xref: /linux/mm/mmap.c (revision 09b35b4192f6682dff96a093ab1930998cdb73b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #include "internal.h"
57 
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)	(0)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
95  * MAP_PRIVATE:
96  *								r: (no) no
97  *								w: (no) no
98  *								x: (yes) yes
99  */
100 pgprot_t protection_map[16] __ro_after_init = {
101 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 };
104 
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
107 {
108 	return prot;
109 }
110 #endif
111 
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
113 {
114 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
117 
118 	return arch_filter_pgprot(ret);
119 }
120 EXPORT_SYMBOL(vm_get_page_prot);
121 
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
123 {
124 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 }
126 
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
129 {
130 	unsigned long vm_flags = vma->vm_flags;
131 	pgprot_t vm_page_prot;
132 
133 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 	if (vma_wants_writenotify(vma, vm_page_prot)) {
135 		vm_flags &= ~VM_SHARED;
136 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
137 	}
138 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
140 }
141 
142 /*
143  * Requires inode->i_mapping->i_mmap_rwsem
144  */
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 		struct file *file, struct address_space *mapping)
147 {
148 	if (vma->vm_flags & VM_DENYWRITE)
149 		atomic_inc(&file_inode(file)->i_writecount);
150 	if (vma->vm_flags & VM_SHARED)
151 		mapping_unmap_writable(mapping);
152 
153 	flush_dcache_mmap_lock(mapping);
154 	vma_interval_tree_remove(vma, &mapping->i_mmap);
155 	flush_dcache_mmap_unlock(mapping);
156 }
157 
158 /*
159  * Unlink a file-based vm structure from its interval tree, to hide
160  * vma from rmap and vmtruncate before freeing its page tables.
161  */
162 void unlink_file_vma(struct vm_area_struct *vma)
163 {
164 	struct file *file = vma->vm_file;
165 
166 	if (file) {
167 		struct address_space *mapping = file->f_mapping;
168 		i_mmap_lock_write(mapping);
169 		__remove_shared_vm_struct(vma, file, mapping);
170 		i_mmap_unlock_write(mapping);
171 	}
172 }
173 
174 /*
175  * Close a vm structure and free it, returning the next.
176  */
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
178 {
179 	struct vm_area_struct *next = vma->vm_next;
180 
181 	might_sleep();
182 	if (vma->vm_ops && vma->vm_ops->close)
183 		vma->vm_ops->close(vma);
184 	if (vma->vm_file)
185 		fput(vma->vm_file);
186 	mpol_put(vma_policy(vma));
187 	vm_area_free(vma);
188 	return next;
189 }
190 
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 		struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
194 {
195 	unsigned long retval;
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	if (down_write_killable(&mm->mmap_sem))
205 		return -EINTR;
206 
207 	origbrk = mm->brk;
208 
209 #ifdef CONFIG_COMPAT_BRK
210 	/*
211 	 * CONFIG_COMPAT_BRK can still be overridden by setting
212 	 * randomize_va_space to 2, which will still cause mm->start_brk
213 	 * to be arbitrarily shifted
214 	 */
215 	if (current->brk_randomized)
216 		min_brk = mm->start_brk;
217 	else
218 		min_brk = mm->end_data;
219 #else
220 	min_brk = mm->start_brk;
221 #endif
222 	if (brk < min_brk)
223 		goto out;
224 
225 	/*
226 	 * Check against rlimit here. If this check is done later after the test
227 	 * of oldbrk with newbrk then it can escape the test and let the data
228 	 * segment grow beyond its set limit the in case where the limit is
229 	 * not page aligned -Ram Gupta
230 	 */
231 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 			      mm->end_data, mm->start_data))
233 		goto out;
234 
235 	newbrk = PAGE_ALIGN(brk);
236 	oldbrk = PAGE_ALIGN(mm->brk);
237 	if (oldbrk == newbrk) {
238 		mm->brk = brk;
239 		goto success;
240 	}
241 
242 	/*
243 	 * Always allow shrinking brk.
244 	 * __do_munmap() may downgrade mmap_sem to read.
245 	 */
246 	if (brk <= mm->brk) {
247 		int ret;
248 
249 		/*
250 		 * mm->brk must to be protected by write mmap_sem so update it
251 		 * before downgrading mmap_sem. When __do_munmap() fails,
252 		 * mm->brk will be restored from origbrk.
253 		 */
254 		mm->brk = brk;
255 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 		if (ret < 0) {
257 			mm->brk = origbrk;
258 			goto out;
259 		} else if (ret == 1) {
260 			downgraded = true;
261 		}
262 		goto success;
263 	}
264 
265 	/* Check against existing mmap mappings. */
266 	next = find_vma(mm, oldbrk);
267 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
268 		goto out;
269 
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 		goto out;
273 	mm->brk = brk;
274 
275 success:
276 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
277 	if (downgraded)
278 		up_read(&mm->mmap_sem);
279 	else
280 		up_write(&mm->mmap_sem);
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);
284 	return brk;
285 
286 out:
287 	retval = origbrk;
288 	up_write(&mm->mmap_sem);
289 	return retval;
290 }
291 
292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
293 {
294 	unsigned long gap, prev_end;
295 
296 	/*
297 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
298 	 * allow two stack_guard_gaps between them here, and when choosing
299 	 * an unmapped area; whereas when expanding we only require one.
300 	 * That's a little inconsistent, but keeps the code here simpler.
301 	 */
302 	gap = vm_start_gap(vma);
303 	if (vma->vm_prev) {
304 		prev_end = vm_end_gap(vma->vm_prev);
305 		if (gap > prev_end)
306 			gap -= prev_end;
307 		else
308 			gap = 0;
309 	}
310 	return gap;
311 }
312 
313 #ifdef CONFIG_DEBUG_VM_RB
314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
315 {
316 	unsigned long max = vma_compute_gap(vma), subtree_gap;
317 	if (vma->vm_rb.rb_left) {
318 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
319 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
320 		if (subtree_gap > max)
321 			max = subtree_gap;
322 	}
323 	if (vma->vm_rb.rb_right) {
324 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
325 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
326 		if (subtree_gap > max)
327 			max = subtree_gap;
328 	}
329 	return max;
330 }
331 
332 static int browse_rb(struct mm_struct *mm)
333 {
334 	struct rb_root *root = &mm->mm_rb;
335 	int i = 0, j, bug = 0;
336 	struct rb_node *nd, *pn = NULL;
337 	unsigned long prev = 0, pend = 0;
338 
339 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
340 		struct vm_area_struct *vma;
341 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
342 		if (vma->vm_start < prev) {
343 			pr_emerg("vm_start %lx < prev %lx\n",
344 				  vma->vm_start, prev);
345 			bug = 1;
346 		}
347 		if (vma->vm_start < pend) {
348 			pr_emerg("vm_start %lx < pend %lx\n",
349 				  vma->vm_start, pend);
350 			bug = 1;
351 		}
352 		if (vma->vm_start > vma->vm_end) {
353 			pr_emerg("vm_start %lx > vm_end %lx\n",
354 				  vma->vm_start, vma->vm_end);
355 			bug = 1;
356 		}
357 		spin_lock(&mm->page_table_lock);
358 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
359 			pr_emerg("free gap %lx, correct %lx\n",
360 			       vma->rb_subtree_gap,
361 			       vma_compute_subtree_gap(vma));
362 			bug = 1;
363 		}
364 		spin_unlock(&mm->page_table_lock);
365 		i++;
366 		pn = nd;
367 		prev = vma->vm_start;
368 		pend = vma->vm_end;
369 	}
370 	j = 0;
371 	for (nd = pn; nd; nd = rb_prev(nd))
372 		j++;
373 	if (i != j) {
374 		pr_emerg("backwards %d, forwards %d\n", j, i);
375 		bug = 1;
376 	}
377 	return bug ? -1 : i;
378 }
379 
380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
381 {
382 	struct rb_node *nd;
383 
384 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 		struct vm_area_struct *vma;
386 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 		VM_BUG_ON_VMA(vma != ignore &&
388 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
389 			vma);
390 	}
391 }
392 
393 static void validate_mm(struct mm_struct *mm)
394 {
395 	int bug = 0;
396 	int i = 0;
397 	unsigned long highest_address = 0;
398 	struct vm_area_struct *vma = mm->mmap;
399 
400 	while (vma) {
401 		struct anon_vma *anon_vma = vma->anon_vma;
402 		struct anon_vma_chain *avc;
403 
404 		if (anon_vma) {
405 			anon_vma_lock_read(anon_vma);
406 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
407 				anon_vma_interval_tree_verify(avc);
408 			anon_vma_unlock_read(anon_vma);
409 		}
410 
411 		highest_address = vm_end_gap(vma);
412 		vma = vma->vm_next;
413 		i++;
414 	}
415 	if (i != mm->map_count) {
416 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
417 		bug = 1;
418 	}
419 	if (highest_address != mm->highest_vm_end) {
420 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
421 			  mm->highest_vm_end, highest_address);
422 		bug = 1;
423 	}
424 	i = browse_rb(mm);
425 	if (i != mm->map_count) {
426 		if (i != -1)
427 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
428 		bug = 1;
429 	}
430 	VM_BUG_ON_MM(bug, mm);
431 }
432 #else
433 #define validate_mm_rb(root, ignore) do { } while (0)
434 #define validate_mm(mm) do { } while (0)
435 #endif
436 
437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
438 			 struct vm_area_struct, vm_rb,
439 			 unsigned long, rb_subtree_gap, vma_compute_gap)
440 
441 /*
442  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443  * vma->vm_prev->vm_end values changed, without modifying the vma's position
444  * in the rbtree.
445  */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448 	/*
449 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
450 	 * a callback function that does exactly what we want.
451 	 */
452 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454 
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456 				 struct rb_root *root)
457 {
458 	/* All rb_subtree_gap values must be consistent prior to insertion */
459 	validate_mm_rb(root, NULL);
460 
461 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463 
464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466 	/*
467 	 * Note rb_erase_augmented is a fairly large inline function,
468 	 * so make sure we instantiate it only once with our desired
469 	 * augmented rbtree callbacks.
470 	 */
471 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
472 }
473 
474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
475 						struct rb_root *root,
476 						struct vm_area_struct *ignore)
477 {
478 	/*
479 	 * All rb_subtree_gap values must be consistent prior to erase,
480 	 * with the possible exception of the "next" vma being erased if
481 	 * next->vm_start was reduced.
482 	 */
483 	validate_mm_rb(root, ignore);
484 
485 	__vma_rb_erase(vma, root);
486 }
487 
488 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
489 					 struct rb_root *root)
490 {
491 	/*
492 	 * All rb_subtree_gap values must be consistent prior to erase,
493 	 * with the possible exception of the vma being erased.
494 	 */
495 	validate_mm_rb(root, vma);
496 
497 	__vma_rb_erase(vma, root);
498 }
499 
500 /*
501  * vma has some anon_vma assigned, and is already inserted on that
502  * anon_vma's interval trees.
503  *
504  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
505  * vma must be removed from the anon_vma's interval trees using
506  * anon_vma_interval_tree_pre_update_vma().
507  *
508  * After the update, the vma will be reinserted using
509  * anon_vma_interval_tree_post_update_vma().
510  *
511  * The entire update must be protected by exclusive mmap_sem and by
512  * the root anon_vma's mutex.
513  */
514 static inline void
515 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
516 {
517 	struct anon_vma_chain *avc;
518 
519 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
521 }
522 
523 static inline void
524 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
525 {
526 	struct anon_vma_chain *avc;
527 
528 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
529 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
530 }
531 
532 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
533 		unsigned long end, struct vm_area_struct **pprev,
534 		struct rb_node ***rb_link, struct rb_node **rb_parent)
535 {
536 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
537 
538 	__rb_link = &mm->mm_rb.rb_node;
539 	rb_prev = __rb_parent = NULL;
540 
541 	while (*__rb_link) {
542 		struct vm_area_struct *vma_tmp;
543 
544 		__rb_parent = *__rb_link;
545 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546 
547 		if (vma_tmp->vm_end > addr) {
548 			/* Fail if an existing vma overlaps the area */
549 			if (vma_tmp->vm_start < end)
550 				return -ENOMEM;
551 			__rb_link = &__rb_parent->rb_left;
552 		} else {
553 			rb_prev = __rb_parent;
554 			__rb_link = &__rb_parent->rb_right;
555 		}
556 	}
557 
558 	*pprev = NULL;
559 	if (rb_prev)
560 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561 	*rb_link = __rb_link;
562 	*rb_parent = __rb_parent;
563 	return 0;
564 }
565 
566 static unsigned long count_vma_pages_range(struct mm_struct *mm,
567 		unsigned long addr, unsigned long end)
568 {
569 	unsigned long nr_pages = 0;
570 	struct vm_area_struct *vma;
571 
572 	/* Find first overlaping mapping */
573 	vma = find_vma_intersection(mm, addr, end);
574 	if (!vma)
575 		return 0;
576 
577 	nr_pages = (min(end, vma->vm_end) -
578 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
579 
580 	/* Iterate over the rest of the overlaps */
581 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
582 		unsigned long overlap_len;
583 
584 		if (vma->vm_start > end)
585 			break;
586 
587 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
588 		nr_pages += overlap_len >> PAGE_SHIFT;
589 	}
590 
591 	return nr_pages;
592 }
593 
594 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
595 		struct rb_node **rb_link, struct rb_node *rb_parent)
596 {
597 	/* Update tracking information for the gap following the new vma. */
598 	if (vma->vm_next)
599 		vma_gap_update(vma->vm_next);
600 	else
601 		mm->highest_vm_end = vm_end_gap(vma);
602 
603 	/*
604 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
605 	 * correct insertion point for that vma. As a result, we could not
606 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
607 	 * So, we first insert the vma with a zero rb_subtree_gap value
608 	 * (to be consistent with what we did on the way down), and then
609 	 * immediately update the gap to the correct value. Finally we
610 	 * rebalance the rbtree after all augmented values have been set.
