xref: /linux/mm/mm_init.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include "internal.h"
32 #include "slab.h"
33 #include "shuffle.h"
34 
35 #include <asm/setup.h>
36 
37 #ifdef CONFIG_DEBUG_MEMORY_INIT
38 int __meminitdata mminit_loglevel;
39 
40 /* The zonelists are simply reported, validation is manual. */
41 void __init mminit_verify_zonelist(void)
42 {
43 	int nid;
44 
45 	if (mminit_loglevel < MMINIT_VERIFY)
46 		return;
47 
48 	for_each_online_node(nid) {
49 		pg_data_t *pgdat = NODE_DATA(nid);
50 		struct zone *zone;
51 		struct zoneref *z;
52 		struct zonelist *zonelist;
53 		int i, listid, zoneid;
54 
55 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
56 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
57 
58 			/* Identify the zone and nodelist */
59 			zoneid = i % MAX_NR_ZONES;
60 			listid = i / MAX_NR_ZONES;
61 			zonelist = &pgdat->node_zonelists[listid];
62 			zone = &pgdat->node_zones[zoneid];
63 			if (!populated_zone(zone))
64 				continue;
65 
66 			/* Print information about the zonelist */
67 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
68 				listid > 0 ? "thisnode" : "general", nid,
69 				zone->name);
70 
71 			/* Iterate the zonelist */
72 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
73 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
74 			pr_cont("\n");
75 		}
76 	}
77 }
78 
79 void __init mminit_verify_pageflags_layout(void)
80 {
81 	int shift, width;
82 	unsigned long or_mask, add_mask;
83 
84 	shift = BITS_PER_LONG;
85 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
86 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
87 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
88 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
89 		SECTIONS_WIDTH,
90 		NODES_WIDTH,
91 		ZONES_WIDTH,
92 		LAST_CPUPID_WIDTH,
93 		KASAN_TAG_WIDTH,
94 		LRU_GEN_WIDTH,
95 		LRU_REFS_WIDTH,
96 		NR_PAGEFLAGS);
97 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
98 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
99 		SECTIONS_SHIFT,
100 		NODES_SHIFT,
101 		ZONES_SHIFT,
102 		LAST_CPUPID_SHIFT,
103 		KASAN_TAG_WIDTH);
104 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
105 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
106 		(unsigned long)SECTIONS_PGSHIFT,
107 		(unsigned long)NODES_PGSHIFT,
108 		(unsigned long)ZONES_PGSHIFT,
109 		(unsigned long)LAST_CPUPID_PGSHIFT,
110 		(unsigned long)KASAN_TAG_PGSHIFT);
111 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
112 		"Node/Zone ID: %lu -> %lu\n",
113 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
114 		(unsigned long)ZONEID_PGOFF);
115 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
116 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
117 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
118 #ifdef NODE_NOT_IN_PAGE_FLAGS
119 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
120 		"Node not in page flags");
121 #endif
122 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
123 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
124 		"Last cpupid not in page flags");
125 #endif
126 
127 	if (SECTIONS_WIDTH) {
128 		shift -= SECTIONS_WIDTH;
129 		BUG_ON(shift != SECTIONS_PGSHIFT);
130 	}
131 	if (NODES_WIDTH) {
132 		shift -= NODES_WIDTH;
133 		BUG_ON(shift != NODES_PGSHIFT);
134 	}
135 	if (ZONES_WIDTH) {
136 		shift -= ZONES_WIDTH;
137 		BUG_ON(shift != ZONES_PGSHIFT);
138 	}
139 
140 	/* Check for bitmask overlaps */
141 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
142 			(NODES_MASK << NODES_PGSHIFT) |
143 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
144 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
145 			(NODES_MASK << NODES_PGSHIFT) +
146 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
147 	BUG_ON(or_mask != add_mask);
148 }
149 
150 static __init int set_mminit_loglevel(char *str)
151 {
152 	get_option(&str, &mminit_loglevel);
153 	return 0;
154 }
155 early_param("mminit_loglevel", set_mminit_loglevel);
156 #endif /* CONFIG_DEBUG_MEMORY_INIT */
157 
158 struct kobject *mm_kobj;
159 
160 #ifdef CONFIG_SMP
161 s32 vm_committed_as_batch = 32;
162 
163 void mm_compute_batch(int overcommit_policy)
164 {
165 	u64 memsized_batch;
166 	s32 nr = num_present_cpus();
167 	s32 batch = max_t(s32, nr*2, 32);
168 	unsigned long ram_pages = totalram_pages();
169 
170 	/*
171 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
172 	 * (total memory/#cpus), and lift it to 25% for other policies
173 	 * to easy the possible lock contention for percpu_counter
174 	 * vm_committed_as, while the max limit is INT_MAX
175 	 */
176 	if (overcommit_policy == OVERCOMMIT_NEVER)
177 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
178 	else
179 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
180 
181 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
182 }
183 
184 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
185 					unsigned long action, void *arg)
186 {
187 	switch (action) {
188 	case MEM_ONLINE:
189 	case MEM_OFFLINE:
190 		mm_compute_batch(sysctl_overcommit_memory);
191 		break;
192 	default:
193 		break;
194 	}
195 	return NOTIFY_OK;
196 }
197 
198 static int __init mm_compute_batch_init(void)
199 {
200 	mm_compute_batch(sysctl_overcommit_memory);
201 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
202 	return 0;
203 }
204 
205 __initcall(mm_compute_batch_init);
206 
207 #endif
208 
209 static int __init mm_sysfs_init(void)
210 {
211 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
212 	if (!mm_kobj)
213 		return -ENOMEM;
214 
215 	return 0;
216 }
217 postcore_initcall(mm_sysfs_init);
218 
219 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
220 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
222 
223 static unsigned long required_kernelcore __initdata;
224 static unsigned long required_kernelcore_percent __initdata;
225 static unsigned long required_movablecore __initdata;
226 static unsigned long required_movablecore_percent __initdata;
227 
228 static unsigned long nr_kernel_pages __initdata;
229 static unsigned long nr_all_pages __initdata;
230 static unsigned long dma_reserve __initdata;
231 
232 static bool deferred_struct_pages __meminitdata;
233 
234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235 
236 static int __init cmdline_parse_core(char *p, unsigned long *core,
237 				     unsigned long *percent)
238 {
239 	unsigned long long coremem;
240 	char *endptr;
241 
242 	if (!p)
243 		return -EINVAL;
244 
245 	/* Value may be a percentage of total memory, otherwise bytes */
246 	coremem = simple_strtoull(p, &endptr, 0);
247 	if (*endptr == '%') {
248 		/* Paranoid check for percent values greater than 100 */
249 		WARN_ON(coremem > 100);
250 
251 		*percent = coremem;
252 	} else {
253 		coremem = memparse(p, &p);
254 		/* Paranoid check that UL is enough for the coremem value */
255 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256 
257 		*core = coremem >> PAGE_SHIFT;
258 		*percent = 0UL;
259 	}
260 	return 0;
261 }
262 
263 bool mirrored_kernelcore __initdata_memblock;
264 
265 /*
266  * kernelcore=size sets the amount of memory for use for allocations that
267  * cannot be reclaimed or migrated.
