xref: /linux/mm/mmap.c (revision 0c3beacf681ec897e0b36685a9b49d01f5cb2dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
80 void vma_set_page_prot(struct vm_area_struct *vma)
81 {
82 	unsigned long vm_flags = vma->vm_flags;
83 	pgprot_t vm_page_prot;
84 
85 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
86 	if (vma_wants_writenotify(vma, vm_page_prot)) {
87 		vm_flags &= ~VM_SHARED;
88 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
89 	}
90 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
91 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
92 }
93 
94 /*
95  * check_brk_limits() - Use platform specific check of range & verify mlock
96  * limits.
97  * @addr: The address to check
98  * @len: The size of increase.
99  *
100  * Return: 0 on success.
101  */
102 static int check_brk_limits(unsigned long addr, unsigned long len)
103 {
104 	unsigned long mapped_addr;
105 
106 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
107 	if (IS_ERR_VALUE(mapped_addr))
108 		return mapped_addr;
109 
110 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
111 		? 0 : -EAGAIN;
112 }
113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
114 		unsigned long addr, unsigned long request, unsigned long flags);
115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117 	unsigned long newbrk, oldbrk, origbrk;
118 	struct mm_struct *mm = current->mm;
119 	struct vm_area_struct *brkvma, *next = NULL;
120 	unsigned long min_brk;
121 	bool populate = false;
122 	LIST_HEAD(uf);
123 	struct vma_iterator vmi;
124 
125 	if (mmap_write_lock_killable(mm))
126 		return -EINTR;
127 
128 	origbrk = mm->brk;
129 
130 #ifdef CONFIG_COMPAT_BRK
131 	/*
132 	 * CONFIG_COMPAT_BRK can still be overridden by setting
133 	 * randomize_va_space to 2, which will still cause mm->start_brk
134 	 * to be arbitrarily shifted
135 	 */
136 	if (current->brk_randomized)
137 		min_brk = mm->start_brk;
138 	else
139 		min_brk = mm->end_data;
140 #else
141 	min_brk = mm->start_brk;
142 #endif
143 	if (brk < min_brk)
144 		goto out;
145 
146 	/*
147 	 * Check against rlimit here. If this check is done later after the test
148 	 * of oldbrk with newbrk then it can escape the test and let the data
149 	 * segment grow beyond its set limit the in case where the limit is
150 	 * not page aligned -Ram Gupta
151 	 */
152 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
153 			      mm->end_data, mm->start_data))
154 		goto out;
155 
156 	newbrk = PAGE_ALIGN(brk);
157 	oldbrk = PAGE_ALIGN(mm->brk);
158 	if (oldbrk == newbrk) {
159 		mm->brk = brk;
160 		goto success;
161 	}
162 
163 	/* Always allow shrinking brk. */
164 	if (brk <= mm->brk) {
165 		/* Search one past newbrk */
166 		vma_iter_init(&vmi, mm, newbrk);
167 		brkvma = vma_find(&vmi, oldbrk);
168 		if (!brkvma || brkvma->vm_start >= oldbrk)
169 			goto out; /* mapping intersects with an existing non-brk vma. */
170 		/*
171 		 * mm->brk must be protected by write mmap_lock.
172 		 * do_vmi_align_munmap() will drop the lock on success,  so
173 		 * update it before calling do_vma_munmap().
174 		 */
175 		mm->brk = brk;
176 		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
177 					/* unlock = */ true))
178 			goto out;
179 
180 		goto success_unlocked;
181 	}
182 
183 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
184 		goto out;
185 
186 	/*
187 	 * Only check if the next VMA is within the stack_guard_gap of the
188 	 * expansion area
189 	 */
190 	vma_iter_init(&vmi, mm, oldbrk);
191 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
192 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
193 		goto out;
194 
195 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
196 	/* Ok, looks good - let it rip. */
197 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
198 		goto out;
199 
200 	mm->brk = brk;
201 	if (mm->def_flags & VM_LOCKED)
202 		populate = true;
203 
204 success:
205 	mmap_write_unlock(mm);
206 success_unlocked:
207 	userfaultfd_unmap_complete(mm, &uf);
208 	if (populate)
209 		mm_populate(oldbrk, newbrk - oldbrk);
210 	return brk;
211 
212 out:
213 	mm->brk = origbrk;
214 	mmap_write_unlock(mm);
215 	return origbrk;
216 }
217 
218 /*
219  * If a hint addr is less than mmap_min_addr change hint to be as
220  * low as possible but still greater than mmap_min_addr
221  */
222 static inline unsigned long round_hint_to_min(unsigned long hint)
223 {
224 	hint &= PAGE_MASK;
225 	if (((void *)hint != NULL) &&
226 	    (hint < mmap_min_addr))
227 		return PAGE_ALIGN(mmap_min_addr);
228 	return hint;
229 }
230 
231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
232 			unsigned long bytes)
233 {
234 	unsigned long locked_pages, limit_pages;
235 
236 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
237 		return true;
238 
239 	locked_pages = bytes >> PAGE_SHIFT;
240 	locked_pages += mm->locked_vm;
241 
242 	limit_pages = rlimit(RLIMIT_MEMLOCK);
243 	limit_pages >>= PAGE_SHIFT;
244 
245 	return locked_pages <= limit_pages;
246 }
247 
248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
249 {
250 	if (S_ISREG(inode->i_mode))
251 		return MAX_LFS_FILESIZE;
252 
253 	if (S_ISBLK(inode->i_mode))
254 		return MAX_LFS_FILESIZE;
255 
256 	if (S_ISSOCK(inode->i_mode))
257 		return MAX_LFS_FILESIZE;
258 
259 	/* Special "we do even unsigned file positions" case */
260 	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
261 		return 0;
262 
263 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
264 	return ULONG_MAX;
265 }
266 
267 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268 				unsigned long pgoff, unsigned long len)
269 {
270 	u64 maxsize = file_mmap_size_max(file, inode);
271 
272 	if (maxsize && len > maxsize)
273 		return false;
274 	maxsize -= len;
275 	if (pgoff > maxsize >> PAGE_SHIFT)
276 		return false;
277 	return true;
278 }
279 
280 /*
281  * The caller must write-lock current->mm->mmap_lock.
282  */
283 unsigned long do_mmap(struct file *file, unsigned long addr,
284 			unsigned long len, unsigned long prot,
285 			unsigned long flags, vm_flags_t vm_flags,
286 			unsigned long pgoff, unsigned long *populate,
287 			struct list_head *uf)
288 {
289 	struct mm_struct *mm = current->mm;
290 	int pkey = 0;
291 
292 	*populate = 0;
293 
294 	if (!len)
295 		return -EINVAL;
296 
297 	/*
298 	 * Does the application expect PROT_READ to imply PROT_EXEC?
299 	 *
300 	 * (the exception is when the underlying filesystem is noexec
301 	 *  mounted, in which case we don't add PROT_EXEC.)
302 	 */
303 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
304 		if (!(file && path_noexec(&file->f_path)))
305 			prot |= PROT_EXEC;
306 
307 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
308 	if (flags & MAP_FIXED_NOREPLACE)
309 		flags |= MAP_FIXED;
310 
311 	if (!(flags & MAP_FIXED))
312 		addr = round_hint_to_min(addr);
313 
314 	/* Careful about overflows.. */
315 	len = PAGE_ALIGN(len);
316 	if (!len)
317 		return -ENOMEM;
318 
319 	/* offset overflow? */
320 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
321 		return -EOVERFLOW;
322 
323 	/* Too many mappings? */
324 	if (mm->map_count > sysctl_max_map_count)
325 		return -ENOMEM;
326 
327 	/*
328 	 * addr is returned from get_unmapped_area,
329 	 * There are two cases:
330 	 * 1> MAP_FIXED == false
331 	 *	unallocated memory, no need to check sealing.
332 	 * 1> MAP_FIXED == true
333 	 *	sealing is checked inside mmap_region when
334 	 *	do_vmi_munmap is called.
335 	 */
336 
337 	if (prot == PROT_EXEC) {
338 		pkey = execute_only_pkey(mm);
339 		if (pkey < 0)
340 			pkey = 0;
341 	}
342 
343 	/* Do simple checking here so the lower-level routines won't have
344 	 * to. we assume access permissions have been handled by the open
345 	 * of the memory object, so we don't do any here.