611 	 */
612 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
613 	vma->rb_subtree_gap = 0;
614 	vma_gap_update(vma);
615 	vma_rb_insert(vma, &mm->mm_rb);
616 }
617 
618 static void __vma_link_file(struct vm_area_struct *vma)
619 {
620 	struct file *file;
621 
622 	file = vma->vm_file;
623 	if (file) {
624 		struct address_space *mapping = file->f_mapping;
625 
626 		if (vma->vm_flags & VM_DENYWRITE)
627 			atomic_dec(&file_inode(file)->i_writecount);
628 		if (vma->vm_flags & VM_SHARED)
629 			atomic_inc(&mapping->i_mmap_writable);
630 
631 		flush_dcache_mmap_lock(mapping);
632 		vma_interval_tree_insert(vma, &mapping->i_mmap);
633 		flush_dcache_mmap_unlock(mapping);
634 	}
635 }
636 
637 static void
638 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
639 	struct vm_area_struct *prev, struct rb_node **rb_link,
640 	struct rb_node *rb_parent)
641 {
642 	__vma_link_list(mm, vma, prev, rb_parent);
643 	__vma_link_rb(mm, vma, rb_link, rb_parent);
644 }
645 
646 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
647 			struct vm_area_struct *prev, struct rb_node **rb_link,
648 			struct rb_node *rb_parent)
649 {
650 	struct address_space *mapping = NULL;
651 
652 	if (vma->vm_file) {
653 		mapping = vma->vm_file->f_mapping;
654 		i_mmap_lock_write(mapping);
655 	}
656 
657 	__vma_link(mm, vma, prev, rb_link, rb_parent);
658 	__vma_link_file(vma);
659 
660 	if (mapping)
661 		i_mmap_unlock_write(mapping);
662 
663 	mm->map_count++;
664 	validate_mm(mm);
665 }
666 
667 /*
668  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
669  * mm's list and rbtree.  It has already been inserted into the interval tree.
670  */
671 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
672 {
673 	struct vm_area_struct *prev;
674 	struct rb_node **rb_link, *rb_parent;
675 
676 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
677 			   &prev, &rb_link, &rb_parent))
678 		BUG();
679 	__vma_link(mm, vma, prev, rb_link, rb_parent);
680 	mm->map_count++;
681 }
682 
683 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
684 						struct vm_area_struct *vma,
685 						struct vm_area_struct *prev,
686 						bool has_prev,
687 						struct vm_area_struct *ignore)
688 {
689 	struct vm_area_struct *next;
690 
691 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
692 	next = vma->vm_next;
693 	if (has_prev)
694 		prev->vm_next = next;
695 	else {
696 		prev = vma->vm_prev;
697 		if (prev)
698 			prev->vm_next = next;
699 		else
700 			mm->mmap = next;
701 	}
702 	if (next)
703 		next->vm_prev = prev;
704 
705 	/* Kill the cache */
706 	vmacache_invalidate(mm);
707 }
708 
709 static inline void __vma_unlink_prev(struct mm_struct *mm,
710 				     struct vm_area_struct *vma,
711 				     struct vm_area_struct *prev)
712 {
713 	__vma_unlink_common(mm, vma, prev, true, vma);
714 }
715 
716 /*
717  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
718  * is already present in an i_mmap tree without adjusting the tree.
719  * The following helper function should be used when such adjustments
720  * are necessary.  The "insert" vma (if any) is to be inserted
721  * before we drop the necessary locks.
722  */
723 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
724 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
725 	struct vm_area_struct *expand)
726 {
727 	struct mm_struct *mm = vma->vm_mm;
728 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
729 	struct address_space *mapping = NULL;
730 	struct rb_root_cached *root = NULL;
731 	struct anon_vma *anon_vma = NULL;
732 	struct file *file = vma->vm_file;
733 	bool start_changed = false, end_changed = false;
734 	long adjust_next = 0;
735 	int remove_next = 0;
736 
737 	if (next && !insert) {
738 		struct vm_area_struct *exporter = NULL, *importer = NULL;
739 
740 		if (end >= next->vm_end) {
741 			/*
742 			 * vma expands, overlapping all the next, and
743 			 * perhaps the one after too (mprotect case 6).
744 			 * The only other cases that gets here are
745 			 * case 1, case 7 and case 8.
746 			 */
747 			if (next == expand) {
748 				/*
749 				 * The only case where we don't expand "vma"
750 				 * and we expand "next" instead is case 8.
751 				 */
752 				VM_WARN_ON(end != next->vm_end);
753 				/*
754 				 * remove_next == 3 means we're
755 				 * removing "vma" and that to do so we
756 				 * swapped "vma" and "next".
757 				 */
758 				remove_next = 3;
759 				VM_WARN_ON(file != next->vm_file);
760 				swap(vma, next);
761 			} else {
762 				VM_WARN_ON(expand != vma);
763 				/*
764 				 * case 1, 6, 7, remove_next == 2 is case 6,
765 				 * remove_next == 1 is case 1 or 7.
766 				 */
767 				remove_next = 1 + (end > next->vm_end);
768 				VM_WARN_ON(remove_next == 2 &&
769 					   end != next->vm_next->vm_end);
770 				VM_WARN_ON(remove_next == 1 &&
771 					   end != next->vm_end);
772 				/* trim end to next, for case 6 first pass */
773 				end = next->vm_end;
774 			}
775 
776 			exporter = next;
777 			importer = vma;
778 
779 			/*
780 			 * If next doesn't have anon_vma, import from vma after
781 			 * next, if the vma overlaps with it.
782 			 */
783 			if (remove_next == 2 && !next->anon_vma)
784 				exporter = next->vm_next;
785 
786 		} else if (end > next->vm_start) {
787 			/*
788 			 * vma expands, overlapping part of the next:
789 			 * mprotect case 5 shifting the boundary up.
790 			 */
791 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
792 			exporter = next;
793 			importer = vma;
794 			VM_WARN_ON(expand != importer);
795 		} else if (end < vma->vm_end) {
796 			/*
797 			 * vma shrinks, and !insert tells it's not
798 			 * split_vma inserting another: so it must be
799 			 * mprotect case 4 shifting the boundary down.
800 			 */
801 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
802 			exporter = vma;
803 			importer = next;
804 			VM_WARN_ON(expand != importer);
805 		}
806 
807 		/*
808 		 * Easily overlooked: when mprotect shifts the boundary,
809 		 * make sure the expanding vma has anon_vma set if the
810 		 * shrinking vma had, to cover any anon pages imported.
811 		 */
812 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
813 			int error;
814 
815 			importer->anon_vma = exporter->anon_vma;
816 			error = anon_vma_clone(importer, exporter);
817 			if (error)
818 				return error;
819 		}
820 	}
821 again:
822 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
823 
824 	if (file) {
825 		mapping = file->f_mapping;
826 		root = &mapping->i_mmap;
827 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
828 
829 		if (adjust_next)
830 			uprobe_munmap(next, next->vm_start, next->vm_end);
831 
832 		i_mmap_lock_write(mapping);
833 		if (insert) {
834 			/*
835 			 * Put into interval tree now, so instantiated pages
836 			 * are visible to arm/parisc __flush_dcache_page
837 			 * throughout; but we cannot insert into address
838 			 * space until vma start or end is updated.
839 			 */
840 			__vma_link_file(insert);
841 		}
842 	}
843 
844 	anon_vma = vma->anon_vma;
845 	if (!anon_vma && adjust_next)
846 		anon_vma = next->anon_vma;
847 	if (anon_vma) {
848 		VM_WARN_ON(adjust_next && next->anon_vma &&
849 			   anon_vma != next->anon_vma);
850 		anon_vma_lock_write(anon_vma);
851 		anon_vma_interval_tree_pre_update_vma(vma);
852 		if (adjust_next)
853 			anon_vma_interval_tree_pre_update_vma(next);
854 	}
855 
856 	if (root) {
857 		flush_dcache_mmap_lock(mapping);
858 		vma_interval_tree_remove(vma, root);
859 		if (adjust_next)
860 			vma_interval_tree_remove(next, root);
861 	}
862 
863 	if (start != vma->vm_start) {
864 		vma->vm_start = start;
865 		start_changed = true;
866 	}
867 	if (end != vma->vm_end) {
868 		vma->vm_end = end;
869 		end_changed = true;
870 	}
871 	vma->vm_pgoff = pgoff;
872 	if (adjust_next) {
873 		next->vm_start += adjust_next << PAGE_SHIFT;
874 		next->vm_pgoff += adjust_next;
875 	}
876 
877 	if (root) {
878 		if (adjust_next)
879 			vma_interval_tree_insert(next, root);
880 		vma_interval_tree_insert(vma, root);
881 		flush_dcache_mmap_unlock(mapping);
882 	}
883 
884 	if (remove_next) {
885 		/*
886 		 * vma_merge has merged next into vma, and needs
887 		 * us to remove next before dropping the locks.
888 		 */
889 		if (remove_next != 3)
890 			__vma_unlink_prev(mm, next, vma);
891 		else
892 			/*
893 			 * vma is not before next if they've been
894 			 * swapped.
895 			 *
896 			 * pre-swap() next->vm_start was reduced so
897 			 * tell validate_mm_rb to ignore pre-swap()
898 			 * "next" (which is stored in post-swap()
899 			 * "vma").
900 			 */
901 			__vma_unlink_common(mm, next, NULL, false, vma);
902 		if (file)
903 			__remove_shared_vm_struct(next, file, mapping);
904 	} else if (insert) {
905 		/*
906 		 * split_vma has split insert from vma, and needs
907 		 * us to insert it before dropping the locks
908 		 * (it may either follow vma or precede it).
909 		 */
910 		__insert_vm_struct(mm, insert);
911 	} else {
912 		if (start_changed)
913 			vma_gap_update(vma);
914 		if (end_changed) {
915 			if (!next)
916 				mm->highest_vm_end = vm_end_gap(vma);
917 			else if (!adjust_next)
918 				vma_gap_update(next);
919 		}
920 	}
921 
922 	if (anon_vma) {
923 		anon_vma_interval_tree_post_update_vma(vma);
924 		if (adjust_next)
925 			anon_vma_interval_tree_post_update_vma(next);
926 		anon_vma_unlock_write(anon_vma);
927 	}
928 	if (mapping)
929 		i_mmap_unlock_write(mapping);
930 
931 	if (root) {
932 		uprobe_mmap(vma);
933 
934 		if (adjust_next)
935 			uprobe_mmap(next);
936 	}
937 
938 	if (remove_next) {
939 		if (file) {
940 			uprobe_munmap(next, next->vm_start, next->vm_end);
941 			fput(file);
942 		}
943 		if (next->anon_vma)
944 			anon_vma_merge(vma, next);
945 		mm->map_count--;
946 		mpol_put(vma_policy(next));
947 		vm_area_free(next);
948 		/*
949 		 * In mprotect's case 6 (see comments on vma_merge),
950 		 * we must remove another next too. It would clutter
951 		 * up the code too much to do both in one go.
952 		 */
953 		if (remove_next != 3) {
954 			/*
955 			 * If "next" was removed and vma->vm_end was
956 			 * expanded (up) over it, in turn
957 			 * "next->vm_prev->vm_end" changed and the
958 			 * "vma->vm_next" gap must be updated.
959 			 */
960 			next = vma->vm_next;
961 		} else {
962 			/*
963 			 * For the scope of the comment "next" and
964 			 * "vma" considered pre-swap(): if "vma" was
965 			 * removed, next->vm_start was expanded (down)
966 			 * over it and the "next" gap must be updated.
967 			 * Because of the swap() the post-swap() "vma"
968 			 * actually points to pre-swap() "next"
969 			 * (post-swap() "next" as opposed is now a
970 			 * dangling pointer).
971 			 */
972 			next = vma;
973 		}
974 		if (remove_next == 2) {
975 			remove_next = 1;
976 			end = next->vm_end;
977 			goto again;
978 		}
979 		else if (next)
980 			vma_gap_update(next);
981 		else {
982 			/*
983 			 * If remove_next == 2 we obviously can't
984 			 * reach this path.
985 			 *
986 			 * If remove_next == 3 we can't reach this
987 			 * path because pre-swap() next is always not
988 			 * NULL. pre-swap() "next" is not being
989 			 * removed and its next->vm_end is not altered
990 			 * (and furthermore "end" already matches
991 			 * next->vm_end in remove_next == 3).
992 			 *
993 			 * We reach this only in the remove_next == 1
994 			 * case if the "next" vma that was removed was
995 			 * the highest vma of the mm. However in such
996 			 * case next->vm_end == "end" and the extended
997 			 * "vma" has vma->vm_end == next->vm_end so
998 			 * mm->highest_vm_end doesn't need any update
999 			 * in remove_next == 1 case.
1000 			 */
1001 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1002 		}
1003 	}
1004 	if (insert && file)
1005 		uprobe_mmap(insert);
1006 
1007 	validate_mm(mm);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * If the vma has a ->close operation then the driver probably needs to release
1014  * per-vma resources, so we don't attempt to merge those.
1015  */
1016 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1017 				struct file *file, unsigned long vm_flags,
1018 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1019 {
1020 	/*
1021 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1022 	 * match the flags but dirty bit -- the caller should mark
1023 	 * merged VMA as dirty. If dirty bit won't be excluded from
1024 	 * comparison, we increase pressure on the memory system forcing
1025 	 * the kernel to generate new VMAs when old one could be
1026 	 * extended instead.
1027 	 */
1028 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1029 		return 0;
1030 	if (vma->vm_file != file)
1031 		return 0;
1032 	if (vma->vm_ops && vma->vm_ops->close)
1033 		return 0;
1034 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1035 		return 0;
1036 	return 1;
1037 }
1038 
1039 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1040 					struct anon_vma *anon_vma2,
1041 					struct vm_area_struct *vma)
1042 {
1043 	/*
1044 	 * The list_is_singular() test is to avoid merging VMA cloned from
1045 	 * parents. This can improve scalability caused by anon_vma lock.
1046 	 */
1047 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1048 		list_is_singular(&vma->anon_vma_chain)))
1049 		return 1;
1050 	return anon_vma1 == anon_vma2;
1051 }
1052 
1053 /*
1054  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1055  * in front of (at a lower virtual address and file offset than) the vma.
1056  *
1057  * We cannot merge two vmas if they have differently assigned (non-NULL)
1058  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1059  *
1060  * We don't check here for the merged mmap wrapping around the end of pagecache
1061  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1062  * wrap, nor mmaps which cover the final page at index -1UL.
1063  */
1064 static int
1065 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1066 		     struct anon_vma *anon_vma, struct file *file,
1067 		     pgoff_t vm_pgoff,
1068 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1069 {
1070 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1071 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1072 		if (vma->vm_pgoff == vm_pgoff)
1073 			return 1;
1074 	}
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1080  * beyond (at a higher virtual address and file offset than) the vma.
