1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlb.h> 35 #include <asm/mmu_context.h> 36 37 #include "internal.h" 38 39 #ifndef arch_mmap_check 40 #define arch_mmap_check(addr, len, flags) (0) 41 #endif 42 43 #ifndef arch_rebalance_pgtables 44 #define arch_rebalance_pgtables(addr, len) (addr) 45 #endif 46 47 static void unmap_region(struct mm_struct *mm, 48 struct vm_area_struct *vma, struct vm_area_struct *prev, 49 unsigned long start, unsigned long end); 50 51 /* 52 * WARNING: the debugging will use recursive algorithms so never enable this 53 * unless you know what you are doing. 54 */ 55 #undef DEBUG_MM_RB 56 57 /* description of effects of mapping type and prot in current implementation. 58 * this is due to the limited x86 page protection hardware. The expected 59 * behavior is in parens: 60 * 61 * map_type prot 62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 64 * w: (no) no w: (no) no w: (yes) yes w: (no) no 65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 66 * 67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 68 * w: (no) no w: (no) no w: (copy) copy w: (no) no 69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 70 * 71 */ 72 pgprot_t protection_map[16] = { 73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 75 }; 76 77 pgprot_t vm_get_page_prot(unsigned long vm_flags) 78 { 79 return __pgprot(pgprot_val(protection_map[vm_flags & 80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 81 pgprot_val(arch_vm_get_page_prot(vm_flags))); 82 } 83 EXPORT_SYMBOL(vm_get_page_prot); 84 85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 86 int sysctl_overcommit_ratio = 50; /* default is 50% */ 87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 88 struct percpu_counter vm_committed_as; 89 90 /* 91 * Check that a process has enough memory to allocate a new virtual 92 * mapping. 0 means there is enough memory for the allocation to 93 * succeed and -ENOMEM implies there is not. 94 * 95 * We currently support three overcommit policies, which are set via the 96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 97 * 98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 99 * Additional code 2002 Jul 20 by Robert Love. 100 * 101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 102 * 103 * Note this is a helper function intended to be used by LSMs which 104 * wish to use this logic. 105 */ 106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 107 { 108 unsigned long free, allowed; 109 110 vm_acct_memory(pages); 111 112 /* 113 * Sometimes we want to use more memory than we have 114 */ 115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 116 return 0; 117 118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 119 unsigned long n; 120 121 free = global_page_state(NR_FILE_PAGES); 122 free += nr_swap_pages; 123 124 /* 125 * Any slabs which are created with the 126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 127 * which are reclaimable, under pressure. The dentry 128 * cache and most inode caches should fall into this 129 */ 130 free += global_page_state(NR_SLAB_RECLAIMABLE); 131 132 /* 133 * Leave the last 3% for root 134 */ 135 if (!cap_sys_admin) 136 free -= free / 32; 137 138 if (free > pages) 139 return 0; 140 141 /* 142 * nr_free_pages() is very expensive on large systems, 143 * only call if we're about to fail. 144 */ 145 n = nr_free_pages(); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (n <= totalreserve_pages) 151 goto error; 152 else 153 n -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 n -= n / 32; 160 free += n; 161 162 if (free > pages) 163 return 0; 164 165 goto error; 166 } 167 168 allowed = (totalram_pages - hugetlb_total_pages()) 169 * sysctl_overcommit_ratio / 100; 170 /* 171 * Leave the last 3% for root 172 */ 173 if (!cap_sys_admin) 174 allowed -= allowed / 32; 175 allowed += total_swap_pages; 176 177 /* Don't let a single process grow too big: 178 leave 3% of the size of this process for other processes */ 179 if (mm) 180 allowed -= mm->total_vm / 32; 181 182 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 183 return 0; 184 error: 185 vm_unacct_memory(pages); 186 187 return -ENOMEM; 188 } 189 190 /* 191 * Requires inode->i_mapping->i_mmap_lock 192 */ 193 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 194 struct file *file, struct address_space *mapping) 195 { 196 if (vma->vm_flags & VM_DENYWRITE) 197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 198 if (vma->vm_flags & VM_SHARED) 199 mapping->i_mmap_writable--; 200 201 flush_dcache_mmap_lock(mapping); 202 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 203 list_del_init(&vma->shared.vm_set.list); 204 else 205 vma_prio_tree_remove(vma, &mapping->i_mmap); 206 flush_dcache_mmap_unlock(mapping); 207 } 208 209 /* 210 * Unlink a file-based vm structure from its prio_tree, to hide 211 * vma from rmap and vmtruncate before freeing its page tables. 212 */ 213 void unlink_file_vma(struct vm_area_struct *vma) 214 { 215 struct file *file = vma->vm_file; 216 217 if (file) { 218 struct address_space *mapping = file->f_mapping; 219 spin_lock(&mapping->i_mmap_lock); 220 __remove_shared_vm_struct(vma, file, mapping); 221 spin_unlock(&mapping->i_mmap_lock); 222 } 223 } 224 225 /* 226 * Close a vm structure and free it, returning the next. 227 */ 228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 229 { 230 struct vm_area_struct *next = vma->vm_next; 231 232 might_sleep(); 233 if (vma->vm_ops && vma->vm_ops->close) 234 vma->vm_ops->close(vma); 235 if (vma->vm_file) { 236 fput(vma->vm_file); 237 if (vma->vm_flags & VM_EXECUTABLE) 238 removed_exe_file_vma(vma->vm_mm); 239 } 240 mpol_put(vma_policy(vma)); 241 kmem_cache_free(vm_area_cachep, vma); 242 return next; 243 } 244 245 SYSCALL_DEFINE1(brk, unsigned long, brk) 246 { 247 unsigned long rlim, retval; 248 unsigned long newbrk, oldbrk; 249 struct mm_struct *mm = current->mm; 250 unsigned long min_brk; 251 252 down_write(&mm->mmap_sem); 253 254 #ifdef CONFIG_COMPAT_BRK 255 min_brk = mm->end_code; 256 #else 257 min_brk = mm->start_brk; 258 #endif 259 if (brk < min_brk) 260 goto out; 261 262 /* 263 * Check against rlimit here. If this check is done later after the test 264 * of oldbrk with newbrk then it can escape the test and let the data 265 * segment grow beyond its set limit the in case where the limit is 266 * not page aligned -Ram Gupta 267 */ 268 rlim = rlimit(RLIMIT_DATA); 269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 270 (mm->end_data - mm->start_data) > rlim) 271 goto out; 272 273 newbrk = PAGE_ALIGN(brk); 274 oldbrk = PAGE_ALIGN(mm->brk); 275 if (oldbrk == newbrk) 276 goto set_brk; 277 278 /* Always allow shrinking brk. */ 279 if (brk <= mm->brk) { 280 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 281 goto set_brk; 282 goto out; 283 } 284 285 /* Check against existing mmap mappings. */ 286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 287 goto out; 288 289 /* Ok, looks good - let it rip. */ 290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 291 goto out; 292 set_brk: 293 mm->brk = brk; 294 out: 295 retval = mm->brk; 296 up_write(&mm->mmap_sem); 297 return retval; 298 } 299 300 #ifdef DEBUG_MM_RB 301 static int browse_rb(struct rb_root *root) 302 { 303 int i = 0, j; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) 311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 312 if (vma->vm_start < pend) 313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 314 if (vma->vm_start > vma->vm_end) 315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 316 i++; 317 pn = nd; 318 prev = vma->vm_start; 319 pend = vma->vm_end; 320 } 321 j = 0; 322 for (nd = pn; nd; nd = rb_prev(nd)) { 323 j++; 324 } 325 if (i != j) 326 printk("backwards %d, forwards %d\n", j, i), i = 0; 327 return i; 328 } 329 330 void validate_mm(struct mm_struct *mm) 331 { 332 int bug = 0; 333 int i = 0; 334 struct vm_area_struct *tmp = mm->mmap; 335 while (tmp) { 336 tmp = tmp->vm_next; 337 i++; 338 } 339 if (i != mm->map_count) 340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 341 i = browse_rb(&mm->mm_rb); 342 if (i != mm->map_count) 343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 344 BUG_ON(bug); 345 } 346 #else 347 #define validate_mm(mm) do { } while (0) 348 #endif 349 350 static struct vm_area_struct * 351 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 352 struct vm_area_struct **pprev, struct rb_node ***rb_link, 353 struct rb_node ** rb_parent) 354 { 355 struct vm_area_struct * vma; 356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 357 358 __rb_link = &mm->mm_rb.rb_node; 359 rb_prev = __rb_parent = NULL; 360 vma = NULL; 361 362 while (*__rb_link) { 363 struct vm_area_struct *vma_tmp; 364 365 __rb_parent = *__rb_link; 366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 367 368 if (vma_tmp->vm_end > addr) { 369 vma = vma_tmp; 370 if (vma_tmp->vm_start <= addr) 371 break; 372 __rb_link = &__rb_parent->rb_left; 373 } else { 374 rb_prev = __rb_parent; 375 __rb_link = &__rb_parent->rb_right; 376 } 377 } 378 379 *pprev = NULL; 380 if (rb_prev) 381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 382 *rb_link = __rb_link; 383 *rb_parent = __rb_parent; 384 return vma; 385 } 386 387 static inline void 388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 389 struct vm_area_struct *prev, struct rb_node *rb_parent) 390 { 391 struct vm_area_struct *next; 392 393 vma->vm_prev = prev; 394 if (prev) { 395 next = prev->vm_next; 396 prev->vm_next = vma; 397 } else { 398 mm->mmap = vma; 399 if (rb_parent) 400 