 3165 * The LSB of head.next can't change to 0 from under 3166 * us because we hold the mm_all_locks_mutex. 3167 * 3168 * We must however clear the bitflag before unlocking 3169 * the vma so the users using the anon_vma->rb_root will 3170 * never see our bitflag. 3171 * 3172 * No need of atomic instructions here, head.next 3173 * can't change from under us until we release the 3174 * anon_vma->root->rwsem. 3175 */ 3176 if (!__test_and_clear_bit(0, (unsigned long *) 3177 &anon_vma->root->rb_root.rb_node)) 3178 BUG(); 3179 anon_vma_unlock_write(anon_vma); 3180 } 3181 } 3182 3183 static void vm_unlock_mapping(struct address_space *mapping) 3184 { 3185 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3186 /* 3187 * AS_MM_ALL_LOCKS can't change to 0 from under us 3188 * because we hold the mm_all_locks_mutex. 3189 */ 3190 i_mmap_unlock_write(mapping); 3191 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3192 &mapping->flags)) 3193 BUG(); 3194 } 3195 } 3196 3197 /* 3198 * The mmap_sem cannot be released by the caller until 3199 * mm_drop_all_locks() returns. 3200 */ 3201 void mm_drop_all_locks(struct mm_struct *mm) 3202 { 3203 struct vm_area_struct *vma; 3204 struct anon_vma_chain *avc; 3205 3206 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3207 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3208 3209 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3210 if (vma->anon_vma) 3211 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3212 vm_unlock_anon_vma(avc->anon_vma); 3213 if (vma->vm_file && vma->vm_file->f_mapping) 3214 vm_unlock_mapping(vma->vm_file->f_mapping); 3215 } 3216 3217 mutex_unlock(&mm_all_locks_mutex); 3218 } 3219 3220 /* 3221 * initialise the VMA slab 3222 */ 3223 void __init mmap_init(void) 3224 { 3225 int ret; 3226 3227 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3228 VM_BUG_ON(ret); 3229 } 3230 3231 /* 3232 * Initialise sysctl_user_reserve_kbytes. 3233 * 3234 * This is intended to prevent a user from starting a single memory hogging 3235 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3236 * mode. 3237 * 3238 * The default value is min(3% of free memory, 128MB) 3239 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3240 */ 3241 static int init_user_reserve(void) 3242 { 3243 unsigned long free_kbytes; 3244 3245 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3246 3247 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3248 return 0; 3249 } 3250 subsys_initcall(init_user_reserve); 3251 3252 /* 3253 * Initialise sysctl_admin_reserve_kbytes. 3254 * 3255 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3256 * to log in and kill a memory hogging process. 3257 * 3258 * Systems with more than 256MB will reserve 8MB, enough to recover 3259 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3260 * only reserve 3% of free pages by default. 3261 */ 3262 static int init_admin_reserve(void) 3263 { 3264 unsigned long free_kbytes; 3265 3266 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3267 3268 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3269 return 0; 3270 } 3271 subsys_initcall(init_admin_reserve); 3272 3273 /* 3274 * Reinititalise user and admin reserves if memory is added or removed. 3275 * 3276 * The default user reserve max is 128MB, and the default max for the 3277 * admin reserve is 8MB. These are usually, but not always, enough to 3278 * enable recovery from a memory hogging process using login/sshd, a shell, 3279 * and tools like top. It may make sense to increase or even disable the 3280 * reserve depending on the existence of swap or variations in the recovery 3281 * tools. So, the admin may have changed them. 3282 * 3283 * If memory is added and the reserves have been eliminated or increased above 3284 * the default max, then we'll trust the admin. 3285 * 3286 * If memory is removed and there isn't enough free memory, then we 3287 * need to reset the reserves. 3288 * 3289 * Otherwise keep the reserve set by the admin. 3290 */ 3291 static int reserve_mem_notifier(struct notifier_block *nb, 3292 unsigned long action, void *data) 3293 { 3294 unsigned long tmp, free_kbytes; 3295 3296 switch (action) { 3297 case MEM_ONLINE: 3298 /* Default max is 128MB. Leave alone if modified by operator. */ 3299 tmp = sysctl_user_reserve_kbytes; 3300 if (0 < tmp && tmp < (1UL << 17)) 3301 init_user_reserve(); 3302 3303 /* Default max is 8MB. Leave alone if modified by operator. */ 3304 tmp = sysctl_admin_reserve_kbytes; 3305 if (0 < tmp && tmp < (1UL << 13)) 3306 init_admin_reserve(); 3307 3308 break; 3309 case MEM_OFFLINE: 3310 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3311 3312 if (sysctl_user_reserve_kbytes > free_kbytes) { 3313 init_user_reserve(); 3314 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3315 sysctl_user_reserve_kbytes); 3316 } 3317 3318 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3319 init_admin_reserve(); 3320 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3321 sysctl_admin_reserve_kbytes); 3322 } 3323 break; 3324 default: 3325 break; 3326 } 3327 return NOTIFY_OK; 3328 } 3329 3330 static struct notifier_block reserve_mem_nb = { 3331 .notifier_call = reserve_mem_notifier, 3332 }; 3333 3334 static int __meminit init_reserve_notifier(void) 3335 { 3336 if (register_hotmemory_notifier(&reserve_mem_nb)) 3337 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3338 3339 return 0; 3340 } 3341 subsys_initcall(init_reserve_notifier); 3342