346 	 */
347 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
348 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
349 
350 	/* Obtain the address to map to. we verify (or select) it and ensure
351 	 * that it represents a valid section of the address space.
352 	 */
353 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
354 	if (IS_ERR_VALUE(addr))
355 		return addr;
356 
357 	if (flags & MAP_FIXED_NOREPLACE) {
358 		if (find_vma_intersection(mm, addr, addr + len))
359 			return -EEXIST;
360 	}
361 
362 	if (flags & MAP_LOCKED)
363 		if (!can_do_mlock())
364 			return -EPERM;
365 
366 	if (!mlock_future_ok(mm, vm_flags, len))
367 		return -EAGAIN;
368 
369 	if (file) {
370 		struct inode *inode = file_inode(file);
371 		unsigned long flags_mask;
372 
373 		if (!file_mmap_ok(file, inode, pgoff, len))
374 			return -EOVERFLOW;
375 
376 		flags_mask = LEGACY_MAP_MASK;
377 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
378 			flags_mask |= MAP_SYNC;
379 
380 		switch (flags & MAP_TYPE) {
381 		case MAP_SHARED:
382 			/*
383 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
384 			 * flags. E.g. MAP_SYNC is dangerous to use with
385 			 * MAP_SHARED as you don't know which consistency model
386 			 * you will get. We silently ignore unsupported flags
387 			 * with MAP_SHARED to preserve backward compatibility.
388 			 */
389 			flags &= LEGACY_MAP_MASK;
390 			fallthrough;
391 		case MAP_SHARED_VALIDATE:
392 			if (flags & ~flags_mask)
393 				return -EOPNOTSUPP;
394 			if (prot & PROT_WRITE) {
395 				if (!(file->f_mode & FMODE_WRITE))
396 					return -EACCES;
397 				if (IS_SWAPFILE(file->f_mapping->host))
398 					return -ETXTBSY;
399 			}
400 
401 			/*
402 			 * Make sure we don't allow writing to an append-only
403 			 * file..
404 			 */
405 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
406 				return -EACCES;
407 
408 			vm_flags |= VM_SHARED | VM_MAYSHARE;
409 			if (!(file->f_mode & FMODE_WRITE))
410 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
411 			fallthrough;
412 		case MAP_PRIVATE:
413 			if (!(file->f_mode & FMODE_READ))
414 				return -EACCES;
415 			if (path_noexec(&file->f_path)) {
416 				if (vm_flags & VM_EXEC)
417 					return -EPERM;
418 				vm_flags &= ~VM_MAYEXEC;
419 			}
420 
421 			if (!file->f_op->mmap)
422 				return -ENODEV;
423 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
424 				return -EINVAL;
425 			break;
426 
427 		default:
428 			return -EINVAL;
429 		}
430 	} else {
431 		switch (flags & MAP_TYPE) {
432 		case MAP_SHARED:
433 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
434 				return -EINVAL;
435 			/*
436 			 * Ignore pgoff.
437 			 */
438 			pgoff = 0;
439 			vm_flags |= VM_SHARED | VM_MAYSHARE;
440 			break;
441 		case MAP_DROPPABLE:
442 			if (VM_DROPPABLE == VM_NONE)
443 				return -ENOTSUPP;
444 			/*
445 			 * A locked or stack area makes no sense to be droppable.
446 			 *
447 			 * Also, since droppable pages can just go away at any time
448 			 * it makes no sense to copy them on fork or dump them.
449 			 *
450 			 * And don't attempt to combine with hugetlb for now.
451 			 */
452 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
453 			        return -EINVAL;
454 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
455 			        return -EINVAL;
456 
457 			vm_flags |= VM_DROPPABLE;
458 
459 			/*
460 			 * If the pages can be dropped, then it doesn't make
461 			 * sense to reserve them.
462 			 */
463 			vm_flags |= VM_NORESERVE;
464 
465 			/*
466 			 * Likewise, they're volatile enough that they
467 			 * shouldn't survive forks or coredumps.
468 			 */
469 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
470 			fallthrough;
471 		case MAP_PRIVATE:
472 			/*
473 			 * Set pgoff according to addr for anon_vma.
474 			 */
475 			pgoff = addr >> PAGE_SHIFT;
476 			break;
477 		default:
478 			return -EINVAL;
479 		}
480 	}
481 
482 	/*
483 	 * Set 'VM_NORESERVE' if we should not account for the
484 	 * memory use of this mapping.
485 	 */
486 	if (flags & MAP_NORESERVE) {
487 		/* We honor MAP_NORESERVE if allowed to overcommit */
488 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
489 			vm_flags |= VM_NORESERVE;
490 
491 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
492 		if (file && is_file_hugepages(file))
493 			vm_flags |= VM_NORESERVE;
494 	}
495 
496 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
497 	if (!IS_ERR_VALUE(addr) &&
498 	    ((vm_flags & VM_LOCKED) ||
499 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
500 		*populate = len;
501 	return addr;
502 }
503 
504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
505 			      unsigned long prot, unsigned long flags,
506 			      unsigned long fd, unsigned long pgoff)
507 {
508 	struct file *file = NULL;
509 	unsigned long retval;
510 
511 	if (!(flags & MAP_ANONYMOUS)) {
512 		audit_mmap_fd(fd, flags);
513 		file = fget(fd);
514 		if (!file)
515 			return -EBADF;
516 		if (is_file_hugepages(file)) {
517 			len = ALIGN(len, huge_page_size(hstate_file(file)));
518 		} else if (unlikely(flags & MAP_HUGETLB)) {
519 			retval = -EINVAL;
520 			goto out_fput;
521 		}
522 	} else if (flags & MAP_HUGETLB) {
523 		struct hstate *hs;
524 
525 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
526 		if (!hs)
527 			return -EINVAL;
528 
529 		len = ALIGN(len, huge_page_size(hs));
530 		/*
531 		 * VM_NORESERVE is used because the reservations will be
532 		 * taken when vm_ops->mmap() is called
533 		 */
534 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
535 				VM_NORESERVE,
536 				HUGETLB_ANONHUGE_INODE,
537 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
538 		if (IS_ERR(file))
539 			return PTR_ERR(file);
540 	}
541 
542 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
543 out_fput:
544 	if (file)
545 		fput(file);
546 	return retval;
547 }
548 
549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
550 		unsigned long, prot, unsigned long, flags,
551 		unsigned long, fd, unsigned long, pgoff)
552 {
553 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
554 }
555 
556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
557 struct mmap_arg_struct {
558 	unsigned long addr;
559 	unsigned long len;
560 	unsigned long prot;
561 	unsigned long flags;
562 	unsigned long fd;
563 	unsigned long offset;
564 };
565 
566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
567 {
568 	struct mmap_arg_struct a;
569 
570 	if (copy_from_user(&a, arg, sizeof(a)))
571 		return -EFAULT;
572 	if (offset_in_page(a.offset))
573 		return -EINVAL;
574 
575 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
576 			       a.offset >> PAGE_SHIFT);
577 }
578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
579 
580 /**
581  * unmapped_area() - Find an area between the low_limit and the high_limit with
582  * the correct alignment and offset, all from @info. Note: current->mm is used
583  * for the search.
584  *
585  * @info: The unmapped area information including the range [low_limit -
586  * high_limit), the alignment offset and mask.
587  *
588  * Return: A memory address or -ENOMEM.
589  */
590 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
591 {
592 	unsigned long length, gap;
593 	unsigned long low_limit, high_limit;
594 	struct vm_area_struct *tmp;
595 	VMA_ITERATOR(vmi, current->mm, 0);
596 
597 	/* Adjust search length to account for worst case alignment overhead */
598 	length = info->length + info->align_mask + info->start_gap;
599 	if (length < info->length)
600 		return -ENOMEM;
601 
602 	low_limit = info->low_limit;
603 	if (low_limit < mmap_min_addr)
604 		low_limit = mmap_min_addr;
605 	high_limit = info->high_limit;
606 retry:
607 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
608 		return -ENOMEM;
609 
610 	/*
611 	 * Adjust for the gap first so it doesn't interfere with the
612 	 * later alignment. The first step is the minimum needed to
613 	 * fulill the start gap, the next steps is the minimum to align
614 	 * that. It is the minimum needed to fulill both.