1081  *
1082  * We cannot merge two vmas if they have differently assigned (non-NULL)
1083  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1084  */
1085 static int
1086 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1087 		    struct anon_vma *anon_vma, struct file *file,
1088 		    pgoff_t vm_pgoff,
1089 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1090 {
1091 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1092 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1093 		pgoff_t vm_pglen;
1094 		vm_pglen = vma_pages(vma);
1095 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1096 			return 1;
1097 	}
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1103  * whether that can be merged with its predecessor or its successor.
1104  * Or both (it neatly fills a hole).
1105  *
1106  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1107  * certain not to be mapped by the time vma_merge is called; but when
1108  * called for mprotect, it is certain to be already mapped (either at
1109  * an offset within prev, or at the start of next), and the flags of
1110  * this area are about to be changed to vm_flags - and the no-change
1111  * case has already been eliminated.
1112  *
1113  * The following mprotect cases have to be considered, where AAAA is
1114  * the area passed down from mprotect_fixup, never extending beyond one
1115  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1116  *
1117  *     AAAA             AAAA                AAAA          AAAA
1118  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1119  *    cannot merge    might become    might become    might become
1120  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1121  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1122  *    mremap move:                                    PPPPXXXXXXXX 8
1123  *        AAAA
1124  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1125  *    might become    case 1 below    case 2 below    case 3 below
1126  *
1127  * It is important for case 8 that the vma NNNN overlapping the
1128  * region AAAA is never going to extended over XXXX. Instead XXXX must
1129  * be extended in region AAAA and NNNN must be removed. This way in
1130  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1131  * rmap_locks, the properties of the merged vma will be already
1132  * correct for the whole merged range. Some of those properties like
1133  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1134  * be correct for the whole merged range immediately after the
1135  * rmap_locks are released. Otherwise if XXXX would be removed and
1136  * NNNN would be extended over the XXXX range, remove_migration_ptes
1137  * or other rmap walkers (if working on addresses beyond the "end"
1138  * parameter) may establish ptes with the wrong permissions of NNNN
1139  * instead of the right permissions of XXXX.
1140  */
1141 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1142 			struct vm_area_struct *prev, unsigned long addr,
1143 			unsigned long end, unsigned long vm_flags,
1144 			struct anon_vma *anon_vma, struct file *file,
1145 			pgoff_t pgoff, struct mempolicy *policy,
1146 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1147 {
1148 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1149 	struct vm_area_struct *area, *next;
1150 	int err;
1151 
1152 	/*
1153 	 * We later require that vma->vm_flags == vm_flags,
1154 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1155 	 */
1156 	if (vm_flags & VM_SPECIAL)
1157 		return NULL;
1158 
1159 	if (prev)
1160 		next = prev->vm_next;
1161 	else
1162 		next = mm->mmap;
1163 	area = next;
1164 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1165 		next = next->vm_next;
1166 
1167 	/* verify some invariant that must be enforced by the caller */
1168 	VM_WARN_ON(prev && addr <= prev->vm_start);
1169 	VM_WARN_ON(area && end > area->vm_end);
1170 	VM_WARN_ON(addr >= end);
1171 
1172 	/*
1173 	 * Can it merge with the predecessor?
1174 	 */
1175 	if (prev && prev->vm_end == addr &&
1176 			mpol_equal(vma_policy(prev), policy) &&
1177 			can_vma_merge_after(prev, vm_flags,
1178 					    anon_vma, file, pgoff,
1179 					    vm_userfaultfd_ctx)) {
1180 		/*
1181 		 * OK, it can.  Can we now merge in the successor as well?
1182 		 */
1183 		if (next && end == next->vm_start &&
1184 				mpol_equal(policy, vma_policy(next)) &&
1185 				can_vma_merge_before(next, vm_flags,
1186 						     anon_vma, file,
1187 						     pgoff+pglen,
1188 						     vm_userfaultfd_ctx) &&
1189 				is_mergeable_anon_vma(prev->anon_vma,
1190 						      next->anon_vma, NULL)) {
1191 							/* cases 1, 6 */
1192 			err = __vma_adjust(prev, prev->vm_start,
1193 					 next->vm_end, prev->vm_pgoff, NULL,
1194 					 prev);
1195 		} else					/* cases 2, 5, 7 */
1196 			err = __vma_adjust(prev, prev->vm_start,
1197 					 end, prev->vm_pgoff, NULL, prev);
1198 		if (err)
1199 			return NULL;
1200 		khugepaged_enter_vma_merge(prev, vm_flags);
1201 		return prev;
1202 	}
1203 
1204 	/*
1205 	 * Can this new request be merged in front of next?
1206 	 */
1207 	if (next && end == next->vm_start &&
1208 			mpol_equal(policy, vma_policy(next)) &&
1209 			can_vma_merge_before(next, vm_flags,
1210 					     anon_vma, file, pgoff+pglen,
1211 					     vm_userfaultfd_ctx)) {
1212 		if (prev && addr < prev->vm_end)	/* case 4 */
1213 			err = __vma_adjust(prev, prev->vm_start,
1214 					 addr, prev->vm_pgoff, NULL, next);
1215 		else {					/* cases 3, 8 */
1216 			err = __vma_adjust(area, addr, next->vm_end,
1217 					 next->vm_pgoff - pglen, NULL, next);
1218 			/*
1219 			 * In case 3 area is already equal to next and
1220 			 * this is a noop, but in case 8 "area" has
1221 			 * been removed and next was expanded over it.
1222 			 */
1223 			area = next;
1224 		}
1225 		if (err)
1226 			return NULL;
1227 		khugepaged_enter_vma_merge(area, vm_flags);
1228 		return area;
1229 	}
1230 
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * Rough compatbility check to quickly see if it's even worth looking
1236  * at sharing an anon_vma.
1237  *
1238  * They need to have the same vm_file, and the flags can only differ
1239  * in things that mprotect may change.
1240  *
1241  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1242  * we can merge the two vma's. For example, we refuse to merge a vma if
1243  * there is a vm_ops->close() function, because that indicates that the
1244  * driver is doing some kind of reference counting. But that doesn't
1245  * really matter for the anon_vma sharing case.
1246  */
1247 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1248 {
1249 	return a->vm_end == b->vm_start &&
1250 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1251 		a->vm_file == b->vm_file &&
1252 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1253 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1254 }
1255 
1256 /*
1257  * Do some basic sanity checking to see if we can re-use the anon_vma
1258  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1259  * the same as 'old', the other will be the new one that is trying
1260  * to share the anon_vma.
1261  *
1262  * NOTE! This runs with mm_sem held for reading, so it is possible that
1263  * the anon_vma of 'old' is concurrently in the process of being set up
1264  * by another page fault trying to merge _that_. But that's ok: if it
1265  * is being set up, that automatically means that it will be a singleton
1266  * acceptable for merging, so we can do all of this optimistically. But
1267  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1268  *
1269  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1270  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1271  * is to return an anon_vma that is "complex" due to having gone through
1272  * a fork).
1273  *
1274  * We also make sure that the two vma's are compatible (adjacent,
1275  * and with the same memory policies). That's all stable, even with just
1276  * a read lock on the mm_sem.
1277  */
1278 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1279 {
1280 	if (anon_vma_compatible(a, b)) {
1281 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1282 
1283 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1284 			return anon_vma;
1285 	}
1286 	return NULL;
1287 }
1288 
1289 /*
1290  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1291  * neighbouring vmas for a suitable anon_vma, before it goes off
1292  * to allocate a new anon_vma.  It checks because a repetitive
1293  * sequence of mprotects and faults may otherwise lead to distinct
1294  * anon_vmas being allocated, preventing vma merge in subsequent
1295  * mprotect.
1296  */
1297 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1298 {
1299 	struct anon_vma *anon_vma;
1300 	struct vm_area_struct *near;
1301 
1302 	near = vma->vm_next;
1303 	if (!near)
1304 		goto try_prev;
1305 
1306 	anon_vma = reusable_anon_vma(near, vma, near);
1307 	if (anon_vma)
1308 		return anon_vma;
1309 try_prev:
1310 	near = vma->vm_prev;
1311 	if (!near)
1312 		goto none;
1313 
1314 	anon_vma = reusable_anon_vma(near, near, vma);
1315 	if (anon_vma)
1316 		return anon_vma;
1317 none:
1318 	/*
1319 	 * There's no absolute need to look only at touching neighbours:
1320 	 * we could search further afield for "compatible" anon_vmas.
1321 	 * But it would probably just be a waste of time searching,
1322 	 * or lead to too many vmas hanging off the same anon_vma.
1323 	 * We're trying to allow mprotect remerging later on,
1324 	 * not trying to minimize memory used for anon_vmas.
1325 	 */
1326 	return NULL;
1327 }
1328 
1329 /*
1330  * If a hint addr is less than mmap_min_addr change hint to be as
1331  * low as possible but still greater than mmap_min_addr
1332  */
1333 static inline unsigned long round_hint_to_min(unsigned long hint)
1334 {
1335 	hint &= PAGE_MASK;
1336 	if (((void *)hint != NULL) &&
1337 	    (hint < mmap_min_addr))
1338 		return PAGE_ALIGN(mmap_min_addr);
1339 	return hint;
1340 }
1341 
1342 static inline int mlock_future_check(struct mm_struct *mm,
1343 				     unsigned long flags,
1344 				     unsigned long len)
1345 {
1346 	unsigned long locked, lock_limit;
1347 
1348 	/*  mlock MCL_FUTURE? */
1349 	if (flags & VM_LOCKED) {
1350 		locked = len >> PAGE_SHIFT;
1351 		locked += mm->locked_vm;
1352 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1353 		lock_limit >>= PAGE_SHIFT;
1354 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1355 			return -EAGAIN;
1356 	}
1357 	return 0;
1358 }
1359 
1360 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1361 {
1362 	if (S_ISREG(inode->i_mode))
1363 		return MAX_LFS_FILESIZE;
1364 
1365 	if (S_ISBLK(inode->i_mode))
1366 		return MAX_LFS_FILESIZE;
1367 
1368 	if (S_ISSOCK(inode->i_mode))
1369 		return MAX_LFS_FILESIZE;
1370 
1371 	/* Special "we do even unsigned file positions" case */
1372 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1373 		return 0;
1374 
1375 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1376 	return ULONG_MAX;
1377 }
1378 
1379 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1380 				unsigned long pgoff, unsigned long len)
1381 {
1382 	u64 maxsize = file_mmap_size_max(file, inode);
1383 
1384 	if (maxsize && len > maxsize)
1385 		return false;
1386 	maxsize -= len;
1387 	if (pgoff > maxsize >> PAGE_SHIFT)
1388 		return false;
1389 	return true;
1390 }
1391 
1392 /*
1393  * The caller must hold down_write(&current->mm->mmap_sem).
1394  */
1395 unsigned long do_mmap(struct file *file, unsigned long addr,
1396 			unsigned long len, unsigned long prot,
1397 			unsigned long flags, vm_flags_t vm_flags,
1398 			unsigned long pgoff, unsigned long *populate,
1399 			struct list_head *uf)
1400 {
1401 	struct mm_struct *mm = current->mm;
1402 	int pkey = 0;
1403 
1404 	*populate = 0;
1405 
1406 	if (!len)
1407 		return -EINVAL;
1408 
1409 	/*
1410 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1411 	 *
1412 	 * (the exception is when the underlying filesystem is noexec
1413 	 *  mounted, in which case we dont add PROT_EXEC.)
1414 	 */
1415 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1416 		if (!(file && path_noexec(&file->f_path)))
1417 			prot |= PROT_EXEC;
1418 
1419 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1420 	if (flags & MAP_FIXED_NOREPLACE)
1421 		flags |= MAP_FIXED;
1422 
1423 	if (!(flags & MAP_FIXED))
1424 		addr = round_hint_to_min(addr);
1425 
1426 	/* Careful about overflows.. */
1427 	len = PAGE_ALIGN(len);
1428 	if (!len)
1429 		return -ENOMEM;
1430 
1431 	/* offset overflow? */
1432 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1433 		return -EOVERFLOW;
1434 
1435 	/* Too many mappings? */
1436 	if (mm->map_count > sysctl_max_map_count)
1437 		return -ENOMEM;
1438 
1439 	/* Obtain the address to map to. we verify (or select) it and ensure
1440 	 * that it represents a valid section of the address space.
1441 	 */
1442 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1443 	if (offset_in_page(addr))
1444 		return addr;
1445 
1446 	if (flags & MAP_FIXED_NOREPLACE) {
1447 		struct vm_area_struct *vma = find_vma(mm, addr);
1448 
1449 		if (vma && vma->vm_start < addr + len)
1450 			return -EEXIST;
1451 	}
1452 
1453 	if (prot == PROT_EXEC) {
1454 		pkey = execute_only_pkey(mm);
1455 		if (pkey < 0)
1456 			pkey = 0;
1457 	}
1458 
1459 	/* Do simple checking here so the lower-level routines won't have
1460 	 * to. we assume access permissions have been handled by the open
1461 	 * of the memory object, so we don't do any here.
1462 	 */
1463 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1464 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1465 
1466 	if (flags & MAP_LOCKED)
1467 		if (!can_do_mlock())
1468 			return -EPERM;
1469 
1470 	if (mlock_future_check(mm, vm_flags, len))
1471 		return -EAGAIN;
1472 
1473 	if (file) {
1474 		struct inode *inode = file_inode(file);
1475 		unsigned long flags_mask;
1476 
1477 		if (!file_mmap_ok(file, inode, pgoff, len))
1478 			return -EOVERFLOW;
1479 
1480 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1481 
1482 		switch (flags & MAP_TYPE) {
1483 		case MAP_SHARED:
1484 			/*
1485 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1486 			 * flags. E.g. MAP_SYNC is dangerous to use with
1487 			 * MAP_SHARED as you don't know which consistency model
1488 			 * you will get. We silently ignore unsupported flags
1489 			 * with MAP_SHARED to preserve backward compatibility.
