xref: /linux/mm/mm_init.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include "internal.h"
34 #include "slab.h"
35 #include "shuffle.h"
36 
37 #include <asm/setup.h>
38 
39 #ifdef CONFIG_DEBUG_MEMORY_INIT
40 int __meminitdata mminit_loglevel;
41 
42 /* The zonelists are simply reported, validation is manual. */
43 void __init mminit_verify_zonelist(void)
44 {
45 	int nid;
46 
47 	if (mminit_loglevel < MMINIT_VERIFY)
48 		return;
49 
50 	for_each_online_node(nid) {
51 		pg_data_t *pgdat = NODE_DATA(nid);
52 		struct zone *zone;
53 		struct zoneref *z;
54 		struct zonelist *zonelist;
55 		int i, listid, zoneid;
56 
57 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58 
59 			/* Identify the zone and nodelist */
60 			zoneid = i % MAX_NR_ZONES;
61 			listid = i / MAX_NR_ZONES;
62 			zonelist = &pgdat->node_zonelists[listid];
63 			zone = &pgdat->node_zones[zoneid];
64 			if (!populated_zone(zone))
65 				continue;
66 
67 			/* Print information about the zonelist */
68 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69 				listid > 0 ? "thisnode" : "general", nid,
70 				zone->name);
71 
72 			/* Iterate the zonelist */
73 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
74 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75 			pr_cont("\n");
76 		}
77 	}
78 }
79 
80 void __init mminit_verify_pageflags_layout(void)
81 {
82 	int shift, width;
83 	unsigned long or_mask, add_mask;
84 
85 	shift = BITS_PER_LONG;
86 	width = shift - NR_NON_PAGEFLAG_BITS;
87 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
88 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
89 		SECTIONS_WIDTH,
90 		NODES_WIDTH,
91 		ZONES_WIDTH,
92 		LAST_CPUPID_WIDTH,
93 		KASAN_TAG_WIDTH,
94 		LRU_GEN_WIDTH,
95 		LRU_REFS_WIDTH,
96 		NR_PAGEFLAGS);
97 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
98 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
99 		SECTIONS_SHIFT,
100 		NODES_SHIFT,
101 		ZONES_SHIFT,
102 		LAST_CPUPID_SHIFT,
103 		KASAN_TAG_WIDTH);
104 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
105 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
106 		(unsigned long)SECTIONS_PGSHIFT,
107 		(unsigned long)NODES_PGSHIFT,
108 		(unsigned long)ZONES_PGSHIFT,
109 		(unsigned long)LAST_CPUPID_PGSHIFT,
110 		(unsigned long)KASAN_TAG_PGSHIFT);
111 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
112 		"Node/Zone ID: %lu -> %lu\n",
113 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
114 		(unsigned long)ZONEID_PGOFF);
115 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
116 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
117 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
118 #ifdef NODE_NOT_IN_PAGE_FLAGS
119 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
120 		"Node not in page flags");
121 #endif
122 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
123 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
124 		"Last cpupid not in page flags");
125 #endif
126 
127 	if (SECTIONS_WIDTH) {
128 		shift -= SECTIONS_WIDTH;
129 		BUG_ON(shift != SECTIONS_PGSHIFT);
130 	}
131 	if (NODES_WIDTH) {
132 		shift -= NODES_WIDTH;
133 		BUG_ON(shift != NODES_PGSHIFT);
134 	}
135 	if (ZONES_WIDTH) {
136 		shift -= ZONES_WIDTH;
137 		BUG_ON(shift != ZONES_PGSHIFT);
138 	}
139 
140 	/* Check for bitmask overlaps */
141 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
142 			(NODES_MASK << NODES_PGSHIFT) |
143 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
144 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
145 			(NODES_MASK << NODES_PGSHIFT) +
146 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
147 	BUG_ON(or_mask != add_mask);
148 }
149 
150 static __init int set_mminit_loglevel(char *str)
151 {
152 	get_option(&str, &mminit_loglevel);
153 	return 0;
154 }
155 early_param("mminit_loglevel", set_mminit_loglevel);
156 #endif /* CONFIG_DEBUG_MEMORY_INIT */
157 
158 struct kobject *mm_kobj;
159 
160 #ifdef CONFIG_SMP
161 s32 vm_committed_as_batch = 32;
162 
163 void mm_compute_batch(int overcommit_policy)
164 {
165 	u64 memsized_batch;
166 	s32 nr = num_present_cpus();
167 	s32 batch = max_t(s32, nr*2, 32);
168 	unsigned long ram_pages = totalram_pages();
169 
170 	/*
171 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
172 	 * (total memory/#cpus), and lift it to 25% for other policies
173 	 * to easy the possible lock contention for percpu_counter
174 	 * vm_committed_as, while the max limit is INT_MAX
175 	 */
176 	if (overcommit_policy == OVERCOMMIT_NEVER)
177 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
178 	else
179 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
180 
181 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
182 }
183 
184 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
185 					unsigned long action, void *arg)
186 {
187 	switch (action) {
188 	case MEM_ONLINE:
189 	case MEM_OFFLINE:
190 		mm_compute_batch(sysctl_overcommit_memory);
191 		break;
192 	default:
193 		break;
194 	}
195 	return NOTIFY_OK;
196 }
197 
198 static int __init mm_compute_batch_init(void)
199 {
200 	mm_compute_batch(sysctl_overcommit_memory);
201 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
202 	return 0;
203 }
204 
205 __initcall(mm_compute_batch_init);
206 
207 #endif
208 
209 static int __init mm_sysfs_init(void)
210 {
211 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
212 	if (!mm_kobj)
213 		return -ENOMEM;
214 
215 	return 0;
216 }
217 postcore_initcall(mm_sysfs_init);
218 
219 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
220 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
222 
223 static unsigned long required_kernelcore __initdata;
224 static unsigned long required_kernelcore_percent __initdata;
225 static unsigned long required_movablecore __initdata;
226 static unsigned long required_movablecore_percent __initdata;
227 
228 static unsigned long nr_kernel_pages __initdata;
229 static unsigned long nr_all_pages __initdata;
230 
231 static bool deferred_struct_pages __meminitdata;
232 
233 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
234 
235 static int __init cmdline_parse_core(char *p, unsigned long *core,
236 				     unsigned long *percent)
237 {
238 	unsigned long long coremem;
239 	char *endptr;
240 
241 	if (!p)
242 		return -EINVAL;
243 
244 	/* Value may be a percentage of total memory, otherwise bytes */
245 	coremem = simple_strtoull(p, &endptr, 0);
246 	if (*endptr == '%') {
247 		/* Paranoid check for percent values greater than 100 */
248 		WARN_ON(coremem > 100);
249 
250 		*percent = coremem;
251 	} else {
252 		coremem = memparse(p, &p);
253 		/* Paranoid check that UL is enough for the coremem value */
254 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
255 
256 		*core = coremem >> PAGE_SHIFT;
257 		*percent = 0UL;
258 	}
259 	return 0;
260 }
261 
262 bool mirrored_kernelcore __initdata_memblock;
263 
264 /*
265  * kernelcore=size sets the amount of memory for use for allocations that
266  * cannot be reclaimed or migrated.
267  */
268 static int __init cmdline_parse_kernelcore(char *p)
269 {
270 	/* parse kernelcore=mirror */
271 	if (parse_option_str(p, "mirror")) {
272 		mirrored_kernelcore = true;
273 		return 0;
274 	}
275 
276 	return cmdline_parse_core(p, &required_kernelcore,
277 				  &required_kernelcore_percent);
278 }
279 early_param("kernelcore", cmdline_parse_kernelcore);
280 
281 /*
282  * movablecore=size sets the amount of memory for use for allocations that
283  * can be reclaimed or migrated.
284  */
285 static int __init cmdline_parse_movablecore(char *p)
286 {
287 	return cmdline_parse_core(p, &required_movablecore,
288 				  &required_movablecore_percent);
289 }
290 early_param("movablecore", cmdline_parse_movablecore);
291 
292 /*
293  * early_calculate_totalpages()
294  * Sum pages in active regions for movable zone.
295  * Populate N_MEMORY for calculating usable_nodes.
296  */
297 static unsigned long __init early_calculate_totalpages(void)
298 {
299 	unsigned long totalpages = 0;
300 	unsigned long start_pfn, end_pfn;
301 	int i, nid;
302 
303 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
304 		unsigned long pages = end_pfn - start_pfn;
305 
306 		totalpages += pages;
307 		if (pages)
308 			node_set_state(nid, N_MEMORY);
309 	}
310 	return totalpages;
311 }
312 
313 /*
314  * This finds a zone that can be used for ZONE_MOVABLE pages. The
315  * assumption is made that zones within a node are ordered in monotonic
316  * increasing memory addresses so that the "highest" populated zone is used
317  */
318 static void __init find_usable_zone_for_movable(void)
319 {
320 	int zone_index;
321 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
322 		if (zone_index == ZONE_MOVABLE)
323 			continue;
324 
325 		if (arch_zone_highest_possible_pfn[zone_index] >
326 				arch_zone_lowest_possible_pfn[zone_index])
327 			break;
328 	}
329 
330 	VM_BUG_ON(zone_index == -1);
331 	movable_zone = zone_index;
332 }
333 
334 /*
335  * Find the PFN the Movable zone begins in each node. Kernel memory
336  * is spread evenly between nodes as long as the nodes have enough
337  * memory. When they don't, some nodes will have more kernelcore than
338  * others
339  */
340 static void __init find_zone_movable_pfns_for_nodes(void)
341 {
342 	int i, nid;
343 	unsigned long usable_startpfn;
344 	unsigned long kernelcore_node, kernelcore_remaining;
345 	/* save the state before borrow the nodemask */
346 	nodemask_t saved_node_state = node_states[N_MEMORY];
347 	unsigned long totalpages = early_calculate_totalpages();
348 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
349 	struct memblock_region *r;
350 
351 	/* Need to find movable_zone earlier when movable_node is specified. */
352 	find_usable_zone_for_movable();
353 
354 	/*
355 	 * If movable_node is specified, ignore kernelcore and movablecore
356 	 * options.