615 	 */
616 	gap = vma_iter_addr(&vmi) + info->start_gap;
617 	gap += (info->align_offset - gap) & info->align_mask;
618 	tmp = vma_next(&vmi);
619 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
620 		if (vm_start_gap(tmp) < gap + length - 1) {
621 			low_limit = tmp->vm_end;
622 			vma_iter_reset(&vmi);
623 			goto retry;
624 		}
625 	} else {
626 		tmp = vma_prev(&vmi);
627 		if (tmp && vm_end_gap(tmp) > gap) {
628 			low_limit = vm_end_gap(tmp);
629 			vma_iter_reset(&vmi);
630 			goto retry;
631 		}
632 	}
633 
634 	return gap;
635 }
636 
637 /**
638  * unmapped_area_topdown() - Find an area between the low_limit and the
639  * high_limit with the correct alignment and offset at the highest available
640  * address, all from @info. Note: current->mm is used for the search.
641  *
642  * @info: The unmapped area information including the range [low_limit -
643  * high_limit), the alignment offset and mask.
644  *
645  * Return: A memory address or -ENOMEM.
646  */
647 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
648 {
649 	unsigned long length, gap, gap_end;
650 	unsigned long low_limit, high_limit;
651 	struct vm_area_struct *tmp;
652 	VMA_ITERATOR(vmi, current->mm, 0);
653 
654 	/* Adjust search length to account for worst case alignment overhead */
655 	length = info->length + info->align_mask + info->start_gap;
656 	if (length < info->length)
657 		return -ENOMEM;
658 
659 	low_limit = info->low_limit;
660 	if (low_limit < mmap_min_addr)
661 		low_limit = mmap_min_addr;
662 	high_limit = info->high_limit;
663 retry:
664 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
665 		return -ENOMEM;
666 
667 	gap = vma_iter_end(&vmi) - info->length;
668 	gap -= (gap - info->align_offset) & info->align_mask;
669 	gap_end = vma_iter_end(&vmi);
670 	tmp = vma_next(&vmi);
671 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
672 		if (vm_start_gap(tmp) < gap_end) {
673 			high_limit = vm_start_gap(tmp);
674 			vma_iter_reset(&vmi);
675 			goto retry;
676 		}
677 	} else {
678 		tmp = vma_prev(&vmi);
679 		if (tmp && vm_end_gap(tmp) > gap) {
680 			high_limit = tmp->vm_start;
681 			vma_iter_reset(&vmi);
682 			goto retry;
683 		}
684 	}
685 
686 	return gap;
687 }
688 
689 /*
690  * Determine if the allocation needs to ensure that there is no
691  * existing mapping within it's guard gaps, for use as start_gap.
692  */
693 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
694 {
695 	if (vm_flags & VM_SHADOW_STACK)
696 		return PAGE_SIZE;
697 
698 	return 0;
699 }
700 
701 /*
702  * Search for an unmapped address range.
703  *
704  * We are looking for a range that:
705  * - does not intersect with any VMA;
706  * - is contained within the [low_limit, high_limit) interval;
707  * - is at least the desired size.
708  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
709  */
710 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
711 {
712 	unsigned long addr;
713 
714 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
715 		addr = unmapped_area_topdown(info);
716 	else
717 		addr = unmapped_area(info);
718 
719 	trace_vm_unmapped_area(addr, info);
720 	return addr;
721 }
722 
723 /* Get an address range which is currently unmapped.
724  * For shmat() with addr=0.
725  *
726  * Ugly calling convention alert:
727  * Return value with the low bits set means error value,
728  * ie
729  *	if (ret & ~PAGE_MASK)
730  *		error = ret;
731  *
732  * This function "knows" that -ENOMEM has the bits set.
733  */
734 unsigned long
735 generic_get_unmapped_area(struct file *filp, unsigned long addr,
736 			  unsigned long len, unsigned long pgoff,
737 			  unsigned long flags, vm_flags_t vm_flags)
738 {
739 	struct mm_struct *mm = current->mm;
740 	struct vm_area_struct *vma, *prev;
741 	struct vm_unmapped_area_info info = {};
742 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
743 
744 	if (len > mmap_end - mmap_min_addr)
745 		return -ENOMEM;
746 
747 	if (flags & MAP_FIXED)
748 		return addr;
749 
750 	if (addr) {
751 		addr = PAGE_ALIGN(addr);
752 		vma = find_vma_prev(mm, addr, &prev);
753 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
754 		    (!vma || addr + len <= vm_start_gap(vma)) &&
755 		    (!prev || addr >= vm_end_gap(prev)))
756 			return addr;
757 	}
758 
759 	info.length = len;
760 	info.low_limit = mm->mmap_base;
761 	info.high_limit = mmap_end;
762 	info.start_gap = stack_guard_placement(vm_flags);
763 	if (filp && is_file_hugepages(filp))
764 		info.align_mask = huge_page_mask_align(filp);
765 	return vm_unmapped_area(&info);
766 }
767 
768 #ifndef HAVE_ARCH_UNMAPPED_AREA
769 unsigned long
770 arch_get_unmapped_area(struct file *filp, unsigned long addr,
771 		       unsigned long len, unsigned long pgoff,
772 		       unsigned long flags, vm_flags_t vm_flags)
773 {
774 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
775 					 vm_flags);
776 }
777 #endif
778 
779 /*
780  * This mmap-allocator allocates new areas top-down from below the
781  * stack's low limit (the base):
782  */
783 unsigned long
784 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
785 				  unsigned long len, unsigned long pgoff,
786 				  unsigned long flags, vm_flags_t vm_flags)
787 {
788 	struct vm_area_struct *vma, *prev;
789 	struct mm_struct *mm = current->mm;
790 	struct vm_unmapped_area_info info = {};
791 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
792 
793 	/* requested length too big for entire address space */
794 	if (len > mmap_end - mmap_min_addr)
795 		return -ENOMEM;
796 
797 	if (flags & MAP_FIXED)
798 		return addr;
799 
800 	/* requesting a specific address */
801 	if (addr) {
802 		addr = PAGE_ALIGN(addr);
803 		vma = find_vma_prev(mm, addr, &prev);
804 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
805 				(!vma || addr + len <= vm_start_gap(vma)) &&
806 				(!prev || addr >= vm_end_gap(prev)))
807 			return addr;
808 	}
809 
810 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
811 	info.length = len;
812 	info.low_limit = PAGE_SIZE;
813 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
814 	info.start_gap = stack_guard_placement(vm_flags);
815 	if (filp && is_file_hugepages(filp))
816 		info.align_mask = huge_page_mask_align(filp);
817 	addr = vm_unmapped_area(&info);
818 
819 	/*
820 	 * A failed mmap() very likely causes application failure,
821 	 * so fall back to the bottom-up function here. This scenario
822 	 * can happen with large stack limits and large mmap()
823 	 * allocations.
824 	 */
825 	if (offset_in_page(addr)) {
826 		VM_BUG_ON(addr != -ENOMEM);
827 		info.flags = 0;
828 		info.low_limit = TASK_UNMAPPED_BASE;
829 		info.high_limit = mmap_end;
830 		addr = vm_unmapped_area(&info);
831 	}
832 
833 	return addr;
834 }
835 
836 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
837 unsigned long
838 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
839 			       unsigned long len, unsigned long pgoff,
840 			       unsigned long flags, vm_flags_t vm_flags)
841 {
842 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
843 						 vm_flags);
844 }
845 #endif
846 
847 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
848 					   unsigned long addr, unsigned long len,
849 					   unsigned long pgoff, unsigned long flags,
850 					   vm_flags_t vm_flags)
851 {
852 	if (test_bit(MMF_TOPDOWN, &mm->flags))
853 		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
854 						      flags, vm_flags);
855 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
856 }
857 
858 unsigned long
859 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
860 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
861 {
862 	unsigned long (*get_area)(struct file *, unsigned long,
863 				  unsigned long, unsigned long, unsigned long)
864 				  = NULL;
865 
866 	unsigned long error = arch_mmap_check(addr, len, flags);
867 	if (error)
868 		return error;
869 
870 	/* Careful about overflows.. */
871 	if (len > TASK_SIZE)
872 		return -ENOMEM;
873 
874 	if (file) {
875 		if (file->f_op->get_unmapped_area)
876 			get_area = file->f_op->get_unmapped_area;
877 	} else if (flags & MAP_SHARED) {
878 		/*
879 		 * mmap_region() will call shmem_zero_setup() to create a file,
880 		 * so use shmem's get_unmapped_area in case it can be huge.
