xref: /linux/mm/mm_init.c (revision fdfd6dde4328635861db029f6fdb649e17350526)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/swap.h>
28 #include <linux/cma.h>
29 #include "internal.h"
30 #include "slab.h"
31 #include "shuffle.h"
32 
33 #include <asm/setup.h>
34 
35 #ifdef CONFIG_DEBUG_MEMORY_INIT
36 int __meminitdata mminit_loglevel;
37 
38 /* The zonelists are simply reported, validation is manual. */
39 void __init mminit_verify_zonelist(void)
40 {
41 	int nid;
42 
43 	if (mminit_loglevel < MMINIT_VERIFY)
44 		return;
45 
46 	for_each_online_node(nid) {
47 		pg_data_t *pgdat = NODE_DATA(nid);
48 		struct zone *zone;
49 		struct zoneref *z;
50 		struct zonelist *zonelist;
51 		int i, listid, zoneid;
52 
53 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
54 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
55 
56 			/* Identify the zone and nodelist */
57 			zoneid = i % MAX_NR_ZONES;
58 			listid = i / MAX_NR_ZONES;
59 			zonelist = &pgdat->node_zonelists[listid];
60 			zone = &pgdat->node_zones[zoneid];
61 			if (!populated_zone(zone))
62 				continue;
63 
64 			/* Print information about the zonelist */
65 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
66 				listid > 0 ? "thisnode" : "general", nid,
67 				zone->name);
68 
69 			/* Iterate the zonelist */
70 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
71 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
72 			pr_cont("\n");
73 		}
74 	}
75 }
76 
77 void __init mminit_verify_pageflags_layout(void)
78 {
79 	int shift, width;
80 	unsigned long or_mask, add_mask;
81 
82 	shift = BITS_PER_LONG;
83 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
84 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
85 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
86 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
87 		SECTIONS_WIDTH,
88 		NODES_WIDTH,
89 		ZONES_WIDTH,
90 		LAST_CPUPID_WIDTH,
91 		KASAN_TAG_WIDTH,
92 		LRU_GEN_WIDTH,
93 		LRU_REFS_WIDTH,
94 		NR_PAGEFLAGS);
95 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
96 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
97 		SECTIONS_SHIFT,
98 		NODES_SHIFT,
99 		ZONES_SHIFT,
100 		LAST_CPUPID_SHIFT,
101 		KASAN_TAG_WIDTH);
102 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
103 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
104 		(unsigned long)SECTIONS_PGSHIFT,
105 		(unsigned long)NODES_PGSHIFT,
106 		(unsigned long)ZONES_PGSHIFT,
107 		(unsigned long)LAST_CPUPID_PGSHIFT,
108 		(unsigned long)KASAN_TAG_PGSHIFT);
109 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
110 		"Node/Zone ID: %lu -> %lu\n",
111 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
112 		(unsigned long)ZONEID_PGOFF);
113 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
114 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
115 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
116 #ifdef NODE_NOT_IN_PAGE_FLAGS
117 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
118 		"Node not in page flags");
119 #endif
120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
121 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
122 		"Last cpupid not in page flags");
123 #endif
124 
125 	if (SECTIONS_WIDTH) {
126 		shift -= SECTIONS_WIDTH;
127 		BUG_ON(shift != SECTIONS_PGSHIFT);
128 	}
129 	if (NODES_WIDTH) {
130 		shift -= NODES_WIDTH;
131 		BUG_ON(shift != NODES_PGSHIFT);
132 	}
133 	if (ZONES_WIDTH) {
134 		shift -= ZONES_WIDTH;
135 		BUG_ON(shift != ZONES_PGSHIFT);
136 	}
137 
138 	/* Check for bitmask overlaps */
139 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
140 			(NODES_MASK << NODES_PGSHIFT) |
141 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
142 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
143 			(NODES_MASK << NODES_PGSHIFT) +
144 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
145 	BUG_ON(or_mask != add_mask);
146 }
147 
148 static __init int set_mminit_loglevel(char *str)
149 {
150 	get_option(&str, &mminit_loglevel);
151 	return 0;
152 }
153 early_param("mminit_loglevel", set_mminit_loglevel);
154 #endif /* CONFIG_DEBUG_MEMORY_INIT */
155 
156 struct kobject *mm_kobj;
157 
158 #ifdef CONFIG_SMP
159 s32 vm_committed_as_batch = 32;
160 
161 void mm_compute_batch(int overcommit_policy)
162 {
163 	u64 memsized_batch;
164 	s32 nr = num_present_cpus();
165 	s32 batch = max_t(s32, nr*2, 32);
166 	unsigned long ram_pages = totalram_pages();
167 
168 	/*
169 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
170 	 * (total memory/#cpus), and lift it to 25% for other policies
171 	 * to easy the possible lock contention for percpu_counter
172 	 * vm_committed_as, while the max limit is INT_MAX
173 	 */
174 	if (overcommit_policy == OVERCOMMIT_NEVER)
175 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
176 	else
177 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
178 
179 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
180 }
181 
182 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
183 					unsigned long action, void *arg)
184 {
185 	switch (action) {
186 	case MEM_ONLINE:
187 	case MEM_OFFLINE:
188 		mm_compute_batch(sysctl_overcommit_memory);
189 		break;
190 	default:
191 		break;
192 	}
193 	return NOTIFY_OK;
194 }
195 
196 static int __init mm_compute_batch_init(void)
197 {
198 	mm_compute_batch(sysctl_overcommit_memory);
199 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
200 	return 0;
201 }
202 
203 __initcall(mm_compute_batch_init);
204 
205 #endif
206 
207 static int __init mm_sysfs_init(void)
208 {
209 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
210 	if (!mm_kobj)
211 		return -ENOMEM;
212 
213 	return 0;
214 }
215 postcore_initcall(mm_sysfs_init);
216 
217 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
218 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
219 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
220 
221 static unsigned long required_kernelcore __initdata;
222 static unsigned long required_kernelcore_percent __initdata;
223 static unsigned long required_movablecore __initdata;
224 static unsigned long required_movablecore_percent __initdata;
225 
226 static unsigned long nr_kernel_pages __initdata;
227 static unsigned long nr_all_pages __initdata;
228 static unsigned long dma_reserve __initdata;
229 
230 static bool deferred_struct_pages __meminitdata;
231 
232 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
233 
234 static int __init cmdline_parse_core(char *p, unsigned long *core,
235 				     unsigned long *percent)
236 {
237 	unsigned long long coremem;
238 	char *endptr;
239 
240 	if (!p)
241 		return -EINVAL;
242 
243 	/* Value may be a percentage of total memory, otherwise bytes */
244 	coremem = simple_strtoull(p, &endptr, 0);
245 	if (*endptr == '%') {
246 		/* Paranoid check for percent values greater than 100 */
247 		WARN_ON(coremem > 100);
248 
249 		*percent = coremem;
250 	} else {
251 		coremem = memparse(p, &p);
252 		/* Paranoid check that UL is enough for the coremem value */
253 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
254 
255 		*core = coremem >> PAGE_SHIFT;
256 		*percent = 0UL;
257 	}
258 	return 0;
259 }
260 
261 bool mirrored_kernelcore __initdata_memblock;
262 
263 /*
264  * kernelcore=size sets the amount of memory for use for allocations that
265  * cannot be reclaimed or migrated.
266  */
267 static int __init cmdline_parse_kernelcore(char *p)
268 {
269 	/* parse kernelcore=mirror */
270 	if (parse_option_str(p, "mirror")) {
271 		mirrored_kernelcore = true;
272 		return 0;
273 	}
274 
275 	return cmdline_parse_core(p, &required_kernelcore,
276 				  &required_kernelcore_percent);
277 }
278 early_param("kernelcore", cmdline_parse_kernelcore);
279 
280 /*
281  * movablecore=size sets the amount of memory for use for allocations that
282  * can be reclaimed or migrated.
283  */
284 static int __init cmdline_parse_movablecore(char *p)
285 {
286 	return cmdline_parse_core(p, &required_movablecore,
287 				  &required_movablecore_percent);
288 }
289 early_param("movablecore", cmdline_parse_movablecore);
290 
291 /*
292  * early_calculate_totalpages()
293  * Sum pages in active regions for movable zone.
294  * Populate N_MEMORY for calculating usable_nodes.
295  */
296 static unsigned long __init early_calculate_totalpages(void)
297 {
298 	unsigned long totalpages = 0;
299 	unsigned long start_pfn, end_pfn;
300 	int i, nid;
301 
302 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
303 		unsigned long pages = end_pfn - start_pfn;
304 
305 		totalpages += pages;
306 		if (pages)
307 			node_set_state(nid, N_MEMORY);
308 	}
309 	return totalpages;
310 }
311 
312 /*
313  * This finds a zone that can be used for ZONE_MOVABLE pages. The
314  * assumption is made that zones within a node are ordered in monotonic
315  * increasing memory addresses so that the "highest" populated zone is used
316  */
317 static void __init find_usable_zone_for_movable(void)
318 {
319 	int zone_index;
320 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
321 		if (zone_index == ZONE_MOVABLE)
322 			continue;
323 
324 		if (arch_zone_highest_possible_pfn[zone_index] >
325 				arch_zone_lowest_possible_pfn[zone_index])
326 			break;
327 	}
328 
329 	VM_BUG_ON(zone_index == -1);
330 	movable_zone = zone_index;
331 }
332 
333 /*
334  * Find the PFN the Movable zone begins in each node. Kernel memory
335  * is spread evenly between nodes as long as the nodes have enough
336  * memory. When they don't, some nodes will have more kernelcore than
337  * others
338  */
339 static void __init find_zone_movable_pfns_for_nodes(void)
340 {
341 	int i, nid;
342 	unsigned long usable_startpfn;
343 	unsigned long kernelcore_node, kernelcore_remaining;
344 	/* save the state before borrow the nodemask */
345 	nodemask_t saved_node_state = node_states[N_MEMORY];
346 	unsigned long totalpages = early_calculate_totalpages();
347 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
348 	struct memblock_region *r;
349 
350 	/* Need to find movable_zone earlier when movable_node is specified. */
351 	find_usable_zone_for_movable();
352 
353 	/*
354 	 * If movable_node is specified, ignore kernelcore and movablecore
355 	 * options.
