xref: /linux/mm/mm_init.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/swap.h>
28 #include <linux/cma.h>
29 #include "internal.h"
30 #include "slab.h"
31 #include "shuffle.h"
32 
33 #include <asm/setup.h>
34 
35 #ifdef CONFIG_DEBUG_MEMORY_INIT
36 int __meminitdata mminit_loglevel;
37 
38 /* The zonelists are simply reported, validation is manual. */
39 void __init mminit_verify_zonelist(void)
40 {
41 	int nid;
42 
43 	if (mminit_loglevel < MMINIT_VERIFY)
44 		return;
45 
46 	for_each_online_node(nid) {
47 		pg_data_t *pgdat = NODE_DATA(nid);
48 		struct zone *zone;
49 		struct zoneref *z;
50 		struct zonelist *zonelist;
51 		int i, listid, zoneid;
52 
53 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
54 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
55 
56 			/* Identify the zone and nodelist */
57 			zoneid = i % MAX_NR_ZONES;
58 			listid = i / MAX_NR_ZONES;
59 			zonelist = &pgdat->node_zonelists[listid];
60 			zone = &pgdat->node_zones[zoneid];
61 			if (!populated_zone(zone))
62 				continue;
63 
64 			/* Print information about the zonelist */
65 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
66 				listid > 0 ? "thisnode" : "general", nid,
67 				zone->name);
68 
69 			/* Iterate the zonelist */
70 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
71 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
72 			pr_cont("\n");
73 		}
74 	}
75 }
76 
77 void __init mminit_verify_pageflags_layout(void)
78 {
79 	int shift, width;
80 	unsigned long or_mask, add_mask;
81 
82 	shift = BITS_PER_LONG;
83 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
84 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
85 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
86 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
87 		SECTIONS_WIDTH,
88 		NODES_WIDTH,
89 		ZONES_WIDTH,
90 		LAST_CPUPID_WIDTH,
91 		KASAN_TAG_WIDTH,
92 		LRU_GEN_WIDTH,
93 		LRU_REFS_WIDTH,
94 		NR_PAGEFLAGS);
95 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
96 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
97 		SECTIONS_SHIFT,
98 		NODES_SHIFT,
99 		ZONES_SHIFT,
100 		LAST_CPUPID_SHIFT,
101 		KASAN_TAG_WIDTH);
102 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
103 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
104 		(unsigned long)SECTIONS_PGSHIFT,
105 		(unsigned long)NODES_PGSHIFT,
106 		(unsigned long)ZONES_PGSHIFT,
107 		(unsigned long)LAST_CPUPID_PGSHIFT,
108 		(unsigned long)KASAN_TAG_PGSHIFT);
109 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
110 		"Node/Zone ID: %lu -> %lu\n",
111 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
112 		(unsigned long)ZONEID_PGOFF);
113 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
114 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
115 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
116 #ifdef NODE_NOT_IN_PAGE_FLAGS
117 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
118 		"Node not in page flags");
119 #endif
120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
121 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
122 		"Last cpupid not in page flags");
123 #endif
124 
125 	if (SECTIONS_WIDTH) {
126 		shift -= SECTIONS_WIDTH;
127 		BUG_ON(shift != SECTIONS_PGSHIFT);
128 	}
129 	if (NODES_WIDTH) {
130 		shift -= NODES_WIDTH;
131 		BUG_ON(shift != NODES_PGSHIFT);
132 	}
133 	if (ZONES_WIDTH) {
134 		shift -= ZONES_WIDTH;
135 		BUG_ON(shift != ZONES_PGSHIFT);
136 	}
137 
138 	/* Check for bitmask overlaps */
139 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
140 			(NODES_MASK << NODES_PGSHIFT) |
141 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
142 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
143 			(NODES_MASK << NODES_PGSHIFT) +
144 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
145 	BUG_ON(or_mask != add_mask);
146 }
147 
148 static __init int set_mminit_loglevel(char *str)
149 {
150 	get_option(&str, &mminit_loglevel);
151 	return 0;
152 }
153 early_param("mminit_loglevel", set_mminit_loglevel);
154 #endif /* CONFIG_DEBUG_MEMORY_INIT */
155 
156 struct kobject *mm_kobj;
157 
158 #ifdef CONFIG_SMP
159 s32 vm_committed_as_batch = 32;
160 
161 void mm_compute_batch(int overcommit_policy)
162 {
163 	u64 memsized_batch;
164 	s32 nr = num_present_cpus();
165 	s32 batch = max_t(s32, nr*2, 32);
166 	unsigned long ram_pages = totalram_pages();
167 
168 	/*
169 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
170 	 * (total memory/#cpus), and lift it to 25% for other policies
171 	 * to easy the possible lock contention for percpu_counter
172 	 * vm_committed_as, while the max limit is INT_MAX
173 	 */
174 	if (overcommit_policy == OVERCOMMIT_NEVER)
175 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
176 	else
177 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
178 
179 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
180 }
181 
182 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
183 					unsigned long action, void *arg)
184 {
185 	switch (action) {
186 	case MEM_ONLINE:
187 	case MEM_OFFLINE:
188 		mm_compute_batch(sysctl_overcommit_memory);
189 		break;
190 	default:
191 		break;
192 	}
193 	return NOTIFY_OK;
194 }
195 
196 static int __init mm_compute_batch_init(void)
197 {
198 	mm_compute_batch(sysctl_overcommit_memory);
199 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
200 	return 0;
201 }
202 
203 __initcall(mm_compute_batch_init);
204 
205 #endif
206 
207 static int __init mm_sysfs_init(void)
208 {
209 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
210 	if (!mm_kobj)
211 		return -ENOMEM;
212 
213 	return 0;
214 }
215 postcore_initcall(mm_sysfs_init);
216 
217 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
218 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
219 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
220 
221 static unsigned long required_kernelcore __initdata;
222 static unsigned long required_kernelcore_percent __initdata;
223 static unsigned long required_movablecore __initdata;
224 static unsigned long required_movablecore_percent __initdata;
225 
226 static unsigned long nr_kernel_pages __initdata;
227 static unsigned long nr_all_pages __initdata;
228 static unsigned long dma_reserve __initdata;
229 
230 static bool deferred_struct_pages __meminitdata;
231 
232 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
233 
234 static int __init cmdline_parse_core(char *p, unsigned long *core,
235 				     unsigned long *percent)
236 {
237 	unsigned long long coremem;
238 	char *endptr;
239 
240 	if (!p)
241 		return -EINVAL;
242 
243 	/* Value may be a percentage of total memory, otherwise bytes */
244 	coremem = simple_strtoull(p, &endptr, 0);
245 	if (*endptr == '%') {
246 		/* Paranoid check for percent values greater than 100 */
247 		WARN_ON(coremem > 100);
248 
249 		*percent = coremem;
250 	} else {
251 		coremem = memparse(p, &p);
252 		/* Paranoid check that UL is enough for the coremem value */
253 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
254 
255 		*core = coremem >> PAGE_SHIFT;
256 		*percent = 0UL;
257 	}
258 	return 0;
259 }
260 
261 bool mirrored_kernelcore __initdata_memblock;
262 
263 /*
264  * kernelcore=size sets the amount of memory for use for allocations that
265  * cannot be reclaimed or migrated.
266  */
267 static int __init cmdline_parse_kernelcore(char *p)
268 {
269 	/* parse kernelcore=mirror */
270 	if (parse_option_str(p, "mirror")) {
271 		mirrored_kernelcore = true;
272 		return 0;
273 	}
274 
275 	return cmdline_parse_core(p, &required_kernelcore,
276 				  &required_kernelcore_percent);
277 }
278 early_param("kernelcore", cmdline_parse_kernelcore);
279 
280 /*
281  * movablecore=size sets the amount of memory for use for allocations that
282  * can be reclaimed or migrated.
283  */
284 static int __init cmdline_parse_movablecore(char *p)
285 {
286 	return cmdline_parse_core(p, &required_movablecore,
287 				  &required_movablecore_percent);
288 }
289 early_param("movablecore", cmdline_parse_movablecore);
290 
291 /*
292  * early_calculate_totalpages()
293  * Sum pages in active regions for movable zone.
294  * Populate N_MEMORY for calculating usable_nodes.
295  */
296 static unsigned long __init early_calculate_totalpages(void)
297 {
298 	unsigned long totalpages = 0;
299 	unsigned long start_pfn, end_pfn;
300 	int i, nid;
301 
302 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
303 		unsigned long pages = end_pfn - start_pfn;
304 
305 		totalpages += pages;
306 		if (pages)
307 			node_set_state(nid, N_MEMORY);
308 	}
309 	return totalpages;
310 }
311 
312 /*
313  * This finds a zone that can be used for ZONE_MOVABLE pages. The
314  * assumption is made that zones within a node are ordered in monotonic
315  * increasing memory addresses so that the "highest" populated zone is used
316  */
317 static void __init find_usable_zone_for_movable(void)
318 {
319 	int zone_index;
320 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
321 		if (zone_index == ZONE_MOVABLE)
322 			continue;
323 
324 		if (arch_zone_highest_possible_pfn[zone_index] >
325 				arch_zone_lowest_possible_pfn[zone_index])
326 			break;
327 	}
328 
329 	VM_BUG_ON(zone_index == -1);
330 	movable_zone = zone_index;
331 }
332 
333 /*
334  * Find the PFN the Movable zone begins in each node. Kernel memory
335  * is spread evenly between nodes as long as the nodes have enough
336  * memory. When they don't, some nodes will have more kernelcore than
337  * others
338  */
339 static void __init find_zone_movable_pfns_for_nodes(void)
340 {
341 	int i, nid;
342 	unsigned long usable_startpfn;
343 	unsigned long kernelcore_node, kernelcore_remaining;
344 	/* save the state before borrow the nodemask */
345 	nodemask_t saved_node_state = node_states[N_MEMORY];
346 	unsigned long totalpages = early_calculate_totalpages();
347 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
348 	struct memblock_region *r;
349 
350 	/* Need to find movable_zone earlier when movable_node is specified. */
351 	find_usable_zone_for_movable();
352 
353 	/*
354 	 * If movable_node is specified, ignore kernelcore and movablecore
355 	 * options.
