1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 95 * MAP_PRIVATE: 96 * r: (no) no 97 * w: (no) no 98 * x: (yes) yes 99 */ 100 pgprot_t protection_map[16] __ro_after_init = { 101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 103 }; 104 105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 107 { 108 return prot; 109 } 110 #endif 111 112 pgprot_t vm_get_page_prot(unsigned long vm_flags) 113 { 114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 116 pgprot_val(arch_vm_get_page_prot(vm_flags))); 117 118 return arch_filter_pgprot(ret); 119 } 120 EXPORT_SYMBOL(vm_get_page_prot); 121 122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 123 { 124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 125 } 126 127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 128 void vma_set_page_prot(struct vm_area_struct *vma) 129 { 130 unsigned long vm_flags = vma->vm_flags; 131 pgprot_t vm_page_prot; 132 133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 134 if (vma_wants_writenotify(vma, vm_page_prot)) { 135 vm_flags &= ~VM_SHARED; 136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 137 } 138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 140 } 141 142 /* 143 * Requires inode->i_mapping->i_mmap_rwsem 144 */ 145 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 146 struct file *file, struct address_space *mapping) 147 { 148 if (vma->vm_flags & VM_DENYWRITE) 149 atomic_inc(&file_inode(file)->i_writecount); 150 if (vma->vm_flags & VM_SHARED) 151 mapping_unmap_writable(mapping); 152 153 flush_dcache_mmap_lock(mapping); 154 vma_interval_tree_remove(vma, &mapping->i_mmap); 155 flush_dcache_mmap_unlock(mapping); 156 } 157 158 /* 159 * Unlink a file-based vm structure from its interval tree, to hide 160 * vma from rmap and vmtruncate before freeing its page tables. 161 */ 162 void unlink_file_vma(struct vm_area_struct *vma) 163 { 164 struct file *file = vma->vm_file; 165 166 if (file) { 167 struct address_space *mapping = file->f_mapping; 168 i_mmap_lock_write(mapping); 169 __remove_shared_vm_struct(vma, file, mapping); 170 i_mmap_unlock_write(mapping); 171 } 172 } 173 174 /* 175 * Close a vm structure and free it, returning the next. 176 */ 177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 178 { 179 struct vm_area_struct *next = vma->vm_next; 180 181 might_sleep(); 182 if (vma->vm_ops && vma->vm_ops->close) 183 vma->vm_ops->close(vma); 184 if (vma->vm_file) 185 fput(vma->vm_file); 186 mpol_put(vma_policy(vma)); 187 vm_area_free(vma); 188 return next; 189 } 190 191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 192 struct list_head *uf); 193 SYSCALL_DEFINE1(brk, unsigned long, brk) 194 { 195 unsigned long retval; 196 unsigned long newbrk, oldbrk, origbrk; 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *next; 199 unsigned long min_brk; 200 bool populate; 201 bool downgraded = false; 202 LIST_HEAD(uf); 203 204 if (down_write_killable(&mm->mmap_sem)) 205 return -EINTR; 206 207 origbrk = mm->brk; 208 209 #ifdef CONFIG_COMPAT_BRK 210 /* 211 * CONFIG_COMPAT_BRK can still be overridden by setting 212 * randomize_va_space to 2, which will still cause mm->start_brk 213 * to be arbitrarily shifted 214 */ 215 if (current->brk_randomized) 216 min_brk = mm->start_brk; 217 else 218 min_brk = mm->end_data; 219 #else 220 min_brk = mm->start_brk; 221 #endif 222 if (brk < min_brk) 223 goto out; 224 225 /* 226 * Check against rlimit here. If this check is done later after the test 227 * of oldbrk with newbrk then it can escape the test and let the data 228 * segment grow beyond its set limit the in case where the limit is 229 * not page aligned -Ram Gupta 230 */ 231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 232 mm->end_data, mm->start_data)) 233 goto out; 234 235 newbrk = PAGE_ALIGN(brk); 236 oldbrk = PAGE_ALIGN(mm->brk); 237 if (oldbrk == newbrk) { 238 mm->brk = brk; 239 goto success; 240 } 241 242 /* 243 * Always allow shrinking brk. 244 * __do_munmap() may downgrade mmap_sem to read. 245 */ 246 if (brk <= mm->brk) { 247 int ret; 248 249 /* 250 * mm->brk must to be protected by write mmap_sem so update it 251 * before downgrading mmap_sem. When __do_munmap() fails, 252 * mm->brk will be restored from origbrk. 253 */ 254 mm->brk = brk; 255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 256 if (ret < 0) { 257 mm->brk = origbrk; 258 goto out; 259 } else if (ret == 1) { 260 downgraded = true; 261 } 262 goto success; 263 } 264 265 /* Check against existing mmap mappings. */ 266 next = find_vma(mm, oldbrk); 267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 268 goto out; 269 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 272 goto out; 273 mm->brk = brk; 274 275 success: 276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 277 if (downgraded) 278 up_read(&mm->mmap_sem); 279 else 280 up_write(&mm->mmap_sem); 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 retval = origbrk; 288 up_write(&mm->mmap_sem); 289 return retval; 290 } 291 292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 293 { 294 unsigned long gap, prev_end; 295 296 /* 297 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 298 * allow two stack_guard_gaps between them here, and when choosing 299 * an unmapped area; whereas when expanding we only require one. 300 * That's a little inconsistent, but keeps the code here simpler. 301 */ 302 gap = vm_start_gap(vma); 303 if (vma->vm_prev) { 304 prev_end = vm_end_gap(vma->vm_prev); 305 if (gap > prev_end) 306 gap -= prev_end; 307 else 308 gap = 0; 309 } 310 return gap; 311 } 312 313 #ifdef CONFIG_DEBUG_VM_RB 314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 315 { 316 unsigned long max = vma_compute_gap(vma), subtree_gap; 317 if (vma->vm_rb.rb_left) { 318 subtree_gap = rb_entry(vma->vm_rb.rb_left, 319 struct vm_area_struct, vm_rb)->rb_subtree_gap; 320 if (subtree_gap > max) 321 max = subtree_gap; 322 } 323 if (vma->vm_rb.rb_right) { 324 subtree_gap = rb_entry(vma->vm_rb.rb_right, 325 struct vm_area_struct, vm_rb)->rb_subtree_gap; 326 if (subtree_gap > max) 327 max = subtree_gap; 328 } 329 return max; 330 } 331 332 static int browse_rb(struct mm_struct *mm) 333 { 334 struct rb_root *root = &mm->mm_rb; 335 int i = 0, j, bug = 0; 336 struct rb_node *nd, *pn = NULL; 337 unsigned long prev = 0, pend = 0; 338 339 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 340 struct vm_area_struct *vma; 341 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 342 if (vma->vm_start < prev) { 343 pr_emerg("vm_start %lx < prev %lx\n", 344 vma->vm_start, prev); 345 bug = 1; 346 } 347 if (vma->vm_start < pend) { 348 pr_emerg("vm_start %lx < pend %lx\n", 349 vma->vm_start, pend); 350 bug = 1; 351 } 352 if (vma->vm_start > vma->vm_end) { 353 pr_emerg("vm_start %lx > vm_end %lx\n", 354 vma->vm_start, vma->vm_end); 355 bug = 1; 356 } 357 spin_lock(&mm->page_table_lock); 358 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 359 pr_emerg("free gap %lx, correct %lx\n", 360 vma->rb_subtree_gap, 361 vma_compute_subtree_gap(vma)); 362 bug = 1; 363 } 364 spin_unlock(&mm->page_table_lock); 365 i++; 366 pn = nd; 367 prev = vma->vm_start; 368 pend = vma->vm_end; 369 } 370 j = 0; 371 for (nd = pn; nd; nd = rb_prev(nd)) 372 j++; 373 if (i != j) { 374 pr_emerg("backwards %d, forwards %d\n", j, i); 375 bug = 1; 376 } 377 return bug ? -1 : i; 378 } 379 380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 381 { 382 struct rb_node *nd; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 VM_BUG_ON_VMA(vma != ignore && 388 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 389 vma); 390 } 391 } 392 393 static void validate_mm(struct mm_struct *mm) 394 { 395 int bug = 0; 396 int i = 0; 397 unsigned long highest_address = 0; 398 struct vm_area_struct *vma = mm->mmap; 399 400 while (vma) { 401 struct anon_vma *anon_vma = vma->anon_vma; 402 struct anon_vma_chain *avc; 403 404 if (anon_vma) { 405 anon_vma_lock_read(anon_vma); 406 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 407 anon_vma_interval_tree_verify(avc); 408 anon_vma_unlock_read(anon_vma); 409 } 410 411 highest_address = vm_end_gap(vma); 412 vma = vma->vm_next; 413 i++; 414 } 415 if (i != mm->map_count) { 416 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 417 bug = 1; 418 } 419 if (highest_address != mm->highest_vm_end) { 420 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 421 mm->highest_vm_end, highest_address); 422 bug = 1; 423 } 424 i = browse_rb(mm); 425 if (i != mm->map_count) { 426 if (i != -1) 427 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 428 bug = 1; 429 } 430 VM_BUG_ON_MM(bug, mm); 431 } 432 #else 433 #define validate_mm_rb(root, ignore) do { } while (0) 434 #define validate_mm(mm) do { } while (0) 435 #endif 436 437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 438 struct vm_area_struct, vm_rb, 439 unsigned long, rb_subtree_gap, vma_compute_gap) 440 441 /* 442 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 443 * vma->vm_prev->vm_end values changed, without modifying the vma's position 444 * in the rbtree. 445 */ 446 static void vma_gap_update(struct vm_area_struct *vma) 447 { 448 /* 449 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 450 * a callback function that does exactly what we want. 451 */ 452 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 453 } 454 455 static inline void vma_rb_insert(struct vm_area_struct *vma, 456 struct rb_root *root) 457 { 458 /* All rb_subtree_gap values must be consistent prior to insertion */ 459 validate_mm_rb(root, NULL); 460 461 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 462 } 463 464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 465 { 466 /* 467 * Note rb_erase_augmented is a fairly large inline function, 468 * so make sure we instantiate it only once with our desired 469 * augmented rbtree callbacks. 470 */ 471 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 472 } 473 474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 475 struct rb_root *root, 476 struct vm_area_struct *ignore) 477 { 478 /* 479 * All rb_subtree_gap values must be consistent prior to erase, 480 * with the possible exception of the "next" vma being erased if 481 * next->vm_start was reduced. 482 */ 483 validate_mm_rb(root, ignore); 484 485 __vma_rb_erase(vma, root); 486 } 487 488 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 489 struct rb_root *root) 490 { 491 /* 492 * All rb_subtree_gap values must be consistent prior to erase, 493 * with the possible exception of the vma being erased. 494 */ 495 validate_mm_rb(root, vma); 496 497 __vma_rb_erase(vma, root); 498 } 499 500 /* 501 * vma has some anon_vma assigned, and is already inserted on that 502 * anon_vma's interval trees. 503 * 504 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 505 * vma must be removed from the anon_vma's interval trees using 506 * anon_vma_interval_tree_pre_update_vma(). 507 * 508 * After the update, the vma will be reinserted using 509 * anon_vma_interval_tree_post_update_vma(). 510 * 511 * The entire update must be protected by exclusive mmap_sem and by 512 * the root anon_vma's mutex. 513 */ 514 static inline void 515 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 516 { 517 struct anon_vma_chain *avc; 518 519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 520 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 521 } 522 523 static inline void 524 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 525 { 526 struct anon_vma_chain *avc; 527 528 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 529 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 530 } 531 532 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 533 unsigned long end, struct vm_area_struct **pprev, 534 struct rb_node ***rb_link, struct rb_node **rb_parent) 535 { 536 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 537 538 __rb_link = &mm->mm_rb.rb_node; 539 rb_prev = __rb_parent = NULL; 540 541 while (*__rb_link) { 542 struct vm_area_struct *vma_tmp; 543 544 __rb_parent = *__rb_link; 545 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 546 547 if (vma_tmp->vm_end > addr) { 548 /* Fail if an existing vma overlaps the area */ 549 if (vma_tmp->vm_start < end) 550 return -ENOMEM; 551 __rb_link = &__rb_parent->rb_left; 552 } else { 553 rb_prev = __rb_parent; 554 __rb_link = &__rb_parent->rb_right; 555 } 556 } 557 558 *pprev = NULL; 559 if (rb_prev) 560 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 561 *rb_link = __rb_link; 562 *rb_parent = __rb_parent; 563 return 0; 564 } 565 566 static unsigned long count_vma_pages_range(struct mm_struct *mm, 567 unsigned long addr, unsigned long end) 568 { 569 unsigned long nr_pages = 0; 570 struct vm_area_struct *vma; 571 572 /* Find first overlaping mapping */ 573 vma = find_vma_intersection(mm, addr, end); 574 if (!vma) 575 return 0; 576 577 nr_pages = (min(end, vma->vm_end) - 578 max(addr, vma->vm_start)) >> PAGE_SHIFT; 579 580 /* Iterate over the rest of the overlaps */ 581 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 582 unsigned long overlap_len; 583 584 if (vma->vm_start > end) 585 break; 586 587 overlap_len = min(end, vma->vm_end) - vma->vm_start; 588 nr_pages += overlap_len >> PAGE_SHIFT; 589 } 590 591 return nr_pages; 592 } 593 594 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 595 struct rb_node **rb_link, struct rb_node *rb_parent) 596 { 597 /* Update tracking information for the gap following the new vma. */ 598 if (vma->vm_next) 599 vma_gap_update(vma->vm_next); 600 else 601 mm->highest_vm_end = vm_end_gap(vma); 602 603 /* 604 * vma->vm_prev wasn't known when we followed the rbtree to find the 605 * correct insertion point for that vma. As a result, we could not 606 * update the vma vm_rb parents rb_subtree_gap values on the way down. 607 * So, we first insert the vma with a zero rb_subtree_gap value 608 * (to be consistent with what we did on the way down), and then 609 * immediately update the gap to the correct value. Finally we 610 * rebalance the rbtree after all augmented values have been set. 611 */ 612 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 613 vma->rb_subtree_gap = 0; 614 vma_gap_update(vma); 615 vma_rb_insert(vma, &mm->mm_rb); 616 } 617 618 static void __vma_link_file(struct vm_area_struct *vma) 619 { 620 struct file *file; 621 622 file = vma->vm_file; 623 if (file) { 624 struct address_space *mapping = file->f_mapping; 625 626 if (vma->vm_flags & VM_DENYWRITE) 627 atomic_dec(&file_inode(file)->i_writecount); 628 if (vma->vm_flags & VM_SHARED) 629 atomic_inc(&mapping->i_mmap_writable); 630 631 flush_dcache_mmap_lock(mapping); 632 vma_interval_tree_insert(vma, &mapping->i_mmap); 633 flush_dcache_mmap_unlock(mapping); 634 } 635 } 636 637 static void 638 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 639 struct vm_area_struct *prev, struct rb_node **rb_link, 640 struct rb_node *rb_parent) 641 { 642 __vma_link_list(mm, vma, prev, rb_parent); 643 __vma_link_rb(mm, vma, rb_link, rb_parent); 644 } 645 646 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 647 struct vm_area_struct *prev, struct rb_node **rb_link, 648 struct rb_node *rb_parent) 649 { 650 struct address_space *mapping = NULL; 651 652 if (vma->vm_file) { 653 mapping = vma->vm_file->f_mapping; 654 i_mmap_lock_write(mapping); 655 } 656 657 __vma_link(mm, vma, prev, rb_link, rb_parent); 658 __vma_link_file(vma); 659 660 if (mapping) 661 i_mmap_unlock_write(mapping); 662 663 mm->map_count++; 664 validate_mm(mm); 665 } 666 667 /* 668 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 669 * mm's list and rbtree. It has already been inserted into the interval tree. 670 */ 671 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 672 { 673 struct vm_area_struct *prev; 674 struct rb_node **rb_link, *rb_parent; 675 676 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 677 &prev, &rb_link, &rb_parent)) 678 BUG(); 679 __vma_link(mm, vma, prev, rb_link, rb_parent); 680 mm->map_count++; 681 } 682 683 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 684 struct vm_area_struct *vma, 685 struct vm_area_struct *prev, 686 bool has_prev, 687 struct vm_area_struct *ignore) 688 { 689 struct vm_area_struct *next; 690 691 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 692 next = vma->vm_next; 693 if (has_prev) 694 prev->vm_next = next; 695 else { 696 prev = vma->vm_prev; 697 if (prev) 698 prev->vm_next = next; 699 else 700 mm->mmap = next; 701 } 702 if (next) 703 next->vm_prev = prev; 704 705 /* Kill the cache */ 706 vmacache_invalidate(mm); 707 } 708 709 static inline void __vma_unlink_prev(struct mm_struct *mm, 710 struct vm_area_struct *vma, 711 struct vm_area_struct *prev) 712 { 713 __vma_unlink_common(mm, vma, prev, true, vma); 714 } 715 716 /* 717 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 718 * is already present in an i_mmap tree without adjusting the tree. 719 * The following helper function should be used when such adjustments 720 * are necessary. The "insert" vma (if any) is to be inserted 721 * before we drop the necessary locks. 722 */ 723 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 724 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 725 struct vm_area_struct *expand) 726 { 727 struct mm_struct *mm = vma->vm_mm; 728 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 729 struct address_space *mapping = NULL; 730 struct rb_root_cached *root = NULL; 731 struct anon_vma *anon_vma = NULL; 732 struct file *file = vma->vm_file; 733 bool start_changed = false, end_changed = false; 734 long adjust_next = 0; 735 int remove_next = 0; 736 737 if (next && !insert) { 738 struct vm_area_struct *exporter = NULL, *importer = NULL; 739 740 if (end >= next->vm_end) { 741 /* 742 * vma expands, overlapping all the next, and 743 * perhaps the one after too (mprotect case 6). 744 * The only other cases that gets here are 745 * case 1, case 7 and case 8. 746 */ 747 if (next == expand) { 748 /* 749 * The only case where we don't expand "vma" 750 * and we expand "next" instead is case 8. 751 */ 752 VM_WARN_ON(end != next->vm_end); 753 /* 754 * remove_next == 3 means we're 755 * removing "vma" and that to do so we 756 * swapped "vma" and "next". 757 */ 758 remove_next = 3; 759 VM_WARN_ON(file != next->vm_file); 760 swap(vma, next); 761 } else { 762 VM_WARN_ON(expand != vma); 763 /* 764 * case 1, 6, 7, remove_next == 2 is case 6, 765 * remove_next == 1 is case 1 or 7. 766 */ 767 remove_next = 1 + (end > next->vm_end); 768 VM_WARN_ON(remove_next == 2 && 769 end != next->vm_next->vm_end); 770 VM_WARN_ON(remove_next == 1 && 771 end != next->vm_end); 772 /* trim end to next, for case 6 first pass */ 773 end = next->vm_end; 774 } 775 776 exporter = next; 777 importer = vma; 778 779 /* 780 * If next doesn't have anon_vma, import from vma after 781 * next, if the vma overlaps with it. 782 */ 783 if (remove_next == 2 && !next->anon_vma) 784 exporter = next->vm_next; 785 786 } else if (end > next->vm_start) { 787 /* 788 * vma expands, overlapping part of the next: 789 * mprotect case 5 shifting the boundary up. 790 */ 791 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 792 exporter = next; 793 importer = vma; 794 VM_WARN_ON(expand != importer); 795 } else if (end < vma->vm_end) { 796 /* 797 * vma shrinks, and !insert tells it's not 798 * split_vma inserting another: so it must be 799 * mprotect case 4 shifting the boundary down. 800 */ 801 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 802 exporter = vma; 803 importer = next; 804 VM_WARN_ON(expand != importer); 805 } 806 807 /* 808 * Easily overlooked: when mprotect shifts the boundary, 809 * make sure the expanding vma has anon_vma set if the 810 * shrinking vma had, to cover any anon pages imported. 811 */ 812 if (exporter && exporter->anon_vma && !importer->anon_vma) { 813 int error; 814 815 importer->anon_vma = exporter->anon_vma; 816 error = anon_vma_clone(importer, exporter); 817 if (error) 818 return error; 819 } 820 } 821 again: 822 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 823 824 if (file) { 825 mapping = file->f_mapping; 826 root = &mapping->i_mmap; 827 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 828 829 if (adjust_next) 830 uprobe_munmap(next, next->vm_start, next->vm_end); 831 832 i_mmap_lock_write(mapping); 833 if (insert) { 834 /* 835 * Put into interval tree now, so instantiated pages 836 * are visible to arm/parisc __flush_dcache_page 837 * throughout; but we cannot insert into address 838 * space until vma start or end is updated. 839 */ 840 __vma_link_file(insert); 841 } 842 } 843 844 anon_vma = vma->anon_vma; 845 if (!anon_vma && adjust_next) 846 anon_vma = next->anon_vma; 847 if (anon_vma) { 848 VM_WARN_ON(adjust_next && next->anon_vma && 849 anon_vma != next->anon_vma); 850 anon_vma_lock_write(anon_vma); 851 anon_vma_interval_tree_pre_update_vma(vma); 852 if (adjust_next) 853 anon_vma_interval_tree_pre_update_vma(next); 854 } 855 856 if (root) { 857 flush_dcache_mmap_lock(mapping); 858 vma_interval_tree_remove(vma, root); 859 if (adjust_next) 860 vma_interval_tree_remove(next, root); 861 } 862 863 if (start != vma->vm_start) { 864 vma->vm_start = start; 865 start_changed = true; 866 } 867 if (end != vma->vm_end) { 868 vma->vm_end = end; 869 end_changed = true; 870 } 871 vma->vm_pgoff = pgoff; 872 if (adjust_next) { 873 next->vm_start += adjust_next << PAGE_SHIFT; 874 next->vm_pgoff += adjust_next; 875 } 876 877 if (root) { 878 if (adjust_next) 879 vma_interval_tree_insert(next, root); 880 vma_interval_tree_insert(vma, root); 881 flush_dcache_mmap_unlock(mapping); 882 } 883 884 if (remove_next) { 885 /* 886 * vma_merge has merged next into vma, and needs 887 * us to remove next before dropping the locks. 888 */ 889 if (remove_next != 3) 890 __vma_unlink_prev(mm, next, vma); 891 else 892 /* 893 * vma is not before next if they've been 894 * swapped. 895 * 896 * pre-swap() next->vm_start was reduced so 897 * tell validate_mm_rb to ignore pre-swap() 898 * "next" (which is stored in post-swap() 899 * "vma"). 900 */ 901 __vma_unlink_common(mm, next, NULL, false, vma); 902 if (file) 903 __remove_shared_vm_struct(next, file, mapping); 904 } else if (insert) { 905 /* 906 * split_vma has split insert from vma, and needs 907 * us to insert it before dropping the locks 908 * (it may either follow vma or precede it). 909 */ 910 __insert_vm_struct(mm, insert); 911 } else { 912 if (start_changed) 913 vma_gap_update(vma); 914 if (end_changed) { 915 if (!next) 916 mm->highest_vm_end = vm_end_gap(vma); 917 else if (!adjust_next) 918 vma_gap_update(next); 919 } 920 } 921 922 if (anon_vma) { 923 anon_vma_interval_tree_post_update_vma(vma); 924 if (adjust_next) 925 anon_vma_interval_tree_post_update_vma(next); 926 anon_vma_unlock_write(anon_vma); 927 } 928 if (mapping) 929 i_mmap_unlock_write(mapping); 930 931 if (root) { 932 uprobe_mmap(vma); 933 934 if (adjust_next) 935 uprobe_mmap(next); 936 } 937 938 if (remove_next) { 939 if (file) { 940 uprobe_munmap(next, next->vm_start, next->vm_end); 941 fput(file); 942 } 943 if (next->anon_vma) 944 anon_vma_merge(vma, next); 945 mm->map_count--; 946 mpol_put(vma_policy(next)); 947 vm_area_free(next); 948 /* 949 * In mprotect's case 6 (see comments on vma_merge), 950 * we must remove another next too. It would clutter 951 * up the code too much to do both in one go. 952 */ 953 if (remove_next != 3) { 954 /* 955 * If "next" was removed and vma->vm_end was 956 * expanded (up) over it, in turn 957 * "next->vm_prev->vm_end" changed and the 958 * "vma->vm_next" gap must be updated. 959 */ 960 next = vma->vm_next; 961 } else { 962 /* 963 * For the scope of the comment "next" and 964 * "vma" considered pre-swap(): if "vma" was 965 * removed, next->vm_start was expanded (down) 966 * over it and the "next" gap must be updated. 967 * Because of the swap() the post-swap() "vma" 968 * actually points to pre-swap() "next" 969 * (post-swap() "next" as opposed is now a 970 * dangling pointer). 971 */ 972 next = vma; 973 } 974 if (remove_next == 2) { 975 remove_next = 1; 976 end = next->vm_end; 977 goto again; 978 } 979 else if (next) 980 vma_gap_update(next); 981 else { 982 /* 983 * If remove_next == 2 we obviously can't 984 * reach this path. 985 * 986 * If remove_next == 3 we can't reach this 987 * path because pre-swap() next is always not 988 * NULL. pre-swap() "next" is not being 989 * removed and its next->vm_end is not altered 990 * (and furthermore "end" already matches 991 * next->vm_end in remove_next == 3). 992 * 993 * We reach this only in the remove_next == 1 994 * case if the "next" vma that was removed was 995 * the highest vma of the mm. However in such 996 * case next->vm_end == "end" and the extended 997 * "vma" has vma->vm_end == next->vm_end so 998 * mm->highest_vm_end doesn't need any update 999 * in remove_next == 1 case. 1000 */ 1001 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1002 } 1003 } 1004 if (insert && file) 1005 uprobe_mmap(insert); 1006 1007 validate_mm(mm); 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * If the vma has a ->close operation then the driver probably needs to release 1014 * per-vma resources, so we don't attempt to merge those. 1015 */ 1016 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1017 struct file *file, unsigned long vm_flags, 1018 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1019 { 1020 /* 1021 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1022 * match the flags but dirty bit -- the caller should mark 1023 * merged VMA as dirty. If dirty bit won't be excluded from 1024 * comparison, we increase pressure on the memory system forcing 1025 * the kernel to generate new VMAs when old one could be 1026 * extended instead. 1027 */ 1028 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1029 return 0; 1030 if (vma->vm_file != file) 1031 return 0; 1032 if (vma->vm_ops && vma->vm_ops->close) 1033 return 0; 1034 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1035 return 0; 1036 return 1; 1037 } 1038 1039 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1040 struct anon_vma *anon_vma2, 1041 struct vm_area_struct *vma) 1042 { 1043 /* 1044 * The list_is_singular() test is to avoid merging VMA cloned from 1045 * parents. This can improve scalability caused by anon_vma lock. 1046 */ 1047 if ((!anon_vma1 || !anon_vma2) && (!vma || 1048 list_is_singular(&vma->anon_vma_chain))) 1049 return 1; 1050 return anon_vma1 == anon_vma2; 1051 } 1052 1053 /* 1054 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1055 * in front of (at a lower virtual address and file offset than) the vma. 1056 * 1057 * We cannot merge two vmas if they have differently assigned (non-NULL) 1058 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1059 * 1060 * We don't check here for the merged mmap wrapping around the end of pagecache 1061 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1062 * wrap, nor mmaps which cover the final page at index -1UL. 1063 */ 1064 static int 1065 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1066 struct anon_vma *anon_vma, struct file *file, 1067 pgoff_t vm_pgoff, 1068 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1069 { 1070 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1071 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1072 if (vma->vm_pgoff == vm_pgoff) 1073 return 1; 1074 } 1075 return 0; 1076 } 1077 1078 /* 1079 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1080 * beyond (at a higher virtual address and file offset than) the vma. 1081 * 1082 * We cannot merge two vmas if they have differently assigned (non-NULL) 1083 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1084 */ 1085 static int 1086 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1087 struct anon_vma *anon_vma, struct file *file, 1088 pgoff_t vm_pgoff, 1089 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1090 { 1091 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1092 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1093 pgoff_t vm_pglen; 1094 vm_pglen = vma_pages(vma); 1095 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1096 return 1; 1097 } 1098 return 0; 1099 } 1100 1101 /* 1102 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1103 * whether that can be merged with its predecessor or its successor. 