1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/stackdepot.h> 28 #include <linux/swap.h> 29 #include <linux/cma.h> 30 #include <linux/crash_dump.h> 31 #include <linux/execmem.h> 32 #include <linux/vmstat.h> 33 #include "internal.h" 34 #include "slab.h" 35 #include "shuffle.h" 36 37 #include <asm/setup.h> 38 39 #ifdef CONFIG_DEBUG_MEMORY_INIT 40 int __meminitdata mminit_loglevel; 41 42 /* The zonelists are simply reported, validation is manual. */ 43 void __init mminit_verify_zonelist(void) 44 { 45 int nid; 46 47 if (mminit_loglevel < MMINIT_VERIFY) 48 return; 49 50 for_each_online_node(nid) { 51 pg_data_t *pgdat = NODE_DATA(nid); 52 struct zone *zone; 53 struct zoneref *z; 54 struct zonelist *zonelist; 55 int i, listid, zoneid; 56 57 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 58 59 /* Identify the zone and nodelist */ 60 zoneid = i % MAX_NR_ZONES; 61 listid = i / MAX_NR_ZONES; 62 zonelist = &pgdat->node_zonelists[listid]; 63 zone = &pgdat->node_zones[zoneid]; 64 if (!populated_zone(zone)) 65 continue; 66 67 /* Print information about the zonelist */ 68 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 69 listid > 0 ? "thisnode" : "general", nid, 70 zone->name); 71 72 /* Iterate the zonelist */ 73 for_each_zone_zonelist(zone, z, zonelist, zoneid) 74 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 75 pr_cont("\n"); 76 } 77 } 78 } 79 80 void __init mminit_verify_pageflags_layout(void) 81 { 82 int shift, width; 83 unsigned long or_mask, add_mask; 84 85 shift = BITS_PER_LONG; 86 width = shift - NR_NON_PAGEFLAG_BITS; 87 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 88 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 89 SECTIONS_WIDTH, 90 NODES_WIDTH, 91 ZONES_WIDTH, 92 LAST_CPUPID_WIDTH, 93 KASAN_TAG_WIDTH, 94 LRU_GEN_WIDTH, 95 LRU_REFS_WIDTH, 96 NR_PAGEFLAGS); 97 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 98 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 99 SECTIONS_SHIFT, 100 NODES_SHIFT, 101 ZONES_SHIFT, 102 LAST_CPUPID_SHIFT, 103 KASAN_TAG_WIDTH); 104 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 105 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 106 (unsigned long)SECTIONS_PGSHIFT, 107 (unsigned long)NODES_PGSHIFT, 108 (unsigned long)ZONES_PGSHIFT, 109 (unsigned long)LAST_CPUPID_PGSHIFT, 110 (unsigned long)KASAN_TAG_PGSHIFT); 111 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 112 "Node/Zone ID: %lu -> %lu\n", 113 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 114 (unsigned long)ZONEID_PGOFF); 115 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 116 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 117 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 118 #ifdef NODE_NOT_IN_PAGE_FLAGS 119 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 120 "Node not in page flags"); 121 #endif 122 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 123 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 124 "Last cpupid not in page flags"); 125 #endif 126 127 if (SECTIONS_WIDTH) { 128 shift -= SECTIONS_WIDTH; 129 BUG_ON(shift != SECTIONS_PGSHIFT); 130 } 131 if (NODES_WIDTH) { 132 shift -= NODES_WIDTH; 133 BUG_ON(shift != NODES_PGSHIFT); 134 } 135 if (ZONES_WIDTH) { 136 shift -= ZONES_WIDTH; 137 BUG_ON(shift != ZONES_PGSHIFT); 138 } 139 140 /* Check for bitmask overlaps */ 141 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 142 (NODES_MASK << NODES_PGSHIFT) | 143 (SECTIONS_MASK << SECTIONS_PGSHIFT); 144 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 145 (NODES_MASK << NODES_PGSHIFT) + 146 (SECTIONS_MASK << SECTIONS_PGSHIFT); 147 BUG_ON(or_mask != add_mask); 148 } 149 150 static __init int set_mminit_loglevel(char *str) 151 { 152 get_option(&str, &mminit_loglevel); 153 return 0; 154 } 155 early_param("mminit_loglevel", set_mminit_loglevel); 156 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 157 158 struct kobject *mm_kobj; 159 160 #ifdef CONFIG_SMP 161 s32 vm_committed_as_batch = 32; 162 163 void mm_compute_batch(int overcommit_policy) 164 { 165 u64 memsized_batch; 166 s32 nr = num_present_cpus(); 167 s32 batch = max_t(s32, nr*2, 32); 168 unsigned long ram_pages = totalram_pages(); 169 170 /* 171 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 172 * (total memory/#cpus), and lift it to 25% for other policies 173 * to easy the possible lock contention for percpu_counter 174 * vm_committed_as, while the max limit is INT_MAX 175 */ 176 if (overcommit_policy == OVERCOMMIT_NEVER) 177 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 178 else 179 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 180 181 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 182 } 183 184 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 185 unsigned long action, void *arg) 186 { 187 switch (action) { 188 case MEM_ONLINE: 189 case MEM_OFFLINE: 190 mm_compute_batch(sysctl_overcommit_memory); 191 break; 192 default: 193 break; 194 } 195 return NOTIFY_OK; 196 } 197 198 static int __init mm_compute_batch_init(void) 199 { 200 mm_compute_batch(sysctl_overcommit_memory); 201 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 202 return 0; 203 } 204 205 __initcall(mm_compute_batch_init); 206 207 #endif 208 209 static int __init mm_sysfs_init(void) 210 { 211 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 212 if (!mm_kobj) 213 return -ENOMEM; 214 215 return 0; 216 } 217 postcore_initcall(mm_sysfs_init); 218 219 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 220 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 221 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 222 223 static unsigned long required_kernelcore __initdata; 224 static unsigned long required_kernelcore_percent __initdata; 225 static unsigned long required_movablecore __initdata; 226 static unsigned long required_movablecore_percent __initdata; 227 228 static unsigned long nr_kernel_pages __initdata; 229 static unsigned long nr_all_pages __initdata; 230 231 static bool deferred_struct_pages __meminitdata; 232 233 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 234 235 static int __init cmdline_parse_core(char *p, unsigned long *core, 236 unsigned long *percent) 237 { 238 unsigned long long coremem; 239 char *endptr; 240 241 if (!p) 242 return -EINVAL; 243 244 /* Value may be a percentage of total memory, otherwise bytes */ 245 coremem = simple_strtoull(p, &endptr, 0); 246 if (*endptr == '%') { 247 /* Paranoid check for percent values greater than 100 */ 248 WARN_ON(coremem > 100); 249 250 *percent = coremem; 251 } else { 252 coremem = memparse(p, &p); 253 /* Paranoid check that UL is enough for the coremem value */ 254 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 255 256 *core = coremem >> PAGE_SHIFT; 257 *percent = 0UL; 258 } 259 return 0; 260 } 261 262 bool mirrored_kernelcore __initdata_memblock; 263 264 /* 265 * kernelcore=size sets the amount of memory for use for allocations that 266 * cannot be reclaimed or migrated. 267 */ 268 static int __init cmdline_parse_kernelcore(char *p) 269 { 270 /* parse kernelcore=mirror */ 271 if (parse_option_str(p, "mirror")) { 272 mirrored_kernelcore = true; 273 return 0; 274 } 275 276 return cmdline_parse_core(p, &required_kernelcore, 277 &required_kernelcore_percent); 278 } 279 early_param("kernelcore", cmdline_parse_kernelcore); 280 281 /* 282 * movablecore=size sets the amount of memory for use for allocations that 283 * can be reclaimed or migrated. 284 */ 285 static int __init cmdline_parse_movablecore(char *p) 286 { 287 return cmdline_parse_core(p, &required_movablecore, 288 &required_movablecore_percent); 289 } 290 early_param("movablecore", cmdline_parse_movablecore); 291 292 /* 293 * early_calculate_totalpages() 294 * Sum pages in active regions for movable zone. 295 * Populate N_MEMORY for calculating usable_nodes. 296 */ 297 static unsigned long __init early_calculate_totalpages(void) 298 { 299 unsigned long totalpages = 0; 300 unsigned long start_pfn, end_pfn; 301 int i, nid; 302 303 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 304 unsigned long pages = end_pfn - start_pfn; 305 306 totalpages += pages; 307 if (pages) 308 node_set_state(nid, N_MEMORY); 309 } 310 return totalpages; 311 } 312 313 /* 314 * This finds a zone that can be used for ZONE_MOVABLE pages. The 315 * assumption is made that zones within a node are ordered in monotonic 316 * increasing memory addresses so that the "highest" populated zone is used 317 */ 318 static void __init find_usable_zone_for_movable(void) 319 { 320 int zone_index; 321 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 322 if (zone_index == ZONE_MOVABLE) 323 continue; 324 325 if (arch_zone_highest_possible_pfn[zone_index] > 326 arch_zone_lowest_possible_pfn[zone_index]) 327 break; 328 } 329 330 VM_BUG_ON(zone_index == -1); 331 movable_zone = zone_index; 332 } 333 334 /* 335 * Find the PFN the Movable zone begins in each node. Kernel memory 336 * is spread evenly between nodes as long as the nodes have enough 337 * memory. When they don't, some nodes will have more kernelcore than 338 * others 339 */ 340 static void __init find_zone_movable_pfns_for_nodes(void) 341 { 342 int i, nid; 343 unsigned long usable_startpfn; 344 unsigned long kernelcore_node, kernelcore_remaining; 345 /* save the state before borrow the nodemask */ 346 nodemask_t saved_node_state = node_states[N_MEMORY]; 347 unsigned long totalpages = early_calculate_totalpages(); 348 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 349 struct memblock_region *r; 350 351 /* Need to find movable_zone earlier when movable_node is specified. */ 352 find_usable_zone_for_movable(); 353 354 /* 355 * If movable_node is specified, ignore kernelcore and movablecore 356 * options. 