881 		 */
882 		get_area = shmem_get_unmapped_area;
883 	}
884 
885 	/* Always treat pgoff as zero for anonymous memory. */
886 	if (!file)
887 		pgoff = 0;
888 
889 	if (get_area) {
890 		addr = get_area(file, addr, len, pgoff, flags);
891 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)
892 		   && IS_ALIGNED(len, PMD_SIZE)) {
893 		/* Ensures that larger anonymous mappings are THP aligned. */
894 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
895 						     pgoff, flags, vm_flags);
896 	} else {
897 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
898 						    pgoff, flags, vm_flags);
899 	}
900 	if (IS_ERR_VALUE(addr))
901 		return addr;
902 
903 	if (addr > TASK_SIZE - len)
904 		return -ENOMEM;
905 	if (offset_in_page(addr))
906 		return -EINVAL;
907 
908 	error = security_mmap_addr(addr);
909 	return error ? error : addr;
910 }
911 
912 unsigned long
913 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
914 		     unsigned long addr, unsigned long len,
915 		     unsigned long pgoff, unsigned long flags)
916 {
917 	if (test_bit(MMF_TOPDOWN, &mm->flags))
918 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
919 	return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
920 }
921 EXPORT_SYMBOL(mm_get_unmapped_area);
922 
923 /**
924  * find_vma_intersection() - Look up the first VMA which intersects the interval
925  * @mm: The process address space.
926  * @start_addr: The inclusive start user address.
927  * @end_addr: The exclusive end user address.
928  *
929  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
930  * start_addr < end_addr.
931  */
932 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
933 					     unsigned long start_addr,
934 					     unsigned long end_addr)
935 {
936 	unsigned long index = start_addr;
937 
938 	mmap_assert_locked(mm);
939 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
940 }
941 EXPORT_SYMBOL(find_vma_intersection);
942 
943 /**
944  * find_vma() - Find the VMA for a given address, or the next VMA.
945  * @mm: The mm_struct to check
946  * @addr: The address
947  *
948  * Returns: The VMA associated with addr, or the next VMA.
949  * May return %NULL in the case of no VMA at addr or above.
950  */
951 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
952 {
953 	unsigned long index = addr;
954 
955 	mmap_assert_locked(mm);
956 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
957 }
958 EXPORT_SYMBOL(find_vma);
959 
960 /**
961  * find_vma_prev() - Find the VMA for a given address, or the next vma and
962  * set %pprev to the previous VMA, if any.
963  * @mm: The mm_struct to check
964  * @addr: The address
965  * @pprev: The pointer to set to the previous VMA
966  *
967  * Note that RCU lock is missing here since the external mmap_lock() is used
968  * instead.
969  *
970  * Returns: The VMA associated with @addr, or the next vma.
971  * May return %NULL in the case of no vma at addr or above.
972  */
973 struct vm_area_struct *
974 find_vma_prev(struct mm_struct *mm, unsigned long addr,
975 			struct vm_area_struct **pprev)
976 {
977 	struct vm_area_struct *vma;
978 	VMA_ITERATOR(vmi, mm, addr);
979 
980 	vma = vma_iter_load(&vmi);
981 	*pprev = vma_prev(&vmi);
982 	if (!vma)
983 		vma = vma_next(&vmi);
984 	return vma;
985 }
986 
987 /*
988  * Verify that the stack growth is acceptable and
989  * update accounting. This is shared with both the
990  * grow-up and grow-down cases.
991  */
992 static int acct_stack_growth(struct vm_area_struct *vma,
993 			     unsigned long size, unsigned long grow)
994 {
995 	struct mm_struct *mm = vma->vm_mm;
996 	unsigned long new_start;
997 
998 	/* address space limit tests */
999 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1000 		return -ENOMEM;
1001 
1002 	/* Stack limit test */
1003 	if (size > rlimit(RLIMIT_STACK))
1004 		return -ENOMEM;
1005 
1006 	/* mlock limit tests */
1007 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1008 		return -ENOMEM;
1009 
1010 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1011 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1012 			vma->vm_end - size;
1013 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1014 		return -EFAULT;
1015 
1016 	/*
1017 	 * Overcommit..  This must be the final test, as it will
1018 	 * update security statistics.
1019 	 */
1020 	if (security_vm_enough_memory_mm(mm, grow))
1021 		return -ENOMEM;
1022 
1023 	return 0;
1024 }
1025 
1026 #if defined(CONFIG_STACK_GROWSUP)
1027 /*
1028  * PA-RISC uses this for its stack.
1029  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1030  */
1031 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1032 {
1033 	struct mm_struct *mm = vma->vm_mm;
1034 	struct vm_area_struct *next;
1035 	unsigned long gap_addr;
1036 	int error = 0;
1037 	VMA_ITERATOR(vmi, mm, vma->vm_start);
1038 
1039 	if (!(vma->vm_flags & VM_GROWSUP))
1040 		return -EFAULT;
1041 
1042 	/* Guard against exceeding limits of the address space. */
1043 	address &= PAGE_MASK;
1044 	if (address >= (TASK_SIZE & PAGE_MASK))
1045 		return -ENOMEM;
1046 	address += PAGE_SIZE;
1047 
1048 	/* Enforce stack_guard_gap */
1049 	gap_addr = address + stack_guard_gap;
1050 
1051 	/* Guard against overflow */
1052 	if (gap_addr < address || gap_addr > TASK_SIZE)
1053 		gap_addr = TASK_SIZE;
1054 
1055 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1056 	if (next && vma_is_accessible(next)) {
1057 		if (!(next->vm_flags & VM_GROWSUP))
1058 			return -ENOMEM;
1059 		/* Check that both stack segments have the same anon_vma? */
1060 	}
1061 
1062 	if (next)
1063 		vma_iter_prev_range_limit(&vmi, address);
1064 
1065 	vma_iter_config(&vmi, vma->vm_start, address);
1066 	if (vma_iter_prealloc(&vmi, vma))
1067 		return -ENOMEM;
1068 
1069 	/* We must make sure the anon_vma is allocated. */
1070 	if (unlikely(anon_vma_prepare(vma))) {
1071 		vma_iter_free(&vmi);
1072 		return -ENOMEM;
1073 	}
1074 
1075 	/* Lock the VMA before expanding to prevent concurrent page faults */
1076 	vma_start_write(vma);
1077 	/*
1078 	 * vma->vm_start/vm_end cannot change under us because the caller
1079 	 * is required to hold the mmap_lock in read mode.  We need the
1080 	 * anon_vma lock to serialize against concurrent expand_stacks.
1081 	 */
1082 	anon_vma_lock_write(vma->anon_vma);
1083 
1084 	/* Somebody else might have raced and expanded it already */
1085 	if (address > vma->vm_end) {
1086 		unsigned long size, grow;
1087 
1088 		size = address - vma->vm_start;
1089 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1090 
1091 		error = -ENOMEM;
1092 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1093 			error = acct_stack_growth(vma, size, grow);
1094 			if (!error) {
1095 				/*
1096 				 * We only hold a shared mmap_lock lock here, so
1097 				 * we need to protect against concurrent vma
1098 				 * expansions.  anon_vma_lock_write() doesn't
1099 				 * help here, as we don't guarantee that all
1100 				 * growable vmas in a mm share the same root
1101 				 * anon vma.  So, we reuse mm->page_table_lock
1102 				 * to guard against concurrent vma expansions.
1103 				 */
1104 				spin_lock(&mm->page_table_lock);
1105 				if (vma->vm_flags & VM_LOCKED)
1106 					mm->locked_vm += grow;
1107 				vm_stat_account(mm, vma->vm_flags, grow);
1108 				anon_vma_interval_tree_pre_update_vma(vma);
1109 				vma->vm_end = address;
1110 				/* Overwrite old entry in mtree. */
1111 				vma_iter_store(&vmi, vma);
1112 				anon_vma_interval_tree_post_update_vma(vma);
1113 				spin_unlock(&mm->page_table_lock);
1114 
1115 				perf_event_mmap(vma);
1116 			}
1117 		}
1118 	}
1119 	anon_vma_unlock_write(vma->anon_vma);
1120 	vma_iter_free(&vmi);
1121 	validate_mm(mm);
1122 	return error;
1123 }
1124 #endif /* CONFIG_STACK_GROWSUP */
1125 
1126 /*
1127  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1128  * mmap_lock held for writing.
