xref: /linux/mm/mmap.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 
37 #include "internal.h"
38 
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags)	(0)
41 #endif
42 
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len)		(addr)
45 #endif
46 
47 static void unmap_region(struct mm_struct *mm,
48 		struct vm_area_struct *vma, struct vm_area_struct *prev,
49 		unsigned long start, unsigned long end);
50 
51 /*
52  * WARNING: the debugging will use recursive algorithms so never enable this
53  * unless you know what you are doing.
54  */
55 #undef DEBUG_MM_RB
56 
57 /* description of effects of mapping type and prot in current implementation.
58  * this is due to the limited x86 page protection hardware.  The expected
59  * behavior is in parens:
60  *
61  * map_type	prot
62  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66  *
67  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70  *
71  */
72 pgprot_t protection_map[16] = {
73 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76 
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 	return __pgprot(pgprot_val(protection_map[vm_flags &
80 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84 
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50;	/* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89 
90 /*
91  * Check that a process has enough memory to allocate a new virtual
92  * mapping. 0 means there is enough memory for the allocation to
93  * succeed and -ENOMEM implies there is not.
94  *
95  * We currently support three overcommit policies, which are set via the
96  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97  *
98  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99  * Additional code 2002 Jul 20 by Robert Love.
100  *
101  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102  *
103  * Note this is a helper function intended to be used by LSMs which
104  * wish to use this logic.
105  */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 	unsigned long free, allowed;
109 
110 	vm_acct_memory(pages);
111 
112 	/*
113 	 * Sometimes we want to use more memory than we have
114 	 */
115 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 		return 0;
117 
118 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 		unsigned long n;
120 
121 		free = global_page_state(NR_FILE_PAGES);
122 		free += nr_swap_pages;
123 
124 		/*
125 		 * Any slabs which are created with the
126 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 		 * which are reclaimable, under pressure.  The dentry
128 		 * cache and most inode caches should fall into this
129 		 */
130 		free += global_page_state(NR_SLAB_RECLAIMABLE);
131 
132 		/*
133 		 * Leave the last 3% for root
134 		 */
135 		if (!cap_sys_admin)
136 			free -= free / 32;
137 
138 		if (free > pages)
139 			return 0;
140 
141 		/*
142 		 * nr_free_pages() is very expensive on large systems,
143 		 * only call if we're about to fail.
144 		 */
145 		n = nr_free_pages();
146 
147 		/*
148 		 * Leave reserved pages. The pages are not for anonymous pages.
149 		 */
150 		if (n <= totalreserve_pages)
151 			goto error;
152 		else
153 			n -= totalreserve_pages;
154 
155 		/*
156 		 * Leave the last 3% for root
157 		 */
158 		if (!cap_sys_admin)
159 			n -= n / 32;
160 		free += n;
161 
162 		if (free > pages)
163 			return 0;
164 
165 		goto error;
166 	}
167 
168 	allowed = (totalram_pages - hugetlb_total_pages())
169 	       	* sysctl_overcommit_ratio / 100;
170 	/*
171 	 * Leave the last 3% for root
172 	 */
173 	if (!cap_sys_admin)
174 		allowed -= allowed / 32;
175 	allowed += total_swap_pages;
176 
177 	/* Don't let a single process grow too big:
178 	   leave 3% of the size of this process for other processes */
179 	if (mm)
180 		allowed -= mm->total_vm / 32;
181 
182 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 		return 0;
184 error:
185 	vm_unacct_memory(pages);
186 
187 	return -ENOMEM;
188 }
189 
190 /*
191  * Requires inode->i_mapping->i_mmap_lock
192  */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 		struct file *file, struct address_space *mapping)
195 {
196 	if (vma->vm_flags & VM_DENYWRITE)
197 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 	if (vma->vm_flags & VM_SHARED)
199 		mapping->i_mmap_writable--;
200 
201 	flush_dcache_mmap_lock(mapping);
202 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 		list_del_init(&vma->shared.vm_set.list);
204 	else
205 		vma_prio_tree_remove(vma, &mapping->i_mmap);
206 	flush_dcache_mmap_unlock(mapping);
207 }
208 
209 /*
210  * Unlink a file-based vm structure from its prio_tree, to hide
211  * vma from rmap and vmtruncate before freeing its page tables.
212  */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 	struct file *file = vma->vm_file;
216 
217 	if (file) {
218 		struct address_space *mapping = file->f_mapping;
219 		spin_lock(&mapping->i_mmap_lock);
220 		__remove_shared_vm_struct(vma, file, mapping);
221 		spin_unlock(&mapping->i_mmap_lock);
222 	}
223 }
224 
225 /*
226  * Close a vm structure and free it, returning the next.
227  */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 	struct vm_area_struct *next = vma->vm_next;
231 
232 	might_sleep();
233 	if (vma->vm_ops && vma->vm_ops->close)
234 		vma->vm_ops->close(vma);
235 	if (vma->vm_file) {
236 		fput(vma->vm_file);
237 		if (vma->vm_flags & VM_EXECUTABLE)
238 			removed_exe_file_vma(vma->vm_mm);
239 	}
240 	mpol_put(vma_policy(vma));
241 	kmem_cache_free(vm_area_cachep, vma);
242 	return next;
243 }
244 
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 	unsigned long rlim, retval;
248 	unsigned long newbrk, oldbrk;
249 	struct mm_struct *mm = current->mm;
250 	unsigned long min_brk;
251 
252 	down_write(&mm->mmap_sem);
253 
254 #ifdef CONFIG_COMPAT_BRK
255 	min_brk = mm->end_code;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = rlimit(RLIMIT_DATA);
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *tmp = mm->mmap;
335 	while (tmp) {
336 		tmp = tmp->vm_next;
337 		i++;
338 	}
339 	if (i != mm->map_count)
340 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 	i = browse_rb(&mm->mm_rb);
342 	if (i != mm->map_count)
343 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 	BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349 
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 		struct rb_node ** rb_parent)
354 {
355 	struct vm_area_struct * vma;
356 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 
358 	__rb_link = &mm->mm_rb.rb_node;
359 	rb_prev = __rb_parent = NULL;
360 	vma = NULL;
361 
362 	while (*__rb_link) {
363 		struct vm_area_struct *vma_tmp;
364 
365 		__rb_parent = *__rb_link;
366 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 
368 		if (vma_tmp->vm_end > addr) {
369 			vma = vma_tmp;
370 			if (vma_tmp->vm_start <= addr)
371 				break;
372 			__rb_link = &__rb_parent->rb_left;
373 		} else {
374 			rb_prev = __rb_parent;
375 			__rb_link = &__rb_parent->rb_right;
376 		}
377 	}
378 
379 	*pprev = NULL;
380 	if (rb_prev)
381 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 	*rb_link = __rb_link;
383 	*rb_parent = __rb_parent;
384 	return vma;
385 }
386 
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 	struct vm_area_struct *next;
392 
393 	vma->vm_prev = prev;
394 	if (prev) {
395 		next = prev->vm_next;
396 		prev->vm_next = vma;
397 	} else {
398 		mm->mmap = vma;
399 		if (rb_parent)
400 			next = rb_entry(rb_parent,
401 					struct vm_area_struct, vm_rb);
402 		else
403 			next = NULL;
404 	}
405 	vma->vm_next = next;
406 	if (next)
407 		next->vm_prev = vma;
408 }
409 
410 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
411 		struct rb_node **rb_link, struct rb_node *rb_parent)
412 {
413 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
414 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
415 }
416 
417 static void __vma_link_file(struct vm_area_struct *vma)
418 {
419 	struct file *file;
420 
421 	file = vma->vm_file;
422 	if (file) {
423 		struct address_space *mapping = file->f_mapping;
424 
425 		if (vma->vm_flags & VM_DENYWRITE)
426 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
427 		if (vma->vm_flags & VM_SHARED)
428 			mapping->i_mmap_writable++;
429 
430 		flush_dcache_mmap_lock(mapping);
431 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
432 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
433 		else
434 			vma_prio_tree_insert(vma, &mapping->i_mmap);
435 		flush_dcache_mmap_unlock(mapping);
436 	}
437 }
438 
439 static void
440 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
441 	struct vm_area_struct *prev, struct rb_node **rb_link,
442 	struct rb_node *rb_parent)
443 {
444 	__vma_link_list(mm, vma, prev, rb_parent);
445 	__vma_link_rb(mm, vma, rb_link, rb_parent);
446 }
447 
448 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
449 			struct vm_area_struct *prev, struct rb_node **rb_link,
450 			struct rb_node *rb_parent)
451 {
452 	struct address_space *mapping = NULL;
453 
454 	if (vma->vm_file)
455 		mapping = vma->vm_file->f_mapping;
456 
457 	if (mapping) {
458 		spin_lock(&mapping->i_mmap_lock);
459 		vma->vm_truncate_count = mapping->truncate_count;
460 	}
461 
462 	__vma_link(mm, vma, prev, rb_link, rb_parent);
463 	__vma_link_file(vma);
464 
465 	if (mapping)
466 		spin_unlock(&mapping->i_mmap_lock);
467 
468 	mm->map_count++;
469 	validate_mm(mm);
470 }
471 
472 /*
473  * Helper for vma_adjust in the split_vma insert case:
474  * insert vm structure into list and rbtree and anon_vma,
475  * but it has already been inserted into prio_tree earlier.
476  */
477 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
478 {
479 	struct vm_area_struct *__vma, *prev;
480 	struct rb_node **rb_link, *rb_parent;
481 
482 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484 	__vma_link(mm, vma, prev, rb_link, rb_parent);
485 	mm->map_count++;
486 }
487 
488 static inline void
489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490 		struct vm_area_struct *prev)
491 {
492 	struct vm_area_struct *next = vma->vm_next;
493 
494 	prev->vm_next = next;
495 	if (next)
496 		next->vm_prev = prev;
497 	rb_erase(&vma->vm_rb, &mm->mm_rb);
498 	if (mm->mmap_cache == vma)
499 		mm->mmap_cache = prev;
500 }
501 
502 /*
503  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
504  * is already present in an i_mmap tree without adjusting the tree.