next = rb_entry(rb_parent, 401 struct vm_area_struct, vm_rb); 402 else 403 next = NULL; 404 } 405 vma->vm_next = next; 406 if (next) 407 next->vm_prev = vma; 408 } 409 410 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 411 struct rb_node **rb_link, struct rb_node *rb_parent) 412 { 413 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 414 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 415 } 416 417 static void __vma_link_file(struct vm_area_struct *vma) 418 { 419 struct file *file; 420 421 file = vma->vm_file; 422 if (file) { 423 struct address_space *mapping = file->f_mapping; 424 425 if (vma->vm_flags & VM_DENYWRITE) 426 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 427 if (vma->vm_flags & VM_SHARED) 428 mapping->i_mmap_writable++; 429 430 flush_dcache_mmap_lock(mapping); 431 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 432 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 433 else 434 vma_prio_tree_insert(vma, &mapping->i_mmap); 435 flush_dcache_mmap_unlock(mapping); 436 } 437 } 438 439 static void 440 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 441 struct vm_area_struct *prev, struct rb_node **rb_link, 442 struct rb_node *rb_parent) 443 { 444 __vma_link_list(mm, vma, prev, rb_parent); 445 __vma_link_rb(mm, vma, rb_link, rb_parent); 446 } 447 448 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 449 struct vm_area_struct *prev, struct rb_node **rb_link, 450 struct rb_node *rb_parent) 451 { 452 struct address_space *mapping = NULL; 453 454 if (vma->vm_file) 455 mapping = vma->vm_file->f_mapping; 456 457 if (mapping) { 458 spin_lock(&mapping->i_mmap_lock); 459 vma->vm_truncate_count = mapping->truncate_count; 460 } 461 462 __vma_link(mm, vma, prev, rb_link, rb_parent); 463 __vma_link_file(vma); 464 465 if (mapping) 466 spin_unlock(&mapping->i_mmap_lock); 467 468 mm->map_count++; 469 validate_mm(mm); 470 } 471 472 /* 473 * Helper for vma_adjust in the split_vma insert case: 474 * insert vm structure into list and rbtree and anon_vma, 475 * but it has already been inserted into prio_tree earlier. 476 */ 477 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 478 { 479 struct vm_area_struct *__vma, *prev; 480 struct rb_node **rb_link, *rb_parent; 481 482 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 483 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 484 __vma_link(mm, vma, prev, rb_link, rb_parent); 485 mm->map_count++; 486 } 487 488 static inline void 489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 490 struct vm_area_struct *prev) 491 { 492 struct vm_area_struct *next = vma->vm_next; 493 494 prev->vm_next = next; 495 if (next) 496 next->vm_prev = prev; 497 rb_erase(&vma->vm_rb, &mm->mm_rb); 498 if (mm->mmap_cache == vma) 499 mm->mmap_cache = prev; 500 } 501 502 /* 503 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 504 * is already present in an i_mmap tree without adjusting the tree. 505 * The following helper function should be used when such adjustments 506 * are necessary. The "insert" vma (if any) is to be inserted 507 * before we drop the necessary locks. 508 */ 509 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 510 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 511 { 512 struct mm_struct *mm = vma->vm_mm; 513 struct vm_area_struct *next = vma->vm_next; 514 struct vm_area_struct *importer = NULL; 515 struct address_space *mapping = NULL; 516 struct prio_tree_root *root = NULL; 517 struct anon_vma *anon_vma = NULL; 518 struct file *file = vma->vm_file; 519 long adjust_next = 0; 520 int remove_next = 0; 521 522 if (next && !insert) { 523 struct vm_area_struct *exporter = NULL; 524 525 if (end >= next->vm_end) { 526 /* 527 * vma expands, overlapping all the next, and 528 * perhaps the one after too (mprotect case 6). 529 */ 530 again: remove_next = 1 + (end > next->vm_end); 531 end = next->vm_end; 532 exporter = next; 533 importer = vma; 534 } else if (end > next->vm_start) { 535 /* 536 * vma expands, overlapping part of the next: 537 * mprotect case 5 shifting the boundary up. 538 */ 539 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 540 exporter = next; 541 importer = vma; 542 } else if (end < vma->vm_end) { 543 /* 544 * vma shrinks, and !insert tells it's not 545 * split_vma inserting another: so it must be 546 * mprotect case 4 shifting the boundary down. 547 */ 548 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 549 exporter = vma; 550 importer = next; 551 } 552 553 /* 554 * Easily overlooked: when mprotect shifts the boundary, 555 * make sure the expanding vma has anon_vma set if the 556 * shrinking vma had, to cover any anon pages imported. 557 */ 558 if (exporter && exporter->anon_vma && !importer->anon_vma) { 559 if (anon_vma_clone(importer, exporter)) 560 return -ENOMEM; 561 importer->anon_vma = exporter->anon_vma; 562 } 563 } 564 565 if (file) { 566 mapping = file->f_mapping; 567 if (!(vma->vm_flags & VM_NONLINEAR)) 568 root = &mapping->i_mmap; 569 spin_lock(&mapping->i_mmap_lock); 570 if (importer && 571 vma->vm_truncate_count != next->vm_truncate_count) { 572 /* 573 * unmap_mapping_range might be in progress: 574 * ensure that the expanding vma is rescanned. 575 */ 576 importer->vm_truncate_count = 0; 577 } 578 if (insert) { 579 insert->vm_truncate_count = vma->vm_truncate_count; 580 /* 581 * Put into prio_tree now, so instantiated pages 582 * are visible to arm/parisc __flush_dcache_page 583 * throughout; but we cannot insert into address 584 * space until vma start or end is updated. 585 */ 586 __vma_link_file(insert); 587 } 588 } 589 590 /* 591 * When changing only vma->vm_end, we don't really need anon_vma 592 * lock. This is a fairly rare case by itself, but the anon_vma 593 * lock may be shared between many sibling processes. Skipping 594 * the lock for brk adjustments makes a difference sometimes. 595 */ 596 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { 597 anon_vma = vma->anon_vma; 598 anon_vma_lock(anon_vma); 599 } 600 601 if (root) { 602 flush_dcache_mmap_lock(mapping); 603 vma_prio_tree_remove(vma, root); 604 if (adjust_next) 605 vma_prio_tree_remove(next, root); 606 } 607 608 vma->vm_start = start; 609 vma->vm_end = end; 610 vma->vm_pgoff = pgoff; 611 if (adjust_next) { 612 next->vm_start += adjust_next << PAGE_SHIFT; 613 next->vm_pgoff += adjust_next; 614 } 615 616 if (root) { 617 if (adjust_next) 618 vma_prio_tree_insert(next, root); 619 vma_prio_tree_insert(vma, root); 620 flush_dcache_mmap_unlock(mapping); 621 } 622 623 if (remove_next) { 624 /* 625 * vma_merge has merged next into vma, and needs 626 * us to remove next before dropping the locks. 627 */ 628 __vma_unlink(mm, next, vma); 629 if (file) 630 __remove_shared_vm_struct(next, file, mapping); 631 } else if (insert) { 632 /* 633 * split_vma has split insert from vma, and needs 634 * us to insert it before dropping the locks 635 * (it may either follow vma or precede it). 636 */ 637 __insert_vm_struct(mm, insert); 638 } 639 640 if (anon_vma) 641 anon_vma_unlock(anon_vma); 642 if (mapping) 643 spin_unlock(&mapping->i_mmap_lock); 644 645 if (remove_next) { 646 if (file) { 647 fput(file); 648 if (next->vm_flags & VM_EXECUTABLE) 649 removed_exe_file_vma(mm); 650 } 651 if (next->anon_vma) 652 anon_vma_merge(vma, next); 653 mm->map_count--; 654 mpol_put(vma_policy(next)); 655 kmem_cache_free(vm_area_cachep, next); 656 /* 657 * In mprotect's case 6 (see comments on vma_merge), 658 * we must remove another next too. It would clutter 659 * up the code too much to do both in one go. 660 */ 661 if (remove_next == 2) { 662 next = vma->vm_next; 663 goto again; 664 } 665 } 666 667 validate_mm(mm); 668 669 return 0; 670 } 671 672 /* 673 * If the vma has a ->close operation then the driver probably needs to release 674 * per-vma resources, so we don't attempt to merge those. 675 */ 676 static inline int is_mergeable_vma(struct vm_area_struct *vma, 677 struct file *file, unsigned long vm_flags) 678 { 679 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 680 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 681 return 0; 682 if (vma->vm_file != file) 683 return 0; 684 if (vma->vm_ops && vma->vm_ops->close) 685 return 0; 686 return 1; 687 } 688 689 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 690 struct anon_vma *anon_vma2) 691 { 692 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 693 } 694 695 /* 696 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 697 * in front of (at a lower virtual address and file offset than) the vma. 698 * 699 * We cannot merge two vmas if they have differently assigned (non-NULL) 700 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 701 * 702 * We don't check here for the merged mmap wrapping around the end of pagecache 703 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 704 * wrap, nor mmaps which cover the final page at index -1UL. 705 */ 706 static int 707 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 708 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 709 { 710 if (is_mergeable_vma(vma, file, vm_flags) && 711 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 712 if (vma->vm_pgoff == vm_pgoff) 713 return 1; 714 } 715 return 0; 716 } 717 718 /* 719 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 720 * beyond (at a higher virtual address and file offset than) the vma. 721 * 722 * We cannot merge two vmas if they have differently assigned (non-NULL) 723 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 724 */ 725 static int 726 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 727 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 728 { 729 if (is_mergeable_vma(vma, file, vm_flags) && 730 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 731 pgoff_t vm_pglen; 732 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 733 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 734 return 1; 735 } 736 return 0; 737 } 738 739 /* 740 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 741 * whether that can be merged with its predecessor or its successor. 