357 	 */
358 	if (movable_node_is_enabled()) {
359 		for_each_mem_region(r) {
360 			if (!memblock_is_hotpluggable(r))
361 				continue;
362 
363 			nid = memblock_get_region_node(r);
364 
365 			usable_startpfn = memblock_region_memory_base_pfn(r);
366 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
367 				min(usable_startpfn, zone_movable_pfn[nid]) :
368 				usable_startpfn;
369 		}
370 
371 		goto out2;
372 	}
373 
374 	/*
375 	 * If kernelcore=mirror is specified, ignore movablecore option
376 	 */
377 	if (mirrored_kernelcore) {
378 		bool mem_below_4gb_not_mirrored = false;
379 
380 		if (!memblock_has_mirror()) {
381 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
382 			goto out;
383 		}
384 
385 		if (is_kdump_kernel()) {
386 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
387 			goto out;
388 		}
389 
390 		for_each_mem_region(r) {
391 			if (memblock_is_mirror(r))
392 				continue;
393 
394 			nid = memblock_get_region_node(r);
395 
396 			usable_startpfn = memblock_region_memory_base_pfn(r);
397 
398 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
399 				mem_below_4gb_not_mirrored = true;
400 				continue;
401 			}
402 
403 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
404 				min(usable_startpfn, zone_movable_pfn[nid]) :
405 				usable_startpfn;
406 		}
407 
408 		if (mem_below_4gb_not_mirrored)
409 			pr_warn("This configuration results in unmirrored kernel memory.\n");
410 
411 		goto out2;
412 	}
413 
414 	/*
415 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
416 	 * amount of necessary memory.
417 	 */
418 	if (required_kernelcore_percent)
419 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
420 				       10000UL;
421 	if (required_movablecore_percent)
422 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
423 					10000UL;
424 
425 	/*
426 	 * If movablecore= was specified, calculate what size of
427 	 * kernelcore that corresponds so that memory usable for
428 	 * any allocation type is evenly spread. If both kernelcore
429 	 * and movablecore are specified, then the value of kernelcore
430 	 * will be used for required_kernelcore if it's greater than
431 	 * what movablecore would have allowed.
432 	 */
433 	if (required_movablecore) {
434 		unsigned long corepages;
435 
436 		/*
437 		 * Round-up so that ZONE_MOVABLE is at least as large as what
438 		 * was requested by the user
439 		 */
440 		required_movablecore =
441 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
442 		required_movablecore = min(totalpages, required_movablecore);
443 		corepages = totalpages - required_movablecore;
444 
445 		required_kernelcore = max(required_kernelcore, corepages);
446 	}
447 
448 	/*
449 	 * If kernelcore was not specified or kernelcore size is larger
450 	 * than totalpages, there is no ZONE_MOVABLE.
451 	 */
452 	if (!required_kernelcore || required_kernelcore >= totalpages)
453 		goto out;
454 
455 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
456 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
457 
458 restart:
459 	/* Spread kernelcore memory as evenly as possible throughout nodes */
460 	kernelcore_node = required_kernelcore / usable_nodes;
461 	for_each_node_state(nid, N_MEMORY) {
462 		unsigned long start_pfn, end_pfn;
463 
464 		/*
465 		 * Recalculate kernelcore_node if the division per node
466 		 * now exceeds what is necessary to satisfy the requested
467 		 * amount of memory for the kernel
468 		 */
469 		if (required_kernelcore < kernelcore_node)
470 			kernelcore_node = required_kernelcore / usable_nodes;
471 
472 		/*
473 		 * As the map is walked, we track how much memory is usable
474 		 * by the kernel using kernelcore_remaining. When it is
475 		 * 0, the rest of the node is usable by ZONE_MOVABLE
476 		 */
477 		kernelcore_remaining = kernelcore_node;
478 
479 		/* Go through each range of PFNs within this node */
480 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
481 			unsigned long size_pages;
482 
483 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
484 			if (start_pfn >= end_pfn)
485 				continue;
486 
487 			/* Account for what is only usable for kernelcore */
488 			if (start_pfn < usable_startpfn) {
489 				unsigned long kernel_pages;
490 				kernel_pages = min(end_pfn, usable_startpfn)
491 								- start_pfn;
492 
493 				kernelcore_remaining -= min(kernel_pages,
494 							kernelcore_remaining);
495 				required_kernelcore -= min(kernel_pages,
496 							required_kernelcore);
497 
498 				/* Continue if range is now fully accounted */
499 				if (end_pfn <= usable_startpfn) {
500 
501 					/*
502 					 * Push zone_movable_pfn to the end so
503 					 * that if we have to rebalance
504 					 * kernelcore across nodes, we will
505 					 * not double account here
506 					 */
507 					zone_movable_pfn[nid] = end_pfn;
508 					continue;
509 				}
510 				start_pfn = usable_startpfn;
511 			}
512 
513 			/*
514 			 * The usable PFN range for ZONE_MOVABLE is from
515 			 * start_pfn->end_pfn. Calculate size_pages as the
516 			 * number of pages used as kernelcore
517 			 */
518 			size_pages = end_pfn - start_pfn;
519 			if (size_pages > kernelcore_remaining)
520 				size_pages = kernelcore_remaining;
521 			zone_movable_pfn[nid] = start_pfn + size_pages;
522 
523 			/*
524 			 * Some kernelcore has been met, update counts and
525 			 * break if the kernelcore for this node has been
526 			 * satisfied
527 			 */
528 			required_kernelcore -= min(required_kernelcore,
529 								size_pages);
530 			kernelcore_remaining -= size_pages;
531 			if (!kernelcore_remaining)
532 				break;
533 		}
534 	}
535 
536 	/*
537 	 * If there is still required_kernelcore, we do another pass with one
538 	 * less node in the count. This will push zone_movable_pfn[nid] further
539 	 * along on the nodes that still have memory until kernelcore is
540 	 * satisfied
541 	 */
542 	usable_nodes--;
543 	if (usable_nodes && required_kernelcore > usable_nodes)
544 		goto restart;
545 
546 out2:
547 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
548 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
549 		unsigned long start_pfn, end_pfn;
550 
551 		zone_movable_pfn[nid] =
552 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
553 
554 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
555 		if (zone_movable_pfn[nid] >= end_pfn)
556 			zone_movable_pfn[nid] = 0;
557 	}
558 
559 out:
560 	/* restore the node_state */
561 	node_states[N_MEMORY] = saved_node_state;
562 }
563 
564 void __meminit __init_single_page(struct page *page, unsigned long pfn,
565 				unsigned long zone, int nid)
566 {
567 	mm_zero_struct_page(page);
568 	set_page_links(page, zone, nid, pfn);
569 	init_page_count(page);
570 	atomic_set(&page->_mapcount, -1);
571 	page_cpupid_reset_last(page);
572 	page_kasan_tag_reset(page);
573 
574 	INIT_LIST_HEAD(&page->lru);
575 #ifdef WANT_PAGE_VIRTUAL
576 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
577 	if (!is_highmem_idx(zone))
578 		set_page_address(page, __va(pfn << PAGE_SHIFT));
579 #endif
580 }
581 
582 #ifdef CONFIG_NUMA
583 /*
584  * During memory init memblocks map pfns to nids. The search is expensive and
585  * this caches recent lookups. The implementation of __early_pfn_to_nid
586  * treats start/end as pfns.
587  */
588 struct mminit_pfnnid_cache {
589 	unsigned long last_start;
590 	unsigned long last_end;
591 	int last_nid;
592 };
593 
594 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
595 
596 /*
597  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
598  */
599 static int __meminit __early_pfn_to_nid(unsigned long pfn,
600 					struct mminit_pfnnid_cache *state)
601 {
602 	unsigned long start_pfn, end_pfn;
603 	int nid;
604 
605 	if (state->last_start <= pfn && pfn < state->last_end)
606 		return state->last_nid;
607 
608 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
609 	if (nid != NUMA_NO_NODE) {
610 		state->last_start = start_pfn;
611 		state->last_end = end_pfn;
612 		state->last_nid = nid;
613 	}
614 
615 	return nid;
616 }
617 
618 int __meminit early_pfn_to_nid(unsigned long pfn)
619 {
620 	static DEFINE_SPINLOCK(early_pfn_lock);
621 	int nid;
622 
623 	spin_lock(&early_pfn_lock);
624 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
625 	if (nid < 0)
626 		nid = first_online_node;
627 	spin_unlock(&early_pfn_lock);
628 
629 	return nid;
630 }
631 
632 int hashdist = HASHDIST_DEFAULT;
633 
634 static int __init set_hashdist(char *str)
635 {
636 	if (!str)
637 		return 0;
638 	hashdist = simple_strtoul(str, &str, 0);
639 	return 1;
640 }
641 __setup("hashdist=", set_hashdist);
642 
643 static inline void fixup_hashdist(void)
644 {
645 	if (num_node_state(N_MEMORY) == 1)
646 		hashdist = 0;
647 }
648 #else
649 static inline void fixup_hashdist(void) {}
650 #endif /* CONFIG_NUMA */
651 
652 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
653 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
654 {
655 	pgdat->first_deferred_pfn = ULONG_MAX;
656 }
657 
658 /* Returns true if the struct page for the pfn is initialised */
659 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
660 {
661 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
662 		return false;
663 
664 	return true;
665 }
666 
667 /*
668  * Returns true when the remaining initialisation should be deferred until
669  * later in the boot cycle when it can be parallelised.
670  */
671 static bool __meminit
672 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
673 {
674 	static unsigned long prev_end_pfn, nr_initialised;
675 
676 	if (early_page_ext_enabled())
677 		return false;
678 
679 	/* Always populate low zones for address-constrained allocations */
680 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
681 		return false;
682 
683 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
684 		return true;
685 
686 	/*
687 	 * prev_end_pfn static that contains the end of previous zone
688 	 * No need to protect because called very early in boot before smp_init.
689 	 */
690 	if (prev_end_pfn != end_pfn) {
691 		prev_end_pfn = end_pfn;
692 		nr_initialised = 0;
693 	}
694 
695 	/*
696 	 * We start only with one section of pages, more pages are added as
697 	 * needed until the rest of deferred pages are initialized.