268  */
269 static int __init cmdline_parse_kernelcore(char *p)
270 {
271 	/* parse kernelcore=mirror */
272 	if (parse_option_str(p, "mirror")) {
273 		mirrored_kernelcore = true;
274 		return 0;
275 	}
276 
277 	return cmdline_parse_core(p, &required_kernelcore,
278 				  &required_kernelcore_percent);
279 }
280 early_param("kernelcore", cmdline_parse_kernelcore);
281 
282 /*
283  * movablecore=size sets the amount of memory for use for allocations that
284  * can be reclaimed or migrated.
285  */
286 static int __init cmdline_parse_movablecore(char *p)
287 {
288 	return cmdline_parse_core(p, &required_movablecore,
289 				  &required_movablecore_percent);
290 }
291 early_param("movablecore", cmdline_parse_movablecore);
292 
293 /*
294  * early_calculate_totalpages()
295  * Sum pages in active regions for movable zone.
296  * Populate N_MEMORY for calculating usable_nodes.
297  */
298 static unsigned long __init early_calculate_totalpages(void)
299 {
300 	unsigned long totalpages = 0;
301 	unsigned long start_pfn, end_pfn;
302 	int i, nid;
303 
304 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305 		unsigned long pages = end_pfn - start_pfn;
306 
307 		totalpages += pages;
308 		if (pages)
309 			node_set_state(nid, N_MEMORY);
310 	}
311 	return totalpages;
312 }
313 
314 /*
315  * This finds a zone that can be used for ZONE_MOVABLE pages. The
316  * assumption is made that zones within a node are ordered in monotonic
317  * increasing memory addresses so that the "highest" populated zone is used
318  */
319 static void __init find_usable_zone_for_movable(void)
320 {
321 	int zone_index;
322 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323 		if (zone_index == ZONE_MOVABLE)
324 			continue;
325 
326 		if (arch_zone_highest_possible_pfn[zone_index] >
327 				arch_zone_lowest_possible_pfn[zone_index])
328 			break;
329 	}
330 
331 	VM_BUG_ON(zone_index == -1);
332 	movable_zone = zone_index;
333 }
334 
335 /*
336  * Find the PFN the Movable zone begins in each node. Kernel memory
337  * is spread evenly between nodes as long as the nodes have enough
338  * memory. When they don't, some nodes will have more kernelcore than
339  * others
340  */
341 static void __init find_zone_movable_pfns_for_nodes(void)
342 {
343 	int i, nid;
344 	unsigned long usable_startpfn;
345 	unsigned long kernelcore_node, kernelcore_remaining;
346 	/* save the state before borrow the nodemask */
347 	nodemask_t saved_node_state = node_states[N_MEMORY];
348 	unsigned long totalpages = early_calculate_totalpages();
349 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350 	struct memblock_region *r;
351 
352 	/* Need to find movable_zone earlier when movable_node is specified. */
353 	find_usable_zone_for_movable();
354 
355 	/*
356 	 * If movable_node is specified, ignore kernelcore and movablecore
357 	 * options.
358 	 */
359 	if (movable_node_is_enabled()) {
360 		for_each_mem_region(r) {
361 			if (!memblock_is_hotpluggable(r))
362 				continue;
363 
364 			nid = memblock_get_region_node(r);
365 
366 			usable_startpfn = PFN_DOWN(r->base);
367 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368 				min(usable_startpfn, zone_movable_pfn[nid]) :
369 				usable_startpfn;
370 		}
371 
372 		goto out2;
373 	}
374 
375 	/*
376 	 * If kernelcore=mirror is specified, ignore movablecore option
377 	 */
378 	if (mirrored_kernelcore) {
379 		bool mem_below_4gb_not_mirrored = false;
380 
381 		if (!memblock_has_mirror()) {
382 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383 			goto out;
384 		}
385 
386 		if (is_kdump_kernel()) {
387 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388 			goto out;
389 		}
390 
391 		for_each_mem_region(r) {
392 			if (memblock_is_mirror(r))
393 				continue;
394 
395 			nid = memblock_get_region_node(r);
396 
397 			usable_startpfn = memblock_region_memory_base_pfn(r);
398 
399 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400 				mem_below_4gb_not_mirrored = true;
401 				continue;
402 			}
403 
404 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405 				min(usable_startpfn, zone_movable_pfn[nid]) :
406 				usable_startpfn;
407 		}
408 
409 		if (mem_below_4gb_not_mirrored)
410 			pr_warn("This configuration results in unmirrored kernel memory.\n");
411 
412 		goto out2;
413 	}
414 
415 	/*
416 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417 	 * amount of necessary memory.
418 	 */
419 	if (required_kernelcore_percent)
420 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421 				       10000UL;
422 	if (required_movablecore_percent)
423 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424 					10000UL;
425 
426 	/*
427 	 * If movablecore= was specified, calculate what size of
428 	 * kernelcore that corresponds so that memory usable for
429 	 * any allocation type is evenly spread. If both kernelcore
430 	 * and movablecore are specified, then the value of kernelcore
431 	 * will be used for required_kernelcore if it's greater than
432 	 * what movablecore would have allowed.
433 	 */
434 	if (required_movablecore) {
435 		unsigned long corepages;
436 
437 		/*
438 		 * Round-up so that ZONE_MOVABLE is at least as large as what
439 		 * was requested by the user
440 		 */
441 		required_movablecore =
442 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443 		required_movablecore = min(totalpages, required_movablecore);
444 		corepages = totalpages - required_movablecore;
445 
446 		required_kernelcore = max(required_kernelcore, corepages);
447 	}
448 
449 	/*
450 	 * If kernelcore was not specified or kernelcore size is larger
451 	 * than totalpages, there is no ZONE_MOVABLE.