1104 * Or both (it neatly fills a hole). 1105 * 1106 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1107 * certain not to be mapped by the time vma_merge is called; but when 1108 * called for mprotect, it is certain to be already mapped (either at 1109 * an offset within prev, or at the start of next), and the flags of 1110 * this area are about to be changed to vm_flags - and the no-change 1111 * case has already been eliminated. 1112 * 1113 * The following mprotect cases have to be considered, where AAAA is 1114 * the area passed down from mprotect_fixup, never extending beyond one 1115 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1116 * 1117 * AAAA AAAA AAAA AAAA 1118 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1119 * cannot merge might become might become might become 1120 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1121 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1122 * mremap move: PPPPXXXXXXXX 8 1123 * AAAA 1124 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1125 * might become case 1 below case 2 below case 3 below 1126 * 1127 * It is important for case 8 that the vma NNNN overlapping the 1128 * region AAAA is never going to extended over XXXX. Instead XXXX must 1129 * be extended in region AAAA and NNNN must be removed. This way in 1130 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1131 * rmap_locks, the properties of the merged vma will be already 1132 * correct for the whole merged range. Some of those properties like 1133 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1134 * be correct for the whole merged range immediately after the 1135 * rmap_locks are released. Otherwise if XXXX would be removed and 1136 * NNNN would be extended over the XXXX range, remove_migration_ptes 1137 * or other rmap walkers (if working on addresses beyond the "end" 1138 * parameter) may establish ptes with the wrong permissions of NNNN 1139 * instead of the right permissions of XXXX. 1140 */ 1141 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1142 struct vm_area_struct *prev, unsigned long addr, 1143 unsigned long end, unsigned long vm_flags, 1144 struct anon_vma *anon_vma, struct file *file, 1145 pgoff_t pgoff, struct mempolicy *policy, 1146 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1147 { 1148 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1149 struct vm_area_struct *area, *next; 1150 int err; 1151 1152 /* 1153 * We later require that vma->vm_flags == vm_flags, 1154 * so this tests vma->vm_flags & VM_SPECIAL, too. 1155 */ 1156 if (vm_flags & VM_SPECIAL) 1157 return NULL; 1158 1159 if (prev) 1160 next = prev->vm_next; 1161 else 1162 next = mm->mmap; 1163 area = next; 1164 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1165 next = next->vm_next; 1166 1167 /* verify some invariant that must be enforced by the caller */ 1168 VM_WARN_ON(prev && addr <= prev->vm_start); 1169 VM_WARN_ON(area && end > area->vm_end); 1170 VM_WARN_ON(addr >= end); 1171 1172 /* 1173 * Can it merge with the predecessor? 1174 */ 1175 if (prev && prev->vm_end == addr && 1176 mpol_equal(vma_policy(prev), policy) && 1177 can_vma_merge_after(prev, vm_flags, 1178 anon_vma, file, pgoff, 1179 vm_userfaultfd_ctx)) { 1180 /* 1181 * OK, it can. Can we now merge in the successor as well? 1182 */ 1183 if (next && end == next->vm_start && 1184 mpol_equal(policy, vma_policy(next)) && 1185 can_vma_merge_before(next, vm_flags, 1186 anon_vma, file, 1187 pgoff+pglen, 1188 vm_userfaultfd_ctx) && 1189 is_mergeable_anon_vma(prev->anon_vma, 1190 next->anon_vma, NULL)) { 1191 /* cases 1, 6 */ 1192 err = __vma_adjust(prev, prev->vm_start, 1193 next->vm_end, prev->vm_pgoff, NULL, 1194 prev); 1195 } else /* cases 2, 5, 7 */ 1196 err = __vma_adjust(prev, prev->vm_start, 1197 end, prev->vm_pgoff, NULL, prev); 1198 if (err) 1199 return NULL; 1200 khugepaged_enter_vma_merge(prev, vm_flags); 1201 return prev; 1202 } 1203 1204 /* 1205 * Can this new request be merged in front of next? 1206 */ 1207 if (next && end == next->vm_start && 1208 mpol_equal(policy, vma_policy(next)) && 1209 can_vma_merge_before(next, vm_flags, 1210 anon_vma, file, pgoff+pglen, 1211 vm_userfaultfd_ctx)) { 1212 if (prev && addr < prev->vm_end) /* case 4 */ 1213 err = __vma_adjust(prev, prev->vm_start, 1214 addr, prev->vm_pgoff, NULL, next); 1215 else { /* cases 3, 8 */ 1216 err = __vma_adjust(area, addr, next->vm_end, 1217 next->vm_pgoff - pglen, NULL, next); 1218 /* 1219 * In case 3 area is already equal to next and 1220 * this is a noop, but in case 8 "area" has 1221 * been removed and next was expanded over it. 1222 */ 1223 area = next; 1224 } 1225 if (err) 1226 return NULL; 1227 khugepaged_enter_vma_merge(area, vm_flags); 1228 return area; 1229 } 1230 1231 return NULL; 1232 } 1233 1234 /* 1235 * Rough compatbility check to quickly see if it's even worth looking 1236 * at sharing an anon_vma. 1237 * 1238 * They need to have the same vm_file, and the flags can only differ 1239 * in things that mprotect may change. 1240 * 1241 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1242 * we can merge the two vma's. For example, we refuse to merge a vma if 1243 * there is a vm_ops->close() function, because that indicates that the 1244 * driver is doing some kind of reference counting. But that doesn't 1245 * really matter for the anon_vma sharing case. 1246 */ 1247 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1248 { 1249 return a->vm_end == b->vm_start && 1250 mpol_equal(vma_policy(a), vma_policy(b)) && 1251 a->vm_file == b->vm_file && 1252 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1253 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1254 } 1255 1256 /* 1257 * Do some basic sanity checking to see if we can re-use the anon_vma 1258 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1259 * the same as 'old', the other will be the new one that is trying 1260 * to share the anon_vma. 1261 * 1262 * NOTE! This runs with mm_sem held for reading, so it is possible that 1263 * the anon_vma of 'old' is concurrently in the process of being set up 1264 * by another page fault trying to merge _that_. But that's ok: if it 1265 * is being set up, that automatically means that it will be a singleton 1266 * acceptable for merging, so we can do all of this optimistically. But 1267 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1268 * 1269 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1270 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1271 * is to return an anon_vma that is "complex" due to having gone through 1272 * a fork). 1273 * 1274 * We also make sure that the two vma's are compatible (adjacent, 1275 * and with the same memory policies). That's all stable, even with just 1276 * a read lock on the mm_sem. 1277 */ 1278 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1279 { 1280 if (anon_vma_compatible(a, b)) { 1281 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1282 1283 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1284 return anon_vma; 1285 } 1286 return NULL; 1287 } 1288 1289 /* 1290 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1291 * neighbouring vmas for a suitable anon_vma, before it goes off 1292 * to allocate a new anon_vma. It checks because a repetitive 1293 * sequence of mprotects and faults may otherwise lead to distinct 1294 * anon_vmas being allocated, preventing vma merge in subsequent 1295 * mprotect. 1296 */ 1297 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1298 { 1299 struct anon_vma *anon_vma; 1300 struct vm_area_struct *near; 1301 1302 near = vma->vm_next; 1303 if (!near) 1304 goto try_prev; 1305 1306 anon_vma = reusable_anon_vma(near, vma, near); 1307 if (anon_vma) 1308 return anon_vma; 1309 try_prev: 1310 near = vma->vm_prev; 1311 if (!near) 1312 goto none; 1313 1314 anon_vma = reusable_anon_vma(near, near, vma); 1315 if (anon_vma) 1316 return anon_vma; 1317 none: 1318 /* 1319 * There's no absolute need to look only at touching neighbours: 1320 * we could search further afield for "compatible" anon_vmas. 1321 * But it would probably just be a waste of time searching, 1322 * or lead to too many vmas hanging off the same anon_vma. 1323 * We're trying to allow mprotect remerging later on, 1324 * not trying to minimize memory used for anon_vmas. 1325 */ 1326 return NULL; 1327 } 1328 1329 /* 1330 * If a hint addr is less than mmap_min_addr change hint to be as 1331 * low as possible but still greater than mmap_min_addr 1332 */ 1333 static inline unsigned long round_hint_to_min(unsigned long hint) 1334 { 1335 hint &= PAGE_MASK; 1336 if (((void *)hint != NULL) && 1337 (hint < mmap_min_addr)) 1338 return PAGE_ALIGN(mmap_min_addr); 1339 return hint; 1340 } 1341 1342 static inline int mlock_future_check(struct mm_struct *mm, 1343 unsigned long flags, 1344 unsigned long len) 1345 { 1346 unsigned long locked, lock_limit; 1347 1348 /* mlock MCL_FUTURE? */ 1349 if (flags & VM_LOCKED) { 1350 locked = len >> PAGE_SHIFT; 1351 locked += mm->locked_vm; 1352 lock_limit = rlimit(RLIMIT_MEMLOCK); 1353 lock_limit >>= PAGE_SHIFT; 1354 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1355 return -EAGAIN; 1356 } 1357 return 0; 1358 } 1359 1360 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1361 { 1362 if (S_ISREG(inode->i_mode)) 1363 return MAX_LFS_FILESIZE; 1364 1365 if (S_ISBLK(inode->i_mode)) 1366 return MAX_LFS_FILESIZE; 1367 1368 if (S_ISSOCK(inode->i_mode)) 1369 return MAX_LFS_FILESIZE; 1370 1371 /* Special "we do even unsigned file positions" case */ 1372 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1373 return 0; 1374 1375 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1376 return ULONG_MAX; 1377 } 1378 1379 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1380 unsigned long pgoff, unsigned long len) 1381 { 1382 u64 maxsize = file_mmap_size_max(file, inode); 1383 1384 if (maxsize && len > maxsize) 1385 return false; 1386 maxsize -= len; 1387 if (pgoff > maxsize >> PAGE_SHIFT) 1388 return false; 1389 return true; 1390 } 1391 1392 /* 1393 * The caller must hold down_write(¤t->mm->mmap_sem). 1394 */ 1395 unsigned long do_mmap(struct file *file, unsigned long addr, 1396 unsigned long len, unsigned long prot, 1397 unsigned long flags, vm_flags_t vm_flags, 1398 unsigned long pgoff, unsigned long *populate, 1399 struct list_head *uf) 1400 { 1401 struct mm_struct *mm = current->mm; 1402 int pkey = 0; 1403 1404 *populate = 0; 1405 1406 if (!len) 1407 return -EINVAL; 1408 1409 /* 1410 * Does the application expect PROT_READ to imply PROT_EXEC? 1411 * 1412 * (the exception is when the underlying filesystem is noexec 1413 * mounted, in which case we dont add PROT_EXEC.) 1414 */ 1415 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1416 if (!(file && path_noexec(&file->f_path))) 1417 prot |= PROT_EXEC; 1418 1419 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1420 if (flags & MAP_FIXED_NOREPLACE) 1421 flags |= MAP_FIXED; 1422 1423 if (!(flags & MAP_FIXED)) 1424 addr = round_hint_to_min(addr); 1425 1426 /* Careful about overflows.. */ 1427 len = PAGE_ALIGN(len); 1428 if (!len) 1429 return -ENOMEM; 1430 1431 /* offset overflow? */ 1432 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1433 return -EOVERFLOW; 1434 1435 /* Too many mappings? */ 1436 if (mm->map_count > sysctl_max_map_count) 1437 return -ENOMEM; 1438 1439 /* Obtain the address to map to. we verify (or select) it and ensure 1440 * that it represents a valid section of the address space. 1441 */ 1442 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1443 if (offset_in_page(addr)) 1444 return addr; 1445 1446 if (flags & MAP_FIXED_NOREPLACE) { 1447 struct vm_area_struct *vma = find_vma(mm, addr); 1448 1449 if (vma && vma->vm_start < addr + len) 1450 return -EEXIST; 1451 } 1452 1453 if (prot == PROT_EXEC) { 1454 pkey = execute_only_pkey(mm); 1455 if (pkey < 0) 1456 pkey = 0; 1457 } 1458 1459 /* Do simple checking here so the lower-level routines won't have 1460 * to. we assume access permissions have been handled by the open 1461 * of the memory object, so we don't do any here. 1462 */ 1463 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1464 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1465 1466 if (flags & MAP_LOCKED) 1467 if (!can_do_mlock()) 1468 return -EPERM; 1469 1470 if (mlock_future_check(mm, vm_flags, len)) 1471 return -EAGAIN; 1472 1473 if (file) { 1474 struct inode *inode = file_inode(file); 1475 unsigned long flags_mask; 1476 1477 if (!file_mmap_ok(file, inode, pgoff, len)) 1478 return -EOVERFLOW; 1479 1480 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1481 1482 switch (flags & MAP_TYPE) { 1483 case MAP_SHARED: 1484 /* 1485 * Force use of MAP_SHARED_VALIDATE with non-legacy 1486 * flags. E.g. MAP_SYNC is dangerous to use with 1487 * MAP_SHARED as you don't know which consistency model 1488 * you will get. We silently ignore unsupported flags 1489 * with MAP_SHARED to preserve backward compatibility. 