1129  */
1130 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1131 {
1132 	struct mm_struct *mm = vma->vm_mm;
1133 	struct vm_area_struct *prev;
1134 	int error = 0;
1135 	VMA_ITERATOR(vmi, mm, vma->vm_start);
1136 
1137 	if (!(vma->vm_flags & VM_GROWSDOWN))
1138 		return -EFAULT;
1139 
1140 	address &= PAGE_MASK;
1141 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1142 		return -EPERM;
1143 
1144 	/* Enforce stack_guard_gap */
1145 	prev = vma_prev(&vmi);
1146 	/* Check that both stack segments have the same anon_vma? */
1147 	if (prev) {
1148 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
1149 		    vma_is_accessible(prev) &&
1150 		    (address - prev->vm_end < stack_guard_gap))
1151 			return -ENOMEM;
1152 	}
1153 
1154 	if (prev)
1155 		vma_iter_next_range_limit(&vmi, vma->vm_start);
1156 
1157 	vma_iter_config(&vmi, address, vma->vm_end);
1158 	if (vma_iter_prealloc(&vmi, vma))
1159 		return -ENOMEM;
1160 
1161 	/* We must make sure the anon_vma is allocated. */
1162 	if (unlikely(anon_vma_prepare(vma))) {
1163 		vma_iter_free(&vmi);
1164 		return -ENOMEM;
1165 	}
1166 
1167 	/* Lock the VMA before expanding to prevent concurrent page faults */
1168 	vma_start_write(vma);
1169 	/*
1170 	 * vma->vm_start/vm_end cannot change under us because the caller
1171 	 * is required to hold the mmap_lock in read mode.  We need the
1172 	 * anon_vma lock to serialize against concurrent expand_stacks.
1173 	 */
1174 	anon_vma_lock_write(vma->anon_vma);
1175 
1176 	/* Somebody else might have raced and expanded it already */
1177 	if (address < vma->vm_start) {
1178 		unsigned long size, grow;
1179 
1180 		size = vma->vm_end - address;
1181 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1182 
1183 		error = -ENOMEM;
1184 		if (grow <= vma->vm_pgoff) {
1185 			error = acct_stack_growth(vma, size, grow);
1186 			if (!error) {
1187 				/*
1188 				 * We only hold a shared mmap_lock lock here, so
1189 				 * we need to protect against concurrent vma
1190 				 * expansions.  anon_vma_lock_write() doesn't
1191 				 * help here, as we don't guarantee that all
1192 				 * growable vmas in a mm share the same root
1193 				 * anon vma.  So, we reuse mm->page_table_lock
1194 				 * to guard against concurrent vma expansions.
1195 				 */
1196 				spin_lock(&mm->page_table_lock);
1197 				if (vma->vm_flags & VM_LOCKED)
1198 					mm->locked_vm += grow;
1199 				vm_stat_account(mm, vma->vm_flags, grow);
1200 				anon_vma_interval_tree_pre_update_vma(vma);
1201 				vma->vm_start = address;
1202 				vma->vm_pgoff -= grow;
1203 				/* Overwrite old entry in mtree. */
1204 				vma_iter_store(&vmi, vma);
1205 				anon_vma_interval_tree_post_update_vma(vma);
1206 				spin_unlock(&mm->page_table_lock);
1207 
1208 				perf_event_mmap(vma);
1209 			}
1210 		}
1211 	}
1212 	anon_vma_unlock_write(vma->anon_vma);
1213 	vma_iter_free(&vmi);
1214 	validate_mm(mm);
1215 	return error;
1216 }
1217 
1218 /* enforced gap between the expanding stack and other mappings. */
1219 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1220 
1221 static int __init cmdline_parse_stack_guard_gap(char *p)
1222 {
1223 	unsigned long val;
1224 	char *endptr;
1225 
1226 	val = simple_strtoul(p, &endptr, 10);
1227 	if (!*endptr)
1228 		stack_guard_gap = val << PAGE_SHIFT;
1229 
1230 	return 1;
1231 }
1232 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1233 
1234 #ifdef CONFIG_STACK_GROWSUP
1235 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1236 {
1237 	return expand_upwards(vma, address);
1238 }
1239 
1240 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1241 {
1242 	struct vm_area_struct *vma, *prev;
1243 
1244 	addr &= PAGE_MASK;
1245 	vma = find_vma_prev(mm, addr, &prev);
1246 	if (vma && (vma->vm_start <= addr))
1247 		return vma;
1248 	if (!prev)
1249 		return NULL;
1250 	if (expand_stack_locked(prev, addr))
1251 		return NULL;
1252 	if (prev->vm_flags & VM_LOCKED)
1253 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1254 	return prev;
1255 }
1256 #else
1257 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1258 {
1259 	return expand_downwards(vma, address);
1260 }
1261 
1262 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1263 {
1264 	struct vm_area_struct *vma;
1265 	unsigned long start;
1266 
1267 	addr &= PAGE_MASK;
1268 	vma = find_vma(mm, addr);
1269 	if (!vma)
1270 		return NULL;
1271 	if (vma->vm_start <= addr)
1272 		return vma;
1273 	start = vma->vm_start;
1274 	if (expand_stack_locked(vma, addr))
1275 		return NULL;
1276 	if (vma->vm_flags & VM_LOCKED)
1277 		populate_vma_page_range(vma, addr, start, NULL);
1278 	return vma;
1279 }
1280 #endif
1281 
1282 #if defined(CONFIG_STACK_GROWSUP)
1283 
1284 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1285 #define vma_expand_down(vma, addr) (-EFAULT)
1286 
1287 #else
1288 
1289 #define vma_expand_up(vma,addr) (-EFAULT)
1290 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1291 
1292 #endif
1293 
1294 /*
1295  * expand_stack(): legacy interface for page faulting. Don't use unless
1296  * you have to.
1297  *
1298  * This is called with the mm locked for reading, drops the lock, takes
1299  * the lock for writing, tries to look up a vma again, expands it if
1300  * necessary, and downgrades the lock to reading again.
1301  *
1302  * If no vma is found or it can't be expanded, it returns NULL and has
1303  * dropped the lock.
1304  */
1305 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1306 {
1307 	struct vm_area_struct *vma, *prev;
1308 
1309 	mmap_read_unlock(mm);
1310 	if (mmap_write_lock_killable(mm))
1311 		return NULL;
1312 
1313 	vma = find_vma_prev(mm, addr, &prev);
1314 	if (vma && vma->vm_start <= addr)
1315 		goto success;
1316 
1317 	if (prev && !vma_expand_up(prev, addr)) {
1318 		vma = prev;
1319 		goto success;
1320 	}
1321 
1322 	if (vma && !vma_expand_down(vma, addr))
1323 		goto success;
1324 
1325 	mmap_write_unlock(mm);
1326 	return NULL;
1327 
1328 success:
1329 	mmap_write_downgrade(mm);
1330 	return vma;
1331 }
1332 
1333 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1334  * @mm: The mm_struct
1335  * @start: The start address to munmap
1336  * @len: The length to be munmapped.
1337  * @uf: The userfaultfd list_head
1338  *
1339  * Return: 0 on success, error otherwise.
1340  */
1341 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1342 	      struct list_head *uf)
1343 {
1344 	VMA_ITERATOR(vmi, mm, start);
1345 
1346 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1347 }
1348 
1349 unsigned long mmap_region(struct file *file, unsigned long addr,
1350 			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1351 			  struct list_head *uf)
1352 {
1353 	unsigned long ret;
1354 	bool writable_file_mapping = false;
1355 
1356 	/* Check to see if MDWE is applicable. */
1357 	if (map_deny_write_exec(vm_flags, vm_flags))
1358 		return -EACCES;
1359 
1360 	/* Allow architectures to sanity-check the vm_flags. */
1361 	if (!arch_validate_flags(vm_flags))
1362 		return -EINVAL;
1363 
1364 	/* Map writable and ensure this isn't a sealed memfd. */
1365 	if (file && is_shared_maywrite(vm_flags)) {
1366 		int error = mapping_map_writable(file->f_mapping);
1367 
1368 		if (error)
1369 			return error;
1370 		writable_file_mapping = true;
1371 	}
1372 
1373 	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
1374 
1375 	/* Clear our write mapping regardless of error. */
1376 	if (writable_file_mapping)
1377 		mapping_unmap_writable(file->f_mapping);
1378 
1379 	validate_mm(current->mm);
1380 	return ret;
1381 }
1382 
1383 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1384 {
1385 	int ret;
1386 	struct mm_struct *mm = current->mm;
1387 	LIST_HEAD(uf);
1388 	VMA_ITERATOR(vmi, mm, start);
1389 
1390 	if (mmap_write_lock_killable(mm))
1391 		return -EINTR;
1392 
1393 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1394 	if (ret || !unlock)
1395 		mmap_write_unlock(mm);
1396 
1397 	userfaultfd_unmap_complete(mm, &uf);
1398 	return ret;
1399 }
1400 
1401 int vm_munmap(unsigned long start, size_t len)
1402 {
1403 	return __vm_munmap(start, len, false);
1404 }
1405 EXPORT_SYMBOL(vm_munmap);
1406 
1407 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1408 {
1409 	addr = untagged_addr(addr);
1410 	return __vm_munmap(addr, len, true);
1411 }
1412 
1413 
1414 /*
1415  * Emulation of deprecated remap_file_pages() syscall.