452 	 */
453 	if (!required_kernelcore || required_kernelcore >= totalpages)
454 		goto out;
455 
456 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458 
459 restart:
460 	/* Spread kernelcore memory as evenly as possible throughout nodes */
461 	kernelcore_node = required_kernelcore / usable_nodes;
462 	for_each_node_state(nid, N_MEMORY) {
463 		unsigned long start_pfn, end_pfn;
464 
465 		/*
466 		 * Recalculate kernelcore_node if the division per node
467 		 * now exceeds what is necessary to satisfy the requested
468 		 * amount of memory for the kernel
469 		 */
470 		if (required_kernelcore < kernelcore_node)
471 			kernelcore_node = required_kernelcore / usable_nodes;
472 
473 		/*
474 		 * As the map is walked, we track how much memory is usable
475 		 * by the kernel using kernelcore_remaining. When it is
476 		 * 0, the rest of the node is usable by ZONE_MOVABLE
477 		 */
478 		kernelcore_remaining = kernelcore_node;
479 
480 		/* Go through each range of PFNs within this node */
481 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482 			unsigned long size_pages;
483 
484 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485 			if (start_pfn >= end_pfn)
486 				continue;
487 
488 			/* Account for what is only usable for kernelcore */
489 			if (start_pfn < usable_startpfn) {
490 				unsigned long kernel_pages;
491 				kernel_pages = min(end_pfn, usable_startpfn)
492 								- start_pfn;
493 
494 				kernelcore_remaining -= min(kernel_pages,
495 							kernelcore_remaining);
496 				required_kernelcore -= min(kernel_pages,
497 							required_kernelcore);
498 
499 				/* Continue if range is now fully accounted */
500 				if (end_pfn <= usable_startpfn) {
501 
502 					/*
503 					 * Push zone_movable_pfn to the end so
504 					 * that if we have to rebalance
505 					 * kernelcore across nodes, we will
506 					 * not double account here
507 					 */
508 					zone_movable_pfn[nid] = end_pfn;
509 					continue;
510 				}
511 				start_pfn = usable_startpfn;
512 			}
513 
514 			/*
515 			 * The usable PFN range for ZONE_MOVABLE is from
516 			 * start_pfn->end_pfn. Calculate size_pages as the
517 			 * number of pages used as kernelcore
518 			 */
519 			size_pages = end_pfn - start_pfn;
520 			if (size_pages > kernelcore_remaining)
521 				size_pages = kernelcore_remaining;
522 			zone_movable_pfn[nid] = start_pfn + size_pages;
523 
524 			/*
525 			 * Some kernelcore has been met, update counts and
526 			 * break if the kernelcore for this node has been
527 			 * satisfied
528 			 */
529 			required_kernelcore -= min(required_kernelcore,
530 								size_pages);
531 			kernelcore_remaining -= size_pages;
532 			if (!kernelcore_remaining)
533 				break;
534 		}
535 	}
536 
537 	/*
538 	 * If there is still required_kernelcore, we do another pass with one
539 	 * less node in the count. This will push zone_movable_pfn[nid] further
540 	 * along on the nodes that still have memory until kernelcore is
541 	 * satisfied
542 	 */
543 	usable_nodes--;
544 	if (usable_nodes && required_kernelcore > usable_nodes)
545 		goto restart;
546 
547 out2:
548 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
550 		unsigned long start_pfn, end_pfn;
551 
552 		zone_movable_pfn[nid] =
553 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554 
555 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556 		if (zone_movable_pfn[nid] >= end_pfn)
557 			zone_movable_pfn[nid] = 0;
558 	}
559 
560 out:
561 	/* restore the node_state */
562 	node_states[N_MEMORY] = saved_node_state;
563 }
564 
565 void __meminit __init_single_page(struct page *page, unsigned long pfn,
566 				unsigned long zone, int nid)
567 {
568 	mm_zero_struct_page(page);
569 	set_page_links(page, zone, nid, pfn);
570 	init_page_count(page);
571 	page_mapcount_reset(page);
572 	page_cpupid_reset_last(page);
573 	page_kasan_tag_reset(page);
574 
575 	INIT_LIST_HEAD(&page->lru);
576 #ifdef WANT_PAGE_VIRTUAL
577 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
578 	if (!is_highmem_idx(zone))
579 		set_page_address(page, __va(pfn << PAGE_SHIFT));
580 #endif
581 }
582 
583 #ifdef CONFIG_NUMA
584 /*
585  * During memory init memblocks map pfns to nids. The search is expensive and
586  * this caches recent lookups. The implementation of __early_pfn_to_nid
587  * treats start/end as pfns.
588  */
589 struct mminit_pfnnid_cache {
590 	unsigned long last_start;
591 	unsigned long last_end;
592 	int last_nid;
593 };
594 
595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596 
597 /*
598  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599  */
600 static int __meminit __early_pfn_to_nid(unsigned long pfn,
601 					struct mminit_pfnnid_cache *state)
602 {
603 	unsigned long start_pfn, end_pfn;
604 	int nid;
605 
606 	if (state->last_start <= pfn && pfn < state->last_end)
607 		return state->last_nid;
608 
609 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610 	if (nid != NUMA_NO_NODE) {
611 		state->last_start = start_pfn;
612 		state->last_end = end_pfn;
613 		state->last_nid = nid;
614 	}
615 
616 	return nid;
617 }
618 
619 int __meminit early_pfn_to_nid(unsigned long pfn)
620 {
621 	static DEFINE_SPINLOCK(early_pfn_lock);
622 	int nid;
623 
624 	spin_lock(&early_pfn_lock);
625 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626 	if (nid < 0)
627 		nid = first_online_node;
628 	spin_unlock(&early_pfn_lock);
629 
630 	return nid;
631 }
632 
633 int hashdist = HASHDIST_DEFAULT;
634 
635 static int __init set_hashdist(char *str)
636 {
637 	if (!str)
638 		return 0;
639 	hashdist = simple_strtoul(str, &str, 0);
640 	return 1;
641 }
642 __setup("hashdist=", set_hashdist);
643 
644 static inline void fixup_hashdist(void)
645 {
646 	if (num_node_state(N_MEMORY) == 1)
647 		hashdist = 0;
648 }
649 #else
650 static inline void fixup_hashdist(void) {}
651 #endif /* CONFIG_NUMA */
652 
653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655 {
656 	pgdat->first_deferred_pfn = ULONG_MAX;
657 }
658 
659 /* Returns true if the struct page for the pfn is initialised */
660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661 {
662 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663 		return false;
664 
665 	return true;
666 }
667 
668 /*
669  * Returns true when the remaining initialisation should be deferred until
670  * later in the boot cycle when it can be parallelised.
671  */
672 static bool __meminit
673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674 {
675 	static unsigned long prev_end_pfn, nr_initialised;
676 
677 	if (early_page_ext_enabled())
678 		return false;
679 	/*
680 	 * prev_end_pfn static that contains the end of previous zone
681 	 * No need to protect because called very early in boot before smp_init.
682 	 */
683 	if (prev_end_pfn != end_pfn) {
684 		prev_end_pfn = end_pfn;
685 		nr_initialised = 0;
686 	}
687 
688 	/* Always populate low zones for address-constrained allocations */
689 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
690 		return false;
691 
692 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
693 		return true;
694 	/*
695 	 * We start only with one section of pages, more pages are added as
696 	 * needed until the rest of deferred pages are initialized.