356 	 */
357 	if (movable_node_is_enabled()) {
358 		for_each_mem_region(r) {
359 			if (!memblock_is_hotpluggable(r))
360 				continue;
361 
362 			nid = memblock_get_region_node(r);
363 
364 			usable_startpfn = PFN_DOWN(r->base);
365 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
366 				min(usable_startpfn, zone_movable_pfn[nid]) :
367 				usable_startpfn;
368 		}
369 
370 		goto out2;
371 	}
372 
373 	/*
374 	 * If kernelcore=mirror is specified, ignore movablecore option
375 	 */
376 	if (mirrored_kernelcore) {
377 		bool mem_below_4gb_not_mirrored = false;
378 
379 		if (!memblock_has_mirror()) {
380 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
381 			goto out;
382 		}
383 
384 		for_each_mem_region(r) {
385 			if (memblock_is_mirror(r))
386 				continue;
387 
388 			nid = memblock_get_region_node(r);
389 
390 			usable_startpfn = memblock_region_memory_base_pfn(r);
391 
392 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
393 				mem_below_4gb_not_mirrored = true;
394 				continue;
395 			}
396 
397 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
398 				min(usable_startpfn, zone_movable_pfn[nid]) :
399 				usable_startpfn;
400 		}
401 
402 		if (mem_below_4gb_not_mirrored)
403 			pr_warn("This configuration results in unmirrored kernel memory.\n");
404 
405 		goto out2;
406 	}
407 
408 	/*
409 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
410 	 * amount of necessary memory.
411 	 */
412 	if (required_kernelcore_percent)
413 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
414 				       10000UL;
415 	if (required_movablecore_percent)
416 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
417 					10000UL;
418 
419 	/*
420 	 * If movablecore= was specified, calculate what size of
421 	 * kernelcore that corresponds so that memory usable for
422 	 * any allocation type is evenly spread. If both kernelcore
423 	 * and movablecore are specified, then the value of kernelcore
424 	 * will be used for required_kernelcore if it's greater than
425 	 * what movablecore would have allowed.
426 	 */
427 	if (required_movablecore) {
428 		unsigned long corepages;
429 
430 		/*
431 		 * Round-up so that ZONE_MOVABLE is at least as large as what
432 		 * was requested by the user
433 		 */
434 		required_movablecore =
435 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
436 		required_movablecore = min(totalpages, required_movablecore);
437 		corepages = totalpages - required_movablecore;
438 
439 		required_kernelcore = max(required_kernelcore, corepages);
440 	}
441 
442 	/*
443 	 * If kernelcore was not specified or kernelcore size is larger
444 	 * than totalpages, there is no ZONE_MOVABLE.
445 	 */
446 	if (!required_kernelcore || required_kernelcore >= totalpages)
447 		goto out;
448 
449 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
450 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
451 
452 restart:
453 	/* Spread kernelcore memory as evenly as possible throughout nodes */
454 	kernelcore_node = required_kernelcore / usable_nodes;
455 	for_each_node_state(nid, N_MEMORY) {
456 		unsigned long start_pfn, end_pfn;
457 
458 		/*
459 		 * Recalculate kernelcore_node if the division per node
460 		 * now exceeds what is necessary to satisfy the requested
461 		 * amount of memory for the kernel
462 		 */
463 		if (required_kernelcore < kernelcore_node)
464 			kernelcore_node = required_kernelcore / usable_nodes;
465 
466 		/*
467 		 * As the map is walked, we track how much memory is usable
468 		 * by the kernel using kernelcore_remaining. When it is
469 		 * 0, the rest of the node is usable by ZONE_MOVABLE
470 		 */
471 		kernelcore_remaining = kernelcore_node;
472 
473 		/* Go through each range of PFNs within this node */
474 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
475 			unsigned long size_pages;
476 
477 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
478 			if (start_pfn >= end_pfn)
479 				continue;
480 
481 			/* Account for what is only usable for kernelcore */
482 			if (start_pfn < usable_startpfn) {
483 				unsigned long kernel_pages;
484 				kernel_pages = min(end_pfn, usable_startpfn)
485 								- start_pfn;
486 
487 				kernelcore_remaining -= min(kernel_pages,
488 							kernelcore_remaining);
489 				required_kernelcore -= min(kernel_pages,
490 							required_kernelcore);
491 
492 				/* Continue if range is now fully accounted */
493 				if (end_pfn <= usable_startpfn) {
494 
495 					/*
496 					 * Push zone_movable_pfn to the end so
497 					 * that if we have to rebalance
498 					 * kernelcore across nodes, we will
499 					 * not double account here
500 					 */
501 					zone_movable_pfn[nid] = end_pfn;
502 					continue;
503 				}
504 				start_pfn = usable_startpfn;
505 			}
506 
507 			/*
508 			 * The usable PFN range for ZONE_MOVABLE is from
509 			 * start_pfn->end_pfn. Calculate size_pages as the
510 			 * number of pages used as kernelcore
511 			 */
512 			size_pages = end_pfn - start_pfn;
513 			if (size_pages > kernelcore_remaining)
514 				size_pages = kernelcore_remaining;
515 			zone_movable_pfn[nid] = start_pfn + size_pages;
516 
517 			/*
518 			 * Some kernelcore has been met, update counts and
519 			 * break if the kernelcore for this node has been
520 			 * satisfied
521 			 */
522 			required_kernelcore -= min(required_kernelcore,
523 								size_pages);
524 			kernelcore_remaining -= size_pages;
525 			if (!kernelcore_remaining)
526 				break;
527 		}
528 	}
529 
530 	/*
531 	 * If there is still required_kernelcore, we do another pass with one
532 	 * less node in the count. This will push zone_movable_pfn[nid] further
533 	 * along on the nodes that still have memory until kernelcore is
534 	 * satisfied
535 	 */
536 	usable_nodes--;
537 	if (usable_nodes && required_kernelcore > usable_nodes)
538 		goto restart;
539 
540 out2:
541 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
542 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
543 		unsigned long start_pfn, end_pfn;
544 
545 		zone_movable_pfn[nid] =
546 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
547 
548 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
549 		if (zone_movable_pfn[nid] >= end_pfn)
550 			zone_movable_pfn[nid] = 0;
551 	}
552 
553 out:
554 	/* restore the node_state */
555 	node_states[N_MEMORY] = saved_node_state;
556 }
557 
558 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
559 				unsigned long zone, int nid)
560 {
561 	mm_zero_struct_page(page);
562 	set_page_links(page, zone, nid, pfn);
563 	init_page_count(page);
564 	page_mapcount_reset(page);
565 	page_cpupid_reset_last(page);
566 	page_kasan_tag_reset(page);
567 
568 	INIT_LIST_HEAD(&page->lru);
569 #ifdef WANT_PAGE_VIRTUAL
570 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
571 	if (!is_highmem_idx(zone))
572 		set_page_address(page, __va(pfn << PAGE_SHIFT));
573 #endif
574 }
575 
576 #ifdef CONFIG_NUMA
577 /*
578  * During memory init memblocks map pfns to nids. The search is expensive and
579  * this caches recent lookups. The implementation of __early_pfn_to_nid
580  * treats start/end as pfns.
581  */
582 struct mminit_pfnnid_cache {
583 	unsigned long last_start;
584 	unsigned long last_end;
585 	int last_nid;
586 };
587 
588 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
589 
590 /*
591  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
592  */
593 static int __meminit __early_pfn_to_nid(unsigned long pfn,
594 					struct mminit_pfnnid_cache *state)
595 {
596 	unsigned long start_pfn, end_pfn;
597 	int nid;
598 
599 	if (state->last_start <= pfn && pfn < state->last_end)
600 		return state->last_nid;
601 
602 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
603 	if (nid != NUMA_NO_NODE) {
604 		state->last_start = start_pfn;
605 		state->last_end = end_pfn;
606 		state->last_nid = nid;
607 	}
608 
609 	return nid;
610 }
611 
612 int __meminit early_pfn_to_nid(unsigned long pfn)
613 {
614 	static DEFINE_SPINLOCK(early_pfn_lock);
615 	int nid;
616 
617 	spin_lock(&early_pfn_lock);
618 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
619 	if (nid < 0)
620 		nid = first_online_node;
621 	spin_unlock(&early_pfn_lock);
622 
623 	return nid;
624 }
625 
626 int hashdist = HASHDIST_DEFAULT;
627 
628 static int __init set_hashdist(char *str)
629 {
630 	if (!str)
631 		return 0;
632 	hashdist = simple_strtoul(str, &str, 0);
633 	return 1;
634 }
635 __setup("hashdist=", set_hashdist);
636 
637 static inline void fixup_hashdist(void)
638 {
639 	if (num_node_state(N_MEMORY) == 1)
640 		hashdist = 0;
641 }
642 #else
643 static inline void fixup_hashdist(void) {}
644 #endif /* CONFIG_NUMA */
645 
646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
647 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
648 {
649 	pgdat->first_deferred_pfn = ULONG_MAX;
650 }
651 
652 /* Returns true if the struct page for the pfn is initialised */
653 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
654 {
655 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
656 		return false;
657 
658 	return true;
659 }
660 
661 /*
662  * Returns true when the remaining initialisation should be deferred until
663  * later in the boot cycle when it can be parallelised.
664  */
665 static bool __meminit
666 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
667 {
668 	static unsigned long prev_end_pfn, nr_initialised;
669 
670 	if (early_page_ext_enabled())
671 		return false;
672 	/*
673 	 * prev_end_pfn static that contains the end of previous zone
674 	 * No need to protect because called very early in boot before smp_init.
675 	 */
676 	if (prev_end_pfn != end_pfn) {
677 		prev_end_pfn = end_pfn;
678 		nr_initialised = 0;
679 	}
680 
681 	/* Always populate low zones for address-constrained allocations */
682 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
683 		return false;
684 
685 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
686 		return true;
687 	/*
688 	 * We start only with one section of pages, more pages are added as
689 	 * needed until the rest of deferred pages are initialized.
690 	 */
691 	nr_initialised++;
692 	if ((nr_initialised > PAGES_PER_SECTION) &&
693 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
694 		NODE_DATA(nid)->first_deferred_pfn = pfn;
695 		return true;
696 	}
697 	return false;
698 }
699 
700 static void __meminit init_reserved_page(unsigned long pfn, int nid)
701 {
702 	pg_data_t *pgdat;
703 	int zid;
704 
705 	if (early_page_initialised(pfn, nid))
706 		return;
707 
708 	pgdat = NODE_DATA(nid);
709 
710 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
711 		struct zone *zone = &pgdat->node_zones[zid];
712 
713 		if (zone_spans_pfn(zone, pfn))
714 			break;
715 	}
716 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
717 }
718 #else
719 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
720 
721 static inline bool early_page_initialised(unsigned long pfn, int nid)
722 {
723 	return true;
724 }
725 
726 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
727 {
728 	return false;
729 }
730 
731 static inline void init_reserved_page(unsigned long pfn, int nid)
732 {
733 }
734 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
735 
736 /*
737  * Initialised pages do not have PageReserved set. This function is
738  * called for each range allocated by the bootmem allocator and
739  * marks the pages PageReserved. The remaining valid pages are later
740  * sent to the buddy page allocator.
741  */
742 void __meminit reserve_bootmem_region(phys_addr_t start,
743 				      phys_addr_t end, int nid)
744 {
745 	unsigned long start_pfn = PFN_DOWN(start);
746 	unsigned long end_pfn = PFN_UP(end);
747 
748 	for (; start_pfn < end_pfn; start_pfn++) {
749 		if (pfn_valid(start_pfn)) {
750 			struct page *page = pfn_to_page(start_pfn);
751 
752 			init_reserved_page(start_pfn, nid);
753 
754 			/* Avoid false-positive PageTail() */
755 			INIT_LIST_HEAD(&page->lru);
756 
757 			/*
758 			 * no need for atomic set_bit because the struct
759 			 * page is not visible yet so nobody should
760 			 * access it yet.