742 * Or both (it neatly fills a hole). 743 * 744 * In most cases - when called for mmap, brk or mremap - [addr,end) is 745 * certain not to be mapped by the time vma_merge is called; but when 746 * called for mprotect, it is certain to be already mapped (either at 747 * an offset within prev, or at the start of next), and the flags of 748 * this area are about to be changed to vm_flags - and the no-change 749 * case has already been eliminated. 750 * 751 * The following mprotect cases have to be considered, where AAAA is 752 * the area passed down from mprotect_fixup, never extending beyond one 753 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 754 * 755 * AAAA AAAA AAAA AAAA 756 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 757 * cannot merge might become might become might become 758 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 759 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 760 * mremap move: PPPPNNNNNNNN 8 761 * AAAA 762 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 763 * might become case 1 below case 2 below case 3 below 764 * 765 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 766 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 767 */ 768 struct vm_area_struct *vma_merge(struct mm_struct *mm, 769 struct vm_area_struct *prev, unsigned long addr, 770 unsigned long end, unsigned long vm_flags, 771 struct anon_vma *anon_vma, struct file *file, 772 pgoff_t pgoff, struct mempolicy *policy) 773 { 774 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 775 struct vm_area_struct *area, *next; 776 int err; 777 778 /* 779 * We later require that vma->vm_flags == vm_flags, 780 * so this tests vma->vm_flags & VM_SPECIAL, too. 781 */ 782 if (vm_flags & VM_SPECIAL) 783 return NULL; 784 785 if (prev) 786 next = prev->vm_next; 787 else 788 next = mm->mmap; 789 area = next; 790 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 791 next = next->vm_next; 792 793 /* 794 * Can it merge with the predecessor? 795 */ 796 if (prev && prev->vm_end == addr && 797 mpol_equal(vma_policy(prev), policy) && 798 can_vma_merge_after(prev, vm_flags, 799 anon_vma, file, pgoff)) { 800 /* 801 * OK, it can. Can we now merge in the successor as well? 802 */ 803 if (next && end == next->vm_start && 804 mpol_equal(policy, vma_policy(next)) && 805 can_vma_merge_before(next, vm_flags, 806 anon_vma, file, pgoff+pglen) && 807 is_mergeable_anon_vma(prev->anon_vma, 808 next->anon_vma)) { 809 /* cases 1, 6 */ 810 err = vma_adjust(prev, prev->vm_start, 811 next->vm_end, prev->vm_pgoff, NULL); 812 } else /* cases 2, 5, 7 */ 813 err = vma_adjust(prev, prev->vm_start, 814 end, prev->vm_pgoff, NULL); 815 if (err) 816 return NULL; 817 return prev; 818 } 819 820 /* 821 * Can this new request be merged in front of next? 822 */ 823 if (next && end == next->vm_start && 824 mpol_equal(policy, vma_policy(next)) && 825 can_vma_merge_before(next, vm_flags, 826 anon_vma, file, pgoff+pglen)) { 827 if (prev && addr < prev->vm_end) /* case 4 */ 828 err = vma_adjust(prev, prev->vm_start, 829 addr, prev->vm_pgoff, NULL); 830 else /* cases 3, 8 */ 831 err = vma_adjust(area, addr, next->vm_end, 832 next->vm_pgoff - pglen, NULL); 833 if (err) 834 return NULL; 835 return area; 836 } 837 838 return NULL; 839 } 840 841 /* 842 * Rough compatbility check to quickly see if it's even worth looking 843 * at sharing an anon_vma. 844 * 845 * They need to have the same vm_file, and the flags can only differ 846 * in things that mprotect may change. 847 * 848 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 849 * we can merge the two vma's. For example, we refuse to merge a vma if 850 * there is a vm_ops->close() function, because that indicates that the 851 * driver is doing some kind of reference counting. But that doesn't 852 * really matter for the anon_vma sharing case. 853 */ 854 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 855 { 856 return a->vm_end == b->vm_start && 857 mpol_equal(vma_policy(a), vma_policy(b)) && 858 a->vm_file == b->vm_file && 859 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 860 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 861 } 862 863 /* 864 * Do some basic sanity checking to see if we can re-use the anon_vma 865 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 866 * the same as 'old', the other will be the new one that is trying 867 * to share the anon_vma. 868 * 869 * NOTE! This runs with mm_sem held for reading, so it is possible that 870 * the anon_vma of 'old' is concurrently in the process of being set up 871 * by another page fault trying to merge _that_. But that's ok: if it 872 * is being set up, that automatically means that it will be a singleton 873 * acceptable for merging, so we can do all of this optimistically. But 874 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 875 * 876 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 877 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 878 * is to return an anon_vma that is "complex" due to having gone through 879 * a fork). 880 * 881 * We also make sure that the two vma's are compatible (adjacent, 882 * and with the same memory policies). That's all stable, even with just 883 * a read lock on the mm_sem. 884 */ 885 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 886 { 887 if (anon_vma_compatible(a, b)) { 888 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 889 890 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 891 return anon_vma; 892 } 893 return NULL; 894 } 895 896 /* 897 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 898 * neighbouring vmas for a suitable anon_vma, before it goes off 899 * to allocate a new anon_vma. It checks because a repetitive 900 * sequence of mprotects and faults may otherwise lead to distinct 901 * anon_vmas being allocated, preventing vma merge in subsequent 902 * mprotect. 903 */ 904 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 905 { 906 struct anon_vma *anon_vma; 907 struct vm_area_struct *near; 908 909 near = vma->vm_next; 910 if (!near) 911 goto try_prev; 912 913 anon_vma = reusable_anon_vma(near, vma, near); 914 if (anon_vma) 915 return anon_vma; 916 try_prev: 917 /* 918 * It is potentially slow to have to call find_vma_prev here. 919 * But it's only on the first write fault on the vma, not 920 * every time, and we could devise a way to avoid it later 921 * (e.g. stash info in next's anon_vma_node when assigning 922 * an anon_vma, or when trying vma_merge). Another time. 923 */ 924 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 925 if (!near) 926 goto none; 927 928 anon_vma = reusable_anon_vma(near, near, vma); 929 if (anon_vma) 930 return anon_vma; 931 none: 932 /* 933 * There's no absolute need to look only at touching neighbours: 934 * we could search further afield for "compatible" anon_vmas. 935 * But it would probably just be a waste of time searching, 936 * or lead to too many vmas hanging off the same anon_vma. 937 * We're trying to allow mprotect remerging later on, 938 * not trying to minimize memory used for anon_vmas. 939 */ 940 return NULL; 941 } 942 943 #ifdef CONFIG_PROC_FS 944 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 945 struct file *file, long pages) 946 { 947 const unsigned long stack_flags 948 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 949 950 if (file) { 951 mm->shared_vm += pages; 952 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 953 mm->exec_vm += pages; 954 } else if (flags & stack_flags) 955 mm->stack_vm += pages; 956 if (flags & (VM_RESERVED|VM_IO)) 957 mm->reserved_vm += pages; 958 } 959 #endif /* CONFIG_PROC_FS */ 960 961 /* 962 * The caller must hold down_write(¤t->mm->mmap_sem). 963 */ 964 965 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 966 unsigned long len, unsigned long prot, 967 unsigned long flags, unsigned long pgoff) 968 { 969 struct mm_struct * mm = current->mm; 970 struct inode *inode; 971 unsigned int vm_flags; 972 int error; 973 unsigned long reqprot = prot; 974 975 /* 976 * Does the application expect PROT_READ to imply PROT_EXEC? 977 * 978 * (the exception is when the underlying filesystem is noexec 979 * mounted, in which case we dont add PROT_EXEC.) 980 */ 981 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 982 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 983 prot |= PROT_EXEC; 984 985 if (!len) 986 return -EINVAL; 987 988 if (!(flags & MAP_FIXED)) 989 addr = round_hint_to_min(addr); 990 991 /* Careful about overflows.. */ 992 len = PAGE_ALIGN(len); 993 if (!len) 994 return -ENOMEM; 995 996 /* offset overflow? */ 997 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 998 return -EOVERFLOW; 999 1000 /* Too many mappings? */ 1001 if (mm->map_count > sysctl_max_map_count) 1002 return -ENOMEM; 1003 1004 /* Obtain the address to map to. we verify (or select) it and ensure 1005 * that it represents a valid section of the address space. 