505  * The following helper function should be used when such adjustments
506  * are necessary.  The "insert" vma (if any) is to be inserted
507  * before we drop the necessary locks.
508  */
509 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
510 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
511 {
512 	struct mm_struct *mm = vma->vm_mm;
513 	struct vm_area_struct *next = vma->vm_next;
514 	struct vm_area_struct *importer = NULL;
515 	struct address_space *mapping = NULL;
516 	struct prio_tree_root *root = NULL;
517 	struct anon_vma *anon_vma = NULL;
518 	struct file *file = vma->vm_file;
519 	long adjust_next = 0;
520 	int remove_next = 0;
521 
522 	if (next && !insert) {
523 		struct vm_area_struct *exporter = NULL;
524 
525 		if (end >= next->vm_end) {
526 			/*
527 			 * vma expands, overlapping all the next, and
528 			 * perhaps the one after too (mprotect case 6).
529 			 */
530 again:			remove_next = 1 + (end > next->vm_end);
531 			end = next->vm_end;
532 			exporter = next;
533 			importer = vma;
534 		} else if (end > next->vm_start) {
535 			/*
536 			 * vma expands, overlapping part of the next:
537 			 * mprotect case 5 shifting the boundary up.
538 			 */
539 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
540 			exporter = next;
541 			importer = vma;
542 		} else if (end < vma->vm_end) {
543 			/*
544 			 * vma shrinks, and !insert tells it's not
545 			 * split_vma inserting another: so it must be
546 			 * mprotect case 4 shifting the boundary down.
547 			 */
548 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
549 			exporter = vma;
550 			importer = next;
551 		}
552 
553 		/*
554 		 * Easily overlooked: when mprotect shifts the boundary,
555 		 * make sure the expanding vma has anon_vma set if the
556 		 * shrinking vma had, to cover any anon pages imported.
557 		 */
558 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
559 			if (anon_vma_clone(importer, exporter))
560 				return -ENOMEM;
561 			importer->anon_vma = exporter->anon_vma;
562 		}
563 	}
564 
565 	if (file) {
566 		mapping = file->f_mapping;
567 		if (!(vma->vm_flags & VM_NONLINEAR))
568 			root = &mapping->i_mmap;
569 		spin_lock(&mapping->i_mmap_lock);
570 		if (importer &&
571 		    vma->vm_truncate_count != next->vm_truncate_count) {
572 			/*
573 			 * unmap_mapping_range might be in progress:
574 			 * ensure that the expanding vma is rescanned.
575 			 */
576 			importer->vm_truncate_count = 0;
577 		}
578 		if (insert) {
579 			insert->vm_truncate_count = vma->vm_truncate_count;
580 			/*
581 			 * Put into prio_tree now, so instantiated pages
582 			 * are visible to arm/parisc __flush_dcache_page
583 			 * throughout; but we cannot insert into address
584 			 * space until vma start or end is updated.
585 			 */
586 			__vma_link_file(insert);
587 		}
588 	}
589 
590 	/*
591 	 * When changing only vma->vm_end, we don't really need anon_vma
592 	 * lock. This is a fairly rare case by itself, but the anon_vma
593 	 * lock may be shared between many sibling processes.  Skipping
594 	 * the lock for brk adjustments makes a difference sometimes.
595 	 */
596 	if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
597 		anon_vma = vma->anon_vma;
598 		anon_vma_lock(anon_vma);
599 	}
600 
601 	if (root) {
602 		flush_dcache_mmap_lock(mapping);
603 		vma_prio_tree_remove(vma, root);
604 		if (adjust_next)
605 			vma_prio_tree_remove(next, root);
606 	}
607 
608 	vma->vm_start = start;
609 	vma->vm_end = end;
610 	vma->vm_pgoff = pgoff;
611 	if (adjust_next) {
612 		next->vm_start += adjust_next << PAGE_SHIFT;
613 		next->vm_pgoff += adjust_next;
614 	}
615 
616 	if (root) {
617 		if (adjust_next)
618 			vma_prio_tree_insert(next, root);
619 		vma_prio_tree_insert(vma, root);
620 		flush_dcache_mmap_unlock(mapping);
621 	}
622 
623 	if (remove_next) {
624 		/*
625 		 * vma_merge has merged next into vma, and needs
626 		 * us to remove next before dropping the locks.
627 		 */
628 		__vma_unlink(mm, next, vma);
629 		if (file)
630 			__remove_shared_vm_struct(next, file, mapping);
631 	} else if (insert) {
632 		/*
633 		 * split_vma has split insert from vma, and needs
634 		 * us to insert it before dropping the locks
635 		 * (it may either follow vma or precede it).
636 		 */
637 		__insert_vm_struct(mm, insert);
638 	}
639 
640 	if (anon_vma)
641 		anon_vma_unlock(anon_vma);
642 	if (mapping)
643 		spin_unlock(&mapping->i_mmap_lock);
644 
645 	if (remove_next) {
646 		if (file) {
647 			fput(file);
648 			if (next->vm_flags & VM_EXECUTABLE)
649 				removed_exe_file_vma(mm);
650 		}
651 		if (next->anon_vma)
652 			anon_vma_merge(vma, next);
653 		mm->map_count--;
654 		mpol_put(vma_policy(next));
655 		kmem_cache_free(vm_area_cachep, next);
656 		/*
657 		 * In mprotect's case 6 (see comments on vma_merge),
658 		 * we must remove another next too. It would clutter
659 		 * up the code too much to do both in one go.
660 		 */
661 		if (remove_next == 2) {
662 			next = vma->vm_next;
663 			goto again;
664 		}
665 	}
666 
667 	validate_mm(mm);
668 
669 	return 0;
670 }
671 
672 /*
673  * If the vma has a ->close operation then the driver probably needs to release
674  * per-vma resources, so we don't attempt to merge those.
675  */
676 static inline int is_mergeable_vma(struct vm_area_struct *vma,
677 			struct file *file, unsigned long vm_flags)
678 {
679 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
680 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
681 		return 0;
682 	if (vma->vm_file != file)
683 		return 0;
684 	if (vma->vm_ops && vma->vm_ops->close)
685 		return 0;
686 	return 1;
687 }
688 
689 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
690 					struct anon_vma *anon_vma2)
691 {
692 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
693 }
694 
695 /*
696  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
697  * in front of (at a lower virtual address and file offset than) the vma.
698  *
699  * We cannot merge two vmas if they have differently assigned (non-NULL)
700  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
701  *
702  * We don't check here for the merged mmap wrapping around the end of pagecache
703  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
704  * wrap, nor mmaps which cover the final page at index -1UL.
705  */
706 static int
707 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
708 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
709 {
710 	if (is_mergeable_vma(vma, file, vm_flags) &&
711 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
712 		if (vma->vm_pgoff == vm_pgoff)
713 			return 1;
714 	}
715 	return 0;
716 }
717 
718 /*
719  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
720  * beyond (at a higher virtual address and file offset than) the vma.
721  *
722  * We cannot merge two vmas if they have differently assigned (non-NULL)
723  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
724  */
725 static int
726 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
727 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
728 {
729 	if (is_mergeable_vma(vma, file, vm_flags) &&
730 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
731 		pgoff_t vm_pglen;
732 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
733 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
734 			return 1;
735 	}
736 	return 0;
737 }
738 
739 /*
740  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
741  * whether that can be merged with its predecessor or its successor.
742  * Or both (it neatly fills a hole).
743  *
744  * In most cases - when called for mmap, brk or mremap - [addr,end) is
745  * certain not to be mapped by the time vma_merge is called; but when
746  * called for mprotect, it is certain to be already mapped (either at
747  * an offset within prev, or at the start of next), and the flags of
748  * this area are about to be changed to vm_flags - and the no-change
749  * case has already been eliminated.
750  *
751  * The following mprotect cases have to be considered, where AAAA is
752  * the area passed down from mprotect_fixup, never extending beyond one
753  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
754  *
755  *     AAAA             AAAA                AAAA          AAAA
756  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
757  *    cannot merge    might become    might become    might become
758  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
759  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
760  *    mremap move:                                    PPPPNNNNNNNN 8
761  *        AAAA
762  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
763  *    might become    case 1 below    case 2 below    case 3 below
764  *
765  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
766  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
767  */
768 struct vm_area_struct *vma_merge(struct mm_struct *mm,
769 			struct vm_area_struct *prev, unsigned long addr,
770 			unsigned long end, unsigned long vm_flags,
771 		     	struct anon_vma *anon_vma, struct file *file,
772 			pgoff_t pgoff, struct mempolicy *policy)
773 {
774 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
775 	struct vm_area_struct *area, *next;
776 	int err;
777 
778 	/*
779 	 * We later require that vma->vm_flags == vm_flags,
780 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
781 	 */
782 	if (vm_flags & VM_SPECIAL)
783 		return NULL;
784 
785 	if (prev)
786 		next = prev->vm_next;
787 	else
788 		next = mm->mmap;
789 	area = next;
790 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
791 		next = next->vm_next;
792 
793 	/*
794 	 * Can it merge with the predecessor?
795 	 */
796 	if (prev && prev->vm_end == addr &&
797   			mpol_equal(vma_policy(prev), policy) &&
798 			can_vma_merge_after(prev, vm_flags,
799 						anon_vma, file, pgoff)) {
800 		/*
801 		 * OK, it can.  Can we now merge in the successor as well?