698 	 */
699 	nr_initialised++;
700 	if ((nr_initialised > PAGES_PER_SECTION) &&
701 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
702 		NODE_DATA(nid)->first_deferred_pfn = pfn;
703 		return true;
704 	}
705 	return false;
706 }
707 
708 static void __meminit init_reserved_page(unsigned long pfn, int nid)
709 {
710 	pg_data_t *pgdat;
711 	int zid;
712 
713 	if (early_page_initialised(pfn, nid))
714 		return;
715 
716 	pgdat = NODE_DATA(nid);
717 
718 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
719 		struct zone *zone = &pgdat->node_zones[zid];
720 
721 		if (zone_spans_pfn(zone, pfn))
722 			break;
723 	}
724 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
725 
726 	if (pageblock_aligned(pfn))
727 		set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE);
728 }
729 #else
730 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
731 
732 static inline bool early_page_initialised(unsigned long pfn, int nid)
733 {
734 	return true;
735 }
736 
737 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
738 {
739 	return false;
740 }
741 
742 static inline void init_reserved_page(unsigned long pfn, int nid)
743 {
744 }
745 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
746 
747 /*
748  * Initialised pages do not have PageReserved set. This function is
749  * called for each range allocated by the bootmem allocator and
750  * marks the pages PageReserved. The remaining valid pages are later
751  * sent to the buddy page allocator.
752  */
753 void __meminit reserve_bootmem_region(phys_addr_t start,
754 				      phys_addr_t end, int nid)
755 {
756 	unsigned long start_pfn = PFN_DOWN(start);
757 	unsigned long end_pfn = PFN_UP(end);
758 
759 	for (; start_pfn < end_pfn; start_pfn++) {
760 		if (pfn_valid(start_pfn)) {
761 			struct page *page = pfn_to_page(start_pfn);
762 
763 			init_reserved_page(start_pfn, nid);
764 
765 			/*
766 			 * no need for atomic set_bit because the struct
767 			 * page is not visible yet so nobody should
768 			 * access it yet.
769 			 */
770 			__SetPageReserved(page);
771 		}
772 	}
773 }
774 
775 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
776 static bool __meminit
777 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
778 {
779 	static struct memblock_region *r;
780 
781 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
782 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
783 			for_each_mem_region(r) {
784 				if (*pfn < memblock_region_memory_end_pfn(r))
785 					break;
786 			}
787 		}
788 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
789 		    memblock_is_mirror(r)) {
790 			*pfn = memblock_region_memory_end_pfn(r);
791 			return true;
792 		}
793 	}
794 	return false;
795 }
796 
797 /*
798  * Only struct pages that correspond to ranges defined by memblock.memory
799  * are zeroed and initialized by going through __init_single_page() during
800  * memmap_init_zone_range().
801  *
802  * But, there could be struct pages that correspond to holes in
803  * memblock.memory. This can happen because of the following reasons:
804  * - physical memory bank size is not necessarily the exact multiple of the
805  *   arbitrary section size
806  * - early reserved memory may not be listed in memblock.memory
807  * - non-memory regions covered by the contigious flatmem mapping
808  * - memory layouts defined with memmap= kernel parameter may not align
809  *   nicely with memmap sections
810  *
811  * Explicitly initialize those struct pages so that:
812  * - PG_Reserved is set
813  * - zone and node links point to zone and node that span the page if the
814  *   hole is in the middle of a zone
815  * - zone and node links point to adjacent zone/node if the hole falls on
816  *   the zone boundary; the pages in such holes will be prepended to the
817  *   zone/node above the hole except for the trailing pages in the last
818  *   section that will be appended to the zone/node below.
819  */
820 static void __init init_unavailable_range(unsigned long spfn,
821 					  unsigned long epfn,
822 					  int zone, int node)
823 {
824 	unsigned long pfn;
825 	u64 pgcnt = 0;
826 
827 	for (pfn = spfn; pfn < epfn; pfn++) {
828 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
829 			pfn = pageblock_end_pfn(pfn) - 1;
830 			continue;
831 		}
832 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
833 		__SetPageReserved(pfn_to_page(pfn));
834 		pgcnt++;
835 	}
836 
837 	if (pgcnt)
838 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
839 			node, zone_names[zone], pgcnt);
840 }
841 
842 /*
843  * Initially all pages are reserved - free ones are freed
844  * up by memblock_free_all() once the early boot process is
845  * done. Non-atomic initialization, single-pass.
846  *
847  * All aligned pageblocks are initialized to the specified migratetype
848  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
849  * zone stats (e.g., nr_isolate_pageblock) are touched.
850  */
851 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
852 		unsigned long start_pfn, unsigned long zone_end_pfn,
853 		enum meminit_context context,
854 		struct vmem_altmap *altmap, int migratetype)
855 {
856 	unsigned long pfn, end_pfn = start_pfn + size;
857 	struct page *page;
858 
859 	if (highest_memmap_pfn < end_pfn - 1)
860 		highest_memmap_pfn = end_pfn - 1;
861 
862 #ifdef CONFIG_ZONE_DEVICE
863 	/*
864 	 * Honor reservation requested by the driver for this ZONE_DEVICE
865 	 * memory. We limit the total number of pages to initialize to just
866 	 * those that might contain the memory mapping. We will defer the
867 	 * ZONE_DEVICE page initialization until after we have released
868 	 * the hotplug lock.
869 	 */
870 	if (zone == ZONE_DEVICE) {
871 		if (!altmap)
872 			return;
873 
874 		if (start_pfn == altmap->base_pfn)
875 			start_pfn += altmap->reserve;
876 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
877 	}
878 #endif
879 
880 	for (pfn = start_pfn; pfn < end_pfn; ) {
881 		/*
882 		 * There can be holes in boot-time mem_map[]s handed to this
883 		 * function.  They do not exist on hotplugged memory.
884 		 */
885 		if (context == MEMINIT_EARLY) {
886 			if (overlap_memmap_init(zone, &pfn))
887 				continue;
888 			if (defer_init(nid, pfn, zone_end_pfn)) {
889 				deferred_struct_pages = true;
890 				break;
891 			}
892 		}
893 
894 		page = pfn_to_page(pfn);
895 		__init_single_page(page, pfn, zone, nid);
896 		if (context == MEMINIT_HOTPLUG) {
897 #ifdef CONFIG_ZONE_DEVICE
898 			if (zone == ZONE_DEVICE)
899 				__SetPageReserved(page);
900 			else
901 #endif
902 				__SetPageOffline(page);
903 		}
904 
905 		/*
906 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
907 		 * such that unmovable allocations won't be scattered all
908 		 * over the place during system boot.
909 		 */
910 		if (pageblock_aligned(pfn)) {
911 			set_pageblock_migratetype(page, migratetype);
912 			cond_resched();
913 		}
914 		pfn++;
915 	}
916 }
917 
918 static void __init memmap_init_zone_range(struct zone *zone,
919 					  unsigned long start_pfn,
920 					  unsigned long end_pfn,
921 					  unsigned long *hole_pfn)
922 {
923 	unsigned long zone_start_pfn = zone->zone_start_pfn;
924 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
925 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
926 
927 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
928 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
929 
930 	if (start_pfn >= end_pfn)
931 		return;
932 
933 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
934 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
935 
936 	if (*hole_pfn < start_pfn)
937 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
938 
939 	*hole_pfn = end_pfn;
940 }
941 
942 static void __init memmap_init(void)
943 {
944 	unsigned long start_pfn, end_pfn;
945 	unsigned long hole_pfn = 0;
946 	int i, j, zone_id = 0, nid;
947 
948 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
949 		struct pglist_data *node = NODE_DATA(nid);
950 
951 		for (j = 0; j < MAX_NR_ZONES; j++) {
952 			struct zone *zone = node->node_zones + j;
953 
954 			if (!populated_zone(zone))
955 				continue;
956 
957 			memmap_init_zone_range(zone, start_pfn, end_pfn,
958 					       &hole_pfn);
959 			zone_id = j;
960 		}
961 	}
962 
963 #ifdef CONFIG_SPARSEMEM
964 	/*
965 	 * Initialize the memory map for hole in the range [memory_end,
966 	 * section_end].
967 	 * Append the pages in this hole to the highest zone in the last
968 	 * node.
969 	 * The call to init_unavailable_range() is outside the ifdef to
970 	 * silence the compiler warining about zone_id set but not used;
971 	 * for FLATMEM it is a nop anyway
972 	 */
973 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
974 	if (hole_pfn < end_pfn)
975 #endif
976 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
977 }
978 
979 #ifdef CONFIG_ZONE_DEVICE
980 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
981 					  unsigned long zone_idx, int nid,
982 					  struct dev_pagemap *pgmap)
983 {
984 
985 	__init_single_page(page, pfn, zone_idx, nid);
986 
987 	/*
988 	 * Mark page reserved as it will need to wait for onlining
989 	 * phase for it to be fully associated with a zone.
990 	 *
991 	 * We can use the non-atomic __set_bit operation for setting
992 	 * the flag as we are still initializing the pages.
993 	 */
994 	__SetPageReserved(page);
995 
996 	/*
997 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
998 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
999 	 * ever freed or placed on a driver-private list.
1000 	 */
1001 	page->pgmap = pgmap;
1002 	page->zone_device_data = NULL;
1003 
1004 	/*
1005 	 * Mark the block movable so that blocks are reserved for
1006 	 * movable at startup. This will force kernel allocations
1007 	 * to reserve their blocks rather than leaking throughout
1008 	 * the address space during boot when many long-lived
1009 	 * kernel allocations are made.
1010 	 *
1011 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1012 	 * because this is done early in section_activate()
1013 	 */
1014 	if (pageblock_aligned(pfn)) {
1015 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1016 		cond_resched();
1017 	}
1018 
1019 	/*
1020 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1021 	 * which will set the page count to 1 when allocating the page.
1022 	 */
1023 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1024 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1025 		set_page_count(page, 0);
1026 }
1027 
1028 /*
1029  * With compound page geometry and when struct pages are stored in ram most
1030  * tail pages are reused. Consequently, the amount of unique struct pages to
1031  * initialize is a lot smaller that the total amount of struct pages being
1032  * mapped. This is a paired / mild layering violation with explicit knowledge
1033  * of how the sparse_vmemmap internals handle compound pages in the lack
1034  * of an altmap. See vmemmap_populate_compound_pages().