357 */ 358 if (movable_node_is_enabled()) { 359 for_each_mem_region(r) { 360 if (!memblock_is_hotpluggable(r)) 361 continue; 362 363 nid = memblock_get_region_node(r); 364 365 usable_startpfn = memblock_region_memory_base_pfn(r); 366 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 367 min(usable_startpfn, zone_movable_pfn[nid]) : 368 usable_startpfn; 369 } 370 371 goto out2; 372 } 373 374 /* 375 * If kernelcore=mirror is specified, ignore movablecore option 376 */ 377 if (mirrored_kernelcore) { 378 bool mem_below_4gb_not_mirrored = false; 379 380 if (!memblock_has_mirror()) { 381 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); 382 goto out; 383 } 384 385 if (is_kdump_kernel()) { 386 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); 387 goto out; 388 } 389 390 for_each_mem_region(r) { 391 if (memblock_is_mirror(r)) 392 continue; 393 394 nid = memblock_get_region_node(r); 395 396 usable_startpfn = memblock_region_memory_base_pfn(r); 397 398 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 399 mem_below_4gb_not_mirrored = true; 400 continue; 401 } 402 403 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 404 min(usable_startpfn, zone_movable_pfn[nid]) : 405 usable_startpfn; 406 } 407 408 if (mem_below_4gb_not_mirrored) 409 pr_warn("This configuration results in unmirrored kernel memory.\n"); 410 411 goto out2; 412 } 413 414 /* 415 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 416 * amount of necessary memory. 417 */ 418 if (required_kernelcore_percent) 419 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 420 10000UL; 421 if (required_movablecore_percent) 422 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 423 10000UL; 424 425 /* 426 * If movablecore= was specified, calculate what size of 427 * kernelcore that corresponds so that memory usable for 428 * any allocation type is evenly spread. If both kernelcore 429 * and movablecore are specified, then the value of kernelcore 430 * will be used for required_kernelcore if it's greater than 431 * what movablecore would have allowed. 432 */ 433 if (required_movablecore) { 434 unsigned long corepages; 435 436 /* 437 * Round-up so that ZONE_MOVABLE is at least as large as what 438 * was requested by the user 439 */ 440 required_movablecore = 441 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 442 required_movablecore = min(totalpages, required_movablecore); 443 corepages = totalpages - required_movablecore; 444 445 required_kernelcore = max(required_kernelcore, corepages); 446 } 447 448 /* 449 * If kernelcore was not specified or kernelcore size is larger 450 * than totalpages, there is no ZONE_MOVABLE. 451 */ 452 if (!required_kernelcore || required_kernelcore >= totalpages) 453 goto out; 454 455 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 456 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 457 458 restart: 459 /* Spread kernelcore memory as evenly as possible throughout nodes */ 460 kernelcore_node = required_kernelcore / usable_nodes; 461 for_each_node_state(nid, N_MEMORY) { 462 unsigned long start_pfn, end_pfn; 463 464 /* 465 * Recalculate kernelcore_node if the division per node 466 * now exceeds what is necessary to satisfy the requested 467 * amount of memory for the kernel 468 */ 469 if (required_kernelcore < kernelcore_node) 470 kernelcore_node = required_kernelcore / usable_nodes; 471 472 /* 473 * As the map is walked, we track how much memory is usable 474 * by the kernel using kernelcore_remaining. When it is 475 * 0, the rest of the node is usable by ZONE_MOVABLE 476 */ 477 kernelcore_remaining = kernelcore_node; 478 479 /* Go through each range of PFNs within this node */ 480 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 481 unsigned long size_pages; 482 483 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 484 if (start_pfn >= end_pfn) 485 continue; 486 487 /* Account for what is only usable for kernelcore */ 488 if (start_pfn < usable_startpfn) { 489 unsigned long kernel_pages; 490 kernel_pages = min(end_pfn, usable_startpfn) 491 - start_pfn; 492 493 kernelcore_remaining -= min(kernel_pages, 494 kernelcore_remaining); 495 required_kernelcore -= min(kernel_pages, 496 required_kernelcore); 497 498 /* Continue if range is now fully accounted */ 499 if (end_pfn <= usable_startpfn) { 500 501 /* 502 * Push zone_movable_pfn to the end so 503 * that if we have to rebalance 504 * kernelcore across nodes, we will 505 * not double account here 506 */ 507 zone_movable_pfn[nid] = end_pfn; 508 continue; 509 } 510 start_pfn = usable_startpfn; 511 } 512 513 /* 514 * The usable PFN range for ZONE_MOVABLE is from 515 * start_pfn->end_pfn. Calculate size_pages as the 516 * number of pages used as kernelcore 517 */ 518 size_pages = end_pfn - start_pfn; 519 if (size_pages > kernelcore_remaining) 520 size_pages = kernelcore_remaining; 521 zone_movable_pfn[nid] = start_pfn + size_pages; 522 523 /* 524 * Some kernelcore has been met, update counts and 525 * break if the kernelcore for this node has been 526 * satisfied 527 */ 528 required_kernelcore -= min(required_kernelcore, 529 size_pages); 530 kernelcore_remaining -= size_pages; 531 if (!kernelcore_remaining) 532 break; 533 } 534 } 535 536 /* 537 * If there is still required_kernelcore, we do another pass with one 538 * less node in the count. This will push zone_movable_pfn[nid] further 539 * along on the nodes that still have memory until kernelcore is 540 * satisfied 541 */ 542 usable_nodes--; 543 if (usable_nodes && required_kernelcore > usable_nodes) 544 goto restart; 545 546 out2: 547 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 548 for (nid = 0; nid < MAX_NUMNODES; nid++) { 549 unsigned long start_pfn, end_pfn; 550 551 zone_movable_pfn[nid] = 552 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 553 554 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 555 if (zone_movable_pfn[nid] >= end_pfn) 556 zone_movable_pfn[nid] = 0; 557 } 558 559 out: 560 /* restore the node_state */ 561 node_states[N_MEMORY] = saved_node_state; 562 } 563 564 void __meminit __init_single_page(struct page *page, unsigned long pfn, 565 unsigned long zone, int nid) 566 { 567 mm_zero_struct_page(page); 568 set_page_links(page, zone, nid, pfn); 569 init_page_count(page); 570 atomic_set(&page->_mapcount, -1); 571 page_cpupid_reset_last(page); 572 page_kasan_tag_reset(page); 573 574 INIT_LIST_HEAD(&page->lru); 575 #ifdef WANT_PAGE_VIRTUAL 576 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 577 if (!is_highmem_idx(zone)) 578 set_page_address(page, __va(pfn << PAGE_SHIFT)); 579 #endif 580 } 581 582 #ifdef CONFIG_NUMA 583 /* 584 * During memory init memblocks map pfns to nids. The search is expensive and 585 * this caches recent lookups. The implementation of __early_pfn_to_nid 586 * treats start/end as pfns. 587 */ 588 struct mminit_pfnnid_cache { 589 unsigned long last_start; 590 unsigned long last_end; 591 int last_nid; 592 }; 593 594 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 595 596 /* 597 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 598 */ 599 static int __meminit __early_pfn_to_nid(unsigned long pfn, 600 struct mminit_pfnnid_cache *state) 601 { 602 unsigned long start_pfn, end_pfn; 603 int nid; 604 605 if (state->last_start <= pfn && pfn < state->last_end) 606 return state->last_nid; 607 608 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 609 if (nid != NUMA_NO_NODE) { 610 state->last_start = start_pfn; 611 state->last_end = end_pfn; 612 state->last_nid = nid; 613 } 614 615 return nid; 616 } 617 618 int __meminit early_pfn_to_nid(unsigned long pfn) 619 { 620 static DEFINE_SPINLOCK(early_pfn_lock); 621 int nid; 622 623 spin_lock(&early_pfn_lock); 624 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 625 if (nid < 0) 626 nid = first_online_node; 627 spin_unlock(&early_pfn_lock); 628 629 return nid; 630 } 631 632 int hashdist = HASHDIST_DEFAULT; 633 634 static int __init set_hashdist(char *str) 635 { 636 if (!str) 637 return 0; 638 hashdist = simple_strtoul(str, &str, 0); 639 return 1; 640 } 641 __setup("hashdist=", set_hashdist); 642 643 static inline void fixup_hashdist(void) 644 { 645 if (num_node_state(N_MEMORY) == 1) 646 hashdist = 0; 647 } 648 #else 649 static inline void fixup_hashdist(void) {} 650 #endif /* CONFIG_NUMA */ 651 652 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 653 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 654 { 655 pgdat->first_deferred_pfn = ULONG_MAX; 656 } 657 658 /* Returns true if the struct page for the pfn is initialised */ 659 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) 660 { 661 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 662 return false; 663 664 return true; 665 } 666 667 /* 668 * Returns true when the remaining initialisation should be deferred until 669 * later in the boot cycle when it can be parallelised. 670 */ 671 static bool __meminit 672 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 673 { 674 static unsigned long prev_end_pfn, nr_initialised; 675 676 if (early_page_ext_enabled()) 677 return false; 678 679 /* Always populate low zones for address-constrained allocations */ 680 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 681 return false; 682 683 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 684 return true; 685 686 /* 687 * prev_end_pfn static that contains the end of previous zone 688 * No need to protect because called very early in boot before smp_init. 689 */ 690 if (prev_end_pfn != end_pfn) { 691 prev_end_pfn = end_pfn; 692 nr_initialised = 0; 693 } 694 695 /* 696 * We start only with one section of pages, more pages are added as 697 * needed until the rest of deferred pages are initialized. 698 */ 699 nr_initialised++; 700 if ((nr_initialised > PAGES_PER_SECTION) && 701 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 702 NODE_DATA(nid)->first_deferred_pfn = pfn; 703 return true; 704 } 705 return false; 706 } 707 708 static void __meminit init_reserved_page(unsigned long pfn, int nid) 709 { 710 pg_data_t *pgdat; 711 int zid; 712 713 if (early_page_initialised(pfn, nid)) 714 return; 715 716 pgdat = NODE_DATA(nid); 717 718 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 719 struct zone *zone = &pgdat->node_zones[zid]; 720 721 if (zone_spans_pfn(zone, pfn)) 722 break; 723 } 724 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 725 } 726 #else 727 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 728 729 static inline bool early_page_initialised(unsigned long pfn, int nid) 730 { 731 return true; 732 } 733 734 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 735 { 736 return false; 737 } 738 739 static inline void init_reserved_page(unsigned long pfn, int nid) 740 { 741 } 742 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 743 744 /* 745 * Initialised pages do not have PageReserved set. This function is 746 * called for each range allocated by the bootmem allocator and 747 * marks the pages PageReserved. The remaining valid pages are later 748 * sent to the buddy page allocator. 