802 		 */
803 		if (next && end == next->vm_start &&
804 				mpol_equal(policy, vma_policy(next)) &&
805 				can_vma_merge_before(next, vm_flags,
806 					anon_vma, file, pgoff+pglen) &&
807 				is_mergeable_anon_vma(prev->anon_vma,
808 						      next->anon_vma)) {
809 							/* cases 1, 6 */
810 			err = vma_adjust(prev, prev->vm_start,
811 				next->vm_end, prev->vm_pgoff, NULL);
812 		} else					/* cases 2, 5, 7 */
813 			err = vma_adjust(prev, prev->vm_start,
814 				end, prev->vm_pgoff, NULL);
815 		if (err)
816 			return NULL;
817 		return prev;
818 	}
819 
820 	/*
821 	 * Can this new request be merged in front of next?
822 	 */
823 	if (next && end == next->vm_start &&
824  			mpol_equal(policy, vma_policy(next)) &&
825 			can_vma_merge_before(next, vm_flags,
826 					anon_vma, file, pgoff+pglen)) {
827 		if (prev && addr < prev->vm_end)	/* case 4 */
828 			err = vma_adjust(prev, prev->vm_start,
829 				addr, prev->vm_pgoff, NULL);
830 		else					/* cases 3, 8 */
831 			err = vma_adjust(area, addr, next->vm_end,
832 				next->vm_pgoff - pglen, NULL);
833 		if (err)
834 			return NULL;
835 		return area;
836 	}
837 
838 	return NULL;
839 }
840 
841 /*
842  * Rough compatbility check to quickly see if it's even worth looking
843  * at sharing an anon_vma.
844  *
845  * They need to have the same vm_file, and the flags can only differ
846  * in things that mprotect may change.
847  *
848  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
849  * we can merge the two vma's. For example, we refuse to merge a vma if
850  * there is a vm_ops->close() function, because that indicates that the
851  * driver is doing some kind of reference counting. But that doesn't
852  * really matter for the anon_vma sharing case.
853  */
854 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
855 {
856 	return a->vm_end == b->vm_start &&
857 		mpol_equal(vma_policy(a), vma_policy(b)) &&
858 		a->vm_file == b->vm_file &&
859 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
860 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
861 }
862 
863 /*
864  * Do some basic sanity checking to see if we can re-use the anon_vma
865  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
866  * the same as 'old', the other will be the new one that is trying
867  * to share the anon_vma.
868  *
869  * NOTE! This runs with mm_sem held for reading, so it is possible that
870  * the anon_vma of 'old' is concurrently in the process of being set up
871  * by another page fault trying to merge _that_. But that's ok: if it
872  * is being set up, that automatically means that it will be a singleton
873  * acceptable for merging, so we can do all of this optimistically. But
874  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
875  *
876  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
877  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
878  * is to return an anon_vma that is "complex" due to having gone through
879  * a fork).
880  *
881  * We also make sure that the two vma's are compatible (adjacent,
882  * and with the same memory policies). That's all stable, even with just
883  * a read lock on the mm_sem.
884  */
885 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
886 {
887 	if (anon_vma_compatible(a, b)) {
888 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
889 
890 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
891 			return anon_vma;
892 	}
893 	return NULL;
894 }
895 
896 /*
897  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
898  * neighbouring vmas for a suitable anon_vma, before it goes off
899  * to allocate a new anon_vma.  It checks because a repetitive
900  * sequence of mprotects and faults may otherwise lead to distinct
901  * anon_vmas being allocated, preventing vma merge in subsequent
902  * mprotect.
903  */
904 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
905 {
906 	struct anon_vma *anon_vma;
907 	struct vm_area_struct *near;
908 
909 	near = vma->vm_next;
910 	if (!near)
911 		goto try_prev;
912 
913 	anon_vma = reusable_anon_vma(near, vma, near);
914 	if (anon_vma)
915 		return anon_vma;
916 try_prev:
917 	/*
918 	 * It is potentially slow to have to call find_vma_prev here.
919 	 * But it's only on the first write fault on the vma, not
920 	 * every time, and we could devise a way to avoid it later
921 	 * (e.g. stash info in next's anon_vma_node when assigning
922 	 * an anon_vma, or when trying vma_merge).  Another time.
923 	 */
924 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
925 	if (!near)
926 		goto none;
927 
928 	anon_vma = reusable_anon_vma(near, near, vma);
929 	if (anon_vma)
930 		return anon_vma;
931 none:
932 	/*
933 	 * There's no absolute need to look only at touching neighbours:
934 	 * we could search further afield for "compatible" anon_vmas.
935 	 * But it would probably just be a waste of time searching,
936 	 * or lead to too many vmas hanging off the same anon_vma.
937 	 * We're trying to allow mprotect remerging later on,
938 	 * not trying to minimize memory used for anon_vmas.
939 	 */
940 	return NULL;
941 }
942 
943 #ifdef CONFIG_PROC_FS
944 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
945 						struct file *file, long pages)
946 {
947 	const unsigned long stack_flags
948 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
949 
950 	if (file) {
951 		mm->shared_vm += pages;
952 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
953 			mm->exec_vm += pages;
954 	} else if (flags & stack_flags)
955 		mm->stack_vm += pages;
956 	if (flags & (VM_RESERVED|VM_IO))
957 		mm->reserved_vm += pages;
958 }
959 #endif /* CONFIG_PROC_FS */
960 
961 /*
962  * The caller must hold down_write(&current->mm->mmap_sem).
963  */
964 
965 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
966 			unsigned long len, unsigned long prot,
967 			unsigned long flags, unsigned long pgoff)
968 {
969 	struct mm_struct * mm = current->mm;
970 	struct inode *inode;
971 	unsigned int vm_flags;
972 	int error;
973 	unsigned long reqprot = prot;
974 
975 	/*
976 	 * Does the application expect PROT_READ to imply PROT_EXEC?
977 	 *
978 	 * (the exception is when the underlying filesystem is noexec
979 	 *  mounted, in which case we dont add PROT_EXEC.)
980 	 */
981 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
982 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
983 			prot |= PROT_EXEC;
984 
985 	if (!len)
986 		return -EINVAL;
987 
988 	if (!(flags & MAP_FIXED))
989 		addr = round_hint_to_min(addr);
990 
991 	/* Careful about overflows.. */
992 	len = PAGE_ALIGN(len);
993 	if (!len)
994 		return -ENOMEM;
995 
996 	/* offset overflow? */
997 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
998                return -EOVERFLOW;
999 
1000 	/* Too many mappings? */
1001 	if (mm->map_count > sysctl_max_map_count)
1002 		return -ENOMEM;
1003 
1004 	/* Obtain the address to map to. we verify (or select) it and ensure
1005 	 * that it represents a valid section of the address space.
1006 	 */
1007 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1008 	if (addr & ~PAGE_MASK)
1009 		return addr;
1010 
1011 	/* Do simple checking here so the lower-level routines won't have
1012 	 * to. we assume access permissions have been handled by the open
1013 	 * of the memory object, so we don't do any here.
1014 	 */
1015 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1016 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1017 
1018 	if (flags & MAP_LOCKED)
1019 		if (!can_do_mlock())
1020 			return -EPERM;
1021 
1022 	/* mlock MCL_FUTURE? */
1023 	if (vm_flags & VM_LOCKED) {
1024 		unsigned long locked, lock_limit;
1025 		locked = len >> PAGE_SHIFT;
1026 		locked += mm->locked_vm;
1027 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1028 		lock_limit >>= PAGE_SHIFT;
1029 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1030 			return -EAGAIN;
1031 	}
1032 
1033 	inode = file ? file->f_path.dentry->d_inode : NULL;
1034 
1035 	if (file) {
1036 		switch (flags & MAP_TYPE) {
1037 		case MAP_SHARED:
1038 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1039 				return -EACCES;
1040 
1041 			/*
1042 			 * Make sure we don't allow writing to an append-only
1043 			 * file..
1044 			 */
1045 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1046 				return -EACCES;
1047 
1048 			/*
1049 			 * Make sure there are no mandatory locks on the file.
1050 			 */
1051 			if (locks_verify_locked(inode))
1052 				return -EAGAIN;
1053 
1054 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1055 			if (!(file->f_mode & FMODE_WRITE))
1056 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1057 
1058 			/* fall through */
1059 		case MAP_PRIVATE:
1060 			if (!(file->f_mode & FMODE_READ))
1061 				return -EACCES;
1062 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1063 				if (vm_flags & VM_EXEC)
1064 					return -EPERM;
1065 				vm_flags &= ~VM_MAYEXEC;
1066 			}
1067 
1068 			if (!file->f_op || !file->f_op->mmap)
1069 				return -ENODEV;
1070 			break;
1071 
1072 		default:
1073 			return -EINVAL;
1074 		}
1075 	} else {
1076 		switch (flags & MAP_TYPE) {
1077 		case MAP_SHARED:
1078 			/*
1079 			 * Ignore pgoff.
1080 			 */
1081 			pgoff = 0;
1082 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1083 			break;
1084 		case MAP_PRIVATE:
1085 			/*
1086 			 * Set pgoff according to addr for anon_vma.