356 	 */
357 	if (movable_node_is_enabled()) {
358 		for_each_mem_region(r) {
359 			if (!memblock_is_hotpluggable(r))
360 				continue;
361 
362 			nid = memblock_get_region_node(r);
363 
364 			usable_startpfn = PFN_DOWN(r->base);
365 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
366 				min(usable_startpfn, zone_movable_pfn[nid]) :
367 				usable_startpfn;
368 		}
369 
370 		goto out2;
371 	}
372 
373 	/*
374 	 * If kernelcore=mirror is specified, ignore movablecore option
375 	 */
376 	if (mirrored_kernelcore) {
377 		bool mem_below_4gb_not_mirrored = false;
378 
379 		if (!memblock_has_mirror()) {
380 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
381 			goto out;
382 		}
383 
384 		for_each_mem_region(r) {
385 			if (memblock_is_mirror(r))
386 				continue;
387 
388 			nid = memblock_get_region_node(r);
389 
390 			usable_startpfn = memblock_region_memory_base_pfn(r);
391 
392 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
393 				mem_below_4gb_not_mirrored = true;
394 				continue;
395 			}
396 
397 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
398 				min(usable_startpfn, zone_movable_pfn[nid]) :
399 				usable_startpfn;
400 		}
401 
402 		if (mem_below_4gb_not_mirrored)
403 			pr_warn("This configuration results in unmirrored kernel memory.\n");
404 
405 		goto out2;
406 	}
407 
408 	/*
409 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
410 	 * amount of necessary memory.
411 	 */
412 	if (required_kernelcore_percent)
413 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
414 				       10000UL;
415 	if (required_movablecore_percent)
416 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
417 					10000UL;
418 
419 	/*
420 	 * If movablecore= was specified, calculate what size of
421 	 * kernelcore that corresponds so that memory usable for
422 	 * any allocation type is evenly spread. If both kernelcore
423 	 * and movablecore are specified, then the value of kernelcore
424 	 * will be used for required_kernelcore if it's greater than
425 	 * what movablecore would have allowed.
426 	 */
427 	if (required_movablecore) {
428 		unsigned long corepages;
429 
430 		/*
431 		 * Round-up so that ZONE_MOVABLE is at least as large as what
432 		 * was requested by the user
433 		 */
434 		required_movablecore =
435 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
436 		required_movablecore = min(totalpages, required_movablecore);
437 		corepages = totalpages - required_movablecore;
438 
439 		required_kernelcore = max(required_kernelcore, corepages);
440 	}
441 
442 	/*
443 	 * If kernelcore was not specified or kernelcore size is larger
444 	 * than totalpages, there is no ZONE_MOVABLE.
445 	 */
446 	if (!required_kernelcore || required_kernelcore >= totalpages)
447 		goto out;
448 
449 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
450 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
451 
452 restart:
453 	/* Spread kernelcore memory as evenly as possible throughout nodes */
454 	kernelcore_node = required_kernelcore / usable_nodes;
455 	for_each_node_state(nid, N_MEMORY) {
456 		unsigned long start_pfn, end_pfn;
457 
458 		/*
459 		 * Recalculate kernelcore_node if the division per node
460 		 * now exceeds what is necessary to satisfy the requested
461 		 * amount of memory for the kernel
462 		 */
463 		if (required_kernelcore < kernelcore_node)
464 			kernelcore_node = required_kernelcore / usable_nodes;
465 
466 		/*
467 		 * As the map is walked, we track how much memory is usable
468 		 * by the kernel using kernelcore_remaining. When it is
469 		 * 0, the rest of the node is usable by ZONE_MOVABLE
470 		 */
471 		kernelcore_remaining = kernelcore_node;
472 
473 		/* Go through each range of PFNs within this node */
474 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
475 			unsigned long size_pages;
476 
477 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
478 			if (start_pfn >= end_pfn)
479 				continue;
480 
481 			/* Account for what is only usable for kernelcore */
482 			if (start_pfn < usable_startpfn) {
483 				unsigned long kernel_pages;
484 				kernel_pages = min(end_pfn, usable_startpfn)
485 								- start_pfn;
486 
487 				kernelcore_remaining -= min(kernel_pages,
488 							kernelcore_remaining);
489 				required_kernelcore -= min(kernel_pages,
490 							required_kernelcore);
491 
492 				/* Continue if range is now fully accounted */
493 				if (end_pfn <= usable_startpfn) {
494 
495 					/*
496 					 * Push zone_movable_pfn to the end so
497 					 * that if we have to rebalance
498 					 * kernelcore across nodes, we will
499 					 * not double account here
500 					 */
501 					zone_movable_pfn[nid] = end_pfn;
502 					continue;
503 				}
504 				start_pfn = usable_startpfn;
505 			}
506 
507 			/*
508 			 * The usable PFN range for ZONE_MOVABLE is from
509 			 * start_pfn->end_pfn. Calculate size_pages as the
510 			 * number of pages used as kernelcore
511 			 */
512 			size_pages = end_pfn - start_pfn;
513 			if (size_pages > kernelcore_remaining)
514 				size_pages = kernelcore_remaining;
515 			zone_movable_pfn[nid] = start_pfn + size_pages;
516 
517 			/*
518 			 * Some kernelcore has been met, update counts and
519 			 * break if the kernelcore for this node has been
520 			 * satisfied
521 			 */
522 			required_kernelcore -= min(required_kernelcore,
523 								size_pages);
524 			kernelcore_remaining -= size_pages;
525 			if (!kernelcore_remaining)
526 				break;
527 		}
528 	}
529 
530 	/*
531 	 * If there is still required_kernelcore, we do another pass with one
532 	 * less node in the count. This will push zone_movable_pfn[nid] further
533 	 * along on the nodes that still have memory until kernelcore is
534 	 * satisfied
535 	 */
536 	usable_nodes--;
537 	if (usable_nodes && required_kernelcore > usable_nodes)
538 		goto restart;
539 
540 out2:
541 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
542 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
543 		unsigned long start_pfn, end_pfn;
544 
545 		zone_movable_pfn[nid] =
546 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
547 
548 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
549 		if (zone_movable_pfn[nid] >= end_pfn)
550 			zone_movable_pfn[nid] = 0;
551 	}
552 
553 out:
554 	/* restore the node_state */
555 	node_states[N_MEMORY] = saved_node_state;
556 }
557 
558 void __meminit __init_single_page(struct page *page, unsigned long pfn,
559 				unsigned long zone, int nid)
560 {
561 	mm_zero_struct_page(page);
562 	set_page_links(page, zone, nid, pfn);
563 	init_page_count(page);
564 	page_mapcount_reset(page);
565 	page_cpupid_reset_last(page);
566 	page_kasan_tag_reset(page);
567 
568 	INIT_LIST_HEAD(&page->lru);
569 #ifdef WANT_PAGE_VIRTUAL
570 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
571 	if (!is_highmem_idx(zone))
572 		set_page_address(page, __va(pfn << PAGE_SHIFT));
573 #endif
574 }
575 
576 #ifdef CONFIG_NUMA
577 /*
578  * During memory init memblocks map pfns to nids. The search is expensive and
579  * this caches recent lookups. The implementation of __early_pfn_to_nid
580  * treats start/end as pfns.
581  */
582 struct mminit_pfnnid_cache {
583 	unsigned long last_start;
584 	unsigned long last_end;
585 	int last_nid;
586 };
587 
588 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
589 
590 /*
591  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
592  */
593 static int __meminit __early_pfn_to_nid(unsigned long pfn,
594 					struct mminit_pfnnid_cache *state)
595 {
596 	unsigned long start_pfn, end_pfn;
597 	int nid;
598 
599 	if (state->last_start <= pfn && pfn < state->last_end)
600 		return state->last_nid;
601 
602 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
603 	if (nid != NUMA_NO_NODE) {
604 		state->last_start = start_pfn;
605 		state->last_end = end_pfn;
606 		state->last_nid = nid;
607 	}
608 
609 	return nid;
610 }
611 
612 int __meminit early_pfn_to_nid(unsigned long pfn)
613 {
614 	static DEFINE_SPINLOCK(early_pfn_lock);
615 	int nid;
616 
617 	spin_lock(&early_pfn_lock);
618 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
619 	if (nid < 0)
620 		nid = first_online_node;
621 	spin_unlock(&early_pfn_lock);
622 
623 	return nid;
624 }
625 
626 int hashdist = HASHDIST_DEFAULT;
627 
628 static int __init set_hashdist(char *str)
629 {
630 	if (!str)
631 		return 0;
632 	hashdist = simple_strtoul(str, &str, 0);
633 	return 1;
634 }
635 __setup("hashdist=", set_hashdist);
636 
637 static inline void fixup_hashdist(void)
638 {
639 	if (num_node_state(N_MEMORY) == 1)
640 		hashdist = 0;
641 }
642 #else
643 static inline void fixup_hashdist(void) {}
644 #endif /* CONFIG_NUMA */
645 
646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
647 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
648 {
649 	pgdat->first_deferred_pfn = ULONG_MAX;
650 }
651 
652 /* Returns true if the struct page for the pfn is initialised */
653 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
654 {
655 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
656 		return false;
657 
658 	return true;
659 }
660 
661 /*
662  * Returns true when the remaining initialisation should be deferred until
663  * later in the boot cycle when it can be parallelised.
664  */
665 static bool __meminit
666 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
667 {
668 	static unsigned long prev_end_pfn, nr_initialised;
669 
670 	if (early_page_ext_enabled())
671 		return false;
672 	/*
673 	 * prev_end_pfn static that contains the end of previous zone
674 	 * No need to protect because called very early in boot before smp_init.
675 	 */
676 	if (prev_end_pfn != end_pfn) {
677 		prev_end_pfn = end_pfn;
678 		nr_initialised = 0;
679 	}
680 
681 	/* Always populate low zones for address-constrained allocations */
682 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
683 		return false;
684 
685 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
686 		return true;
687 	/*
688 	 * We start only with one section of pages, more pages are added as
689 	 * needed until the rest of deferred pages are initialized.
690 	 */
691 	nr_initialised++;
692 	if ((nr_initialised > PAGES_PER_SECTION) &&
693 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
694 		NODE_DATA(nid)->first_deferred_pfn = pfn;
695 		return true;
696 	}
697 	return false;
698 }
699 
700 static void __meminit init_reserved_page(unsigned long pfn, int nid)
701 {
702 	pg_data_t *pgdat;
703 	int zid;
704 
705 	if (early_page_initialised(pfn, nid))
706 		return;
707 
708 	pgdat = NODE_DATA(nid);
709 
710 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
711 		struct zone *zone = &pgdat->node_zones[zid];
712 
713 		if (zone_spans_pfn(zone, pfn))
714 			break;
715 	}
716 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
717 }
718 #else
719 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
720 
721 static inline bool early_page_initialised(unsigned long pfn, int nid)
722 {
723 	return true;
724 }
725 
726 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
727 {
728 	return false;
729 }
730 
731 static inline void init_reserved_page(unsigned long pfn, int nid)
732 {
733 }
734 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
735 
736 /*
737  * Initialised pages do not have PageReserved set. This function is
738  * called for each range allocated by the bootmem allocator and
739  * marks the pages PageReserved. The remaining valid pages are later
740  * sent to the buddy page allocator.