1490 */ 1491 flags &= LEGACY_MAP_MASK; 1492 /* fall through */ 1493 case MAP_SHARED_VALIDATE: 1494 if (flags & ~flags_mask) 1495 return -EOPNOTSUPP; 1496 if (prot & PROT_WRITE) { 1497 if (!(file->f_mode & FMODE_WRITE)) 1498 return -EACCES; 1499 if (IS_SWAPFILE(file->f_mapping->host)) 1500 return -ETXTBSY; 1501 } 1502 1503 /* 1504 * Make sure we don't allow writing to an append-only 1505 * file.. 1506 */ 1507 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1508 return -EACCES; 1509 1510 /* 1511 * Make sure there are no mandatory locks on the file. 1512 */ 1513 if (locks_verify_locked(file)) 1514 return -EAGAIN; 1515 1516 vm_flags |= VM_SHARED | VM_MAYSHARE; 1517 if (!(file->f_mode & FMODE_WRITE)) 1518 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1519 1520 /* fall through */ 1521 case MAP_PRIVATE: 1522 if (!(file->f_mode & FMODE_READ)) 1523 return -EACCES; 1524 if (path_noexec(&file->f_path)) { 1525 if (vm_flags & VM_EXEC) 1526 return -EPERM; 1527 vm_flags &= ~VM_MAYEXEC; 1528 } 1529 1530 if (!file->f_op->mmap) 1531 return -ENODEV; 1532 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1533 return -EINVAL; 1534 break; 1535 1536 default: 1537 return -EINVAL; 1538 } 1539 } else { 1540 switch (flags & MAP_TYPE) { 1541 case MAP_SHARED: 1542 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1543 return -EINVAL; 1544 /* 1545 * Ignore pgoff. 1546 */ 1547 pgoff = 0; 1548 vm_flags |= VM_SHARED | VM_MAYSHARE; 1549 break; 1550 case MAP_PRIVATE: 1551 /* 1552 * Set pgoff according to addr for anon_vma. 1553 */ 1554 pgoff = addr >> PAGE_SHIFT; 1555 break; 1556 default: 1557 return -EINVAL; 1558 } 1559 } 1560 1561 /* 1562 * Set 'VM_NORESERVE' if we should not account for the 1563 * memory use of this mapping. 1564 */ 1565 if (flags & MAP_NORESERVE) { 1566 /* We honor MAP_NORESERVE if allowed to overcommit */ 1567 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1568 vm_flags |= VM_NORESERVE; 1569 1570 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1571 if (file && is_file_hugepages(file)) 1572 vm_flags |= VM_NORESERVE; 1573 } 1574 1575 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1576 if (!IS_ERR_VALUE(addr) && 1577 ((vm_flags & VM_LOCKED) || 1578 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1579 *populate = len; 1580 return addr; 1581 } 1582 1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1584 unsigned long prot, unsigned long flags, 1585 unsigned long fd, unsigned long pgoff) 1586 { 1587 struct file *file = NULL; 1588 unsigned long retval; 1589 1590 if (!(flags & MAP_ANONYMOUS)) { 1591 audit_mmap_fd(fd, flags); 1592 file = fget(fd); 1593 if (!file) 1594 return -EBADF; 1595 if (is_file_hugepages(file)) 1596 len = ALIGN(len, huge_page_size(hstate_file(file))); 1597 retval = -EINVAL; 1598 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1599 goto out_fput; 1600 } else if (flags & MAP_HUGETLB) { 1601 struct user_struct *user = NULL; 1602 struct hstate *hs; 1603 1604 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1605 if (!hs) 1606 return -EINVAL; 1607 1608 len = ALIGN(len, huge_page_size(hs)); 1609 /* 1610 * VM_NORESERVE is used because the reservations will be 1611 * taken when vm_ops->mmap() is called 1612 * A dummy user value is used because we are not locking 1613 * memory so no accounting is necessary 1614 */ 1615 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1616 VM_NORESERVE, 1617 &user, HUGETLB_ANONHUGE_INODE, 1618 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1619 if (IS_ERR(file)) 1620 return PTR_ERR(file); 1621 } 1622 1623 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1624 1625 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1626 out_fput: 1627 if (file) 1628 fput(file); 1629 return retval; 1630 } 1631 1632 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1633 unsigned long, prot, unsigned long, flags, 1634 unsigned long, fd, unsigned long, pgoff) 1635 { 1636 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1637 } 1638 1639 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1640 struct mmap_arg_struct { 1641 unsigned long addr; 1642 unsigned long len; 1643 unsigned long prot; 1644 unsigned long flags; 1645 unsigned long fd; 1646 unsigned long offset; 1647 }; 1648 1649 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1650 { 1651 struct mmap_arg_struct a; 1652 1653 if (copy_from_user(&a, arg, sizeof(a))) 1654 return -EFAULT; 1655 if (offset_in_page(a.offset)) 1656 return -EINVAL; 1657 1658 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1659 a.offset >> PAGE_SHIFT); 1660 } 1661 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1662 1663 /* 1664 * Some shared mappings will want the pages marked read-only 1665 * to track write events. If so, we'll downgrade vm_page_prot 1666 * to the private version (using protection_map[] without the 1667 * VM_SHARED bit). 1668 */ 1669 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1670 { 1671 vm_flags_t vm_flags = vma->vm_flags; 1672 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1673 1674 /* If it was private or non-writable, the write bit is already clear */ 1675 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1676 return 0; 1677 1678 /* The backer wishes to know when pages are first written to? */ 1679 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1680 return 1; 1681 1682 /* The open routine did something to the protections that pgprot_modify 1683 * won't preserve? */ 1684 if (pgprot_val(vm_page_prot) != 1685 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1686 return 0; 1687 1688 /* Do we need to track softdirty? */ 1689 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1690 return 1; 1691 1692 /* Specialty mapping? */ 1693 if (vm_flags & VM_PFNMAP) 1694 return 0; 1695 1696 /* Can the mapping track the dirty pages? */ 1697 return vma->vm_file && vma->vm_file->f_mapping && 1698 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1699 } 1700 1701 /* 1702 * We account for memory if it's a private writeable mapping, 1703 * not hugepages and VM_NORESERVE wasn't set. 1704 */ 1705 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1706 { 1707 /* 1708 * hugetlb has its own accounting separate from the core VM 1709 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1710 */ 1711 if (file && is_file_hugepages(file)) 1712 return 0; 1713 1714 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1715 } 1716 1717 unsigned long mmap_region(struct file *file, unsigned long addr, 1718 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1719 struct list_head *uf) 1720 { 1721 struct mm_struct *mm = current->mm; 1722 struct vm_area_struct *vma, *prev; 1723 int error; 1724 struct rb_node **rb_link, *rb_parent; 1725 unsigned long charged = 0; 1726 1727 /* Check against address space limit. */ 1728 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1729 unsigned long nr_pages; 1730 1731 /* 1732 * MAP_FIXED may remove pages of mappings that intersects with 1733 * requested mapping. Account for the pages it would unmap. 1734 */ 1735 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1736 1737 if (!may_expand_vm(mm, vm_flags, 1738 (len >> PAGE_SHIFT) - nr_pages)) 1739 return -ENOMEM; 1740 } 1741 1742 /* Clear old maps */ 1743 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1744 &rb_parent)) { 1745 if (do_munmap(mm, addr, len, uf)) 1746 return -ENOMEM; 1747 } 1748 1749 /* 1750 * Private writable mapping: check memory availability 1751 */ 1752 if (accountable_mapping(file, vm_flags)) { 1753 charged = len >> PAGE_SHIFT; 1754 if (security_vm_enough_memory_mm(mm, charged)) 1755 return -ENOMEM; 1756 vm_flags |= VM_ACCOUNT; 1757 } 1758 1759 /* 1760 * Can we just expand an old mapping? 1761 */ 1762 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1763 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1764 if (vma) 1765 goto out; 1766 1767 /* 1768 * Determine the object being mapped and call the appropriate 1769 * specific mapper. the address has already been validated, but 1770 * not unmapped, but the maps are removed from the list. 1771 */ 1772 vma = vm_area_alloc(mm); 1773 if (!vma) { 1774 error = -ENOMEM; 1775 goto unacct_error; 1776 } 1777 1778 vma->vm_start = addr; 1779 vma->vm_end = addr + len; 1780 vma->vm_flags = vm_flags; 1781 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1782 vma->vm_pgoff = pgoff; 1783 1784 if (file) { 1785 if (vm_flags & VM_DENYWRITE) { 1786 error = deny_write_access(file); 1787 if (error) 1788 goto free_vma; 1789 } 1790 if (vm_flags & VM_SHARED) { 1791 error = mapping_map_writable(file->f_mapping); 1792 if (error) 1793 goto allow_write_and_free_vma; 1794 } 1795 1796 /* ->mmap() can change vma->vm_file, but must guarantee that 1797 * vma_link() below can deny write-access if VM_DENYWRITE is set 1798 * and map writably if VM_SHARED is set. This usually means the 1799 * new file must not have been exposed to user-space, yet. 1800 */ 1801 vma->vm_file = get_file(file); 1802 error = call_mmap(file, vma); 1803 if (error) 1804 goto unmap_and_free_vma; 1805 1806 /* Can addr have changed?? 1807 * 1808 * Answer: Yes, several device drivers can do it in their 1809 * f_op->mmap method. -DaveM 1810 * Bug: If addr is changed, prev, rb_link, rb_parent should 1811 * be updated for vma_link() 1812 */ 1813 WARN_ON_ONCE(addr != vma->vm_start); 1814 1815 addr = vma->vm_start; 1816 vm_flags = vma->vm_flags; 1817 } else if (vm_flags & VM_SHARED) { 1818 error = shmem_zero_setup(vma); 1819 if (error) 1820 goto free_vma; 1821 } else { 1822 vma_set_anonymous(vma); 1823 } 1824 1825 vma_link(mm, vma, prev, rb_link, rb_parent); 1826 /* Once vma denies write, undo our temporary denial count */ 1827 if (file) { 1828 if (vm_flags & VM_SHARED) 1829 mapping_unmap_writable(file->f_mapping); 1830 if (vm_flags & VM_DENYWRITE) 1831 allow_write_access(file); 1832 } 1833 file = vma->vm_file; 1834 out: 1835 perf_event_mmap(vma); 1836 1837 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1838 if (vm_flags & VM_LOCKED) { 1839 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1840 is_vm_hugetlb_page(vma) || 1841 vma == get_gate_vma(current->mm)) 1842 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1843 else 1844 mm->locked_vm += (len >> PAGE_SHIFT); 1845 } 1846 1847 if (file) 1848 uprobe_mmap(vma); 1849 1850 /* 1851 * New (or expanded) vma always get soft dirty status. 1852 * Otherwise user-space soft-dirty page tracker won't 1853 * be able to distinguish situation when vma area unmapped, 1854 * then new mapped in-place (which must be aimed as 1855 * a completely new data area). 1856 */ 1857 vma->vm_flags |= VM_SOFTDIRTY; 1858 1859 vma_set_page_prot(vma); 1860 1861 return addr; 1862 1863 unmap_and_free_vma: 1864 vma->vm_file = NULL; 1865 fput(file); 1866 1867 /* Undo any partial mapping done by a device driver. */ 1868 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1869 charged = 0; 1870 if (vm_flags & VM_SHARED) 1871 mapping_unmap_writable(file->f_mapping); 1872 allow_write_and_free_vma: 1873 if (vm_flags & VM_DENYWRITE) 1874 allow_write_access(file); 1875 free_vma: 1876 vm_area_free(vma); 1877 unacct_error: 1878 if (charged) 1879 vm_unacct_memory(charged); 1880 return error; 1881 } 1882 1883 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1884 { 1885 /* 1886 * We implement the search by looking for an rbtree node that 1887 * immediately follows a suitable gap. That is, 1888 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1889 * - gap_end = vma->vm_start >= info->low_limit + length; 1890 * - gap_end - gap_start >= length 1891 */ 1892 1893 struct mm_struct *mm = current->mm; 1894 struct vm_area_struct *vma; 1895 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1896 1897 /* Adjust search length to account for worst case alignment overhead */ 1898 length = info->length + info->align_mask; 1899 if (length < info->length) 1900 return -ENOMEM; 1901 1902 /* Adjust search limits by the desired length */ 1903 if (info->high_limit < length) 1904 return -ENOMEM; 1905 high_limit = info->high_limit - length; 1906 1907 if (info->low_limit > high_limit) 1908 return -ENOMEM; 1909 low_limit = info->low_limit + length; 1910 1911 /* Check if rbtree root looks promising */ 1912 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1913 goto check_highest; 1914 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1915 if (vma->rb_subtree_gap < length) 1916 goto check_highest; 1917 1918 while (true) { 1919 /* Visit left subtree if it looks promising */ 1920 gap_end = vm_start_gap(vma); 1921 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1922 struct vm_area_struct *left = 1923 rb_entry(vma->vm_rb.rb_left, 1924 struct vm_area_struct, vm_rb); 1925 if (left->rb_subtree_gap >= length) { 1926 vma = left; 1927 continue; 1928 } 1929 } 1930 1931 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1932 check_current: 1933 /* Check if current node has a suitable gap */ 1934 if (gap_start > high_limit) 1935 return -ENOMEM; 1936 if (gap_end >= low_limit && 1937 gap_end > gap_start && gap_end - gap_start >= length) 1938 goto found; 1939 1940 /* Visit right subtree if it looks promising */ 1941 if (vma->vm_rb.rb_right) { 1942 struct vm_area_struct *right = 1943 rb_entry(vma->vm_rb.rb_right, 1944 struct vm_area_struct, vm_rb); 1945 if (right->rb_subtree_gap >= length) { 1946 vma = right; 1947 continue; 1948 } 1949 } 1950 1951 /* Go back up the rbtree to find next candidate node */ 1952 while (true) { 1953 struct rb_node *prev = &vma->vm_rb; 1954 if (!rb_parent(prev)) 1955 goto check_highest; 1956 vma = rb_entry(rb_parent(prev), 1957 struct vm_area_struct, vm_rb); 1958 if (prev == vma->vm_rb.rb_left) { 1959 gap_start = vm_end_gap(vma->vm_prev); 1960 gap_end = vm_start_gap(vma); 1961 goto check_current; 1962 } 1963 } 1964 } 1965 1966 check_highest: 1967 /* Check highest gap, which does not precede any rbtree node */ 1968 gap_start = mm->highest_vm_end; 1969 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1970 if (gap_start > high_limit) 1971 return -ENOMEM; 1972 1973 found: 1974 /* We found a suitable gap. Clip it with the original low_limit. */ 1975 if (gap_start < info->low_limit) 1976 gap_start = info->low_limit; 1977 1978 /* Adjust gap address to the desired alignment */ 1979 gap_start += (info->align_offset - gap_start) & info->align_mask; 1980 1981 VM_BUG_ON(gap_start + info->length > info->high_limit); 1982 VM_BUG_ON(gap_start + info->length > gap_end); 1983 return gap_start; 1984 } 1985 1986 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1987 { 1988 struct mm_struct *mm = current->mm; 1989 struct vm_area_struct *vma; 1990 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1991 1992 /* Adjust search length to account for worst case alignment overhead */ 1993 length = info->length + info->align_mask; 1994 if (length < info->length) 1995 return -ENOMEM; 1996 1997 /* 1998 * Adjust search limits by the desired length. 