1006 */ 1007 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1008 if (addr & ~PAGE_MASK) 1009 return addr; 1010 1011 /* Do simple checking here so the lower-level routines won't have 1012 * to. we assume access permissions have been handled by the open 1013 * of the memory object, so we don't do any here. 1014 */ 1015 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1016 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1017 1018 if (flags & MAP_LOCKED) 1019 if (!can_do_mlock()) 1020 return -EPERM; 1021 1022 /* mlock MCL_FUTURE? */ 1023 if (vm_flags & VM_LOCKED) { 1024 unsigned long locked, lock_limit; 1025 locked = len >> PAGE_SHIFT; 1026 locked += mm->locked_vm; 1027 lock_limit = rlimit(RLIMIT_MEMLOCK); 1028 lock_limit >>= PAGE_SHIFT; 1029 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1030 return -EAGAIN; 1031 } 1032 1033 inode = file ? file->f_path.dentry->d_inode : NULL; 1034 1035 if (file) { 1036 switch (flags & MAP_TYPE) { 1037 case MAP_SHARED: 1038 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1039 return -EACCES; 1040 1041 /* 1042 * Make sure we don't allow writing to an append-only 1043 * file.. 1044 */ 1045 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1046 return -EACCES; 1047 1048 /* 1049 * Make sure there are no mandatory locks on the file. 1050 */ 1051 if (locks_verify_locked(inode)) 1052 return -EAGAIN; 1053 1054 vm_flags |= VM_SHARED | VM_MAYSHARE; 1055 if (!(file->f_mode & FMODE_WRITE)) 1056 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1057 1058 /* fall through */ 1059 case MAP_PRIVATE: 1060 if (!(file->f_mode & FMODE_READ)) 1061 return -EACCES; 1062 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1063 if (vm_flags & VM_EXEC) 1064 return -EPERM; 1065 vm_flags &= ~VM_MAYEXEC; 1066 } 1067 1068 if (!file->f_op || !file->f_op->mmap) 1069 return -ENODEV; 1070 break; 1071 1072 default: 1073 return -EINVAL; 1074 } 1075 } else { 1076 switch (flags & MAP_TYPE) { 1077 case MAP_SHARED: 1078 /* 1079 * Ignore pgoff. 1080 */ 1081 pgoff = 0; 1082 vm_flags |= VM_SHARED | VM_MAYSHARE; 1083 break; 1084 case MAP_PRIVATE: 1085 /* 1086 * Set pgoff according to addr for anon_vma. 1087 */ 1088 pgoff = addr >> PAGE_SHIFT; 1089 break; 1090 default: 1091 return -EINVAL; 1092 } 1093 } 1094 1095 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1096 if (error) 1097 return error; 1098 1099 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1100 } 1101 EXPORT_SYMBOL(do_mmap_pgoff); 1102 1103 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1104 unsigned long, prot, unsigned long, flags, 1105 unsigned long, fd, unsigned long, pgoff) 1106 { 1107 struct file *file = NULL; 1108 unsigned long retval = -EBADF; 1109 1110 if (!(flags & MAP_ANONYMOUS)) { 1111 if (unlikely(flags & MAP_HUGETLB)) 1112 return -EINVAL; 1113 file = fget(fd); 1114 if (!file) 1115 goto out; 1116 } else if (flags & MAP_HUGETLB) { 1117 struct user_struct *user = NULL; 1118 /* 1119 * VM_NORESERVE is used because the reservations will be 1120 * taken when vm_ops->mmap() is called 1121 * A dummy user value is used because we are not locking 1122 * memory so no accounting is necessary 1123 */ 1124 len = ALIGN(len, huge_page_size(&default_hstate)); 1125 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1126 &user, HUGETLB_ANONHUGE_INODE); 1127 if (IS_ERR(file)) 1128 return PTR_ERR(file); 1129 } 1130 1131 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1132 1133 down_write(¤t->mm->mmap_sem); 1134 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1135 up_write(¤t->mm->mmap_sem); 1136 1137 if (file) 1138 fput(file); 1139 out: 1140 return retval; 1141 } 1142 1143 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1144 struct mmap_arg_struct { 1145 unsigned long addr; 1146 unsigned long len; 1147 unsigned long prot; 1148 unsigned long flags; 1149 unsigned long fd; 1150 unsigned long offset; 1151 }; 1152 1153 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1154 { 1155 struct mmap_arg_struct a; 1156 1157 if (copy_from_user(&a, arg, sizeof(a))) 1158 return -EFAULT; 1159 if (a.offset & ~PAGE_MASK) 1160 return -EINVAL; 1161 1162 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1163 a.offset >> PAGE_SHIFT); 1164 } 1165 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1166 1167 /* 1168 * Some shared mappigns will want the pages marked read-only 1169 * to track write events. If so, we'll downgrade vm_page_prot 1170 * to the private version (using protection_map[] without the 1171 * VM_SHARED bit). 1172 */ 1173 int vma_wants_writenotify(struct vm_area_struct *vma) 1174 { 1175 unsigned int vm_flags = vma->vm_flags; 1176 1177 /* If it was private or non-writable, the write bit is already clear */ 1178 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1179 return 0; 1180 1181 /* The backer wishes to know when pages are first written to? */ 1182 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1183 return 1; 1184 1185 /* The open routine did something to the protections already? */ 1186 if (pgprot_val(vma->vm_page_prot) != 1187 pgprot_val(vm_get_page_prot(vm_flags))) 1188 return 0; 1189 1190 /* Specialty mapping? */ 1191 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1192 return 0; 1193 1194 /* Can the mapping track the dirty pages? */ 1195 return vma->vm_file && vma->vm_file->f_mapping && 1196 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1197 } 1198 1199 /* 1200 * We account for memory if it's a private writeable mapping, 1201 * not hugepages and VM_NORESERVE wasn't set. 1202 */ 1203 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1204 { 1205 /* 1206 * hugetlb has its own accounting separate from the core VM 1207 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1208 */ 1209 if (file && is_file_hugepages(file)) 1210 return 0; 1211 1212 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1213 } 1214 1215 unsigned long mmap_region(struct file *file, unsigned long addr, 1216 unsigned long len, unsigned long flags, 1217 unsigned int vm_flags, unsigned long pgoff) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 struct vm_area_struct *vma, *prev; 1221 int correct_wcount = 0; 1222 int error; 1223 struct rb_node **rb_link, *rb_parent; 1224 unsigned long charged = 0; 1225 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1226 1227 /* Clear old maps */ 1228 error = -ENOMEM; 1229 munmap_back: 1230 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1231 if (vma && vma->vm_start < addr + len) { 1232 if (do_munmap(mm, addr, len)) 1233 return -ENOMEM; 1234 goto munmap_back; 1235 } 1236 1237 /* Check against address space limit. */ 1238 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1239 return -ENOMEM; 1240 1241 /* 1242 * Set 'VM_NORESERVE' if we should not account for the 1243 * memory use of this mapping. 1244 */ 1245 if ((flags & MAP_NORESERVE)) { 1246 /* We honor MAP_NORESERVE if allowed to overcommit */ 1247 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1248 vm_flags |= VM_NORESERVE; 1249 1250 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1251 if (file && is_file_hugepages(file)) 1252 vm_flags |= VM_NORESERVE; 1253 } 1254 1255 /* 1256 * Private writable mapping: check memory availability 1257 */ 1258 if (accountable_mapping(file, vm_flags)) { 1259 charged = len >> PAGE_SHIFT; 1260 if (security_vm_enough_memory(charged)) 1261 return -ENOMEM; 1262 vm_flags |= VM_ACCOUNT; 1263 } 1264 1265 /* 1266 * Can we just expand an old mapping? 1267 */ 1268 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1269 if (vma) 1270 goto out; 1271 1272 /* 1273 * Determine the object being mapped and call the appropriate 1274 * specific mapper. the address has already been validated, but 1275 * not unmapped, but the maps are removed from the list. 1276 */ 1277 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1278 if (!vma) { 1279 error = -ENOMEM; 1280 goto unacct_error; 1281 } 1282 1283 vma->vm_mm = mm; 1284 vma->vm_start = addr; 1285 vma->vm_end = addr + len; 1286 vma->vm_flags = vm_flags; 1287 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1288 vma->vm_pgoff = pgoff; 1289 INIT_LIST_HEAD(&vma->anon_vma_chain); 1290 1291 if (file) { 1292 error = -EINVAL; 1293 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1294 goto free_vma; 1295 if (vm_flags & VM_DENYWRITE) { 1296 error = deny_write_access(file); 1297 if (error) 1298 goto free_vma; 1299 correct_wcount = 1; 1300 } 1301 vma->vm_file = file; 1302 get_file(file); 1303 error = file->f_op->mmap(file, vma); 1304 if (error) 1305 goto unmap_and_free_vma; 1306 if (vm_flags & VM_EXECUTABLE) 1307 added_exe_file_vma(mm); 1308 1309 /* Can addr have changed?? 1310 * 1311 * Answer: Yes, several device drivers can do it in their 1312 * f_op->mmap method. -DaveM 1313 */ 1314 addr = vma->vm_start; 1315 pgoff = vma->vm_pgoff; 1316 vm_flags = vma->vm_flags; 1317 } else if (vm_flags & VM_SHARED) { 1318 error = shmem_zero_setup(vma); 1319 if (error) 1320 goto free_vma; 1321 } 1322 1323 if (vma_wants_writenotify(vma)) { 1324 pgprot_t pprot = vma->vm_page_prot; 1325 1326 /* Can vma->vm_page_prot have changed?? 1327 * 1328 * Answer: Yes, drivers may have changed it in their 1329 * f_op->mmap method. 