761 			 */
762 			__SetPageReserved(page);
763 		}
764 	}
765 }
766 
767 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
768 static bool __meminit
769 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
770 {
771 	static struct memblock_region *r;
772 
773 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
774 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
775 			for_each_mem_region(r) {
776 				if (*pfn < memblock_region_memory_end_pfn(r))
777 					break;
778 			}
779 		}
780 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
781 		    memblock_is_mirror(r)) {
782 			*pfn = memblock_region_memory_end_pfn(r);
783 			return true;
784 		}
785 	}
786 	return false;
787 }
788 
789 /*
790  * Only struct pages that correspond to ranges defined by memblock.memory
791  * are zeroed and initialized by going through __init_single_page() during
792  * memmap_init_zone_range().
793  *
794  * But, there could be struct pages that correspond to holes in
795  * memblock.memory. This can happen because of the following reasons:
796  * - physical memory bank size is not necessarily the exact multiple of the
797  *   arbitrary section size
798  * - early reserved memory may not be listed in memblock.memory
799  * - memory layouts defined with memmap= kernel parameter may not align
800  *   nicely with memmap sections
801  *
802  * Explicitly initialize those struct pages so that:
803  * - PG_Reserved is set
804  * - zone and node links point to zone and node that span the page if the
805  *   hole is in the middle of a zone
806  * - zone and node links point to adjacent zone/node if the hole falls on
807  *   the zone boundary; the pages in such holes will be prepended to the
808  *   zone/node above the hole except for the trailing pages in the last
809  *   section that will be appended to the zone/node below.
810  */
811 static void __init init_unavailable_range(unsigned long spfn,
812 					  unsigned long epfn,
813 					  int zone, int node)
814 {
815 	unsigned long pfn;
816 	u64 pgcnt = 0;
817 
818 	for (pfn = spfn; pfn < epfn; pfn++) {
819 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
820 			pfn = pageblock_end_pfn(pfn) - 1;
821 			continue;
822 		}
823 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
824 		__SetPageReserved(pfn_to_page(pfn));
825 		pgcnt++;
826 	}
827 
828 	if (pgcnt)
829 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
830 			node, zone_names[zone], pgcnt);
831 }
832 
833 /*
834  * Initially all pages are reserved - free ones are freed
835  * up by memblock_free_all() once the early boot process is
836  * done. Non-atomic initialization, single-pass.
837  *
838  * All aligned pageblocks are initialized to the specified migratetype
839  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
840  * zone stats (e.g., nr_isolate_pageblock) are touched.
841  */
842 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
843 		unsigned long start_pfn, unsigned long zone_end_pfn,
844 		enum meminit_context context,
845 		struct vmem_altmap *altmap, int migratetype)
846 {
847 	unsigned long pfn, end_pfn = start_pfn + size;
848 	struct page *page;
849 
850 	if (highest_memmap_pfn < end_pfn - 1)
851 		highest_memmap_pfn = end_pfn - 1;
852 
853 #ifdef CONFIG_ZONE_DEVICE
854 	/*
855 	 * Honor reservation requested by the driver for this ZONE_DEVICE
856 	 * memory. We limit the total number of pages to initialize to just
857 	 * those that might contain the memory mapping. We will defer the
858 	 * ZONE_DEVICE page initialization until after we have released
859 	 * the hotplug lock.
860 	 */
861 	if (zone == ZONE_DEVICE) {
862 		if (!altmap)
863 			return;
864 
865 		if (start_pfn == altmap->base_pfn)
866 			start_pfn += altmap->reserve;
867 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
868 	}
869 #endif
870 
871 	for (pfn = start_pfn; pfn < end_pfn; ) {
872 		/*
873 		 * There can be holes in boot-time mem_map[]s handed to this
874 		 * function.  They do not exist on hotplugged memory.
875 		 */
876 		if (context == MEMINIT_EARLY) {
877 			if (overlap_memmap_init(zone, &pfn))
878 				continue;
879 			if (defer_init(nid, pfn, zone_end_pfn)) {
880 				deferred_struct_pages = true;
881 				break;
882 			}
883 		}
884 
885 		page = pfn_to_page(pfn);
886 		__init_single_page(page, pfn, zone, nid);
887 		if (context == MEMINIT_HOTPLUG)
888 			__SetPageReserved(page);
889 
890 		/*
891 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
892 		 * such that unmovable allocations won't be scattered all
893 		 * over the place during system boot.
894 		 */
895 		if (pageblock_aligned(pfn)) {
896 			set_pageblock_migratetype(page, migratetype);
897 			cond_resched();
898 		}
899 		pfn++;
900 	}
901 }
902 
903 static void __init memmap_init_zone_range(struct zone *zone,
904 					  unsigned long start_pfn,
905 					  unsigned long end_pfn,
906 					  unsigned long *hole_pfn)
907 {
908 	unsigned long zone_start_pfn = zone->zone_start_pfn;
909 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
910 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
911 
912 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
913 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
914 
915 	if (start_pfn >= end_pfn)
916 		return;
917 
918 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
919 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
920 
921 	if (*hole_pfn < start_pfn)
922 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
923 
924 	*hole_pfn = end_pfn;
925 }
926 
927 static void __init memmap_init(void)
928 {
929 	unsigned long start_pfn, end_pfn;
930 	unsigned long hole_pfn = 0;
931 	int i, j, zone_id = 0, nid;
932 
933 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
934 		struct pglist_data *node = NODE_DATA(nid);
935 
936 		for (j = 0; j < MAX_NR_ZONES; j++) {
937 			struct zone *zone = node->node_zones + j;
938 
939 			if (!populated_zone(zone))
940 				continue;
941 
942 			memmap_init_zone_range(zone, start_pfn, end_pfn,
943 					       &hole_pfn);
944 			zone_id = j;
945 		}
946 	}
947 
948 #ifdef CONFIG_SPARSEMEM
949 	/*
950 	 * Initialize the memory map for hole in the range [memory_end,
951 	 * section_end].
952 	 * Append the pages in this hole to the highest zone in the last
953 	 * node.
954 	 * The call to init_unavailable_range() is outside the ifdef to
955 	 * silence the compiler warining about zone_id set but not used;
956 	 * for FLATMEM it is a nop anyway
957 	 */
958 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
959 	if (hole_pfn < end_pfn)
960 #endif
961 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
962 }
963 
964 #ifdef CONFIG_ZONE_DEVICE
965 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
966 					  unsigned long zone_idx, int nid,
967 					  struct dev_pagemap *pgmap)
968 {
969 
970 	__init_single_page(page, pfn, zone_idx, nid);
971 
972 	/*
973 	 * Mark page reserved as it will need to wait for onlining
974 	 * phase for it to be fully associated with a zone.
975 	 *
976 	 * We can use the non-atomic __set_bit operation for setting
977 	 * the flag as we are still initializing the pages.
978 	 */
979 	__SetPageReserved(page);
980 
981 	/*
982 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
983 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
984 	 * ever freed or placed on a driver-private list.
985 	 */
986 	page->pgmap = pgmap;
987 	page->zone_device_data = NULL;
988 
989 	/*
990 	 * Mark the block movable so that blocks are reserved for
991 	 * movable at startup. This will force kernel allocations
992 	 * to reserve their blocks rather than leaking throughout
993 	 * the address space during boot when many long-lived
994 	 * kernel allocations are made.
995 	 *
996 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
997 	 * because this is done early in section_activate()
998 	 */
999 	if (pageblock_aligned(pfn)) {
1000 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1001 		cond_resched();
1002 	}
1003 
1004 	/*
1005 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1006 	 * which will set the page count to 1 when allocating the page.
1007 	 */
1008 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1009 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1010 		set_page_count(page, 0);
1011 }
1012 
1013 /*
1014  * With compound page geometry and when struct pages are stored in ram most
1015  * tail pages are reused. Consequently, the amount of unique struct pages to
1016  * initialize is a lot smaller that the total amount of struct pages being
1017  * mapped. This is a paired / mild layering violation with explicit knowledge
1018  * of how the sparse_vmemmap internals handle compound pages in the lack
1019  * of an altmap. See vmemmap_populate_compound_pages().
1020  */
1021 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1022 					      struct dev_pagemap *pgmap)
1023 {
1024 	if (!vmemmap_can_optimize(altmap, pgmap))
1025 		return pgmap_vmemmap_nr(pgmap);
1026 
1027 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1028 }
1029 
1030 static void __ref memmap_init_compound(struct page *head,
1031 				       unsigned long head_pfn,
1032 				       unsigned long zone_idx, int nid,
1033 				       struct dev_pagemap *pgmap,
1034 				       unsigned long nr_pages)
1035 {
1036 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1037 	unsigned int order = pgmap->vmemmap_shift;
1038 
1039 	__SetPageHead(head);
1040 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1041 		struct page *page = pfn_to_page(pfn);
1042 
1043 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1044 		prep_compound_tail(head, pfn - head_pfn);
1045 		set_page_count(page, 0);
1046 
1047 		/*
1048 		 * The first tail page stores important compound page info.
1049 		 * Call prep_compound_head() after the first tail page has
1050 		 * been initialized, to not have the data overwritten.
1051 		 */
1052 		if (pfn == head_pfn + 1)
1053 			prep_compound_head(head, order);
1054 	}
1055 }
1056 
1057 void __ref memmap_init_zone_device(struct zone *zone,
1058 				   unsigned long start_pfn,
1059 				   unsigned long nr_pages,
1060 				   struct dev_pagemap *pgmap)
1061 {
1062 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1063 	struct pglist_data *pgdat = zone->zone_pgdat;
1064 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1065 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1066 	unsigned long zone_idx = zone_idx(zone);
1067 	unsigned long start = jiffies;
1068 	int nid = pgdat->node_id;
1069 
1070 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1071 		return;
1072 
1073 	/*
1074 	 * The call to memmap_init should have already taken care
1075 	 * of the pages reserved for the memmap, so we can just jump to
1076 	 * the end of that region and start processing the device pages.