1035  */
1036 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1037 					      struct dev_pagemap *pgmap)
1038 {
1039 	if (!vmemmap_can_optimize(altmap, pgmap))
1040 		return pgmap_vmemmap_nr(pgmap);
1041 
1042 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1043 }
1044 
1045 static void __ref memmap_init_compound(struct page *head,
1046 				       unsigned long head_pfn,
1047 				       unsigned long zone_idx, int nid,
1048 				       struct dev_pagemap *pgmap,
1049 				       unsigned long nr_pages)
1050 {
1051 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1052 	unsigned int order = pgmap->vmemmap_shift;
1053 
1054 	__SetPageHead(head);
1055 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1056 		struct page *page = pfn_to_page(pfn);
1057 
1058 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1059 		prep_compound_tail(head, pfn - head_pfn);
1060 		set_page_count(page, 0);
1061 
1062 		/*
1063 		 * The first tail page stores important compound page info.
1064 		 * Call prep_compound_head() after the first tail page has
1065 		 * been initialized, to not have the data overwritten.
1066 		 */
1067 		if (pfn == head_pfn + 1)
1068 			prep_compound_head(head, order);
1069 	}
1070 }
1071 
1072 void __ref memmap_init_zone_device(struct zone *zone,
1073 				   unsigned long start_pfn,
1074 				   unsigned long nr_pages,
1075 				   struct dev_pagemap *pgmap)
1076 {
1077 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1078 	struct pglist_data *pgdat = zone->zone_pgdat;
1079 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1080 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1081 	unsigned long zone_idx = zone_idx(zone);
1082 	unsigned long start = jiffies;
1083 	int nid = pgdat->node_id;
1084 
1085 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1086 		return;
1087 
1088 	/*
1089 	 * The call to memmap_init should have already taken care
1090 	 * of the pages reserved for the memmap, so we can just jump to
1091 	 * the end of that region and start processing the device pages.
1092 	 */
1093 	if (altmap) {
1094 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1095 		nr_pages = end_pfn - start_pfn;
1096 	}
1097 
1098 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1099 		struct page *page = pfn_to_page(pfn);
1100 
1101 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1102 
1103 		if (pfns_per_compound == 1)
1104 			continue;
1105 
1106 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1107 				     compound_nr_pages(altmap, pgmap));
1108 	}
1109 
1110 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1111 		nr_pages, jiffies_to_msecs(jiffies - start));
1112 }
1113 #endif
1114 
1115 /*
1116  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1117  * because it is sized independent of architecture. Unlike the other zones,
1118  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1119  * in each node depending on the size of each node and how evenly kernelcore
1120  * is distributed. This helper function adjusts the zone ranges
1121  * provided by the architecture for a given node by using the end of the
1122  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1123  * zones within a node are in order of monotonic increases memory addresses
1124  */
1125 static void __init adjust_zone_range_for_zone_movable(int nid,
1126 					unsigned long zone_type,
1127 					unsigned long node_end_pfn,
1128 					unsigned long *zone_start_pfn,
1129 					unsigned long *zone_end_pfn)
1130 {
1131 	/* Only adjust if ZONE_MOVABLE is on this node */
1132 	if (zone_movable_pfn[nid]) {
1133 		/* Size ZONE_MOVABLE */
1134 		if (zone_type == ZONE_MOVABLE) {
1135 			*zone_start_pfn = zone_movable_pfn[nid];
1136 			*zone_end_pfn = min(node_end_pfn,
1137 				arch_zone_highest_possible_pfn[movable_zone]);
1138 
1139 		/* Adjust for ZONE_MOVABLE starting within this range */
1140 		} else if (!mirrored_kernelcore &&
1141 			*zone_start_pfn < zone_movable_pfn[nid] &&
1142 			*zone_end_pfn > zone_movable_pfn[nid]) {
1143 			*zone_end_pfn = zone_movable_pfn[nid];
1144 
1145 		/* Check if this whole range is within ZONE_MOVABLE */
1146 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1147 			*zone_start_pfn = *zone_end_pfn;
1148 	}
1149 }
1150 
1151 /*
1152  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1153  * then all holes in the requested range will be accounted for.
1154  */
1155 static unsigned long __init __absent_pages_in_range(int nid,
1156 				unsigned long range_start_pfn,
1157 				unsigned long range_end_pfn)
1158 {
1159 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1160 	unsigned long start_pfn, end_pfn;
1161 	int i;
1162 
1163 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1164 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1165 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1166 		nr_absent -= end_pfn - start_pfn;
1167 	}
1168 	return nr_absent;
1169 }
1170 
1171 /**
1172  * absent_pages_in_range - Return number of page frames in holes within a range
1173  * @start_pfn: The start PFN to start searching for holes
1174  * @end_pfn: The end PFN to stop searching for holes
1175  *
1176  * Return: the number of pages frames in memory holes within a range.
1177  */
1178 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1179 							unsigned long end_pfn)
1180 {
1181 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1182 }
1183 
1184 /* Return the number of page frames in holes in a zone on a node */
1185 static unsigned long __init zone_absent_pages_in_node(int nid,
1186 					unsigned long zone_type,
1187 					unsigned long zone_start_pfn,
1188 					unsigned long zone_end_pfn)
1189 {
1190 	unsigned long nr_absent;
1191 
1192 	/* zone is empty, we don't have any absent pages */
1193 	if (zone_start_pfn == zone_end_pfn)
1194 		return 0;
1195 
1196 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1197 
1198 	/*
1199 	 * ZONE_MOVABLE handling.
1200 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1201 	 * and vice versa.
1202 	 */
1203 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1204 		unsigned long start_pfn, end_pfn;
1205 		struct memblock_region *r;
1206 
1207 		for_each_mem_region(r) {
1208 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1209 					  zone_start_pfn, zone_end_pfn);
1210 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1211 					zone_start_pfn, zone_end_pfn);
1212 
1213 			if (zone_type == ZONE_MOVABLE &&
1214 			    memblock_is_mirror(r))
1215 				nr_absent += end_pfn - start_pfn;
1216 
1217 			if (zone_type == ZONE_NORMAL &&
1218 			    !memblock_is_mirror(r))
1219 				nr_absent += end_pfn - start_pfn;
1220 		}
1221 	}
1222 
1223 	return nr_absent;
1224 }
1225 
1226 /*
1227  * Return the number of pages a zone spans in a node, including holes
1228  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1229  */
1230 static unsigned long __init zone_spanned_pages_in_node(int nid,
1231 					unsigned long zone_type,
1232 					unsigned long node_start_pfn,
1233 					unsigned long node_end_pfn,
1234 					unsigned long *zone_start_pfn,
1235 					unsigned long *zone_end_pfn)
1236 {
1237 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1238 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1239 
1240 	/* Get the start and end of the zone */
1241 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1242 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1243 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1244 					   zone_start_pfn, zone_end_pfn);
1245 
1246 	/* Check that this node has pages within the zone's required range */
1247 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1248 		return 0;
1249 
1250 	/* Move the zone boundaries inside the node if necessary */
1251 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1252 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1253 
1254 	/* Return the spanned pages */
1255 	return *zone_end_pfn - *zone_start_pfn;
1256 }
1257 
1258 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1259 {
1260 	struct zone *z;
1261 
1262 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1263 		z->zone_start_pfn = 0;
1264 		z->spanned_pages = 0;
1265 		z->present_pages = 0;
1266 #if defined(CONFIG_MEMORY_HOTPLUG)
1267 		z->present_early_pages = 0;
1268 #endif
1269 	}
1270 
1271 	pgdat->node_spanned_pages = 0;
1272 	pgdat->node_present_pages = 0;
1273 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1274 }
1275 
1276 static void __init calc_nr_kernel_pages(void)
1277 {
1278 	unsigned long start_pfn, end_pfn;
1279 	phys_addr_t start_addr, end_addr;
1280 	u64 u;
1281 #ifdef CONFIG_HIGHMEM
1282 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1283 #endif
1284 
1285 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1286 		start_pfn = PFN_UP(start_addr);
1287 		end_pfn   = PFN_DOWN(end_addr);
1288 
1289 		if (start_pfn < end_pfn) {
1290 			nr_all_pages += end_pfn - start_pfn;
1291 #ifdef CONFIG_HIGHMEM
1292 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1293 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1294 #endif
1295 			nr_kernel_pages += end_pfn - start_pfn;
1296 		}
1297 	}
1298 }
1299 
1300 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1301 						unsigned long node_start_pfn,
1302 						unsigned long node_end_pfn)
1303 {
1304 	unsigned long realtotalpages = 0, totalpages = 0;
1305 	enum zone_type i;
1306 
1307 	for (i = 0; i < MAX_NR_ZONES; i++) {
1308 		struct zone *zone = pgdat->node_zones + i;
1309 		unsigned long zone_start_pfn, zone_end_pfn;
1310 		unsigned long spanned, absent;
1311 		unsigned long real_size;
1312 
1313 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1314 						     node_start_pfn,
1315 						     node_end_pfn,
1316 						     &zone_start_pfn,
1317 						     &zone_end_pfn);
1318 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1319 						   zone_start_pfn,
1320 						   zone_end_pfn);
1321 
1322 		real_size = spanned - absent;
1323 
1324 		if (spanned)
1325 			zone->zone_start_pfn = zone_start_pfn;
1326 		else
1327 			zone->zone_start_pfn = 0;
1328 		zone->spanned_pages = spanned;
1329 		zone->present_pages = real_size;
1330 #if defined(CONFIG_MEMORY_HOTPLUG)
1331 		zone->present_early_pages = real_size;
1332 #endif
1333 
1334 		totalpages += spanned;
1335 		realtotalpages += real_size;
1336 	}
1337 
1338 	pgdat->node_spanned_pages = totalpages;
1339 	pgdat->node_present_pages = realtotalpages;
1340 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1341 }
1342 
1343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1344 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1345 {
1346 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1347 
1348 	spin_lock_init(&ds_queue->split_queue_lock);
1349 	INIT_LIST_HEAD(&ds_queue->split_queue);
1350 	ds_queue->split_queue_len = 0;
1351 }
1352 #else
1353 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1354 #endif
1355 
1356 #ifdef CONFIG_COMPACTION
1357 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1358 {
1359 	init_waitqueue_head(&pgdat->kcompactd_wait);
1360 }
1361 #else
1362 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1363 #endif
1364 
1365 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1366 {
1367 	int i;
1368 
1369 	pgdat_resize_init(pgdat);
1370 	pgdat_kswapd_lock_init(pgdat);
1371 
1372 	pgdat_init_split_queue(pgdat);
1373 	pgdat_init_kcompactd(pgdat);
1374 
1375 	init_waitqueue_head(&pgdat->kswapd_wait);
1376 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1377 
1378 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1379 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1380 
1381 	pgdat_page_ext_init(pgdat);
1382 	lruvec_init(&pgdat->__lruvec);
1383 }
1384 
1385 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1386 							unsigned long remaining_pages)
1387 {
1388 	atomic_long_set(&zone->managed_pages, remaining_pages);
1389 	zone_set_nid(zone, nid);
1390 	zone->name = zone_names[idx];
1391 	zone->zone_pgdat = NODE_DATA(nid);
1392 	spin_lock_init(&zone->lock);
1393 	zone_seqlock_init(zone);
1394 	zone_pcp_init(zone);
1395 }
1396 
1397 static void __meminit zone_init_free_lists(struct zone *zone)
1398 {
1399 	unsigned int order, t;
1400 	for_each_migratetype_order(order, t) {
1401 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1402 		zone->free_area[order].nr_free = 0;
1403 	}
1404 
1405 #ifdef CONFIG_UNACCEPTED_MEMORY
1406 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1407 #endif
1408 }
1409 
1410 void __meminit init_currently_empty_zone(struct zone *zone,
1411 					unsigned long zone_start_pfn,
1412 					unsigned long size)
1413 {
1414 	struct pglist_data *pgdat = zone->zone_pgdat;
1415 	int zone_idx = zone_idx(zone) + 1;
1416 
1417 	if (zone_idx > pgdat->nr_zones)
1418 		pgdat->nr_zones = zone_idx;
1419 
1420 	zone->zone_start_pfn = zone_start_pfn;
1421 
1422 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1423 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1424 			pgdat->node_id,
1425 			(unsigned long)zone_idx(zone),
1426 			zone_start_pfn, (zone_start_pfn + size));
1427 
1428 	zone_init_free_lists(zone);
1429 	zone->initialized = 1;
1430 }
1431 
1432 #ifndef CONFIG_SPARSEMEM
1433 /*
1434  * Calculate the size of the zone->blockflags rounded to an unsigned long
1435  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1436  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1437  * round what is now in bits to nearest long in bits, then return it in
1438  * bytes.