1330 * 1331 * Ensures that vmas marked as uncached stay that way. 1332 */ 1333 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1334 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1335 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1336 } 1337 1338 vma_link(mm, vma, prev, rb_link, rb_parent); 1339 file = vma->vm_file; 1340 1341 /* Once vma denies write, undo our temporary denial count */ 1342 if (correct_wcount) 1343 atomic_inc(&inode->i_writecount); 1344 out: 1345 perf_event_mmap(vma); 1346 1347 mm->total_vm += len >> PAGE_SHIFT; 1348 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1349 if (vm_flags & VM_LOCKED) { 1350 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1351 mm->locked_vm += (len >> PAGE_SHIFT); 1352 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1353 make_pages_present(addr, addr + len); 1354 return addr; 1355 1356 unmap_and_free_vma: 1357 if (correct_wcount) 1358 atomic_inc(&inode->i_writecount); 1359 vma->vm_file = NULL; 1360 fput(file); 1361 1362 /* Undo any partial mapping done by a device driver. */ 1363 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1364 charged = 0; 1365 free_vma: 1366 kmem_cache_free(vm_area_cachep, vma); 1367 unacct_error: 1368 if (charged) 1369 vm_unacct_memory(charged); 1370 return error; 1371 } 1372 1373 /* Get an address range which is currently unmapped. 1374 * For shmat() with addr=0. 1375 * 1376 * Ugly calling convention alert: 1377 * Return value with the low bits set means error value, 1378 * ie 1379 * if (ret & ~PAGE_MASK) 1380 * error = ret; 1381 * 1382 * This function "knows" that -ENOMEM has the bits set. 1383 */ 1384 #ifndef HAVE_ARCH_UNMAPPED_AREA 1385 unsigned long 1386 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1387 unsigned long len, unsigned long pgoff, unsigned long flags) 1388 { 1389 struct mm_struct *mm = current->mm; 1390 struct vm_area_struct *vma; 1391 unsigned long start_addr; 1392 1393 if (len > TASK_SIZE) 1394 return -ENOMEM; 1395 1396 if (flags & MAP_FIXED) 1397 return addr; 1398 1399 if (addr) { 1400 addr = PAGE_ALIGN(addr); 1401 vma = find_vma(mm, addr); 1402 if (TASK_SIZE - len >= addr && 1403 (!vma || addr + len <= vma->vm_start)) 1404 return addr; 1405 } 1406 if (len > mm->cached_hole_size) { 1407 start_addr = addr = mm->free_area_cache; 1408 } else { 1409 start_addr = addr = TASK_UNMAPPED_BASE; 1410 mm->cached_hole_size = 0; 1411 } 1412 1413 full_search: 1414 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1415 /* At this point: (!vma || addr < vma->vm_end). */ 1416 if (TASK_SIZE - len < addr) { 1417 /* 1418 * Start a new search - just in case we missed 1419 * some holes. 1420 */ 1421 if (start_addr != TASK_UNMAPPED_BASE) { 1422 addr = TASK_UNMAPPED_BASE; 1423 start_addr = addr; 1424 mm->cached_hole_size = 0; 1425 goto full_search; 1426 } 1427 return -ENOMEM; 1428 } 1429 if (!vma || addr + len <= vma->vm_start) { 1430 /* 1431 * Remember the place where we stopped the search: 1432 */ 1433 mm->free_area_cache = addr + len; 1434 return addr; 1435 } 1436 if (addr + mm->cached_hole_size < vma->vm_start) 1437 mm->cached_hole_size = vma->vm_start - addr; 1438 addr = vma->vm_end; 1439 } 1440 } 1441 #endif 1442 1443 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1444 { 1445 /* 1446 * Is this a new hole at the lowest possible address? 1447 */ 1448 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1449 mm->free_area_cache = addr; 1450 mm->cached_hole_size = ~0UL; 1451 } 1452 } 1453 1454 /* 1455 * This mmap-allocator allocates new areas top-down from below the 1456 * stack's low limit (the base): 1457 */ 1458 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1459 unsigned long 1460 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1461 const unsigned long len, const unsigned long pgoff, 1462 const unsigned long flags) 1463 { 1464 struct vm_area_struct *vma; 1465 struct mm_struct *mm = current->mm; 1466 unsigned long addr = addr0; 1467 1468 /* requested length too big for entire address space */ 1469 if (len > TASK_SIZE) 1470 return -ENOMEM; 1471 1472 if (flags & MAP_FIXED) 1473 return addr; 1474 1475 /* requesting a specific address */ 1476 if (addr) { 1477 addr = PAGE_ALIGN(addr); 1478 vma = find_vma(mm, addr); 1479 if (TASK_SIZE - len >= addr && 1480 (!vma || addr + len <= vma->vm_start)) 1481 return addr; 1482 } 1483 1484 /* check if free_area_cache is useful for us */ 1485 if (len <= mm->cached_hole_size) { 1486 mm->cached_hole_size = 0; 1487 mm->free_area_cache = mm->mmap_base; 1488 } 1489 1490 /* either no address requested or can't fit in requested address hole */ 1491 addr = mm->free_area_cache; 1492 1493 /* make sure it can fit in the remaining address space */ 1494 if (addr > len) { 1495 vma = find_vma(mm, addr-len); 1496 if (!vma || addr <= vma->vm_start) 1497 /* remember the address as a hint for next time */ 1498 return (mm->free_area_cache = addr-len); 1499 } 1500 1501 if (mm->mmap_base < len) 1502 goto bottomup; 1503 1504 addr = mm->mmap_base-len; 1505 1506 do { 1507 /* 1508 * Lookup failure means no vma is above this address, 1509 * else if new region fits below vma->vm_start, 1510 * return with success: 1511 */ 1512 vma = find_vma(mm, addr); 1513 if (!vma || addr+len <= vma->vm_start) 1514 /* remember the address as a hint for next time */ 1515 return (mm->free_area_cache = addr); 1516 1517 /* remember the largest hole we saw so far */ 1518 if (addr + mm->cached_hole_size < vma->vm_start) 1519 mm->cached_hole_size = vma->vm_start - addr; 1520 1521 /* try just below the current vma->vm_start */ 1522 addr = vma->vm_start-len; 1523 } while (len < vma->vm_start); 1524 1525 bottomup: 1526 /* 1527 * A failed mmap() very likely causes application failure, 1528 * so fall back to the bottom-up function here. This scenario 1529 * can happen with large stack limits and large mmap() 1530 * allocations. 1531 */ 1532 mm->cached_hole_size = ~0UL; 1533 mm->free_area_cache = TASK_UNMAPPED_BASE; 1534 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1535 /* 1536 * Restore the topdown base: 1537 */ 1538 mm->free_area_cache = mm->mmap_base; 1539 mm->cached_hole_size = ~0UL; 1540 1541 return addr; 1542 } 1543 #endif 1544 1545 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1546 { 1547 /* 1548 * Is this a new hole at the highest possible address? 1549 */ 1550 if (addr > mm->free_area_cache) 1551 mm->free_area_cache = addr; 1552 1553 /* dont allow allocations above current base */ 1554 if (mm->free_area_cache > mm->mmap_base) 1555 mm->free_area_cache = mm->mmap_base; 1556 } 1557 1558 unsigned long 1559 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1560 unsigned long pgoff, unsigned long flags) 1561 { 1562 unsigned long (*get_area)(struct file *, unsigned long, 1563 unsigned long, unsigned long, unsigned long); 1564 1565 unsigned long error = arch_mmap_check(addr, len, flags); 1566 if (error) 1567 return error; 1568 1569 /* Careful about overflows.. */ 1570 if (len > TASK_SIZE) 1571 return -ENOMEM; 1572 1573 get_area = current->mm->get_unmapped_area; 1574 if (file && file->f_op && file->f_op->get_unmapped_area) 1575 get_area = file->f_op->get_unmapped_area; 1576 addr = get_area(file, addr, len, pgoff, flags); 1577 if (IS_ERR_VALUE(addr)) 1578 return addr; 1579 1580 if (addr > TASK_SIZE - len) 1581 return -ENOMEM; 1582 if (addr & ~PAGE_MASK) 1583 return -EINVAL; 1584 1585 return arch_rebalance_pgtables(addr, len); 1586 } 1587 1588 EXPORT_SYMBOL(get_unmapped_area); 1589 1590 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1591 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1592 { 1593 struct vm_area_struct *vma = NULL; 1594 1595 if (mm) { 1596 /* Check the cache first. */ 1597 /* (Cache hit rate is typically around 35%.) */ 1598 vma = mm->mmap_cache; 1599 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1600 struct rb_node * rb_node; 1601 1602 rb_node = mm->mm_rb.rb_node; 1603 vma = NULL; 1604 1605 while (rb_node) { 1606 struct vm_area_struct * vma_tmp; 1607 1608 vma_tmp = rb_entry(rb_node, 1609 struct vm_area_struct, vm_rb); 1610 1611 if (vma_tmp->vm_end > addr) { 1612 vma = vma_tmp; 1613 if (vma_tmp->vm_start <= addr) 1614 break; 1615 rb_node = rb_node->rb_left; 1616 } else 1617 rb_node = rb_node->rb_right; 1618 } 1619 if (vma) 1620 mm->mmap_cache = vma; 1621 } 1622 } 1623 return vma; 1624 } 1625 1626 EXPORT_SYMBOL(find_vma); 1627 1628 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1629 struct vm_area_struct * 1630 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1631 struct vm_area_struct **pprev) 1632 { 1633 struct vm_area_struct *vma = NULL, *prev = NULL; 1634 struct rb_node *rb_node; 1635 if (!mm) 1636 goto out; 1637 1638 /* Guard against addr being lower than the first VMA */ 1639 vma = mm->mmap; 1640 1641 /* Go through the RB tree quickly. */ 1642 rb_node = mm->mm_rb.rb_node; 1643 1644 while (rb_node) { 1645 struct vm_area_struct *vma_tmp; 1646 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1647 1648 if (addr < vma_tmp->vm_end) { 1649 rb_node = rb_node->rb_left; 1650 } else { 1651 prev = vma_tmp; 1652 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1653 break; 1654 rb_node = rb_node->rb_right; 1655 } 1656 } 1657 1658 out: 1659 *pprev = prev; 1660 return prev ? prev->vm_next : vma; 1661 } 1662 1663 /* 1664 * Verify that the stack growth is acceptable and 1665 * update accounting. This is shared with both the 1666 * grow-up and grow-down cases. 1667 */ 1668 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1669 { 1670 struct mm_struct *mm = vma->vm_mm; 1671 struct rlimit *rlim = current->signal->rlim; 1672 unsigned long new_start; 1673 1674 /* address space limit tests */ 1675 if (!may_expand_vm(mm, grow)) 1676 return -ENOMEM; 1677 1678 /* Stack limit test */ 1679 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1680 return -ENOMEM; 1681 1682 /* mlock limit tests */ 1683 if (vma->vm_flags & VM_LOCKED) { 1684 unsigned long locked; 1685 unsigned long limit; 1686 locked = mm->locked_vm + grow; 1687 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1688 limit >>= PAGE_SHIFT; 1689 if (locked > limit && !capable(CAP_IPC_LOCK)) 1690 return -ENOMEM; 1691 } 1692 1693 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1694 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1695 vma->vm_end - size; 1696 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1697 return -EFAULT; 1698 1699 /* 1700 * Overcommit.. This must be the final test, as it will 1701 * update security statistics. 