1077 	 */
1078 	if (altmap) {
1079 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1080 		nr_pages = end_pfn - start_pfn;
1081 	}
1082 
1083 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1084 		struct page *page = pfn_to_page(pfn);
1085 
1086 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1087 
1088 		if (pfns_per_compound == 1)
1089 			continue;
1090 
1091 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1092 				     compound_nr_pages(altmap, pgmap));
1093 	}
1094 
1095 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1096 		nr_pages, jiffies_to_msecs(jiffies - start));
1097 }
1098 #endif
1099 
1100 /*
1101  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1102  * because it is sized independent of architecture. Unlike the other zones,
1103  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1104  * in each node depending on the size of each node and how evenly kernelcore
1105  * is distributed. This helper function adjusts the zone ranges
1106  * provided by the architecture for a given node by using the end of the
1107  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1108  * zones within a node are in order of monotonic increases memory addresses
1109  */
1110 static void __init adjust_zone_range_for_zone_movable(int nid,
1111 					unsigned long zone_type,
1112 					unsigned long node_end_pfn,
1113 					unsigned long *zone_start_pfn,
1114 					unsigned long *zone_end_pfn)
1115 {
1116 	/* Only adjust if ZONE_MOVABLE is on this node */
1117 	if (zone_movable_pfn[nid]) {
1118 		/* Size ZONE_MOVABLE */
1119 		if (zone_type == ZONE_MOVABLE) {
1120 			*zone_start_pfn = zone_movable_pfn[nid];
1121 			*zone_end_pfn = min(node_end_pfn,
1122 				arch_zone_highest_possible_pfn[movable_zone]);
1123 
1124 		/* Adjust for ZONE_MOVABLE starting within this range */
1125 		} else if (!mirrored_kernelcore &&
1126 			*zone_start_pfn < zone_movable_pfn[nid] &&
1127 			*zone_end_pfn > zone_movable_pfn[nid]) {
1128 			*zone_end_pfn = zone_movable_pfn[nid];
1129 
1130 		/* Check if this whole range is within ZONE_MOVABLE */
1131 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1132 			*zone_start_pfn = *zone_end_pfn;
1133 	}
1134 }
1135 
1136 /*
1137  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1138  * then all holes in the requested range will be accounted for.
1139  */
1140 unsigned long __init __absent_pages_in_range(int nid,
1141 				unsigned long range_start_pfn,
1142 				unsigned long range_end_pfn)
1143 {
1144 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1145 	unsigned long start_pfn, end_pfn;
1146 	int i;
1147 
1148 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1149 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1150 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1151 		nr_absent -= end_pfn - start_pfn;
1152 	}
1153 	return nr_absent;
1154 }
1155 
1156 /**
1157  * absent_pages_in_range - Return number of page frames in holes within a range
1158  * @start_pfn: The start PFN to start searching for holes
1159  * @end_pfn: The end PFN to stop searching for holes
1160  *
1161  * Return: the number of pages frames in memory holes within a range.
1162  */
1163 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1164 							unsigned long end_pfn)
1165 {
1166 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1167 }
1168 
1169 /* Return the number of page frames in holes in a zone on a node */
1170 static unsigned long __init zone_absent_pages_in_node(int nid,
1171 					unsigned long zone_type,
1172 					unsigned long zone_start_pfn,
1173 					unsigned long zone_end_pfn)
1174 {
1175 	unsigned long nr_absent;
1176 
1177 	/* zone is empty, we don't have any absent pages */
1178 	if (zone_start_pfn == zone_end_pfn)
1179 		return 0;
1180 
1181 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1182 
1183 	/*
1184 	 * ZONE_MOVABLE handling.
1185 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1186 	 * and vice versa.
1187 	 */
1188 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1189 		unsigned long start_pfn, end_pfn;
1190 		struct memblock_region *r;
1191 
1192 		for_each_mem_region(r) {
1193 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1194 					  zone_start_pfn, zone_end_pfn);
1195 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1196 					zone_start_pfn, zone_end_pfn);
1197 
1198 			if (zone_type == ZONE_MOVABLE &&
1199 			    memblock_is_mirror(r))
1200 				nr_absent += end_pfn - start_pfn;
1201 
1202 			if (zone_type == ZONE_NORMAL &&
1203 			    !memblock_is_mirror(r))
1204 				nr_absent += end_pfn - start_pfn;
1205 		}
1206 	}
1207 
1208 	return nr_absent;
1209 }
1210 
1211 /*
1212  * Return the number of pages a zone spans in a node, including holes
1213  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1214  */
1215 static unsigned long __init zone_spanned_pages_in_node(int nid,
1216 					unsigned long zone_type,
1217 					unsigned long node_start_pfn,
1218 					unsigned long node_end_pfn,
1219 					unsigned long *zone_start_pfn,
1220 					unsigned long *zone_end_pfn)
1221 {
1222 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1223 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1224 
1225 	/* Get the start and end of the zone */
1226 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1227 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1228 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1229 					   zone_start_pfn, zone_end_pfn);
1230 
1231 	/* Check that this node has pages within the zone's required range */
1232 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1233 		return 0;
1234 
1235 	/* Move the zone boundaries inside the node if necessary */
1236 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1237 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1238 
1239 	/* Return the spanned pages */
1240 	return *zone_end_pfn - *zone_start_pfn;
1241 }
1242 
1243 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1244 {
1245 	struct zone *z;
1246 
1247 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1248 		z->zone_start_pfn = 0;
1249 		z->spanned_pages = 0;
1250 		z->present_pages = 0;
1251 #if defined(CONFIG_MEMORY_HOTPLUG)
1252 		z->present_early_pages = 0;
1253 #endif
1254 	}
1255 
1256 	pgdat->node_spanned_pages = 0;
1257 	pgdat->node_present_pages = 0;
1258 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1259 }
1260 
1261 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1262 						unsigned long node_start_pfn,
1263 						unsigned long node_end_pfn)
1264 {
1265 	unsigned long realtotalpages = 0, totalpages = 0;
1266 	enum zone_type i;
1267 
1268 	for (i = 0; i < MAX_NR_ZONES; i++) {
1269 		struct zone *zone = pgdat->node_zones + i;
1270 		unsigned long zone_start_pfn, zone_end_pfn;
1271 		unsigned long spanned, absent;
1272 		unsigned long real_size;
1273 
1274 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1275 						     node_start_pfn,
1276 						     node_end_pfn,
1277 						     &zone_start_pfn,
1278 						     &zone_end_pfn);
1279 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1280 						   zone_start_pfn,
1281 						   zone_end_pfn);
1282 
1283 		real_size = spanned - absent;
1284 
1285 		if (spanned)
1286 			zone->zone_start_pfn = zone_start_pfn;
1287 		else
1288 			zone->zone_start_pfn = 0;
1289 		zone->spanned_pages = spanned;
1290 		zone->present_pages = real_size;
1291 #if defined(CONFIG_MEMORY_HOTPLUG)
1292 		zone->present_early_pages = real_size;
1293 #endif
1294 
1295 		totalpages += spanned;
1296 		realtotalpages += real_size;
1297 	}
1298 
1299 	pgdat->node_spanned_pages = totalpages;
1300 	pgdat->node_present_pages = realtotalpages;
1301 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1302 }
1303 
1304 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1305 						unsigned long present_pages)
1306 {
1307 	unsigned long pages = spanned_pages;
1308 
1309 	/*
1310 	 * Provide a more accurate estimation if there are holes within
1311 	 * the zone and SPARSEMEM is in use. If there are holes within the
1312 	 * zone, each populated memory region may cost us one or two extra
1313 	 * memmap pages due to alignment because memmap pages for each
1314 	 * populated regions may not be naturally aligned on page boundary.
1315 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1316 	 */
1317 	if (spanned_pages > present_pages + (present_pages >> 4) &&
1318 	    IS_ENABLED(CONFIG_SPARSEMEM))
1319 		pages = present_pages;
1320 
1321 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1322 }
1323 
1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1326 {
1327 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1328 
1329 	spin_lock_init(&ds_queue->split_queue_lock);
1330 	INIT_LIST_HEAD(&ds_queue->split_queue);
1331 	ds_queue->split_queue_len = 0;
1332 }
1333 #else
1334 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1335 #endif
1336 
1337 #ifdef CONFIG_COMPACTION
1338 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1339 {
1340 	init_waitqueue_head(&pgdat->kcompactd_wait);
1341 }
1342 #else
1343 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1344 #endif
1345 
1346 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1347 {
1348 	int i;
1349 
1350 	pgdat_resize_init(pgdat);
1351 	pgdat_kswapd_lock_init(pgdat);
1352 
1353 	pgdat_init_split_queue(pgdat);
1354 	pgdat_init_kcompactd(pgdat);
1355 
1356 	init_waitqueue_head(&pgdat->kswapd_wait);
1357 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1358 
1359 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1360 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1361 
1362 	pgdat_page_ext_init(pgdat);
1363 	lruvec_init(&pgdat->__lruvec);
1364 }
1365 
1366 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1367 							unsigned long remaining_pages)
1368 {
1369 	atomic_long_set(&zone->managed_pages, remaining_pages);
1370 	zone_set_nid(zone, nid);
1371 	zone->name = zone_names[idx];
1372 	zone->zone_pgdat = NODE_DATA(nid);
1373 	spin_lock_init(&zone->lock);
1374 	zone_seqlock_init(zone);
1375 	zone_pcp_init(zone);
1376 }
1377 
1378 static void __meminit zone_init_free_lists(struct zone *zone)
1379 {
1380 	unsigned int order, t;
1381 	for_each_migratetype_order(order, t) {
1382 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1383 		zone->free_area[order].nr_free = 0;
1384 	}
1385 
1386 #ifdef CONFIG_UNACCEPTED_MEMORY
1387 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1388 #endif
1389 }
1390 
1391 void __meminit init_currently_empty_zone(struct zone *zone,
1392 					unsigned long zone_start_pfn,
1393 					unsigned long size)
1394 {
1395 	struct pglist_data *pgdat = zone->zone_pgdat;
1396 	int zone_idx = zone_idx(zone) + 1;
1397 
1398 	if (zone_idx > pgdat->nr_zones)
1399 		pgdat->nr_zones = zone_idx;
1400 
1401 	zone->zone_start_pfn = zone_start_pfn;
1402 
1403 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1404 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1405 			pgdat->node_id,
1406 			(unsigned long)zone_idx(zone),
1407 			zone_start_pfn, (zone_start_pfn + size));
1408 
1409 	zone_init_free_lists(zone);
1410 	zone->initialized = 1;
1411 }
1412 
1413 #ifndef CONFIG_SPARSEMEM
1414 /*
1415  * Calculate the size of the zone->blockflags rounded to an unsigned long
1416  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1417  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1418  * round what is now in bits to nearest long in bits, then return it in
1419  * bytes.