1439  */
1440 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1441 {
1442 	unsigned long usemapsize;
1443 
1444 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1445 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1446 	usemapsize = usemapsize >> pageblock_order;
1447 	usemapsize *= NR_PAGEBLOCK_BITS;
1448 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1449 
1450 	return usemapsize / BITS_PER_BYTE;
1451 }
1452 
1453 static void __ref setup_usemap(struct zone *zone)
1454 {
1455 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1456 					       zone->spanned_pages);
1457 	zone->pageblock_flags = NULL;
1458 	if (usemapsize) {
1459 		zone->pageblock_flags =
1460 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1461 					    zone_to_nid(zone));
1462 		if (!zone->pageblock_flags)
1463 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1464 			      usemapsize, zone->name, zone_to_nid(zone));
1465 	}
1466 }
1467 #else
1468 static inline void setup_usemap(struct zone *zone) {}
1469 #endif /* CONFIG_SPARSEMEM */
1470 
1471 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1472 
1473 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1474 void __init set_pageblock_order(void)
1475 {
1476 	unsigned int order = MAX_PAGE_ORDER;
1477 
1478 	/* Check that pageblock_nr_pages has not already been setup */
1479 	if (pageblock_order)
1480 		return;
1481 
1482 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1483 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1484 		order = HUGETLB_PAGE_ORDER;
1485 
1486 	/*
1487 	 * Assume the largest contiguous order of interest is a huge page.
1488 	 * This value may be variable depending on boot parameters on powerpc.
1489 	 */
1490 	pageblock_order = order;
1491 }
1492 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1493 
1494 /*
1495  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1496  * is unused as pageblock_order is set at compile-time. See
1497  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1498  * the kernel config
1499  */
1500 void __init set_pageblock_order(void)
1501 {
1502 }
1503 
1504 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1505 
1506 /*
1507  * Set up the zone data structures
1508  * - init pgdat internals
1509  * - init all zones belonging to this node
1510  *
1511  * NOTE: this function is only called during memory hotplug
1512  */
1513 #ifdef CONFIG_MEMORY_HOTPLUG
1514 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1515 {
1516 	int nid = pgdat->node_id;
1517 	enum zone_type z;
1518 	int cpu;
1519 
1520 	pgdat_init_internals(pgdat);
1521 
1522 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1523 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1524 
1525 	/*
1526 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1527 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1528 	 * when it starts in the near future.
1529 	 */
1530 	pgdat->nr_zones = 0;
1531 	pgdat->kswapd_order = 0;
1532 	pgdat->kswapd_highest_zoneidx = 0;
1533 	pgdat->node_start_pfn = 0;
1534 	pgdat->node_present_pages = 0;
1535 
1536 	for_each_online_cpu(cpu) {
1537 		struct per_cpu_nodestat *p;
1538 
1539 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1540 		memset(p, 0, sizeof(*p));
1541 	}
1542 
1543 	/*
1544 	 * When memory is hot-added, all the memory is in offline state. So
1545 	 * clear all zones' present_pages and managed_pages because they will
1546 	 * be updated in online_pages() and offline_pages().
1547 	 */
1548 	for (z = 0; z < MAX_NR_ZONES; z++) {
1549 		struct zone *zone = pgdat->node_zones + z;
1550 
1551 		zone->present_pages = 0;
1552 		zone_init_internals(zone, z, nid, 0);
1553 	}
1554 }
1555 #endif
1556 
1557 static void __init free_area_init_core(struct pglist_data *pgdat)
1558 {
1559 	enum zone_type j;
1560 	int nid = pgdat->node_id;
1561 
1562 	pgdat_init_internals(pgdat);
1563 	pgdat->per_cpu_nodestats = &boot_nodestats;
1564 
1565 	for (j = 0; j < MAX_NR_ZONES; j++) {
1566 		struct zone *zone = pgdat->node_zones + j;
1567 		unsigned long size = zone->spanned_pages;
1568 
1569 		/*
1570 		 * Initialize zone->managed_pages as 0 , it will be reset
1571 		 * when memblock allocator frees pages into buddy system.
1572 		 */
1573 		zone_init_internals(zone, j, nid, zone->present_pages);
1574 
1575 		if (!size)
1576 			continue;
1577 
1578 		setup_usemap(zone);
1579 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1580 	}
1581 }
1582 
1583 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1584 			  phys_addr_t min_addr, int nid, bool exact_nid)
1585 {
1586 	void *ptr;
1587 
1588 	if (exact_nid)
1589 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1590 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1591 						   nid);
1592 	else
1593 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1594 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1595 						 nid);
1596 
1597 	if (ptr && size > 0)
1598 		page_init_poison(ptr, size);
1599 
1600 	return ptr;
1601 }
1602 
1603 #ifdef CONFIG_FLATMEM
1604 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1605 {
1606 	unsigned long start, offset, size, end;
1607 	struct page *map;
1608 
1609 	/* Skip empty nodes */
1610 	if (!pgdat->node_spanned_pages)
1611 		return;
1612 
1613 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1614 	offset = pgdat->node_start_pfn - start;
1615 	/*
1616 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1617 	 * aligned but the node_mem_map endpoints must be in order
1618 	 * for the buddy allocator to function correctly.
1619 	 */
1620 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1621 	size =  (end - start) * sizeof(struct page);
1622 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1623 			   pgdat->node_id, false);
1624 	if (!map)
1625 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1626 		      size, pgdat->node_id);
1627 	pgdat->node_mem_map = map + offset;
1628 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1629 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1630 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1631 		 (unsigned long)pgdat->node_mem_map);
1632 #ifndef CONFIG_NUMA
1633 	/* the global mem_map is just set as node 0's */
1634 	if (pgdat == NODE_DATA(0)) {
1635 		mem_map = NODE_DATA(0)->node_mem_map;
1636 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1637 			mem_map -= offset;
1638 	}
1639 #endif
1640 }
1641 #else
1642 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1643 #endif /* CONFIG_FLATMEM */
1644 
1645 /**
1646  * get_pfn_range_for_nid - Return the start and end page frames for a node
1647  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1648  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1649  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1650  *
1651  * It returns the start and end page frame of a node based on information
1652  * provided by memblock_set_node(). If called for a node
1653  * with no available memory, the start and end PFNs will be 0.
1654  */
1655 void __init get_pfn_range_for_nid(unsigned int nid,
1656 			unsigned long *start_pfn, unsigned long *end_pfn)
1657 {
1658 	unsigned long this_start_pfn, this_end_pfn;
1659 	int i;
1660 
1661 	*start_pfn = -1UL;
1662 	*end_pfn = 0;
1663 
1664 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1665 		*start_pfn = min(*start_pfn, this_start_pfn);
1666 		*end_pfn = max(*end_pfn, this_end_pfn);
1667 	}
1668 
1669 	if (*start_pfn == -1UL)
1670 		*start_pfn = 0;
1671 }
1672 
1673 static void __init free_area_init_node(int nid)
1674 {
1675 	pg_data_t *pgdat = NODE_DATA(nid);
1676 	unsigned long start_pfn = 0;
1677 	unsigned long end_pfn = 0;
1678 
1679 	/* pg_data_t should be reset to zero when it's allocated */
1680 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1681 
1682 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1683 
1684 	pgdat->node_id = nid;
1685 	pgdat->node_start_pfn = start_pfn;
1686 	pgdat->per_cpu_nodestats = NULL;
1687 
1688 	if (start_pfn != end_pfn) {
1689 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1690 			(u64)start_pfn << PAGE_SHIFT,
1691 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1692 
1693 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1694 	} else {
1695 		pr_info("Initmem setup node %d as memoryless\n", nid);
1696 
1697 		reset_memoryless_node_totalpages(pgdat);
1698 	}
1699 
1700 	alloc_node_mem_map(pgdat);
1701 	pgdat_set_deferred_range(pgdat);
1702 
1703 	free_area_init_core(pgdat);
1704 	lru_gen_init_pgdat(pgdat);
1705 }
1706 
1707 /* Any regular or high memory on that node ? */
1708 static void __init check_for_memory(pg_data_t *pgdat)
1709 {
1710 	enum zone_type zone_type;
1711 
1712 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1713 		struct zone *zone = &pgdat->node_zones[zone_type];
1714 		if (populated_zone(zone)) {
1715 			if (IS_ENABLED(CONFIG_HIGHMEM))
1716 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1717 			if (zone_type <= ZONE_NORMAL)
1718 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1719 			break;
1720 		}
1721 	}
1722 }
1723 
1724 #if MAX_NUMNODES > 1
1725 /*
1726  * Figure out the number of possible node ids.