1999 * See implementation comment at top of unmapped_area(). 2000 */ 2001 gap_end = info->high_limit; 2002 if (gap_end < length) 2003 return -ENOMEM; 2004 high_limit = gap_end - length; 2005 2006 if (info->low_limit > high_limit) 2007 return -ENOMEM; 2008 low_limit = info->low_limit + length; 2009 2010 /* Check highest gap, which does not precede any rbtree node */ 2011 gap_start = mm->highest_vm_end; 2012 if (gap_start <= high_limit) 2013 goto found_highest; 2014 2015 /* Check if rbtree root looks promising */ 2016 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2017 return -ENOMEM; 2018 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2019 if (vma->rb_subtree_gap < length) 2020 return -ENOMEM; 2021 2022 while (true) { 2023 /* Visit right subtree if it looks promising */ 2024 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2025 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2026 struct vm_area_struct *right = 2027 rb_entry(vma->vm_rb.rb_right, 2028 struct vm_area_struct, vm_rb); 2029 if (right->rb_subtree_gap >= length) { 2030 vma = right; 2031 continue; 2032 } 2033 } 2034 2035 check_current: 2036 /* Check if current node has a suitable gap */ 2037 gap_end = vm_start_gap(vma); 2038 if (gap_end < low_limit) 2039 return -ENOMEM; 2040 if (gap_start <= high_limit && 2041 gap_end > gap_start && gap_end - gap_start >= length) 2042 goto found; 2043 2044 /* Visit left subtree if it looks promising */ 2045 if (vma->vm_rb.rb_left) { 2046 struct vm_area_struct *left = 2047 rb_entry(vma->vm_rb.rb_left, 2048 struct vm_area_struct, vm_rb); 2049 if (left->rb_subtree_gap >= length) { 2050 vma = left; 2051 continue; 2052 } 2053 } 2054 2055 /* Go back up the rbtree to find next candidate node */ 2056 while (true) { 2057 struct rb_node *prev = &vma->vm_rb; 2058 if (!rb_parent(prev)) 2059 return -ENOMEM; 2060 vma = rb_entry(rb_parent(prev), 2061 struct vm_area_struct, vm_rb); 2062 if (prev == vma->vm_rb.rb_right) { 2063 gap_start = vma->vm_prev ? 2064 vm_end_gap(vma->vm_prev) : 0; 2065 goto check_current; 2066 } 2067 } 2068 } 2069 2070 found: 2071 /* We found a suitable gap. Clip it with the original high_limit. */ 2072 if (gap_end > info->high_limit) 2073 gap_end = info->high_limit; 2074 2075 found_highest: 2076 /* Compute highest gap address at the desired alignment */ 2077 gap_end -= info->length; 2078 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2079 2080 VM_BUG_ON(gap_end < info->low_limit); 2081 VM_BUG_ON(gap_end < gap_start); 2082 return gap_end; 2083 } 2084 2085 2086 #ifndef arch_get_mmap_end 2087 #define arch_get_mmap_end(addr) (TASK_SIZE) 2088 #endif 2089 2090 #ifndef arch_get_mmap_base 2091 #define arch_get_mmap_base(addr, base) (base) 2092 #endif 2093 2094 /* Get an address range which is currently unmapped. 2095 * For shmat() with addr=0. 2096 * 2097 * Ugly calling convention alert: 2098 * Return value with the low bits set means error value, 2099 * ie 2100 * if (ret & ~PAGE_MASK) 2101 * error = ret; 2102 * 2103 * This function "knows" that -ENOMEM has the bits set. 2104 */ 2105 #ifndef HAVE_ARCH_UNMAPPED_AREA 2106 unsigned long 2107 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2108 unsigned long len, unsigned long pgoff, unsigned long flags) 2109 { 2110 struct mm_struct *mm = current->mm; 2111 struct vm_area_struct *vma, *prev; 2112 struct vm_unmapped_area_info info; 2113 const unsigned long mmap_end = arch_get_mmap_end(addr); 2114 2115 if (len > mmap_end - mmap_min_addr) 2116 return -ENOMEM; 2117 2118 if (flags & MAP_FIXED) 2119 return addr; 2120 2121 if (addr) { 2122 addr = PAGE_ALIGN(addr); 2123 vma = find_vma_prev(mm, addr, &prev); 2124 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2125 (!vma || addr + len <= vm_start_gap(vma)) && 2126 (!prev || addr >= vm_end_gap(prev))) 2127 return addr; 2128 } 2129 2130 info.flags = 0; 2131 info.length = len; 2132 info.low_limit = mm->mmap_base; 2133 info.high_limit = mmap_end; 2134 info.align_mask = 0; 2135 return vm_unmapped_area(&info); 2136 } 2137 #endif 2138 2139 /* 2140 * This mmap-allocator allocates new areas top-down from below the 2141 * stack's low limit (the base): 2142 */ 2143 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2144 unsigned long 2145 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2146 unsigned long len, unsigned long pgoff, 2147 unsigned long flags) 2148 { 2149 struct vm_area_struct *vma, *prev; 2150 struct mm_struct *mm = current->mm; 2151 struct vm_unmapped_area_info info; 2152 const unsigned long mmap_end = arch_get_mmap_end(addr); 2153 2154 /* requested length too big for entire address space */ 2155 if (len > mmap_end - mmap_min_addr) 2156 return -ENOMEM; 2157 2158 if (flags & MAP_FIXED) 2159 return addr; 2160 2161 /* requesting a specific address */ 2162 if (addr) { 2163 addr = PAGE_ALIGN(addr); 2164 vma = find_vma_prev(mm, addr, &prev); 2165 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2166 (!vma || addr + len <= vm_start_gap(vma)) && 2167 (!prev || addr >= vm_end_gap(prev))) 2168 return addr; 2169 } 2170 2171 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2172 info.length = len; 2173 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2174 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2175 info.align_mask = 0; 2176 addr = vm_unmapped_area(&info); 2177 2178 /* 2179 * A failed mmap() very likely causes application failure, 2180 * so fall back to the bottom-up function here. This scenario 2181 * can happen with large stack limits and large mmap() 2182 * allocations. 2183 */ 2184 if (offset_in_page(addr)) { 2185 VM_BUG_ON(addr != -ENOMEM); 2186 info.flags = 0; 2187 info.low_limit = TASK_UNMAPPED_BASE; 2188 info.high_limit = mmap_end; 2189 addr = vm_unmapped_area(&info); 2190 } 2191 2192 return addr; 2193 } 2194 #endif 2195 2196 unsigned long 2197 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2198 unsigned long pgoff, unsigned long flags) 2199 { 2200 unsigned long (*get_area)(struct file *, unsigned long, 2201 unsigned long, unsigned long, unsigned long); 2202 2203 unsigned long error = arch_mmap_check(addr, len, flags); 2204 if (error) 2205 return error; 2206 2207 /* Careful about overflows.. */ 2208 if (len > TASK_SIZE) 2209 return -ENOMEM; 2210 2211 get_area = current->mm->get_unmapped_area; 2212 if (file) { 2213 if (file->f_op->get_unmapped_area) 2214 get_area = file->f_op->get_unmapped_area; 2215 } else if (flags & MAP_SHARED) { 2216 /* 2217 * mmap_region() will call shmem_zero_setup() to create a file, 2218 * so use shmem's get_unmapped_area in case it can be huge. 2219 * do_mmap_pgoff() will clear pgoff, so match alignment. 2220 */ 2221 pgoff = 0; 2222 get_area = shmem_get_unmapped_area; 2223 } 2224 2225 addr = get_area(file, addr, len, pgoff, flags); 2226 if (IS_ERR_VALUE(addr)) 2227 return addr; 2228 2229 if (addr > TASK_SIZE - len) 2230 return -ENOMEM; 2231 if (offset_in_page(addr)) 2232 return -EINVAL; 2233 2234 error = security_mmap_addr(addr); 2235 return error ? error : addr; 2236 } 2237 2238 EXPORT_SYMBOL(get_unmapped_area); 2239 2240 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2241 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2242 { 2243 struct rb_node *rb_node; 2244 struct vm_area_struct *vma; 2245 2246 /* Check the cache first. */ 2247 vma = vmacache_find(mm, addr); 2248 if (likely(vma)) 2249 return vma; 2250 2251 rb_node = mm->mm_rb.rb_node; 2252 2253 while (rb_node) { 2254 struct vm_area_struct *tmp; 2255 2256 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2257 2258 if (tmp->vm_end > addr) { 2259 vma = tmp; 2260 if (tmp->vm_start <= addr) 2261 break; 2262 rb_node = rb_node->rb_left; 2263 } else 2264 rb_node = rb_node->rb_right; 2265 } 2266 2267 if (vma) 2268 vmacache_update(addr, vma); 2269 return vma; 2270 } 2271 2272 EXPORT_SYMBOL(find_vma); 2273 2274 /* 2275 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2276 */ 2277 struct vm_area_struct * 2278 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2279 struct vm_area_struct **pprev) 2280 { 2281 struct vm_area_struct *vma; 2282 2283 vma = find_vma(mm, addr); 2284 if (vma) { 2285 *pprev = vma->vm_prev; 2286 } else { 2287 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2288 2289 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2290 } 2291 return vma; 2292 } 2293 2294 /* 2295 * Verify that the stack growth is acceptable and 2296 * update accounting. This is shared with both the 2297 * grow-up and grow-down cases. 2298 */ 2299 static int acct_stack_growth(struct vm_area_struct *vma, 2300 unsigned long size, unsigned long grow) 2301 { 2302 struct mm_struct *mm = vma->vm_mm; 2303 unsigned long new_start; 2304 2305 /* address space limit tests */ 2306 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2307 return -ENOMEM; 2308 2309 /* Stack limit test */ 2310 if (size > rlimit(RLIMIT_STACK)) 2311 return -ENOMEM; 2312 2313 /* mlock limit tests */ 2314 if (vma->vm_flags & VM_LOCKED) { 2315 unsigned long locked; 2316 unsigned long limit; 2317 locked = mm->locked_vm + grow; 2318 limit = rlimit(RLIMIT_MEMLOCK); 2319 limit >>= PAGE_SHIFT; 2320 if (locked > limit && !capable(CAP_IPC_LOCK)) 2321 return -ENOMEM; 2322 } 2323 2324 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2325 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2326 vma->vm_end - size; 2327 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2328 return -EFAULT; 2329 2330 /* 2331 * Overcommit.. This must be the final test, as it will 2332 * update security statistics. 2333 */ 2334 if (security_vm_enough_memory_mm(mm, grow)) 2335 return -ENOMEM; 2336 2337 return 0; 2338 } 2339 2340 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2341 /* 2342 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2343 * vma is the last one with address > vma->vm_end. Have to extend vma. 2344 */ 2345 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2346 { 2347 struct mm_struct *mm = vma->vm_mm; 2348 struct vm_area_struct *next; 2349 unsigned long gap_addr; 2350 int error = 0; 2351 2352 if (!(vma->vm_flags & VM_GROWSUP)) 2353 return -EFAULT; 2354 2355 /* Guard against exceeding limits of the address space. */ 2356 address &= PAGE_MASK; 2357 if (address >= (TASK_SIZE & PAGE_MASK)) 2358 return -ENOMEM; 2359 address += PAGE_SIZE; 2360 2361 /* Enforce stack_guard_gap */ 2362 gap_addr = address + stack_guard_gap; 2363 2364 /* Guard against overflow */ 2365 if (gap_addr < address || gap_addr > TASK_SIZE) 2366 gap_addr = TASK_SIZE; 2367 2368 next = vma->vm_next; 2369 if (next && next->vm_start < gap_addr && 2370 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2371 if (!(next->vm_flags & VM_GROWSUP)) 2372 return -ENOMEM; 2373 /* Check that both stack segments have the same anon_vma? */ 2374 } 2375 2376 /* We must make sure the anon_vma is allocated. */ 2377 if (unlikely(anon_vma_prepare(vma))) 2378 return -ENOMEM; 2379 2380 /* 2381 * vma->vm_start/vm_end cannot change under us because the caller 2382 * is required to hold the mmap_sem in read mode. We need the 2383 * anon_vma lock to serialize against concurrent expand_stacks. 2384 */ 2385 anon_vma_lock_write(vma->anon_vma); 2386 2387 /* Somebody else might have raced and expanded it already */ 2388 if (address > vma->vm_end) { 2389 unsigned long size, grow; 2390 2391 size = address - vma->vm_start; 2392 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2393 2394 error = -ENOMEM; 2395 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2396 error = acct_stack_growth(vma, size, grow); 2397 if (!error) { 2398 /* 2399 * vma_gap_update() doesn't support concurrent 2400 * updates, but we only hold a shared mmap_sem 2401 * lock here, so we need to protect against 2402 * concurrent vma expansions. 