1702 */ 1703 if (security_vm_enough_memory_mm(mm, grow)) 1704 return -ENOMEM; 1705 1706 /* Ok, everything looks good - let it rip */ 1707 mm->total_vm += grow; 1708 if (vma->vm_flags & VM_LOCKED) 1709 mm->locked_vm += grow; 1710 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1711 return 0; 1712 } 1713 1714 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1715 /* 1716 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1717 * vma is the last one with address > vma->vm_end. Have to extend vma. 1718 */ 1719 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1720 { 1721 int error; 1722 1723 if (!(vma->vm_flags & VM_GROWSUP)) 1724 return -EFAULT; 1725 1726 /* 1727 * We must make sure the anon_vma is allocated 1728 * so that the anon_vma locking is not a noop. 1729 */ 1730 if (unlikely(anon_vma_prepare(vma))) 1731 return -ENOMEM; 1732 vma_lock_anon_vma(vma); 1733 1734 /* 1735 * vma->vm_start/vm_end cannot change under us because the caller 1736 * is required to hold the mmap_sem in read mode. We need the 1737 * anon_vma lock to serialize against concurrent expand_stacks. 1738 * Also guard against wrapping around to address 0. 1739 */ 1740 if (address < PAGE_ALIGN(address+4)) 1741 address = PAGE_ALIGN(address+4); 1742 else { 1743 vma_unlock_anon_vma(vma); 1744 return -ENOMEM; 1745 } 1746 error = 0; 1747 1748 /* Somebody else might have raced and expanded it already */ 1749 if (address > vma->vm_end) { 1750 unsigned long size, grow; 1751 1752 size = address - vma->vm_start; 1753 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1754 1755 error = acct_stack_growth(vma, size, grow); 1756 if (!error) { 1757 vma->vm_end = address; 1758 perf_event_mmap(vma); 1759 } 1760 } 1761 vma_unlock_anon_vma(vma); 1762 return error; 1763 } 1764 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1765 1766 /* 1767 * vma is the first one with address < vma->vm_start. Have to extend vma. 1768 */ 1769 static int expand_downwards(struct vm_area_struct *vma, 1770 unsigned long address) 1771 { 1772 int error; 1773 1774 /* 1775 * We must make sure the anon_vma is allocated 1776 * so that the anon_vma locking is not a noop. 1777 */ 1778 if (unlikely(anon_vma_prepare(vma))) 1779 return -ENOMEM; 1780 1781 address &= PAGE_MASK; 1782 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1783 if (error) 1784 return error; 1785 1786 vma_lock_anon_vma(vma); 1787 1788 /* 1789 * vma->vm_start/vm_end cannot change under us because the caller 1790 * is required to hold the mmap_sem in read mode. We need the 1791 * anon_vma lock to serialize against concurrent expand_stacks. 1792 */ 1793 1794 /* Somebody else might have raced and expanded it already */ 1795 if (address < vma->vm_start) { 1796 unsigned long size, grow; 1797 1798 size = vma->vm_end - address; 1799 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1800 1801 error = acct_stack_growth(vma, size, grow); 1802 if (!error) { 1803 vma->vm_start = address; 1804 vma->vm_pgoff -= grow; 1805 perf_event_mmap(vma); 1806 } 1807 } 1808 vma_unlock_anon_vma(vma); 1809 return error; 1810 } 1811 1812 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1813 { 1814 return expand_downwards(vma, address); 1815 } 1816 1817 #ifdef CONFIG_STACK_GROWSUP 1818 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1819 { 1820 return expand_upwards(vma, address); 1821 } 1822 1823 struct vm_area_struct * 1824 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1825 { 1826 struct vm_area_struct *vma, *prev; 1827 1828 addr &= PAGE_MASK; 1829 vma = find_vma_prev(mm, addr, &prev); 1830 if (vma && (vma->vm_start <= addr)) 1831 return vma; 1832 if (!prev || expand_stack(prev, addr)) 1833 return NULL; 1834 if (prev->vm_flags & VM_LOCKED) { 1835 mlock_vma_pages_range(prev, addr, prev->vm_end); 1836 } 1837 return prev; 1838 } 1839 #else 1840 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1841 { 1842 return expand_downwards(vma, address); 1843 } 1844 1845 struct vm_area_struct * 1846 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1847 { 1848 struct vm_area_struct * vma; 1849 unsigned long start; 1850 1851 addr &= PAGE_MASK; 1852 vma = find_vma(mm,addr); 1853 if (!vma) 1854 return NULL; 1855 if (vma->vm_start <= addr) 1856 return vma; 1857 if (!(vma->vm_flags & VM_GROWSDOWN)) 1858 return NULL; 1859 start = vma->vm_start; 1860 if (expand_stack(vma, addr)) 1861 return NULL; 1862 if (vma->vm_flags & VM_LOCKED) { 1863 mlock_vma_pages_range(vma, addr, start); 1864 } 1865 return vma; 1866 } 1867 #endif 1868 1869 /* 1870 * Ok - we have the memory areas we should free on the vma list, 1871 * so release them, and do the vma updates. 1872 * 1873 * Called with the mm semaphore held. 1874 */ 1875 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1876 { 1877 /* Update high watermark before we lower total_vm */ 1878 update_hiwater_vm(mm); 1879 do { 1880 long nrpages = vma_pages(vma); 1881 1882 mm->total_vm -= nrpages; 1883 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1884 vma = remove_vma(vma); 1885 } while (vma); 1886 validate_mm(mm); 1887 } 1888 1889 /* 1890 * Get rid of page table information in the indicated region. 1891 * 1892 * Called with the mm semaphore held. 1893 */ 1894 static void unmap_region(struct mm_struct *mm, 1895 struct vm_area_struct *vma, struct vm_area_struct *prev, 1896 unsigned long start, unsigned long end) 1897 { 1898 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1899 struct mmu_gather *tlb; 1900 unsigned long nr_accounted = 0; 1901 1902 lru_add_drain(); 1903 tlb = tlb_gather_mmu(mm, 0); 1904 update_hiwater_rss(mm); 1905 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1906 vm_unacct_memory(nr_accounted); 1907 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1908 next? next->vm_start: 0); 1909 tlb_finish_mmu(tlb, start, end); 1910 } 1911 1912 /* 1913 * Create a list of vma's touched by the unmap, removing them from the mm's 1914 * vma list as we go.. 1915 */ 1916 static void 1917 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1918 struct vm_area_struct *prev, unsigned long end) 1919 { 1920 struct vm_area_struct **insertion_point; 1921 struct vm_area_struct *tail_vma = NULL; 1922 unsigned long addr; 1923 1924 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1925 vma->vm_prev = NULL; 1926 do { 1927 rb_erase(&vma->vm_rb, &mm->mm_rb); 1928 mm->map_count--; 1929 tail_vma = vma; 1930 vma = vma->vm_next; 1931 } while (vma && vma->vm_start < end); 1932 *insertion_point = vma; 1933 if (vma) 1934 vma->vm_prev = prev; 1935 tail_vma->vm_next = NULL; 1936 if (mm->unmap_area == arch_unmap_area) 1937 addr = prev ? prev->vm_end : mm->mmap_base; 1938 else 1939 addr = vma ? vma->vm_start : mm->mmap_base; 1940 mm->unmap_area(mm, addr); 1941 mm->mmap_cache = NULL; /* Kill the cache. */ 1942 } 1943 1944 /* 1945 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1946 * munmap path where it doesn't make sense to fail. 1947 */ 1948 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1949 unsigned long addr, int new_below) 1950 { 1951 struct mempolicy *pol; 1952 struct vm_area_struct *new; 1953 int err = -ENOMEM; 1954 1955 if (is_vm_hugetlb_page(vma) && (addr & 1956 ~(huge_page_mask(hstate_vma(vma))))) 1957 return -EINVAL; 1958 1959 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1960 if (!new) 1961 goto out_err; 1962 1963 /* most fields are the same, copy all, and then fixup */ 1964 *new = *vma; 1965 1966 INIT_LIST_HEAD(&new->anon_vma_chain); 1967 1968 if (new_below) 1969 new->vm_end = addr; 1970 else { 1971 new->vm_start = addr; 1972 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1973 } 1974 1975 pol = mpol_dup(vma_policy(vma)); 1976 if (IS_ERR(pol)) { 1977 err = PTR_ERR(pol); 1978 goto out_free_vma; 1979 } 1980 vma_set_policy(new, pol); 1981 1982 if (anon_vma_clone(new, vma)) 1983 goto out_free_mpol; 1984 1985 if (new->vm_file) { 1986 get_file(new->vm_file); 1987 if (vma->vm_flags & VM_EXECUTABLE) 1988 added_exe_file_vma(mm); 1989 } 1990 1991 if (new->vm_ops && new->vm_ops->open) 1992 new->vm_ops->open(new); 1993 1994 if (new_below) 1995 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1996 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1997 else 1998 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1999 2000 /* Success. */ 2001 if (!err) 2002 return 0; 2003 2004 /* Clean everything up if vma_adjust failed. */ 2005 if (new->vm_ops && new->vm_ops->close) 2006 new->vm_ops->close(new); 2007 if (new->vm_file) { 2008 if (vma->vm_flags & VM_EXECUTABLE) 2009 removed_exe_file_vma(mm); 2010 fput(new->vm_file); 2011 } 2012 unlink_anon_vmas(new); 2013 out_free_mpol: 2014 mpol_put(pol); 2015 out_free_vma: 2016 kmem_cache_free(vm_area_cachep, new); 2017 out_err: 2018 return err; 2019 } 2020 2021 /* 2022 * Split a vma into two pieces at address 'addr', a new vma is allocated 2023 * either for the first part or the tail. 2024 */ 2025 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2026 unsigned long addr, int new_below) 2027 { 2028 if (mm->map_count >= sysctl_max_map_count) 2029 return -ENOMEM; 2030 2031 return __split_vma(mm, vma, addr, new_below); 2032 } 2033 2034 /* Munmap is split into 2 main parts -- this part which finds 2035 * what needs doing, and the areas themselves, which do the 2036 * work. This now handles partial unmappings. 