749 */ 750 void __meminit reserve_bootmem_region(phys_addr_t start, 751 phys_addr_t end, int nid) 752 { 753 unsigned long start_pfn = PFN_DOWN(start); 754 unsigned long end_pfn = PFN_UP(end); 755 756 for (; start_pfn < end_pfn; start_pfn++) { 757 if (pfn_valid(start_pfn)) { 758 struct page *page = pfn_to_page(start_pfn); 759 760 init_reserved_page(start_pfn, nid); 761 762 /* 763 * no need for atomic set_bit because the struct 764 * page is not visible yet so nobody should 765 * access it yet. 766 */ 767 __SetPageReserved(page); 768 } 769 } 770 } 771 772 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 773 static bool __meminit 774 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 775 { 776 static struct memblock_region *r; 777 778 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 779 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 780 for_each_mem_region(r) { 781 if (*pfn < memblock_region_memory_end_pfn(r)) 782 break; 783 } 784 } 785 if (*pfn >= memblock_region_memory_base_pfn(r) && 786 memblock_is_mirror(r)) { 787 *pfn = memblock_region_memory_end_pfn(r); 788 return true; 789 } 790 } 791 return false; 792 } 793 794 /* 795 * Only struct pages that correspond to ranges defined by memblock.memory 796 * are zeroed and initialized by going through __init_single_page() during 797 * memmap_init_zone_range(). 798 * 799 * But, there could be struct pages that correspond to holes in 800 * memblock.memory. This can happen because of the following reasons: 801 * - physical memory bank size is not necessarily the exact multiple of the 802 * arbitrary section size 803 * - early reserved memory may not be listed in memblock.memory 804 * - non-memory regions covered by the contigious flatmem mapping 805 * - memory layouts defined with memmap= kernel parameter may not align 806 * nicely with memmap sections 807 * 808 * Explicitly initialize those struct pages so that: 809 * - PG_Reserved is set 810 * - zone and node links point to zone and node that span the page if the 811 * hole is in the middle of a zone 812 * - zone and node links point to adjacent zone/node if the hole falls on 813 * the zone boundary; the pages in such holes will be prepended to the 814 * zone/node above the hole except for the trailing pages in the last 815 * section that will be appended to the zone/node below. 816 */ 817 static void __init init_unavailable_range(unsigned long spfn, 818 unsigned long epfn, 819 int zone, int node) 820 { 821 unsigned long pfn; 822 u64 pgcnt = 0; 823 824 for (pfn = spfn; pfn < epfn; pfn++) { 825 if (!pfn_valid(pageblock_start_pfn(pfn))) { 826 pfn = pageblock_end_pfn(pfn) - 1; 827 continue; 828 } 829 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 830 __SetPageReserved(pfn_to_page(pfn)); 831 pgcnt++; 832 } 833 834 if (pgcnt) 835 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", 836 node, zone_names[zone], pgcnt); 837 } 838 839 /* 840 * Initially all pages are reserved - free ones are freed 841 * up by memblock_free_all() once the early boot process is 842 * done. Non-atomic initialization, single-pass. 843 * 844 * All aligned pageblocks are initialized to the specified migratetype 845 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 846 * zone stats (e.g., nr_isolate_pageblock) are touched. 847 */ 848 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 849 unsigned long start_pfn, unsigned long zone_end_pfn, 850 enum meminit_context context, 851 struct vmem_altmap *altmap, int migratetype) 852 { 853 unsigned long pfn, end_pfn = start_pfn + size; 854 struct page *page; 855 856 if (highest_memmap_pfn < end_pfn - 1) 857 highest_memmap_pfn = end_pfn - 1; 858 859 #ifdef CONFIG_ZONE_DEVICE 860 /* 861 * Honor reservation requested by the driver for this ZONE_DEVICE 862 * memory. We limit the total number of pages to initialize to just 863 * those that might contain the memory mapping. We will defer the 864 * ZONE_DEVICE page initialization until after we have released 865 * the hotplug lock. 866 */ 867 if (zone == ZONE_DEVICE) { 868 if (!altmap) 869 return; 870 871 if (start_pfn == altmap->base_pfn) 872 start_pfn += altmap->reserve; 873 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 874 } 875 #endif 876 877 for (pfn = start_pfn; pfn < end_pfn; ) { 878 /* 879 * There can be holes in boot-time mem_map[]s handed to this 880 * function. They do not exist on hotplugged memory. 881 */ 882 if (context == MEMINIT_EARLY) { 883 if (overlap_memmap_init(zone, &pfn)) 884 continue; 885 if (defer_init(nid, pfn, zone_end_pfn)) { 886 deferred_struct_pages = true; 887 break; 888 } 889 } 890 891 page = pfn_to_page(pfn); 892 __init_single_page(page, pfn, zone, nid); 893 if (context == MEMINIT_HOTPLUG) { 894 #ifdef CONFIG_ZONE_DEVICE 895 if (zone == ZONE_DEVICE) 896 __SetPageReserved(page); 897 else 898 #endif 899 __SetPageOffline(page); 900 } 901 902 /* 903 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 904 * such that unmovable allocations won't be scattered all 905 * over the place during system boot. 906 */ 907 if (pageblock_aligned(pfn)) { 908 set_pageblock_migratetype(page, migratetype); 909 cond_resched(); 910 } 911 pfn++; 912 } 913 } 914 915 static void __init memmap_init_zone_range(struct zone *zone, 916 unsigned long start_pfn, 917 unsigned long end_pfn, 918 unsigned long *hole_pfn) 919 { 920 unsigned long zone_start_pfn = zone->zone_start_pfn; 921 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 922 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 923 924 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 925 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 926 927 if (start_pfn >= end_pfn) 928 return; 929 930 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 931 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 932 933 if (*hole_pfn < start_pfn) 934 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 935 936 *hole_pfn = end_pfn; 937 } 938 939 static void __init memmap_init(void) 940 { 941 unsigned long start_pfn, end_pfn; 942 unsigned long hole_pfn = 0; 943 int i, j, zone_id = 0, nid; 944 945 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 946 struct pglist_data *node = NODE_DATA(nid); 947 948 for (j = 0; j < MAX_NR_ZONES; j++) { 949 struct zone *zone = node->node_zones + j; 950 951 if (!populated_zone(zone)) 952 continue; 953 954 memmap_init_zone_range(zone, start_pfn, end_pfn, 955 &hole_pfn); 956 zone_id = j; 957 } 958 } 959 960 #ifdef CONFIG_SPARSEMEM 961 /* 962 * Initialize the memory map for hole in the range [memory_end, 963 * section_end]. 964 * Append the pages in this hole to the highest zone in the last 965 * node. 966 * The call to init_unavailable_range() is outside the ifdef to 967 * silence the compiler warining about zone_id set but not used; 968 * for FLATMEM it is a nop anyway 969 */ 970 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 971 if (hole_pfn < end_pfn) 972 #endif 973 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 974 } 975 976 #ifdef CONFIG_ZONE_DEVICE 977 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 978 unsigned long zone_idx, int nid, 979 struct dev_pagemap *pgmap) 980 { 981 982 __init_single_page(page, pfn, zone_idx, nid); 983 984 /* 985 * Mark page reserved as it will need to wait for onlining 986 * phase for it to be fully associated with a zone. 987 * 988 * We can use the non-atomic __set_bit operation for setting 989 * the flag as we are still initializing the pages. 990 */ 991 __SetPageReserved(page); 992 993 /* 994 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 995 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 996 * ever freed or placed on a driver-private list. 997 */ 998 page->pgmap = pgmap; 999 page->zone_device_data = NULL; 1000 1001 /* 1002 * Mark the block movable so that blocks are reserved for 1003 * movable at startup. This will force kernel allocations 1004 * to reserve their blocks rather than leaking throughout 1005 * the address space during boot when many long-lived 1006 * kernel allocations are made. 1007 * 1008 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 1009 * because this is done early in section_activate() 1010 */ 1011 if (pageblock_aligned(pfn)) { 1012 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1013 cond_resched(); 1014 } 1015 1016 /* 1017 * ZONE_DEVICE pages are released directly to the driver page allocator 1018 * which will set the page count to 1 when allocating the page. 1019 */ 1020 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1021 pgmap->type == MEMORY_DEVICE_COHERENT) 1022 set_page_count(page, 0); 1023 } 1024 1025 /* 1026 * With compound page geometry and when struct pages are stored in ram most 1027 * tail pages are reused. Consequently, the amount of unique struct pages to 1028 * initialize is a lot smaller that the total amount of struct pages being 1029 * mapped. This is a paired / mild layering violation with explicit knowledge 1030 * of how the sparse_vmemmap internals handle compound pages in the lack 1031 * of an altmap. See vmemmap_populate_compound_pages(). 1032 */ 1033 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1034 struct dev_pagemap *pgmap) 1035 { 1036 if (!vmemmap_can_optimize(altmap, pgmap)) 1037 return pgmap_vmemmap_nr(pgmap); 1038 1039 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); 1040 } 1041 1042 static void __ref memmap_init_compound(struct page *head, 1043 unsigned long head_pfn, 1044 unsigned long zone_idx, int nid, 1045 struct dev_pagemap *pgmap, 1046 unsigned long nr_pages) 1047 { 1048 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1049 unsigned int order = pgmap->vmemmap_shift; 1050 1051 __SetPageHead(head); 1052 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1053 struct page *page = pfn_to_page(pfn); 1054 1055 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1056 prep_compound_tail(head, pfn - head_pfn); 1057 set_page_count(page, 0); 1058 1059 /* 1060 * The first tail page stores important compound page info. 1061 * Call prep_compound_head() after the first tail page has 1062 * been initialized, to not have the data overwritten. 