1087 			 */
1088 			pgoff = addr >> PAGE_SHIFT;
1089 			break;
1090 		default:
1091 			return -EINVAL;
1092 		}
1093 	}
1094 
1095 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1096 	if (error)
1097 		return error;
1098 
1099 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1100 }
1101 EXPORT_SYMBOL(do_mmap_pgoff);
1102 
1103 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1104 		unsigned long, prot, unsigned long, flags,
1105 		unsigned long, fd, unsigned long, pgoff)
1106 {
1107 	struct file *file = NULL;
1108 	unsigned long retval = -EBADF;
1109 
1110 	if (!(flags & MAP_ANONYMOUS)) {
1111 		if (unlikely(flags & MAP_HUGETLB))
1112 			return -EINVAL;
1113 		file = fget(fd);
1114 		if (!file)
1115 			goto out;
1116 	} else if (flags & MAP_HUGETLB) {
1117 		struct user_struct *user = NULL;
1118 		/*
1119 		 * VM_NORESERVE is used because the reservations will be
1120 		 * taken when vm_ops->mmap() is called
1121 		 * A dummy user value is used because we are not locking
1122 		 * memory so no accounting is necessary
1123 		 */
1124 		len = ALIGN(len, huge_page_size(&default_hstate));
1125 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1126 						&user, HUGETLB_ANONHUGE_INODE);
1127 		if (IS_ERR(file))
1128 			return PTR_ERR(file);
1129 	}
1130 
1131 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1132 
1133 	down_write(&current->mm->mmap_sem);
1134 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1135 	up_write(&current->mm->mmap_sem);
1136 
1137 	if (file)
1138 		fput(file);
1139 out:
1140 	return retval;
1141 }
1142 
1143 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1144 struct mmap_arg_struct {
1145 	unsigned long addr;
1146 	unsigned long len;
1147 	unsigned long prot;
1148 	unsigned long flags;
1149 	unsigned long fd;
1150 	unsigned long offset;
1151 };
1152 
1153 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1154 {
1155 	struct mmap_arg_struct a;
1156 
1157 	if (copy_from_user(&a, arg, sizeof(a)))
1158 		return -EFAULT;
1159 	if (a.offset & ~PAGE_MASK)
1160 		return -EINVAL;
1161 
1162 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1163 			      a.offset >> PAGE_SHIFT);
1164 }
1165 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1166 
1167 /*
1168  * Some shared mappigns will want the pages marked read-only
1169  * to track write events. If so, we'll downgrade vm_page_prot
1170  * to the private version (using protection_map[] without the
1171  * VM_SHARED bit).
1172  */
1173 int vma_wants_writenotify(struct vm_area_struct *vma)
1174 {
1175 	unsigned int vm_flags = vma->vm_flags;
1176 
1177 	/* If it was private or non-writable, the write bit is already clear */
1178 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1179 		return 0;
1180 
1181 	/* The backer wishes to know when pages are first written to? */
1182 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1183 		return 1;
1184 
1185 	/* The open routine did something to the protections already? */
1186 	if (pgprot_val(vma->vm_page_prot) !=
1187 	    pgprot_val(vm_get_page_prot(vm_flags)))
1188 		return 0;
1189 
1190 	/* Specialty mapping? */
1191 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1192 		return 0;
1193 
1194 	/* Can the mapping track the dirty pages? */
1195 	return vma->vm_file && vma->vm_file->f_mapping &&
1196 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1197 }
1198 
1199 /*
1200  * We account for memory if it's a private writeable mapping,
1201  * not hugepages and VM_NORESERVE wasn't set.
1202  */
1203 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1204 {
1205 	/*
1206 	 * hugetlb has its own accounting separate from the core VM
1207 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1208 	 */
1209 	if (file && is_file_hugepages(file))
1210 		return 0;
1211 
1212 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1213 }
1214 
1215 unsigned long mmap_region(struct file *file, unsigned long addr,
1216 			  unsigned long len, unsigned long flags,
1217 			  unsigned int vm_flags, unsigned long pgoff)
1218 {
1219 	struct mm_struct *mm = current->mm;
1220 	struct vm_area_struct *vma, *prev;
1221 	int correct_wcount = 0;
1222 	int error;
1223 	struct rb_node **rb_link, *rb_parent;
1224 	unsigned long charged = 0;
1225 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1226 
1227 	/* Clear old maps */
1228 	error = -ENOMEM;
1229 munmap_back:
1230 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1231 	if (vma && vma->vm_start < addr + len) {
1232 		if (do_munmap(mm, addr, len))
1233 			return -ENOMEM;
1234 		goto munmap_back;
1235 	}
1236 
1237 	/* Check against address space limit. */
1238 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1239 		return -ENOMEM;
1240 
1241 	/*
1242 	 * Set 'VM_NORESERVE' if we should not account for the
1243 	 * memory use of this mapping.
1244 	 */
1245 	if ((flags & MAP_NORESERVE)) {
1246 		/* We honor MAP_NORESERVE if allowed to overcommit */
1247 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1248 			vm_flags |= VM_NORESERVE;
1249 
1250 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1251 		if (file && is_file_hugepages(file))
1252 			vm_flags |= VM_NORESERVE;
1253 	}
1254 
1255 	/*
1256 	 * Private writable mapping: check memory availability
1257 	 */
1258 	if (accountable_mapping(file, vm_flags)) {
1259 		charged = len >> PAGE_SHIFT;
1260 		if (security_vm_enough_memory(charged))
1261 			return -ENOMEM;
1262 		vm_flags |= VM_ACCOUNT;
1263 	}
1264 
1265 	/*
1266 	 * Can we just expand an old mapping?
1267 	 */
1268 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1269 	if (vma)
1270 		goto out;
1271 
1272 	/*
1273 	 * Determine the object being mapped and call the appropriate
1274 	 * specific mapper. the address has already been validated, but
1275 	 * not unmapped, but the maps are removed from the list.
1276 	 */
1277 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1278 	if (!vma) {
1279 		error = -ENOMEM;
1280 		goto unacct_error;
1281 	}
1282 
1283 	vma->vm_mm = mm;
1284 	vma->vm_start = addr;
1285 	vma->vm_end = addr + len;
1286 	vma->vm_flags = vm_flags;
1287 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1288 	vma->vm_pgoff = pgoff;
1289 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1290 
1291 	if (file) {
1292 		error = -EINVAL;
1293 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1294 			goto free_vma;
1295 		if (vm_flags & VM_DENYWRITE) {
1296 			error = deny_write_access(file);
1297 			if (error)
1298 				goto free_vma;
1299 			correct_wcount = 1;
1300 		}
1301 		vma->vm_file = file;
1302 		get_file(file);
1303 		error = file->f_op->mmap(file, vma);
1304 		if (error)
1305 			goto unmap_and_free_vma;
1306 		if (vm_flags & VM_EXECUTABLE)
1307 			added_exe_file_vma(mm);
1308 
1309 		/* Can addr have changed??
1310 		 *
1311 		 * Answer: Yes, several device drivers can do it in their
1312 		 *         f_op->mmap method. -DaveM
1313 		 */
1314 		addr = vma->vm_start;
1315 		pgoff = vma->vm_pgoff;
1316 		vm_flags = vma->vm_flags;
1317 	} else if (vm_flags & VM_SHARED) {
1318 		error = shmem_zero_setup(vma);
1319 		if (error)
1320 			goto free_vma;
1321 	}
1322 
1323 	if (vma_wants_writenotify(vma)) {
1324 		pgprot_t pprot = vma->vm_page_prot;
1325 
1326 		/* Can vma->vm_page_prot have changed??
1327 		 *
1328 		 * Answer: Yes, drivers may have changed it in their
1329 		 *         f_op->mmap method.
1330 		 *
1331 		 * Ensures that vmas marked as uncached stay that way.
1332 		 */
1333 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1334 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1335 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1336 	}
1337 
1338 	vma_link(mm, vma, prev, rb_link, rb_parent);
1339 	file = vma->vm_file;
1340 
1341 	/* Once vma denies write, undo our temporary denial count */
1342 	if (correct_wcount)
1343 		atomic_inc(&inode->i_writecount);
1344 out:
1345 	perf_event_mmap(vma);
1346 
1347 	mm->total_vm += len >> PAGE_SHIFT;
1348 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1349 	if (vm_flags & VM_LOCKED) {
1350 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1351 			mm->locked_vm += (len >> PAGE_SHIFT);
1352 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1353 		make_pages_present(addr, addr + len);
1354 	return addr;
1355 
1356 unmap_and_free_vma:
1357 	if (correct_wcount)
1358 		atomic_inc(&inode->i_writecount);
1359 	vma->vm_file = NULL;
1360 	fput(file);
1361 
1362 	/* Undo any partial mapping done by a device driver. */
1363 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1364 	charged = 0;
1365 free_vma:
1366 	kmem_cache_free(vm_area_cachep, vma);
1367 unacct_error:
1368 	if (charged)
1369 		vm_unacct_memory(charged);
1370 	return error;
1371 }
1372 
1373 /* Get an address range which is currently unmapped.
1374  * For shmat() with addr=0.
1375  *
1376  * Ugly calling convention alert:
1377  * Return value with the low bits set means error value,
1378  * ie
1379  *	if (ret & ~PAGE_MASK)
1380  *		error = ret;
1381  *
1382  * This function "knows" that -ENOMEM has the bits set.
1383  */
1384 #ifndef HAVE_ARCH_UNMAPPED_AREA
1385 unsigned long
1386 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1387 		unsigned long len, unsigned long pgoff, unsigned long flags)
1388 {
1389 	struct mm_struct *mm = current->mm;
1390 	struct vm_area_struct *vma;
1391 	unsigned long start_addr;
1392 
1393 	if (len > TASK_SIZE)
1394 		return -ENOMEM;
1395 
1396 	if (flags & MAP_FIXED)
1397 		return addr;
1398 
1399 	if (addr) {
1400 		addr = PAGE_ALIGN(addr);
1401 		vma = find_vma(mm, addr);
1402 		if (TASK_SIZE - len >= addr &&
1403 		    (!vma || addr + len <= vma->vm_start))
1404 			return addr;
1405 	}
1406 	if (len > mm->cached_hole_size) {
1407 	        start_addr = addr = mm->free_area_cache;
1408 	} else {
1409 	        start_addr = addr = TASK_UNMAPPED_BASE;
1410 	        mm->cached_hole_size = 0;
1411 	}
1412 
1413 full_search:
1414 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1415 		/* At this point:  (!vma || addr < vma->vm_end). */
1416 		if (TASK_SIZE - len < addr) {
1417 			/*
1418 			 * Start a new search - just in case we missed
1419 			 * some holes.