1420  */
1421 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1422 {
1423 	unsigned long usemapsize;
1424 
1425 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1426 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1427 	usemapsize = usemapsize >> pageblock_order;
1428 	usemapsize *= NR_PAGEBLOCK_BITS;
1429 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1430 
1431 	return usemapsize / BITS_PER_BYTE;
1432 }
1433 
1434 static void __ref setup_usemap(struct zone *zone)
1435 {
1436 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1437 					       zone->spanned_pages);
1438 	zone->pageblock_flags = NULL;
1439 	if (usemapsize) {
1440 		zone->pageblock_flags =
1441 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1442 					    zone_to_nid(zone));
1443 		if (!zone->pageblock_flags)
1444 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1445 			      usemapsize, zone->name, zone_to_nid(zone));
1446 	}
1447 }
1448 #else
1449 static inline void setup_usemap(struct zone *zone) {}
1450 #endif /* CONFIG_SPARSEMEM */
1451 
1452 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1453 
1454 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1455 void __init set_pageblock_order(void)
1456 {
1457 	unsigned int order = MAX_ORDER;
1458 
1459 	/* Check that pageblock_nr_pages has not already been setup */
1460 	if (pageblock_order)
1461 		return;
1462 
1463 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1464 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1465 		order = HUGETLB_PAGE_ORDER;
1466 
1467 	/*
1468 	 * Assume the largest contiguous order of interest is a huge page.
1469 	 * This value may be variable depending on boot parameters on IA64 and
1470 	 * powerpc.
1471 	 */
1472 	pageblock_order = order;
1473 }
1474 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1475 
1476 /*
1477  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1478  * is unused as pageblock_order is set at compile-time. See
1479  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1480  * the kernel config
1481  */
1482 void __init set_pageblock_order(void)
1483 {
1484 }
1485 
1486 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1487 
1488 /*
1489  * Set up the zone data structures
1490  * - init pgdat internals
1491  * - init all zones belonging to this node
1492  *
1493  * NOTE: this function is only called during memory hotplug
1494  */
1495 #ifdef CONFIG_MEMORY_HOTPLUG
1496 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1497 {
1498 	int nid = pgdat->node_id;
1499 	enum zone_type z;
1500 	int cpu;
1501 
1502 	pgdat_init_internals(pgdat);
1503 
1504 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1505 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1506 
1507 	/*
1508 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1509 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1510 	 * when it starts in the near future.
1511 	 */
1512 	pgdat->nr_zones = 0;
1513 	pgdat->kswapd_order = 0;
1514 	pgdat->kswapd_highest_zoneidx = 0;
1515 	pgdat->node_start_pfn = 0;
1516 	pgdat->node_present_pages = 0;
1517 
1518 	for_each_online_cpu(cpu) {
1519 		struct per_cpu_nodestat *p;
1520 
1521 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1522 		memset(p, 0, sizeof(*p));
1523 	}
1524 
1525 	/*
1526 	 * When memory is hot-added, all the memory is in offline state. So
1527 	 * clear all zones' present_pages and managed_pages because they will
1528 	 * be updated in online_pages() and offline_pages().
1529 	 */
1530 	for (z = 0; z < MAX_NR_ZONES; z++) {
1531 		struct zone *zone = pgdat->node_zones + z;
1532 
1533 		zone->present_pages = 0;
1534 		zone_init_internals(zone, z, nid, 0);
1535 	}
1536 }
1537 #endif
1538 
1539 /*
1540  * Set up the zone data structures:
1541  *   - mark all pages reserved
1542  *   - mark all memory queues empty
1543  *   - clear the memory bitmaps
1544  *
1545  * NOTE: pgdat should get zeroed by caller.
1546  * NOTE: this function is only called during early init.
1547  */
1548 static void __init free_area_init_core(struct pglist_data *pgdat)
1549 {
1550 	enum zone_type j;
1551 	int nid = pgdat->node_id;
1552 
1553 	pgdat_init_internals(pgdat);
1554 	pgdat->per_cpu_nodestats = &boot_nodestats;
1555 
1556 	for (j = 0; j < MAX_NR_ZONES; j++) {
1557 		struct zone *zone = pgdat->node_zones + j;
1558 		unsigned long size, freesize, memmap_pages;
1559 
1560 		size = zone->spanned_pages;
1561 		freesize = zone->present_pages;
1562 
1563 		/*
1564 		 * Adjust freesize so that it accounts for how much memory
1565 		 * is used by this zone for memmap. This affects the watermark
1566 		 * and per-cpu initialisations
1567 		 */
1568 		memmap_pages = calc_memmap_size(size, freesize);
1569 		if (!is_highmem_idx(j)) {
1570 			if (freesize >= memmap_pages) {
1571 				freesize -= memmap_pages;
1572 				if (memmap_pages)
1573 					pr_debug("  %s zone: %lu pages used for memmap\n",
1574 						 zone_names[j], memmap_pages);
1575 			} else
1576 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
1577 					zone_names[j], memmap_pages, freesize);
1578 		}
1579 
1580 		/* Account for reserved pages */
1581 		if (j == 0 && freesize > dma_reserve) {
1582 			freesize -= dma_reserve;
1583 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1584 		}
1585 
1586 		if (!is_highmem_idx(j))
1587 			nr_kernel_pages += freesize;
1588 		/* Charge for highmem memmap if there are enough kernel pages */
1589 		else if (nr_kernel_pages > memmap_pages * 2)
1590 			nr_kernel_pages -= memmap_pages;
1591 		nr_all_pages += freesize;
1592 
1593 		/*
1594 		 * Set an approximate value for lowmem here, it will be adjusted
1595 		 * when the bootmem allocator frees pages into the buddy system.
1596 		 * And all highmem pages will be managed by the buddy system.
1597 		 */
1598 		zone_init_internals(zone, j, nid, freesize);
1599 
1600 		if (!size)
1601 			continue;
1602 
1603 		setup_usemap(zone);
1604 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1605 	}
1606 }
1607 
1608 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1609 			  phys_addr_t min_addr, int nid, bool exact_nid)
1610 {
1611 	void *ptr;
1612 
1613 	if (exact_nid)
1614 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1615 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1616 						   nid);
1617 	else
1618 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1619 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1620 						 nid);
1621 
1622 	if (ptr && size > 0)
1623 		page_init_poison(ptr, size);
1624 
1625 	return ptr;
1626 }
1627 
1628 #ifdef CONFIG_FLATMEM
1629 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1630 {
1631 	unsigned long __maybe_unused start = 0;
1632 	unsigned long __maybe_unused offset = 0;
1633 
1634 	/* Skip empty nodes */
1635 	if (!pgdat->node_spanned_pages)
1636 		return;
1637 
1638 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1639 	offset = pgdat->node_start_pfn - start;
1640 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1641 	if (!pgdat->node_mem_map) {
1642 		unsigned long size, end;
1643 		struct page *map;
1644 
1645 		/*
1646 		 * The zone's endpoints aren't required to be MAX_ORDER
1647 		 * aligned but the node_mem_map endpoints must be in order
1648 		 * for the buddy allocator to function correctly.
1649 		 */
1650 		end = pgdat_end_pfn(pgdat);
1651 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
1652 		size =  (end - start) * sizeof(struct page);
1653 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1654 				   pgdat->node_id, false);
1655 		if (!map)
1656 			panic("Failed to allocate %ld bytes for node %d memory map\n",
1657 			      size, pgdat->node_id);
1658 		pgdat->node_mem_map = map + offset;
1659 	}
1660 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1661 				__func__, pgdat->node_id, (unsigned long)pgdat,
1662 				(unsigned long)pgdat->node_mem_map);
1663 #ifndef CONFIG_NUMA
1664 	/*
1665 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1666 	 */
1667 	if (pgdat == NODE_DATA(0)) {
1668 		mem_map = NODE_DATA(0)->node_mem_map;
1669 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1670 			mem_map -= offset;
1671 	}
1672 #endif
1673 }
1674 #else
1675 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1676 #endif /* CONFIG_FLATMEM */
1677 
1678 /**
1679  * get_pfn_range_for_nid - Return the start and end page frames for a node
1680  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1681  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1682  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1683  *
1684  * It returns the start and end page frame of a node based on information
1685  * provided by memblock_set_node(). If called for a node
1686  * with no available memory, the start and end PFNs will be 0.
1687  */
1688 void __init get_pfn_range_for_nid(unsigned int nid,
1689 			unsigned long *start_pfn, unsigned long *end_pfn)
1690 {
1691 	unsigned long this_start_pfn, this_end_pfn;
1692 	int i;
1693 
1694 	*start_pfn = -1UL;
1695 	*end_pfn = 0;
1696 
1697 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1698 		*start_pfn = min(*start_pfn, this_start_pfn);
1699 		*end_pfn = max(*end_pfn, this_end_pfn);
1700 	}
1701 
1702 	if (*start_pfn == -1UL)
1703 		*start_pfn = 0;
1704 }
1705 
1706 static void __init free_area_init_node(int nid)
1707 {
1708 	pg_data_t *pgdat = NODE_DATA(nid);
1709 	unsigned long start_pfn = 0;
1710 	unsigned long end_pfn = 0;
1711 
1712 	/* pg_data_t should be reset to zero when it's allocated */
1713 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1714 
1715 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1716 
1717 	pgdat->node_id = nid;
1718 	pgdat->node_start_pfn = start_pfn;
1719 	pgdat->per_cpu_nodestats = NULL;
1720 
1721 	if (start_pfn != end_pfn) {
1722 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1723 			(u64)start_pfn << PAGE_SHIFT,
1724 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1725 
1726 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1727 	} else {
1728 		pr_info("Initmem setup node %d as memoryless\n", nid);
1729 
1730 		reset_memoryless_node_totalpages(pgdat);
1731 	}
1732 
1733 	alloc_node_mem_map(pgdat);
1734 	pgdat_set_deferred_range(pgdat);
1735 
1736 	free_area_init_core(pgdat);
1737 	lru_gen_init_pgdat(pgdat);
1738 }
1739 
1740 /* Any regular or high memory on that node ? */
1741 static void __init check_for_memory(pg_data_t *pgdat)
1742 {
1743 	enum zone_type zone_type;
1744 
1745 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1746 		struct zone *zone = &pgdat->node_zones[zone_type];
1747 		if (populated_zone(zone)) {
1748 			if (IS_ENABLED(CONFIG_HIGHMEM))
1749 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1750 			if (zone_type <= ZONE_NORMAL)
1751 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1752 			break;
1753 		}
1754 	}
1755 }
1756 
1757 #if MAX_NUMNODES > 1
1758 /*
1759  * Figure out the number of possible node ids.
1760  */
1761 void __init setup_nr_node_ids(void)
1762 {
1763 	unsigned int highest;
1764 
1765 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1766 	nr_node_ids = highest + 1;
1767 }
1768 #endif
1769 
1770 /*
1771  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1772  * such cases we allow max_zone_pfn sorted in the descending order
1773  */
1774 static bool arch_has_descending_max_zone_pfns(void)
1775 {
1776 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1777 }
1778 
1779 /**
1780  * free_area_init - Initialise all pg_data_t and zone data
1781  * @max_zone_pfn: an array of max PFNs for each zone
1782  *
1783  * This will call free_area_init_node() for each active node in the system.
1784  * Using the page ranges provided by memblock_set_node(), the size of each
1785  * zone in each node and their holes is calculated. If the maximum PFN
1786  * between two adjacent zones match, it is assumed that the zone is empty.