741  */
742 void __meminit reserve_bootmem_region(phys_addr_t start,
743 				      phys_addr_t end, int nid)
744 {
745 	unsigned long start_pfn = PFN_DOWN(start);
746 	unsigned long end_pfn = PFN_UP(end);
747 
748 	for (; start_pfn < end_pfn; start_pfn++) {
749 		if (pfn_valid(start_pfn)) {
750 			struct page *page = pfn_to_page(start_pfn);
751 
752 			init_reserved_page(start_pfn, nid);
753 
754 			/* Avoid false-positive PageTail() */
755 			INIT_LIST_HEAD(&page->lru);
756 
757 			/*
758 			 * no need for atomic set_bit because the struct
759 			 * page is not visible yet so nobody should
760 			 * access it yet.
761 			 */
762 			__SetPageReserved(page);
763 		}
764 	}
765 }
766 
767 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
768 static bool __meminit
769 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
770 {
771 	static struct memblock_region *r;
772 
773 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
774 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
775 			for_each_mem_region(r) {
776 				if (*pfn < memblock_region_memory_end_pfn(r))
777 					break;
778 			}
779 		}
780 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
781 		    memblock_is_mirror(r)) {
782 			*pfn = memblock_region_memory_end_pfn(r);
783 			return true;
784 		}
785 	}
786 	return false;
787 }
788 
789 /*
790  * Only struct pages that correspond to ranges defined by memblock.memory
791  * are zeroed and initialized by going through __init_single_page() during
792  * memmap_init_zone_range().
793  *
794  * But, there could be struct pages that correspond to holes in
795  * memblock.memory. This can happen because of the following reasons:
796  * - physical memory bank size is not necessarily the exact multiple of the
797  *   arbitrary section size
798  * - early reserved memory may not be listed in memblock.memory
799  * - non-memory regions covered by the contigious flatmem mapping
800  * - memory layouts defined with memmap= kernel parameter may not align
801  *   nicely with memmap sections
802  *
803  * Explicitly initialize those struct pages so that:
804  * - PG_Reserved is set
805  * - zone and node links point to zone and node that span the page if the
806  *   hole is in the middle of a zone
807  * - zone and node links point to adjacent zone/node if the hole falls on
808  *   the zone boundary; the pages in such holes will be prepended to the
809  *   zone/node above the hole except for the trailing pages in the last
810  *   section that will be appended to the zone/node below.
811  */
812 static void __init init_unavailable_range(unsigned long spfn,
813 					  unsigned long epfn,
814 					  int zone, int node)
815 {
816 	unsigned long pfn;
817 	u64 pgcnt = 0;
818 
819 	for (pfn = spfn; pfn < epfn; pfn++) {
820 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
821 			pfn = pageblock_end_pfn(pfn) - 1;
822 			continue;
823 		}
824 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
825 		__SetPageReserved(pfn_to_page(pfn));
826 		pgcnt++;
827 	}
828 
829 	if (pgcnt)
830 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
831 			node, zone_names[zone], pgcnt);
832 }
833 
834 /*
835  * Initially all pages are reserved - free ones are freed
836  * up by memblock_free_all() once the early boot process is
837  * done. Non-atomic initialization, single-pass.
838  *
839  * All aligned pageblocks are initialized to the specified migratetype
840  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
841  * zone stats (e.g., nr_isolate_pageblock) are touched.
842  */
843 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
844 		unsigned long start_pfn, unsigned long zone_end_pfn,
845 		enum meminit_context context,
846 		struct vmem_altmap *altmap, int migratetype)
847 {
848 	unsigned long pfn, end_pfn = start_pfn + size;
849 	struct page *page;
850 
851 	if (highest_memmap_pfn < end_pfn - 1)
852 		highest_memmap_pfn = end_pfn - 1;
853 
854 #ifdef CONFIG_ZONE_DEVICE
855 	/*
856 	 * Honor reservation requested by the driver for this ZONE_DEVICE
857 	 * memory. We limit the total number of pages to initialize to just
858 	 * those that might contain the memory mapping. We will defer the
859 	 * ZONE_DEVICE page initialization until after we have released
860 	 * the hotplug lock.
861 	 */
862 	if (zone == ZONE_DEVICE) {
863 		if (!altmap)
864 			return;
865 
866 		if (start_pfn == altmap->base_pfn)
867 			start_pfn += altmap->reserve;
868 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
869 	}
870 #endif
871 
872 	for (pfn = start_pfn; pfn < end_pfn; ) {
873 		/*
874 		 * There can be holes in boot-time mem_map[]s handed to this
875 		 * function.  They do not exist on hotplugged memory.
876 		 */
877 		if (context == MEMINIT_EARLY) {
878 			if (overlap_memmap_init(zone, &pfn))
879 				continue;
880 			if (defer_init(nid, pfn, zone_end_pfn)) {
881 				deferred_struct_pages = true;
882 				break;
883 			}
884 		}
885 
886 		page = pfn_to_page(pfn);
887 		__init_single_page(page, pfn, zone, nid);
888 		if (context == MEMINIT_HOTPLUG)
889 			__SetPageReserved(page);
890 
891 		/*
892 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
893 		 * such that unmovable allocations won't be scattered all
894 		 * over the place during system boot.
895 		 */
896 		if (pageblock_aligned(pfn)) {
897 			set_pageblock_migratetype(page, migratetype);
898 			cond_resched();
899 		}
900 		pfn++;
901 	}
902 }
903 
904 static void __init memmap_init_zone_range(struct zone *zone,
905 					  unsigned long start_pfn,
906 					  unsigned long end_pfn,
907 					  unsigned long *hole_pfn)
908 {
909 	unsigned long zone_start_pfn = zone->zone_start_pfn;
910 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
911 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
912 
913 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
914 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
915 
916 	if (start_pfn >= end_pfn)
917 		return;
918 
919 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
920 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
921 
922 	if (*hole_pfn < start_pfn)
923 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
924 
925 	*hole_pfn = end_pfn;
926 }
927 
928 static void __init memmap_init(void)
929 {
930 	unsigned long start_pfn, end_pfn;
931 	unsigned long hole_pfn = 0;
932 	int i, j, zone_id = 0, nid;
933 
934 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
935 		struct pglist_data *node = NODE_DATA(nid);
936 
937 		for (j = 0; j < MAX_NR_ZONES; j++) {
938 			struct zone *zone = node->node_zones + j;
939 
940 			if (!populated_zone(zone))
941 				continue;
942 
943 			memmap_init_zone_range(zone, start_pfn, end_pfn,
944 					       &hole_pfn);
945 			zone_id = j;
946 		}
947 	}
948 
949 #ifdef CONFIG_SPARSEMEM
950 	/*
951 	 * Initialize the memory map for hole in the range [memory_end,
952 	 * section_end].
953 	 * Append the pages in this hole to the highest zone in the last
954 	 * node.
955 	 * The call to init_unavailable_range() is outside the ifdef to
956 	 * silence the compiler warining about zone_id set but not used;
957 	 * for FLATMEM it is a nop anyway
958 	 */
959 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
960 	if (hole_pfn < end_pfn)
961 #endif
962 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
963 }
964 
965 #ifdef CONFIG_ZONE_DEVICE
966 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
967 					  unsigned long zone_idx, int nid,
968 					  struct dev_pagemap *pgmap)
969 {
970 
971 	__init_single_page(page, pfn, zone_idx, nid);
972 
973 	/*
974 	 * Mark page reserved as it will need to wait for onlining
975 	 * phase for it to be fully associated with a zone.
976 	 *
977 	 * We can use the non-atomic __set_bit operation for setting
978 	 * the flag as we are still initializing the pages.
979 	 */
980 	__SetPageReserved(page);
981 
982 	/*
983 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
984 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
985 	 * ever freed or placed on a driver-private list.
986 	 */
987 	page->pgmap = pgmap;
988 	page->zone_device_data = NULL;
989 
990 	/*
991 	 * Mark the block movable so that blocks are reserved for
992 	 * movable at startup. This will force kernel allocations
993 	 * to reserve their blocks rather than leaking throughout
994 	 * the address space during boot when many long-lived
995 	 * kernel allocations are made.
996 	 *
997 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
998 	 * because this is done early in section_activate()
999 	 */
1000 	if (pageblock_aligned(pfn)) {
1001 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1002 		cond_resched();
1003 	}
1004 
1005 	/*
1006 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1007 	 * which will set the page count to 1 when allocating the page.
1008 	 */
1009 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1010 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1011 		set_page_count(page, 0);
1012 }
1013 
1014 /*
1015  * With compound page geometry and when struct pages are stored in ram most
1016  * tail pages are reused. Consequently, the amount of unique struct pages to
1017  * initialize is a lot smaller that the total amount of struct pages being
1018  * mapped. This is a paired / mild layering violation with explicit knowledge
1019  * of how the sparse_vmemmap internals handle compound pages in the lack
1020  * of an altmap. See vmemmap_populate_compound_pages().
1021  */
1022 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1023 					      struct dev_pagemap *pgmap)
1024 {
1025 	if (!vmemmap_can_optimize(altmap, pgmap))
1026 		return pgmap_vmemmap_nr(pgmap);
1027 
1028 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1029 }
1030 
1031 static void __ref memmap_init_compound(struct page *head,
1032 				       unsigned long head_pfn,
1033 				       unsigned long zone_idx, int nid,
1034 				       struct dev_pagemap *pgmap,
1035 				       unsigned long nr_pages)
1036 {
1037 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1038 	unsigned int order = pgmap->vmemmap_shift;
1039 
1040 	__SetPageHead(head);
1041 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1042 		struct page *page = pfn_to_page(pfn);
1043 
1044 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1045 		prep_compound_tail(head, pfn - head_pfn);
1046 		set_page_count(page, 0);
1047 
1048 		/*
1049 		 * The first tail page stores important compound page info.
1050 		 * Call prep_compound_head() after the first tail page has
1051 		 * been initialized, to not have the data overwritten.
1052 		 */
1053 		if (pfn == head_pfn + 1)
1054 			prep_compound_head(head, order);
1055 	}
1056 }
1057 
1058 void __ref memmap_init_zone_device(struct zone *zone,
1059 				   unsigned long start_pfn,
1060 				   unsigned long nr_pages,
1061 				   struct dev_pagemap *pgmap)
1062 {
1063 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1064 	struct pglist_data *pgdat = zone->zone_pgdat;
1065 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1066 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1067 	unsigned long zone_idx = zone_idx(zone);
1068 	unsigned long start = jiffies;
1069 	int nid = pgdat->node_id;
1070 
1071 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1072 		return;
1073 
1074 	/*
1075 	 * The call to memmap_init should have already taken care
1076 	 * of the pages reserved for the memmap, so we can just jump to
1077 	 * the end of that region and start processing the device pages.