1490 			 */
1491 			flags &= LEGACY_MAP_MASK;
1492 			/* fall through */
1493 		case MAP_SHARED_VALIDATE:
1494 			if (flags & ~flags_mask)
1495 				return -EOPNOTSUPP;
1496 			if (prot & PROT_WRITE) {
1497 				if (!(file->f_mode & FMODE_WRITE))
1498 					return -EACCES;
1499 				if (IS_SWAPFILE(file->f_mapping->host))
1500 					return -ETXTBSY;
1501 			}
1502 
1503 			/*
1504 			 * Make sure we don't allow writing to an append-only
1505 			 * file..
1506 			 */
1507 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1508 				return -EACCES;
1509 
1510 			/*
1511 			 * Make sure there are no mandatory locks on the file.
1512 			 */
1513 			if (locks_verify_locked(file))
1514 				return -EAGAIN;
1515 
1516 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1517 			if (!(file->f_mode & FMODE_WRITE))
1518 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1519 
1520 			/* fall through */
1521 		case MAP_PRIVATE:
1522 			if (!(file->f_mode & FMODE_READ))
1523 				return -EACCES;
1524 			if (path_noexec(&file->f_path)) {
1525 				if (vm_flags & VM_EXEC)
1526 					return -EPERM;
1527 				vm_flags &= ~VM_MAYEXEC;
1528 			}
1529 
1530 			if (!file->f_op->mmap)
1531 				return -ENODEV;
1532 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1533 				return -EINVAL;
1534 			break;
1535 
1536 		default:
1537 			return -EINVAL;
1538 		}
1539 	} else {
1540 		switch (flags & MAP_TYPE) {
1541 		case MAP_SHARED:
1542 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543 				return -EINVAL;
1544 			/*
1545 			 * Ignore pgoff.
1546 			 */
1547 			pgoff = 0;
1548 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1549 			break;
1550 		case MAP_PRIVATE:
1551 			/*
1552 			 * Set pgoff according to addr for anon_vma.
1553 			 */
1554 			pgoff = addr >> PAGE_SHIFT;
1555 			break;
1556 		default:
1557 			return -EINVAL;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Set 'VM_NORESERVE' if we should not account for the
1563 	 * memory use of this mapping.
1564 	 */
1565 	if (flags & MAP_NORESERVE) {
1566 		/* We honor MAP_NORESERVE if allowed to overcommit */
1567 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1568 			vm_flags |= VM_NORESERVE;
1569 
1570 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1571 		if (file && is_file_hugepages(file))
1572 			vm_flags |= VM_NORESERVE;
1573 	}
1574 
1575 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1576 	if (!IS_ERR_VALUE(addr) &&
1577 	    ((vm_flags & VM_LOCKED) ||
1578 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1579 		*populate = len;
1580 	return addr;
1581 }
1582 
1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1584 			      unsigned long prot, unsigned long flags,
1585 			      unsigned long fd, unsigned long pgoff)
1586 {
1587 	struct file *file = NULL;
1588 	unsigned long retval;
1589 
1590 	if (!(flags & MAP_ANONYMOUS)) {
1591 		audit_mmap_fd(fd, flags);
1592 		file = fget(fd);
1593 		if (!file)
1594 			return -EBADF;
1595 		if (is_file_hugepages(file))
1596 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1597 		retval = -EINVAL;
1598 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1599 			goto out_fput;
1600 	} else if (flags & MAP_HUGETLB) {
1601 		struct user_struct *user = NULL;
1602 		struct hstate *hs;
1603 
1604 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1605 		if (!hs)
1606 			return -EINVAL;
1607 
1608 		len = ALIGN(len, huge_page_size(hs));
1609 		/*
1610 		 * VM_NORESERVE is used because the reservations will be
1611 		 * taken when vm_ops->mmap() is called
1612 		 * A dummy user value is used because we are not locking
1613 		 * memory so no accounting is necessary
1614 		 */
1615 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1616 				VM_NORESERVE,
1617 				&user, HUGETLB_ANONHUGE_INODE,
1618 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1619 		if (IS_ERR(file))
1620 			return PTR_ERR(file);
1621 	}
1622 
1623 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1624 
1625 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1626 out_fput:
1627 	if (file)
1628 		fput(file);
1629 	return retval;
1630 }
1631 
1632 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1633 		unsigned long, prot, unsigned long, flags,
1634 		unsigned long, fd, unsigned long, pgoff)
1635 {
1636 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1637 }
1638 
1639 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1640 struct mmap_arg_struct {
1641 	unsigned long addr;
1642 	unsigned long len;
1643 	unsigned long prot;
1644 	unsigned long flags;
1645 	unsigned long fd;
1646 	unsigned long offset;
1647 };
1648 
1649 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1650 {
1651 	struct mmap_arg_struct a;
1652 
1653 	if (copy_from_user(&a, arg, sizeof(a)))
1654 		return -EFAULT;
1655 	if (offset_in_page(a.offset))
1656 		return -EINVAL;
1657 
1658 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1659 			       a.offset >> PAGE_SHIFT);
1660 }
1661 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1662 
1663 /*
1664  * Some shared mappings will want the pages marked read-only
1665  * to track write events. If so, we'll downgrade vm_page_prot
1666  * to the private version (using protection_map[] without the
1667  * VM_SHARED bit).
1668  */
1669 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1670 {
1671 	vm_flags_t vm_flags = vma->vm_flags;
1672 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1673 
1674 	/* If it was private or non-writable, the write bit is already clear */
1675 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1676 		return 0;
1677 
1678 	/* The backer wishes to know when pages are first written to? */
1679 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1680 		return 1;
1681 
1682 	/* The open routine did something to the protections that pgprot_modify
1683 	 * won't preserve? */
1684 	if (pgprot_val(vm_page_prot) !=
1685 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1686 		return 0;
1687 
1688 	/* Do we need to track softdirty? */
1689 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1690 		return 1;
1691 
1692 	/* Specialty mapping? */
1693 	if (vm_flags & VM_PFNMAP)
1694 		return 0;
1695 
1696 	/* Can the mapping track the dirty pages? */
1697 	return vma->vm_file && vma->vm_file->f_mapping &&
1698 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1699 }
1700 
1701 /*
1702  * We account for memory if it's a private writeable mapping,
1703  * not hugepages and VM_NORESERVE wasn't set.
1704  */
1705 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1706 {
1707 	/*
1708 	 * hugetlb has its own accounting separate from the core VM
1709 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1710 	 */
1711 	if (file && is_file_hugepages(file))
1712 		return 0;
1713 
1714 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1715 }
1716 
1717 unsigned long mmap_region(struct file *file, unsigned long addr,
1718 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1719 		struct list_head *uf)
1720 {
1721 	struct mm_struct *mm = current->mm;
1722 	struct vm_area_struct *vma, *prev;
1723 	int error;
1724 	struct rb_node **rb_link, *rb_parent;
1725 	unsigned long charged = 0;
1726 
1727 	/* Check against address space limit. */
1728 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1729 		unsigned long nr_pages;
1730 
1731 		/*
1732 		 * MAP_FIXED may remove pages of mappings that intersects with
1733 		 * requested mapping. Account for the pages it would unmap.
1734 		 */
1735 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1736 
1737 		if (!may_expand_vm(mm, vm_flags,
1738 					(len >> PAGE_SHIFT) - nr_pages))
1739 			return -ENOMEM;
1740 	}
1741 
1742 	/* Clear old maps */
1743 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1744 			      &rb_parent)) {
1745 		if (do_munmap(mm, addr, len, uf))
1746 			return -ENOMEM;
1747 	}
1748 
1749 	/*
1750 	 * Private writable mapping: check memory availability
1751 	 */
1752 	if (accountable_mapping(file, vm_flags)) {
1753 		charged = len >> PAGE_SHIFT;
1754 		if (security_vm_enough_memory_mm(mm, charged))
1755 			return -ENOMEM;
1756 		vm_flags |= VM_ACCOUNT;
1757 	}
1758 
1759 	/*
1760 	 * Can we just expand an old mapping?
1761 	 */
1762 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1763 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1764 	if (vma)
1765 		goto out;
1766 
1767 	/*
1768 	 * Determine the object being mapped and call the appropriate
1769 	 * specific mapper. the address has already been validated, but
1770 	 * not unmapped, but the maps are removed from the list.
1771 	 */
1772 	vma = vm_area_alloc(mm);
1773 	if (!vma) {
1774 		error = -ENOMEM;
1775 		goto unacct_error;
1776 	}
1777 
1778 	vma->vm_start = addr;
1779 	vma->vm_end = addr + len;
1780 	vma->vm_flags = vm_flags;
1781 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1782 	vma->vm_pgoff = pgoff;
1783 
1784 	if (file) {
1785 		if (vm_flags & VM_DENYWRITE) {
1786 			error = deny_write_access(file);
1787 			if (error)
1788 				goto free_vma;
1789 		}
1790 		if (vm_flags & VM_SHARED) {
1791 			error = mapping_map_writable(file->f_mapping);
1792 			if (error)
1793 				goto allow_write_and_free_vma;
1794 		}
1795 
1796 		/* ->mmap() can change vma->vm_file, but must guarantee that
1797 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1798 		 * and map writably if VM_SHARED is set. This usually means the
1799 		 * new file must not have been exposed to user-space, yet.
1800 		 */
1801 		vma->vm_file = get_file(file);
1802 		error = call_mmap(file, vma);
1803 		if (error)
1804 			goto unmap_and_free_vma;
1805 
1806 		/* Can addr have changed??
1807 		 *
1808 		 * Answer: Yes, several device drivers can do it in their
1809 		 *         f_op->mmap method. -DaveM
1810 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1811 		 *      be updated for vma_link()
1812 		 */
1813 		WARN_ON_ONCE(addr != vma->vm_start);
1814 
1815 		addr = vma->vm_start;
1816 		vm_flags = vma->vm_flags;
1817 	} else if (vm_flags & VM_SHARED) {
1818 		error = shmem_zero_setup(vma);
1819 		if (error)
1820 			goto free_vma;
1821 	} else {
1822 		vma_set_anonymous(vma);
1823 	}
1824 
1825 	vma_link(mm, vma, prev, rb_link, rb_parent);
1826 	/* Once vma denies write, undo our temporary denial count */
1827 	if (file) {
1828 		if (vm_flags & VM_SHARED)
1829 			mapping_unmap_writable(file->f_mapping);
1830 		if (vm_flags & VM_DENYWRITE)
1831 			allow_write_access(file);
1832 	}
1833 	file = vma->vm_file;
1834 out:
1835 	perf_event_mmap(vma);
1836 
1837 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1838 	if (vm_flags & VM_LOCKED) {
1839 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1840 					is_vm_hugetlb_page(vma) ||
1841 					vma == get_gate_vma(current->mm))
1842 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1843 		else
1844 			mm->locked_vm += (len >> PAGE_SHIFT);
1845 	}
1846 
1847 	if (file)
1848 		uprobe_mmap(vma);
1849 
1850 	/*
1851 	 * New (or expanded) vma always get soft dirty status.
1852 	 * Otherwise user-space soft-dirty page tracker won't
1853 	 * be able to distinguish situation when vma area unmapped,
1854 	 * then new mapped in-place (which must be aimed as
1855 	 * a completely new data area).
1856 	 */
1857 	vma->vm_flags |= VM_SOFTDIRTY;
1858 
1859 	vma_set_page_prot(vma);
1860 
1861 	return addr;
1862 
1863 unmap_and_free_vma:
1864 	vma->vm_file = NULL;
1865 	fput(file);
1866 
1867 	/* Undo any partial mapping done by a device driver. */
1868 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1869 	charged = 0;
1870 	if (vm_flags & VM_SHARED)
1871 		mapping_unmap_writable(file->f_mapping);
1872 allow_write_and_free_vma:
1873 	if (vm_flags & VM_DENYWRITE)
1874 		allow_write_access(file);
1875 free_vma:
1876 	vm_area_free(vma);
1877 unacct_error:
1878 	if (charged)
1879 		vm_unacct_memory(charged);
1880 	return error;
1881 }
1882 
1883 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1884 {
1885 	/*
1886 	 * We implement the search by looking for an rbtree node that
1887 	 * immediately follows a suitable gap. That is,
1888 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1889 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1890 	 * - gap_end - gap_start >= length
1891 	 */
1892 
1893 	struct mm_struct *mm = current->mm;
1894 	struct vm_area_struct *vma;
1895 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1896 
1897 	/* Adjust search length to account for worst case alignment overhead */
1898 	length = info->length + info->align_mask;
1899 	if (length < info->length)
1900 		return -ENOMEM;
1901 
1902 	/* Adjust search limits by the desired length */
1903 	if (info->high_limit < length)
1904 		return -ENOMEM;
1905 	high_limit = info->high_limit - length;
1906 
1907 	if (info->low_limit > high_limit)
1908 		return -ENOMEM;
1909 	low_limit = info->low_limit + length;
1910 
1911 	/* Check if rbtree root looks promising */
1912 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1913 		goto check_highest;
1914 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1915 	if (vma->rb_subtree_gap < length)
1916 		goto check_highest;
1917 
1918 	while (true) {
1919 		/* Visit left subtree if it looks promising */
1920 		gap_end = vm_start_gap(vma);
1921 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1922 			struct vm_area_struct *left =
1923 				rb_entry(vma->vm_rb.rb_left,
1924 					 struct vm_area_struct, vm_rb);
1925 			if (left->rb_subtree_gap >= length) {
1926 				vma = left;
1927 				continue;
1928 			}
1929 		}
1930 
1931 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1932 check_current:
1933 		/* Check if current node has a suitable gap */
1934 		if (gap_start > high_limit)
1935 			return -ENOMEM;
1936 		if (gap_end >= low_limit &&
1937 		    gap_end > gap_start && gap_end - gap_start >= length)
1938 			goto found;
1939 
1940 		/* Visit right subtree if it looks promising */
1941 		if (vma->vm_rb.rb_right) {
1942 			struct vm_area_struct *right =
1943 				rb_entry(vma->vm_rb.rb_right,
1944 					 struct vm_area_struct, vm_rb);
1945 			if (right->rb_subtree_gap >= length) {
1946 				vma = right;
1947 				continue;
1948 			}
1949 		}
1950 
1951 		/* Go back up the rbtree to find next candidate node */
1952 		while (true) {
1953 			struct rb_node *prev = &vma->vm_rb;
1954 			if (!rb_parent(prev))
1955 				goto check_highest;
1956 			vma = rb_entry(rb_parent(prev),
1957 				       struct vm_area_struct, vm_rb);
1958 			if (prev == vma->vm_rb.rb_left) {
1959 				gap_start = vm_end_gap(vma->vm_prev);
1960 				gap_end = vm_start_gap(vma);
1961 				goto check_current;
1962 			}
1963 		}
1964 	}
1965 
1966 check_highest:
1967 	/* Check highest gap, which does not precede any rbtree node */
1968 	gap_start = mm->highest_vm_end;
1969 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1970 	if (gap_start > high_limit)
1971 		return -ENOMEM;
1972 
1973 found:
1974 	/* We found a suitable gap. Clip it with the original low_limit. */
1975 	if (gap_start < info->low_limit)
1976 		gap_start = info->low_limit;
1977 
1978 	/* Adjust gap address to the desired alignment */
1979 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1980 
1981 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1982 	VM_BUG_ON(gap_start + info->length > gap_end);
1983 	return gap_start;
1984 }
1985 
1986 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1987 {
1988 	struct mm_struct *mm = current->mm;
1989 	struct vm_area_struct *vma;
1990 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1991 
1992 	/* Adjust search length to account for worst case alignment overhead */
1993 	length = info->length + info->align_mask;
1994 	if (length < info->length)
1995 		return -ENOMEM;
1996 
1997 	/*
1998 	 * Adjust search limits by the desired length.