1727  */
1728 void __init setup_nr_node_ids(void)
1729 {
1730 	unsigned int highest;
1731 
1732 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1733 	nr_node_ids = highest + 1;
1734 }
1735 #endif
1736 
1737 /*
1738  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1739  * such cases we allow max_zone_pfn sorted in the descending order
1740  */
1741 static bool arch_has_descending_max_zone_pfns(void)
1742 {
1743 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1744 }
1745 
1746 /**
1747  * free_area_init - Initialise all pg_data_t and zone data
1748  * @max_zone_pfn: an array of max PFNs for each zone
1749  *
1750  * This will call free_area_init_node() for each active node in the system.
1751  * Using the page ranges provided by memblock_set_node(), the size of each
1752  * zone in each node and their holes is calculated. If the maximum PFN
1753  * between two adjacent zones match, it is assumed that the zone is empty.
1754  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1755  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1756  * starts where the previous one ended. For example, ZONE_DMA32 starts
1757  * at arch_max_dma_pfn.
1758  */
1759 void __init free_area_init(unsigned long *max_zone_pfn)
1760 {
1761 	unsigned long start_pfn, end_pfn;
1762 	int i, nid, zone;
1763 	bool descending;
1764 
1765 	/* Record where the zone boundaries are */
1766 	memset(arch_zone_lowest_possible_pfn, 0,
1767 				sizeof(arch_zone_lowest_possible_pfn));
1768 	memset(arch_zone_highest_possible_pfn, 0,
1769 				sizeof(arch_zone_highest_possible_pfn));
1770 
1771 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1772 	descending = arch_has_descending_max_zone_pfns();
1773 
1774 	for (i = 0; i < MAX_NR_ZONES; i++) {
1775 		if (descending)
1776 			zone = MAX_NR_ZONES - i - 1;
1777 		else
1778 			zone = i;
1779 
1780 		if (zone == ZONE_MOVABLE)
1781 			continue;
1782 
1783 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1784 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1785 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1786 
1787 		start_pfn = end_pfn;
1788 	}
1789 
1790 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1791 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1792 	find_zone_movable_pfns_for_nodes();
1793 
1794 	/* Print out the zone ranges */
1795 	pr_info("Zone ranges:\n");
1796 	for (i = 0; i < MAX_NR_ZONES; i++) {
1797 		if (i == ZONE_MOVABLE)
1798 			continue;
1799 		pr_info("  %-8s ", zone_names[i]);
1800 		if (arch_zone_lowest_possible_pfn[i] ==
1801 				arch_zone_highest_possible_pfn[i])
1802 			pr_cont("empty\n");
1803 		else
1804 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1805 				(u64)arch_zone_lowest_possible_pfn[i]
1806 					<< PAGE_SHIFT,
1807 				((u64)arch_zone_highest_possible_pfn[i]
1808 					<< PAGE_SHIFT) - 1);
1809 	}
1810 
1811 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1812 	pr_info("Movable zone start for each node\n");
1813 	for (i = 0; i < MAX_NUMNODES; i++) {
1814 		if (zone_movable_pfn[i])
1815 			pr_info("  Node %d: %#018Lx\n", i,
1816 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1817 	}
1818 
1819 	/*
1820 	 * Print out the early node map, and initialize the
1821 	 * subsection-map relative to active online memory ranges to
1822 	 * enable future "sub-section" extensions of the memory map.
1823 	 */
1824 	pr_info("Early memory node ranges\n");
1825 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1826 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1827 			(u64)start_pfn << PAGE_SHIFT,
1828 			((u64)end_pfn << PAGE_SHIFT) - 1);
1829 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1830 	}
1831 
1832 	/* Initialise every node */
1833 	mminit_verify_pageflags_layout();
1834 	setup_nr_node_ids();
1835 	set_pageblock_order();
1836 
1837 	for_each_node(nid) {
1838 		pg_data_t *pgdat;
1839 
1840 		if (!node_online(nid))
1841 			alloc_offline_node_data(nid);
1842 
1843 		pgdat = NODE_DATA(nid);
1844 		free_area_init_node(nid);
1845 
1846 		/*
1847 		 * No sysfs hierarcy will be created via register_one_node()
1848 		 *for memory-less node because here it's not marked as N_MEMORY
1849 		 *and won't be set online later. The benefit is userspace
1850 		 *program won't be confused by sysfs files/directories of
1851 		 *memory-less node. The pgdat will get fully initialized by
1852 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1853 		 */
1854 		if (pgdat->node_present_pages) {
1855 			node_set_state(nid, N_MEMORY);
1856 			check_for_memory(pgdat);
1857 		}
1858 	}
1859 
1860 	calc_nr_kernel_pages();
1861 	memmap_init();
1862 
1863 	/* disable hash distribution for systems with a single node */
1864 	fixup_hashdist();
1865 }
1866 
1867 /**
1868  * node_map_pfn_alignment - determine the maximum internode alignment
1869  *
1870  * This function should be called after node map is populated and sorted.
1871  * It calculates the maximum power of two alignment which can distinguish
1872  * all the nodes.
1873  *
1874  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1875  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1876  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1877  * shifted, 1GiB is enough and this function will indicate so.
1878  *
1879  * This is used to test whether pfn -> nid mapping of the chosen memory
1880  * model has fine enough granularity to avoid incorrect mapping for the
1881  * populated node map.
1882  *
1883  * Return: the determined alignment in pfn's.  0 if there is no alignment
1884  * requirement (single node).
1885  */
1886 unsigned long __init node_map_pfn_alignment(void)
1887 {
1888 	unsigned long accl_mask = 0, last_end = 0;
1889 	unsigned long start, end, mask;
1890 	int last_nid = NUMA_NO_NODE;
1891 	int i, nid;
1892 
1893 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1894 		if (!start || last_nid < 0 || last_nid == nid) {
1895 			last_nid = nid;
1896 			last_end = end;
1897 			continue;
1898 		}
1899 
1900 		/*
1901 		 * Start with a mask granular enough to pin-point to the
1902 		 * start pfn and tick off bits one-by-one until it becomes
1903 		 * too coarse to separate the current node from the last.
1904 		 */
1905 		mask = ~((1 << __ffs(start)) - 1);
1906 		while (mask && last_end <= (start & (mask << 1)))
1907 			mask <<= 1;
1908 
1909 		/* accumulate all internode masks */
1910 		accl_mask |= mask;
1911 	}
1912 
1913 	/* convert mask to number of pages */
1914 	return ~accl_mask + 1;
1915 }
1916 
1917 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1918 static void __init deferred_free_pages(unsigned long pfn,
1919 		unsigned long nr_pages)
1920 {
1921 	struct page *page;
1922 	unsigned long i;
1923 
1924 	if (!nr_pages)
1925 		return;
1926 
1927 	page = pfn_to_page(pfn);
1928 
1929 	/* Free a large naturally-aligned chunk if possible */
1930 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1931 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1932 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1933 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
1934 		return;
1935 	}
1936 
1937 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1938 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
1939 
1940 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1941 		if (pageblock_aligned(pfn))
1942 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1943 		__free_pages_core(page, 0, MEMINIT_EARLY);
1944 	}
1945 }
1946 
1947 /* Completion tracking for deferred_init_memmap() threads */
1948 static atomic_t pgdat_init_n_undone __initdata;
1949 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1950 
1951 static inline void __init pgdat_init_report_one_done(void)
1952 {
1953 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1954 		complete(&pgdat_init_all_done_comp);
1955 }
1956 
1957 /*
1958  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1959  * by performing it only once every MAX_ORDER_NR_PAGES.
1960  * Return number of pages initialized.
1961  */
1962 static unsigned long __init deferred_init_pages(struct zone *zone,
1963 		unsigned long pfn, unsigned long end_pfn)
1964 {
1965 	int nid = zone_to_nid(zone);
1966 	unsigned long nr_pages = end_pfn - pfn;
1967 	int zid = zone_idx(zone);
1968 	struct page *page = pfn_to_page(pfn);
1969 
1970 	for (; pfn < end_pfn; pfn++, page++)
1971 		__init_single_page(page, pfn, zid, nid);
1972 	return nr_pages;
1973 }
1974 
1975 /*
1976  * This function is meant to pre-load the iterator for the zone init from
1977  * a given point.
1978  * Specifically it walks through the ranges starting with initial index
1979  * passed to it until we are caught up to the first_init_pfn value and
1980  * exits there. If we never encounter the value we return false indicating
1981  * there are no valid ranges left.
1982  */
1983 static bool __init
1984 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1985 				    unsigned long *spfn, unsigned long *epfn,
1986 				    unsigned long first_init_pfn)
1987 {
1988 	u64 j = *i;
1989 
1990 	if (j == 0)
1991 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
1992 
1993 	/*
1994 	 * Start out by walking through the ranges in this zone that have
1995 	 * already been initialized. We don't need to do anything with them
1996 	 * so we just need to flush them out of the system.
1997 	 */
1998 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
1999 		if (*epfn <= first_init_pfn)
2000 			continue;
2001 		if (*spfn < first_init_pfn)
2002 			*spfn = first_init_pfn;
2003 		*i = j;
2004 		return true;
2005 	}
2006 
2007 	return false;
2008 }
2009 
2010 /*
2011  * Initialize and free pages. We do it in two loops: first we initialize
2012  * struct page, then free to buddy allocator, because while we are
2013  * freeing pages we can access pages that are ahead (computing buddy
2014  * page in __free_one_page()).
2015  *
2016  * In order to try and keep some memory in the cache we have the loop
2017  * broken along max page order boundaries. This way we will not cause
2018  * any issues with the buddy page computation.