1063 */ 1064 if (pfn == head_pfn + 1) 1065 prep_compound_head(head, order); 1066 } 1067 } 1068 1069 void __ref memmap_init_zone_device(struct zone *zone, 1070 unsigned long start_pfn, 1071 unsigned long nr_pages, 1072 struct dev_pagemap *pgmap) 1073 { 1074 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1075 struct pglist_data *pgdat = zone->zone_pgdat; 1076 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1077 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1078 unsigned long zone_idx = zone_idx(zone); 1079 unsigned long start = jiffies; 1080 int nid = pgdat->node_id; 1081 1082 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1083 return; 1084 1085 /* 1086 * The call to memmap_init should have already taken care 1087 * of the pages reserved for the memmap, so we can just jump to 1088 * the end of that region and start processing the device pages. 1089 */ 1090 if (altmap) { 1091 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1092 nr_pages = end_pfn - start_pfn; 1093 } 1094 1095 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1096 struct page *page = pfn_to_page(pfn); 1097 1098 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1099 1100 if (pfns_per_compound == 1) 1101 continue; 1102 1103 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1104 compound_nr_pages(altmap, pgmap)); 1105 } 1106 1107 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1108 nr_pages, jiffies_to_msecs(jiffies - start)); 1109 } 1110 #endif 1111 1112 /* 1113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1114 * because it is sized independent of architecture. Unlike the other zones, 1115 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1116 * in each node depending on the size of each node and how evenly kernelcore 1117 * is distributed. This helper function adjusts the zone ranges 1118 * provided by the architecture for a given node by using the end of the 1119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1120 * zones within a node are in order of monotonic increases memory addresses 1121 */ 1122 static void __init adjust_zone_range_for_zone_movable(int nid, 1123 unsigned long zone_type, 1124 unsigned long node_end_pfn, 1125 unsigned long *zone_start_pfn, 1126 unsigned long *zone_end_pfn) 1127 { 1128 /* Only adjust if ZONE_MOVABLE is on this node */ 1129 if (zone_movable_pfn[nid]) { 1130 /* Size ZONE_MOVABLE */ 1131 if (zone_type == ZONE_MOVABLE) { 1132 *zone_start_pfn = zone_movable_pfn[nid]; 1133 *zone_end_pfn = min(node_end_pfn, 1134 arch_zone_highest_possible_pfn[movable_zone]); 1135 1136 /* Adjust for ZONE_MOVABLE starting within this range */ 1137 } else if (!mirrored_kernelcore && 1138 *zone_start_pfn < zone_movable_pfn[nid] && 1139 *zone_end_pfn > zone_movable_pfn[nid]) { 1140 *zone_end_pfn = zone_movable_pfn[nid]; 1141 1142 /* Check if this whole range is within ZONE_MOVABLE */ 1143 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1144 *zone_start_pfn = *zone_end_pfn; 1145 } 1146 } 1147 1148 /* 1149 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1150 * then all holes in the requested range will be accounted for. 1151 */ 1152 static unsigned long __init __absent_pages_in_range(int nid, 1153 unsigned long range_start_pfn, 1154 unsigned long range_end_pfn) 1155 { 1156 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1157 unsigned long start_pfn, end_pfn; 1158 int i; 1159 1160 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1161 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1162 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1163 nr_absent -= end_pfn - start_pfn; 1164 } 1165 return nr_absent; 1166 } 1167 1168 /** 1169 * absent_pages_in_range - Return number of page frames in holes within a range 1170 * @start_pfn: The start PFN to start searching for holes 1171 * @end_pfn: The end PFN to stop searching for holes 1172 * 1173 * Return: the number of pages frames in memory holes within a range. 1174 */ 1175 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1176 unsigned long end_pfn) 1177 { 1178 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1179 } 1180 1181 /* Return the number of page frames in holes in a zone on a node */ 1182 static unsigned long __init zone_absent_pages_in_node(int nid, 1183 unsigned long zone_type, 1184 unsigned long zone_start_pfn, 1185 unsigned long zone_end_pfn) 1186 { 1187 unsigned long nr_absent; 1188 1189 /* zone is empty, we don't have any absent pages */ 1190 if (zone_start_pfn == zone_end_pfn) 1191 return 0; 1192 1193 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1194 1195 /* 1196 * ZONE_MOVABLE handling. 1197 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1198 * and vice versa. 1199 */ 1200 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1201 unsigned long start_pfn, end_pfn; 1202 struct memblock_region *r; 1203 1204 for_each_mem_region(r) { 1205 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1206 zone_start_pfn, zone_end_pfn); 1207 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1208 zone_start_pfn, zone_end_pfn); 1209 1210 if (zone_type == ZONE_MOVABLE && 1211 memblock_is_mirror(r)) 1212 nr_absent += end_pfn - start_pfn; 1213 1214 if (zone_type == ZONE_NORMAL && 1215 !memblock_is_mirror(r)) 1216 nr_absent += end_pfn - start_pfn; 1217 } 1218 } 1219 1220 return nr_absent; 1221 } 1222 1223 /* 1224 * Return the number of pages a zone spans in a node, including holes 1225 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1226 */ 1227 static unsigned long __init zone_spanned_pages_in_node(int nid, 1228 unsigned long zone_type, 1229 unsigned long node_start_pfn, 1230 unsigned long node_end_pfn, 1231 unsigned long *zone_start_pfn, 1232 unsigned long *zone_end_pfn) 1233 { 1234 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1235 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1236 1237 /* Get the start and end of the zone */ 1238 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1239 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1240 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, 1241 zone_start_pfn, zone_end_pfn); 1242 1243 /* Check that this node has pages within the zone's required range */ 1244 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1245 return 0; 1246 1247 /* Move the zone boundaries inside the node if necessary */ 1248 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1249 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1250 1251 /* Return the spanned pages */ 1252 return *zone_end_pfn - *zone_start_pfn; 1253 } 1254 1255 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) 1256 { 1257 struct zone *z; 1258 1259 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { 1260 z->zone_start_pfn = 0; 1261 z->spanned_pages = 0; 1262 z->present_pages = 0; 1263 #if defined(CONFIG_MEMORY_HOTPLUG) 1264 z->present_early_pages = 0; 1265 #endif 1266 } 1267 1268 pgdat->node_spanned_pages = 0; 1269 pgdat->node_present_pages = 0; 1270 pr_debug("On node %d totalpages: 0\n", pgdat->node_id); 1271 } 1272 1273 static void __init calc_nr_kernel_pages(void) 1274 { 1275 unsigned long start_pfn, end_pfn; 1276 phys_addr_t start_addr, end_addr; 1277 u64 u; 1278 #ifdef CONFIG_HIGHMEM 1279 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; 1280 #endif 1281 1282 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 1283 start_pfn = PFN_UP(start_addr); 1284 end_pfn = PFN_DOWN(end_addr); 1285 1286 if (start_pfn < end_pfn) { 1287 nr_all_pages += end_pfn - start_pfn; 1288 #ifdef CONFIG_HIGHMEM 1289 start_pfn = clamp(start_pfn, 0, high_zone_low); 1290 end_pfn = clamp(end_pfn, 0, high_zone_low); 1291 #endif 1292 nr_kernel_pages += end_pfn - start_pfn; 1293 } 1294 } 1295 } 1296 1297 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1298 unsigned long node_start_pfn, 1299 unsigned long node_end_pfn) 1300 { 1301 unsigned long realtotalpages = 0, totalpages = 0; 1302 enum zone_type i; 1303 1304 for (i = 0; i < MAX_NR_ZONES; i++) { 1305 struct zone *zone = pgdat->node_zones + i; 1306 unsigned long zone_start_pfn, zone_end_pfn; 1307 unsigned long spanned, absent; 1308 unsigned long real_size; 1309 1310 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1311 node_start_pfn, 1312 node_end_pfn, 1313 &zone_start_pfn, 1314 &zone_end_pfn); 1315 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1316 zone_start_pfn, 1317 zone_end_pfn); 1318 1319 real_size = spanned - absent; 1320 1321 if (spanned) 1322 zone->zone_start_pfn = zone_start_pfn; 1323 else 1324 zone->zone_start_pfn = 0; 1325 zone->spanned_pages = spanned; 1326 zone->present_pages = real_size; 1327 #if defined(CONFIG_MEMORY_HOTPLUG) 1328 zone->present_early_pages = real_size; 1329 #endif 1330 1331 totalpages += spanned; 1332 realtotalpages += real_size; 1333 } 1334 1335 pgdat->node_spanned_pages = totalpages; 1336 pgdat->node_present_pages = realtotalpages; 1337 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1338 } 1339 1340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1341 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1342 { 1343 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1344 1345 spin_lock_init(&ds_queue->split_queue_lock); 1346 INIT_LIST_HEAD(&ds_queue->split_queue); 1347 ds_queue->split_queue_len = 0; 1348 } 1349 #else 1350 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1351 #endif 1352 1353 #ifdef CONFIG_COMPACTION 1354 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1355 { 1356 init_waitqueue_head(&pgdat->kcompactd_wait); 1357 } 1358 #else 1359 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1360 #endif 1361 1362 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1363 { 1364 int i; 1365 1366 pgdat_resize_init(pgdat); 1367 pgdat_kswapd_lock_init(pgdat); 1368 1369 pgdat_init_split_queue(pgdat); 1370 pgdat_init_kcompactd(pgdat); 1371 1372 init_waitqueue_head(&pgdat->kswapd_wait); 1373 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1374 1375 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1376 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1377 1378 pgdat_page_ext_init(pgdat); 1379 