2037 * Jeremy Fitzhardinge <jeremy@goop.org> 2038 */ 2039 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2040 { 2041 unsigned long end; 2042 struct vm_area_struct *vma, *prev, *last; 2043 2044 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2045 return -EINVAL; 2046 2047 if ((len = PAGE_ALIGN(len)) == 0) 2048 return -EINVAL; 2049 2050 /* Find the first overlapping VMA */ 2051 vma = find_vma_prev(mm, start, &prev); 2052 if (!vma) 2053 return 0; 2054 /* we have start < vma->vm_end */ 2055 2056 /* if it doesn't overlap, we have nothing.. */ 2057 end = start + len; 2058 if (vma->vm_start >= end) 2059 return 0; 2060 2061 /* 2062 * If we need to split any vma, do it now to save pain later. 2063 * 2064 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2065 * unmapped vm_area_struct will remain in use: so lower split_vma 2066 * places tmp vma above, and higher split_vma places tmp vma below. 2067 */ 2068 if (start > vma->vm_start) { 2069 int error; 2070 2071 /* 2072 * Make sure that map_count on return from munmap() will 2073 * not exceed its limit; but let map_count go just above 2074 * its limit temporarily, to help free resources as expected. 2075 */ 2076 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2077 return -ENOMEM; 2078 2079 error = __split_vma(mm, vma, start, 0); 2080 if (error) 2081 return error; 2082 prev = vma; 2083 } 2084 2085 /* Does it split the last one? */ 2086 last = find_vma(mm, end); 2087 if (last && end > last->vm_start) { 2088 int error = __split_vma(mm, last, end, 1); 2089 if (error) 2090 return error; 2091 } 2092 vma = prev? prev->vm_next: mm->mmap; 2093 2094 /* 2095 * unlock any mlock()ed ranges before detaching vmas 2096 */ 2097 if (mm->locked_vm) { 2098 struct vm_area_struct *tmp = vma; 2099 while (tmp && tmp->vm_start < end) { 2100 if (tmp->vm_flags & VM_LOCKED) { 2101 mm->locked_vm -= vma_pages(tmp); 2102 munlock_vma_pages_all(tmp); 2103 } 2104 tmp = tmp->vm_next; 2105 } 2106 } 2107 2108 /* 2109 * Remove the vma's, and unmap the actual pages 2110 */ 2111 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2112 unmap_region(mm, vma, prev, start, end); 2113 2114 /* Fix up all other VM information */ 2115 remove_vma_list(mm, vma); 2116 2117 return 0; 2118 } 2119 2120 EXPORT_SYMBOL(do_munmap); 2121 2122 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2123 { 2124 int ret; 2125 struct mm_struct *mm = current->mm; 2126 2127 profile_munmap(addr); 2128 2129 down_write(&mm->mmap_sem); 2130 ret = do_munmap(mm, addr, len); 2131 up_write(&mm->mmap_sem); 2132 return ret; 2133 } 2134 2135 static inline void verify_mm_writelocked(struct mm_struct *mm) 2136 { 2137 #ifdef CONFIG_DEBUG_VM 2138 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2139 WARN_ON(1); 2140 up_read(&mm->mmap_sem); 2141 } 2142 #endif 2143 } 2144 2145 /* 2146 * this is really a simplified "do_mmap". it only handles 2147 * anonymous maps. eventually we may be able to do some 2148 * brk-specific accounting here. 2149 */ 2150 unsigned long do_brk(unsigned long addr, unsigned long len) 2151 { 2152 struct mm_struct * mm = current->mm; 2153 struct vm_area_struct * vma, * prev; 2154 unsigned long flags; 2155 struct rb_node ** rb_link, * rb_parent; 2156 pgoff_t pgoff = addr >> PAGE_SHIFT; 2157 int error; 2158 2159 len = PAGE_ALIGN(len); 2160 if (!len) 2161 return addr; 2162 2163 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2164 if (error) 2165 return error; 2166 2167 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2168 2169 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2170 if (error & ~PAGE_MASK) 2171 return error; 2172 2173 /* 2174 * mlock MCL_FUTURE? 2175 */ 2176 if (mm->def_flags & VM_LOCKED) { 2177 unsigned long locked, lock_limit; 2178 locked = len >> PAGE_SHIFT; 2179 locked += mm->locked_vm; 2180 lock_limit = rlimit(RLIMIT_MEMLOCK); 2181 lock_limit >>= PAGE_SHIFT; 2182 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2183 return -EAGAIN; 2184 } 2185 2186 /* 2187 * mm->mmap_sem is required to protect against another thread 2188 * changing the mappings in case we sleep. 2189 */ 2190 verify_mm_writelocked(mm); 2191 2192 /* 2193 * Clear old maps. this also does some error checking for us 2194 */ 2195 munmap_back: 2196 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2197 if (vma && vma->vm_start < addr + len) { 2198 if (do_munmap(mm, addr, len)) 2199 return -ENOMEM; 2200 goto munmap_back; 2201 } 2202 2203 /* Check against address space limits *after* clearing old maps... */ 2204 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2205 return -ENOMEM; 2206 2207 if (mm->map_count > sysctl_max_map_count) 2208 return -ENOMEM; 2209 2210 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2211 return -ENOMEM; 2212 2213 /* Can we just expand an old private anonymous mapping? */ 2214 vma = vma_merge(mm, prev, addr, addr + len, flags, 2215 NULL, NULL, pgoff, NULL); 2216 if (vma) 2217 goto out; 2218 2219 /* 2220 * create a vma struct for an anonymous mapping 2221 */ 2222 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2223 if (!vma) { 2224 vm_unacct_memory(len >> PAGE_SHIFT); 2225 return -ENOMEM; 2226 } 2227 2228 INIT_LIST_HEAD(&vma->anon_vma_chain); 2229 vma->vm_mm = mm; 2230 vma->vm_start = addr; 2231 vma->vm_end = addr + len; 2232 vma->vm_pgoff = pgoff; 2233 vma->vm_flags = flags; 2234 vma->vm_page_prot = vm_get_page_prot(flags); 2235 vma_link(mm, vma, prev, rb_link, rb_parent); 2236 out: 2237 perf_event_mmap(vma); 2238 mm->total_vm += len >> PAGE_SHIFT; 2239 if (flags & VM_LOCKED) { 2240 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2241 mm->locked_vm += (len >> PAGE_SHIFT); 2242 } 2243 return addr; 2244 } 2245 2246 EXPORT_SYMBOL(do_brk); 2247 2248 /* Release all mmaps. */ 2249 void exit_mmap(struct mm_struct *mm) 2250 { 2251 struct mmu_gather *tlb; 2252 struct vm_area_struct *vma; 2253 unsigned long nr_accounted = 0; 2254 unsigned long end; 2255 2256 /* mm's last user has gone, and its about to be pulled down */ 2257 mmu_notifier_release(mm); 2258 2259 if (mm->locked_vm) { 2260 vma = mm->mmap; 2261 while (vma) { 2262 if (vma->vm_flags & VM_LOCKED) 2263 munlock_vma_pages_all(vma); 2264 vma = vma->vm_next; 2265 } 2266 } 2267 2268 arch_exit_mmap(mm); 2269 2270 vma = mm->mmap; 2271 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2272 return; 2273 2274 lru_add_drain(); 2275 flush_cache_mm(mm); 2276 tlb = tlb_gather_mmu(mm, 1); 2277 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2278 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2279 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2280 vm_unacct_memory(nr_accounted); 2281 2282 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2283 tlb_finish_mmu(tlb, 0, end); 2284 2285 /* 2286 * Walk the list again, actually closing and freeing it, 2287 * with preemption enabled, without holding any MM locks. 2288 */ 2289 while (vma) 2290 vma = remove_vma(vma); 2291 2292 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2293 } 2294 2295 /* Insert vm structure into process list sorted by address 2296 * and into the inode's i_mmap tree. If vm_file is non-NULL 2297 * then i_mmap_lock is taken here. 2298 */ 2299 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2300 { 2301 struct vm_area_struct * __vma, * prev; 2302 struct rb_node ** rb_link, * rb_parent; 2303 2304 /* 2305 * The vm_pgoff of a purely anonymous vma should be irrelevant 2306 * until its first write fault, when page's anon_vma and index 2307 * are set. But now set the vm_pgoff it will almost certainly 2308 * end up with (unless mremap moves it elsewhere before that 2309 * first wfault), so /proc/pid/maps tells a consistent story. 2310 * 2311 * By setting it to reflect the virtual start address of the 2312 * vma, merges and splits can happen in a seamless way, just 2313 * using the existing file pgoff checks and manipulations. 2314 * Similarly in do_mmap_pgoff and in do_brk. 2315 */ 2316 if (!vma->vm_file) { 2317 BUG_ON(vma->anon_vma); 2318 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2319 } 2320 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2321 if (__vma && __vma->vm_start < vma->vm_end) 2322 return -ENOMEM; 2323 if ((vma->vm_flags & VM_ACCOUNT) && 2324 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2325 return -ENOMEM; 2326 vma_link(mm, vma, prev, rb_link, rb_parent); 2327 return 0; 2328 } 2329 2330 /* 2331 * Copy the vma structure to a new location in the same mm, 2332 * prior to moving page table entries, to effect an mremap move. 2333 */ 2334 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2335 unsigned long addr, unsigned long len, pgoff_t pgoff) 2336 { 2337 struct vm_area_struct *vma = *vmap; 2338 unsigned long vma_start = vma->vm_start; 2339 struct mm_struct *mm = vma->vm_mm; 2340 struct vm_area_struct *new_vma, *prev; 2341 struct rb_node **rb_link, *rb_parent; 2342 struct mempolicy *pol; 2343 2344 /* 2345 * If anonymous vma has not yet been faulted, update new pgoff 2346 * to match new location, to increase its chance of merging. 