2403 * anon_vma_lock_write() doesn't help here, as 2404 * we don't guarantee that all growable vmas 2405 * in a mm share the same root anon vma. 2406 * So, we reuse mm->page_table_lock to guard 2407 * against concurrent vma expansions. 2408 */ 2409 spin_lock(&mm->page_table_lock); 2410 if (vma->vm_flags & VM_LOCKED) 2411 mm->locked_vm += grow; 2412 vm_stat_account(mm, vma->vm_flags, grow); 2413 anon_vma_interval_tree_pre_update_vma(vma); 2414 vma->vm_end = address; 2415 anon_vma_interval_tree_post_update_vma(vma); 2416 if (vma->vm_next) 2417 vma_gap_update(vma->vm_next); 2418 else 2419 mm->highest_vm_end = vm_end_gap(vma); 2420 spin_unlock(&mm->page_table_lock); 2421 2422 perf_event_mmap(vma); 2423 } 2424 } 2425 } 2426 anon_vma_unlock_write(vma->anon_vma); 2427 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2428 validate_mm(mm); 2429 return error; 2430 } 2431 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2432 2433 /* 2434 * vma is the first one with address < vma->vm_start. Have to extend vma. 2435 */ 2436 int expand_downwards(struct vm_area_struct *vma, 2437 unsigned long address) 2438 { 2439 struct mm_struct *mm = vma->vm_mm; 2440 struct vm_area_struct *prev; 2441 int error = 0; 2442 2443 address &= PAGE_MASK; 2444 if (address < mmap_min_addr) 2445 return -EPERM; 2446 2447 /* Enforce stack_guard_gap */ 2448 prev = vma->vm_prev; 2449 /* Check that both stack segments have the same anon_vma? */ 2450 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2451 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2452 if (address - prev->vm_end < stack_guard_gap) 2453 return -ENOMEM; 2454 } 2455 2456 /* We must make sure the anon_vma is allocated. */ 2457 if (unlikely(anon_vma_prepare(vma))) 2458 return -ENOMEM; 2459 2460 /* 2461 * vma->vm_start/vm_end cannot change under us because the caller 2462 * is required to hold the mmap_sem in read mode. We need the 2463 * anon_vma lock to serialize against concurrent expand_stacks. 2464 */ 2465 anon_vma_lock_write(vma->anon_vma); 2466 2467 /* Somebody else might have raced and expanded it already */ 2468 if (address < vma->vm_start) { 2469 unsigned long size, grow; 2470 2471 size = vma->vm_end - address; 2472 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2473 2474 error = -ENOMEM; 2475 if (grow <= vma->vm_pgoff) { 2476 error = acct_stack_growth(vma, size, grow); 2477 if (!error) { 2478 /* 2479 * vma_gap_update() doesn't support concurrent 2480 * updates, but we only hold a shared mmap_sem 2481 * lock here, so we need to protect against 2482 * concurrent vma expansions. 2483 * anon_vma_lock_write() doesn't help here, as 2484 * we don't guarantee that all growable vmas 2485 * in a mm share the same root anon vma. 2486 * So, we reuse mm->page_table_lock to guard 2487 * against concurrent vma expansions. 2488 */ 2489 spin_lock(&mm->page_table_lock); 2490 if (vma->vm_flags & VM_LOCKED) 2491 mm->locked_vm += grow; 2492 vm_stat_account(mm, vma->vm_flags, grow); 2493 anon_vma_interval_tree_pre_update_vma(vma); 2494 vma->vm_start = address; 2495 vma->vm_pgoff -= grow; 2496 anon_vma_interval_tree_post_update_vma(vma); 2497 vma_gap_update(vma); 2498 spin_unlock(&mm->page_table_lock); 2499 2500 perf_event_mmap(vma); 2501 } 2502 } 2503 } 2504 anon_vma_unlock_write(vma->anon_vma); 2505 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2506 validate_mm(mm); 2507 return error; 2508 } 2509 2510 /* enforced gap between the expanding stack and other mappings. */ 2511 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2512 2513 static int __init cmdline_parse_stack_guard_gap(char *p) 2514 { 2515 unsigned long val; 2516 char *endptr; 2517 2518 val = simple_strtoul(p, &endptr, 10); 2519 if (!*endptr) 2520 stack_guard_gap = val << PAGE_SHIFT; 2521 2522 return 0; 2523 } 2524 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2525 2526 #ifdef CONFIG_STACK_GROWSUP 2527 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2528 { 2529 return expand_upwards(vma, address); 2530 } 2531 2532 struct vm_area_struct * 2533 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2534 { 2535 struct vm_area_struct *vma, *prev; 2536 2537 addr &= PAGE_MASK; 2538 vma = find_vma_prev(mm, addr, &prev); 2539 if (vma && (vma->vm_start <= addr)) 2540 return vma; 2541 /* don't alter vm_end if the coredump is running */ 2542 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2543 return NULL; 2544 if (prev->vm_flags & VM_LOCKED) 2545 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2546 return prev; 2547 } 2548 #else 2549 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2550 { 2551 return expand_downwards(vma, address); 2552 } 2553 2554 struct vm_area_struct * 2555 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2556 { 2557 struct vm_area_struct *vma; 2558 unsigned long start; 2559 2560 addr &= PAGE_MASK; 2561 vma = find_vma(mm, addr); 2562 if (!vma) 2563 return NULL; 2564 if (vma->vm_start <= addr) 2565 return vma; 2566 if (!(vma->vm_flags & VM_GROWSDOWN)) 2567 return NULL; 2568 /* don't alter vm_start if the coredump is running */ 2569 if (!mmget_still_valid(mm)) 2570 return NULL; 2571 start = vma->vm_start; 2572 if (expand_stack(vma, addr)) 2573 return NULL; 2574 if (vma->vm_flags & VM_LOCKED) 2575 populate_vma_page_range(vma, addr, start, NULL); 2576 return vma; 2577 } 2578 #endif 2579 2580 EXPORT_SYMBOL_GPL(find_extend_vma); 2581 2582 /* 2583 * Ok - we have the memory areas we should free on the vma list, 2584 * so release them, and do the vma updates. 2585 * 2586 * Called with the mm semaphore held. 2587 */ 2588 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2589 { 2590 unsigned long nr_accounted = 0; 2591 2592 /* Update high watermark before we lower total_vm */ 2593 update_hiwater_vm(mm); 2594 do { 2595 long nrpages = vma_pages(vma); 2596 2597 if (vma->vm_flags & VM_ACCOUNT) 2598 nr_accounted += nrpages; 2599 vm_stat_account(mm, vma->vm_flags, -nrpages); 2600 vma = remove_vma(vma); 2601 } while (vma); 2602 vm_unacct_memory(nr_accounted); 2603 validate_mm(mm); 2604 } 2605 2606 /* 2607 * Get rid of page table information in the indicated region. 2608 * 2609 * Called with the mm semaphore held. 2610 */ 2611 static void unmap_region(struct mm_struct *mm, 2612 struct vm_area_struct *vma, struct vm_area_struct *prev, 2613 unsigned long start, unsigned long end) 2614 { 2615 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2616 struct mmu_gather tlb; 2617 2618 lru_add_drain(); 2619 tlb_gather_mmu(&tlb, mm, start, end); 2620 update_hiwater_rss(mm); 2621 unmap_vmas(&tlb, vma, start, end); 2622 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2623 next ? next->vm_start : USER_PGTABLES_CEILING); 2624 tlb_finish_mmu(&tlb, start, end); 2625 } 2626 2627 /* 2628 * Create a list of vma's touched by the unmap, removing them from the mm's 2629 * vma list as we go.. 2630 */ 2631 static void 2632 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2633 struct vm_area_struct *prev, unsigned long end) 2634 { 2635 struct vm_area_struct **insertion_point; 2636 struct vm_area_struct *tail_vma = NULL; 2637 2638 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2639 vma->vm_prev = NULL; 2640 do { 2641 vma_rb_erase(vma, &mm->mm_rb); 2642 mm->map_count--; 2643 tail_vma = vma; 2644 vma = vma->vm_next; 2645 } while (vma && vma->vm_start < end); 2646 *insertion_point = vma; 2647 if (vma) { 2648 vma->vm_prev = prev; 2649 vma_gap_update(vma); 2650 } else 2651 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2652 tail_vma->vm_next = NULL; 2653 2654 /* Kill the cache */ 2655 vmacache_invalidate(mm); 2656 } 2657 2658 /* 2659 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2660 * has already been checked or doesn't make sense to fail. 2661 */ 2662 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2663 unsigned long addr, int new_below) 2664 { 2665 struct vm_area_struct *new; 2666 int err; 2667 2668 if (vma->vm_ops && vma->vm_ops->split) { 2669 err = vma->vm_ops->split(vma, addr); 2670 if (err) 2671 return err; 2672 } 2673 2674 new = vm_area_dup(vma); 2675 if (!new) 2676 return -ENOMEM; 2677 2678 if (new_below) 2679 new->vm_end = addr; 2680 else { 2681 new->vm_start = addr; 2682 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2683 } 2684 2685 err = vma_dup_policy(vma, new); 2686 if (err) 2687 goto out_free_vma; 2688 2689 err = anon_vma_clone(new, vma); 2690 if (err) 2691 goto out_free_mpol; 2692 2693 if (new->vm_file) 2694 get_file(new->vm_file); 2695 2696 if (new->vm_ops && new->vm_ops->open) 2697 new->vm_ops->open(new); 2698 2699 if (new_below) 2700 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2701 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2702 else 2703 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2704 2705 /* Success. */ 2706 if (!err) 2707 return 0; 2708 2709 /* Clean everything up if vma_adjust failed. */ 2710 if (new->vm_ops && new->vm_ops->close) 2711 new->vm_ops->close(new); 2712 if (new->vm_file) 2713 fput(new->vm_file); 2714 unlink_anon_vmas(new); 2715 out_free_mpol: 2716 mpol_put(vma_policy(new)); 2717 out_free_vma: 2718 vm_area_free(new); 2719 return err; 2720 } 2721 2722 /* 2723 * Split a vma into two pieces at address 'addr', a new vma is allocated 2724 * either for the first part or the tail. 2725 */ 2726 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2727 unsigned long addr, int new_below) 2728 { 2729 if (mm->map_count >= sysctl_max_map_count) 2730 return -ENOMEM; 2731 2732 return __split_vma(mm, vma, addr, new_below); 2733 } 2734 2735 /* Munmap is split into 2 main parts -- this part which finds 2736 * what needs doing, and the areas themselves, which do the 2737 * work. This now handles partial unmappings. 2738 * Jeremy Fitzhardinge <jeremy@goop.org> 2739 */ 2740 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2741 struct list_head *uf, bool downgrade) 2742 { 2743 unsigned long end; 2744 struct vm_area_struct *vma, *prev, *last; 2745 2746 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2747 return -EINVAL; 2748 2749 len = PAGE_ALIGN(len); 2750 end = start + len; 2751 if (len == 0) 2752 return -EINVAL; 2753 2754 /* 2755 * arch_unmap() might do unmaps itself. It must be called 2756 * and finish any rbtree manipulation before this code 2757 * runs and also starts to manipulate the rbtree. 2758 */ 2759 arch_unmap(mm, start, end); 2760 2761 /* Find the first overlapping VMA */ 2762 vma = find_vma(mm, start); 2763 if (!vma) 2764 return 0; 2765 prev = vma->vm_prev; 2766 /* we have start < vma->vm_end */ 2767 2768 /* if it doesn't overlap, we have nothing.. */ 2769 if (vma->vm_start >= end) 2770 return 0; 2771 2772 /* 2773 * If we need to split any vma, do it now to save pain later. 2774 * 2775 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2776 * unmapped vm_area_struct will remain in use: so lower split_vma 2777 * places tmp vma above, and higher split_vma places tmp vma below. 2778 */ 2779 if (start > vma->vm_start) { 2780 int error; 2781 2782 /* 2783 * Make sure that map_count on return from munmap() will 2784 * not exceed its limit; but let map_count go just above 2785 * its limit temporarily, to help free resources as expected. 2786 */ 2787 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2788 return -ENOMEM; 2789 2790 error = __split_vma(mm, vma, start, 0); 2791 if (error) 2792 return error; 2793 prev = vma; 2794 } 2795 2796 /* Does it split the last one? */ 2797 last = find_vma(mm, end); 2798 if (last && end > last->vm_start) { 2799 int error = __split_vma(mm, last, end, 1); 2800 if (error) 2801 return error; 2802 } 2803 vma = prev ? prev->vm_next : mm->mmap; 2804 2805 if (unlikely(uf)) { 2806 /* 2807 * If userfaultfd_unmap_prep returns an error the vmas 2808 * will remain splitted, but userland will get a 2809 * highly unexpected error anyway. This is no 2810 * different than the case where the first of the two 2811 * __split_vma fails, but we don't undo the first 2812 * split, despite we could. This is unlikely enough 2813 * failure that it's not worth optimizing it for. 2814 */ 2815 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2816 if (error) 2817 return error; 2818 } 2819 2820 /* 2821 * unlock any mlock()ed ranges before detaching vmas 2822 */ 2823 if (mm->locked_vm) { 2824 struct vm_area_struct *tmp = vma; 2825 while (tmp && tmp->vm_start < end) { 2826 if (tmp->vm_flags & VM_LOCKED) { 2827 mm->locked_vm -= vma_pages(tmp); 2828 munlock_vma_pages_all(tmp); 2829 } 2830 2831 tmp = tmp->vm_next; 2832 } 2833 } 2834 2835 /* Detach vmas from rbtree */ 2836 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2837 2838 if (downgrade) 2839 downgrade_write(&mm->mmap_sem); 2840 2841 unmap_region(mm, vma, prev, start, end); 2842 2843 /* Fix up all other VM information */ 2844 remove_vma_list(mm, vma); 2845 2846 return downgrade ? 1 : 0; 2847 } 2848 2849 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2850 struct list_head *uf) 2851 { 2852 return __do_munmap(mm, start, len, uf, false); 2853 } 2854 2855 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2856 { 2857 int ret; 2858 struct mm_struct *mm = current->mm; 2859 LIST_HEAD(uf); 2860 2861 if (down_write_killable(&mm->mmap_sem)) 2862 return -EINTR; 2863 2864 ret = __do_munmap(mm, start, len, &uf, downgrade); 2865 /* 2866 * Returning 1 indicates mmap_sem is downgraded. 2867 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2868 * it to 0 before return. 