1416  */
1417 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1418 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1419 {
1420 
1421 	struct mm_struct *mm = current->mm;
1422 	struct vm_area_struct *vma;
1423 	unsigned long populate = 0;
1424 	unsigned long ret = -EINVAL;
1425 	struct file *file;
1426 	vm_flags_t vm_flags;
1427 
1428 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1429 		     current->comm, current->pid);
1430 
1431 	if (prot)
1432 		return ret;
1433 	start = start & PAGE_MASK;
1434 	size = size & PAGE_MASK;
1435 
1436 	if (start + size <= start)
1437 		return ret;
1438 
1439 	/* Does pgoff wrap? */
1440 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1441 		return ret;
1442 
1443 	if (mmap_read_lock_killable(mm))
1444 		return -EINTR;
1445 
1446 	/*
1447 	 * Look up VMA under read lock first so we can perform the security
1448 	 * without holding locks (which can be problematic). We reacquire a
1449 	 * write lock later and check nothing changed underneath us.
1450 	 */
1451 	vma = vma_lookup(mm, start);
1452 
1453 	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1454 		mmap_read_unlock(mm);
1455 		return -EINVAL;
1456 	}
1457 
1458 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1459 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1460 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1461 
1462 	flags &= MAP_NONBLOCK;
1463 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1464 	if (vma->vm_flags & VM_LOCKED)
1465 		flags |= MAP_LOCKED;
1466 
1467 	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1468 	vm_flags = vma->vm_flags;
1469 	file = get_file(vma->vm_file);
1470 
1471 	mmap_read_unlock(mm);
1472 
1473 	/* Call outside mmap_lock to be consistent with other callers. */
1474 	ret = security_mmap_file(file, prot, flags);
1475 	if (ret) {
1476 		fput(file);
1477 		return ret;
1478 	}
1479 
1480 	ret = -EINVAL;
1481 
1482 	/* OK security check passed, take write lock + let it rip. */
1483 	if (mmap_write_lock_killable(mm)) {
1484 		fput(file);
1485 		return -EINTR;
1486 	}
1487 
1488 	vma = vma_lookup(mm, start);
1489 
1490 	if (!vma)
1491 		goto out;
1492 
1493 	/* Make sure things didn't change under us. */
1494 	if (vma->vm_flags != vm_flags)
1495 		goto out;
1496 	if (vma->vm_file != file)
1497 		goto out;
1498 
1499 	if (start + size > vma->vm_end) {
1500 		VMA_ITERATOR(vmi, mm, vma->vm_end);
1501 		struct vm_area_struct *next, *prev = vma;
1502 
1503 		for_each_vma_range(vmi, next, start + size) {
1504 			/* hole between vmas ? */
1505 			if (next->vm_start != prev->vm_end)
1506 				goto out;
1507 
1508 			if (next->vm_file != vma->vm_file)
1509 				goto out;
1510 
1511 			if (next->vm_flags != vma->vm_flags)
1512 				goto out;
1513 
1514 			if (start + size <= next->vm_end)
1515 				break;
1516 
1517 			prev = next;
1518 		}
1519 
1520 		if (!next)
1521 			goto out;
1522 	}
1523 
1524 	ret = do_mmap(vma->vm_file, start, size,
1525 			prot, flags, 0, pgoff, &populate, NULL);
1526 out:
1527 	mmap_write_unlock(mm);
1528 	fput(file);
1529 	if (populate)
1530 		mm_populate(ret, populate);
1531 	if (!IS_ERR_VALUE(ret))
1532 		ret = 0;
1533 	return ret;
1534 }
1535 
1536 /*
1537  * do_brk_flags() - Increase the brk vma if the flags match.
1538  * @vmi: The vma iterator
1539  * @addr: The start address
1540  * @len: The length of the increase
1541  * @vma: The vma,
1542  * @flags: The VMA Flags
1543  *
1544  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1545  * do not match then create a new anonymous VMA.  Eventually we may be able to
1546  * do some brk-specific accounting here.
1547  */
1548 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1549 		unsigned long addr, unsigned long len, unsigned long flags)
1550 {
1551 	struct mm_struct *mm = current->mm;
1552 
1553 	/*
1554 	 * Check against address space limits by the changed size
1555 	 * Note: This happens *after* clearing old mappings in some code paths.
1556 	 */
1557 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1558 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1559 		return -ENOMEM;
1560 
1561 	if (mm->map_count > sysctl_max_map_count)
1562 		return -ENOMEM;
1563 
1564 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1565 		return -ENOMEM;
1566 
1567 	/*
1568 	 * Expand the existing vma if possible; Note that singular lists do not
1569 	 * occur after forking, so the expand will only happen on new VMAs.
1570 	 */
1571 	if (vma && vma->vm_end == addr) {
1572 		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1573 
1574 		vmg.prev = vma;
1575 		/* vmi is positioned at prev, which this mode expects. */
1576 		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1577 
1578 		if (vma_merge_new_range(&vmg))
1579 			goto out;
1580 		else if (vmg_nomem(&vmg))
1581 			goto unacct_fail;
1582 	}
1583 
1584 	if (vma)
1585 		vma_iter_next_range(vmi);
1586 	/* create a vma struct for an anonymous mapping */
1587 	vma = vm_area_alloc(mm);
1588 	if (!vma)
1589 		goto unacct_fail;
1590 
1591 	vma_set_anonymous(vma);
1592 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1593 	vm_flags_init(vma, flags);
1594 	vma->vm_page_prot = vm_get_page_prot(flags);
1595 	vma_start_write(vma);
1596 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1597 		goto mas_store_fail;
1598 
1599 	mm->map_count++;
1600 	validate_mm(mm);
1601 	ksm_add_vma(vma);
1602 out:
1603 	perf_event_mmap(vma);
1604 	mm->total_vm += len >> PAGE_SHIFT;
1605 	mm->data_vm += len >> PAGE_SHIFT;
1606 	if (flags & VM_LOCKED)
1607 		mm->locked_vm += (len >> PAGE_SHIFT);
1608 	vm_flags_set(vma, VM_SOFTDIRTY);
1609 	return 0;
1610 
1611 mas_store_fail:
1612 	vm_area_free(vma);
1613 unacct_fail:
1614 	vm_unacct_memory(len >> PAGE_SHIFT);
1615 	return -ENOMEM;
1616 }
1617 
1618 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1619 {
1620 	struct mm_struct *mm = current->mm;
1621 	struct vm_area_struct *vma = NULL;
1622 	unsigned long len;
1623 	int ret;
1624 	bool populate;
1625 	LIST_HEAD(uf);
1626 	VMA_ITERATOR(vmi, mm, addr);
1627 
1628 	len = PAGE_ALIGN(request);
1629 	if (len < request)
1630 		return -ENOMEM;
1631 	if (!len)
1632 		return 0;
1633 
1634 	/* Until we need other flags, refuse anything except VM_EXEC. */
1635 	if ((flags & (~VM_EXEC)) != 0)
1636 		return -EINVAL;
1637 
1638 	if (mmap_write_lock_killable(mm))
1639 		return -EINTR;
1640 
1641 	ret = check_brk_limits(addr, len);
1642 	if (ret)
1643 		goto limits_failed;
1644 
1645 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1646 	if (ret)
1647 		goto munmap_failed;
1648 
1649 	vma = vma_prev(&vmi);
1650 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
1651 	populate = ((mm->def_flags & VM_LOCKED) != 0);
1652 	mmap_write_unlock(mm);
1653 	userfaultfd_unmap_complete(mm, &uf);
1654 	if (populate && !ret)
1655 		mm_populate(addr, len);
1656 	return ret;
1657 
1658 munmap_failed:
1659 limits_failed:
1660 	mmap_write_unlock(mm);
1661 	return ret;
1662 }
1663 EXPORT_SYMBOL(vm_brk_flags);
1664 
1665 /* Release all mmaps. */
1666 void exit_mmap(struct mm_struct *mm)
1667 {
1668 	struct mmu_gather tlb;
1669 	struct vm_area_struct *vma;
1670 	unsigned long nr_accounted = 0;
1671 	VMA_ITERATOR(vmi, mm, 0);
1672 	int count = 0;
1673 
1674 	/* mm's last user has gone, and its about to be pulled down */
1675 	mmu_notifier_release(mm);
1676 
1677 	mmap_read_lock(mm);
1678 	arch_exit_mmap(mm);
1679 
1680 	vma = vma_next(&vmi);
1681 	if (!vma || unlikely(xa_is_zero(vma))) {
1682 		/* Can happen if dup_mmap() received an OOM */
1683 		mmap_read_unlock(mm);
1684 		mmap_write_lock(mm);
1685 		goto destroy;
1686 	}
1687 
1688 	lru_add_drain();
1689 	flush_cache_mm(mm);
1690 	tlb_gather_mmu_fullmm(&tlb, mm);
1691 	/* update_hiwater_rss(mm) here? but nobody should be looking */
1692 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1693 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1694 	mmap_read_unlock(mm);
1695 
1696 	/*
1697 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1698 	 * because the memory has been already freed.