1787  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1788  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1789  * starts where the previous one ended. For example, ZONE_DMA32 starts
1790  * at arch_max_dma_pfn.
1791  */
1792 void __init free_area_init(unsigned long *max_zone_pfn)
1793 {
1794 	unsigned long start_pfn, end_pfn;
1795 	int i, nid, zone;
1796 	bool descending;
1797 
1798 	/* Record where the zone boundaries are */
1799 	memset(arch_zone_lowest_possible_pfn, 0,
1800 				sizeof(arch_zone_lowest_possible_pfn));
1801 	memset(arch_zone_highest_possible_pfn, 0,
1802 				sizeof(arch_zone_highest_possible_pfn));
1803 
1804 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1805 	descending = arch_has_descending_max_zone_pfns();
1806 
1807 	for (i = 0; i < MAX_NR_ZONES; i++) {
1808 		if (descending)
1809 			zone = MAX_NR_ZONES - i - 1;
1810 		else
1811 			zone = i;
1812 
1813 		if (zone == ZONE_MOVABLE)
1814 			continue;
1815 
1816 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1817 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1818 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1819 
1820 		start_pfn = end_pfn;
1821 	}
1822 
1823 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1824 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1825 	find_zone_movable_pfns_for_nodes();
1826 
1827 	/* Print out the zone ranges */
1828 	pr_info("Zone ranges:\n");
1829 	for (i = 0; i < MAX_NR_ZONES; i++) {
1830 		if (i == ZONE_MOVABLE)
1831 			continue;
1832 		pr_info("  %-8s ", zone_names[i]);
1833 		if (arch_zone_lowest_possible_pfn[i] ==
1834 				arch_zone_highest_possible_pfn[i])
1835 			pr_cont("empty\n");
1836 		else
1837 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1838 				(u64)arch_zone_lowest_possible_pfn[i]
1839 					<< PAGE_SHIFT,
1840 				((u64)arch_zone_highest_possible_pfn[i]
1841 					<< PAGE_SHIFT) - 1);
1842 	}
1843 
1844 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1845 	pr_info("Movable zone start for each node\n");
1846 	for (i = 0; i < MAX_NUMNODES; i++) {
1847 		if (zone_movable_pfn[i])
1848 			pr_info("  Node %d: %#018Lx\n", i,
1849 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1850 	}
1851 
1852 	/*
1853 	 * Print out the early node map, and initialize the
1854 	 * subsection-map relative to active online memory ranges to
1855 	 * enable future "sub-section" extensions of the memory map.
1856 	 */
1857 	pr_info("Early memory node ranges\n");
1858 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1859 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1860 			(u64)start_pfn << PAGE_SHIFT,
1861 			((u64)end_pfn << PAGE_SHIFT) - 1);
1862 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1863 	}
1864 
1865 	/* Initialise every node */
1866 	mminit_verify_pageflags_layout();
1867 	setup_nr_node_ids();
1868 	set_pageblock_order();
1869 
1870 	for_each_node(nid) {
1871 		pg_data_t *pgdat;
1872 
1873 		if (!node_online(nid)) {
1874 			pr_info("Initializing node %d as memoryless\n", nid);
1875 
1876 			/* Allocator not initialized yet */
1877 			pgdat = arch_alloc_nodedata(nid);
1878 			if (!pgdat)
1879 				panic("Cannot allocate %zuB for node %d.\n",
1880 				       sizeof(*pgdat), nid);
1881 			arch_refresh_nodedata(nid, pgdat);
1882 			free_area_init_node(nid);
1883 
1884 			/*
1885 			 * We do not want to confuse userspace by sysfs
1886 			 * files/directories for node without any memory
1887 			 * attached to it, so this node is not marked as
1888 			 * N_MEMORY and not marked online so that no sysfs
1889 			 * hierarchy will be created via register_one_node for
1890 			 * it. The pgdat will get fully initialized by
1891 			 * hotadd_init_pgdat() when memory is hotplugged into
1892 			 * this node.
1893 			 */
1894 			continue;
1895 		}
1896 
1897 		pgdat = NODE_DATA(nid);
1898 		free_area_init_node(nid);
1899 
1900 		/* Any memory on that node */
1901 		if (pgdat->node_present_pages)
1902 			node_set_state(nid, N_MEMORY);
1903 		check_for_memory(pgdat);
1904 	}
1905 
1906 	memmap_init();
1907 
1908 	/* disable hash distribution for systems with a single node */
1909 	fixup_hashdist();
1910 }
1911 
1912 /**
1913  * node_map_pfn_alignment - determine the maximum internode alignment
1914  *
1915  * This function should be called after node map is populated and sorted.
1916  * It calculates the maximum power of two alignment which can distinguish
1917  * all the nodes.
1918  *
1919  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1920  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1921  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1922  * shifted, 1GiB is enough and this function will indicate so.
1923  *
1924  * This is used to test whether pfn -> nid mapping of the chosen memory
1925  * model has fine enough granularity to avoid incorrect mapping for the
1926  * populated node map.
1927  *
1928  * Return: the determined alignment in pfn's.  0 if there is no alignment
1929  * requirement (single node).
1930  */
1931 unsigned long __init node_map_pfn_alignment(void)
1932 {
1933 	unsigned long accl_mask = 0, last_end = 0;
1934 	unsigned long start, end, mask;
1935 	int last_nid = NUMA_NO_NODE;
1936 	int i, nid;
1937 
1938 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1939 		if (!start || last_nid < 0 || last_nid == nid) {
1940 			last_nid = nid;
1941 			last_end = end;
1942 			continue;
1943 		}
1944 
1945 		/*
1946 		 * Start with a mask granular enough to pin-point to the
1947 		 * start pfn and tick off bits one-by-one until it becomes
1948 		 * too coarse to separate the current node from the last.
1949 		 */
1950 		mask = ~((1 << __ffs(start)) - 1);
1951 		while (mask && last_end <= (start & (mask << 1)))
1952 			mask <<= 1;
1953 
1954 		/* accumulate all internode masks */
1955 		accl_mask |= mask;
1956 	}
1957 
1958 	/* convert mask to number of pages */
1959 	return ~accl_mask + 1;
1960 }
1961 
1962 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1963 static void __init deferred_free_range(unsigned long pfn,
1964 				       unsigned long nr_pages)
1965 {
1966 	struct page *page;
1967 	unsigned long i;
1968 
1969 	if (!nr_pages)
1970 		return;
1971 
1972 	page = pfn_to_page(pfn);
1973 
1974 	/* Free a large naturally-aligned chunk if possible */
1975 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1976 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1977 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1978 		__free_pages_core(page, MAX_ORDER);
1979 		return;
1980 	}
1981 
1982 	/* Accept chunks smaller than MAX_ORDER upfront */
1983 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1984 
1985 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1986 		if (pageblock_aligned(pfn))
1987 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1988 		__free_pages_core(page, 0);
1989 	}
1990 }
1991 
1992 /* Completion tracking for deferred_init_memmap() threads */
1993 static atomic_t pgdat_init_n_undone __initdata;
1994 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1995 
1996 static inline void __init pgdat_init_report_one_done(void)
1997 {
1998 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1999 		complete(&pgdat_init_all_done_comp);
2000 }
2001 
2002 /*
2003  * Returns true if page needs to be initialized or freed to buddy allocator.
2004  *
2005  * We check if a current MAX_ORDER block is valid by only checking the validity
2006  * of the head pfn.
2007  */
2008 static inline bool __init deferred_pfn_valid(unsigned long pfn)
2009 {
2010 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
2011 		return false;
2012 	return true;
2013 }
2014 
2015 /*
2016  * Free pages to buddy allocator. Try to free aligned pages in
2017  * MAX_ORDER_NR_PAGES sizes.
2018  */
2019 static void __init deferred_free_pages(unsigned long pfn,
2020 				       unsigned long end_pfn)
2021 {
2022 	unsigned long nr_free = 0;
2023 
2024 	for (; pfn < end_pfn; pfn++) {
2025 		if (!deferred_pfn_valid(pfn)) {
2026 			deferred_free_range(pfn - nr_free, nr_free);
2027 			nr_free = 0;
2028 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2029 			deferred_free_range(pfn - nr_free, nr_free);
2030 			nr_free = 1;
2031 		} else {
2032 			nr_free++;
2033 		}
2034 	}
2035 	/* Free the last block of pages to allocator */
2036 	deferred_free_range(pfn - nr_free, nr_free);
2037 }
2038 
2039 /*
2040  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2041  * by performing it only once every MAX_ORDER_NR_PAGES.
2042  * Return number of pages initialized.
2043  */
2044 static unsigned long  __init deferred_init_pages(struct zone *zone,
2045 						 unsigned long pfn,
2046 						 unsigned long end_pfn)
2047 {
2048 	int nid = zone_to_nid(zone);
2049 	unsigned long nr_pages = 0;
2050 	int zid = zone_idx(zone);
2051 	struct page *page = NULL;
2052 
2053 	for (; pfn < end_pfn; pfn++) {
2054 		if (!deferred_pfn_valid(pfn)) {
2055 			page = NULL;
2056 			continue;
2057 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2058 			page = pfn_to_page(pfn);
2059 		} else {
2060 			page++;
2061 		}
2062 		__init_single_page(page, pfn, zid, nid);
2063 		nr_pages++;
2064 	}
2065 	return (nr_pages);
2066 }
2067 
2068 /*
2069  * This function is meant to pre-load the iterator for the zone init.
2070  * Specifically it walks through the ranges until we are caught up to the
2071  * first_init_pfn value and exits there. If we never encounter the value we
2072  * return false indicating there are no valid ranges left.
2073  */
2074 static bool __init
2075 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2076 				    unsigned long *spfn, unsigned long *epfn,
2077 				    unsigned long first_init_pfn)
2078 {
2079 	u64 j;
2080 
2081 	/*
2082 	 * Start out by walking through the ranges in this zone that have
2083 	 * already been initialized. We don't need to do anything with them
2084 	 * so we just need to flush them out of the system.
2085 	 */
2086 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2087 		if (*epfn <= first_init_pfn)
2088 			continue;
2089 		if (*spfn < first_init_pfn)
2090 			*spfn = first_init_pfn;
2091 		*i = j;
2092 		return true;
2093 	}
2094 
2095 	return false;
2096 }
2097 
2098 /*
2099  * Initialize and free pages. We do it in two loops: first we initialize
2100  * struct page, then free to buddy allocator, because while we are
2101  * freeing pages we can access pages that are ahead (computing buddy
2102  * page in __free_one_page()).
2103  *
2104  * In order to try and keep some memory in the cache we have the loop
2105  * broken along max page order boundaries. This way we will not cause
2106  * any issues with the buddy page computation.