2869 */ 2870 if (ret == 1) { 2871 up_read(&mm->mmap_sem); 2872 ret = 0; 2873 } else 2874 up_write(&mm->mmap_sem); 2875 2876 userfaultfd_unmap_complete(mm, &uf); 2877 return ret; 2878 } 2879 2880 int vm_munmap(unsigned long start, size_t len) 2881 { 2882 return __vm_munmap(start, len, false); 2883 } 2884 EXPORT_SYMBOL(vm_munmap); 2885 2886 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2887 { 2888 profile_munmap(addr); 2889 return __vm_munmap(addr, len, true); 2890 } 2891 2892 2893 /* 2894 * Emulation of deprecated remap_file_pages() syscall. 2895 */ 2896 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2897 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2898 { 2899 2900 struct mm_struct *mm = current->mm; 2901 struct vm_area_struct *vma; 2902 unsigned long populate = 0; 2903 unsigned long ret = -EINVAL; 2904 struct file *file; 2905 2906 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2907 current->comm, current->pid); 2908 2909 if (prot) 2910 return ret; 2911 start = start & PAGE_MASK; 2912 size = size & PAGE_MASK; 2913 2914 if (start + size <= start) 2915 return ret; 2916 2917 /* Does pgoff wrap? */ 2918 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2919 return ret; 2920 2921 if (down_write_killable(&mm->mmap_sem)) 2922 return -EINTR; 2923 2924 vma = find_vma(mm, start); 2925 2926 if (!vma || !(vma->vm_flags & VM_SHARED)) 2927 goto out; 2928 2929 if (start < vma->vm_start) 2930 goto out; 2931 2932 if (start + size > vma->vm_end) { 2933 struct vm_area_struct *next; 2934 2935 for (next = vma->vm_next; next; next = next->vm_next) { 2936 /* hole between vmas ? */ 2937 if (next->vm_start != next->vm_prev->vm_end) 2938 goto out; 2939 2940 if (next->vm_file != vma->vm_file) 2941 goto out; 2942 2943 if (next->vm_flags != vma->vm_flags) 2944 goto out; 2945 2946 if (start + size <= next->vm_end) 2947 break; 2948 } 2949 2950 if (!next) 2951 goto out; 2952 } 2953 2954 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2955 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2956 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2957 2958 flags &= MAP_NONBLOCK; 2959 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2960 if (vma->vm_flags & VM_LOCKED) { 2961 struct vm_area_struct *tmp; 2962 flags |= MAP_LOCKED; 2963 2964 /* drop PG_Mlocked flag for over-mapped range */ 2965 for (tmp = vma; tmp->vm_start >= start + size; 2966 tmp = tmp->vm_next) { 2967 /* 2968 * Split pmd and munlock page on the border 2969 * of the range. 2970 */ 2971 vma_adjust_trans_huge(tmp, start, start + size, 0); 2972 2973 munlock_vma_pages_range(tmp, 2974 max(tmp->vm_start, start), 2975 min(tmp->vm_end, start + size)); 2976 } 2977 } 2978 2979 file = get_file(vma->vm_file); 2980 ret = do_mmap_pgoff(vma->vm_file, start, size, 2981 prot, flags, pgoff, &populate, NULL); 2982 fput(file); 2983 out: 2984 up_write(&mm->mmap_sem); 2985 if (populate) 2986 mm_populate(ret, populate); 2987 if (!IS_ERR_VALUE(ret)) 2988 ret = 0; 2989 return ret; 2990 } 2991 2992 /* 2993 * this is really a simplified "do_mmap". it only handles 2994 * anonymous maps. eventually we may be able to do some 2995 * brk-specific accounting here. 2996 */ 2997 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2998 { 2999 struct mm_struct *mm = current->mm; 3000 struct vm_area_struct *vma, *prev; 3001 struct rb_node **rb_link, *rb_parent; 3002 pgoff_t pgoff = addr >> PAGE_SHIFT; 3003 int error; 3004 3005 /* Until we need other flags, refuse anything except VM_EXEC. */ 3006 if ((flags & (~VM_EXEC)) != 0) 3007 return -EINVAL; 3008 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3009 3010 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3011 if (offset_in_page(error)) 3012 return error; 3013 3014 error = mlock_future_check(mm, mm->def_flags, len); 3015 if (error) 3016 return error; 3017 3018 /* 3019 * Clear old maps. this also does some error checking for us 3020 */ 3021 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3022 &rb_parent)) { 3023 if (do_munmap(mm, addr, len, uf)) 3024 return -ENOMEM; 3025 } 3026 3027 /* Check against address space limits *after* clearing old maps... */ 3028 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3029 return -ENOMEM; 3030 3031 if (mm->map_count > sysctl_max_map_count) 3032 return -ENOMEM; 3033 3034 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3035 return -ENOMEM; 3036 3037 /* Can we just expand an old private anonymous mapping? */ 3038 vma = vma_merge(mm, prev, addr, addr + len, flags, 3039 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3040 if (vma) 3041 goto out; 3042 3043 /* 3044 * create a vma struct for an anonymous mapping 3045 */ 3046 vma = vm_area_alloc(mm); 3047 if (!vma) { 3048 vm_unacct_memory(len >> PAGE_SHIFT); 3049 return -ENOMEM; 3050 } 3051 3052 vma_set_anonymous(vma); 3053 vma->vm_start = addr; 3054 vma->vm_end = addr + len; 3055 vma->vm_pgoff = pgoff; 3056 vma->vm_flags = flags; 3057 vma->vm_page_prot = vm_get_page_prot(flags); 3058 vma_link(mm, vma, prev, rb_link, rb_parent); 3059 out: 3060 perf_event_mmap(vma); 3061 mm->total_vm += len >> PAGE_SHIFT; 3062 mm->data_vm += len >> PAGE_SHIFT; 3063 if (flags & VM_LOCKED) 3064 mm->locked_vm += (len >> PAGE_SHIFT); 3065 vma->vm_flags |= VM_SOFTDIRTY; 3066 return 0; 3067 } 3068 3069 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3070 { 3071 struct mm_struct *mm = current->mm; 3072 unsigned long len; 3073 int ret; 3074 bool populate; 3075 LIST_HEAD(uf); 3076 3077 len = PAGE_ALIGN(request); 3078 if (len < request) 3079 return -ENOMEM; 3080 if (!len) 3081 return 0; 3082 3083 if (down_write_killable(&mm->mmap_sem)) 3084 return -EINTR; 3085 3086 ret = do_brk_flags(addr, len, flags, &uf); 3087 populate = ((mm->def_flags & VM_LOCKED) != 0); 3088 up_write(&mm->mmap_sem); 3089 userfaultfd_unmap_complete(mm, &uf); 3090 if (populate && !ret) 3091 mm_populate(addr, len); 3092 return ret; 3093 } 3094 EXPORT_SYMBOL(vm_brk_flags); 3095 3096 int vm_brk(unsigned long addr, unsigned long len) 3097 { 3098 return vm_brk_flags(addr, len, 0); 3099 } 3100 EXPORT_SYMBOL(vm_brk); 3101 3102 /* Release all mmaps. */ 3103 void exit_mmap(struct mm_struct *mm) 3104 { 3105 struct mmu_gather tlb; 3106 struct vm_area_struct *vma; 3107 unsigned long nr_accounted = 0; 3108 3109 /* mm's last user has gone, and its about to be pulled down */ 3110 mmu_notifier_release(mm); 3111 3112 if (unlikely(mm_is_oom_victim(mm))) { 3113 /* 3114 * Manually reap the mm to free as much memory as possible. 3115 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3116 * this mm from further consideration. Taking mm->mmap_sem for 3117 * write after setting MMF_OOM_SKIP will guarantee that the oom 3118 * reaper will not run on this mm again after mmap_sem is 3119 * dropped. 3120 * 3121 * Nothing can be holding mm->mmap_sem here and the above call 3122 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3123 * __oom_reap_task_mm() will not block. 3124 * 3125 * This needs to be done before calling munlock_vma_pages_all(), 3126 * which clears VM_LOCKED, otherwise the oom reaper cannot 3127 * reliably test it. 3128 */ 3129 (void)__oom_reap_task_mm(mm); 3130 3131 set_bit(MMF_OOM_SKIP, &mm->flags); 3132 down_write(&mm->mmap_sem); 3133 up_write(&mm->mmap_sem); 3134 } 3135 3136 if (mm->locked_vm) { 3137 vma = mm->mmap; 3138 while (vma) { 3139 if (vma->vm_flags & VM_LOCKED) 3140 munlock_vma_pages_all(vma); 3141 vma = vma->vm_next; 3142 } 3143 } 3144 3145 arch_exit_mmap(mm); 3146 3147 vma = mm->mmap; 3148 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3149 return; 3150 3151 lru_add_drain(); 3152 flush_cache_mm(mm); 3153 tlb_gather_mmu(&tlb, mm, 0, -1); 3154 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3155 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3156 unmap_vmas(&tlb, vma, 0, -1); 3157 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3158 tlb_finish_mmu(&tlb, 0, -1); 3159 3160 /* 3161 * Walk the list again, actually closing and freeing it, 3162 * with preemption enabled, without holding any MM locks. 3163 */ 3164 while (vma) { 3165 if (vma->vm_flags & VM_ACCOUNT) 3166 nr_accounted += vma_pages(vma); 3167 vma = remove_vma(vma); 3168 } 3169 vm_unacct_memory(nr_accounted); 3170 } 3171 3172 /* Insert vm structure into process list sorted by address 3173 * and into the inode's i_mmap tree. If vm_file is non-NULL 3174 * then i_mmap_rwsem is taken here. 3175 */ 3176 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3177 { 3178 struct vm_area_struct *prev; 3179 struct rb_node **rb_link, *rb_parent; 3180 3181 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3182 &prev, &rb_link, &rb_parent)) 3183 return -ENOMEM; 3184 if ((vma->vm_flags & VM_ACCOUNT) && 3185 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3186 return -ENOMEM; 3187 3188 /* 3189 * The vm_pgoff of a purely anonymous vma should be irrelevant 3190 * until its first write fault, when page's anon_vma and index 3191 * are set. But now set the vm_pgoff it will almost certainly 3192 * end up with (unless mremap moves it elsewhere before that 3193 * first wfault), so /proc/pid/maps tells a consistent story. 3194 * 3195 * By setting it to reflect the virtual start address of the 3196 * vma, merges and splits can happen in a seamless way, just 3197 * using the existing file pgoff checks and manipulations. 3198 * Similarly in do_mmap_pgoff and in do_brk. 3199 */ 3200 if (vma_is_anonymous(vma)) { 3201 BUG_ON(vma->anon_vma); 3202 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3203 } 3204 3205 vma_link(mm, vma, prev, rb_link, rb_parent); 3206 return 0; 3207 } 3208 3209 /* 3210 * Copy the vma structure to a new location in the same mm, 3211 * prior to moving page table entries, to effect an mremap move. 3212 */ 3213 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3214 unsigned long addr, unsigned long len, pgoff_t pgoff, 3215 bool *need_rmap_locks) 3216 { 3217 struct vm_area_struct *vma = *vmap; 3218 unsigned long vma_start = vma->vm_start; 3219 struct mm_struct *mm = vma->vm_mm; 3220 struct vm_area_struct *new_vma, *prev; 3221 struct rb_node **rb_link, *rb_parent; 3222 bool faulted_in_anon_vma = true; 3223 3224 /* 3225 * If anonymous vma has not yet been faulted, update new pgoff 3226 * to match new location, to increase its chance of merging. 3227 */ 3228 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3229 pgoff = addr >> PAGE_SHIFT; 3230 faulted_in_anon_vma = false; 3231 } 3232 3233 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3234 return NULL; /* should never get here */ 3235 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3236 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3237 vma->vm_userfaultfd_ctx); 3238 if (new_vma) { 3239 /* 3240 * Source vma may have been merged into new_vma 3241 */ 3242 if (unlikely(vma_start >= new_vma->vm_start && 3243 vma_start < new_vma->vm_end)) { 3244 /* 3245 * The only way we can get a vma_merge with 3246 * self during an mremap is if the vma hasn't 3247 * been faulted in yet and we were allowed to 3248 * reset the dst vma->vm_pgoff to the 3249 * destination address of the mremap to allow 3250 * the merge to happen. mremap must change the 3251 * vm_pgoff linearity between src and dst vmas 3252 * (in turn preventing a vma_merge) to be 3253 * safe. It is only safe to keep the vm_pgoff 3254 * linear if there are no pages mapped yet. 3255 */ 3256 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3257 *vmap = vma = new_vma; 3258 } 3259 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3260 } else { 3261 new_vma = vm_area_dup(vma); 3262 if (!new_vma) 3263 goto out; 3264 new_vma->vm_start = addr; 3265 new_vma->vm_end = addr + len; 3266 new_vma->vm_pgoff = pgoff; 3267 if (vma_dup_policy(vma, new_vma)) 3268 goto out_free_vma; 3269 if (anon_vma_clone(new_vma, vma)) 3270 goto out_free_mempol; 3271 if (new_vma->vm_file) 3272 get_file(new_vma->vm_file); 3273 if (new_vma->vm_ops && new_vma->vm_ops->open) 3274 new_vma->vm_ops->open(new_vma); 3275 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3276 *need_rmap_locks = false; 3277 } 3278 return new_vma; 3279 3280 out_free_mempol: 3281 mpol_put(vma_policy(new_vma)); 3282 out_free_vma: 3283 vm_area_free(new_vma); 3284 out: 3285 return NULL; 3286 } 3287 3288 /* 3289 * Return true if the calling process may expand its vm space by the passed 3290 * number of pages 3291 */ 3292 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3293 { 3294 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3295 return false; 3296 3297 if (is_data_mapping(flags) && 3298 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3299 /* Workaround for Valgrind */ 3300 if (rlimit(RLIMIT_DATA) == 0 && 3301 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3302 return true; 3303 3304 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3305 current->comm, current->pid, 3306 (mm->data_vm + npages) << PAGE_SHIFT, 3307 rlimit(RLIMIT_DATA), 3308 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3309 3310 if (!ignore_rlimit_data) 3311 return false; 3312 } 3313 3314 return true; 3315 } 3316 3317 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3318 { 3319 mm->total_vm += npages; 3320 3321 if (is_exec_mapping(flags)) 3322 mm->exec_vm += npages; 3323 else if (is_stack_mapping(flags)) 3324 mm->stack_vm += npages; 3325 else if (is_data_mapping(flags)) 3326 mm->data_vm += npages; 3327 } 3328 3329 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3330 3331 /* 3332 * Having a close hook prevents vma merging regardless of flags. 