1699 	 */
1700 	set_bit(MMF_OOM_SKIP, &mm->flags);
1701 	mmap_write_lock(mm);
1702 	mt_clear_in_rcu(&mm->mm_mt);
1703 	vma_iter_set(&vmi, vma->vm_end);
1704 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1705 		      USER_PGTABLES_CEILING, true);
1706 	tlb_finish_mmu(&tlb);
1707 
1708 	/*
1709 	 * Walk the list again, actually closing and freeing it, with preemption
1710 	 * enabled, without holding any MM locks besides the unreachable
1711 	 * mmap_write_lock.
1712 	 */
1713 	vma_iter_set(&vmi, vma->vm_end);
1714 	do {
1715 		if (vma->vm_flags & VM_ACCOUNT)
1716 			nr_accounted += vma_pages(vma);
1717 		remove_vma(vma, /* unreachable = */ true);
1718 		count++;
1719 		cond_resched();
1720 		vma = vma_next(&vmi);
1721 	} while (vma && likely(!xa_is_zero(vma)));
1722 
1723 	BUG_ON(count != mm->map_count);
1724 
1725 	trace_exit_mmap(mm);
1726 destroy:
1727 	__mt_destroy(&mm->mm_mt);
1728 	mmap_write_unlock(mm);
1729 	vm_unacct_memory(nr_accounted);
1730 }
1731 
1732 /* Insert vm structure into process list sorted by address
1733  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1734  * then i_mmap_rwsem is taken here.
1735  */
1736 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1737 {
1738 	unsigned long charged = vma_pages(vma);
1739 
1740 
1741 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1742 		return -ENOMEM;
1743 
1744 	if ((vma->vm_flags & VM_ACCOUNT) &&
1745 	     security_vm_enough_memory_mm(mm, charged))
1746 		return -ENOMEM;
1747 
1748 	/*
1749 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1750 	 * until its first write fault, when page's anon_vma and index
1751 	 * are set.  But now set the vm_pgoff it will almost certainly
1752 	 * end up with (unless mremap moves it elsewhere before that
1753 	 * first wfault), so /proc/pid/maps tells a consistent story.
1754 	 *
1755 	 * By setting it to reflect the virtual start address of the
1756 	 * vma, merges and splits can happen in a seamless way, just
1757 	 * using the existing file pgoff checks and manipulations.
1758 	 * Similarly in do_mmap and in do_brk_flags.
1759 	 */
1760 	if (vma_is_anonymous(vma)) {
1761 		BUG_ON(vma->anon_vma);
1762 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1763 	}
1764 
1765 	if (vma_link(mm, vma)) {
1766 		if (vma->vm_flags & VM_ACCOUNT)
1767 			vm_unacct_memory(charged);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 /*
1775  * Return true if the calling process may expand its vm space by the passed
1776  * number of pages
1777  */
1778 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1779 {
1780 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1781 		return false;
1782 
1783 	if (is_data_mapping(flags) &&
1784 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1785 		/* Workaround for Valgrind */
1786 		if (rlimit(RLIMIT_DATA) == 0 &&
1787 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1788 			return true;
1789 
1790 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1791 			     current->comm, current->pid,
1792 			     (mm->data_vm + npages) << PAGE_SHIFT,
1793 			     rlimit(RLIMIT_DATA),
1794 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1795 
1796 		if (!ignore_rlimit_data)
1797 			return false;
1798 	}
1799 
1800 	return true;
1801 }
1802 
1803 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1804 {
1805 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1806 
1807 	if (is_exec_mapping(flags))
1808 		mm->exec_vm += npages;
1809 	else if (is_stack_mapping(flags))
1810 		mm->stack_vm += npages;
1811 	else if (is_data_mapping(flags))
1812 		mm->data_vm += npages;
1813 }
1814 
1815 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1816 
1817 /*
1818  * Close hook, called for unmap() and on the old vma for mremap().
1819  *
1820  * Having a close hook prevents vma merging regardless of flags.
1821  */
1822 static void special_mapping_close(struct vm_area_struct *vma)
1823 {
1824 	const struct vm_special_mapping *sm = vma->vm_private_data;
1825 
1826 	if (sm->close)
1827 		sm->close(sm, vma);
1828 }
1829 
1830 static const char *special_mapping_name(struct vm_area_struct *vma)
1831 {
1832 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1833 }
1834 
1835 static int special_mapping_mremap(struct vm_area_struct *new_vma)
1836 {
1837 	struct vm_special_mapping *sm = new_vma->vm_private_data;
1838 
1839 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1840 		return -EFAULT;
1841 
1842 	if (sm->mremap)
1843 		return sm->mremap(sm, new_vma);
1844 
1845 	return 0;
1846 }
1847 
1848 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1849 {
1850 	/*
1851 	 * Forbid splitting special mappings - kernel has expectations over
1852 	 * the number of pages in mapping. Together with VM_DONTEXPAND
1853 	 * the size of vma should stay the same over the special mapping's
1854 	 * lifetime.
1855 	 */
1856 	return -EINVAL;
1857 }
1858 
1859 static const struct vm_operations_struct special_mapping_vmops = {
1860 	.close = special_mapping_close,
1861 	.fault = special_mapping_fault,
1862 	.mremap = special_mapping_mremap,
1863 	.name = special_mapping_name,
1864 	/* vDSO code relies that VVAR can't be accessed remotely */
1865 	.access = NULL,
1866 	.may_split = special_mapping_split,
1867 };
1868 
1869 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1870 {
1871 	struct vm_area_struct *vma = vmf->vma;
1872 	pgoff_t pgoff;
1873 	struct page **pages;
1874 	struct vm_special_mapping *sm = vma->vm_private_data;
1875 
1876 	if (sm->fault)
1877 		return sm->fault(sm, vmf->vma, vmf);
1878 
1879 	pages = sm->pages;
1880 
1881 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1882 		pgoff--;
1883 
1884 	if (*pages) {
1885 		struct page *page = *pages;
1886 		get_page(page);
1887 		vmf->page = page;
1888 		return 0;
1889 	}
1890 
1891 	return VM_FAULT_SIGBUS;
1892 }
1893 
1894 static struct vm_area_struct *__install_special_mapping(
1895 	struct mm_struct *mm,
1896 	unsigned long addr, unsigned long len,
1897 	unsigned long vm_flags, void *priv,
1898 	const struct vm_operations_struct *ops)
1899 {
1900 	int ret;
1901 	struct vm_area_struct *vma;
1902 
1903 	vma = vm_area_alloc(mm);
1904 	if (unlikely(vma == NULL))
1905 		return ERR_PTR(-ENOMEM);
1906 
1907 	vma_set_range(vma, addr, addr + len, 0);
1908 	vm_flags_init(vma, (vm_flags | mm->def_flags |
1909 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
1910 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1911 
1912 	vma->vm_ops = ops;
1913 	vma->vm_private_data = priv;
1914 
1915 	ret = insert_vm_struct(mm, vma);
1916 	if (ret)
1917 		goto out;
1918 
1919 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1920 
1921 	perf_event_mmap(vma);
1922 
1923 	return vma;
1924 
1925 out:
1926 	vm_area_free(vma);
1927 	return ERR_PTR(ret);
1928 }
1929 
1930 bool vma_is_special_mapping(const struct vm_area_struct *vma,
1931 	const struct vm_special_mapping *sm)
1932 {
1933 	return vma->vm_private_data == sm &&
1934 		vma->vm_ops == &special_mapping_vmops;
1935 }
1936 
1937 /*
1938  * Called with mm->mmap_lock held for writing.