1999 	 * See implementation comment at top of unmapped_area().
2000 	 */
2001 	gap_end = info->high_limit;
2002 	if (gap_end < length)
2003 		return -ENOMEM;
2004 	high_limit = gap_end - length;
2005 
2006 	if (info->low_limit > high_limit)
2007 		return -ENOMEM;
2008 	low_limit = info->low_limit + length;
2009 
2010 	/* Check highest gap, which does not precede any rbtree node */
2011 	gap_start = mm->highest_vm_end;
2012 	if (gap_start <= high_limit)
2013 		goto found_highest;
2014 
2015 	/* Check if rbtree root looks promising */
2016 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2017 		return -ENOMEM;
2018 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2019 	if (vma->rb_subtree_gap < length)
2020 		return -ENOMEM;
2021 
2022 	while (true) {
2023 		/* Visit right subtree if it looks promising */
2024 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2025 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2026 			struct vm_area_struct *right =
2027 				rb_entry(vma->vm_rb.rb_right,
2028 					 struct vm_area_struct, vm_rb);
2029 			if (right->rb_subtree_gap >= length) {
2030 				vma = right;
2031 				continue;
2032 			}
2033 		}
2034 
2035 check_current:
2036 		/* Check if current node has a suitable gap */
2037 		gap_end = vm_start_gap(vma);
2038 		if (gap_end < low_limit)
2039 			return -ENOMEM;
2040 		if (gap_start <= high_limit &&
2041 		    gap_end > gap_start && gap_end - gap_start >= length)
2042 			goto found;
2043 
2044 		/* Visit left subtree if it looks promising */
2045 		if (vma->vm_rb.rb_left) {
2046 			struct vm_area_struct *left =
2047 				rb_entry(vma->vm_rb.rb_left,
2048 					 struct vm_area_struct, vm_rb);
2049 			if (left->rb_subtree_gap >= length) {
2050 				vma = left;
2051 				continue;
2052 			}
2053 		}
2054 
2055 		/* Go back up the rbtree to find next candidate node */
2056 		while (true) {
2057 			struct rb_node *prev = &vma->vm_rb;
2058 			if (!rb_parent(prev))
2059 				return -ENOMEM;
2060 			vma = rb_entry(rb_parent(prev),
2061 				       struct vm_area_struct, vm_rb);
2062 			if (prev == vma->vm_rb.rb_right) {
2063 				gap_start = vma->vm_prev ?
2064 					vm_end_gap(vma->vm_prev) : 0;
2065 				goto check_current;
2066 			}
2067 		}
2068 	}
2069 
2070 found:
2071 	/* We found a suitable gap. Clip it with the original high_limit. */
2072 	if (gap_end > info->high_limit)
2073 		gap_end = info->high_limit;
2074 
2075 found_highest:
2076 	/* Compute highest gap address at the desired alignment */
2077 	gap_end -= info->length;
2078 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2079 
2080 	VM_BUG_ON(gap_end < info->low_limit);
2081 	VM_BUG_ON(gap_end < gap_start);
2082 	return gap_end;
2083 }
2084 
2085 
2086 #ifndef arch_get_mmap_end
2087 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2088 #endif
2089 
2090 #ifndef arch_get_mmap_base
2091 #define arch_get_mmap_base(addr, base) (base)
2092 #endif
2093 
2094 /* Get an address range which is currently unmapped.
2095  * For shmat() with addr=0.
2096  *
2097  * Ugly calling convention alert:
2098  * Return value with the low bits set means error value,
2099  * ie
2100  *	if (ret & ~PAGE_MASK)
2101  *		error = ret;
2102  *
2103  * This function "knows" that -ENOMEM has the bits set.
2104  */
2105 #ifndef HAVE_ARCH_UNMAPPED_AREA
2106 unsigned long
2107 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2108 		unsigned long len, unsigned long pgoff, unsigned long flags)
2109 {
2110 	struct mm_struct *mm = current->mm;
2111 	struct vm_area_struct *vma, *prev;
2112 	struct vm_unmapped_area_info info;
2113 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2114 
2115 	if (len > mmap_end - mmap_min_addr)
2116 		return -ENOMEM;
2117 
2118 	if (flags & MAP_FIXED)
2119 		return addr;
2120 
2121 	if (addr) {
2122 		addr = PAGE_ALIGN(addr);
2123 		vma = find_vma_prev(mm, addr, &prev);
2124 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2125 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2126 		    (!prev || addr >= vm_end_gap(prev)))
2127 			return addr;
2128 	}
2129 
2130 	info.flags = 0;
2131 	info.length = len;
2132 	info.low_limit = mm->mmap_base;
2133 	info.high_limit = mmap_end;
2134 	info.align_mask = 0;
2135 	return vm_unmapped_area(&info);
2136 }
2137 #endif
2138 
2139 /*
2140  * This mmap-allocator allocates new areas top-down from below the
2141  * stack's low limit (the base):
2142  */
2143 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2144 unsigned long
2145 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2146 			  unsigned long len, unsigned long pgoff,
2147 			  unsigned long flags)
2148 {
2149 	struct vm_area_struct *vma, *prev;
2150 	struct mm_struct *mm = current->mm;
2151 	struct vm_unmapped_area_info info;
2152 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2153 
2154 	/* requested length too big for entire address space */
2155 	if (len > mmap_end - mmap_min_addr)
2156 		return -ENOMEM;
2157 
2158 	if (flags & MAP_FIXED)
2159 		return addr;
2160 
2161 	/* requesting a specific address */
2162 	if (addr) {
2163 		addr = PAGE_ALIGN(addr);
2164 		vma = find_vma_prev(mm, addr, &prev);
2165 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2166 				(!vma || addr + len <= vm_start_gap(vma)) &&
2167 				(!prev || addr >= vm_end_gap(prev)))
2168 			return addr;
2169 	}
2170 
2171 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2172 	info.length = len;
2173 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2174 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2175 	info.align_mask = 0;
2176 	addr = vm_unmapped_area(&info);
2177 
2178 	/*
2179 	 * A failed mmap() very likely causes application failure,
2180 	 * so fall back to the bottom-up function here. This scenario
2181 	 * can happen with large stack limits and large mmap()
2182 	 * allocations.
2183 	 */
2184 	if (offset_in_page(addr)) {
2185 		VM_BUG_ON(addr != -ENOMEM);
2186 		info.flags = 0;
2187 		info.low_limit = TASK_UNMAPPED_BASE;
2188 		info.high_limit = mmap_end;
2189 		addr = vm_unmapped_area(&info);
2190 	}
2191 
2192 	return addr;
2193 }
2194 #endif
2195 
2196 unsigned long
2197 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2198 		unsigned long pgoff, unsigned long flags)
2199 {
2200 	unsigned long (*get_area)(struct file *, unsigned long,
2201 				  unsigned long, unsigned long, unsigned long);
2202 
2203 	unsigned long error = arch_mmap_check(addr, len, flags);
2204 	if (error)
2205 		return error;
2206 
2207 	/* Careful about overflows.. */
2208 	if (len > TASK_SIZE)
2209 		return -ENOMEM;
2210 
2211 	get_area = current->mm->get_unmapped_area;
2212 	if (file) {
2213 		if (file->f_op->get_unmapped_area)
2214 			get_area = file->f_op->get_unmapped_area;
2215 	} else if (flags & MAP_SHARED) {
2216 		/*
2217 		 * mmap_region() will call shmem_zero_setup() to create a file,
2218 		 * so use shmem's get_unmapped_area in case it can be huge.
2219 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2220 		 */
2221 		pgoff = 0;
2222 		get_area = shmem_get_unmapped_area;
2223 	}
2224 
2225 	addr = get_area(file, addr, len, pgoff, flags);
2226 	if (IS_ERR_VALUE(addr))
2227 		return addr;
2228 
2229 	if (addr > TASK_SIZE - len)
2230 		return -ENOMEM;
2231 	if (offset_in_page(addr))
2232 		return -EINVAL;
2233 
2234 	error = security_mmap_addr(addr);
2235 	return error ? error : addr;
2236 }
2237 
2238 EXPORT_SYMBOL(get_unmapped_area);
2239 
2240 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2241 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2242 {
2243 	struct rb_node *rb_node;
2244 	struct vm_area_struct *vma;
2245 
2246 	/* Check the cache first. */
2247 	vma = vmacache_find(mm, addr);
2248 	if (likely(vma))
2249 		return vma;
2250 
2251 	rb_node = mm->mm_rb.rb_node;
2252 
2253 	while (rb_node) {
2254 		struct vm_area_struct *tmp;
2255 
2256 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2257 
2258 		if (tmp->vm_end > addr) {
2259 			vma = tmp;
2260 			if (tmp->vm_start <= addr)
2261 				break;
2262 			rb_node = rb_node->rb_left;
2263 		} else
2264 			rb_node = rb_node->rb_right;
2265 	}
2266 
2267 	if (vma)
2268 		vmacache_update(addr, vma);
2269 	return vma;
2270 }
2271 
2272 EXPORT_SYMBOL(find_vma);
2273 
2274 /*
2275  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2276  */
2277 struct vm_area_struct *
2278 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2279 			struct vm_area_struct **pprev)
2280 {
2281 	struct vm_area_struct *vma;
2282 
2283 	vma = find_vma(mm, addr);
2284 	if (vma) {
2285 		*pprev = vma->vm_prev;
2286 	} else {
2287 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2288 
2289 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2290 	}
2291 	return vma;
2292 }
2293 
2294 /*
2295  * Verify that the stack growth is acceptable and
2296  * update accounting. This is shared with both the
2297  * grow-up and grow-down cases.
2298  */
2299 static int acct_stack_growth(struct vm_area_struct *vma,
2300 			     unsigned long size, unsigned long grow)
2301 {
2302 	struct mm_struct *mm = vma->vm_mm;
2303 	unsigned long new_start;
2304 
2305 	/* address space limit tests */
2306 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2307 		return -ENOMEM;
2308 
2309 	/* Stack limit test */
2310 	if (size > rlimit(RLIMIT_STACK))
2311 		return -ENOMEM;
2312 
2313 	/* mlock limit tests */
2314 	if (vma->vm_flags & VM_LOCKED) {
2315 		unsigned long locked;
2316 		unsigned long limit;
2317 		locked = mm->locked_vm + grow;
2318 		limit = rlimit(RLIMIT_MEMLOCK);
2319 		limit >>= PAGE_SHIFT;
2320 		if (locked > limit && !capable(CAP_IPC_LOCK))
2321 			return -ENOMEM;
2322 	}
2323 
2324 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2325 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2326 			vma->vm_end - size;
2327 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2328 		return -EFAULT;
2329 
2330 	/*
2331 	 * Overcommit..  This must be the final test, as it will
2332 	 * update security statistics.
2333 	 */
2334 	if (security_vm_enough_memory_mm(mm, grow))
2335 		return -ENOMEM;
2336 
2337 	return 0;
2338 }
2339 
2340 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2341 /*
2342  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2343  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2344  */
2345 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2346 {
2347 	struct mm_struct *mm = vma->vm_mm;
2348 	struct vm_area_struct *next;
2349 	unsigned long gap_addr;
2350 	int error = 0;
2351 
2352 	if (!(vma->vm_flags & VM_GROWSUP))
2353 		return -EFAULT;
2354 
2355 	/* Guard against exceeding limits of the address space. */
2356 	address &= PAGE_MASK;
2357 	if (address >= (TASK_SIZE & PAGE_MASK))
2358 		return -ENOMEM;
2359 	address += PAGE_SIZE;
2360 
2361 	/* Enforce stack_guard_gap */
2362 	gap_addr = address + stack_guard_gap;
2363 
2364 	/* Guard against overflow */
2365 	if (gap_addr < address || gap_addr > TASK_SIZE)
2366 		gap_addr = TASK_SIZE;
2367 
2368 	next = vma->vm_next;
2369 	if (next && next->vm_start < gap_addr &&
2370 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2371 		if (!(next->vm_flags & VM_GROWSUP))
2372 			return -ENOMEM;
2373 		/* Check that both stack segments have the same anon_vma? */
2374 	}
2375 
2376 	/* We must make sure the anon_vma is allocated. */
2377 	if (unlikely(anon_vma_prepare(vma)))
2378 		return -ENOMEM;
2379 
2380 	/*
2381 	 * vma->vm_start/vm_end cannot change under us because the caller
2382 	 * is required to hold the mmap_sem in read mode.  We need the
2383 	 * anon_vma lock to serialize against concurrent expand_stacks.
2384 	 */
2385 	anon_vma_lock_write(vma->anon_vma);
2386 
2387 	/* Somebody else might have raced and expanded it already */
2388 	if (address > vma->vm_end) {
2389 		unsigned long size, grow;
2390 
2391 		size = address - vma->vm_start;
2392 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2393 
2394 		error = -ENOMEM;
2395 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2396 			error = acct_stack_growth(vma, size, grow);
2397 			if (!error) {
2398 				/*
2399 				 * vma_gap_update() doesn't support concurrent
2400 				 * updates, but we only hold a shared mmap_sem
2401 				 * lock here, so we need to protect against
2402 				 * concurrent vma expansions.