1078 	 */
1079 	if (altmap) {
1080 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1081 		nr_pages = end_pfn - start_pfn;
1082 	}
1083 
1084 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1085 		struct page *page = pfn_to_page(pfn);
1086 
1087 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1088 
1089 		if (pfns_per_compound == 1)
1090 			continue;
1091 
1092 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1093 				     compound_nr_pages(altmap, pgmap));
1094 	}
1095 
1096 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1097 		nr_pages, jiffies_to_msecs(jiffies - start));
1098 }
1099 #endif
1100 
1101 /*
1102  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1103  * because it is sized independent of architecture. Unlike the other zones,
1104  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1105  * in each node depending on the size of each node and how evenly kernelcore
1106  * is distributed. This helper function adjusts the zone ranges
1107  * provided by the architecture for a given node by using the end of the
1108  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1109  * zones within a node are in order of monotonic increases memory addresses
1110  */
1111 static void __init adjust_zone_range_for_zone_movable(int nid,
1112 					unsigned long zone_type,
1113 					unsigned long node_end_pfn,
1114 					unsigned long *zone_start_pfn,
1115 					unsigned long *zone_end_pfn)
1116 {
1117 	/* Only adjust if ZONE_MOVABLE is on this node */
1118 	if (zone_movable_pfn[nid]) {
1119 		/* Size ZONE_MOVABLE */
1120 		if (zone_type == ZONE_MOVABLE) {
1121 			*zone_start_pfn = zone_movable_pfn[nid];
1122 			*zone_end_pfn = min(node_end_pfn,
1123 				arch_zone_highest_possible_pfn[movable_zone]);
1124 
1125 		/* Adjust for ZONE_MOVABLE starting within this range */
1126 		} else if (!mirrored_kernelcore &&
1127 			*zone_start_pfn < zone_movable_pfn[nid] &&
1128 			*zone_end_pfn > zone_movable_pfn[nid]) {
1129 			*zone_end_pfn = zone_movable_pfn[nid];
1130 
1131 		/* Check if this whole range is within ZONE_MOVABLE */
1132 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1133 			*zone_start_pfn = *zone_end_pfn;
1134 	}
1135 }
1136 
1137 /*
1138  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1139  * then all holes in the requested range will be accounted for.
1140  */
1141 unsigned long __init __absent_pages_in_range(int nid,
1142 				unsigned long range_start_pfn,
1143 				unsigned long range_end_pfn)
1144 {
1145 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1146 	unsigned long start_pfn, end_pfn;
1147 	int i;
1148 
1149 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1150 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1151 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1152 		nr_absent -= end_pfn - start_pfn;
1153 	}
1154 	return nr_absent;
1155 }
1156 
1157 /**
1158  * absent_pages_in_range - Return number of page frames in holes within a range
1159  * @start_pfn: The start PFN to start searching for holes
1160  * @end_pfn: The end PFN to stop searching for holes
1161  *
1162  * Return: the number of pages frames in memory holes within a range.
1163  */
1164 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1165 							unsigned long end_pfn)
1166 {
1167 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1168 }
1169 
1170 /* Return the number of page frames in holes in a zone on a node */
1171 static unsigned long __init zone_absent_pages_in_node(int nid,
1172 					unsigned long zone_type,
1173 					unsigned long zone_start_pfn,
1174 					unsigned long zone_end_pfn)
1175 {
1176 	unsigned long nr_absent;
1177 
1178 	/* zone is empty, we don't have any absent pages */
1179 	if (zone_start_pfn == zone_end_pfn)
1180 		return 0;
1181 
1182 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1183 
1184 	/*
1185 	 * ZONE_MOVABLE handling.
1186 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1187 	 * and vice versa.
1188 	 */
1189 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1190 		unsigned long start_pfn, end_pfn;
1191 		struct memblock_region *r;
1192 
1193 		for_each_mem_region(r) {
1194 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1195 					  zone_start_pfn, zone_end_pfn);
1196 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1197 					zone_start_pfn, zone_end_pfn);
1198 
1199 			if (zone_type == ZONE_MOVABLE &&
1200 			    memblock_is_mirror(r))
1201 				nr_absent += end_pfn - start_pfn;
1202 
1203 			if (zone_type == ZONE_NORMAL &&
1204 			    !memblock_is_mirror(r))
1205 				nr_absent += end_pfn - start_pfn;
1206 		}
1207 	}
1208 
1209 	return nr_absent;
1210 }
1211 
1212 /*
1213  * Return the number of pages a zone spans in a node, including holes
1214  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1215  */
1216 static unsigned long __init zone_spanned_pages_in_node(int nid,
1217 					unsigned long zone_type,
1218 					unsigned long node_start_pfn,
1219 					unsigned long node_end_pfn,
1220 					unsigned long *zone_start_pfn,
1221 					unsigned long *zone_end_pfn)
1222 {
1223 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1224 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1225 
1226 	/* Get the start and end of the zone */
1227 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1228 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1229 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1230 					   zone_start_pfn, zone_end_pfn);
1231 
1232 	/* Check that this node has pages within the zone's required range */
1233 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1234 		return 0;
1235 
1236 	/* Move the zone boundaries inside the node if necessary */
1237 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1238 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1239 
1240 	/* Return the spanned pages */
1241 	return *zone_end_pfn - *zone_start_pfn;
1242 }
1243 
1244 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1245 {
1246 	struct zone *z;
1247 
1248 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1249 		z->zone_start_pfn = 0;
1250 		z->spanned_pages = 0;
1251 		z->present_pages = 0;
1252 #if defined(CONFIG_MEMORY_HOTPLUG)
1253 		z->present_early_pages = 0;
1254 #endif
1255 	}
1256 
1257 	pgdat->node_spanned_pages = 0;
1258 	pgdat->node_present_pages = 0;
1259 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1260 }
1261 
1262 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1263 						unsigned long node_start_pfn,
1264 						unsigned long node_end_pfn)
1265 {
1266 	unsigned long realtotalpages = 0, totalpages = 0;
1267 	enum zone_type i;
1268 
1269 	for (i = 0; i < MAX_NR_ZONES; i++) {
1270 		struct zone *zone = pgdat->node_zones + i;
1271 		unsigned long zone_start_pfn, zone_end_pfn;
1272 		unsigned long spanned, absent;
1273 		unsigned long real_size;
1274 
1275 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1276 						     node_start_pfn,
1277 						     node_end_pfn,
1278 						     &zone_start_pfn,
1279 						     &zone_end_pfn);
1280 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1281 						   zone_start_pfn,
1282 						   zone_end_pfn);
1283 
1284 		real_size = spanned - absent;
1285 
1286 		if (spanned)
1287 			zone->zone_start_pfn = zone_start_pfn;
1288 		else
1289 			zone->zone_start_pfn = 0;
1290 		zone->spanned_pages = spanned;
1291 		zone->present_pages = real_size;
1292 #if defined(CONFIG_MEMORY_HOTPLUG)
1293 		zone->present_early_pages = real_size;
1294 #endif
1295 
1296 		totalpages += spanned;
1297 		realtotalpages += real_size;
1298 	}
1299 
1300 	pgdat->node_spanned_pages = totalpages;
1301 	pgdat->node_present_pages = realtotalpages;
1302 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1303 }
1304 
1305 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1306 						unsigned long present_pages)
1307 {
1308 	unsigned long pages = spanned_pages;
1309 
1310 	/*
1311 	 * Provide a more accurate estimation if there are holes within
1312 	 * the zone and SPARSEMEM is in use. If there are holes within the
1313 	 * zone, each populated memory region may cost us one or two extra
1314 	 * memmap pages due to alignment because memmap pages for each
1315 	 * populated regions may not be naturally aligned on page boundary.
1316 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1317 	 */
1318 	if (spanned_pages > present_pages + (present_pages >> 4) &&
1319 	    IS_ENABLED(CONFIG_SPARSEMEM))
1320 		pages = present_pages;
1321 
1322 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1323 }
1324 
1325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1326 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1327 {
1328 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1329 
1330 	spin_lock_init(&ds_queue->split_queue_lock);
1331 	INIT_LIST_HEAD(&ds_queue->split_queue);
1332 	ds_queue->split_queue_len = 0;
1333 }
1334 #else
1335 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1336 #endif
1337 
1338 #ifdef CONFIG_COMPACTION
1339 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1340 {
1341 	init_waitqueue_head(&pgdat->kcompactd_wait);
1342 }
1343 #else
1344 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1345 #endif
1346 
1347 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1348 {
1349 	int i;
1350 
1351 	pgdat_resize_init(pgdat);
1352 	pgdat_kswapd_lock_init(pgdat);
1353 
1354 	pgdat_init_split_queue(pgdat);
1355 	pgdat_init_kcompactd(pgdat);
1356 
1357 	init_waitqueue_head(&pgdat->kswapd_wait);
1358 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1359 
1360 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1361 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1362 
1363 	pgdat_page_ext_init(pgdat);
1364 	lruvec_init(&pgdat->__lruvec);
1365 }
1366 
1367 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1368 							unsigned long remaining_pages)
1369 {
1370 	atomic_long_set(&zone->managed_pages, remaining_pages);
1371 	zone_set_nid(zone, nid);
1372 	zone->name = zone_names[idx];
1373 	zone->zone_pgdat = NODE_DATA(nid);
1374 	spin_lock_init(&zone->lock);
1375 	zone_seqlock_init(zone);
1376 	zone_pcp_init(zone);
1377 }
1378 
1379 static void __meminit zone_init_free_lists(struct zone *zone)
1380 {
1381 	unsigned int order, t;
1382 	for_each_migratetype_order(order, t) {
1383 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1384 		zone->free_area[order].nr_free = 0;
1385 	}
1386 
1387 #ifdef CONFIG_UNACCEPTED_MEMORY
1388 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1389 #endif
1390 }
1391 
1392 void __meminit init_currently_empty_zone(struct zone *zone,
1393 					unsigned long zone_start_pfn,
1394 					unsigned long size)
1395 {
1396 	struct pglist_data *pgdat = zone->zone_pgdat;
1397 	int zone_idx = zone_idx(zone) + 1;
1398 
1399 	if (zone_idx > pgdat->nr_zones)
1400 		pgdat->nr_zones = zone_idx;
1401 
1402 	zone->zone_start_pfn = zone_start_pfn;
1403 
1404 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1405 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1406 			pgdat->node_id,
1407 			(unsigned long)zone_idx(zone),
1408 			zone_start_pfn, (zone_start_pfn + size));
1409 
1410 	zone_init_free_lists(zone);
1411 	zone->initialized = 1;
1412 }
1413 
1414 #ifndef CONFIG_SPARSEMEM
1415 /*
1416  * Calculate the size of the zone->blockflags rounded to an unsigned long
1417  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1418  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1419  * round what is now in bits to nearest long in bits, then return it in
1420  * bytes.