697 	 */
698 	nr_initialised++;
699 	if ((nr_initialised > PAGES_PER_SECTION) &&
700 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
701 		NODE_DATA(nid)->first_deferred_pfn = pfn;
702 		return true;
703 	}
704 	return false;
705 }
706 
707 static void __meminit init_reserved_page(unsigned long pfn, int nid)
708 {
709 	pg_data_t *pgdat;
710 	int zid;
711 
712 	if (early_page_initialised(pfn, nid))
713 		return;
714 
715 	pgdat = NODE_DATA(nid);
716 
717 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
718 		struct zone *zone = &pgdat->node_zones[zid];
719 
720 		if (zone_spans_pfn(zone, pfn))
721 			break;
722 	}
723 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
724 }
725 #else
726 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
727 
728 static inline bool early_page_initialised(unsigned long pfn, int nid)
729 {
730 	return true;
731 }
732 
733 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
734 {
735 	return false;
736 }
737 
738 static inline void init_reserved_page(unsigned long pfn, int nid)
739 {
740 }
741 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
742 
743 /*
744  * Initialised pages do not have PageReserved set. This function is
745  * called for each range allocated by the bootmem allocator and
746  * marks the pages PageReserved. The remaining valid pages are later
747  * sent to the buddy page allocator.
748  */
749 void __meminit reserve_bootmem_region(phys_addr_t start,
750 				      phys_addr_t end, int nid)
751 {
752 	unsigned long start_pfn = PFN_DOWN(start);
753 	unsigned long end_pfn = PFN_UP(end);
754 
755 	for (; start_pfn < end_pfn; start_pfn++) {
756 		if (pfn_valid(start_pfn)) {
757 			struct page *page = pfn_to_page(start_pfn);
758 
759 			init_reserved_page(start_pfn, nid);
760 
761 			/* Avoid false-positive PageTail() */
762 			INIT_LIST_HEAD(&page->lru);
763 
764 			/*
765 			 * no need for atomic set_bit because the struct
766 			 * page is not visible yet so nobody should
767 			 * access it yet.
768 			 */
769 			__SetPageReserved(page);
770 		}
771 	}
772 }
773 
774 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
775 static bool __meminit
776 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
777 {
778 	static struct memblock_region *r;
779 
780 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
781 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
782 			for_each_mem_region(r) {
783 				if (*pfn < memblock_region_memory_end_pfn(r))
784 					break;
785 			}
786 		}
787 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
788 		    memblock_is_mirror(r)) {
789 			*pfn = memblock_region_memory_end_pfn(r);
790 			return true;
791 		}
792 	}
793 	return false;
794 }
795 
796 /*
797  * Only struct pages that correspond to ranges defined by memblock.memory
798  * are zeroed and initialized by going through __init_single_page() during
799  * memmap_init_zone_range().
800  *
801  * But, there could be struct pages that correspond to holes in
802  * memblock.memory. This can happen because of the following reasons:
803  * - physical memory bank size is not necessarily the exact multiple of the
804  *   arbitrary section size
805  * - early reserved memory may not be listed in memblock.memory
806  * - non-memory regions covered by the contigious flatmem mapping
807  * - memory layouts defined with memmap= kernel parameter may not align
808  *   nicely with memmap sections
809  *
810  * Explicitly initialize those struct pages so that:
811  * - PG_Reserved is set
812  * - zone and node links point to zone and node that span the page if the
813  *   hole is in the middle of a zone
814  * - zone and node links point to adjacent zone/node if the hole falls on
815  *   the zone boundary; the pages in such holes will be prepended to the
816  *   zone/node above the hole except for the trailing pages in the last
817  *   section that will be appended to the zone/node below.
818  */
819 static void __init init_unavailable_range(unsigned long spfn,
820 					  unsigned long epfn,
821 					  int zone, int node)
822 {
823 	unsigned long pfn;
824 	u64 pgcnt = 0;
825 
826 	for (pfn = spfn; pfn < epfn; pfn++) {
827 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
828 			pfn = pageblock_end_pfn(pfn) - 1;
829 			continue;
830 		}
831 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
832 		__SetPageReserved(pfn_to_page(pfn));
833 		pgcnt++;
834 	}
835 
836 	if (pgcnt)
837 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
838 			node, zone_names[zone], pgcnt);
839 }
840 
841 /*
842  * Initially all pages are reserved - free ones are freed
843  * up by memblock_free_all() once the early boot process is
844  * done. Non-atomic initialization, single-pass.
845  *
846  * All aligned pageblocks are initialized to the specified migratetype
847  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
848  * zone stats (e.g., nr_isolate_pageblock) are touched.
849  */
850 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
851 		unsigned long start_pfn, unsigned long zone_end_pfn,
852 		enum meminit_context context,
853 		struct vmem_altmap *altmap, int migratetype)
854 {
855 	unsigned long pfn, end_pfn = start_pfn + size;
856 	struct page *page;
857 
858 	if (highest_memmap_pfn < end_pfn - 1)
859 		highest_memmap_pfn = end_pfn - 1;
860 
861 #ifdef CONFIG_ZONE_DEVICE
862 	/*
863 	 * Honor reservation requested by the driver for this ZONE_DEVICE
864 	 * memory. We limit the total number of pages to initialize to just
865 	 * those that might contain the memory mapping. We will defer the
866 	 * ZONE_DEVICE page initialization until after we have released
867 	 * the hotplug lock.
868 	 */
869 	if (zone == ZONE_DEVICE) {
870 		if (!altmap)
871 			return;
872 
873 		if (start_pfn == altmap->base_pfn)
874 			start_pfn += altmap->reserve;
875 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
876 	}
877 #endif
878 
879 	for (pfn = start_pfn; pfn < end_pfn; ) {
880 		/*
881 		 * There can be holes in boot-time mem_map[]s handed to this
882 		 * function.  They do not exist on hotplugged memory.
883 		 */
884 		if (context == MEMINIT_EARLY) {
885 			if (overlap_memmap_init(zone, &pfn))
886 				continue;
887 			if (defer_init(nid, pfn, zone_end_pfn)) {
888 				deferred_struct_pages = true;
889 				break;
890 			}
891 		}
892 
893 		page = pfn_to_page(pfn);
894 		__init_single_page(page, pfn, zone, nid);
895 		if (context == MEMINIT_HOTPLUG)
896 			__SetPageReserved(page);
897 
898 		/*
899 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
900 		 * such that unmovable allocations won't be scattered all
901 		 * over the place during system boot.
902 		 */
903 		if (pageblock_aligned(pfn)) {
904 			set_pageblock_migratetype(page, migratetype);
905 			cond_resched();
906 		}
907 		pfn++;
908 	}
909 }
910 
911 static void __init memmap_init_zone_range(struct zone *zone,
912 					  unsigned long start_pfn,
913 					  unsigned long end_pfn,
914 					  unsigned long *hole_pfn)
915 {
916 	unsigned long zone_start_pfn = zone->zone_start_pfn;
917 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
918 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
919 
920 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
921 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
922 
923 	if (start_pfn >= end_pfn)
924 		return;
925 
926 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
927 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
928 
929 	if (*hole_pfn < start_pfn)
930 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
931 
932 	*hole_pfn = end_pfn;
933 }
934 
935 static void __init memmap_init(void)
936 {
937 	unsigned long start_pfn, end_pfn;
938 	unsigned long hole_pfn = 0;
939 	int i, j, zone_id = 0, nid;
940 
941 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
942 		struct pglist_data *node = NODE_DATA(nid);
943 
944 		for (j = 0; j < MAX_NR_ZONES; j++) {
945 			struct zone *zone = node->node_zones + j;
946 
947 			if (!populated_zone(zone))
948 				continue;
949 
950 			memmap_init_zone_range(zone, start_pfn, end_pfn,
951 					       &hole_pfn);
952 			zone_id = j;
953 		}
954 	}
955 
956 #ifdef CONFIG_SPARSEMEM
957 	/*
958 	 * Initialize the memory map for hole in the range [memory_end,
959 	 * section_end].