2107  */
2108 static unsigned long __init
2109 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2110 		       unsigned long *end_pfn)
2111 {
2112 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2113 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2114 	unsigned long nr_pages = 0;
2115 	u64 j = *i;
2116 
2117 	/* First we loop through and initialize the page values */
2118 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2119 		unsigned long t;
2120 
2121 		if (mo_pfn <= *start_pfn)
2122 			break;
2123 
2124 		t = min(mo_pfn, *end_pfn);
2125 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2126 
2127 		if (mo_pfn < *end_pfn) {
2128 			*start_pfn = mo_pfn;
2129 			break;
2130 		}
2131 	}
2132 
2133 	/* Reset values and now loop through freeing pages as needed */
2134 	swap(j, *i);
2135 
2136 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2137 		unsigned long t;
2138 
2139 		if (mo_pfn <= spfn)
2140 			break;
2141 
2142 		t = min(mo_pfn, epfn);
2143 		deferred_free_pages(spfn, t);
2144 
2145 		if (mo_pfn <= epfn)
2146 			break;
2147 	}
2148 
2149 	return nr_pages;
2150 }
2151 
2152 static void __init
2153 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2154 			   void *arg)
2155 {
2156 	unsigned long spfn, epfn;
2157 	struct zone *zone = arg;
2158 	u64 i;
2159 
2160 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2161 
2162 	/*
2163 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2164 	 * can avoid introducing any issues with the buddy allocator.
2165 	 */
2166 	while (spfn < end_pfn) {
2167 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2168 		cond_resched();
2169 	}
2170 }
2171 
2172 /* An arch may override for more concurrency. */
2173 __weak int __init
2174 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2175 {
2176 	return 1;
2177 }
2178 
2179 /* Initialise remaining memory on a node */
2180 static int __init deferred_init_memmap(void *data)
2181 {
2182 	pg_data_t *pgdat = data;
2183 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2184 	unsigned long spfn = 0, epfn = 0;
2185 	unsigned long first_init_pfn, flags;
2186 	unsigned long start = jiffies;
2187 	struct zone *zone;
2188 	int zid, max_threads;
2189 	u64 i;
2190 
2191 	/* Bind memory initialisation thread to a local node if possible */
2192 	if (!cpumask_empty(cpumask))
2193 		set_cpus_allowed_ptr(current, cpumask);
2194 
2195 	pgdat_resize_lock(pgdat, &flags);
2196 	first_init_pfn = pgdat->first_deferred_pfn;
2197 	if (first_init_pfn == ULONG_MAX) {
2198 		pgdat_resize_unlock(pgdat, &flags);
2199 		pgdat_init_report_one_done();
2200 		return 0;
2201 	}
2202 
2203 	/* Sanity check boundaries */
2204 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2205 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2206 	pgdat->first_deferred_pfn = ULONG_MAX;
2207 
2208 	/*
2209 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2210 	 * interrupt thread must allocate this early in boot, zone must be
2211 	 * pre-grown prior to start of deferred page initialization.
2212 	 */
2213 	pgdat_resize_unlock(pgdat, &flags);
2214 
2215 	/* Only the highest zone is deferred so find it */
2216 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2217 		zone = pgdat->node_zones + zid;
2218 		if (first_init_pfn < zone_end_pfn(zone))
2219 			break;
2220 	}
2221 
2222 	/* If the zone is empty somebody else may have cleared out the zone */
2223 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2224 						 first_init_pfn))
2225 		goto zone_empty;
2226 
2227 	max_threads = deferred_page_init_max_threads(cpumask);
2228 
2229 	while (spfn < epfn) {
2230 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2231 		struct padata_mt_job job = {
2232 			.thread_fn   = deferred_init_memmap_chunk,
2233 			.fn_arg      = zone,
2234 			.start       = spfn,
2235 			.size        = epfn_align - spfn,
2236 			.align       = PAGES_PER_SECTION,
2237 			.min_chunk   = PAGES_PER_SECTION,
2238 			.max_threads = max_threads,
2239 		};
2240 
2241 		padata_do_multithreaded(&job);
2242 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2243 						    epfn_align);
2244 	}
2245 zone_empty:
2246 	/* Sanity check that the next zone really is unpopulated */
2247 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2248 
2249 	pr_info("node %d deferred pages initialised in %ums\n",
2250 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2251 
2252 	pgdat_init_report_one_done();
2253 	return 0;
2254 }
2255 
2256 /*
2257  * If this zone has deferred pages, try to grow it by initializing enough
2258  * deferred pages to satisfy the allocation specified by order, rounded up to
2259  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2260  * of SECTION_SIZE bytes by initializing struct pages in increments of
2261  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2262  *
2263  * Return true when zone was grown, otherwise return false. We return true even
2264  * when we grow less than requested, to let the caller decide if there are
2265  * enough pages to satisfy the allocation.
2266  *
2267  * Note: We use noinline because this function is needed only during boot, and
2268  * it is called from a __ref function _deferred_grow_zone. This way we are
2269  * making sure that it is not inlined into permanent text section.
2270  */
2271 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2272 {
2273 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2274 	pg_data_t *pgdat = zone->zone_pgdat;
2275 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2276 	unsigned long spfn, epfn, flags;
2277 	unsigned long nr_pages = 0;
2278 	u64 i;
2279 
2280 	/* Only the last zone may have deferred pages */
2281 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2282 		return false;
2283 
2284 	pgdat_resize_lock(pgdat, &flags);
2285 
2286 	/*
2287 	 * If someone grew this zone while we were waiting for spinlock, return
2288 	 * true, as there might be enough pages already.
2289 	 */
2290 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2291 		pgdat_resize_unlock(pgdat, &flags);
2292 		return true;
2293 	}
2294 
2295 	/* If the zone is empty somebody else may have cleared out the zone */
2296 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2297 						 first_deferred_pfn)) {
2298 		pgdat->first_deferred_pfn = ULONG_MAX;
2299 		pgdat_resize_unlock(pgdat, &flags);
2300 		/* Retry only once. */
2301 		return first_deferred_pfn != ULONG_MAX;
2302 	}
2303 
2304 	/*
2305 	 * Initialize and free pages in MAX_ORDER sized increments so
2306 	 * that we can avoid introducing any issues with the buddy
2307 	 * allocator.
2308 	 */
2309 	while (spfn < epfn) {
2310 		/* update our first deferred PFN for this section */
2311 		first_deferred_pfn = spfn;
2312 
2313 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2314 		touch_nmi_watchdog();
2315 
2316 		/* We should only stop along section boundaries */
2317 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2318 			continue;
2319 
2320 		/* If our quota has been met we can stop here */
2321 		if (nr_pages >= nr_pages_needed)
2322 			break;
2323 	}
2324 
2325 	pgdat->first_deferred_pfn = spfn;
2326 	pgdat_resize_unlock(pgdat, &flags);
2327 
2328 	return nr_pages > 0;
2329 }
2330 
2331 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2332 
2333 #ifdef CONFIG_CMA
2334 void __init init_cma_reserved_pageblock(struct page *page)
2335 {
2336 	unsigned i = pageblock_nr_pages;
2337 	struct page *p = page;
2338 
2339 	do {
2340 		__ClearPageReserved(p);
2341 		set_page_count(p, 0);
2342 	} while (++p, --i);
2343 
2344 	set_pageblock_migratetype(page, MIGRATE_CMA);
2345 	set_page_refcounted(page);
2346 	__free_pages(page, pageblock_order);
2347 
2348 	adjust_managed_page_count(page, pageblock_nr_pages);
2349 	page_zone(page)->cma_pages += pageblock_nr_pages;
2350 }
2351 #endif
2352 
2353 void set_zone_contiguous(struct zone *zone)
2354 {
2355 	unsigned long block_start_pfn = zone->zone_start_pfn;
2356 	unsigned long block_end_pfn;
2357 
2358 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2359 	for (; block_start_pfn < zone_end_pfn(zone);
2360 			block_start_pfn = block_end_pfn,
2361 			 block_end_pfn += pageblock_nr_pages) {
2362 
2363 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2364 
2365 		if (!__pageblock_pfn_to_page(block_start_pfn,
2366 					     block_end_pfn, zone))
2367 			return;
2368 		cond_resched();
2369 	}
2370 
2371 	/* We confirm that there is no hole */
2372 	zone->contiguous = true;
2373 }
2374 
2375 void __init page_alloc_init_late(void)
2376 {
2377 	struct zone *zone;
2378 	int nid;
2379 
2380 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2381 
2382 	/* There will be num_node_state(N_MEMORY) threads */
2383 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2384 	for_each_node_state(nid, N_MEMORY) {
2385 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2386 	}
2387 
2388 	/* Block until all are initialised */
2389 	wait_for_completion(&pgdat_init_all_done_comp);
2390 
2391 	/*
2392 	 * We initialized the rest of the deferred pages.  Permanently disable
2393 	 * on-demand struct page initialization.
2394 	 */
2395 	static_branch_disable(&deferred_pages);
2396 
2397 	/* Reinit limits that are based on free pages after the kernel is up */
2398 	files_maxfiles_init();
2399 #endif
2400 
2401 	buffer_init();
2402 
2403 	/* Discard memblock private memory */
2404 	memblock_discard();
2405 
2406 	for_each_node_state(nid, N_MEMORY)
2407 		shuffle_free_memory(NODE_DATA(nid));
2408 
2409 	for_each_populated_zone(zone)
2410 		set_zone_contiguous(zone);
2411 
2412 	/* Initialize page ext after all struct pages are initialized. */
2413 	if (deferred_struct_pages)
2414 		page_ext_init();
2415 
2416 	page_alloc_sysctl_init();
2417 }
2418 
2419 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2420 /*
2421  * Returns the number of pages that arch has reserved but
2422  * is not known to alloc_large_system_hash().
2423  */
2424 static unsigned long __init arch_reserved_kernel_pages(void)
2425 {
2426 	return 0;
2427 }
2428 #endif
2429 
2430 /*
2431  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2432  * machines. As memory size is increased the scale is also increased but at
2433  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2434  * quadruples the scale is increased by one, which means the size of hash table
2435  * only doubles, instead of quadrupling as well.
2436  * Because 32-bit systems cannot have large physical memory, where this scaling
2437  * makes sense, it is disabled on such platforms.