2347 */ 2348 if (!vma->vm_file && !vma->anon_vma) 2349 pgoff = addr >> PAGE_SHIFT; 2350 2351 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2352 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2353 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2354 if (new_vma) { 2355 /* 2356 * Source vma may have been merged into new_vma 2357 */ 2358 if (vma_start >= new_vma->vm_start && 2359 vma_start < new_vma->vm_end) 2360 *vmap = new_vma; 2361 } else { 2362 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2363 if (new_vma) { 2364 *new_vma = *vma; 2365 pol = mpol_dup(vma_policy(vma)); 2366 if (IS_ERR(pol)) 2367 goto out_free_vma; 2368 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2369 if (anon_vma_clone(new_vma, vma)) 2370 goto out_free_mempol; 2371 vma_set_policy(new_vma, pol); 2372 new_vma->vm_start = addr; 2373 new_vma->vm_end = addr + len; 2374 new_vma->vm_pgoff = pgoff; 2375 if (new_vma->vm_file) { 2376 get_file(new_vma->vm_file); 2377 if (vma->vm_flags & VM_EXECUTABLE) 2378 added_exe_file_vma(mm); 2379 } 2380 if (new_vma->vm_ops && new_vma->vm_ops->open) 2381 new_vma->vm_ops->open(new_vma); 2382 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2383 } 2384 } 2385 return new_vma; 2386 2387 out_free_mempol: 2388 mpol_put(pol); 2389 out_free_vma: 2390 kmem_cache_free(vm_area_cachep, new_vma); 2391 return NULL; 2392 } 2393 2394 /* 2395 * Return true if the calling process may expand its vm space by the passed 2396 * number of pages 2397 */ 2398 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2399 { 2400 unsigned long cur = mm->total_vm; /* pages */ 2401 unsigned long lim; 2402 2403 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2404 2405 if (cur + npages > lim) 2406 return 0; 2407 return 1; 2408 } 2409 2410 2411 static int special_mapping_fault(struct vm_area_struct *vma, 2412 struct vm_fault *vmf) 2413 { 2414 pgoff_t pgoff; 2415 struct page **pages; 2416 2417 /* 2418 * special mappings have no vm_file, and in that case, the mm 2419 * uses vm_pgoff internally. So we have to subtract it from here. 2420 * We are allowed to do this because we are the mm; do not copy 2421 * this code into drivers! 2422 */ 2423 pgoff = vmf->pgoff - vma->vm_pgoff; 2424 2425 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2426 pgoff--; 2427 2428 if (*pages) { 2429 struct page *page = *pages; 2430 get_page(page); 2431 vmf->page = page; 2432 return 0; 2433 } 2434 2435 return VM_FAULT_SIGBUS; 2436 } 2437 2438 /* 2439 * Having a close hook prevents vma merging regardless of flags. 2440 */ 2441 static void special_mapping_close(struct vm_area_struct *vma) 2442 { 2443 } 2444 2445 static const struct vm_operations_struct special_mapping_vmops = { 2446 .close = special_mapping_close, 2447 .fault = special_mapping_fault, 2448 }; 2449 2450 /* 2451 * Called with mm->mmap_sem held for writing. 2452 * Insert a new vma covering the given region, with the given flags. 2453 * Its pages are supplied by the given array of struct page *. 2454 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2455 * The region past the last page supplied will always produce SIGBUS. 2456 * The array pointer and the pages it points to are assumed to stay alive 2457 * for as long as this mapping might exist. 2458 */ 2459 int install_special_mapping(struct mm_struct *mm, 2460 unsigned long addr, unsigned long len, 2461 unsigned long vm_flags, struct page **pages) 2462 { 2463 struct vm_area_struct *vma; 2464 2465 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2466 if (unlikely(vma == NULL)) 2467 return -ENOMEM; 2468 2469 INIT_LIST_HEAD(&vma->anon_vma_chain); 2470 vma->vm_mm = mm; 2471 vma->vm_start = addr; 2472 vma->vm_end = addr + len; 2473 2474 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2475 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2476 2477 vma->vm_ops = &special_mapping_vmops; 2478 vma->vm_private_data = pages; 2479 2480 if (unlikely(insert_vm_struct(mm, vma))) { 2481 kmem_cache_free(vm_area_cachep, vma); 2482 return -ENOMEM; 2483 } 2484 2485 mm->total_vm += len >> PAGE_SHIFT; 2486 2487 perf_event_mmap(vma); 2488 2489 return 0; 2490 } 2491 2492 static DEFINE_MUTEX(mm_all_locks_mutex); 2493 2494 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2495 { 2496 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2497 /* 2498 * The LSB of head.next can't change from under us 2499 * because we hold the mm_all_locks_mutex. 2500 */ 2501 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); 2502 /* 2503 * We can safely modify head.next after taking the 2504 * anon_vma->root->lock. If some other vma in this mm shares 2505 * the same anon_vma we won't take it again. 2506 * 2507 * No need of atomic instructions here, head.next 2508 * can't change from under us thanks to the 2509 * anon_vma->root->lock. 2510 */ 2511 if (__test_and_set_bit(0, (unsigned long *) 2512 &anon_vma->root->head.next)) 2513 BUG(); 2514 } 2515 } 2516 2517 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2518 { 2519 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2520 /* 2521 * AS_MM_ALL_LOCKS can't change from under us because 2522 * we hold the mm_all_locks_mutex. 2523 * 2524 * Operations on ->flags have to be atomic because 2525 * even if AS_MM_ALL_LOCKS is stable thanks to the 2526 * mm_all_locks_mutex, there may be other cpus 2527 * changing other bitflags in parallel to us. 2528 */ 2529 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2530 BUG(); 2531 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2532 } 2533 } 2534 2535 /* 2536 * This operation locks against the VM for all pte/vma/mm related 2537 * operations that could ever happen on a certain mm. This includes 2538 * vmtruncate, try_to_unmap, and all page faults. 2539 * 2540 * The caller must take the mmap_sem in write mode before calling 2541 * mm_take_all_locks(). The caller isn't allowed to release the 2542 * mmap_sem until mm_drop_all_locks() returns. 2543 * 2544 * mmap_sem in write mode is required in order to block all operations 2545 * that could modify pagetables and free pages without need of 2546 * altering the vma layout (for example populate_range() with 2547 * nonlinear vmas). It's also needed in write mode to avoid new 2548 * anon_vmas to be associated with existing vmas. 2549 * 2550 * A single task can't take more than one mm_take_all_locks() in a row 2551 * or it would deadlock. 2552 * 2553 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2554 * mapping->flags avoid to take the same lock twice, if more than one 2555 * vma in this mm is backed by the same anon_vma or address_space. 2556 * 2557 * We can take all the locks in random order because the VM code 2558 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2559 * takes more than one of them in a row. Secondly we're protected 2560 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2561 * 2562 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2563 * that may have to take thousand of locks. 2564 * 2565 * mm_take_all_locks() can fail if it's interrupted by signals. 2566 */ 2567 int mm_take_all_locks(struct mm_struct *mm) 2568 { 2569 struct vm_area_struct *vma; 2570 struct anon_vma_chain *avc; 2571 int ret = -EINTR; 2572 2573 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2574 2575 mutex_lock(&mm_all_locks_mutex); 2576 2577 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2578 if (signal_pending(current)) 2579 goto out_unlock; 2580 if (vma->vm_file && vma->vm_file->f_mapping) 2581 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2582 } 2583 2584 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2585 if (signal_pending(current)) 2586 goto out_unlock; 2587 if (vma->anon_vma) 2588 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2589 vm_lock_anon_vma(mm, avc->anon_vma); 2590 } 2591 2592 ret = 0; 2593 2594 out_unlock: 2595 if (ret) 2596 mm_drop_all_locks(mm); 2597 2598 return ret; 2599 } 2600 2601 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2602 { 2603 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2604 /* 2605 * The LSB of head.next can't change to 0 from under 2606 * us because we hold the mm_all_locks_mutex. 2607 * 2608 * We must however clear the bitflag before unlocking 2609 * the vma so the users using the anon_vma->head will 2610 * never see our bitflag. 2611 * 2612 * No need of atomic instructions here, head.next 2613 * can't change from under us until we release the 2614 * anon_vma->root->lock. 2615 */ 2616 if (!__test_and_clear_bit(0, (unsigned long *) 2617 &anon_vma->root->head.next)) 2618 BUG(); 2619 anon_vma_unlock(anon_vma); 2620 } 2621 } 2622 2623 static void vm_unlock_mapping(struct address_space *mapping) 2624 { 2625 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2626 /* 2627 * AS_MM_ALL_LOCKS can't change to 0 from under us 2628 * because we hold the mm_all_locks_mutex. 2629 */ 2630 spin_unlock(&mapping->i_mmap_lock); 2631 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2632 &mapping->flags)) 2633 BUG(); 2634 } 2635 } 2636 2637 /* 2638 * The mmap_sem cannot be released by the caller until 2639 * mm_drop_all_locks() returns. 2640 */ 2641 void mm_drop_all_locks(struct mm_struct *mm) 2642 { 2643 struct vm_area_struct *vma; 2644 struct anon_vma_chain *avc; 2645 2646 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2647 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2648 2649 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2650 if (vma->anon_vma) 2651 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2652 vm_unlock_anon_vma(avc->anon_vma); 2653 if (vma->vm_file && vma->vm_file->f_mapping) 2654 vm_unlock_mapping(vma->vm_file->f_mapping); 2655 } 2656 2657 mutex_unlock(&mm_all_locks_mutex); 2658 } 2659 2660 /* 2661 * initialise the VMA slab 2662 */ 2663 void __init mmap_init(void) 2664 { 2665 int ret; 2666 2667 ret = percpu_counter_init(&vm_committed_as, 0); 2668 VM_BUG_ON(ret); 2669 } 2670