960 	 * Append the pages in this hole to the highest zone in the last
961 	 * node.
962 	 * The call to init_unavailable_range() is outside the ifdef to
963 	 * silence the compiler warining about zone_id set but not used;
964 	 * for FLATMEM it is a nop anyway
965 	 */
966 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
967 	if (hole_pfn < end_pfn)
968 #endif
969 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
970 }
971 
972 #ifdef CONFIG_ZONE_DEVICE
973 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
974 					  unsigned long zone_idx, int nid,
975 					  struct dev_pagemap *pgmap)
976 {
977 
978 	__init_single_page(page, pfn, zone_idx, nid);
979 
980 	/*
981 	 * Mark page reserved as it will need to wait for onlining
982 	 * phase for it to be fully associated with a zone.
983 	 *
984 	 * We can use the non-atomic __set_bit operation for setting
985 	 * the flag as we are still initializing the pages.
986 	 */
987 	__SetPageReserved(page);
988 
989 	/*
990 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
991 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
992 	 * ever freed or placed on a driver-private list.
993 	 */
994 	page->pgmap = pgmap;
995 	page->zone_device_data = NULL;
996 
997 	/*
998 	 * Mark the block movable so that blocks are reserved for
999 	 * movable at startup. This will force kernel allocations
1000 	 * to reserve their blocks rather than leaking throughout
1001 	 * the address space during boot when many long-lived
1002 	 * kernel allocations are made.
1003 	 *
1004 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1005 	 * because this is done early in section_activate()
1006 	 */
1007 	if (pageblock_aligned(pfn)) {
1008 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1009 		cond_resched();
1010 	}
1011 
1012 	/*
1013 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1014 	 * which will set the page count to 1 when allocating the page.
1015 	 */
1016 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1017 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1018 		set_page_count(page, 0);
1019 }
1020 
1021 /*
1022  * With compound page geometry and when struct pages are stored in ram most
1023  * tail pages are reused. Consequently, the amount of unique struct pages to
1024  * initialize is a lot smaller that the total amount of struct pages being
1025  * mapped. This is a paired / mild layering violation with explicit knowledge
1026  * of how the sparse_vmemmap internals handle compound pages in the lack
1027  * of an altmap. See vmemmap_populate_compound_pages().
1028  */
1029 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1030 					      struct dev_pagemap *pgmap)
1031 {
1032 	if (!vmemmap_can_optimize(altmap, pgmap))
1033 		return pgmap_vmemmap_nr(pgmap);
1034 
1035 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1036 }
1037 
1038 static void __ref memmap_init_compound(struct page *head,
1039 				       unsigned long head_pfn,
1040 				       unsigned long zone_idx, int nid,
1041 				       struct dev_pagemap *pgmap,
1042 				       unsigned long nr_pages)
1043 {
1044 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1045 	unsigned int order = pgmap->vmemmap_shift;
1046 
1047 	__SetPageHead(head);
1048 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1049 		struct page *page = pfn_to_page(pfn);
1050 
1051 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1052 		prep_compound_tail(head, pfn - head_pfn);
1053 		set_page_count(page, 0);
1054 
1055 		/*
1056 		 * The first tail page stores important compound page info.
1057 		 * Call prep_compound_head() after the first tail page has
1058 		 * been initialized, to not have the data overwritten.
1059 		 */
1060 		if (pfn == head_pfn + 1)
1061 			prep_compound_head(head, order);
1062 	}
1063 }
1064 
1065 void __ref memmap_init_zone_device(struct zone *zone,
1066 				   unsigned long start_pfn,
1067 				   unsigned long nr_pages,
1068 				   struct dev_pagemap *pgmap)
1069 {
1070 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1071 	struct pglist_data *pgdat = zone->zone_pgdat;
1072 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1073 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1074 	unsigned long zone_idx = zone_idx(zone);
1075 	unsigned long start = jiffies;
1076 	int nid = pgdat->node_id;
1077 
1078 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1079 		return;
1080 
1081 	/*
1082 	 * The call to memmap_init should have already taken care
1083 	 * of the pages reserved for the memmap, so we can just jump to
1084 	 * the end of that region and start processing the device pages.
1085 	 */
1086 	if (altmap) {
1087 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1088 		nr_pages = end_pfn - start_pfn;
1089 	}
1090 
1091 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1092 		struct page *page = pfn_to_page(pfn);
1093 
1094 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1095 
1096 		if (pfns_per_compound == 1)
1097 			continue;
1098 
1099 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1100 				     compound_nr_pages(altmap, pgmap));
1101 	}
1102 
1103 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1104 		nr_pages, jiffies_to_msecs(jiffies - start));
1105 }
1106 #endif
1107 
1108 /*
1109  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1110  * because it is sized independent of architecture. Unlike the other zones,
1111  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1112  * in each node depending on the size of each node and how evenly kernelcore
1113  * is distributed. This helper function adjusts the zone ranges
1114  * provided by the architecture for a given node by using the end of the
1115  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1116  * zones within a node are in order of monotonic increases memory addresses
1117  */
1118 static void __init adjust_zone_range_for_zone_movable(int nid,
1119 					unsigned long zone_type,
1120 					unsigned long node_end_pfn,
1121 					unsigned long *zone_start_pfn,
1122 					unsigned long *zone_end_pfn)
1123 {
1124 	/* Only adjust if ZONE_MOVABLE is on this node */
1125 	if (zone_movable_pfn[nid]) {
1126 		/* Size ZONE_MOVABLE */
1127 		if (zone_type == ZONE_MOVABLE) {
1128 			*zone_start_pfn = zone_movable_pfn[nid];
1129 			*zone_end_pfn = min(node_end_pfn,
1130 				arch_zone_highest_possible_pfn[movable_zone]);
1131 
1132 		/* Adjust for ZONE_MOVABLE starting within this range */
1133 		} else if (!mirrored_kernelcore &&
1134 			*zone_start_pfn < zone_movable_pfn[nid] &&
1135 			*zone_end_pfn > zone_movable_pfn[nid]) {
1136 			*zone_end_pfn = zone_movable_pfn[nid];
1137 
1138 		/* Check if this whole range is within ZONE_MOVABLE */
1139 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1140 			*zone_start_pfn = *zone_end_pfn;
1141 	}
1142 }
1143 
1144 /*
1145  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1146  * then all holes in the requested range will be accounted for.