1420 			 */
1421 			if (start_addr != TASK_UNMAPPED_BASE) {
1422 				addr = TASK_UNMAPPED_BASE;
1423 			        start_addr = addr;
1424 				mm->cached_hole_size = 0;
1425 				goto full_search;
1426 			}
1427 			return -ENOMEM;
1428 		}
1429 		if (!vma || addr + len <= vma->vm_start) {
1430 			/*
1431 			 * Remember the place where we stopped the search:
1432 			 */
1433 			mm->free_area_cache = addr + len;
1434 			return addr;
1435 		}
1436 		if (addr + mm->cached_hole_size < vma->vm_start)
1437 		        mm->cached_hole_size = vma->vm_start - addr;
1438 		addr = vma->vm_end;
1439 	}
1440 }
1441 #endif
1442 
1443 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1444 {
1445 	/*
1446 	 * Is this a new hole at the lowest possible address?
1447 	 */
1448 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1449 		mm->free_area_cache = addr;
1450 		mm->cached_hole_size = ~0UL;
1451 	}
1452 }
1453 
1454 /*
1455  * This mmap-allocator allocates new areas top-down from below the
1456  * stack's low limit (the base):
1457  */
1458 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1459 unsigned long
1460 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1461 			  const unsigned long len, const unsigned long pgoff,
1462 			  const unsigned long flags)
1463 {
1464 	struct vm_area_struct *vma;
1465 	struct mm_struct *mm = current->mm;
1466 	unsigned long addr = addr0;
1467 
1468 	/* requested length too big for entire address space */
1469 	if (len > TASK_SIZE)
1470 		return -ENOMEM;
1471 
1472 	if (flags & MAP_FIXED)
1473 		return addr;
1474 
1475 	/* requesting a specific address */
1476 	if (addr) {
1477 		addr = PAGE_ALIGN(addr);
1478 		vma = find_vma(mm, addr);
1479 		if (TASK_SIZE - len >= addr &&
1480 				(!vma || addr + len <= vma->vm_start))
1481 			return addr;
1482 	}
1483 
1484 	/* check if free_area_cache is useful for us */
1485 	if (len <= mm->cached_hole_size) {
1486  	        mm->cached_hole_size = 0;
1487  		mm->free_area_cache = mm->mmap_base;
1488  	}
1489 
1490 	/* either no address requested or can't fit in requested address hole */
1491 	addr = mm->free_area_cache;
1492 
1493 	/* make sure it can fit in the remaining address space */
1494 	if (addr > len) {
1495 		vma = find_vma(mm, addr-len);
1496 		if (!vma || addr <= vma->vm_start)
1497 			/* remember the address as a hint for next time */
1498 			return (mm->free_area_cache = addr-len);
1499 	}
1500 
1501 	if (mm->mmap_base < len)
1502 		goto bottomup;
1503 
1504 	addr = mm->mmap_base-len;
1505 
1506 	do {
1507 		/*
1508 		 * Lookup failure means no vma is above this address,
1509 		 * else if new region fits below vma->vm_start,
1510 		 * return with success:
1511 		 */
1512 		vma = find_vma(mm, addr);
1513 		if (!vma || addr+len <= vma->vm_start)
1514 			/* remember the address as a hint for next time */
1515 			return (mm->free_area_cache = addr);
1516 
1517  		/* remember the largest hole we saw so far */
1518  		if (addr + mm->cached_hole_size < vma->vm_start)
1519  		        mm->cached_hole_size = vma->vm_start - addr;
1520 
1521 		/* try just below the current vma->vm_start */
1522 		addr = vma->vm_start-len;
1523 	} while (len < vma->vm_start);
1524 
1525 bottomup:
1526 	/*
1527 	 * A failed mmap() very likely causes application failure,
1528 	 * so fall back to the bottom-up function here. This scenario
1529 	 * can happen with large stack limits and large mmap()
1530 	 * allocations.
1531 	 */
1532 	mm->cached_hole_size = ~0UL;
1533   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1534 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1535 	/*
1536 	 * Restore the topdown base:
1537 	 */
1538 	mm->free_area_cache = mm->mmap_base;
1539 	mm->cached_hole_size = ~0UL;
1540 
1541 	return addr;
1542 }
1543 #endif
1544 
1545 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1546 {
1547 	/*
1548 	 * Is this a new hole at the highest possible address?
1549 	 */
1550 	if (addr > mm->free_area_cache)
1551 		mm->free_area_cache = addr;
1552 
1553 	/* dont allow allocations above current base */
1554 	if (mm->free_area_cache > mm->mmap_base)
1555 		mm->free_area_cache = mm->mmap_base;
1556 }
1557 
1558 unsigned long
1559 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1560 		unsigned long pgoff, unsigned long flags)
1561 {
1562 	unsigned long (*get_area)(struct file *, unsigned long,
1563 				  unsigned long, unsigned long, unsigned long);
1564 
1565 	unsigned long error = arch_mmap_check(addr, len, flags);
1566 	if (error)
1567 		return error;
1568 
1569 	/* Careful about overflows.. */
1570 	if (len > TASK_SIZE)
1571 		return -ENOMEM;
1572 
1573 	get_area = current->mm->get_unmapped_area;
1574 	if (file && file->f_op && file->f_op->get_unmapped_area)
1575 		get_area = file->f_op->get_unmapped_area;
1576 	addr = get_area(file, addr, len, pgoff, flags);
1577 	if (IS_ERR_VALUE(addr))
1578 		return addr;
1579 
1580 	if (addr > TASK_SIZE - len)
1581 		return -ENOMEM;
1582 	if (addr & ~PAGE_MASK)
1583 		return -EINVAL;
1584 
1585 	return arch_rebalance_pgtables(addr, len);
1586 }
1587 
1588 EXPORT_SYMBOL(get_unmapped_area);
1589 
1590 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1591 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1592 {
1593 	struct vm_area_struct *vma = NULL;
1594 
1595 	if (mm) {
1596 		/* Check the cache first. */
1597 		/* (Cache hit rate is typically around 35%.) */
1598 		vma = mm->mmap_cache;
1599 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1600 			struct rb_node * rb_node;
1601 
1602 			rb_node = mm->mm_rb.rb_node;
1603 			vma = NULL;
1604 
1605 			while (rb_node) {
1606 				struct vm_area_struct * vma_tmp;
1607 
1608 				vma_tmp = rb_entry(rb_node,
1609 						struct vm_area_struct, vm_rb);
1610 
1611 				if (vma_tmp->vm_end > addr) {
1612 					vma = vma_tmp;
1613 					if (vma_tmp->vm_start <= addr)
1614 						break;
1615 					rb_node = rb_node->rb_left;
1616 				} else
1617 					rb_node = rb_node->rb_right;
1618 			}
1619 			if (vma)
1620 				mm->mmap_cache = vma;
1621 		}
1622 	}
1623 	return vma;
1624 }
1625 
1626 EXPORT_SYMBOL(find_vma);
1627 
1628 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1629 struct vm_area_struct *
1630 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1631 			struct vm_area_struct **pprev)
1632 {
1633 	struct vm_area_struct *vma = NULL, *prev = NULL;
1634 	struct rb_node *rb_node;
1635 	if (!mm)
1636 		goto out;
1637 
1638 	/* Guard against addr being lower than the first VMA */
1639 	vma = mm->mmap;
1640 
1641 	/* Go through the RB tree quickly. */
1642 	rb_node = mm->mm_rb.rb_node;
1643 
1644 	while (rb_node) {
1645 		struct vm_area_struct *vma_tmp;
1646 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1647 
1648 		if (addr < vma_tmp->vm_end) {
1649 			rb_node = rb_node->rb_left;
1650 		} else {
1651 			prev = vma_tmp;
1652 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1653 				break;
1654 			rb_node = rb_node->rb_right;
1655 		}
1656 	}
1657 
1658 out:
1659 	*pprev = prev;
1660 	return prev ? prev->vm_next : vma;
1661 }
1662 
1663 /*
1664  * Verify that the stack growth is acceptable and
1665  * update accounting. This is shared with both the
1666  * grow-up and grow-down cases.
1667  */
1668 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1669 {
1670 	struct mm_struct *mm = vma->vm_mm;
1671 	struct rlimit *rlim = current->signal->rlim;
1672 	unsigned long new_start;
1673 
1674 	/* address space limit tests */
1675 	if (!may_expand_vm(mm, grow))
1676 		return -ENOMEM;
1677 
1678 	/* Stack limit test */
1679 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1680 		return -ENOMEM;
1681 
1682 	/* mlock limit tests */
1683 	if (vma->vm_flags & VM_LOCKED) {
1684 		unsigned long locked;
1685 		unsigned long limit;
1686 		locked = mm->locked_vm + grow;
1687 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1688 		limit >>= PAGE_SHIFT;
1689 		if (locked > limit && !capable(CAP_IPC_LOCK))
1690 			return -ENOMEM;
1691 	}
1692 
1693 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1694 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1695 			vma->vm_end - size;
1696 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1697 		return -EFAULT;
1698 
1699 	/*
1700 	 * Overcommit..  This must be the final test, as it will
1701 	 * update security statistics.
1702 	 */
1703 	if (security_vm_enough_memory_mm(mm, grow))
1704 		return -ENOMEM;
1705 
1706 	/* Ok, everything looks good - let it rip */
1707 	mm->total_vm += grow;
1708 	if (vma->vm_flags & VM_LOCKED)
1709 		mm->locked_vm += grow;
1710 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1711 	return 0;
1712 }
1713 
1714 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1715 /*
1716  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1717  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1718  */
1719 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1720 {
1721 	int error;
1722 
1723 	if (!(vma->vm_flags & VM_GROWSUP))
1724 		return -EFAULT;
1725 
1726 	/*
1727 	 * We must make sure the anon_vma is allocated
1728 	 * so that the anon_vma locking is not a noop.