2403 				 * anon_vma_lock_write() doesn't help here, as
2404 				 * we don't guarantee that all growable vmas
2405 				 * in a mm share the same root anon vma.
2406 				 * So, we reuse mm->page_table_lock to guard
2407 				 * against concurrent vma expansions.
2408 				 */
2409 				spin_lock(&mm->page_table_lock);
2410 				if (vma->vm_flags & VM_LOCKED)
2411 					mm->locked_vm += grow;
2412 				vm_stat_account(mm, vma->vm_flags, grow);
2413 				anon_vma_interval_tree_pre_update_vma(vma);
2414 				vma->vm_end = address;
2415 				anon_vma_interval_tree_post_update_vma(vma);
2416 				if (vma->vm_next)
2417 					vma_gap_update(vma->vm_next);
2418 				else
2419 					mm->highest_vm_end = vm_end_gap(vma);
2420 				spin_unlock(&mm->page_table_lock);
2421 
2422 				perf_event_mmap(vma);
2423 			}
2424 		}
2425 	}
2426 	anon_vma_unlock_write(vma->anon_vma);
2427 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2428 	validate_mm(mm);
2429 	return error;
2430 }
2431 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2432 
2433 /*
2434  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2435  */
2436 int expand_downwards(struct vm_area_struct *vma,
2437 				   unsigned long address)
2438 {
2439 	struct mm_struct *mm = vma->vm_mm;
2440 	struct vm_area_struct *prev;
2441 	int error = 0;
2442 
2443 	address &= PAGE_MASK;
2444 	if (address < mmap_min_addr)
2445 		return -EPERM;
2446 
2447 	/* Enforce stack_guard_gap */
2448 	prev = vma->vm_prev;
2449 	/* Check that both stack segments have the same anon_vma? */
2450 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2451 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2452 		if (address - prev->vm_end < stack_guard_gap)
2453 			return -ENOMEM;
2454 	}
2455 
2456 	/* We must make sure the anon_vma is allocated. */
2457 	if (unlikely(anon_vma_prepare(vma)))
2458 		return -ENOMEM;
2459 
2460 	/*
2461 	 * vma->vm_start/vm_end cannot change under us because the caller
2462 	 * is required to hold the mmap_sem in read mode.  We need the
2463 	 * anon_vma lock to serialize against concurrent expand_stacks.
2464 	 */
2465 	anon_vma_lock_write(vma->anon_vma);
2466 
2467 	/* Somebody else might have raced and expanded it already */
2468 	if (address < vma->vm_start) {
2469 		unsigned long size, grow;
2470 
2471 		size = vma->vm_end - address;
2472 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2473 
2474 		error = -ENOMEM;
2475 		if (grow <= vma->vm_pgoff) {
2476 			error = acct_stack_growth(vma, size, grow);
2477 			if (!error) {
2478 				/*
2479 				 * vma_gap_update() doesn't support concurrent
2480 				 * updates, but we only hold a shared mmap_sem
2481 				 * lock here, so we need to protect against
2482 				 * concurrent vma expansions.
2483 				 * anon_vma_lock_write() doesn't help here, as
2484 				 * we don't guarantee that all growable vmas
2485 				 * in a mm share the same root anon vma.
2486 				 * So, we reuse mm->page_table_lock to guard
2487 				 * against concurrent vma expansions.
2488 				 */
2489 				spin_lock(&mm->page_table_lock);
2490 				if (vma->vm_flags & VM_LOCKED)
2491 					mm->locked_vm += grow;
2492 				vm_stat_account(mm, vma->vm_flags, grow);
2493 				anon_vma_interval_tree_pre_update_vma(vma);
2494 				vma->vm_start = address;
2495 				vma->vm_pgoff -= grow;
2496 				anon_vma_interval_tree_post_update_vma(vma);
2497 				vma_gap_update(vma);
2498 				spin_unlock(&mm->page_table_lock);
2499 
2500 				perf_event_mmap(vma);
2501 			}
2502 		}
2503 	}
2504 	anon_vma_unlock_write(vma->anon_vma);
2505 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2506 	validate_mm(mm);
2507 	return error;
2508 }
2509 
2510 /* enforced gap between the expanding stack and other mappings. */
2511 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2512 
2513 static int __init cmdline_parse_stack_guard_gap(char *p)
2514 {
2515 	unsigned long val;
2516 	char *endptr;
2517 
2518 	val = simple_strtoul(p, &endptr, 10);
2519 	if (!*endptr)
2520 		stack_guard_gap = val << PAGE_SHIFT;
2521 
2522 	return 0;
2523 }
2524 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2525 
2526 #ifdef CONFIG_STACK_GROWSUP
2527 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2528 {
2529 	return expand_upwards(vma, address);
2530 }
2531 
2532 struct vm_area_struct *
2533 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2534 {
2535 	struct vm_area_struct *vma, *prev;
2536 
2537 	addr &= PAGE_MASK;
2538 	vma = find_vma_prev(mm, addr, &prev);
2539 	if (vma && (vma->vm_start <= addr))
2540 		return vma;
2541 	/* don't alter vm_end if the coredump is running */
2542 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2543 		return NULL;
2544 	if (prev->vm_flags & VM_LOCKED)
2545 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2546 	return prev;
2547 }
2548 #else
2549 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2550 {
2551 	return expand_downwards(vma, address);
2552 }
2553 
2554 struct vm_area_struct *
2555 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2556 {
2557 	struct vm_area_struct *vma;
2558 	unsigned long start;
2559 
2560 	addr &= PAGE_MASK;
2561 	vma = find_vma(mm, addr);
2562 	if (!vma)
2563 		return NULL;
2564 	if (vma->vm_start <= addr)
2565 		return vma;
2566 	if (!(vma->vm_flags & VM_GROWSDOWN))
2567 		return NULL;
2568 	/* don't alter vm_start if the coredump is running */
2569 	if (!mmget_still_valid(mm))
2570 		return NULL;
2571 	start = vma->vm_start;
2572 	if (expand_stack(vma, addr))
2573 		return NULL;
2574 	if (vma->vm_flags & VM_LOCKED)
2575 		populate_vma_page_range(vma, addr, start, NULL);
2576 	return vma;
2577 }
2578 #endif
2579 
2580 EXPORT_SYMBOL_GPL(find_extend_vma);
2581 
2582 /*
2583  * Ok - we have the memory areas we should free on the vma list,
2584  * so release them, and do the vma updates.
2585  *
2586  * Called with the mm semaphore held.
2587  */
2588 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2589 {
2590 	unsigned long nr_accounted = 0;
2591 
2592 	/* Update high watermark before we lower total_vm */
2593 	update_hiwater_vm(mm);
2594 	do {
2595 		long nrpages = vma_pages(vma);
2596 
2597 		if (vma->vm_flags & VM_ACCOUNT)
2598 			nr_accounted += nrpages;
2599 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2600 		vma = remove_vma(vma);
2601 	} while (vma);
2602 	vm_unacct_memory(nr_accounted);
2603 	validate_mm(mm);
2604 }
2605 
2606 /*
2607  * Get rid of page table information in the indicated region.
2608  *
2609  * Called with the mm semaphore held.
2610  */
2611 static void unmap_region(struct mm_struct *mm,
2612 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2613 		unsigned long start, unsigned long end)
2614 {
2615 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2616 	struct mmu_gather tlb;
2617 
2618 	lru_add_drain();
2619 	tlb_gather_mmu(&tlb, mm, start, end);
2620 	update_hiwater_rss(mm);
2621 	unmap_vmas(&tlb, vma, start, end);
2622 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2623 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2624 	tlb_finish_mmu(&tlb, start, end);
2625 }
2626 
2627 /*
2628  * Create a list of vma's touched by the unmap, removing them from the mm's
2629  * vma list as we go..
2630  */
2631 static void
2632 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2633 	struct vm_area_struct *prev, unsigned long end)
2634 {
2635 	struct vm_area_struct **insertion_point;
2636 	struct vm_area_struct *tail_vma = NULL;
2637 
2638 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2639 	vma->vm_prev = NULL;
2640 	do {
2641 		vma_rb_erase(vma, &mm->mm_rb);
2642 		mm->map_count--;
2643 		tail_vma = vma;
2644 		vma = vma->vm_next;
2645 	} while (vma && vma->vm_start < end);
2646 	*insertion_point = vma;
2647 	if (vma) {
2648 		vma->vm_prev = prev;
2649 		vma_gap_update(vma);
2650 	} else
2651 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2652 	tail_vma->vm_next = NULL;
2653 
2654 	/* Kill the cache */
2655 	vmacache_invalidate(mm);
2656 }
2657 
2658 /*
2659  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2660  * has already been checked or doesn't make sense to fail.
2661  */
2662 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2663 		unsigned long addr, int new_below)
2664 {
2665 	struct vm_area_struct *new;
2666 	int err;
2667 
2668 	if (vma->vm_ops && vma->vm_ops->split) {
2669 		err = vma->vm_ops->split(vma, addr);
2670 		if (err)
2671 			return err;
2672 	}
2673 
2674 	new = vm_area_dup(vma);
2675 	if (!new)
2676 		return -ENOMEM;
2677 
2678 	if (new_below)
2679 		new->vm_end = addr;
2680 	else {
2681 		new->vm_start = addr;
2682 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2683 	}
2684 
2685 	err = vma_dup_policy(vma, new);
2686 	if (err)
2687 		goto out_free_vma;
2688 
2689 	err = anon_vma_clone(new, vma);
2690 	if (err)
2691 		goto out_free_mpol;
2692 
2693 	if (new->vm_file)
2694 		get_file(new->vm_file);
2695 
2696 	if (new->vm_ops && new->vm_ops->open)
2697 		new->vm_ops->open(new);
2698 
2699 	if (new_below)
2700 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2701 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2702 	else
2703 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2704 
2705 	/* Success. */
2706 	if (!err)
2707 		return 0;
2708 
2709 	/* Clean everything up if vma_adjust failed. */
2710 	if (new->vm_ops && new->vm_ops->close)
2711 		new->vm_ops->close(new);
2712 	if (new->vm_file)
2713 		fput(new->vm_file);
2714 	unlink_anon_vmas(new);
2715  out_free_mpol:
2716 	mpol_put(vma_policy(new));
2717  out_free_vma:
2718 	vm_area_free(new);
2719 	return err;
2720 }
2721 
2722 /*
2723  * Split a vma into two pieces at address 'addr', a new vma is allocated
2724  * either for the first part or the tail.
2725  */
2726 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2727 	      unsigned long addr, int new_below)
2728 {
2729 	if (mm->map_count >= sysctl_max_map_count)
2730 		return -ENOMEM;
2731 
2732 	return __split_vma(mm, vma, addr, new_below);
2733 }
2734 
2735 /* Munmap is split into 2 main parts -- this part which finds
2736  * what needs doing, and the areas themselves, which do the
2737  * work.  This now handles partial unmappings.
2738  * Jeremy Fitzhardinge <jeremy@goop.org>
2739  */
2740 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2741 		struct list_head *uf, bool downgrade)
2742 {
2743 	unsigned long end;
2744 	struct vm_area_struct *vma, *prev, *last;
2745 
2746 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2747 		return -EINVAL;
2748 
2749 	len = PAGE_ALIGN(len);
2750 	end = start + len;
2751 	if (len == 0)
2752 		return -EINVAL;
2753 
2754 	/*
2755 	 * arch_unmap() might do unmaps itself.  It must be called
2756 	 * and finish any rbtree manipulation before this code
2757 	 * runs and also starts to manipulate the rbtree.
2758 	 */
2759 	arch_unmap(mm, start, end);
2760 
2761 	/* Find the first overlapping VMA */
2762 	vma = find_vma(mm, start);
2763 	if (!vma)
2764 		return 0;
2765 	prev = vma->vm_prev;
2766 	/* we have  start < vma->vm_end  */
2767 
2768 	/* if it doesn't overlap, we have nothing.. */
2769 	if (vma->vm_start >= end)
2770 		return 0;
2771 
2772 	/*
2773 	 * If we need to split any vma, do it now to save pain later.
2774 	 *
2775 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2776 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2777 	 * places tmp vma above, and higher split_vma places tmp vma below.
2778 	 */
2779 	if (start > vma->vm_start) {
2780 		int error;
2781 
2782 		/*
2783 		 * Make sure that map_count on return from munmap() will
2784 		 * not exceed its limit; but let map_count go just above
2785 		 * its limit temporarily, to help free resources as expected.
2786 		 */
2787 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2788 			return -ENOMEM;
2789 
2790 		error = __split_vma(mm, vma, start, 0);
2791 		if (error)
2792 			return error;
2793 		prev = vma;
2794 	}
2795 
2796 	/* Does it split the last one? */
2797 	last = find_vma(mm, end);
2798 	if (last && end > last->vm_start) {
2799 		int error = __split_vma(mm, last, end, 1);
2800 		if (error)
2801 			return error;
2802 	}
2803 	vma = prev ? prev->vm_next : mm->mmap;
2804 
2805 	if (unlikely(uf)) {
2806 		/*
2807 		 * If userfaultfd_unmap_prep returns an error the vmas
2808 		 * will remain splitted, but userland will get a
2809 		 * highly unexpected error anyway. This is no
2810 		 * different than the case where the first of the two
2811 		 * __split_vma fails, but we don't undo the first
2812 		 * split, despite we could. This is unlikely enough
2813 		 * failure that it's not worth optimizing it for.
2814 		 */
2815 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2816 		if (error)
2817 			return error;
2818 	}
2819 
2820 	/*
2821 	 * unlock any mlock()ed ranges before detaching vmas
2822 	 */
2823 	if (mm->locked_vm) {
2824 		struct vm_area_struct *tmp = vma;
2825 		while (tmp && tmp->vm_start < end) {
2826 			if (tmp->vm_flags & VM_LOCKED) {
2827 				mm->locked_vm -= vma_pages(tmp);
2828 				munlock_vma_pages_all(tmp);
2829 			}
2830 
2831 			tmp = tmp->vm_next;
2832 		}
2833 	}
2834 
2835 	/* Detach vmas from rbtree */
2836 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2837 
2838 	if (downgrade)
2839 		downgrade_write(&mm->mmap_sem);
2840 
2841 	unmap_region(mm, vma, prev, start, end);
2842 
2843 	/* Fix up all other VM information */
2844 	remove_vma_list(mm, vma);
2845 
2846 	return downgrade ? 1 : 0;
2847 }
2848 
2849 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2850 	      struct list_head *uf)
2851 {
2852 	return __do_munmap(mm, start, len, uf, false);
2853 }
2854 
2855 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2856 {
2857 	int ret;
2858 	struct mm_struct *mm = current->mm;
2859 	LIST_HEAD(uf);
2860 
2861 	if (down_write_killable(&mm->mmap_sem))
2862 		return -EINTR;
2863 
2864 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2865 	/*
2866 	 * Returning 1 indicates mmap_sem is downgraded.