1421  */
1422 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1423 {
1424 	unsigned long usemapsize;
1425 
1426 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1427 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1428 	usemapsize = usemapsize >> pageblock_order;
1429 	usemapsize *= NR_PAGEBLOCK_BITS;
1430 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1431 
1432 	return usemapsize / BITS_PER_BYTE;
1433 }
1434 
1435 static void __ref setup_usemap(struct zone *zone)
1436 {
1437 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1438 					       zone->spanned_pages);
1439 	zone->pageblock_flags = NULL;
1440 	if (usemapsize) {
1441 		zone->pageblock_flags =
1442 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1443 					    zone_to_nid(zone));
1444 		if (!zone->pageblock_flags)
1445 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1446 			      usemapsize, zone->name, zone_to_nid(zone));
1447 	}
1448 }
1449 #else
1450 static inline void setup_usemap(struct zone *zone) {}
1451 #endif /* CONFIG_SPARSEMEM */
1452 
1453 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1454 
1455 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1456 void __init set_pageblock_order(void)
1457 {
1458 	unsigned int order = MAX_PAGE_ORDER;
1459 
1460 	/* Check that pageblock_nr_pages has not already been setup */
1461 	if (pageblock_order)
1462 		return;
1463 
1464 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1465 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1466 		order = HUGETLB_PAGE_ORDER;
1467 
1468 	/*
1469 	 * Assume the largest contiguous order of interest is a huge page.
1470 	 * This value may be variable depending on boot parameters on powerpc.
1471 	 */
1472 	pageblock_order = order;
1473 }
1474 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1475 
1476 /*
1477  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1478  * is unused as pageblock_order is set at compile-time. See
1479  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1480  * the kernel config
1481  */
1482 void __init set_pageblock_order(void)
1483 {
1484 }
1485 
1486 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1487 
1488 /*
1489  * Set up the zone data structures
1490  * - init pgdat internals
1491  * - init all zones belonging to this node
1492  *
1493  * NOTE: this function is only called during memory hotplug
1494  */
1495 #ifdef CONFIG_MEMORY_HOTPLUG
1496 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1497 {
1498 	int nid = pgdat->node_id;
1499 	enum zone_type z;
1500 	int cpu;
1501 
1502 	pgdat_init_internals(pgdat);
1503 
1504 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1505 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1506 
1507 	/*
1508 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1509 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1510 	 * when it starts in the near future.
1511 	 */
1512 	pgdat->nr_zones = 0;
1513 	pgdat->kswapd_order = 0;
1514 	pgdat->kswapd_highest_zoneidx = 0;
1515 	pgdat->node_start_pfn = 0;
1516 	pgdat->node_present_pages = 0;
1517 
1518 	for_each_online_cpu(cpu) {
1519 		struct per_cpu_nodestat *p;
1520 
1521 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1522 		memset(p, 0, sizeof(*p));
1523 	}
1524 
1525 	/*
1526 	 * When memory is hot-added, all the memory is in offline state. So
1527 	 * clear all zones' present_pages and managed_pages because they will
1528 	 * be updated in online_pages() and offline_pages().
1529 	 */
1530 	for (z = 0; z < MAX_NR_ZONES; z++) {
1531 		struct zone *zone = pgdat->node_zones + z;
1532 
1533 		zone->present_pages = 0;
1534 		zone_init_internals(zone, z, nid, 0);
1535 	}
1536 }
1537 #endif
1538 
1539 /*
1540  * Set up the zone data structures:
1541  *   - mark all pages reserved
1542  *   - mark all memory queues empty
1543  *   - clear the memory bitmaps
1544  *
1545  * NOTE: pgdat should get zeroed by caller.
1546  * NOTE: this function is only called during early init.
1547  */
1548 static void __init free_area_init_core(struct pglist_data *pgdat)
1549 {
1550 	enum zone_type j;
1551 	int nid = pgdat->node_id;
1552 
1553 	pgdat_init_internals(pgdat);
1554 	pgdat->per_cpu_nodestats = &boot_nodestats;
1555 
1556 	for (j = 0; j < MAX_NR_ZONES; j++) {
1557 		struct zone *zone = pgdat->node_zones + j;
1558 		unsigned long size, freesize, memmap_pages;
1559 
1560 		size = zone->spanned_pages;
1561 		freesize = zone->present_pages;
1562 
1563 		/*
1564 		 * Adjust freesize so that it accounts for how much memory
1565 		 * is used by this zone for memmap. This affects the watermark
1566 		 * and per-cpu initialisations
1567 		 */
1568 		memmap_pages = calc_memmap_size(size, freesize);
1569 		if (!is_highmem_idx(j)) {
1570 			if (freesize >= memmap_pages) {
1571 				freesize -= memmap_pages;
1572 				if (memmap_pages)
1573 					pr_debug("  %s zone: %lu pages used for memmap\n",
1574 						 zone_names[j], memmap_pages);
1575 			} else
1576 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
1577 					zone_names[j], memmap_pages, freesize);
1578 		}
1579 
1580 		/* Account for reserved pages */
1581 		if (j == 0 && freesize > dma_reserve) {
1582 			freesize -= dma_reserve;
1583 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1584 		}
1585 
1586 		if (!is_highmem_idx(j))
1587 			nr_kernel_pages += freesize;
1588 		/* Charge for highmem memmap if there are enough kernel pages */
1589 		else if (nr_kernel_pages > memmap_pages * 2)
1590 			nr_kernel_pages -= memmap_pages;
1591 		nr_all_pages += freesize;
1592 
1593 		/*
1594 		 * Set an approximate value for lowmem here, it will be adjusted
1595 		 * when the bootmem allocator frees pages into the buddy system.
1596 		 * And all highmem pages will be managed by the buddy system.
1597 		 */
1598 		zone_init_internals(zone, j, nid, freesize);
1599 
1600 		if (!size)
1601 			continue;
1602 
1603 		setup_usemap(zone);
1604 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1605 	}
1606 }
1607 
1608 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1609 			  phys_addr_t min_addr, int nid, bool exact_nid)
1610 {
1611 	void *ptr;
1612 
1613 	if (exact_nid)
1614 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1615 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1616 						   nid);
1617 	else
1618 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1619 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1620 						 nid);
1621 
1622 	if (ptr && size > 0)
1623 		page_init_poison(ptr, size);
1624 
1625 	return ptr;
1626 }
1627 
1628 #ifdef CONFIG_FLATMEM
1629 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1630 {
1631 	unsigned long start, offset, size, end;
1632 	struct page *map;
1633 
1634 	/* Skip empty nodes */
1635 	if (!pgdat->node_spanned_pages)
1636 		return;
1637 
1638 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1639 	offset = pgdat->node_start_pfn - start;
1640 	/*
1641 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1642 	 * aligned but the node_mem_map endpoints must be in order
1643 	 * for the buddy allocator to function correctly.
1644 	 */
1645 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1646 	size =  (end - start) * sizeof(struct page);
1647 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1648 			   pgdat->node_id, false);
1649 	if (!map)
1650 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1651 		      size, pgdat->node_id);
1652 	pgdat->node_mem_map = map + offset;
1653 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1654 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1655 		 (unsigned long)pgdat->node_mem_map);
1656 #ifndef CONFIG_NUMA
1657 	/* the global mem_map is just set as node 0's */
1658 	if (pgdat == NODE_DATA(0)) {
1659 		mem_map = NODE_DATA(0)->node_mem_map;
1660 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1661 			mem_map -= offset;
1662 	}
1663 #endif
1664 }
1665 #else
1666 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1667 #endif /* CONFIG_FLATMEM */
1668 
1669 /**
1670  * get_pfn_range_for_nid - Return the start and end page frames for a node
1671  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1672  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1673  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1674  *
1675  * It returns the start and end page frame of a node based on information
1676  * provided by memblock_set_node(). If called for a node
1677  * with no available memory, the start and end PFNs will be 0.
1678  */
1679 void __init get_pfn_range_for_nid(unsigned int nid,
1680 			unsigned long *start_pfn, unsigned long *end_pfn)
1681 {
1682 	unsigned long this_start_pfn, this_end_pfn;
1683 	int i;
1684 
1685 	*start_pfn = -1UL;
1686 	*end_pfn = 0;
1687 
1688 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1689 		*start_pfn = min(*start_pfn, this_start_pfn);
1690 		*end_pfn = max(*end_pfn, this_end_pfn);
1691 	}
1692 
1693 	if (*start_pfn == -1UL)
1694 		*start_pfn = 0;
1695 }
1696 
1697 static void __init free_area_init_node(int nid)
1698 {
1699 	pg_data_t *pgdat = NODE_DATA(nid);
1700 	unsigned long start_pfn = 0;
1701 	unsigned long end_pfn = 0;
1702 
1703 	/* pg_data_t should be reset to zero when it's allocated */
1704 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1705 
1706 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1707 
1708 	pgdat->node_id = nid;
1709 	pgdat->node_start_pfn = start_pfn;
1710 	pgdat->per_cpu_nodestats = NULL;
1711 
1712 	if (start_pfn != end_pfn) {
1713 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1714 			(u64)start_pfn << PAGE_SHIFT,
1715 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1716 
1717 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1718 	} else {
1719 		pr_info("Initmem setup node %d as memoryless\n", nid);
1720 
1721 		reset_memoryless_node_totalpages(pgdat);
1722 	}
1723 
1724 	alloc_node_mem_map(pgdat);
1725 	pgdat_set_deferred_range(pgdat);
1726 
1727 	free_area_init_core(pgdat);
1728 	lru_gen_init_pgdat(pgdat);
1729 }
1730 
1731 /* Any regular or high memory on that node ? */
1732 static void __init check_for_memory(pg_data_t *pgdat)
1733 {
1734 	enum zone_type zone_type;
1735 
1736 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1737 		struct zone *zone = &pgdat->node_zones[zone_type];
1738 		if (populated_zone(zone)) {
1739 			if (IS_ENABLED(CONFIG_HIGHMEM))
1740 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1741 			if (zone_type <= ZONE_NORMAL)
1742 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1743 			break;
1744 		}
1745 	}
1746 }
1747 
1748 #if MAX_NUMNODES > 1
1749 /*
1750  * Figure out the number of possible node ids.
1751  */
1752 void __init setup_nr_node_ids(void)
1753 {
1754 	unsigned int highest;
1755 
1756 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1757 	nr_node_ids = highest + 1;
1758 }
1759 #endif
1760 
1761 /*
1762  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1763  * such cases we allow max_zone_pfn sorted in the descending order
1764  */
1765 static bool arch_has_descending_max_zone_pfns(void)
1766 {
1767 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1768 }
1769 
1770 /**
1771  * free_area_init - Initialise all pg_data_t and zone data
1772  * @max_zone_pfn: an array of max PFNs for each zone
1773  *
1774  * This will call free_area_init_node() for each active node in the system.
1775  * Using the page ranges provided by memblock_set_node(), the size of each
1776  * zone in each node and their holes is calculated. If the maximum PFN
1777  * between two adjacent zones match, it is assumed that the zone is empty.