1729 	 */
1730 	if (unlikely(anon_vma_prepare(vma)))
1731 		return -ENOMEM;
1732 	vma_lock_anon_vma(vma);
1733 
1734 	/*
1735 	 * vma->vm_start/vm_end cannot change under us because the caller
1736 	 * is required to hold the mmap_sem in read mode.  We need the
1737 	 * anon_vma lock to serialize against concurrent expand_stacks.
1738 	 * Also guard against wrapping around to address 0.
1739 	 */
1740 	if (address < PAGE_ALIGN(address+4))
1741 		address = PAGE_ALIGN(address+4);
1742 	else {
1743 		vma_unlock_anon_vma(vma);
1744 		return -ENOMEM;
1745 	}
1746 	error = 0;
1747 
1748 	/* Somebody else might have raced and expanded it already */
1749 	if (address > vma->vm_end) {
1750 		unsigned long size, grow;
1751 
1752 		size = address - vma->vm_start;
1753 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1754 
1755 		error = acct_stack_growth(vma, size, grow);
1756 		if (!error) {
1757 			vma->vm_end = address;
1758 			perf_event_mmap(vma);
1759 		}
1760 	}
1761 	vma_unlock_anon_vma(vma);
1762 	return error;
1763 }
1764 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1765 
1766 /*
1767  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1768  */
1769 static int expand_downwards(struct vm_area_struct *vma,
1770 				   unsigned long address)
1771 {
1772 	int error;
1773 
1774 	/*
1775 	 * We must make sure the anon_vma is allocated
1776 	 * so that the anon_vma locking is not a noop.
1777 	 */
1778 	if (unlikely(anon_vma_prepare(vma)))
1779 		return -ENOMEM;
1780 
1781 	address &= PAGE_MASK;
1782 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1783 	if (error)
1784 		return error;
1785 
1786 	vma_lock_anon_vma(vma);
1787 
1788 	/*
1789 	 * vma->vm_start/vm_end cannot change under us because the caller
1790 	 * is required to hold the mmap_sem in read mode.  We need the
1791 	 * anon_vma lock to serialize against concurrent expand_stacks.
1792 	 */
1793 
1794 	/* Somebody else might have raced and expanded it already */
1795 	if (address < vma->vm_start) {
1796 		unsigned long size, grow;
1797 
1798 		size = vma->vm_end - address;
1799 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1800 
1801 		error = acct_stack_growth(vma, size, grow);
1802 		if (!error) {
1803 			vma->vm_start = address;
1804 			vma->vm_pgoff -= grow;
1805 			perf_event_mmap(vma);
1806 		}
1807 	}
1808 	vma_unlock_anon_vma(vma);
1809 	return error;
1810 }
1811 
1812 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1813 {
1814 	return expand_downwards(vma, address);
1815 }
1816 
1817 #ifdef CONFIG_STACK_GROWSUP
1818 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1819 {
1820 	return expand_upwards(vma, address);
1821 }
1822 
1823 struct vm_area_struct *
1824 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1825 {
1826 	struct vm_area_struct *vma, *prev;
1827 
1828 	addr &= PAGE_MASK;
1829 	vma = find_vma_prev(mm, addr, &prev);
1830 	if (vma && (vma->vm_start <= addr))
1831 		return vma;
1832 	if (!prev || expand_stack(prev, addr))
1833 		return NULL;
1834 	if (prev->vm_flags & VM_LOCKED) {
1835 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1836 	}
1837 	return prev;
1838 }
1839 #else
1840 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1841 {
1842 	return expand_downwards(vma, address);
1843 }
1844 
1845 struct vm_area_struct *
1846 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1847 {
1848 	struct vm_area_struct * vma;
1849 	unsigned long start;
1850 
1851 	addr &= PAGE_MASK;
1852 	vma = find_vma(mm,addr);
1853 	if (!vma)
1854 		return NULL;
1855 	if (vma->vm_start <= addr)
1856 		return vma;
1857 	if (!(vma->vm_flags & VM_GROWSDOWN))
1858 		return NULL;
1859 	start = vma->vm_start;
1860 	if (expand_stack(vma, addr))
1861 		return NULL;
1862 	if (vma->vm_flags & VM_LOCKED) {
1863 		mlock_vma_pages_range(vma, addr, start);
1864 	}
1865 	return vma;
1866 }
1867 #endif
1868 
1869 /*
1870  * Ok - we have the memory areas we should free on the vma list,
1871  * so release them, and do the vma updates.
1872  *
1873  * Called with the mm semaphore held.
1874  */
1875 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1876 {
1877 	/* Update high watermark before we lower total_vm */
1878 	update_hiwater_vm(mm);
1879 	do {
1880 		long nrpages = vma_pages(vma);
1881 
1882 		mm->total_vm -= nrpages;
1883 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1884 		vma = remove_vma(vma);
1885 	} while (vma);
1886 	validate_mm(mm);
1887 }
1888 
1889 /*
1890  * Get rid of page table information in the indicated region.
1891  *
1892  * Called with the mm semaphore held.
1893  */
1894 static void unmap_region(struct mm_struct *mm,
1895 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1896 		unsigned long start, unsigned long end)
1897 {
1898 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1899 	struct mmu_gather *tlb;
1900 	unsigned long nr_accounted = 0;
1901 
1902 	lru_add_drain();
1903 	tlb = tlb_gather_mmu(mm, 0);
1904 	update_hiwater_rss(mm);
1905 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1906 	vm_unacct_memory(nr_accounted);
1907 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1908 				 next? next->vm_start: 0);
1909 	tlb_finish_mmu(tlb, start, end);
1910 }
1911 
1912 /*
1913  * Create a list of vma's touched by the unmap, removing them from the mm's
1914  * vma list as we go..
1915  */
1916 static void
1917 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1918 	struct vm_area_struct *prev, unsigned long end)
1919 {
1920 	struct vm_area_struct **insertion_point;
1921 	struct vm_area_struct *tail_vma = NULL;
1922 	unsigned long addr;
1923 
1924 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1925 	vma->vm_prev = NULL;
1926 	do {
1927 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1928 		mm->map_count--;
1929 		tail_vma = vma;
1930 		vma = vma->vm_next;
1931 	} while (vma && vma->vm_start < end);
1932 	*insertion_point = vma;
1933 	if (vma)
1934 		vma->vm_prev = prev;
1935 	tail_vma->vm_next = NULL;
1936 	if (mm->unmap_area == arch_unmap_area)
1937 		addr = prev ? prev->vm_end : mm->mmap_base;
1938 	else
1939 		addr = vma ?  vma->vm_start : mm->mmap_base;
1940 	mm->unmap_area(mm, addr);
1941 	mm->mmap_cache = NULL;		/* Kill the cache. */
1942 }
1943 
1944 /*
1945  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1946  * munmap path where it doesn't make sense to fail.
1947  */
1948 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1949 	      unsigned long addr, int new_below)
1950 {
1951 	struct mempolicy *pol;
1952 	struct vm_area_struct *new;
1953 	int err = -ENOMEM;
1954 
1955 	if (is_vm_hugetlb_page(vma) && (addr &
1956 					~(huge_page_mask(hstate_vma(vma)))))
1957 		return -EINVAL;
1958 
1959 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1960 	if (!new)
1961 		goto out_err;
1962 
1963 	/* most fields are the same, copy all, and then fixup */
1964 	*new = *vma;
1965 
1966 	INIT_LIST_HEAD(&new->anon_vma_chain);
1967 
1968 	if (new_below)
1969 		new->vm_end = addr;
1970 	else {
1971 		new->vm_start = addr;
1972 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1973 	}
1974 
1975 	pol = mpol_dup(vma_policy(vma));
1976 	if (IS_ERR(pol)) {
1977 		err = PTR_ERR(pol);
1978 		goto out_free_vma;
1979 	}
1980 	vma_set_policy(new, pol);
1981 
1982 	if (anon_vma_clone(new, vma))
1983 		goto out_free_mpol;
1984 
1985 	if (new->vm_file) {
1986 		get_file(new->vm_file);
1987 		if (vma->vm_flags & VM_EXECUTABLE)
1988 			added_exe_file_vma(mm);
1989 	}
1990 
1991 	if (new->vm_ops && new->vm_ops->open)
1992 		new->vm_ops->open(new);
1993 
1994 	if (new_below)
1995 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1996 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1997 	else
1998 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1999 
2000 	/* Success. */
2001 	if (!err)
2002 		return 0;
2003 
2004 	/* Clean everything up if vma_adjust failed. */
2005 	if (new->vm_ops && new->vm_ops->close)
2006 		new->vm_ops->close(new);
2007 	if (new->vm_file) {
2008 		if (vma->vm_flags & VM_EXECUTABLE)
2009 			removed_exe_file_vma(mm);
2010 		fput(new->vm_file);
2011 	}
2012 	unlink_anon_vmas(new);
2013  out_free_mpol:
2014 	mpol_put(pol);
2015  out_free_vma:
2016 	kmem_cache_free(vm_area_cachep, new);
2017  out_err:
2018 	return err;
2019 }
2020 
2021 /*
2022  * Split a vma into two pieces at address 'addr', a new vma is allocated
2023  * either for the first part or the tail.
2024  */
2025 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2026 	      unsigned long addr, int new_below)
2027 {
2028 	if (mm->map_count >= sysctl_max_map_count)
2029 		return -ENOMEM;
2030 
2031 	return __split_vma(mm, vma, addr, new_below);
2032 }
2033 
2034 /* Munmap is split into 2 main parts -- this part which finds
2035  * what needs doing, and the areas themselves, which do the
2036  * work.  This now handles partial unmappings.