lruvec_init(&pgdat->__lruvec); 1380 } 1381 1382 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1383 unsigned long remaining_pages) 1384 { 1385 atomic_long_set(&zone->managed_pages, remaining_pages); 1386 zone_set_nid(zone, nid); 1387 zone->name = zone_names[idx]; 1388 zone->zone_pgdat = NODE_DATA(nid); 1389 spin_lock_init(&zone->lock); 1390 zone_seqlock_init(zone); 1391 zone_pcp_init(zone); 1392 } 1393 1394 static void __meminit zone_init_free_lists(struct zone *zone) 1395 { 1396 unsigned int order, t; 1397 for_each_migratetype_order(order, t) { 1398 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1399 zone->free_area[order].nr_free = 0; 1400 } 1401 1402 #ifdef CONFIG_UNACCEPTED_MEMORY 1403 INIT_LIST_HEAD(&zone->unaccepted_pages); 1404 #endif 1405 } 1406 1407 void __meminit init_currently_empty_zone(struct zone *zone, 1408 unsigned long zone_start_pfn, 1409 unsigned long size) 1410 { 1411 struct pglist_data *pgdat = zone->zone_pgdat; 1412 int zone_idx = zone_idx(zone) + 1; 1413 1414 if (zone_idx > pgdat->nr_zones) 1415 pgdat->nr_zones = zone_idx; 1416 1417 zone->zone_start_pfn = zone_start_pfn; 1418 1419 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1420 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1421 pgdat->node_id, 1422 (unsigned long)zone_idx(zone), 1423 zone_start_pfn, (zone_start_pfn + size)); 1424 1425 zone_init_free_lists(zone); 1426 zone->initialized = 1; 1427 } 1428 1429 #ifndef CONFIG_SPARSEMEM 1430 /* 1431 * Calculate the size of the zone->blockflags rounded to an unsigned long 1432 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1433 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1434 * round what is now in bits to nearest long in bits, then return it in 1435 * bytes. 1436 */ 1437 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1438 { 1439 unsigned long usemapsize; 1440 1441 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1442 usemapsize = roundup(zonesize, pageblock_nr_pages); 1443 usemapsize = usemapsize >> pageblock_order; 1444 usemapsize *= NR_PAGEBLOCK_BITS; 1445 usemapsize = roundup(usemapsize, BITS_PER_LONG); 1446 1447 return usemapsize / BITS_PER_BYTE; 1448 } 1449 1450 static void __ref setup_usemap(struct zone *zone) 1451 { 1452 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1453 zone->spanned_pages); 1454 zone->pageblock_flags = NULL; 1455 if (usemapsize) { 1456 zone->pageblock_flags = 1457 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1458 zone_to_nid(zone)); 1459 if (!zone->pageblock_flags) 1460 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1461 usemapsize, zone->name, zone_to_nid(zone)); 1462 } 1463 } 1464 #else 1465 static inline void setup_usemap(struct zone *zone) {} 1466 #endif /* CONFIG_SPARSEMEM */ 1467 1468 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1469 1470 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1471 void __init set_pageblock_order(void) 1472 { 1473 unsigned int order = MAX_PAGE_ORDER; 1474 1475 /* Check that pageblock_nr_pages has not already been setup */ 1476 if (pageblock_order) 1477 return; 1478 1479 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1480 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1481 order = HUGETLB_PAGE_ORDER; 1482 1483 /* 1484 * Assume the largest contiguous order of interest is a huge page. 1485 * This value may be variable depending on boot parameters on powerpc. 1486 */ 1487 pageblock_order = order; 1488 } 1489 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1490 1491 /* 1492 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1493 * is unused as pageblock_order is set at compile-time. See 1494 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1495 * the kernel config 1496 */ 1497 void __init set_pageblock_order(void) 1498 { 1499 } 1500 1501 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1502 1503 /* 1504 * Set up the zone data structures 1505 * - init pgdat internals 1506 * - init all zones belonging to this node 1507 * 1508 * NOTE: this function is only called during memory hotplug 1509 */ 1510 #ifdef CONFIG_MEMORY_HOTPLUG 1511 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1512 { 1513 int nid = pgdat->node_id; 1514 enum zone_type z; 1515 int cpu; 1516 1517 pgdat_init_internals(pgdat); 1518 1519 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1520 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1521 1522 /* 1523 * Reset the nr_zones, order and highest_zoneidx before reuse. 1524 * Note that kswapd will init kswapd_highest_zoneidx properly 1525 * when it starts in the near future. 1526 */ 1527 pgdat->nr_zones = 0; 1528 pgdat->kswapd_order = 0; 1529 pgdat->kswapd_highest_zoneidx = 0; 1530 pgdat->node_start_pfn = 0; 1531 pgdat->node_present_pages = 0; 1532 1533 for_each_online_cpu(cpu) { 1534 struct per_cpu_nodestat *p; 1535 1536 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1537 memset(p, 0, sizeof(*p)); 1538 } 1539 1540 /* 1541 * When memory is hot-added, all the memory is in offline state. So 1542 * clear all zones' present_pages and managed_pages because they will 1543 * be updated in online_pages() and offline_pages(). 1544 */ 1545 for (z = 0; z < MAX_NR_ZONES; z++) { 1546 struct zone *zone = pgdat->node_zones + z; 1547 1548 zone->present_pages = 0; 1549 zone_init_internals(zone, z, nid, 0); 1550 } 1551 } 1552 #endif 1553 1554 static void __init free_area_init_core(struct pglist_data *pgdat) 1555 { 1556 enum zone_type j; 1557 int nid = pgdat->node_id; 1558 1559 pgdat_init_internals(pgdat); 1560 pgdat->per_cpu_nodestats = &boot_nodestats; 1561 1562 for (j = 0; j < MAX_NR_ZONES; j++) { 1563 struct zone *zone = pgdat->node_zones + j; 1564 unsigned long size = zone->spanned_pages; 1565 1566 /* 1567 * Initialize zone->managed_pages as 0 , it will be reset 1568 * when memblock allocator frees pages into buddy system. 1569 */ 1570 zone_init_internals(zone, j, nid, zone->present_pages); 1571 1572 if (!size) 1573 continue; 1574 1575 setup_usemap(zone); 1576 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1577 } 1578 } 1579 1580 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1581 phys_addr_t min_addr, int nid, bool exact_nid) 1582 { 1583 void *ptr; 1584 1585 if (exact_nid) 1586 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1587 MEMBLOCK_ALLOC_ACCESSIBLE, 1588 nid); 1589 else 1590 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1591 MEMBLOCK_ALLOC_ACCESSIBLE, 1592 nid); 1593 1594 if (ptr && size > 0) 1595 page_init_poison(ptr, size); 1596 1597 return ptr; 1598 } 1599 1600 #ifdef CONFIG_FLATMEM 1601 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1602 { 1603 unsigned long start, offset, size, end; 1604 struct page *map; 1605 1606 /* Skip empty nodes */ 1607 if (!pgdat->node_spanned_pages) 1608 return; 1609 1610 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1611 offset = pgdat->node_start_pfn - start; 1612 /* 1613 * The zone's endpoints aren't required to be MAX_PAGE_ORDER 1614 * aligned but the node_mem_map endpoints must be in order 1615 * for the buddy allocator to function correctly. 1616 */ 1617 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); 1618 size = (end - start) * sizeof(struct page); 1619 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1620 pgdat->node_id, false); 1621 if (!map) 1622 panic("Failed to allocate %ld bytes for node %d memory map\n", 1623 size, pgdat->node_id); 1624 pgdat->node_mem_map = map + offset; 1625 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); 1626 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1627 __func__, pgdat->node_id, (unsigned long)pgdat, 1628 (unsigned long)pgdat->node_mem_map); 1629 #ifndef CONFIG_NUMA 1630 /* the global mem_map is just set as node 0's */ 1631 if (pgdat == NODE_DATA(0)) { 1632 mem_map = NODE_DATA(0)->node_mem_map; 1633 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1634 mem_map -= offset; 1635 } 1636 #endif 1637 } 1638 #else 1639 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1640 #endif /* CONFIG_FLATMEM */ 1641 1642 /** 1643 * get_pfn_range_for_nid - Return the start and end page frames for a node 1644 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1645 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1646 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1647 * 1648 * It returns the start and end page frame of a node based on information 1649 * provided by memblock_set_node(). If called for a node 1650 * with no available memory, the start and end PFNs will be 0. 1651 */ 1652 void __init get_pfn_range_for_nid(unsigned int nid, 1653 unsigned long *start_pfn, unsigned long *end_pfn) 1654 { 1655 unsigned long this_start_pfn, this_end_pfn; 1656 int i; 1657 1658 *start_pfn = -1UL; 1659 *end_pfn = 0; 1660 1661 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1662 *start_pfn = min(*start_pfn, this_start_pfn); 1663 *end_pfn = max(*end_pfn, this_end_pfn); 1664 } 1665 1666 if (*start_pfn == -1UL) 1667 *start_pfn = 0; 1668 } 1669 1670 static void __init free_area_init_node(int nid) 1671 { 1672 pg_data_t *pgdat = NODE_DATA(nid); 1673 unsigned long start_pfn = 0; 1674 unsigned long end_pfn = 0; 1675 1676 /* pg_data_t should be reset to zero when it's allocated */ 1677 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1678 1679 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1680 1681 pgdat->node_id = nid; 1682 pgdat->node_start_pfn = start_pfn; 1683 pgdat->per_cpu_nodestats = NULL; 1684 1685 if (start_pfn != end_pfn) { 1686 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1687 (u64)start_pfn << PAGE_SHIFT, 1688 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1689 1690 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1691 } else { 1692 pr_info("Initmem setup node %d as memoryless\n", nid); 1693 1694 reset_memoryless_node_totalpages(pgdat); 1695 } 1696 1697 alloc_node_mem_map(pgdat); 1698 pgdat_set_deferred_range(pgdat); 1699 1700 free_area_init_core(pgdat); 1701 lru_gen_init_pgdat(pgdat); 1702 } 1703 1704 /* Any regular or high memory on that node ? */ 1705 static void __init check_for_memory(pg_data_t *pgdat) 1706 { 1707 enum zone_type zone_type; 1708 1709 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1710 struct zone *zone = &pgdat->node_zones[zone_type]; 1711 if (populated_zone(zone)) { 1712 if (IS_ENABLED(CONFIG_HIGHMEM)) 1713 node_set_state(pgdat->node_id, N_HIGH_MEMORY); 1714 if (zone_type <= ZONE_NORMAL) 1715 node_set_state(pgdat->node_id, N_NORMAL_MEMORY); 1716 break; 1717 } 1718 } 1719 } 1720 1721 #if MAX_NUMNODES > 1 1722 /* 1723 * Figure out the number of possible node ids. 1724 */ 1725 void __init setup_nr_node_ids(void) 1726 { 1727 unsigned int highest; 1728 1729 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1730 nr_node_ids = highest + 1; 1731 } 1732 #endif 1733 1734 /* 1735 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1736 * such cases we allow max_zone_pfn sorted in the descending order 1737 */ 1738 static bool arch_has_descending_max_zone_pfns(void) 1739 { 1740 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1741 } 1742 1743 /** 1744 * free_area_init - Initialise all pg_data_t and zone data 1745 * @max_zone_pfn: an array of max PFNs for each zone 1746 * 1747 * This will call free_area_init_node() for each active node in the system. 