1778  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1779  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1780  * starts where the previous one ended. For example, ZONE_DMA32 starts
1781  * at arch_max_dma_pfn.
1782  */
1783 void __init free_area_init(unsigned long *max_zone_pfn)
1784 {
1785 	unsigned long start_pfn, end_pfn;
1786 	int i, nid, zone;
1787 	bool descending;
1788 
1789 	/* Record where the zone boundaries are */
1790 	memset(arch_zone_lowest_possible_pfn, 0,
1791 				sizeof(arch_zone_lowest_possible_pfn));
1792 	memset(arch_zone_highest_possible_pfn, 0,
1793 				sizeof(arch_zone_highest_possible_pfn));
1794 
1795 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1796 	descending = arch_has_descending_max_zone_pfns();
1797 
1798 	for (i = 0; i < MAX_NR_ZONES; i++) {
1799 		if (descending)
1800 			zone = MAX_NR_ZONES - i - 1;
1801 		else
1802 			zone = i;
1803 
1804 		if (zone == ZONE_MOVABLE)
1805 			continue;
1806 
1807 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1808 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1809 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1810 
1811 		start_pfn = end_pfn;
1812 	}
1813 
1814 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1815 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1816 	find_zone_movable_pfns_for_nodes();
1817 
1818 	/* Print out the zone ranges */
1819 	pr_info("Zone ranges:\n");
1820 	for (i = 0; i < MAX_NR_ZONES; i++) {
1821 		if (i == ZONE_MOVABLE)
1822 			continue;
1823 		pr_info("  %-8s ", zone_names[i]);
1824 		if (arch_zone_lowest_possible_pfn[i] ==
1825 				arch_zone_highest_possible_pfn[i])
1826 			pr_cont("empty\n");
1827 		else
1828 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1829 				(u64)arch_zone_lowest_possible_pfn[i]
1830 					<< PAGE_SHIFT,
1831 				((u64)arch_zone_highest_possible_pfn[i]
1832 					<< PAGE_SHIFT) - 1);
1833 	}
1834 
1835 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1836 	pr_info("Movable zone start for each node\n");
1837 	for (i = 0; i < MAX_NUMNODES; i++) {
1838 		if (zone_movable_pfn[i])
1839 			pr_info("  Node %d: %#018Lx\n", i,
1840 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1841 	}
1842 
1843 	/*
1844 	 * Print out the early node map, and initialize the
1845 	 * subsection-map relative to active online memory ranges to
1846 	 * enable future "sub-section" extensions of the memory map.
1847 	 */
1848 	pr_info("Early memory node ranges\n");
1849 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1850 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1851 			(u64)start_pfn << PAGE_SHIFT,
1852 			((u64)end_pfn << PAGE_SHIFT) - 1);
1853 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1854 	}
1855 
1856 	/* Initialise every node */
1857 	mminit_verify_pageflags_layout();
1858 	setup_nr_node_ids();
1859 	set_pageblock_order();
1860 
1861 	for_each_node(nid) {
1862 		pg_data_t *pgdat;
1863 
1864 		if (!node_online(nid)) {
1865 			/* Allocator not initialized yet */
1866 			pgdat = arch_alloc_nodedata(nid);
1867 			if (!pgdat)
1868 				panic("Cannot allocate %zuB for node %d.\n",
1869 				       sizeof(*pgdat), nid);
1870 			arch_refresh_nodedata(nid, pgdat);
1871 			free_area_init_node(nid);
1872 
1873 			/*
1874 			 * We do not want to confuse userspace by sysfs
1875 			 * files/directories for node without any memory
1876 			 * attached to it, so this node is not marked as
1877 			 * N_MEMORY and not marked online so that no sysfs
1878 			 * hierarchy will be created via register_one_node for
1879 			 * it. The pgdat will get fully initialized by
1880 			 * hotadd_init_pgdat() when memory is hotplugged into
1881 			 * this node.
1882 			 */
1883 			continue;
1884 		}
1885 
1886 		pgdat = NODE_DATA(nid);
1887 		free_area_init_node(nid);
1888 
1889 		/* Any memory on that node */
1890 		if (pgdat->node_present_pages)
1891 			node_set_state(nid, N_MEMORY);
1892 		check_for_memory(pgdat);
1893 	}
1894 
1895 	memmap_init();
1896 
1897 	/* disable hash distribution for systems with a single node */
1898 	fixup_hashdist();
1899 }
1900 
1901 /**
1902  * node_map_pfn_alignment - determine the maximum internode alignment
1903  *
1904  * This function should be called after node map is populated and sorted.
1905  * It calculates the maximum power of two alignment which can distinguish
1906  * all the nodes.
1907  *
1908  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1909  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1910  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1911  * shifted, 1GiB is enough and this function will indicate so.
1912  *
1913  * This is used to test whether pfn -> nid mapping of the chosen memory
1914  * model has fine enough granularity to avoid incorrect mapping for the
1915  * populated node map.
1916  *
1917  * Return: the determined alignment in pfn's.  0 if there is no alignment
1918  * requirement (single node).
1919  */
1920 unsigned long __init node_map_pfn_alignment(void)
1921 {
1922 	unsigned long accl_mask = 0, last_end = 0;
1923 	unsigned long start, end, mask;
1924 	int last_nid = NUMA_NO_NODE;
1925 	int i, nid;
1926 
1927 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1928 		if (!start || last_nid < 0 || last_nid == nid) {
1929 			last_nid = nid;
1930 			last_end = end;
1931 			continue;
1932 		}
1933 
1934 		/*
1935 		 * Start with a mask granular enough to pin-point to the
1936 		 * start pfn and tick off bits one-by-one until it becomes
1937 		 * too coarse to separate the current node from the last.
1938 		 */
1939 		mask = ~((1 << __ffs(start)) - 1);
1940 		while (mask && last_end <= (start & (mask << 1)))
1941 			mask <<= 1;
1942 
1943 		/* accumulate all internode masks */
1944 		accl_mask |= mask;
1945 	}
1946 
1947 	/* convert mask to number of pages */
1948 	return ~accl_mask + 1;
1949 }
1950 
1951 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1952 static void __init deferred_free_range(unsigned long pfn,
1953 				       unsigned long nr_pages)
1954 {
1955 	struct page *page;
1956 	unsigned long i;
1957 
1958 	if (!nr_pages)
1959 		return;
1960 
1961 	page = pfn_to_page(pfn);
1962 
1963 	/* Free a large naturally-aligned chunk if possible */
1964 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1965 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1966 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1967 		__free_pages_core(page, MAX_PAGE_ORDER);
1968 		return;
1969 	}
1970 
1971 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1972 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1973 
1974 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1975 		if (pageblock_aligned(pfn))
1976 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1977 		__free_pages_core(page, 0);
1978 	}
1979 }
1980 
1981 /* Completion tracking for deferred_init_memmap() threads */
1982 static atomic_t pgdat_init_n_undone __initdata;
1983 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1984 
1985 static inline void __init pgdat_init_report_one_done(void)
1986 {
1987 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1988 		complete(&pgdat_init_all_done_comp);
1989 }
1990 
1991 /*
1992  * Returns true if page needs to be initialized or freed to buddy allocator.
1993  *
1994  * We check if a current MAX_PAGE_ORDER block is valid by only checking the
1995  * validity of the head pfn.
1996  */
1997 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1998 {
1999 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
2000 		return false;
2001 	return true;
2002 }
2003 
2004 /*
2005  * Free pages to buddy allocator. Try to free aligned pages in
2006  * MAX_ORDER_NR_PAGES sizes.
2007  */
2008 static void __init deferred_free_pages(unsigned long pfn,
2009 				       unsigned long end_pfn)
2010 {
2011 	unsigned long nr_free = 0;
2012 
2013 	for (; pfn < end_pfn; pfn++) {
2014 		if (!deferred_pfn_valid(pfn)) {
2015 			deferred_free_range(pfn - nr_free, nr_free);
2016 			nr_free = 0;
2017 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2018 			deferred_free_range(pfn - nr_free, nr_free);
2019 			nr_free = 1;
2020 		} else {
2021 			nr_free++;
2022 		}
2023 	}
2024 	/* Free the last block of pages to allocator */
2025 	deferred_free_range(pfn - nr_free, nr_free);
2026 }
2027 
2028 /*
2029  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2030  * by performing it only once every MAX_ORDER_NR_PAGES.
2031  * Return number of pages initialized.
2032  */
2033 static unsigned long  __init deferred_init_pages(struct zone *zone,
2034 						 unsigned long pfn,
2035 						 unsigned long end_pfn)
2036 {
2037 	int nid = zone_to_nid(zone);
2038 	unsigned long nr_pages = 0;
2039 	int zid = zone_idx(zone);
2040 	struct page *page = NULL;
2041 
2042 	for (; pfn < end_pfn; pfn++) {
2043 		if (!deferred_pfn_valid(pfn)) {
2044 			page = NULL;
2045 			continue;
2046 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2047 			page = pfn_to_page(pfn);
2048 		} else {
2049 			page++;
2050 		}
2051 		__init_single_page(page, pfn, zid, nid);
2052 		nr_pages++;
2053 	}
2054 	return (nr_pages);
2055 }
2056 
2057 /*
2058  * This function is meant to pre-load the iterator for the zone init.
2059  * Specifically it walks through the ranges until we are caught up to the
2060  * first_init_pfn value and exits there. If we never encounter the value we
2061  * return false indicating there are no valid ranges left.
2062  */
2063 static bool __init
2064 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2065 				    unsigned long *spfn, unsigned long *epfn,
2066 				    unsigned long first_init_pfn)
2067 {
2068 	u64 j;
2069 
2070 	/*
2071 	 * Start out by walking through the ranges in this zone that have
2072 	 * already been initialized. We don't need to do anything with them
2073 	 * so we just need to flush them out of the system.
2074 	 */
2075 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2076 		if (*epfn <= first_init_pfn)
2077 			continue;
2078 		if (*spfn < first_init_pfn)
2079 			*spfn = first_init_pfn;
2080 		*i = j;
2081 		return true;
2082 	}
2083 
2084 	return false;
2085 }
2086 
2087 /*
2088  * Initialize and free pages. We do it in two loops: first we initialize
2089  * struct page, then free to buddy allocator, because while we are
2090  * freeing pages we can access pages that are ahead (computing buddy
2091  * page in __free_one_page()).
2092  *
2093  * In order to try and keep some memory in the cache we have the loop
2094  * broken along max page order boundaries. This way we will not cause
2095  * any issues with the buddy page computation.