2019  */
2020 static unsigned long __init
2021 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2022 		       unsigned long *end_pfn)
2023 {
2024 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2025 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2026 	unsigned long nr_pages = 0;
2027 	u64 j = *i;
2028 
2029 	/* First we loop through and initialize the page values */
2030 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2031 		unsigned long t;
2032 
2033 		if (mo_pfn <= *start_pfn)
2034 			break;
2035 
2036 		t = min(mo_pfn, *end_pfn);
2037 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2038 
2039 		if (mo_pfn < *end_pfn) {
2040 			*start_pfn = mo_pfn;
2041 			break;
2042 		}
2043 	}
2044 
2045 	/* Reset values and now loop through freeing pages as needed */
2046 	swap(j, *i);
2047 
2048 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2049 		unsigned long t;
2050 
2051 		if (mo_pfn <= spfn)
2052 			break;
2053 
2054 		t = min(mo_pfn, epfn);
2055 		deferred_free_pages(spfn, t - spfn);
2056 
2057 		if (mo_pfn <= epfn)
2058 			break;
2059 	}
2060 
2061 	return nr_pages;
2062 }
2063 
2064 static void __init
2065 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2066 			   void *arg)
2067 {
2068 	unsigned long spfn, epfn;
2069 	struct zone *zone = arg;
2070 	u64 i = 0;
2071 
2072 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2073 
2074 	/*
2075 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2076 	 * we can avoid introducing any issues with the buddy allocator.
2077 	 */
2078 	while (spfn < end_pfn) {
2079 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2080 		cond_resched();
2081 	}
2082 }
2083 
2084 static unsigned int __init
2085 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2086 {
2087 	return max(cpumask_weight(node_cpumask), 1U);
2088 }
2089 
2090 /* Initialise remaining memory on a node */
2091 static int __init deferred_init_memmap(void *data)
2092 {
2093 	pg_data_t *pgdat = data;
2094 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2095 	unsigned long spfn = 0, epfn = 0;
2096 	unsigned long first_init_pfn, flags;
2097 	unsigned long start = jiffies;
2098 	struct zone *zone;
2099 	int max_threads;
2100 	u64 i = 0;
2101 
2102 	/* Bind memory initialisation thread to a local node if possible */
2103 	if (!cpumask_empty(cpumask))
2104 		set_cpus_allowed_ptr(current, cpumask);
2105 
2106 	pgdat_resize_lock(pgdat, &flags);
2107 	first_init_pfn = pgdat->first_deferred_pfn;
2108 	if (first_init_pfn == ULONG_MAX) {
2109 		pgdat_resize_unlock(pgdat, &flags);
2110 		pgdat_init_report_one_done();
2111 		return 0;
2112 	}
2113 
2114 	/* Sanity check boundaries */
2115 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2116 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2117 	pgdat->first_deferred_pfn = ULONG_MAX;
2118 
2119 	/*
2120 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2121 	 * interrupt thread must allocate this early in boot, zone must be
2122 	 * pre-grown prior to start of deferred page initialization.
2123 	 */
2124 	pgdat_resize_unlock(pgdat, &flags);
2125 
2126 	/* Only the highest zone is deferred */
2127 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2128 
2129 	max_threads = deferred_page_init_max_threads(cpumask);
2130 
2131 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2132 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2133 		struct padata_mt_job job = {
2134 			.thread_fn   = deferred_init_memmap_chunk,
2135 			.fn_arg      = zone,
2136 			.start       = spfn,
2137 			.size        = first_init_pfn - spfn,
2138 			.align       = PAGES_PER_SECTION,
2139 			.min_chunk   = PAGES_PER_SECTION,
2140 			.max_threads = max_threads,
2141 			.numa_aware  = false,
2142 		};
2143 
2144 		padata_do_multithreaded(&job);
2145 	}
2146 
2147 	/* Sanity check that the next zone really is unpopulated */
2148 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2149 
2150 	pr_info("node %d deferred pages initialised in %ums\n",
2151 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2152 
2153 	pgdat_init_report_one_done();
2154 	return 0;
2155 }
2156 
2157 /*
2158  * If this zone has deferred pages, try to grow it by initializing enough
2159  * deferred pages to satisfy the allocation specified by order, rounded up to
2160  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2161  * of SECTION_SIZE bytes by initializing struct pages in increments of
2162  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2163  *
2164  * Return true when zone was grown, otherwise return false. We return true even
2165  * when we grow less than requested, to let the caller decide if there are
2166  * enough pages to satisfy the allocation.
2167  */
2168 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2169 {
2170 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2171 	pg_data_t *pgdat = zone->zone_pgdat;
2172 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2173 	unsigned long spfn, epfn, flags;
2174 	unsigned long nr_pages = 0;
2175 	u64 i = 0;
2176 
2177 	/* Only the last zone may have deferred pages */
2178 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2179 		return false;
2180 
2181 	pgdat_resize_lock(pgdat, &flags);
2182 
2183 	/*
2184 	 * If someone grew this zone while we were waiting for spinlock, return
2185 	 * true, as there might be enough pages already.
2186 	 */
2187 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2188 		pgdat_resize_unlock(pgdat, &flags);
2189 		return true;
2190 	}
2191 
2192 	/* If the zone is empty somebody else may have cleared out the zone */
2193 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2194 						 first_deferred_pfn)) {
2195 		pgdat->first_deferred_pfn = ULONG_MAX;
2196 		pgdat_resize_unlock(pgdat, &flags);
2197 		/* Retry only once. */
2198 		return first_deferred_pfn != ULONG_MAX;
2199 	}
2200 
2201 	/*
2202 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2203 	 * that we can avoid introducing any issues with the buddy
2204 	 * allocator.
2205 	 */
2206 	while (spfn < epfn) {
2207 		/* update our first deferred PFN for this section */
2208 		first_deferred_pfn = spfn;
2209 
2210 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2211 		touch_nmi_watchdog();
2212 
2213 		/* We should only stop along section boundaries */
2214 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2215 			continue;
2216 
2217 		/* If our quota has been met we can stop here */
2218 		if (nr_pages >= nr_pages_needed)
2219 			break;
2220 	}
2221 
2222 	pgdat->first_deferred_pfn = spfn;
2223 	pgdat_resize_unlock(pgdat, &flags);
2224 
2225 	return nr_pages > 0;
2226 }
2227 
2228 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2229 
2230 #ifdef CONFIG_CMA
2231 void __init init_cma_reserved_pageblock(struct page *page)
2232 {
2233 	unsigned i = pageblock_nr_pages;
2234 	struct page *p = page;
2235 
2236 	do {
2237 		__ClearPageReserved(p);
2238 		set_page_count(p, 0);
2239 	} while (++p, --i);
2240 
2241 	set_pageblock_migratetype(page, MIGRATE_CMA);
2242 	set_page_refcounted(page);
2243 	/* pages were reserved and not allocated */
2244 	clear_page_tag_ref(page);
2245 	__free_pages(page, pageblock_order);
2246 
2247 	adjust_managed_page_count(page, pageblock_nr_pages);
2248 	page_zone(page)->cma_pages += pageblock_nr_pages;
2249 }
2250 #endif
2251 
2252 void set_zone_contiguous(struct zone *zone)
2253 {
2254 	unsigned long block_start_pfn = zone->zone_start_pfn;
2255 	unsigned long block_end_pfn;
2256 
2257 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2258 	for (; block_start_pfn < zone_end_pfn(zone);
2259 			block_start_pfn = block_end_pfn,
2260 			 block_end_pfn += pageblock_nr_pages) {
2261 
2262 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2263 
2264 		if (!__pageblock_pfn_to_page(block_start_pfn,
2265 					     block_end_pfn, zone))
2266 			return;
2267 		cond_resched();
2268 	}
2269 
2270 	/* We confirm that there is no hole */
2271 	zone->contiguous = true;
2272 }
2273 
2274 static void __init mem_init_print_info(void);
2275 void __init page_alloc_init_late(void)
2276 {
2277 	struct zone *zone;
2278 	int nid;
2279 
2280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2281 
2282 	/* There will be num_node_state(N_MEMORY) threads */
2283 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2284 	for_each_node_state(nid, N_MEMORY) {
2285 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2286 	}
2287 
2288 	/* Block until all are initialised */
2289 	wait_for_completion(&pgdat_init_all_done_comp);
2290 
2291 	/*
2292 	 * We initialized the rest of the deferred pages.  Permanently disable
2293 	 * on-demand struct page initialization.
2294 	 */
2295 	static_branch_disable(&deferred_pages);
2296 
2297 	/* Reinit limits that are based on free pages after the kernel is up */
2298 	files_maxfiles_init();
2299 #endif
2300 
2301 	/* Accounting of total+free memory is stable at this point. */
2302 	mem_init_print_info();
2303 	buffer_init();
2304 
2305 	/* Discard memblock private memory */
2306 	memblock_discard();
2307 
2308 	for_each_node_state(nid, N_MEMORY)
2309 		shuffle_free_memory(NODE_DATA(nid));
2310 
2311 	for_each_populated_zone(zone)
2312 		set_zone_contiguous(zone);
2313 
2314 	/* Initialize page ext after all struct pages are initialized. */
2315 	if (deferred_struct_pages)
2316 		page_ext_init();
2317 
2318 	page_alloc_sysctl_init();
2319 }
2320 
2321 /*
2322  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2323  * machines. As memory size is increased the scale is also increased but at
2324  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2325  * quadruples the scale is increased by one, which means the size of hash table
2326  * only doubles, instead of quadrupling as well.
2327  * Because 32-bit systems cannot have large physical memory, where this scaling
2328  * makes sense, it is disabled on such platforms.