1147  */
1148 unsigned long __init __absent_pages_in_range(int nid,
1149 				unsigned long range_start_pfn,
1150 				unsigned long range_end_pfn)
1151 {
1152 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1153 	unsigned long start_pfn, end_pfn;
1154 	int i;
1155 
1156 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1157 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1158 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1159 		nr_absent -= end_pfn - start_pfn;
1160 	}
1161 	return nr_absent;
1162 }
1163 
1164 /**
1165  * absent_pages_in_range - Return number of page frames in holes within a range
1166  * @start_pfn: The start PFN to start searching for holes
1167  * @end_pfn: The end PFN to stop searching for holes
1168  *
1169  * Return: the number of pages frames in memory holes within a range.
1170  */
1171 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1172 							unsigned long end_pfn)
1173 {
1174 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1175 }
1176 
1177 /* Return the number of page frames in holes in a zone on a node */
1178 static unsigned long __init zone_absent_pages_in_node(int nid,
1179 					unsigned long zone_type,
1180 					unsigned long zone_start_pfn,
1181 					unsigned long zone_end_pfn)
1182 {
1183 	unsigned long nr_absent;
1184 
1185 	/* zone is empty, we don't have any absent pages */
1186 	if (zone_start_pfn == zone_end_pfn)
1187 		return 0;
1188 
1189 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1190 
1191 	/*
1192 	 * ZONE_MOVABLE handling.
1193 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1194 	 * and vice versa.
1195 	 */
1196 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1197 		unsigned long start_pfn, end_pfn;
1198 		struct memblock_region *r;
1199 
1200 		for_each_mem_region(r) {
1201 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1202 					  zone_start_pfn, zone_end_pfn);
1203 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1204 					zone_start_pfn, zone_end_pfn);
1205 
1206 			if (zone_type == ZONE_MOVABLE &&
1207 			    memblock_is_mirror(r))
1208 				nr_absent += end_pfn - start_pfn;
1209 
1210 			if (zone_type == ZONE_NORMAL &&
1211 			    !memblock_is_mirror(r))
1212 				nr_absent += end_pfn - start_pfn;
1213 		}
1214 	}
1215 
1216 	return nr_absent;
1217 }
1218 
1219 /*
1220  * Return the number of pages a zone spans in a node, including holes
1221  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1222  */
1223 static unsigned long __init zone_spanned_pages_in_node(int nid,
1224 					unsigned long zone_type,
1225 					unsigned long node_start_pfn,
1226 					unsigned long node_end_pfn,
1227 					unsigned long *zone_start_pfn,
1228 					unsigned long *zone_end_pfn)
1229 {
1230 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1231 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1232 
1233 	/* Get the start and end of the zone */
1234 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1235 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1236 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1237 					   zone_start_pfn, zone_end_pfn);
1238 
1239 	/* Check that this node has pages within the zone's required range */
1240 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1241 		return 0;
1242 
1243 	/* Move the zone boundaries inside the node if necessary */
1244 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1245 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1246 
1247 	/* Return the spanned pages */
1248 	return *zone_end_pfn - *zone_start_pfn;
1249 }
1250 
1251 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1252 {
1253 	struct zone *z;
1254 
1255 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1256 		z->zone_start_pfn = 0;
1257 		z->spanned_pages = 0;
1258 		z->present_pages = 0;
1259 #if defined(CONFIG_MEMORY_HOTPLUG)
1260 		z->present_early_pages = 0;
1261 #endif
1262 	}
1263 
1264 	pgdat->node_spanned_pages = 0;
1265 	pgdat->node_present_pages = 0;
1266 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1267 }
1268 
1269 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1270 						unsigned long node_start_pfn,
1271 						unsigned long node_end_pfn)
1272 {
1273 	unsigned long realtotalpages = 0, totalpages = 0;
1274 	enum zone_type i;
1275 
1276 	for (i = 0; i < MAX_NR_ZONES; i++) {
1277 		struct zone *zone = pgdat->node_zones + i;
1278 		unsigned long zone_start_pfn, zone_end_pfn;
1279 		unsigned long spanned, absent;
1280 		unsigned long real_size;
1281 
1282 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1283 						     node_start_pfn,
1284 						     node_end_pfn,
1285 						     &zone_start_pfn,
1286 						     &zone_end_pfn);
1287 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1288 						   zone_start_pfn,
1289 						   zone_end_pfn);
1290 
1291 		real_size = spanned - absent;
1292 
1293 		if (spanned)
1294 			zone->zone_start_pfn = zone_start_pfn;
1295 		else
1296 			zone->zone_start_pfn = 0;
1297 		zone->spanned_pages = spanned;
1298 		zone->present_pages = real_size;
1299 #if defined(CONFIG_MEMORY_HOTPLUG)
1300 		zone->present_early_pages = real_size;
1301 #endif
1302 
1303 		totalpages += spanned;
1304 		realtotalpages += real_size;
1305 	}
1306 
1307 	pgdat->node_spanned_pages = totalpages;
1308 	pgdat->node_present_pages = realtotalpages;
1309 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1310 }
1311 
1312 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1313 						unsigned long present_pages)
1314 {
1315 	unsigned long pages = spanned_pages;
1316 
1317 	/*
1318 	 * Provide a more accurate estimation if there are holes within
1319 	 * the zone and SPARSEMEM is in use. If there are holes within the
1320 	 * zone, each populated memory region may cost us one or two extra
1321 	 * memmap pages due to alignment because memmap pages for each
1322 	 * populated regions may not be naturally aligned on page boundary.
1323 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1324 	 */
1325 	if (spanned_pages > present_pages + (present_pages >> 4) &&
1326 	    IS_ENABLED(CONFIG_SPARSEMEM))
1327 		pages = present_pages;
1328 
1329 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1330 }
1331 
1332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1333 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1334 {
1335 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1336 
1337 	spin_lock_init(&ds_queue->split_queue_lock);
1338 	INIT_LIST_HEAD(&ds_queue->split_queue);
1339 	ds_queue->split_queue_len = 0;
1340 }
1341 #else
1342 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1343 #endif
1344 
1345 #ifdef CONFIG_COMPACTION
1346 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1347 {
1348 	init_waitqueue_head(&pgdat->kcompactd_wait);
1349 }
1350 #else
1351 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1352 #endif
1353 
1354 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1355 {
1356 	int i;
1357 
1358 	pgdat_resize_init(pgdat);
1359 	pgdat_kswapd_lock_init(pgdat);
1360 
1361 	pgdat_init_split_queue(pgdat);
1362 	pgdat_init_kcompactd(pgdat);
1363 
1364 	init_waitqueue_head(&pgdat->kswapd_wait);
1365 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1366 
1367 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1368 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1369 
1370 	pgdat_page_ext_init(pgdat);
1371 	lruvec_init(&pgdat->__lruvec);
1372 }
1373 
1374 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1375 							unsigned long remaining_pages)
1376 {
1377 	atomic_long_set(&zone->managed_pages, remaining_pages);
1378 	zone_set_nid(zone, nid);
1379 	zone->name = zone_names[idx];
1380 	zone->zone_pgdat = NODE_DATA(nid);
1381 	spin_lock_init(&zone->lock);
1382 	zone_seqlock_init(zone);
1383 	zone_pcp_init(zone);
1384 }
1385 
1386 static void __meminit zone_init_free_lists(struct zone *zone)
1387 {
1388 	unsigned int order, t;
1389 	for_each_migratetype_order(order, t) {
1390 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1391 		zone->free_area[order].nr_free = 0;
1392 	}
1393 
1394 #ifdef CONFIG_UNACCEPTED_MEMORY
1395 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1396 #endif
1397 }
1398 
1399 void __meminit init_currently_empty_zone(struct zone *zone,
1400 					unsigned long zone_start_pfn,
1401 					unsigned long size)
1402 {
1403 	struct pglist_data *pgdat = zone->zone_pgdat;
1404 	int zone_idx = zone_idx(zone) + 1;
1405 
1406 	if (zone_idx > pgdat->nr_zones)
1407 		pgdat->nr_zones = zone_idx;
1408 
1409 	zone->zone_start_pfn = zone_start_pfn;
1410 
1411 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1412 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1413 			pgdat->node_id,
1414 			(unsigned long)zone_idx(zone),
1415 			zone_start_pfn, (zone_start_pfn + size));
1416 
1417 	zone_init_free_lists(zone);
1418 	zone->initialized = 1;
1419 }
1420 
1421 #ifndef CONFIG_SPARSEMEM
1422 /*
1423  * Calculate the size of the zone->blockflags rounded to an unsigned long
1424  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1425  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1426  * round what is now in bits to nearest long in bits, then return it in
1427  * bytes.