2096  */
2097 static unsigned long __init
2098 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2099 		       unsigned long *end_pfn)
2100 {
2101 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2102 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2103 	unsigned long nr_pages = 0;
2104 	u64 j = *i;
2105 
2106 	/* First we loop through and initialize the page values */
2107 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2108 		unsigned long t;
2109 
2110 		if (mo_pfn <= *start_pfn)
2111 			break;
2112 
2113 		t = min(mo_pfn, *end_pfn);
2114 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2115 
2116 		if (mo_pfn < *end_pfn) {
2117 			*start_pfn = mo_pfn;
2118 			break;
2119 		}
2120 	}
2121 
2122 	/* Reset values and now loop through freeing pages as needed */
2123 	swap(j, *i);
2124 
2125 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2126 		unsigned long t;
2127 
2128 		if (mo_pfn <= spfn)
2129 			break;
2130 
2131 		t = min(mo_pfn, epfn);
2132 		deferred_free_pages(spfn, t);
2133 
2134 		if (mo_pfn <= epfn)
2135 			break;
2136 	}
2137 
2138 	return nr_pages;
2139 }
2140 
2141 static void __init
2142 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2143 			   void *arg)
2144 {
2145 	unsigned long spfn, epfn;
2146 	struct zone *zone = arg;
2147 	u64 i;
2148 
2149 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2150 
2151 	/*
2152 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2153 	 * we can avoid introducing any issues with the buddy allocator.
2154 	 */
2155 	while (spfn < end_pfn) {
2156 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2157 		cond_resched();
2158 	}
2159 }
2160 
2161 /* An arch may override for more concurrency. */
2162 __weak int __init
2163 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2164 {
2165 	return 1;
2166 }
2167 
2168 /* Initialise remaining memory on a node */
2169 static int __init deferred_init_memmap(void *data)
2170 {
2171 	pg_data_t *pgdat = data;
2172 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2173 	unsigned long spfn = 0, epfn = 0;
2174 	unsigned long first_init_pfn, flags;
2175 	unsigned long start = jiffies;
2176 	struct zone *zone;
2177 	int zid, max_threads;
2178 	u64 i;
2179 
2180 	/* Bind memory initialisation thread to a local node if possible */
2181 	if (!cpumask_empty(cpumask))
2182 		set_cpus_allowed_ptr(current, cpumask);
2183 
2184 	pgdat_resize_lock(pgdat, &flags);
2185 	first_init_pfn = pgdat->first_deferred_pfn;
2186 	if (first_init_pfn == ULONG_MAX) {
2187 		pgdat_resize_unlock(pgdat, &flags);
2188 		pgdat_init_report_one_done();
2189 		return 0;
2190 	}
2191 
2192 	/* Sanity check boundaries */
2193 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2194 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2195 	pgdat->first_deferred_pfn = ULONG_MAX;
2196 
2197 	/*
2198 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2199 	 * interrupt thread must allocate this early in boot, zone must be
2200 	 * pre-grown prior to start of deferred page initialization.
2201 	 */
2202 	pgdat_resize_unlock(pgdat, &flags);
2203 
2204 	/* Only the highest zone is deferred so find it */
2205 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2206 		zone = pgdat->node_zones + zid;
2207 		if (first_init_pfn < zone_end_pfn(zone))
2208 			break;
2209 	}
2210 
2211 	/* If the zone is empty somebody else may have cleared out the zone */
2212 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2213 						 first_init_pfn))
2214 		goto zone_empty;
2215 
2216 	max_threads = deferred_page_init_max_threads(cpumask);
2217 
2218 	while (spfn < epfn) {
2219 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2220 		struct padata_mt_job job = {
2221 			.thread_fn   = deferred_init_memmap_chunk,
2222 			.fn_arg      = zone,
2223 			.start       = spfn,
2224 			.size        = epfn_align - spfn,
2225 			.align       = PAGES_PER_SECTION,
2226 			.min_chunk   = PAGES_PER_SECTION,
2227 			.max_threads = max_threads,
2228 		};
2229 
2230 		padata_do_multithreaded(&job);
2231 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2232 						    epfn_align);
2233 	}
2234 zone_empty:
2235 	/* Sanity check that the next zone really is unpopulated */
2236 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2237 
2238 	pr_info("node %d deferred pages initialised in %ums\n",
2239 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2240 
2241 	pgdat_init_report_one_done();
2242 	return 0;
2243 }
2244 
2245 /*
2246  * If this zone has deferred pages, try to grow it by initializing enough
2247  * deferred pages to satisfy the allocation specified by order, rounded up to
2248  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2249  * of SECTION_SIZE bytes by initializing struct pages in increments of
2250  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2251  *
2252  * Return true when zone was grown, otherwise return false. We return true even
2253  * when we grow less than requested, to let the caller decide if there are
2254  * enough pages to satisfy the allocation.
2255  *
2256  * Note: We use noinline because this function is needed only during boot, and
2257  * it is called from a __ref function _deferred_grow_zone. This way we are
2258  * making sure that it is not inlined into permanent text section.
2259  */
2260 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2261 {
2262 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2263 	pg_data_t *pgdat = zone->zone_pgdat;
2264 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2265 	unsigned long spfn, epfn, flags;
2266 	unsigned long nr_pages = 0;
2267 	u64 i;
2268 
2269 	/* Only the last zone may have deferred pages */
2270 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2271 		return false;
2272 
2273 	pgdat_resize_lock(pgdat, &flags);
2274 
2275 	/*
2276 	 * If someone grew this zone while we were waiting for spinlock, return
2277 	 * true, as there might be enough pages already.
2278 	 */
2279 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2280 		pgdat_resize_unlock(pgdat, &flags);
2281 		return true;
2282 	}
2283 
2284 	/* If the zone is empty somebody else may have cleared out the zone */
2285 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2286 						 first_deferred_pfn)) {
2287 		pgdat->first_deferred_pfn = ULONG_MAX;
2288 		pgdat_resize_unlock(pgdat, &flags);
2289 		/* Retry only once. */
2290 		return first_deferred_pfn != ULONG_MAX;
2291 	}
2292 
2293 	/*
2294 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2295 	 * that we can avoid introducing any issues with the buddy
2296 	 * allocator.
2297 	 */
2298 	while (spfn < epfn) {
2299 		/* update our first deferred PFN for this section */
2300 		first_deferred_pfn = spfn;
2301 
2302 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2303 		touch_nmi_watchdog();
2304 
2305 		/* We should only stop along section boundaries */
2306 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2307 			continue;
2308 
2309 		/* If our quota has been met we can stop here */
2310 		if (nr_pages >= nr_pages_needed)
2311 			break;
2312 	}
2313 
2314 	pgdat->first_deferred_pfn = spfn;
2315 	pgdat_resize_unlock(pgdat, &flags);
2316 
2317 	return nr_pages > 0;
2318 }
2319 
2320 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2321 
2322 #ifdef CONFIG_CMA
2323 void __init init_cma_reserved_pageblock(struct page *page)
2324 {
2325 	unsigned i = pageblock_nr_pages;
2326 	struct page *p = page;
2327 
2328 	do {
2329 		__ClearPageReserved(p);
2330 		set_page_count(p, 0);
2331 	} while (++p, --i);
2332 
2333 	set_pageblock_migratetype(page, MIGRATE_CMA);
2334 	set_page_refcounted(page);
2335 	__free_pages(page, pageblock_order);
2336 
2337 	adjust_managed_page_count(page, pageblock_nr_pages);
2338 	page_zone(page)->cma_pages += pageblock_nr_pages;
2339 }
2340 #endif
2341 
2342 void set_zone_contiguous(struct zone *zone)
2343 {
2344 	unsigned long block_start_pfn = zone->zone_start_pfn;
2345 	unsigned long block_end_pfn;
2346 
2347 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2348 	for (; block_start_pfn < zone_end_pfn(zone);
2349 			block_start_pfn = block_end_pfn,
2350 			 block_end_pfn += pageblock_nr_pages) {
2351 
2352 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2353 
2354 		if (!__pageblock_pfn_to_page(block_start_pfn,
2355 					     block_end_pfn, zone))
2356 			return;
2357 		cond_resched();
2358 	}
2359 
2360 	/* We confirm that there is no hole */
2361 	zone->contiguous = true;
2362 }
2363 
2364 void __init page_alloc_init_late(void)
2365 {
2366 	struct zone *zone;
2367 	int nid;
2368 
2369 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2370 
2371 	/* There will be num_node_state(N_MEMORY) threads */
2372 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2373 	for_each_node_state(nid, N_MEMORY) {
2374 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2375 	}
2376 
2377 	/* Block until all are initialised */
2378 	wait_for_completion(&pgdat_init_all_done_comp);
2379 
2380 	/*
2381 	 * We initialized the rest of the deferred pages.  Permanently disable
2382 	 * on-demand struct page initialization.
2383 	 */
2384 	static_branch_disable(&deferred_pages);
2385 
2386 	/* Reinit limits that are based on free pages after the kernel is up */
2387 	files_maxfiles_init();
2388 #endif
2389 
2390 	buffer_init();
2391 
2392 	/* Discard memblock private memory */
2393 	memblock_discard();
2394 
2395 	for_each_node_state(nid, N_MEMORY)
2396 		shuffle_free_memory(NODE_DATA(nid));
2397 
2398 	for_each_populated_zone(zone)
2399 		set_zone_contiguous(zone);
2400 
2401 	/* Initialize page ext after all struct pages are initialized. */
2402 	if (deferred_struct_pages)
2403 		page_ext_init();
2404 
2405 	page_alloc_sysctl_init();
2406 }
2407 
2408 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2409 /*
2410  * Returns the number of pages that arch has reserved but
2411  * is not known to alloc_large_system_hash().
2412  */
2413 static unsigned long __init arch_reserved_kernel_pages(void)
2414 {
2415 	return 0;
2416 }
2417 #endif
2418 
2419 /*
2420  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2421  * machines. As memory size is increased the scale is also increased but at
2422  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2423  * quadruples the scale is increased by one, which means the size of hash table
2424  * only doubles, instead of quadrupling as well.
2425  * Because 32-bit systems cannot have large physical memory, where this scaling
2426  * makes sense, it is disabled on such platforms.