2867 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2868 	 * it to 0 before return.
2869 	 */
2870 	if (ret == 1) {
2871 		up_read(&mm->mmap_sem);
2872 		ret = 0;
2873 	} else
2874 		up_write(&mm->mmap_sem);
2875 
2876 	userfaultfd_unmap_complete(mm, &uf);
2877 	return ret;
2878 }
2879 
2880 int vm_munmap(unsigned long start, size_t len)
2881 {
2882 	return __vm_munmap(start, len, false);
2883 }
2884 EXPORT_SYMBOL(vm_munmap);
2885 
2886 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2887 {
2888 	profile_munmap(addr);
2889 	return __vm_munmap(addr, len, true);
2890 }
2891 
2892 
2893 /*
2894  * Emulation of deprecated remap_file_pages() syscall.
2895  */
2896 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2897 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2898 {
2899 
2900 	struct mm_struct *mm = current->mm;
2901 	struct vm_area_struct *vma;
2902 	unsigned long populate = 0;
2903 	unsigned long ret = -EINVAL;
2904 	struct file *file;
2905 
2906 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2907 		     current->comm, current->pid);
2908 
2909 	if (prot)
2910 		return ret;
2911 	start = start & PAGE_MASK;
2912 	size = size & PAGE_MASK;
2913 
2914 	if (start + size <= start)
2915 		return ret;
2916 
2917 	/* Does pgoff wrap? */
2918 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2919 		return ret;
2920 
2921 	if (down_write_killable(&mm->mmap_sem))
2922 		return -EINTR;
2923 
2924 	vma = find_vma(mm, start);
2925 
2926 	if (!vma || !(vma->vm_flags & VM_SHARED))
2927 		goto out;
2928 
2929 	if (start < vma->vm_start)
2930 		goto out;
2931 
2932 	if (start + size > vma->vm_end) {
2933 		struct vm_area_struct *next;
2934 
2935 		for (next = vma->vm_next; next; next = next->vm_next) {
2936 			/* hole between vmas ? */
2937 			if (next->vm_start != next->vm_prev->vm_end)
2938 				goto out;
2939 
2940 			if (next->vm_file != vma->vm_file)
2941 				goto out;
2942 
2943 			if (next->vm_flags != vma->vm_flags)
2944 				goto out;
2945 
2946 			if (start + size <= next->vm_end)
2947 				break;
2948 		}
2949 
2950 		if (!next)
2951 			goto out;
2952 	}
2953 
2954 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2955 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2956 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2957 
2958 	flags &= MAP_NONBLOCK;
2959 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2960 	if (vma->vm_flags & VM_LOCKED) {
2961 		struct vm_area_struct *tmp;
2962 		flags |= MAP_LOCKED;
2963 
2964 		/* drop PG_Mlocked flag for over-mapped range */
2965 		for (tmp = vma; tmp->vm_start >= start + size;
2966 				tmp = tmp->vm_next) {
2967 			/*
2968 			 * Split pmd and munlock page on the border
2969 			 * of the range.
2970 			 */
2971 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2972 
2973 			munlock_vma_pages_range(tmp,
2974 					max(tmp->vm_start, start),
2975 					min(tmp->vm_end, start + size));
2976 		}
2977 	}
2978 
2979 	file = get_file(vma->vm_file);
2980 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2981 			prot, flags, pgoff, &populate, NULL);
2982 	fput(file);
2983 out:
2984 	up_write(&mm->mmap_sem);
2985 	if (populate)
2986 		mm_populate(ret, populate);
2987 	if (!IS_ERR_VALUE(ret))
2988 		ret = 0;
2989 	return ret;
2990 }
2991 
2992 /*
2993  *  this is really a simplified "do_mmap".  it only handles
2994  *  anonymous maps.  eventually we may be able to do some
2995  *  brk-specific accounting here.
2996  */
2997 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2998 {
2999 	struct mm_struct *mm = current->mm;
3000 	struct vm_area_struct *vma, *prev;
3001 	struct rb_node **rb_link, *rb_parent;
3002 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3003 	int error;
3004 
3005 	/* Until we need other flags, refuse anything except VM_EXEC. */
3006 	if ((flags & (~VM_EXEC)) != 0)
3007 		return -EINVAL;
3008 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3009 
3010 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3011 	if (offset_in_page(error))
3012 		return error;
3013 
3014 	error = mlock_future_check(mm, mm->def_flags, len);
3015 	if (error)
3016 		return error;
3017 
3018 	/*
3019 	 * Clear old maps.  this also does some error checking for us
3020 	 */
3021 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3022 			      &rb_parent)) {
3023 		if (do_munmap(mm, addr, len, uf))
3024 			return -ENOMEM;
3025 	}
3026 
3027 	/* Check against address space limits *after* clearing old maps... */
3028 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3029 		return -ENOMEM;
3030 
3031 	if (mm->map_count > sysctl_max_map_count)
3032 		return -ENOMEM;
3033 
3034 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3035 		return -ENOMEM;
3036 
3037 	/* Can we just expand an old private anonymous mapping? */
3038 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3039 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3040 	if (vma)
3041 		goto out;
3042 
3043 	/*
3044 	 * create a vma struct for an anonymous mapping
3045 	 */
3046 	vma = vm_area_alloc(mm);
3047 	if (!vma) {
3048 		vm_unacct_memory(len >> PAGE_SHIFT);
3049 		return -ENOMEM;
3050 	}
3051 
3052 	vma_set_anonymous(vma);
3053 	vma->vm_start = addr;
3054 	vma->vm_end = addr + len;
3055 	vma->vm_pgoff = pgoff;
3056 	vma->vm_flags = flags;
3057 	vma->vm_page_prot = vm_get_page_prot(flags);
3058 	vma_link(mm, vma, prev, rb_link, rb_parent);
3059 out:
3060 	perf_event_mmap(vma);
3061 	mm->total_vm += len >> PAGE_SHIFT;
3062 	mm->data_vm += len >> PAGE_SHIFT;
3063 	if (flags & VM_LOCKED)
3064 		mm->locked_vm += (len >> PAGE_SHIFT);
3065 	vma->vm_flags |= VM_SOFTDIRTY;
3066 	return 0;
3067 }
3068 
3069 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3070 {
3071 	struct mm_struct *mm = current->mm;
3072 	unsigned long len;
3073 	int ret;
3074 	bool populate;
3075 	LIST_HEAD(uf);
3076 
3077 	len = PAGE_ALIGN(request);
3078 	if (len < request)
3079 		return -ENOMEM;
3080 	if (!len)
3081 		return 0;
3082 
3083 	if (down_write_killable(&mm->mmap_sem))
3084 		return -EINTR;
3085 
3086 	ret = do_brk_flags(addr, len, flags, &uf);
3087 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3088 	up_write(&mm->mmap_sem);
3089 	userfaultfd_unmap_complete(mm, &uf);
3090 	if (populate && !ret)
3091 		mm_populate(addr, len);
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL(vm_brk_flags);
3095 
3096 int vm_brk(unsigned long addr, unsigned long len)
3097 {
3098 	return vm_brk_flags(addr, len, 0);
3099 }
3100 EXPORT_SYMBOL(vm_brk);
3101 
3102 /* Release all mmaps. */
3103 void exit_mmap(struct mm_struct *mm)
3104 {
3105 	struct mmu_gather tlb;
3106 	struct vm_area_struct *vma;
3107 	unsigned long nr_accounted = 0;
3108 
3109 	/* mm's last user has gone, and its about to be pulled down */
3110 	mmu_notifier_release(mm);
3111 
3112 	if (unlikely(mm_is_oom_victim(mm))) {
3113 		/*
3114 		 * Manually reap the mm to free as much memory as possible.
3115 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3116 		 * this mm from further consideration.  Taking mm->mmap_sem for
3117 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3118 		 * reaper will not run on this mm again after mmap_sem is
3119 		 * dropped.
3120 		 *
3121 		 * Nothing can be holding mm->mmap_sem here and the above call
3122 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3123 		 * __oom_reap_task_mm() will not block.
3124 		 *
3125 		 * This needs to be done before calling munlock_vma_pages_all(),
3126 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3127 		 * reliably test it.
3128 		 */
3129 		(void)__oom_reap_task_mm(mm);
3130 
3131 		set_bit(MMF_OOM_SKIP, &mm->flags);
3132 		down_write(&mm->mmap_sem);
3133 		up_write(&mm->mmap_sem);
3134 	}
3135 
3136 	if (mm->locked_vm) {
3137 		vma = mm->mmap;
3138 		while (vma) {
3139 			if (vma->vm_flags & VM_LOCKED)
3140 				munlock_vma_pages_all(vma);
3141 			vma = vma->vm_next;
3142 		}
3143 	}
3144 
3145 	arch_exit_mmap(mm);
3146 
3147 	vma = mm->mmap;
3148 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3149 		return;
3150 
3151 	lru_add_drain();
3152 	flush_cache_mm(mm);
3153 	tlb_gather_mmu(&tlb, mm, 0, -1);
3154 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3155 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3156 	unmap_vmas(&tlb, vma, 0, -1);
3157 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3158 	tlb_finish_mmu(&tlb, 0, -1);
3159 
3160 	/*
3161 	 * Walk the list again, actually closing and freeing it,
3162 	 * with preemption enabled, without holding any MM locks.
3163 	 */
3164 	while (vma) {
3165 		if (vma->vm_flags & VM_ACCOUNT)
3166 			nr_accounted += vma_pages(vma);
3167 		vma = remove_vma(vma);
3168 	}
3169 	vm_unacct_memory(nr_accounted);
3170 }
3171 
3172 /* Insert vm structure into process list sorted by address
3173  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3174  * then i_mmap_rwsem is taken here.
3175  */
3176 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3177 {
3178 	struct vm_area_struct *prev;
3179 	struct rb_node **rb_link, *rb_parent;
3180 
3181 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3182 			   &prev, &rb_link, &rb_parent))
3183 		return -ENOMEM;
3184 	if ((vma->vm_flags & VM_ACCOUNT) &&
3185 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3186 		return -ENOMEM;
3187 
3188 	/*
3189 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3190 	 * until its first write fault, when page's anon_vma and index
3191 	 * are set.  But now set the vm_pgoff it will almost certainly
3192 	 * end up with (unless mremap moves it elsewhere before that
3193 	 * first wfault), so /proc/pid/maps tells a consistent story.
3194 	 *
3195 	 * By setting it to reflect the virtual start address of the
3196 	 * vma, merges and splits can happen in a seamless way, just
3197 	 * using the existing file pgoff checks and manipulations.
3198 	 * Similarly in do_mmap_pgoff and in do_brk.
3199 	 */
3200 	if (vma_is_anonymous(vma)) {
3201 		BUG_ON(vma->anon_vma);
3202 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3203 	}
3204 
3205 	vma_link(mm, vma, prev, rb_link, rb_parent);
3206 	return 0;
3207 }
3208 
3209 /*
3210  * Copy the vma structure to a new location in the same mm,
3211  * prior to moving page table entries, to effect an mremap move.
3212  */
3213 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3214 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3215 	bool *need_rmap_locks)
3216 {
3217 	struct vm_area_struct *vma = *vmap;
3218 	unsigned long vma_start = vma->vm_start;
3219 	struct mm_struct *mm = vma->vm_mm;
3220 	struct vm_area_struct *new_vma, *prev;
3221 	struct rb_node **rb_link, *rb_parent;
3222 	bool faulted_in_anon_vma = true;
3223 
3224 	/*
3225 	 * If anonymous vma has not yet been faulted, update new pgoff
3226 	 * to match new location, to increase its chance of merging.
3227 	 */
3228 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3229 		pgoff = addr >> PAGE_SHIFT;
3230 		faulted_in_anon_vma = false;
3231 	}
3232 
3233 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3234 		return NULL;	/* should never get here */
3235 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3236 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3237 			    vma->vm_userfaultfd_ctx);
3238 	if (new_vma) {
3239 		/*
3240 		 * Source vma may have been merged into new_vma
3241 		 */
3242 		if (unlikely(vma_start >= new_vma->vm_start &&
3243 			     vma_start < new_vma->vm_end)) {
3244 			/*
3245 			 * The only way we can get a vma_merge with
3246 			 * self during an mremap is if the vma hasn't
3247 			 * been faulted in yet and we were allowed to
3248 			 * reset the dst vma->vm_pgoff to the
3249 			 * destination address of the mremap to allow
3250 			 * the merge to happen. mremap must change the
3251 			 * vm_pgoff linearity between src and dst vmas
3252 			 * (in turn preventing a vma_merge) to be
3253 			 * safe. It is only safe to keep the vm_pgoff
3254 			 * linear if there are no pages mapped yet.