1748 * Using the page ranges provided by memblock_set_node(), the size of each 1749 * zone in each node and their holes is calculated. If the maximum PFN 1750 * between two adjacent zones match, it is assumed that the zone is empty. 1751 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1752 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1753 * starts where the previous one ended. For example, ZONE_DMA32 starts 1754 * at arch_max_dma_pfn. 1755 */ 1756 void __init free_area_init(unsigned long *max_zone_pfn) 1757 { 1758 unsigned long start_pfn, end_pfn; 1759 int i, nid, zone; 1760 bool descending; 1761 1762 /* Record where the zone boundaries are */ 1763 memset(arch_zone_lowest_possible_pfn, 0, 1764 sizeof(arch_zone_lowest_possible_pfn)); 1765 memset(arch_zone_highest_possible_pfn, 0, 1766 sizeof(arch_zone_highest_possible_pfn)); 1767 1768 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1769 descending = arch_has_descending_max_zone_pfns(); 1770 1771 for (i = 0; i < MAX_NR_ZONES; i++) { 1772 if (descending) 1773 zone = MAX_NR_ZONES - i - 1; 1774 else 1775 zone = i; 1776 1777 if (zone == ZONE_MOVABLE) 1778 continue; 1779 1780 end_pfn = max(max_zone_pfn[zone], start_pfn); 1781 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1782 arch_zone_highest_possible_pfn[zone] = end_pfn; 1783 1784 start_pfn = end_pfn; 1785 } 1786 1787 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1788 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1789 find_zone_movable_pfns_for_nodes(); 1790 1791 /* Print out the zone ranges */ 1792 pr_info("Zone ranges:\n"); 1793 for (i = 0; i < MAX_NR_ZONES; i++) { 1794 if (i == ZONE_MOVABLE) 1795 continue; 1796 pr_info(" %-8s ", zone_names[i]); 1797 if (arch_zone_lowest_possible_pfn[i] == 1798 arch_zone_highest_possible_pfn[i]) 1799 pr_cont("empty\n"); 1800 else 1801 pr_cont("[mem %#018Lx-%#018Lx]\n", 1802 (u64)arch_zone_lowest_possible_pfn[i] 1803 << PAGE_SHIFT, 1804 ((u64)arch_zone_highest_possible_pfn[i] 1805 << PAGE_SHIFT) - 1); 1806 } 1807 1808 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1809 pr_info("Movable zone start for each node\n"); 1810 for (i = 0; i < MAX_NUMNODES; i++) { 1811 if (zone_movable_pfn[i]) 1812 pr_info(" Node %d: %#018Lx\n", i, 1813 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1814 } 1815 1816 /* 1817 * Print out the early node map, and initialize the 1818 * subsection-map relative to active online memory ranges to 1819 * enable future "sub-section" extensions of the memory map. 1820 */ 1821 pr_info("Early memory node ranges\n"); 1822 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1823 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1824 (u64)start_pfn << PAGE_SHIFT, 1825 ((u64)end_pfn << PAGE_SHIFT) - 1); 1826 subsection_map_init(start_pfn, end_pfn - start_pfn); 1827 } 1828 1829 /* Initialise every node */ 1830 mminit_verify_pageflags_layout(); 1831 setup_nr_node_ids(); 1832 set_pageblock_order(); 1833 1834 for_each_node(nid) { 1835 pg_data_t *pgdat; 1836 1837 if (!node_online(nid)) 1838 alloc_offline_node_data(nid); 1839 1840 pgdat = NODE_DATA(nid); 1841 free_area_init_node(nid); 1842 1843 /* 1844 * No sysfs hierarcy will be created via register_one_node() 1845 *for memory-less node because here it's not marked as N_MEMORY 1846 *and won't be set online later. The benefit is userspace 1847 *program won't be confused by sysfs files/directories of 1848 *memory-less node. The pgdat will get fully initialized by 1849 *hotadd_init_pgdat() when memory is hotplugged into this node. 1850 */ 1851 if (pgdat->node_present_pages) { 1852 node_set_state(nid, N_MEMORY); 1853 check_for_memory(pgdat); 1854 } 1855 } 1856 1857 calc_nr_kernel_pages(); 1858 memmap_init(); 1859 1860 /* disable hash distribution for systems with a single node */ 1861 fixup_hashdist(); 1862 } 1863 1864 /** 1865 * node_map_pfn_alignment - determine the maximum internode alignment 1866 * 1867 * This function should be called after node map is populated and sorted. 1868 * It calculates the maximum power of two alignment which can distinguish 1869 * all the nodes. 1870 * 1871 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1872 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1873 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1874 * shifted, 1GiB is enough and this function will indicate so. 1875 * 1876 * This is used to test whether pfn -> nid mapping of the chosen memory 1877 * model has fine enough granularity to avoid incorrect mapping for the 1878 * populated node map. 1879 * 1880 * Return: the determined alignment in pfn's. 0 if there is no alignment 1881 * requirement (single node). 1882 */ 1883 unsigned long __init node_map_pfn_alignment(void) 1884 { 1885 unsigned long accl_mask = 0, last_end = 0; 1886 unsigned long start, end, mask; 1887 int last_nid = NUMA_NO_NODE; 1888 int i, nid; 1889 1890 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1891 if (!start || last_nid < 0 || last_nid == nid) { 1892 last_nid = nid; 1893 last_end = end; 1894 continue; 1895 } 1896 1897 /* 1898 * Start with a mask granular enough to pin-point to the 1899 * start pfn and tick off bits one-by-one until it becomes 1900 * too coarse to separate the current node from the last. 1901 */ 1902 mask = ~((1 << __ffs(start)) - 1); 1903 while (mask && last_end <= (start & (mask << 1))) 1904 mask <<= 1; 1905 1906 /* accumulate all internode masks */ 1907 accl_mask |= mask; 1908 } 1909 1910 /* convert mask to number of pages */ 1911 return ~accl_mask + 1; 1912 } 1913 1914 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1915 static void __init deferred_free_pages(unsigned long pfn, 1916 unsigned long nr_pages) 1917 { 1918 struct page *page; 1919 unsigned long i; 1920 1921 if (!nr_pages) 1922 return; 1923 1924 page = pfn_to_page(pfn); 1925 1926 /* Free a large naturally-aligned chunk if possible */ 1927 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1928 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1929 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1930 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY); 1931 return; 1932 } 1933 1934 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ 1935 accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE); 1936 1937 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1938 if (pageblock_aligned(pfn)) 1939 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1940 __free_pages_core(page, 0, MEMINIT_EARLY); 1941 } 1942 } 1943 1944 /* Completion tracking for deferred_init_memmap() threads */ 1945 static atomic_t pgdat_init_n_undone __initdata; 1946 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1947 1948 static inline void __init pgdat_init_report_one_done(void) 1949 { 1950 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1951 complete(&pgdat_init_all_done_comp); 1952 } 1953 1954 /* 1955 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1956 * by performing it only once every MAX_ORDER_NR_PAGES. 1957 * Return number of pages initialized. 1958 */ 1959 static unsigned long __init deferred_init_pages(struct zone *zone, 1960 unsigned long pfn, unsigned long end_pfn) 1961 { 1962 int nid = zone_to_nid(zone); 1963 unsigned long nr_pages = end_pfn - pfn; 1964 int zid = zone_idx(zone); 1965 struct page *page = pfn_to_page(pfn); 1966 1967 for (; pfn < end_pfn; pfn++, page++) 1968 __init_single_page(page, pfn, zid, nid); 1969 return nr_pages; 1970 } 1971 1972 /* 1973 * This function is meant to pre-load the iterator for the zone init from 1974 * a given point. 1975 * Specifically it walks through the ranges starting with initial index 1976 * passed to it until we are caught up to the first_init_pfn value and 1977 * exits there. If we never encounter the value we return false indicating 1978 * there are no valid ranges left. 1979 */ 1980 static bool __init 1981 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1982 unsigned long *spfn, unsigned long *epfn, 1983 unsigned long first_init_pfn) 1984 { 1985 u64 j = *i; 1986 1987 if (j == 0) 1988 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn); 1989 1990 /* 1991 * Start out by walking through the ranges in this zone that have 1992 * already been initialized. We don't need to do anything with them 1993 * so we just need to flush them out of the system. 1994 */ 1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) { 1996 if (*epfn <= first_init_pfn) 1997 continue; 1998 if (*spfn < first_init_pfn) 1999 *spfn = first_init_pfn; 2000 *i = j; 2001 return true; 2002 } 2003 2004 return false; 2005 } 2006 2007 /* 2008 * Initialize and free pages. We do it in two loops: first we initialize 2009 * struct page, then free to buddy allocator, because while we are 2010 * freeing pages we can access pages that are ahead (computing buddy 2011 * page in __free_one_page()). 2012 * 2013 * In order to try and keep some memory in the cache we have the loop 2014 * broken along max page order boundaries. This way we will not cause 2015 * any issues with the buddy page computation. 