2037  * Jeremy Fitzhardinge <jeremy@goop.org>
2038  */
2039 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2040 {
2041 	unsigned long end;
2042 	struct vm_area_struct *vma, *prev, *last;
2043 
2044 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2045 		return -EINVAL;
2046 
2047 	if ((len = PAGE_ALIGN(len)) == 0)
2048 		return -EINVAL;
2049 
2050 	/* Find the first overlapping VMA */
2051 	vma = find_vma_prev(mm, start, &prev);
2052 	if (!vma)
2053 		return 0;
2054 	/* we have  start < vma->vm_end  */
2055 
2056 	/* if it doesn't overlap, we have nothing.. */
2057 	end = start + len;
2058 	if (vma->vm_start >= end)
2059 		return 0;
2060 
2061 	/*
2062 	 * If we need to split any vma, do it now to save pain later.
2063 	 *
2064 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2065 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2066 	 * places tmp vma above, and higher split_vma places tmp vma below.
2067 	 */
2068 	if (start > vma->vm_start) {
2069 		int error;
2070 
2071 		/*
2072 		 * Make sure that map_count on return from munmap() will
2073 		 * not exceed its limit; but let map_count go just above
2074 		 * its limit temporarily, to help free resources as expected.
2075 		 */
2076 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2077 			return -ENOMEM;
2078 
2079 		error = __split_vma(mm, vma, start, 0);
2080 		if (error)
2081 			return error;
2082 		prev = vma;
2083 	}
2084 
2085 	/* Does it split the last one? */
2086 	last = find_vma(mm, end);
2087 	if (last && end > last->vm_start) {
2088 		int error = __split_vma(mm, last, end, 1);
2089 		if (error)
2090 			return error;
2091 	}
2092 	vma = prev? prev->vm_next: mm->mmap;
2093 
2094 	/*
2095 	 * unlock any mlock()ed ranges before detaching vmas
2096 	 */
2097 	if (mm->locked_vm) {
2098 		struct vm_area_struct *tmp = vma;
2099 		while (tmp && tmp->vm_start < end) {
2100 			if (tmp->vm_flags & VM_LOCKED) {
2101 				mm->locked_vm -= vma_pages(tmp);
2102 				munlock_vma_pages_all(tmp);
2103 			}
2104 			tmp = tmp->vm_next;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * Remove the vma's, and unmap the actual pages
2110 	 */
2111 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2112 	unmap_region(mm, vma, prev, start, end);
2113 
2114 	/* Fix up all other VM information */
2115 	remove_vma_list(mm, vma);
2116 
2117 	return 0;
2118 }
2119 
2120 EXPORT_SYMBOL(do_munmap);
2121 
2122 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2123 {
2124 	int ret;
2125 	struct mm_struct *mm = current->mm;
2126 
2127 	profile_munmap(addr);
2128 
2129 	down_write(&mm->mmap_sem);
2130 	ret = do_munmap(mm, addr, len);
2131 	up_write(&mm->mmap_sem);
2132 	return ret;
2133 }
2134 
2135 static inline void verify_mm_writelocked(struct mm_struct *mm)
2136 {
2137 #ifdef CONFIG_DEBUG_VM
2138 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2139 		WARN_ON(1);
2140 		up_read(&mm->mmap_sem);
2141 	}
2142 #endif
2143 }
2144 
2145 /*
2146  *  this is really a simplified "do_mmap".  it only handles
2147  *  anonymous maps.  eventually we may be able to do some
2148  *  brk-specific accounting here.
2149  */
2150 unsigned long do_brk(unsigned long addr, unsigned long len)
2151 {
2152 	struct mm_struct * mm = current->mm;
2153 	struct vm_area_struct * vma, * prev;
2154 	unsigned long flags;
2155 	struct rb_node ** rb_link, * rb_parent;
2156 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2157 	int error;
2158 
2159 	len = PAGE_ALIGN(len);
2160 	if (!len)
2161 		return addr;
2162 
2163 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2164 	if (error)
2165 		return error;
2166 
2167 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2168 
2169 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2170 	if (error & ~PAGE_MASK)
2171 		return error;
2172 
2173 	/*
2174 	 * mlock MCL_FUTURE?
2175 	 */
2176 	if (mm->def_flags & VM_LOCKED) {
2177 		unsigned long locked, lock_limit;
2178 		locked = len >> PAGE_SHIFT;
2179 		locked += mm->locked_vm;
2180 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2181 		lock_limit >>= PAGE_SHIFT;
2182 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2183 			return -EAGAIN;
2184 	}
2185 
2186 	/*
2187 	 * mm->mmap_sem is required to protect against another thread
2188 	 * changing the mappings in case we sleep.
2189 	 */
2190 	verify_mm_writelocked(mm);
2191 
2192 	/*
2193 	 * Clear old maps.  this also does some error checking for us
2194 	 */
2195  munmap_back:
2196 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2197 	if (vma && vma->vm_start < addr + len) {
2198 		if (do_munmap(mm, addr, len))
2199 			return -ENOMEM;
2200 		goto munmap_back;
2201 	}
2202 
2203 	/* Check against address space limits *after* clearing old maps... */
2204 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2205 		return -ENOMEM;
2206 
2207 	if (mm->map_count > sysctl_max_map_count)
2208 		return -ENOMEM;
2209 
2210 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2211 		return -ENOMEM;
2212 
2213 	/* Can we just expand an old private anonymous mapping? */
2214 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2215 					NULL, NULL, pgoff, NULL);
2216 	if (vma)
2217 		goto out;
2218 
2219 	/*
2220 	 * create a vma struct for an anonymous mapping
2221 	 */
2222 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2223 	if (!vma) {
2224 		vm_unacct_memory(len >> PAGE_SHIFT);
2225 		return -ENOMEM;
2226 	}
2227 
2228 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2229 	vma->vm_mm = mm;
2230 	vma->vm_start = addr;
2231 	vma->vm_end = addr + len;
2232 	vma->vm_pgoff = pgoff;
2233 	vma->vm_flags = flags;
2234 	vma->vm_page_prot = vm_get_page_prot(flags);
2235 	vma_link(mm, vma, prev, rb_link, rb_parent);
2236 out:
2237 	perf_event_mmap(vma);
2238 	mm->total_vm += len >> PAGE_SHIFT;
2239 	if (flags & VM_LOCKED) {
2240 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2241 			mm->locked_vm += (len >> PAGE_SHIFT);
2242 	}
2243 	return addr;
2244 }
2245 
2246 EXPORT_SYMBOL(do_brk);
2247 
2248 /* Release all mmaps. */
2249 void exit_mmap(struct mm_struct *mm)
2250 {
2251 	struct mmu_gather *tlb;
2252 	struct vm_area_struct *vma;
2253 	unsigned long nr_accounted = 0;
2254 	unsigned long end;
2255 
2256 	/* mm's last user has gone, and its about to be pulled down */
2257 	mmu_notifier_release(mm);
2258 
2259 	if (mm->locked_vm) {
2260 		vma = mm->mmap;
2261 		while (vma) {
2262 			if (vma->vm_flags & VM_LOCKED)
2263 				munlock_vma_pages_all(vma);
2264 			vma = vma->vm_next;
2265 		}
2266 	}
2267 
2268 	arch_exit_mmap(mm);
2269 
2270 	vma = mm->mmap;
2271 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2272 		return;
2273 
2274 	lru_add_drain();
2275 	flush_cache_mm(mm);
2276 	tlb = tlb_gather_mmu(mm, 1);
2277 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2278 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2279 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2280 	vm_unacct_memory(nr_accounted);
2281 
2282 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2283 	tlb_finish_mmu(tlb, 0, end);
2284 
2285 	/*
2286 	 * Walk the list again, actually closing and freeing it,
2287 	 * with preemption enabled, without holding any MM locks.
2288 	 */
2289 	while (vma)
2290 		vma = remove_vma(vma);
2291 
2292 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2293 }
2294 
2295 /* Insert vm structure into process list sorted by address
2296  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2297  * then i_mmap_lock is taken here.
2298  */
2299 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2300 {
2301 	struct vm_area_struct * __vma, * prev;
2302 	struct rb_node ** rb_link, * rb_parent;
2303 
2304 	/*
2305 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2306 	 * until its first write fault, when page's anon_vma and index
2307 	 * are set.  But now set the vm_pgoff it will almost certainly
2308 	 * end up with (unless mremap moves it elsewhere before that
2309 	 * first wfault), so /proc/pid/maps tells a consistent story.
2310 	 *
2311 	 * By setting it to reflect the virtual start address of the
2312 	 * vma, merges and splits can happen in a seamless way, just
2313 	 * using the existing file pgoff checks and manipulations.
2314 	 * Similarly in do_mmap_pgoff and in do_brk.
2315 	 */
2316 	if (!vma->vm_file) {
2317 		BUG_ON(vma->anon_vma);
2318 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319 	}
2320 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2321 	if (__vma && __vma->vm_start < vma->vm_end)
2322 		return -ENOMEM;
2323 	if ((vma->vm_flags & VM_ACCOUNT) &&
2324 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2325 		return -ENOMEM;
2326 	vma_link(mm, vma, prev, rb_link, rb_parent);
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Copy the vma structure to a new location in the same mm,
2332  * prior to moving page table entries, to effect an mremap move.
2333  */
2334 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2335 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2336 {
2337 	struct vm_area_struct *vma = *vmap;
2338 	unsigned long vma_start = vma->vm_start;
2339 	struct mm_struct *mm = vma->vm_mm;
2340 	struct vm_area_struct *new_vma, *prev;
2341 	struct rb_node **rb_link, *rb_parent;
2342 	struct mempolicy *pol;
2343 
2344 	/*
2345 	 * If anonymous vma has not yet been faulted, update new pgoff
2346 	 * to match new location, to increase its chance of merging.