1939  * Insert a new vma covering the given region, with the given flags.
1940  * Its pages are supplied by the given array of struct page *.
1941  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1942  * The region past the last page supplied will always produce SIGBUS.
1943  * The array pointer and the pages it points to are assumed to stay alive
1944  * for as long as this mapping might exist.
1945  */
1946 struct vm_area_struct *_install_special_mapping(
1947 	struct mm_struct *mm,
1948 	unsigned long addr, unsigned long len,
1949 	unsigned long vm_flags, const struct vm_special_mapping *spec)
1950 {
1951 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1952 					&special_mapping_vmops);
1953 }
1954 
1955 /*
1956  * initialise the percpu counter for VM
1957  */
1958 void __init mmap_init(void)
1959 {
1960 	int ret;
1961 
1962 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1963 	VM_BUG_ON(ret);
1964 }
1965 
1966 /*
1967  * Initialise sysctl_user_reserve_kbytes.
1968  *
1969  * This is intended to prevent a user from starting a single memory hogging
1970  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1971  * mode.
1972  *
1973  * The default value is min(3% of free memory, 128MB)
1974  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1975  */
1976 static int init_user_reserve(void)
1977 {
1978 	unsigned long free_kbytes;
1979 
1980 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1981 
1982 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1983 	return 0;
1984 }
1985 subsys_initcall(init_user_reserve);
1986 
1987 /*
1988  * Initialise sysctl_admin_reserve_kbytes.
1989  *
1990  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1991  * to log in and kill a memory hogging process.
1992  *
1993  * Systems with more than 256MB will reserve 8MB, enough to recover
1994  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1995  * only reserve 3% of free pages by default.
1996  */
1997 static int init_admin_reserve(void)
1998 {
1999 	unsigned long free_kbytes;
2000 
2001 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2002 
2003 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
2004 	return 0;
2005 }
2006 subsys_initcall(init_admin_reserve);
2007 
2008 /*
2009  * Reinititalise user and admin reserves if memory is added or removed.
2010  *
2011  * The default user reserve max is 128MB, and the default max for the
2012  * admin reserve is 8MB. These are usually, but not always, enough to
2013  * enable recovery from a memory hogging process using login/sshd, a shell,
2014  * and tools like top. It may make sense to increase or even disable the
2015  * reserve depending on the existence of swap or variations in the recovery
2016  * tools. So, the admin may have changed them.
2017  *
2018  * If memory is added and the reserves have been eliminated or increased above
2019  * the default max, then we'll trust the admin.
2020  *
2021  * If memory is removed and there isn't enough free memory, then we
2022  * need to reset the reserves.
2023  *
2024  * Otherwise keep the reserve set by the admin.
2025  */
2026 static int reserve_mem_notifier(struct notifier_block *nb,
2027 			     unsigned long action, void *data)
2028 {
2029 	unsigned long tmp, free_kbytes;
2030 
2031 	switch (action) {
2032 	case MEM_ONLINE:
2033 		/* Default max is 128MB. Leave alone if modified by operator. */
2034 		tmp = sysctl_user_reserve_kbytes;
2035 		if (tmp > 0 && tmp < SZ_128K)
2036 			init_user_reserve();
2037 
2038 		/* Default max is 8MB.  Leave alone if modified by operator. */
2039 		tmp = sysctl_admin_reserve_kbytes;
2040 		if (tmp > 0 && tmp < SZ_8K)
2041 			init_admin_reserve();
2042 
2043 		break;
2044 	case MEM_OFFLINE:
2045 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2046 
2047 		if (sysctl_user_reserve_kbytes > free_kbytes) {
2048 			init_user_reserve();
2049 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
2050 				sysctl_user_reserve_kbytes);
2051 		}
2052 
2053 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
2054 			init_admin_reserve();
2055 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2056 				sysctl_admin_reserve_kbytes);
2057 		}
2058 		break;
2059 	default:
2060 		break;
2061 	}
2062 	return NOTIFY_OK;
2063 }
2064 
2065 static int __meminit init_reserve_notifier(void)
2066 {
2067 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2068 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2069 
2070 	return 0;
2071 }
2072 subsys_initcall(init_reserve_notifier);
2073 
2074 /*
2075  * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2076  * this VMA and its relocated range, which will now reside at [vma->vm_start -
2077  * shift, vma->vm_end - shift).
2078  *
2079  * This function is almost certainly NOT what you want for anything other than
2080  * early executable temporary stack relocation.
2081  */
2082 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2083 {
2084 	/*
2085 	 * The process proceeds as follows:
2086 	 *
2087 	 * 1) Use shift to calculate the new vma endpoints.
2088 	 * 2) Extend vma to cover both the old and new ranges.  This ensures the
2089 	 *    arguments passed to subsequent functions are consistent.
2090 	 * 3) Move vma's page tables to the new range.
2091 	 * 4) Free up any cleared pgd range.
2092 	 * 5) Shrink the vma to cover only the new range.
2093 	 */
2094 
2095 	struct mm_struct *mm = vma->vm_mm;
2096 	unsigned long old_start = vma->vm_start;
2097 	unsigned long old_end = vma->vm_end;
2098 	unsigned long length = old_end - old_start;
2099 	unsigned long new_start = old_start - shift;
2100 	unsigned long new_end = old_end - shift;
2101 	VMA_ITERATOR(vmi, mm, new_start);
2102 	VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2103 	struct vm_area_struct *next;
2104 	struct mmu_gather tlb;
2105 
2106 	BUG_ON(new_start > new_end);
2107 
2108 	/*
2109 	 * ensure there are no vmas between where we want to go
2110 	 * and where we are
2111 	 */
2112 	if (vma != vma_next(&vmi))
2113 		return -EFAULT;
2114 
2115 	vma_iter_prev_range(&vmi);
2116 	/*
2117 	 * cover the whole range: [new_start, old_end)
2118 	 */
2119 	vmg.vma = vma;
2120 	if (vma_expand(&vmg))
2121 		return -ENOMEM;
2122 
2123 	/*
2124 	 * move the page tables downwards, on failure we rely on
2125 	 * process cleanup to remove whatever mess we made.
2126 	 */
2127 	if (length != move_page_tables(vma, old_start,
2128 				       vma, new_start, length, false, true))
2129 		return -ENOMEM;
2130 
2131 	lru_add_drain();
2132 	tlb_gather_mmu(&tlb, mm);
2133 	next = vma_next(&vmi);
2134 	if (new_end > old_start) {
2135 		/*
2136 		 * when the old and new regions overlap clear from new_end.
2137 		 */
2138 		free_pgd_range(&tlb, new_end, old_end, new_end,
2139 			next ? next->vm_start : USER_PGTABLES_CEILING);
2140 	} else {
2141 		/*
2142 		 * otherwise, clean from old_start; this is done to not touch
2143 		 * the address space in [new_end, old_start) some architectures
2144 		 * have constraints on va-space that make this illegal (IA64) -
2145 		 * for the others its just a little faster.
2146 		 */
2147 		free_pgd_range(&tlb, old_start, old_end, new_end,
2148 			next ? next->vm_start : USER_PGTABLES_CEILING);
2149 	}
2150 	tlb_finish_mmu(&tlb);
2151 
2152 	vma_prev(&vmi);
2153 	/* Shrink the vma to just the new range */
2154 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2155 }
2156