2438  */
2439 #if __BITS_PER_LONG > 32
2440 #define ADAPT_SCALE_BASE	(64ul << 30)
2441 #define ADAPT_SCALE_SHIFT	2
2442 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2443 #endif
2444 
2445 /*
2446  * allocate a large system hash table from bootmem
2447  * - it is assumed that the hash table must contain an exact power-of-2
2448  *   quantity of entries
2449  * - limit is the number of hash buckets, not the total allocation size
2450  */
2451 void *__init alloc_large_system_hash(const char *tablename,
2452 				     unsigned long bucketsize,
2453 				     unsigned long numentries,
2454 				     int scale,
2455 				     int flags,
2456 				     unsigned int *_hash_shift,
2457 				     unsigned int *_hash_mask,
2458 				     unsigned long low_limit,
2459 				     unsigned long high_limit)
2460 {
2461 	unsigned long long max = high_limit;
2462 	unsigned long log2qty, size;
2463 	void *table;
2464 	gfp_t gfp_flags;
2465 	bool virt;
2466 	bool huge;
2467 
2468 	/* allow the kernel cmdline to have a say */
2469 	if (!numentries) {
2470 		/* round applicable memory size up to nearest megabyte */
2471 		numentries = nr_kernel_pages;
2472 		numentries -= arch_reserved_kernel_pages();
2473 
2474 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2475 		if (PAGE_SIZE < SZ_1M)
2476 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2477 
2478 #if __BITS_PER_LONG > 32
2479 		if (!high_limit) {
2480 			unsigned long adapt;
2481 
2482 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2483 			     adapt <<= ADAPT_SCALE_SHIFT)
2484 				scale++;
2485 		}
2486 #endif
2487 
2488 		/* limit to 1 bucket per 2^scale bytes of low memory */
2489 		if (scale > PAGE_SHIFT)
2490 			numentries >>= (scale - PAGE_SHIFT);
2491 		else
2492 			numentries <<= (PAGE_SHIFT - scale);
2493 
2494 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2495 			numentries = PAGE_SIZE / bucketsize;
2496 	}
2497 	numentries = roundup_pow_of_two(numentries);
2498 
2499 	/* limit allocation size to 1/16 total memory by default */
2500 	if (max == 0) {
2501 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2502 		do_div(max, bucketsize);
2503 	}
2504 	max = min(max, 0x80000000ULL);
2505 
2506 	if (numentries < low_limit)
2507 		numentries = low_limit;
2508 	if (numentries > max)
2509 		numentries = max;
2510 
2511 	log2qty = ilog2(numentries);
2512 
2513 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2514 	do {
2515 		virt = false;
2516 		size = bucketsize << log2qty;
2517 		if (flags & HASH_EARLY) {
2518 			if (flags & HASH_ZERO)
2519 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2520 			else
2521 				table = memblock_alloc_raw(size,
2522 							   SMP_CACHE_BYTES);
2523 		} else if (get_order(size) > MAX_ORDER || hashdist) {
2524 			table = vmalloc_huge(size, gfp_flags);
2525 			virt = true;
2526 			if (table)
2527 				huge = is_vm_area_hugepages(table);
2528 		} else {
2529 			/*
2530 			 * If bucketsize is not a power-of-two, we may free
2531 			 * some pages at the end of hash table which
2532 			 * alloc_pages_exact() automatically does
2533 			 */
2534 			table = alloc_pages_exact(size, gfp_flags);
2535 			kmemleak_alloc(table, size, 1, gfp_flags);
2536 		}
2537 	} while (!table && size > PAGE_SIZE && --log2qty);
2538 
2539 	if (!table)
2540 		panic("Failed to allocate %s hash table\n", tablename);
2541 
2542 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2543 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2544 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2545 
2546 	if (_hash_shift)
2547 		*_hash_shift = log2qty;
2548 	if (_hash_mask)
2549 		*_hash_mask = (1 << log2qty) - 1;
2550 
2551 	return table;
2552 }
2553 
2554 /**
2555  * set_dma_reserve - set the specified number of pages reserved in the first zone
2556  * @new_dma_reserve: The number of pages to mark reserved
2557  *
2558  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2559  * In the DMA zone, a significant percentage may be consumed by kernel image
2560  * and other unfreeable allocations which can skew the watermarks badly. This
2561  * function may optionally be used to account for unfreeable pages in the
2562  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2563  * smaller per-cpu batchsize.
2564  */
2565 void __init set_dma_reserve(unsigned long new_dma_reserve)
2566 {
2567 	dma_reserve = new_dma_reserve;
2568 }
2569 
2570 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2571 							unsigned int order)
2572 {
2573 
2574 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2575 		int nid = early_pfn_to_nid(pfn);
2576 
2577 		if (!early_page_initialised(pfn, nid))
2578 			return;
2579 	}
2580 
2581 	if (!kmsan_memblock_free_pages(page, order)) {
2582 		/* KMSAN will take care of these pages. */
2583 		return;
2584 	}
2585 	__free_pages_core(page, order);
2586 }
2587 
2588 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2589 EXPORT_SYMBOL(init_on_alloc);
2590 
2591 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2592 EXPORT_SYMBOL(init_on_free);
2593 
2594 static bool _init_on_alloc_enabled_early __read_mostly
2595 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2596 static int __init early_init_on_alloc(char *buf)
2597 {
2598 
2599 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2600 }
2601 early_param("init_on_alloc", early_init_on_alloc);
2602 
2603 static bool _init_on_free_enabled_early __read_mostly
2604 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2605 static int __init early_init_on_free(char *buf)
2606 {
2607 	return kstrtobool(buf, &_init_on_free_enabled_early);
2608 }
2609 early_param("init_on_free", early_init_on_free);
2610 
2611 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2612 
2613 /*
2614  * Enable static keys related to various memory debugging and hardening options.
2615  * Some override others, and depend on early params that are evaluated in the
2616  * order of appearance. So we need to first gather the full picture of what was
2617  * enabled, and then make decisions.
2618  */
2619 static void __init mem_debugging_and_hardening_init(void)
2620 {
2621 	bool page_poisoning_requested = false;
2622 	bool want_check_pages = false;
2623 
2624 #ifdef CONFIG_PAGE_POISONING
2625 	/*
2626 	 * Page poisoning is debug page alloc for some arches. If
2627 	 * either of those options are enabled, enable poisoning.
2628 	 */
2629 	if (page_poisoning_enabled() ||
2630 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2631 	      debug_pagealloc_enabled())) {
2632 		static_branch_enable(&_page_poisoning_enabled);
2633 		page_poisoning_requested = true;
2634 		want_check_pages = true;
2635 	}
2636 #endif
2637 
2638 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2639 	    page_poisoning_requested) {
2640 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2641 			"will take precedence over init_on_alloc and init_on_free\n");
2642 		_init_on_alloc_enabled_early = false;
2643 		_init_on_free_enabled_early = false;
2644 	}
2645 
2646 	if (_init_on_alloc_enabled_early) {
2647 		want_check_pages = true;
2648 		static_branch_enable(&init_on_alloc);
2649 	} else {
2650 		static_branch_disable(&init_on_alloc);
2651 	}
2652 
2653 	if (_init_on_free_enabled_early) {
2654 		want_check_pages = true;
2655 		static_branch_enable(&init_on_free);
2656 	} else {
2657 		static_branch_disable(&init_on_free);
2658 	}
2659 
2660 	if (IS_ENABLED(CONFIG_KMSAN) &&
2661 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2662 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2663 
2664 #ifdef CONFIG_DEBUG_PAGEALLOC
2665 	if (debug_pagealloc_enabled()) {
2666 		want_check_pages = true;
2667 		static_branch_enable(&_debug_pagealloc_enabled);
2668 
2669 		if (debug_guardpage_minorder())
2670 			static_branch_enable(&_debug_guardpage_enabled);
2671 	}
2672 #endif
2673 
2674 	/*
2675 	 * Any page debugging or hardening option also enables sanity checking
2676 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2677 	 * enabled already.
2678 	 */
2679 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2680 		static_branch_enable(&check_pages_enabled);
2681 }
2682 
2683 /* Report memory auto-initialization states for this boot. */
2684 static void __init report_meminit(void)
2685 {
2686 	const char *stack;
2687 
2688 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2689 		stack = "all(pattern)";
2690 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2691 		stack = "all(zero)";
2692 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2693 		stack = "byref_all(zero)";
2694 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2695 		stack = "byref(zero)";
2696 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2697 		stack = "__user(zero)";
2698 	else
2699 		stack = "off";
2700 
2701 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2702 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2703 		want_init_on_free() ? "on" : "off");
2704 	if (want_init_on_free())
2705 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2706 }
2707 
2708 static void __init mem_init_print_info(void)
2709 {
2710 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2711 	unsigned long init_code_size, init_data_size;
2712 
2713 	physpages = get_num_physpages();
2714 	codesize = _etext - _stext;
2715 	datasize = _edata - _sdata;
2716 	rosize = __end_rodata - __start_rodata;
2717 	bss_size = __bss_stop - __bss_start;
2718 	init_data_size = __init_end - __init_begin;
2719 	init_code_size = _einittext - _sinittext;
2720 
2721 	/*
2722 	 * Detect special cases and adjust section sizes accordingly:
2723 	 * 1) .init.* may be embedded into .data sections
2724 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2725 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2726 	 * 3) .rodata.* may be embedded into .text or .data sections.
2727 	 */
2728 #define adj_init_size(start, end, size, pos, adj) \
2729 	do { \
2730 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2731 			size -= adj; \
2732 	} while (0)
2733 
2734 	adj_init_size(__init_begin, __init_end, init_data_size,
2735 		     _sinittext, init_code_size);
2736 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2737 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2738 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2739 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2740 
2741 #undef	adj_init_size
2742 
2743 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2744 #ifdef	CONFIG_HIGHMEM
2745 		", %luK highmem"
2746 #endif
2747 		")\n",
2748 		K(nr_free_pages()), K(physpages),
2749 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2750 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2751 		K(physpages - totalram_pages() - totalcma_pages),
2752 		K(totalcma_pages)
2753 #ifdef	CONFIG_HIGHMEM
2754 		, K(totalhigh_pages())
2755 #endif
2756 		);
2757 }
2758 
2759 /*
2760  * Set up kernel memory allocators
2761  */
2762 void __init mm_core_init(void)
2763 {
2764 	/* Initializations relying on SMP setup */
2765 	build_all_zonelists(NULL);
2766 	page_alloc_init_cpuhp();
2767 
2768 	/*
2769 	 * page_ext requires contiguous pages,
2770 	 * bigger than MAX_ORDER unless SPARSEMEM.
2771 	 */
2772 	page_ext_init_flatmem();
2773 	mem_debugging_and_hardening_init();
2774 	kfence_alloc_pool_and_metadata();
2775 	report_meminit();
2776 	kmsan_init_shadow();
2777 	stack_depot_early_init();
2778 	mem_init();
2779 	mem_init_print_info();
2780 	kmem_cache_init();
2781 	/*
2782 	 * page_owner must be initialized after buddy is ready, and also after
2783 	 * slab is ready so that stack_depot_init() works properly
2784 	 */
2785 	page_ext_init_flatmem_late();
2786 	kmemleak_init();
2787 	ptlock_cache_init();
2788 	pgtable_cache_init();
2789 	debug_objects_mem_init();
2790 	vmalloc_init();
2791 	/* If no deferred init page_ext now, as vmap is fully initialized */
2792 	if (!deferred_struct_pages)
2793 		page_ext_init();
2794 	/* Should be run before the first non-init thread is created */
2795 	init_espfix_bsp();
2796 	/* Should be run after espfix64 is set up. */
2797 	pti_init();
2798 	kmsan_init_runtime();
2799 	mm_cache_init();
2800 }
2801