2347 	 */
2348 	if (!vma->vm_file && !vma->anon_vma)
2349 		pgoff = addr >> PAGE_SHIFT;
2350 
2351 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2352 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2353 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2354 	if (new_vma) {
2355 		/*
2356 		 * Source vma may have been merged into new_vma
2357 		 */
2358 		if (vma_start >= new_vma->vm_start &&
2359 		    vma_start < new_vma->vm_end)
2360 			*vmap = new_vma;
2361 	} else {
2362 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2363 		if (new_vma) {
2364 			*new_vma = *vma;
2365 			pol = mpol_dup(vma_policy(vma));
2366 			if (IS_ERR(pol))
2367 				goto out_free_vma;
2368 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2369 			if (anon_vma_clone(new_vma, vma))
2370 				goto out_free_mempol;
2371 			vma_set_policy(new_vma, pol);
2372 			new_vma->vm_start = addr;
2373 			new_vma->vm_end = addr + len;
2374 			new_vma->vm_pgoff = pgoff;
2375 			if (new_vma->vm_file) {
2376 				get_file(new_vma->vm_file);
2377 				if (vma->vm_flags & VM_EXECUTABLE)
2378 					added_exe_file_vma(mm);
2379 			}
2380 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2381 				new_vma->vm_ops->open(new_vma);
2382 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2383 		}
2384 	}
2385 	return new_vma;
2386 
2387  out_free_mempol:
2388 	mpol_put(pol);
2389  out_free_vma:
2390 	kmem_cache_free(vm_area_cachep, new_vma);
2391 	return NULL;
2392 }
2393 
2394 /*
2395  * Return true if the calling process may expand its vm space by the passed
2396  * number of pages
2397  */
2398 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2399 {
2400 	unsigned long cur = mm->total_vm;	/* pages */
2401 	unsigned long lim;
2402 
2403 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2404 
2405 	if (cur + npages > lim)
2406 		return 0;
2407 	return 1;
2408 }
2409 
2410 
2411 static int special_mapping_fault(struct vm_area_struct *vma,
2412 				struct vm_fault *vmf)
2413 {
2414 	pgoff_t pgoff;
2415 	struct page **pages;
2416 
2417 	/*
2418 	 * special mappings have no vm_file, and in that case, the mm
2419 	 * uses vm_pgoff internally. So we have to subtract it from here.
2420 	 * We are allowed to do this because we are the mm; do not copy
2421 	 * this code into drivers!
2422 	 */
2423 	pgoff = vmf->pgoff - vma->vm_pgoff;
2424 
2425 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2426 		pgoff--;
2427 
2428 	if (*pages) {
2429 		struct page *page = *pages;
2430 		get_page(page);
2431 		vmf->page = page;
2432 		return 0;
2433 	}
2434 
2435 	return VM_FAULT_SIGBUS;
2436 }
2437 
2438 /*
2439  * Having a close hook prevents vma merging regardless of flags.
2440  */
2441 static void special_mapping_close(struct vm_area_struct *vma)
2442 {
2443 }
2444 
2445 static const struct vm_operations_struct special_mapping_vmops = {
2446 	.close = special_mapping_close,
2447 	.fault = special_mapping_fault,
2448 };
2449 
2450 /*
2451  * Called with mm->mmap_sem held for writing.
2452  * Insert a new vma covering the given region, with the given flags.
2453  * Its pages are supplied by the given array of struct page *.
2454  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2455  * The region past the last page supplied will always produce SIGBUS.
2456  * The array pointer and the pages it points to are assumed to stay alive
2457  * for as long as this mapping might exist.
2458  */
2459 int install_special_mapping(struct mm_struct *mm,
2460 			    unsigned long addr, unsigned long len,
2461 			    unsigned long vm_flags, struct page **pages)
2462 {
2463 	struct vm_area_struct *vma;
2464 
2465 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2466 	if (unlikely(vma == NULL))
2467 		return -ENOMEM;
2468 
2469 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2470 	vma->vm_mm = mm;
2471 	vma->vm_start = addr;
2472 	vma->vm_end = addr + len;
2473 
2474 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2475 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2476 
2477 	vma->vm_ops = &special_mapping_vmops;
2478 	vma->vm_private_data = pages;
2479 
2480 	if (unlikely(insert_vm_struct(mm, vma))) {
2481 		kmem_cache_free(vm_area_cachep, vma);
2482 		return -ENOMEM;
2483 	}
2484 
2485 	mm->total_vm += len >> PAGE_SHIFT;
2486 
2487 	perf_event_mmap(vma);
2488 
2489 	return 0;
2490 }
2491 
2492 static DEFINE_MUTEX(mm_all_locks_mutex);
2493 
2494 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2495 {
2496 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2497 		/*
2498 		 * The LSB of head.next can't change from under us
2499 		 * because we hold the mm_all_locks_mutex.
2500 		 */
2501 		spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2502 		/*
2503 		 * We can safely modify head.next after taking the
2504 		 * anon_vma->root->lock. If some other vma in this mm shares
2505 		 * the same anon_vma we won't take it again.
2506 		 *
2507 		 * No need of atomic instructions here, head.next
2508 		 * can't change from under us thanks to the
2509 		 * anon_vma->root->lock.
2510 		 */
2511 		if (__test_and_set_bit(0, (unsigned long *)
2512 				       &anon_vma->root->head.next))
2513 			BUG();
2514 	}
2515 }
2516 
2517 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2518 {
2519 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2520 		/*
2521 		 * AS_MM_ALL_LOCKS can't change from under us because
2522 		 * we hold the mm_all_locks_mutex.
2523 		 *
2524 		 * Operations on ->flags have to be atomic because
2525 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2526 		 * mm_all_locks_mutex, there may be other cpus
2527 		 * changing other bitflags in parallel to us.
2528 		 */
2529 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2530 			BUG();
2531 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2532 	}
2533 }
2534 
2535 /*
2536  * This operation locks against the VM for all pte/vma/mm related
2537  * operations that could ever happen on a certain mm. This includes
2538  * vmtruncate, try_to_unmap, and all page faults.
2539  *
2540  * The caller must take the mmap_sem in write mode before calling
2541  * mm_take_all_locks(). The caller isn't allowed to release the
2542  * mmap_sem until mm_drop_all_locks() returns.
2543  *
2544  * mmap_sem in write mode is required in order to block all operations
2545  * that could modify pagetables and free pages without need of
2546  * altering the vma layout (for example populate_range() with
2547  * nonlinear vmas). It's also needed in write mode to avoid new
2548  * anon_vmas to be associated with existing vmas.
2549  *
2550  * A single task can't take more than one mm_take_all_locks() in a row
2551  * or it would deadlock.
2552  *
2553  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2554  * mapping->flags avoid to take the same lock twice, if more than one
2555  * vma in this mm is backed by the same anon_vma or address_space.
2556  *
2557  * We can take all the locks in random order because the VM code
2558  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2559  * takes more than one of them in a row. Secondly we're protected
2560  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2561  *
2562  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2563  * that may have to take thousand of locks.
2564  *
2565  * mm_take_all_locks() can fail if it's interrupted by signals.
2566  */
2567 int mm_take_all_locks(struct mm_struct *mm)
2568 {
2569 	struct vm_area_struct *vma;
2570 	struct anon_vma_chain *avc;
2571 	int ret = -EINTR;
2572 
2573 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2574 
2575 	mutex_lock(&mm_all_locks_mutex);
2576 
2577 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2578 		if (signal_pending(current))
2579 			goto out_unlock;
2580 		if (vma->vm_file && vma->vm_file->f_mapping)
2581 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2582 	}
2583 
2584 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2585 		if (signal_pending(current))
2586 			goto out_unlock;
2587 		if (vma->anon_vma)
2588 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2589 				vm_lock_anon_vma(mm, avc->anon_vma);
2590 	}
2591 
2592 	ret = 0;
2593 
2594 out_unlock:
2595 	if (ret)
2596 		mm_drop_all_locks(mm);
2597 
2598 	return ret;
2599 }
2600 
2601 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2602 {
2603 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2604 		/*
2605 		 * The LSB of head.next can't change to 0 from under
2606 		 * us because we hold the mm_all_locks_mutex.
2607 		 *
2608 		 * We must however clear the bitflag before unlocking
2609 		 * the vma so the users using the anon_vma->head will
2610 		 * never see our bitflag.
2611 		 *
2612 		 * No need of atomic instructions here, head.next
2613 		 * can't change from under us until we release the
2614 		 * anon_vma->root->lock.
2615 		 */
2616 		if (!__test_and_clear_bit(0, (unsigned long *)
2617 					  &anon_vma->root->head.next))
2618 			BUG();
2619 		anon_vma_unlock(anon_vma);
2620 	}
2621 }
2622 
2623 static void vm_unlock_mapping(struct address_space *mapping)
2624 {
2625 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2626 		/*
2627 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2628 		 * because we hold the mm_all_locks_mutex.
2629 		 */
2630 		spin_unlock(&mapping->i_mmap_lock);
2631 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2632 					&mapping->flags))
2633 			BUG();
2634 	}
2635 }
2636 
2637 /*
2638  * The mmap_sem cannot be released by the caller until
2639  * mm_drop_all_locks() returns.
2640  */
2641 void mm_drop_all_locks(struct mm_struct *mm)
2642 {
2643 	struct vm_area_struct *vma;
2644 	struct anon_vma_chain *avc;
2645 
2646 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2647 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2648 
2649 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2650 		if (vma->anon_vma)
2651 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2652 				vm_unlock_anon_vma(avc->anon_vma);
2653 		if (vma->vm_file && vma->vm_file->f_mapping)
2654 			vm_unlock_mapping(vma->vm_file->f_mapping);
2655 	}
2656 
2657 	mutex_unlock(&mm_all_locks_mutex);
2658 }
2659 
2660 /*
2661  * initialise the VMA slab
2662  */
2663 void __init mmap_init(void)
2664 {
2665 	int ret;
2666 
2667 	ret = percpu_counter_init(&vm_committed_as, 0);
2668 	VM_BUG_ON(ret);
2669 }
2670