3333 */ 3334 static void special_mapping_close(struct vm_area_struct *vma) 3335 { 3336 } 3337 3338 static const char *special_mapping_name(struct vm_area_struct *vma) 3339 { 3340 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3341 } 3342 3343 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3344 { 3345 struct vm_special_mapping *sm = new_vma->vm_private_data; 3346 3347 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3348 return -EFAULT; 3349 3350 if (sm->mremap) 3351 return sm->mremap(sm, new_vma); 3352 3353 return 0; 3354 } 3355 3356 static const struct vm_operations_struct special_mapping_vmops = { 3357 .close = special_mapping_close, 3358 .fault = special_mapping_fault, 3359 .mremap = special_mapping_mremap, 3360 .name = special_mapping_name, 3361 }; 3362 3363 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3364 .close = special_mapping_close, 3365 .fault = special_mapping_fault, 3366 }; 3367 3368 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3369 { 3370 struct vm_area_struct *vma = vmf->vma; 3371 pgoff_t pgoff; 3372 struct page **pages; 3373 3374 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3375 pages = vma->vm_private_data; 3376 } else { 3377 struct vm_special_mapping *sm = vma->vm_private_data; 3378 3379 if (sm->fault) 3380 return sm->fault(sm, vmf->vma, vmf); 3381 3382 pages = sm->pages; 3383 } 3384 3385 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3386 pgoff--; 3387 3388 if (*pages) { 3389 struct page *page = *pages; 3390 get_page(page); 3391 vmf->page = page; 3392 return 0; 3393 } 3394 3395 return VM_FAULT_SIGBUS; 3396 } 3397 3398 static struct vm_area_struct *__install_special_mapping( 3399 struct mm_struct *mm, 3400 unsigned long addr, unsigned long len, 3401 unsigned long vm_flags, void *priv, 3402 const struct vm_operations_struct *ops) 3403 { 3404 int ret; 3405 struct vm_area_struct *vma; 3406 3407 vma = vm_area_alloc(mm); 3408 if (unlikely(vma == NULL)) 3409 return ERR_PTR(-ENOMEM); 3410 3411 vma->vm_start = addr; 3412 vma->vm_end = addr + len; 3413 3414 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3415 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3416 3417 vma->vm_ops = ops; 3418 vma->vm_private_data = priv; 3419 3420 ret = insert_vm_struct(mm, vma); 3421 if (ret) 3422 goto out; 3423 3424 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3425 3426 perf_event_mmap(vma); 3427 3428 return vma; 3429 3430 out: 3431 vm_area_free(vma); 3432 return ERR_PTR(ret); 3433 } 3434 3435 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3436 const struct vm_special_mapping *sm) 3437 { 3438 return vma->vm_private_data == sm && 3439 (vma->vm_ops == &special_mapping_vmops || 3440 vma->vm_ops == &legacy_special_mapping_vmops); 3441 } 3442 3443 /* 3444 * Called with mm->mmap_sem held for writing. 3445 * Insert a new vma covering the given region, with the given flags. 3446 * Its pages are supplied by the given array of struct page *. 3447 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3448 * The region past the last page supplied will always produce SIGBUS. 3449 * The array pointer and the pages it points to are assumed to stay alive 3450 * for as long as this mapping might exist. 3451 */ 3452 struct vm_area_struct *_install_special_mapping( 3453 struct mm_struct *mm, 3454 unsigned long addr, unsigned long len, 3455 unsigned long vm_flags, const struct vm_special_mapping *spec) 3456 { 3457 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3458 &special_mapping_vmops); 3459 } 3460 3461 int install_special_mapping(struct mm_struct *mm, 3462 unsigned long addr, unsigned long len, 3463 unsigned long vm_flags, struct page **pages) 3464 { 3465 struct vm_area_struct *vma = __install_special_mapping( 3466 mm, addr, len, vm_flags, (void *)pages, 3467 &legacy_special_mapping_vmops); 3468 3469 return PTR_ERR_OR_ZERO(vma); 3470 } 3471 3472 static DEFINE_MUTEX(mm_all_locks_mutex); 3473 3474 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3475 { 3476 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3477 /* 3478 * The LSB of head.next can't change from under us 3479 * because we hold the mm_all_locks_mutex. 3480 */ 3481 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3482 /* 3483 * We can safely modify head.next after taking the 3484 * anon_vma->root->rwsem. If some other vma in this mm shares 3485 * the same anon_vma we won't take it again. 3486 * 3487 * No need of atomic instructions here, head.next 3488 * can't change from under us thanks to the 3489 * anon_vma->root->rwsem. 3490 */ 3491 if (__test_and_set_bit(0, (unsigned long *) 3492 &anon_vma->root->rb_root.rb_root.rb_node)) 3493 BUG(); 3494 } 3495 } 3496 3497 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3498 { 3499 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3500 /* 3501 * AS_MM_ALL_LOCKS can't change from under us because 3502 * we hold the mm_all_locks_mutex. 3503 * 3504 * Operations on ->flags have to be atomic because 3505 * even if AS_MM_ALL_LOCKS is stable thanks to the 3506 * mm_all_locks_mutex, there may be other cpus 3507 * changing other bitflags in parallel to us. 3508 */ 3509 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3510 BUG(); 3511 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3512 } 3513 } 3514 3515 /* 3516 * This operation locks against the VM for all pte/vma/mm related 3517 * operations that could ever happen on a certain mm. This includes 3518 * vmtruncate, try_to_unmap, and all page faults. 3519 * 3520 * The caller must take the mmap_sem in write mode before calling 3521 * mm_take_all_locks(). The caller isn't allowed to release the 3522 * mmap_sem until mm_drop_all_locks() returns. 3523 * 3524 * mmap_sem in write mode is required in order to block all operations 3525 * that could modify pagetables and free pages without need of 3526 * altering the vma layout. It's also needed in write mode to avoid new 3527 * anon_vmas to be associated with existing vmas. 3528 * 3529 * A single task can't take more than one mm_take_all_locks() in a row 3530 * or it would deadlock. 3531 * 3532 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3533 * mapping->flags avoid to take the same lock twice, if more than one 3534 * vma in this mm is backed by the same anon_vma or address_space. 3535 * 3536 * We take locks in following order, accordingly to comment at beginning 3537 * of mm/rmap.c: 3538 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3539 * hugetlb mapping); 3540 * - all i_mmap_rwsem locks; 3541 * - all anon_vma->rwseml 3542 * 3543 * We can take all locks within these types randomly because the VM code 3544 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3545 * mm_all_locks_mutex. 3546 * 3547 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3548 * that may have to take thousand of locks. 3549 * 3550 * mm_take_all_locks() can fail if it's interrupted by signals. 3551 */ 3552 int mm_take_all_locks(struct mm_struct *mm) 3553 { 3554 struct vm_area_struct *vma; 3555 struct anon_vma_chain *avc; 3556 3557 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3558 3559 mutex_lock(&mm_all_locks_mutex); 3560 3561 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3562 if (signal_pending(current)) 3563 goto out_unlock; 3564 if (vma->vm_file && vma->vm_file->f_mapping && 3565 is_vm_hugetlb_page(vma)) 3566 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3567 } 3568 3569 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3570 if (signal_pending(current)) 3571 goto out_unlock; 3572 if (vma->vm_file && vma->vm_file->f_mapping && 3573 !is_vm_hugetlb_page(vma)) 3574 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3575 } 3576 3577 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3578 if (signal_pending(current)) 3579 goto out_unlock; 3580 if (vma->anon_vma) 3581 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3582 vm_lock_anon_vma(mm, avc->anon_vma); 3583 } 3584 3585 return 0; 3586 3587 out_unlock: 3588 mm_drop_all_locks(mm); 3589 return -EINTR; 3590 } 3591 3592 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3593 { 3594 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3595 /* 3596 * The LSB of head.next can't change to 0 from under 3597 * us because we hold the mm_all_locks_mutex. 3598 * 3599 * We must however clear the bitflag before unlocking 3600 * the vma so the users using the anon_vma->rb_root will 3601 * never see our bitflag. 3602 * 3603 * No need of atomic instructions here, head.next 3604 * can't change from under us until we release the 3605 * anon_vma->root->rwsem. 3606 */ 3607 if (!__test_and_clear_bit(0, (unsigned long *) 3608 &anon_vma->root->rb_root.rb_root.rb_node)) 3609 BUG(); 3610 anon_vma_unlock_write(anon_vma); 3611 } 3612 } 3613 3614 static void vm_unlock_mapping(struct address_space *mapping) 3615 { 3616 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3617 /* 3618 * AS_MM_ALL_LOCKS can't change to 0 from under us 3619 * because we hold the mm_all_locks_mutex. 3620 */ 3621 i_mmap_unlock_write(mapping); 3622 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3623 &mapping->flags)) 3624 BUG(); 3625 } 3626 } 3627 3628 /* 3629 * The mmap_sem cannot be released by the caller until 3630 * mm_drop_all_locks() returns. 3631 */ 3632 void mm_drop_all_locks(struct mm_struct *mm) 3633 { 3634 struct vm_area_struct *vma; 3635 struct anon_vma_chain *avc; 3636 3637 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3638 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3639 3640 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3641 if (vma->anon_vma) 3642 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3643 vm_unlock_anon_vma(avc->anon_vma); 3644 if (vma->vm_file && vma->vm_file->f_mapping) 3645 vm_unlock_mapping(vma->vm_file->f_mapping); 3646 } 3647 3648 mutex_unlock(&mm_all_locks_mutex); 3649 } 3650 3651 /* 3652 * initialise the percpu counter for VM 3653 */ 3654 void __init mmap_init(void) 3655 { 3656 int ret; 3657 3658 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3659 VM_BUG_ON(ret); 3660 } 3661 3662 /* 3663 * Initialise sysctl_user_reserve_kbytes. 3664 * 3665 * This is intended to prevent a user from starting a single memory hogging 3666 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3667 * mode. 3668 * 3669 * The default value is min(3% of free memory, 128MB) 3670 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3671 */ 3672 static int init_user_reserve(void) 3673 { 3674 unsigned long free_kbytes; 3675 3676 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3677 3678 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3679 return 0; 3680 } 3681 subsys_initcall(init_user_reserve); 3682 3683 /* 3684 * Initialise sysctl_admin_reserve_kbytes. 3685 * 3686 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3687 * to log in and kill a memory hogging process. 3688 * 3689 * Systems with more than 256MB will reserve 8MB, enough to recover 3690 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3691 * only reserve 3% of free pages by default. 3692 */ 3693 static int init_admin_reserve(void) 3694 { 3695 unsigned long free_kbytes; 3696 3697 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3698 3699 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3700 return 0; 3701 } 3702 subsys_initcall(init_admin_reserve); 3703 3704 /* 3705 * Reinititalise user and admin reserves if memory is added or removed. 3706 * 3707 * The default user reserve max is 128MB, and the default max for the 3708 * admin reserve is 8MB. These are usually, but not always, enough to 3709 * enable recovery from a memory hogging process using login/sshd, a shell, 3710 * and tools like top. It may make sense to increase or even disable the 3711 * reserve depending on the existence of swap or variations in the recovery 3712 * tools. So, the admin may have changed them. 3713 * 3714 * If memory is added and the reserves have been eliminated or increased above 3715 * the default max, then we'll trust the admin. 3716 * 3717 * If memory is removed and there isn't enough free memory, then we 3718 * need to reset the reserves. 3719 * 3720 * Otherwise keep the reserve set by the admin. 3721 */ 3722 static int reserve_mem_notifier(struct notifier_block *nb, 3723 unsigned long action, void *data) 3724 { 3725 unsigned long tmp, free_kbytes; 3726 3727 switch (action) { 3728 case MEM_ONLINE: 3729 /* Default max is 128MB. Leave alone if modified by operator. */ 3730 tmp = sysctl_user_reserve_kbytes; 3731 if (0 < tmp && tmp < (1UL << 17)) 3732 init_user_reserve(); 3733 3734 /* Default max is 8MB. Leave alone if modified by operator. */ 3735 tmp = sysctl_admin_reserve_kbytes; 3736 if (0 < tmp && tmp < (1UL << 13)) 3737 init_admin_reserve(); 3738 3739 break; 3740 case MEM_OFFLINE: 3741 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3742 3743 if (sysctl_user_reserve_kbytes > free_kbytes) { 3744 init_user_reserve(); 3745 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3746 sysctl_user_reserve_kbytes); 3747 } 3748 3749 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3750 init_admin_reserve(); 3751 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3752 sysctl_admin_reserve_kbytes); 3753 } 3754 break; 3755 default: 3756 break; 3757 } 3758 return NOTIFY_OK; 3759 } 3760 3761 static struct notifier_block reserve_mem_nb = { 3762 .notifier_call = reserve_mem_notifier, 3763 }; 3764 3765 static int __meminit init_reserve_notifier(void) 3766 { 3767 if (register_hotmemory_notifier(&reserve_mem_nb)) 3768 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3769 3770 return 0; 3771 } 3772 subsys_initcall(init_reserve_notifier); 3773