1428  */
1429 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1430 {
1431 	unsigned long usemapsize;
1432 
1433 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1434 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1435 	usemapsize = usemapsize >> pageblock_order;
1436 	usemapsize *= NR_PAGEBLOCK_BITS;
1437 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1438 
1439 	return usemapsize / BITS_PER_BYTE;
1440 }
1441 
1442 static void __ref setup_usemap(struct zone *zone)
1443 {
1444 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1445 					       zone->spanned_pages);
1446 	zone->pageblock_flags = NULL;
1447 	if (usemapsize) {
1448 		zone->pageblock_flags =
1449 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1450 					    zone_to_nid(zone));
1451 		if (!zone->pageblock_flags)
1452 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1453 			      usemapsize, zone->name, zone_to_nid(zone));
1454 	}
1455 }
1456 #else
1457 static inline void setup_usemap(struct zone *zone) {}
1458 #endif /* CONFIG_SPARSEMEM */
1459 
1460 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1461 
1462 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1463 void __init set_pageblock_order(void)
1464 {
1465 	unsigned int order = MAX_PAGE_ORDER;
1466 
1467 	/* Check that pageblock_nr_pages has not already been setup */
1468 	if (pageblock_order)
1469 		return;
1470 
1471 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1472 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1473 		order = HUGETLB_PAGE_ORDER;
1474 
1475 	/*
1476 	 * Assume the largest contiguous order of interest is a huge page.
1477 	 * This value may be variable depending on boot parameters on powerpc.
1478 	 */
1479 	pageblock_order = order;
1480 }
1481 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1482 
1483 /*
1484  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1485  * is unused as pageblock_order is set at compile-time. See
1486  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1487  * the kernel config
1488  */
1489 void __init set_pageblock_order(void)
1490 {
1491 }
1492 
1493 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1494 
1495 /*
1496  * Set up the zone data structures
1497  * - init pgdat internals
1498  * - init all zones belonging to this node
1499  *
1500  * NOTE: this function is only called during memory hotplug
1501  */
1502 #ifdef CONFIG_MEMORY_HOTPLUG
1503 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1504 {
1505 	int nid = pgdat->node_id;
1506 	enum zone_type z;
1507 	int cpu;
1508 
1509 	pgdat_init_internals(pgdat);
1510 
1511 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1512 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1513 
1514 	/*
1515 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1516 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1517 	 * when it starts in the near future.
1518 	 */
1519 	pgdat->nr_zones = 0;
1520 	pgdat->kswapd_order = 0;
1521 	pgdat->kswapd_highest_zoneidx = 0;
1522 	pgdat->node_start_pfn = 0;
1523 	pgdat->node_present_pages = 0;
1524 
1525 	for_each_online_cpu(cpu) {
1526 		struct per_cpu_nodestat *p;
1527 
1528 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1529 		memset(p, 0, sizeof(*p));
1530 	}
1531 
1532 	/*
1533 	 * When memory is hot-added, all the memory is in offline state. So
1534 	 * clear all zones' present_pages and managed_pages because they will
1535 	 * be updated in online_pages() and offline_pages().
1536 	 */
1537 	for (z = 0; z < MAX_NR_ZONES; z++) {
1538 		struct zone *zone = pgdat->node_zones + z;
1539 
1540 		zone->present_pages = 0;
1541 		zone_init_internals(zone, z, nid, 0);
1542 	}
1543 }
1544 #endif
1545 
1546 /*
1547  * Set up the zone data structures:
1548  *   - mark all pages reserved
1549  *   - mark all memory queues empty
1550  *   - clear the memory bitmaps
1551  *
1552  * NOTE: pgdat should get zeroed by caller.
1553  * NOTE: this function is only called during early init.
1554  */
1555 static void __init free_area_init_core(struct pglist_data *pgdat)
1556 {
1557 	enum zone_type j;
1558 	int nid = pgdat->node_id;
1559 
1560 	pgdat_init_internals(pgdat);
1561 	pgdat->per_cpu_nodestats = &boot_nodestats;
1562 
1563 	for (j = 0; j < MAX_NR_ZONES; j++) {
1564 		struct zone *zone = pgdat->node_zones + j;
1565 		unsigned long size, freesize, memmap_pages;
1566 
1567 		size = zone->spanned_pages;
1568 		freesize = zone->present_pages;
1569 
1570 		/*
1571 		 * Adjust freesize so that it accounts for how much memory
1572 		 * is used by this zone for memmap. This affects the watermark
1573 		 * and per-cpu initialisations
1574 		 */
1575 		memmap_pages = calc_memmap_size(size, freesize);
1576 		if (!is_highmem_idx(j)) {
1577 			if (freesize >= memmap_pages) {
1578 				freesize -= memmap_pages;
1579 				if (memmap_pages)
1580 					pr_debug("  %s zone: %lu pages used for memmap\n",
1581 						 zone_names[j], memmap_pages);
1582 			} else
1583 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
1584 					zone_names[j], memmap_pages, freesize);
1585 		}
1586 
1587 		/* Account for reserved pages */
1588 		if (j == 0 && freesize > dma_reserve) {
1589 			freesize -= dma_reserve;
1590 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1591 		}
1592 
1593 		if (!is_highmem_idx(j))
1594 			nr_kernel_pages += freesize;
1595 		/* Charge for highmem memmap if there are enough kernel pages */
1596 		else if (nr_kernel_pages > memmap_pages * 2)
1597 			nr_kernel_pages -= memmap_pages;
1598 		nr_all_pages += freesize;
1599 
1600 		/*
1601 		 * Set an approximate value for lowmem here, it will be adjusted
1602 		 * when the bootmem allocator frees pages into the buddy system.