2427  */
2428 #if __BITS_PER_LONG > 32
2429 #define ADAPT_SCALE_BASE	(64ul << 30)
2430 #define ADAPT_SCALE_SHIFT	2
2431 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2432 #endif
2433 
2434 /*
2435  * allocate a large system hash table from bootmem
2436  * - it is assumed that the hash table must contain an exact power-of-2
2437  *   quantity of entries
2438  * - limit is the number of hash buckets, not the total allocation size
2439  */
2440 void *__init alloc_large_system_hash(const char *tablename,
2441 				     unsigned long bucketsize,
2442 				     unsigned long numentries,
2443 				     int scale,
2444 				     int flags,
2445 				     unsigned int *_hash_shift,
2446 				     unsigned int *_hash_mask,
2447 				     unsigned long low_limit,
2448 				     unsigned long high_limit)
2449 {
2450 	unsigned long long max = high_limit;
2451 	unsigned long log2qty, size;
2452 	void *table;
2453 	gfp_t gfp_flags;
2454 	bool virt;
2455 	bool huge;
2456 
2457 	/* allow the kernel cmdline to have a say */
2458 	if (!numentries) {
2459 		/* round applicable memory size up to nearest megabyte */
2460 		numentries = nr_kernel_pages;
2461 		numentries -= arch_reserved_kernel_pages();
2462 
2463 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2464 		if (PAGE_SIZE < SZ_1M)
2465 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2466 
2467 #if __BITS_PER_LONG > 32
2468 		if (!high_limit) {
2469 			unsigned long adapt;
2470 
2471 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2472 			     adapt <<= ADAPT_SCALE_SHIFT)
2473 				scale++;
2474 		}
2475 #endif
2476 
2477 		/* limit to 1 bucket per 2^scale bytes of low memory */
2478 		if (scale > PAGE_SHIFT)
2479 			numentries >>= (scale - PAGE_SHIFT);
2480 		else
2481 			numentries <<= (PAGE_SHIFT - scale);
2482 
2483 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2484 			numentries = PAGE_SIZE / bucketsize;
2485 	}
2486 	numentries = roundup_pow_of_two(numentries);
2487 
2488 	/* limit allocation size to 1/16 total memory by default */
2489 	if (max == 0) {
2490 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2491 		do_div(max, bucketsize);
2492 	}
2493 	max = min(max, 0x80000000ULL);
2494 
2495 	if (numentries < low_limit)
2496 		numentries = low_limit;
2497 	if (numentries > max)
2498 		numentries = max;
2499 
2500 	log2qty = ilog2(numentries);
2501 
2502 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2503 	do {
2504 		virt = false;
2505 		size = bucketsize << log2qty;
2506 		if (flags & HASH_EARLY) {
2507 			if (flags & HASH_ZERO)
2508 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2509 			else
2510 				table = memblock_alloc_raw(size,
2511 							   SMP_CACHE_BYTES);
2512 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2513 			table = vmalloc_huge(size, gfp_flags);
2514 			virt = true;
2515 			if (table)
2516 				huge = is_vm_area_hugepages(table);
2517 		} else {
2518 			/*
2519 			 * If bucketsize is not a power-of-two, we may free
2520 			 * some pages at the end of hash table which
2521 			 * alloc_pages_exact() automatically does
2522 			 */
2523 			table = alloc_pages_exact(size, gfp_flags);
2524 			kmemleak_alloc(table, size, 1, gfp_flags);
2525 		}
2526 	} while (!table && size > PAGE_SIZE && --log2qty);
2527 
2528 	if (!table)
2529 		panic("Failed to allocate %s hash table\n", tablename);
2530 
2531 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2532 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2533 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2534 
2535 	if (_hash_shift)
2536 		*_hash_shift = log2qty;
2537 	if (_hash_mask)
2538 		*_hash_mask = (1 << log2qty) - 1;
2539 
2540 	return table;
2541 }
2542 
2543 /**
2544  * set_dma_reserve - set the specified number of pages reserved in the first zone
2545  * @new_dma_reserve: The number of pages to mark reserved
2546  *
2547  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2548  * In the DMA zone, a significant percentage may be consumed by kernel image
2549  * and other unfreeable allocations which can skew the watermarks badly. This
2550  * function may optionally be used to account for unfreeable pages in the
2551  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2552  * smaller per-cpu batchsize.
2553  */
2554 void __init set_dma_reserve(unsigned long new_dma_reserve)
2555 {
2556 	dma_reserve = new_dma_reserve;
2557 }
2558 
2559 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2560 							unsigned int order)
2561 {
2562 
2563 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2564 		int nid = early_pfn_to_nid(pfn);
2565 
2566 		if (!early_page_initialised(pfn, nid))
2567 			return;
2568 	}
2569 
2570 	if (!kmsan_memblock_free_pages(page, order)) {
2571 		/* KMSAN will take care of these pages. */
2572 		return;
2573 	}
2574 	__free_pages_core(page, order);
2575 }
2576 
2577 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2578 EXPORT_SYMBOL(init_on_alloc);
2579 
2580 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2581 EXPORT_SYMBOL(init_on_free);
2582 
2583 static bool _init_on_alloc_enabled_early __read_mostly
2584 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2585 static int __init early_init_on_alloc(char *buf)
2586 {
2587 
2588 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2589 }
2590 early_param("init_on_alloc", early_init_on_alloc);
2591 
2592 static bool _init_on_free_enabled_early __read_mostly
2593 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2594 static int __init early_init_on_free(char *buf)
2595 {
2596 	return kstrtobool(buf, &_init_on_free_enabled_early);
2597 }
2598 early_param("init_on_free", early_init_on_free);
2599 
2600 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2601 
2602 /*
2603  * Enable static keys related to various memory debugging and hardening options.
2604  * Some override others, and depend on early params that are evaluated in the
2605  * order of appearance. So we need to first gather the full picture of what was
2606  * enabled, and then make decisions.
2607  */
2608 static void __init mem_debugging_and_hardening_init(void)
2609 {
2610 	bool page_poisoning_requested = false;
2611 	bool want_check_pages = false;
2612 
2613 #ifdef CONFIG_PAGE_POISONING
2614 	/*
2615 	 * Page poisoning is debug page alloc for some arches. If
2616 	 * either of those options are enabled, enable poisoning.
2617 	 */
2618 	if (page_poisoning_enabled() ||
2619 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2620 	      debug_pagealloc_enabled())) {
2621 		static_branch_enable(&_page_poisoning_enabled);
2622 		page_poisoning_requested = true;
2623 		want_check_pages = true;
2624 	}
2625 #endif
2626 
2627 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2628 	    page_poisoning_requested) {
2629 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2630 			"will take precedence over init_on_alloc and init_on_free\n");
2631 		_init_on_alloc_enabled_early = false;
2632 		_init_on_free_enabled_early = false;
2633 	}
2634 
2635 	if (_init_on_alloc_enabled_early) {
2636 		want_check_pages = true;
2637 		static_branch_enable(&init_on_alloc);
2638 	} else {
2639 		static_branch_disable(&init_on_alloc);
2640 	}
2641 
2642 	if (_init_on_free_enabled_early) {
2643 		want_check_pages = true;
2644 		static_branch_enable(&init_on_free);
2645 	} else {
2646 		static_branch_disable(&init_on_free);
2647 	}
2648 
2649 	if (IS_ENABLED(CONFIG_KMSAN) &&
2650 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2651 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2652 
2653 #ifdef CONFIG_DEBUG_PAGEALLOC
2654 	if (debug_pagealloc_enabled()) {
2655 		want_check_pages = true;
2656 		static_branch_enable(&_debug_pagealloc_enabled);
2657 
2658 		if (debug_guardpage_minorder())
2659 			static_branch_enable(&_debug_guardpage_enabled);
2660 	}
2661 #endif
2662 
2663 	/*
2664 	 * Any page debugging or hardening option also enables sanity checking
2665 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2666 	 * enabled already.
2667 	 */
2668 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2669 		static_branch_enable(&check_pages_enabled);
2670 }
2671 
2672 /* Report memory auto-initialization states for this boot. */
2673 static void __init report_meminit(void)
2674 {
2675 	const char *stack;
2676 
2677 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2678 		stack = "all(pattern)";
2679 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2680 		stack = "all(zero)";
2681 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2682 		stack = "byref_all(zero)";
2683 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2684 		stack = "byref(zero)";
2685 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2686 		stack = "__user(zero)";
2687 	else
2688 		stack = "off";
2689 
2690 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2691 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2692 		want_init_on_free() ? "on" : "off");
2693 	if (want_init_on_free())
2694 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2695 }
2696 
2697 static void __init mem_init_print_info(void)
2698 {
2699 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2700 	unsigned long init_code_size, init_data_size;
2701 
2702 	physpages = get_num_physpages();
2703 	codesize = _etext - _stext;
2704 	datasize = _edata - _sdata;
2705 	rosize = __end_rodata - __start_rodata;
2706 	bss_size = __bss_stop - __bss_start;
2707 	init_data_size = __init_end - __init_begin;
2708 	init_code_size = _einittext - _sinittext;
2709 
2710 	/*
2711 	 * Detect special cases and adjust section sizes accordingly:
2712 	 * 1) .init.* may be embedded into .data sections
2713 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2714 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2715 	 * 3) .rodata.* may be embedded into .text or .data sections.
2716 	 */
2717 #define adj_init_size(start, end, size, pos, adj) \
2718 	do { \
2719 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2720 			size -= adj; \
2721 	} while (0)
2722 
2723 	adj_init_size(__init_begin, __init_end, init_data_size,
2724 		     _sinittext, init_code_size);
2725 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2726 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2727 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2728 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2729 
2730 #undef	adj_init_size
2731 
2732 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2733 #ifdef	CONFIG_HIGHMEM
2734 		", %luK highmem"
2735 #endif
2736 		")\n",
2737 		K(nr_free_pages()), K(physpages),
2738 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2739 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2740 		K(physpages - totalram_pages() - totalcma_pages),
2741 		K(totalcma_pages)
2742 #ifdef	CONFIG_HIGHMEM
2743 		, K(totalhigh_pages())
2744 #endif
2745 		);
2746 }
2747 
2748 /*
2749  * Set up kernel memory allocators
2750  */
2751 void __init mm_core_init(void)
2752 {
2753 	/* Initializations relying on SMP setup */
2754 	build_all_zonelists(NULL);
2755 	page_alloc_init_cpuhp();
2756 
2757 	/*
2758 	 * page_ext requires contiguous pages,
2759 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2760 	 */
2761 	page_ext_init_flatmem();
2762 	mem_debugging_and_hardening_init();
2763 	kfence_alloc_pool_and_metadata();
2764 	report_meminit();
2765 	kmsan_init_shadow();
2766 	stack_depot_early_init();
2767 	mem_init();
2768 	mem_init_print_info();
2769 	kmem_cache_init();
2770 	/*
2771 	 * page_owner must be initialized after buddy is ready, and also after
2772 	 * slab is ready so that stack_depot_init() works properly
2773 	 */
2774 	page_ext_init_flatmem_late();
2775 	kmemleak_init();
2776 	ptlock_cache_init();
2777 	pgtable_cache_init();
2778 	debug_objects_mem_init();
2779 	vmalloc_init();
2780 	/* If no deferred init page_ext now, as vmap is fully initialized */
2781 	if (!deferred_struct_pages)
2782 		page_ext_init();
2783 	/* Should be run before the first non-init thread is created */
2784 	init_espfix_bsp();
2785 	/* Should be run after espfix64 is set up. */
2786 	pti_init();
2787 	kmsan_init_runtime();
2788 	mm_cache_init();
2789 }
2790