2329  */
2330 #if __BITS_PER_LONG > 32
2331 #define ADAPT_SCALE_BASE	(64ul << 30)
2332 #define ADAPT_SCALE_SHIFT	2
2333 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2334 #endif
2335 
2336 /*
2337  * allocate a large system hash table from bootmem
2338  * - it is assumed that the hash table must contain an exact power-of-2
2339  *   quantity of entries
2340  * - limit is the number of hash buckets, not the total allocation size
2341  */
2342 void *__init alloc_large_system_hash(const char *tablename,
2343 				     unsigned long bucketsize,
2344 				     unsigned long numentries,
2345 				     int scale,
2346 				     int flags,
2347 				     unsigned int *_hash_shift,
2348 				     unsigned int *_hash_mask,
2349 				     unsigned long low_limit,
2350 				     unsigned long high_limit)
2351 {
2352 	unsigned long long max = high_limit;
2353 	unsigned long log2qty, size;
2354 	void *table;
2355 	gfp_t gfp_flags;
2356 	bool virt;
2357 	bool huge;
2358 
2359 	/* allow the kernel cmdline to have a say */
2360 	if (!numentries) {
2361 		/* round applicable memory size up to nearest megabyte */
2362 		numentries = nr_kernel_pages;
2363 
2364 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2365 		if (PAGE_SIZE < SZ_1M)
2366 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2367 
2368 #if __BITS_PER_LONG > 32
2369 		if (!high_limit) {
2370 			unsigned long adapt;
2371 
2372 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2373 			     adapt <<= ADAPT_SCALE_SHIFT)
2374 				scale++;
2375 		}
2376 #endif
2377 
2378 		/* limit to 1 bucket per 2^scale bytes of low memory */
2379 		if (scale > PAGE_SHIFT)
2380 			numentries >>= (scale - PAGE_SHIFT);
2381 		else
2382 			numentries <<= (PAGE_SHIFT - scale);
2383 
2384 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2385 			numentries = PAGE_SIZE / bucketsize;
2386 	}
2387 	numentries = roundup_pow_of_two(numentries);
2388 
2389 	/* limit allocation size to 1/16 total memory by default */
2390 	if (max == 0) {
2391 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2392 		do_div(max, bucketsize);
2393 	}
2394 	max = min(max, 0x80000000ULL);
2395 
2396 	if (numentries < low_limit)
2397 		numentries = low_limit;
2398 	if (numentries > max)
2399 		numentries = max;
2400 
2401 	log2qty = ilog2(numentries);
2402 
2403 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2404 	do {
2405 		virt = false;
2406 		size = bucketsize << log2qty;
2407 		if (flags & HASH_EARLY) {
2408 			if (flags & HASH_ZERO)
2409 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2410 			else
2411 				table = memblock_alloc_raw(size,
2412 							   SMP_CACHE_BYTES);
2413 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2414 			table = vmalloc_huge(size, gfp_flags);
2415 			virt = true;
2416 			if (table)
2417 				huge = is_vm_area_hugepages(table);
2418 		} else {
2419 			/*
2420 			 * If bucketsize is not a power-of-two, we may free
2421 			 * some pages at the end of hash table which
2422 			 * alloc_pages_exact() automatically does
2423 			 */
2424 			table = alloc_pages_exact(size, gfp_flags);
2425 			kmemleak_alloc(table, size, 1, gfp_flags);
2426 		}
2427 	} while (!table && size > PAGE_SIZE && --log2qty);
2428 
2429 	if (!table)
2430 		panic("Failed to allocate %s hash table\n", tablename);
2431 
2432 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2433 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2434 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2435 
2436 	if (_hash_shift)
2437 		*_hash_shift = log2qty;
2438 	if (_hash_mask)
2439 		*_hash_mask = (1 << log2qty) - 1;
2440 
2441 	return table;
2442 }
2443 
2444 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2445 							unsigned int order)
2446 {
2447 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2448 		int nid = early_pfn_to_nid(pfn);
2449 
2450 		if (!early_page_initialised(pfn, nid))
2451 			return;
2452 	}
2453 
2454 	if (!kmsan_memblock_free_pages(page, order)) {
2455 		/* KMSAN will take care of these pages. */
2456 		return;
2457 	}
2458 
2459 	/* pages were reserved and not allocated */
2460 	clear_page_tag_ref(page);
2461 	__free_pages_core(page, order, MEMINIT_EARLY);
2462 }
2463 
2464 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2465 EXPORT_SYMBOL(init_on_alloc);
2466 
2467 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2468 EXPORT_SYMBOL(init_on_free);
2469 
2470 static bool _init_on_alloc_enabled_early __read_mostly
2471 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2472 static int __init early_init_on_alloc(char *buf)
2473 {
2474 
2475 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2476 }
2477 early_param("init_on_alloc", early_init_on_alloc);
2478 
2479 static bool _init_on_free_enabled_early __read_mostly
2480 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2481 static int __init early_init_on_free(char *buf)
2482 {
2483 	return kstrtobool(buf, &_init_on_free_enabled_early);
2484 }
2485 early_param("init_on_free", early_init_on_free);
2486 
2487 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2488 
2489 /*
2490  * Enable static keys related to various memory debugging and hardening options.
2491  * Some override others, and depend on early params that are evaluated in the
2492  * order of appearance. So we need to first gather the full picture of what was
2493  * enabled, and then make decisions.
2494  */
2495 static void __init mem_debugging_and_hardening_init(void)
2496 {
2497 	bool page_poisoning_requested = false;
2498 	bool want_check_pages = false;
2499 
2500 #ifdef CONFIG_PAGE_POISONING
2501 	/*
2502 	 * Page poisoning is debug page alloc for some arches. If
2503 	 * either of those options are enabled, enable poisoning.
2504 	 */
2505 	if (page_poisoning_enabled() ||
2506 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2507 	      debug_pagealloc_enabled())) {
2508 		static_branch_enable(&_page_poisoning_enabled);
2509 		page_poisoning_requested = true;
2510 		want_check_pages = true;
2511 	}
2512 #endif
2513 
2514 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2515 	    page_poisoning_requested) {
2516 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2517 			"will take precedence over init_on_alloc and init_on_free\n");
2518 		_init_on_alloc_enabled_early = false;
2519 		_init_on_free_enabled_early = false;
2520 	}
2521 
2522 	if (_init_on_alloc_enabled_early) {
2523 		want_check_pages = true;
2524 		static_branch_enable(&init_on_alloc);
2525 	} else {
2526 		static_branch_disable(&init_on_alloc);
2527 	}
2528 
2529 	if (_init_on_free_enabled_early) {
2530 		want_check_pages = true;
2531 		static_branch_enable(&init_on_free);
2532 	} else {
2533 		static_branch_disable(&init_on_free);
2534 	}
2535 
2536 	if (IS_ENABLED(CONFIG_KMSAN) &&
2537 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2538 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2539 
2540 #ifdef CONFIG_DEBUG_PAGEALLOC
2541 	if (debug_pagealloc_enabled()) {
2542 		want_check_pages = true;
2543 		static_branch_enable(&_debug_pagealloc_enabled);
2544 
2545 		if (debug_guardpage_minorder())
2546 			static_branch_enable(&_debug_guardpage_enabled);
2547 	}
2548 #endif
2549 
2550 	/*
2551 	 * Any page debugging or hardening option also enables sanity checking
2552 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2553 	 * enabled already.
2554 	 */
2555 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2556 		static_branch_enable(&check_pages_enabled);
2557 }
2558 
2559 /* Report memory auto-initialization states for this boot. */
2560 static void __init report_meminit(void)
2561 {
2562 	const char *stack;
2563 
2564 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2565 		stack = "all(pattern)";
2566 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2567 		stack = "all(zero)";
2568 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2569 		stack = "byref_all(zero)";
2570 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2571 		stack = "byref(zero)";
2572 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2573 		stack = "__user(zero)";
2574 	else
2575 		stack = "off";
2576 
2577 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2578 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2579 		str_on_off(want_init_on_free()));
2580 	if (want_init_on_free())
2581 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2582 }
2583 
2584 static void __init mem_init_print_info(void)
2585 {
2586 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2587 	unsigned long init_code_size, init_data_size;
2588 
2589 	physpages = get_num_physpages();
2590 	codesize = _etext - _stext;
2591 	datasize = _edata - _sdata;
2592 	rosize = __end_rodata - __start_rodata;
2593 	bss_size = __bss_stop - __bss_start;
2594 	init_data_size = __init_end - __init_begin;
2595 	init_code_size = _einittext - _sinittext;
2596 
2597 	/*
2598 	 * Detect special cases and adjust section sizes accordingly:
2599 	 * 1) .init.* may be embedded into .data sections
2600 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2601 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2602 	 * 3) .rodata.* may be embedded into .text or .data sections.
2603 	 */
2604 #define adj_init_size(start, end, size, pos, adj) \
2605 	do { \
2606 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2607 			size -= adj; \
2608 	} while (0)
2609 
2610 	adj_init_size(__init_begin, __init_end, init_data_size,
2611 		     _sinittext, init_code_size);
2612 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2613 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2614 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2615 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2616 
2617 #undef	adj_init_size
2618 
2619 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2620 #ifdef	CONFIG_HIGHMEM
2621 		", %luK highmem"
2622 #endif
2623 		")\n",
2624 		K(nr_free_pages()), K(physpages),
2625 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2626 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2627 		K(physpages - totalram_pages() - totalcma_pages),
2628 		K(totalcma_pages)
2629 #ifdef	CONFIG_HIGHMEM
2630 		, K(totalhigh_pages())
2631 #endif
2632 		);
2633 }
2634 
2635 /*
2636  * Set up kernel memory allocators
2637  */
2638 void __init mm_core_init(void)
2639 {
2640 	/* Initializations relying on SMP setup */
2641 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2642 	build_all_zonelists(NULL);
2643 	page_alloc_init_cpuhp();
2644 	alloc_tag_sec_init();
2645 	/*
2646 	 * page_ext requires contiguous pages,
2647 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2648 	 */
2649 	page_ext_init_flatmem();
2650 	mem_debugging_and_hardening_init();
2651 	kfence_alloc_pool_and_metadata();
2652 	report_meminit();
2653 	kmsan_init_shadow();
2654 	stack_depot_early_init();
2655 	mem_init();
2656 	kmem_cache_init();
2657 	/*
2658 	 * page_owner must be initialized after buddy is ready, and also after
2659 	 * slab is ready so that stack_depot_init() works properly
2660 	 */
2661 	page_ext_init_flatmem_late();
2662 	kmemleak_init();
2663 	ptlock_cache_init();
2664 	pgtable_cache_init();
2665 	debug_objects_mem_init();
2666 	vmalloc_init();
2667 	/* If no deferred init page_ext now, as vmap is fully initialized */
2668 	if (!deferred_struct_pages)
2669 		page_ext_init();
2670 	/* Should be run before the first non-init thread is created */
2671 	init_espfix_bsp();
2672 	/* Should be run after espfix64 is set up. */
2673 	pti_init();
2674 	kmsan_init_runtime();
2675 	mm_cache_init();
2676 	execmem_init();
2677 }
2678