2016 */ 2017 static unsigned long __init 2018 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2019 unsigned long *end_pfn) 2020 { 2021 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2022 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2023 unsigned long nr_pages = 0; 2024 u64 j = *i; 2025 2026 /* First we loop through and initialize the page values */ 2027 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2028 unsigned long t; 2029 2030 if (mo_pfn <= *start_pfn) 2031 break; 2032 2033 t = min(mo_pfn, *end_pfn); 2034 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2035 2036 if (mo_pfn < *end_pfn) { 2037 *start_pfn = mo_pfn; 2038 break; 2039 } 2040 } 2041 2042 /* Reset values and now loop through freeing pages as needed */ 2043 swap(j, *i); 2044 2045 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2046 unsigned long t; 2047 2048 if (mo_pfn <= spfn) 2049 break; 2050 2051 t = min(mo_pfn, epfn); 2052 deferred_free_pages(spfn, t - spfn); 2053 2054 if (mo_pfn <= epfn) 2055 break; 2056 } 2057 2058 return nr_pages; 2059 } 2060 2061 static void __init 2062 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2063 void *arg) 2064 { 2065 unsigned long spfn, epfn; 2066 struct zone *zone = arg; 2067 u64 i = 0; 2068 2069 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2070 2071 /* 2072 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that 2073 * we can avoid introducing any issues with the buddy allocator. 2074 */ 2075 while (spfn < end_pfn) { 2076 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2077 cond_resched(); 2078 } 2079 } 2080 2081 static unsigned int __init 2082 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2083 { 2084 return max(cpumask_weight(node_cpumask), 1U); 2085 } 2086 2087 /* Initialise remaining memory on a node */ 2088 static int __init deferred_init_memmap(void *data) 2089 { 2090 pg_data_t *pgdat = data; 2091 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2092 unsigned long spfn = 0, epfn = 0; 2093 unsigned long first_init_pfn, flags; 2094 unsigned long start = jiffies; 2095 struct zone *zone; 2096 int max_threads; 2097 u64 i = 0; 2098 2099 /* Bind memory initialisation thread to a local node if possible */ 2100 if (!cpumask_empty(cpumask)) 2101 set_cpus_allowed_ptr(current, cpumask); 2102 2103 pgdat_resize_lock(pgdat, &flags); 2104 first_init_pfn = pgdat->first_deferred_pfn; 2105 if (first_init_pfn == ULONG_MAX) { 2106 pgdat_resize_unlock(pgdat, &flags); 2107 pgdat_init_report_one_done(); 2108 return 0; 2109 } 2110 2111 /* Sanity check boundaries */ 2112 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2113 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2114 pgdat->first_deferred_pfn = ULONG_MAX; 2115 2116 /* 2117 * Once we unlock here, the zone cannot be grown anymore, thus if an 2118 * interrupt thread must allocate this early in boot, zone must be 2119 * pre-grown prior to start of deferred page initialization. 2120 */ 2121 pgdat_resize_unlock(pgdat, &flags); 2122 2123 /* Only the highest zone is deferred */ 2124 zone = pgdat->node_zones + pgdat->nr_zones - 1; 2125 2126 max_threads = deferred_page_init_max_threads(cpumask); 2127 2128 while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) { 2129 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION); 2130 struct padata_mt_job job = { 2131 .thread_fn = deferred_init_memmap_chunk, 2132 .fn_arg = zone, 2133 .start = spfn, 2134 .size = first_init_pfn - spfn, 2135 .align = PAGES_PER_SECTION, 2136 .min_chunk = PAGES_PER_SECTION, 2137 .max_threads = max_threads, 2138 .numa_aware = false, 2139 }; 2140 2141 padata_do_multithreaded(&job); 2142 } 2143 2144 /* Sanity check that the next zone really is unpopulated */ 2145 WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone)); 2146 2147 pr_info("node %d deferred pages initialised in %ums\n", 2148 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2149 2150 pgdat_init_report_one_done(); 2151 return 0; 2152 } 2153 2154 /* 2155 * If this zone has deferred pages, try to grow it by initializing enough 2156 * deferred pages to satisfy the allocation specified by order, rounded up to 2157 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2158 * of SECTION_SIZE bytes by initializing struct pages in increments of 2159 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2160 * 2161 * Return true when zone was grown, otherwise return false. We return true even 2162 * when we grow less than requested, to let the caller decide if there are 2163 * enough pages to satisfy the allocation. 2164 */ 2165 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2166 { 2167 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2168 pg_data_t *pgdat = zone->zone_pgdat; 2169 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2170 unsigned long spfn, epfn, flags; 2171 unsigned long nr_pages = 0; 2172 u64 i = 0; 2173 2174 /* Only the last zone may have deferred pages */ 2175 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2176 return false; 2177 2178 pgdat_resize_lock(pgdat, &flags); 2179 2180 /* 2181 * If someone grew this zone while we were waiting for spinlock, return 2182 * true, as there might be enough pages already. 2183 */ 2184 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2185 pgdat_resize_unlock(pgdat, &flags); 2186 return true; 2187 } 2188 2189 /* If the zone is empty somebody else may have cleared out the zone */ 2190 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2191 first_deferred_pfn)) { 2192 pgdat->first_deferred_pfn = ULONG_MAX; 2193 pgdat_resize_unlock(pgdat, &flags); 2194 /* Retry only once. */ 2195 return first_deferred_pfn != ULONG_MAX; 2196 } 2197 2198 /* 2199 * Initialize and free pages in MAX_PAGE_ORDER sized increments so 2200 * that we can avoid introducing any issues with the buddy 2201 * allocator. 2202 */ 2203 while (spfn < epfn) { 2204 /* update our first deferred PFN for this section */ 2205 first_deferred_pfn = spfn; 2206 2207 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2208 touch_nmi_watchdog(); 2209 2210 /* We should only stop along section boundaries */ 2211 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2212 continue; 2213 2214 /* If our quota has been met we can stop here */ 2215 if (nr_pages >= nr_pages_needed) 2216 break; 2217 } 2218 2219 pgdat->first_deferred_pfn = spfn; 2220 pgdat_resize_unlock(pgdat, &flags); 2221 2222 return nr_pages > 0; 2223 } 2224 2225 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2226 2227 #ifdef CONFIG_CMA 2228 void __init init_cma_reserved_pageblock(struct page *page) 2229 { 2230 unsigned i = pageblock_nr_pages; 2231 struct page *p = page; 2232 2233 do { 2234 __ClearPageReserved(p); 2235 set_page_count(p, 0); 2236 } while (++p, --i); 2237 2238 set_pageblock_migratetype(page, MIGRATE_CMA); 2239 set_page_refcounted(page); 2240 /* pages were reserved and not allocated */ 2241 clear_page_tag_ref(page); 2242 __free_pages(page, pageblock_order); 2243 2244 adjust_managed_page_count(page, pageblock_nr_pages); 2245 page_zone(page)->cma_pages += pageblock_nr_pages; 2246 } 2247 #endif 2248 2249 void set_zone_contiguous(struct zone *zone) 2250 { 2251 unsigned long block_start_pfn = zone->zone_start_pfn; 2252 unsigned long block_end_pfn; 2253 2254 block_end_pfn = pageblock_end_pfn(block_start_pfn); 2255 for (; block_start_pfn < zone_end_pfn(zone); 2256 block_start_pfn = block_end_pfn, 2257 block_end_pfn += pageblock_nr_pages) { 2258 2259 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 2260 2261 if (!__pageblock_pfn_to_page(block_start_pfn, 2262 block_end_pfn, zone)) 2263 return; 2264 cond_resched(); 2265 } 2266 2267 /* We confirm that there is no hole */ 2268 zone->contiguous = true; 2269 } 2270 2271 static void __init mem_init_print_info(void); 2272 void __init page_alloc_init_late(void) 2273 { 2274 struct zone *zone; 2275 int nid; 2276 2277 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2278 2279 /* There will be num_node_state(N_MEMORY) threads */ 2280 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2281 for_each_node_state(nid, N_MEMORY) { 2282 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2283 } 2284 2285 /* Block until all are initialised */ 2286 wait_for_completion(&pgdat_init_all_done_comp); 2287 2288 /* 2289 * We initialized the rest of the deferred pages. Permanently disable 2290 * on-demand struct page initialization. 2291 */ 2292 static_branch_disable(&deferred_pages); 2293 2294 /* Reinit limits that are based on free pages after the kernel is up */ 2295 files_maxfiles_init(); 2296 #endif 2297 2298 /* Accounting of total+free memory is stable at this point. */ 2299 mem_init_print_info(); 2300 buffer_init(); 2301 2302 /* Discard memblock private memory */ 2303 memblock_discard(); 2304 2305 for_each_node_state(nid, N_MEMORY) 2306 shuffle_free_memory(NODE_DATA(nid)); 2307 2308 for_each_populated_zone(zone) 2309 set_zone_contiguous(zone); 2310 2311 /* Initialize page ext after all struct pages are initialized. */ 2312 if (deferred_struct_pages) 2313 page_ext_init(); 2314 2315 page_alloc_sysctl_init(); 2316 } 2317 2318 /* 2319 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2320 * machines. As memory size is increased the scale is also increased but at 2321 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2322 * quadruples the scale is increased by one, which means the size of hash table 2323 * only doubles, instead of quadrupling as well. 2324 * Because 32-bit systems cannot have large physical memory, where this scaling 2325 * makes sense, it is disabled on such platforms. 