3255 			 */
3256 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3257 			*vmap = vma = new_vma;
3258 		}
3259 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3260 	} else {
3261 		new_vma = vm_area_dup(vma);
3262 		if (!new_vma)
3263 			goto out;
3264 		new_vma->vm_start = addr;
3265 		new_vma->vm_end = addr + len;
3266 		new_vma->vm_pgoff = pgoff;
3267 		if (vma_dup_policy(vma, new_vma))
3268 			goto out_free_vma;
3269 		if (anon_vma_clone(new_vma, vma))
3270 			goto out_free_mempol;
3271 		if (new_vma->vm_file)
3272 			get_file(new_vma->vm_file);
3273 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3274 			new_vma->vm_ops->open(new_vma);
3275 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3276 		*need_rmap_locks = false;
3277 	}
3278 	return new_vma;
3279 
3280 out_free_mempol:
3281 	mpol_put(vma_policy(new_vma));
3282 out_free_vma:
3283 	vm_area_free(new_vma);
3284 out:
3285 	return NULL;
3286 }
3287 
3288 /*
3289  * Return true if the calling process may expand its vm space by the passed
3290  * number of pages
3291  */
3292 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3293 {
3294 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3295 		return false;
3296 
3297 	if (is_data_mapping(flags) &&
3298 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3299 		/* Workaround for Valgrind */
3300 		if (rlimit(RLIMIT_DATA) == 0 &&
3301 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3302 			return true;
3303 
3304 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3305 			     current->comm, current->pid,
3306 			     (mm->data_vm + npages) << PAGE_SHIFT,
3307 			     rlimit(RLIMIT_DATA),
3308 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3309 
3310 		if (!ignore_rlimit_data)
3311 			return false;
3312 	}
3313 
3314 	return true;
3315 }
3316 
3317 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3318 {
3319 	mm->total_vm += npages;
3320 
3321 	if (is_exec_mapping(flags))
3322 		mm->exec_vm += npages;
3323 	else if (is_stack_mapping(flags))
3324 		mm->stack_vm += npages;
3325 	else if (is_data_mapping(flags))
3326 		mm->data_vm += npages;
3327 }
3328 
3329 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3330 
3331 /*
3332  * Having a close hook prevents vma merging regardless of flags.
3333  */
3334 static void special_mapping_close(struct vm_area_struct *vma)
3335 {
3336 }
3337 
3338 static const char *special_mapping_name(struct vm_area_struct *vma)
3339 {
3340 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3341 }
3342 
3343 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3344 {
3345 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3346 
3347 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3348 		return -EFAULT;
3349 
3350 	if (sm->mremap)
3351 		return sm->mremap(sm, new_vma);
3352 
3353 	return 0;
3354 }
3355 
3356 static const struct vm_operations_struct special_mapping_vmops = {
3357 	.close = special_mapping_close,
3358 	.fault = special_mapping_fault,
3359 	.mremap = special_mapping_mremap,
3360 	.name = special_mapping_name,
3361 };
3362 
3363 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3364 	.close = special_mapping_close,
3365 	.fault = special_mapping_fault,
3366 };
3367 
3368 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3369 {
3370 	struct vm_area_struct *vma = vmf->vma;
3371 	pgoff_t pgoff;
3372 	struct page **pages;
3373 
3374 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3375 		pages = vma->vm_private_data;
3376 	} else {
3377 		struct vm_special_mapping *sm = vma->vm_private_data;
3378 
3379 		if (sm->fault)
3380 			return sm->fault(sm, vmf->vma, vmf);
3381 
3382 		pages = sm->pages;
3383 	}
3384 
3385 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3386 		pgoff--;
3387 
3388 	if (*pages) {
3389 		struct page *page = *pages;
3390 		get_page(page);
3391 		vmf->page = page;
3392 		return 0;
3393 	}
3394 
3395 	return VM_FAULT_SIGBUS;
3396 }
3397 
3398 static struct vm_area_struct *__install_special_mapping(
3399 	struct mm_struct *mm,
3400 	unsigned long addr, unsigned long len,
3401 	unsigned long vm_flags, void *priv,
3402 	const struct vm_operations_struct *ops)
3403 {
3404 	int ret;
3405 	struct vm_area_struct *vma;
3406 
3407 	vma = vm_area_alloc(mm);
3408 	if (unlikely(vma == NULL))
3409 		return ERR_PTR(-ENOMEM);
3410 
3411 	vma->vm_start = addr;
3412 	vma->vm_end = addr + len;
3413 
3414 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3415 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3416 
3417 	vma->vm_ops = ops;
3418 	vma->vm_private_data = priv;
3419 
3420 	ret = insert_vm_struct(mm, vma);
3421 	if (ret)
3422 		goto out;
3423 
3424 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3425 
3426 	perf_event_mmap(vma);
3427 
3428 	return vma;
3429 
3430 out:
3431 	vm_area_free(vma);
3432 	return ERR_PTR(ret);
3433 }
3434 
3435 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3436 	const struct vm_special_mapping *sm)
3437 {
3438 	return vma->vm_private_data == sm &&
3439 		(vma->vm_ops == &special_mapping_vmops ||
3440 		 vma->vm_ops == &legacy_special_mapping_vmops);
3441 }
3442 
3443 /*
3444  * Called with mm->mmap_sem held for writing.
3445  * Insert a new vma covering the given region, with the given flags.
3446  * Its pages are supplied by the given array of struct page *.
3447  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3448  * The region past the last page supplied will always produce SIGBUS.
3449  * The array pointer and the pages it points to are assumed to stay alive
3450  * for as long as this mapping might exist.
3451  */
3452 struct vm_area_struct *_install_special_mapping(
3453 	struct mm_struct *mm,
3454 	unsigned long addr, unsigned long len,
3455 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3456 {
3457 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3458 					&special_mapping_vmops);
3459 }
3460 
3461 int install_special_mapping(struct mm_struct *mm,
3462 			    unsigned long addr, unsigned long len,
3463 			    unsigned long vm_flags, struct page **pages)
3464 {
3465 	struct vm_area_struct *vma = __install_special_mapping(
3466 		mm, addr, len, vm_flags, (void *)pages,
3467 		&legacy_special_mapping_vmops);
3468 
3469 	return PTR_ERR_OR_ZERO(vma);
3470 }
3471 
3472 static DEFINE_MUTEX(mm_all_locks_mutex);
3473 
3474 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3475 {
3476 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3477 		/*
3478 		 * The LSB of head.next can't change from under us
3479 		 * because we hold the mm_all_locks_mutex.
3480 		 */
3481 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3482 		/*
3483 		 * We can safely modify head.next after taking the
3484 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3485 		 * the same anon_vma we won't take it again.
3486 		 *
3487 		 * No need of atomic instructions here, head.next
3488 		 * can't change from under us thanks to the
3489 		 * anon_vma->root->rwsem.
3490 		 */
3491 		if (__test_and_set_bit(0, (unsigned long *)
3492 				       &anon_vma->root->rb_root.rb_root.rb_node))
3493 			BUG();
3494 	}
3495 }
3496 
3497 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3498 {
3499 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3500 		/*
3501 		 * AS_MM_ALL_LOCKS can't change from under us because
3502 		 * we hold the mm_all_locks_mutex.
3503 		 *
3504 		 * Operations on ->flags have to be atomic because
3505 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3506 		 * mm_all_locks_mutex, there may be other cpus
3507 		 * changing other bitflags in parallel to us.
3508 		 */
3509 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3510 			BUG();
3511 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3512 	}
3513 }
3514 
3515 /*
3516  * This operation locks against the VM for all pte/vma/mm related
3517  * operations that could ever happen on a certain mm. This includes
3518  * vmtruncate, try_to_unmap, and all page faults.
3519  *
3520  * The caller must take the mmap_sem in write mode before calling
3521  * mm_take_all_locks(). The caller isn't allowed to release the
3522  * mmap_sem until mm_drop_all_locks() returns.
3523  *
3524  * mmap_sem in write mode is required in order to block all operations
3525  * that could modify pagetables and free pages without need of
3526  * altering the vma layout. It's also needed in write mode to avoid new
3527  * anon_vmas to be associated with existing vmas.
3528  *
3529  * A single task can't take more than one mm_take_all_locks() in a row
3530  * or it would deadlock.
3531  *
3532  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3533  * mapping->flags avoid to take the same lock twice, if more than one
3534  * vma in this mm is backed by the same anon_vma or address_space.
3535  *
3536  * We take locks in following order, accordingly to comment at beginning
3537  * of mm/rmap.c:
3538  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3539  *     hugetlb mapping);
3540  *   - all i_mmap_rwsem locks;
3541  *   - all anon_vma->rwseml
3542  *
3543  * We can take all locks within these types randomly because the VM code
3544  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3545  * mm_all_locks_mutex.
3546  *
3547  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3548  * that may have to take thousand of locks.
3549  *
3550  * mm_take_all_locks() can fail if it's interrupted by signals.
3551  */
3552 int mm_take_all_locks(struct mm_struct *mm)
3553 {
3554 	struct vm_area_struct *vma;
3555 	struct anon_vma_chain *avc;
3556 
3557 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3558 
3559 	mutex_lock(&mm_all_locks_mutex);
3560 
3561 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3562 		if (signal_pending(current))
3563 			goto out_unlock;
3564 		if (vma->vm_file && vma->vm_file->f_mapping &&
3565 				is_vm_hugetlb_page(vma))
3566 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3567 	}
3568 
3569 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3570 		if (signal_pending(current))
3571 			goto out_unlock;
3572 		if (vma->vm_file && vma->vm_file->f_mapping &&
3573 				!is_vm_hugetlb_page(vma))
3574 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3575 	}
3576 
3577 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3578 		if (signal_pending(current))
3579 			goto out_unlock;
3580 		if (vma->anon_vma)
3581 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3582 				vm_lock_anon_vma(mm, avc->anon_vma);
3583 	}
3584 
3585 	return 0;
3586 
3587 out_unlock:
3588 	mm_drop_all_locks(mm);
3589 	return -EINTR;
3590 }
3591 
3592 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3593 {
3594 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3595 		/*
3596 		 * The LSB of head.next can't change to 0 from under
3597 		 * us because we hold the mm_all_locks_mutex.
3598 		 *
3599 		 * We must however clear the bitflag before unlocking
3600 		 * the vma so the users using the anon_vma->rb_root will
3601 		 * never see our bitflag.
3602 		 *
3603 		 * No need of atomic instructions here, head.next
3604 		 * can't change from under us until we release the
3605 		 * anon_vma->root->rwsem.
3606 		 */
3607 		if (!__test_and_clear_bit(0, (unsigned long *)
3608 					  &anon_vma->root->rb_root.rb_root.rb_node))
3609 			BUG();
3610 		anon_vma_unlock_write(anon_vma);
3611 	}
3612 }
3613 
3614 static void vm_unlock_mapping(struct address_space *mapping)
3615 {
3616 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3617 		/*
3618 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3619 		 * because we hold the mm_all_locks_mutex.
3620 		 */
3621 		i_mmap_unlock_write(mapping);
3622 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3623 					&mapping->flags))
3624 			BUG();
3625 	}
3626 }
3627 
3628 /*
3629  * The mmap_sem cannot be released by the caller until
3630  * mm_drop_all_locks() returns.
3631  */
3632 void mm_drop_all_locks(struct mm_struct *mm)
3633 {
3634 	struct vm_area_struct *vma;
3635 	struct anon_vma_chain *avc;
3636 
3637 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3638 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3639 
3640 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3641 		if (vma->anon_vma)
3642 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3643 				vm_unlock_anon_vma(avc->anon_vma);
3644 		if (vma->vm_file && vma->vm_file->f_mapping)
3645 			vm_unlock_mapping(vma->vm_file->f_mapping);
3646 	}
3647 
3648 	mutex_unlock(&mm_all_locks_mutex);
3649 }
3650 
3651 /*
3652  * initialise the percpu counter for VM
3653  */
3654 void __init mmap_init(void)
3655 {
3656 	int ret;
3657 
3658 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3659 	VM_BUG_ON(ret);
3660 }
3661 
3662 /*
3663  * Initialise sysctl_user_reserve_kbytes.
3664  *
3665  * This is intended to prevent a user from starting a single memory hogging
3666  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3667  * mode.
3668  *
3669  * The default value is min(3% of free memory, 128MB)
3670  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3671  */
3672 static int init_user_reserve(void)
3673 {
3674 	unsigned long free_kbytes;
3675 
3676 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3677 
3678 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3679 	return 0;
3680 }
3681 subsys_initcall(init_user_reserve);
3682 
3683 /*
3684  * Initialise sysctl_admin_reserve_kbytes.
3685  *
3686  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3687  * to log in and kill a memory hogging process.
3688  *
3689  * Systems with more than 256MB will reserve 8MB, enough to recover
3690  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3691  * only reserve 3% of free pages by default.
3692  */
3693 static int init_admin_reserve(void)
3694 {
3695 	unsigned long free_kbytes;
3696 
3697 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3698 
3699 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3700 	return 0;
3701 }
3702 subsys_initcall(init_admin_reserve);
3703 
3704 /*
3705  * Reinititalise user and admin reserves if memory is added or removed.
3706  *
3707  * The default user reserve max is 128MB, and the default max for the
3708  * admin reserve is 8MB. These are usually, but not always, enough to
3709  * enable recovery from a memory hogging process using login/sshd, a shell,
3710  * and tools like top. It may make sense to increase or even disable the
3711  * reserve depending on the existence of swap or variations in the recovery
3712  * tools. So, the admin may have changed them.
3713  *
3714  * If memory is added and the reserves have been eliminated or increased above
3715  * the default max, then we'll trust the admin.
3716  *
3717  * If memory is removed and there isn't enough free memory, then we
3718  * need to reset the reserves.
3719  *
3720  * Otherwise keep the reserve set by the admin.
3721  */
3722 static int reserve_mem_notifier(struct notifier_block *nb,
3723 			     unsigned long action, void *data)
3724 {
3725 	unsigned long tmp, free_kbytes;
3726 
3727 	switch (action) {
3728 	case MEM_ONLINE:
3729 		/* Default max is 128MB. Leave alone if modified by operator. */
3730 		tmp = sysctl_user_reserve_kbytes;
3731 		if (0 < tmp && tmp < (1UL << 17))
3732 			init_user_reserve();
3733 
3734 		/* Default max is 8MB.  Leave alone if modified by operator. */
3735 		tmp = sysctl_admin_reserve_kbytes;
3736 		if (0 < tmp && tmp < (1UL << 13))
3737 			init_admin_reserve();
3738 
3739 		break;
3740 	case MEM_OFFLINE:
3741 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3742 
3743 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3744 			init_user_reserve();
3745 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3746 				sysctl_user_reserve_kbytes);
3747 		}
3748 
3749 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3750 			init_admin_reserve();
3751 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3752 				sysctl_admin_reserve_kbytes);
3753 		}
3754 		break;
3755 	default:
3756 		break;
3757 	}
3758 	return NOTIFY_OK;
3759 }
3760 
3761 static struct notifier_block reserve_mem_nb = {
3762 	.notifier_call = reserve_mem_notifier,
3763 };
3764 
3765 static int __meminit init_reserve_notifier(void)
3766 {
3767 	if (register_hotmemory_notifier(&reserve_mem_nb))
3768 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3769 
3770 	return 0;
3771 }
3772 subsys_initcall(init_reserve_notifier);
3773