2326 */ 2327 #if __BITS_PER_LONG > 32 2328 #define ADAPT_SCALE_BASE (64ul << 30) 2329 #define ADAPT_SCALE_SHIFT 2 2330 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2331 #endif 2332 2333 /* 2334 * allocate a large system hash table from bootmem 2335 * - it is assumed that the hash table must contain an exact power-of-2 2336 * quantity of entries 2337 * - limit is the number of hash buckets, not the total allocation size 2338 */ 2339 void *__init alloc_large_system_hash(const char *tablename, 2340 unsigned long bucketsize, 2341 unsigned long numentries, 2342 int scale, 2343 int flags, 2344 unsigned int *_hash_shift, 2345 unsigned int *_hash_mask, 2346 unsigned long low_limit, 2347 unsigned long high_limit) 2348 { 2349 unsigned long long max = high_limit; 2350 unsigned long log2qty, size; 2351 void *table; 2352 gfp_t gfp_flags; 2353 bool virt; 2354 bool huge; 2355 2356 /* allow the kernel cmdline to have a say */ 2357 if (!numentries) { 2358 /* round applicable memory size up to nearest megabyte */ 2359 numentries = nr_kernel_pages; 2360 2361 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2362 if (PAGE_SIZE < SZ_1M) 2363 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2364 2365 #if __BITS_PER_LONG > 32 2366 if (!high_limit) { 2367 unsigned long adapt; 2368 2369 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2370 adapt <<= ADAPT_SCALE_SHIFT) 2371 scale++; 2372 } 2373 #endif 2374 2375 /* limit to 1 bucket per 2^scale bytes of low memory */ 2376 if (scale > PAGE_SHIFT) 2377 numentries >>= (scale - PAGE_SHIFT); 2378 else 2379 numentries <<= (PAGE_SHIFT - scale); 2380 2381 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2382 numentries = PAGE_SIZE / bucketsize; 2383 } 2384 numentries = roundup_pow_of_two(numentries); 2385 2386 /* limit allocation size to 1/16 total memory by default */ 2387 if (max == 0) { 2388 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2389 do_div(max, bucketsize); 2390 } 2391 max = min(max, 0x80000000ULL); 2392 2393 if (numentries < low_limit) 2394 numentries = low_limit; 2395 if (numentries > max) 2396 numentries = max; 2397 2398 log2qty = ilog2(numentries); 2399 2400 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2401 do { 2402 virt = false; 2403 size = bucketsize << log2qty; 2404 if (flags & HASH_EARLY) { 2405 if (flags & HASH_ZERO) 2406 table = memblock_alloc(size, SMP_CACHE_BYTES); 2407 else 2408 table = memblock_alloc_raw(size, 2409 SMP_CACHE_BYTES); 2410 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { 2411 table = vmalloc_huge(size, gfp_flags); 2412 virt = true; 2413 if (table) 2414 huge = is_vm_area_hugepages(table); 2415 } else { 2416 /* 2417 * If bucketsize is not a power-of-two, we may free 2418 * some pages at the end of hash table which 2419 * alloc_pages_exact() automatically does 2420 */ 2421 table = alloc_pages_exact(size, gfp_flags); 2422 kmemleak_alloc(table, size, 1, gfp_flags); 2423 } 2424 } while (!table && size > PAGE_SIZE && --log2qty); 2425 2426 if (!table) 2427 panic("Failed to allocate %s hash table\n", tablename); 2428 2429 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2430 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2431 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2432 2433 if (_hash_shift) 2434 *_hash_shift = log2qty; 2435 if (_hash_mask) 2436 *_hash_mask = (1 << log2qty) - 1; 2437 2438 return table; 2439 } 2440 2441 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2442 unsigned int order) 2443 { 2444 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { 2445 int nid = early_pfn_to_nid(pfn); 2446 2447 if (!early_page_initialised(pfn, nid)) 2448 return; 2449 } 2450 2451 if (!kmsan_memblock_free_pages(page, order)) { 2452 /* KMSAN will take care of these pages. */ 2453 return; 2454 } 2455 2456 /* pages were reserved and not allocated */ 2457 clear_page_tag_ref(page); 2458 __free_pages_core(page, order, MEMINIT_EARLY); 2459 } 2460 2461 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2462 EXPORT_SYMBOL(init_on_alloc); 2463 2464 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2465 EXPORT_SYMBOL(init_on_free); 2466 2467 static bool _init_on_alloc_enabled_early __read_mostly 2468 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2469 static int __init early_init_on_alloc(char *buf) 2470 { 2471 2472 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2473 } 2474 early_param("init_on_alloc", early_init_on_alloc); 2475 2476 static bool _init_on_free_enabled_early __read_mostly 2477 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2478 static int __init early_init_on_free(char *buf) 2479 { 2480 return kstrtobool(buf, &_init_on_free_enabled_early); 2481 } 2482 early_param("init_on_free", early_init_on_free); 2483 2484 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2485 2486 /* 2487 * Enable static keys related to various memory debugging and hardening options. 2488 * Some override others, and depend on early params that are evaluated in the 2489 * order of appearance. So we need to first gather the full picture of what was 2490 * enabled, and then make decisions. 2491 */ 2492 static void __init mem_debugging_and_hardening_init(void) 2493 { 2494 bool page_poisoning_requested = false; 2495 bool want_check_pages = false; 2496 2497 #ifdef CONFIG_PAGE_POISONING 2498 /* 2499 * Page poisoning is debug page alloc for some arches. If 2500 * either of those options are enabled, enable poisoning. 2501 */ 2502 if (page_poisoning_enabled() || 2503 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2504 debug_pagealloc_enabled())) { 2505 static_branch_enable(&_page_poisoning_enabled); 2506 page_poisoning_requested = true; 2507 want_check_pages = true; 2508 } 2509 #endif 2510 2511 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2512 page_poisoning_requested) { 2513 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2514 "will take precedence over init_on_alloc and init_on_free\n"); 2515 _init_on_alloc_enabled_early = false; 2516 _init_on_free_enabled_early = false; 2517 } 2518 2519 if (_init_on_alloc_enabled_early) { 2520 want_check_pages = true; 2521 static_branch_enable(&init_on_alloc); 2522 } else { 2523 static_branch_disable(&init_on_alloc); 2524 } 2525 2526 if (_init_on_free_enabled_early) { 2527 want_check_pages = true; 2528 static_branch_enable(&init_on_free); 2529 } else { 2530 static_branch_disable(&init_on_free); 2531 } 2532 2533 if (IS_ENABLED(CONFIG_KMSAN) && 2534 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2535 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2536 2537 #ifdef CONFIG_DEBUG_PAGEALLOC 2538 if (debug_pagealloc_enabled()) { 2539 want_check_pages = true; 2540 static_branch_enable(&_debug_pagealloc_enabled); 2541 2542 if (debug_guardpage_minorder()) 2543 static_branch_enable(&_debug_guardpage_enabled); 2544 } 2545 #endif 2546 2547 /* 2548 * Any page debugging or hardening option also enables sanity checking 2549 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2550 * enabled already. 2551 */ 2552 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2553 static_branch_enable(&check_pages_enabled); 2554 } 2555 2556 /* Report memory auto-initialization states for this boot. */ 2557 static void __init report_meminit(void) 2558 { 2559 const char *stack; 2560 2561 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2562 stack = "all(pattern)"; 2563 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2564 stack = "all(zero)"; 2565 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2566 stack = "byref_all(zero)"; 2567 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2568 stack = "byref(zero)"; 2569 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2570 stack = "__user(zero)"; 2571 else 2572 stack = "off"; 2573 2574 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2575 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2576 want_init_on_free() ? "on" : "off"); 2577 if (want_init_on_free()) 2578 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2579 } 2580 2581 static void __init mem_init_print_info(void) 2582 { 2583 unsigned long physpages, codesize, datasize, rosize, bss_size; 2584 unsigned long init_code_size, init_data_size; 2585 2586 physpages = get_num_physpages(); 2587 codesize = _etext - _stext; 2588 datasize = _edata - _sdata; 2589 rosize = __end_rodata - __start_rodata; 2590 bss_size = __bss_stop - __bss_start; 2591 init_data_size = __init_end - __init_begin; 2592 init_code_size = _einittext - _sinittext; 2593 2594 /* 2595 * Detect special cases and adjust section sizes accordingly: 2596 * 1) .init.* may be embedded into .data sections 2597 * 2) .init.text.* may be out of [__init_begin, __init_end], 2598 * please refer to arch/tile/kernel/vmlinux.lds.S. 2599 * 3) .rodata.* may be embedded into .text or .data sections. 2600 */ 2601 #define adj_init_size(start, end, size, pos, adj) \ 2602 do { \ 2603 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2604 size -= adj; \ 2605 } while (0) 2606 2607 adj_init_size(__init_begin, __init_end, init_data_size, 2608 _sinittext, init_code_size); 2609 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2610 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2611 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2612 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2613 2614 #undef adj_init_size 2615 2616 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2617 #ifdef CONFIG_HIGHMEM 2618 ", %luK highmem" 2619 #endif 2620 ")\n", 2621 K(nr_free_pages()), K(physpages), 2622 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2623 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2624 K(physpages - totalram_pages() - totalcma_pages), 2625 K(totalcma_pages) 2626 #ifdef CONFIG_HIGHMEM 2627 , K(totalhigh_pages()) 2628 #endif 2629 ); 2630 } 2631 2632 /* 2633 * Set up kernel memory allocators 2634 */ 2635 void __init mm_core_init(void) 2636 { 2637 /* Initializations relying on SMP setup */ 2638 BUILD_BUG_ON(MAX_ZONELISTS > 2); 2639 build_all_zonelists(NULL); 2640 page_alloc_init_cpuhp(); 2641 alloc_tag_sec_init(); 2642 /* 2643 * page_ext requires contiguous pages, 2644 * bigger than MAX_PAGE_ORDER unless SPARSEMEM. 2645 */ 2646 page_ext_init_flatmem(); 2647 mem_debugging_and_hardening_init(); 2648 kfence_alloc_pool_and_metadata(); 2649 report_meminit(); 2650 kmsan_init_shadow(); 2651 stack_depot_early_init(); 2652 mem_init(); 2653 kmem_cache_init(); 2654 /* 2655 * page_owner must be initialized after buddy is ready, and also after 2656 * slab is ready so that stack_depot_init() works properly 2657 */ 2658 page_ext_init_flatmem_late(); 2659 kmemleak_init(); 2660 ptlock_cache_init(); 2661 pgtable_cache_init(); 2662 debug_objects_mem_init(); 2663 vmalloc_init(); 2664 /* If no deferred init page_ext now, as vmap is fully initialized */ 2665 if (!deferred_struct_pages) 2666 page_ext_init(); 2667 /* Should be run before the first non-init thread is created */ 2668 init_espfix_bsp(); 2669 /* Should be run after espfix64 is set up. */ 2670 pti_init(); 2671 kmsan_init_runtime(); 2672 mm_cache_init(); 2673 execmem_init(); 2674 } 2675