1603 		 * And all highmem pages will be managed by the buddy system.
1604 		 */
1605 		zone_init_internals(zone, j, nid, freesize);
1606 
1607 		if (!size)
1608 			continue;
1609 
1610 		setup_usemap(zone);
1611 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1612 	}
1613 }
1614 
1615 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1616 			  phys_addr_t min_addr, int nid, bool exact_nid)
1617 {
1618 	void *ptr;
1619 
1620 	if (exact_nid)
1621 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1622 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1623 						   nid);
1624 	else
1625 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1626 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1627 						 nid);
1628 
1629 	if (ptr && size > 0)
1630 		page_init_poison(ptr, size);
1631 
1632 	return ptr;
1633 }
1634 
1635 #ifdef CONFIG_FLATMEM
1636 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1637 {
1638 	unsigned long start, offset, size, end;
1639 	struct page *map;
1640 
1641 	/* Skip empty nodes */
1642 	if (!pgdat->node_spanned_pages)
1643 		return;
1644 
1645 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1646 	offset = pgdat->node_start_pfn - start;
1647 	/*
1648 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1649 	 * aligned but the node_mem_map endpoints must be in order
1650 	 * for the buddy allocator to function correctly.
1651 	 */
1652 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1653 	size =  (end - start) * sizeof(struct page);
1654 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1655 			   pgdat->node_id, false);
1656 	if (!map)
1657 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1658 		      size, pgdat->node_id);
1659 	pgdat->node_mem_map = map + offset;
1660 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1661 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1662 		 (unsigned long)pgdat->node_mem_map);
1663 #ifndef CONFIG_NUMA
1664 	/* the global mem_map is just set as node 0's */
1665 	if (pgdat == NODE_DATA(0)) {
1666 		mem_map = NODE_DATA(0)->node_mem_map;
1667 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1668 			mem_map -= offset;
1669 	}
1670 #endif
1671 }
1672 #else
1673 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1674 #endif /* CONFIG_FLATMEM */
1675 
1676 /**
1677  * get_pfn_range_for_nid - Return the start and end page frames for a node
1678  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1679  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1680  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1681  *
1682  * It returns the start and end page frame of a node based on information
1683  * provided by memblock_set_node(). If called for a node
1684  * with no available memory, the start and end PFNs will be 0.
1685  */
1686 void __init get_pfn_range_for_nid(unsigned int nid,
1687 			unsigned long *start_pfn, unsigned long *end_pfn)
1688 {
1689 	unsigned long this_start_pfn, this_end_pfn;
1690 	int i;
1691 
1692 	*start_pfn = -1UL;
1693 	*end_pfn = 0;
1694 
1695 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1696 		*start_pfn = min(*start_pfn, this_start_pfn);
1697 		*end_pfn = max(*end_pfn, this_end_pfn);
1698 	}
1699 
1700 	if (*start_pfn == -1UL)
1701 		*start_pfn = 0;
1702 }
1703 
1704 static void __init free_area_init_node(int nid)
1705 {
1706 	pg_data_t *pgdat = NODE_DATA(nid);
1707 	unsigned long start_pfn = 0;
1708 	unsigned long end_pfn = 0;
1709 
1710 	/* pg_data_t should be reset to zero when it's allocated */
1711 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1712 
1713 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1714 
1715 	pgdat->node_id = nid;
1716 	pgdat->node_start_pfn = start_pfn;
1717 	pgdat->per_cpu_nodestats = NULL;
1718 
1719 	if (start_pfn != end_pfn) {
1720 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1721 			(u64)start_pfn << PAGE_SHIFT,
1722 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1723 
1724 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1725 	} else {
1726 		pr_info("Initmem setup node %d as memoryless\n", nid);
1727 
1728 		reset_memoryless_node_totalpages(pgdat);
1729 	}
1730 
1731 	alloc_node_mem_map(pgdat);
1732 	pgdat_set_deferred_range(pgdat);
1733 
1734 	free_area_init_core(pgdat);
1735 	lru_gen_init_pgdat(pgdat);
1736 }
1737 
1738 /* Any regular or high memory on that node ? */
1739 static void __init check_for_memory(pg_data_t *pgdat)
1740 {
1741 	enum zone_type zone_type;
1742 
1743 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1744 		struct zone *zone = &pgdat->node_zones[zone_type];
1745 		if (populated_zone(zone)) {
1746 			if (IS_ENABLED(CONFIG_HIGHMEM))
1747 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1748 			if (zone_type <= ZONE_NORMAL)
1749 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1750 			break;
1751 		}
1752 	}
1753 }
1754 
1755 #if MAX_NUMNODES > 1
1756 /*
1757  * Figure out the number of possible node ids.
1758  */
1759 void __init setup_nr_node_ids(void)
1760 {
1761 	unsigned int highest;
1762 
1763 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1764 	nr_node_ids = highest + 1;
1765 }
1766 #endif
1767 
1768 /*
1769  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1770  * such cases we allow max_zone_pfn sorted in the descending order
1771  */
1772 static bool arch_has_descending_max_zone_pfns(void)
1773 {
1774 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1775 }
1776 
1777 /**
1778  * free_area_init - Initialise all pg_data_t and zone data
1779  * @max_zone_pfn: an array of max PFNs for each zone
1780  *
1781  * This will call free_area_init_node() for each active node in the system.
1782  * Using the page ranges provided by memblock_set_node(), the size of each
1783  * zone in each node and their holes is calculated. If the maximum PFN
1784  * between two adjacent zones match, it is assumed that the zone is empty.
1785  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1786  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1787  * starts where the previous one ended. For example, ZONE_DMA32 starts
1788  * at arch_max_dma_pfn.
1789  */
1790 void __init free_area_init(unsigned long *max_zone_pfn)
1791 {
1792 	unsigned long start_pfn, end_pfn;
1793 	int i, nid, zone;
1794 	bool descending;
1795 
1796 	/* Record where the zone boundaries are */
1797 	memset(arch_zone_lowest_possible_pfn, 0,
1798 				sizeof(arch_zone_lowest_possible_pfn));
1799 	memset(arch_zone_highest_possible_pfn, 0,
1800 				sizeof(arch_zone_highest_possible_pfn));
1801 
1802 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1803 	descending = arch_has_descending_max_zone_pfns();
1804 
1805 	for (i = 0; i < MAX_NR_ZONES; i++) {
1806 		if (descending)
1807 			zone = MAX_NR_ZONES - i - 1;
1808 		else
1809 			zone = i;
1810 
1811 		if (zone == ZONE_MOVABLE)
1812 			continue;
1813 
1814 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1815 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1816 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1817 
1818 		start_pfn = end_pfn;
1819 	}
1820 
1821 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1822 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1823 	find_zone_movable_pfns_for_nodes();
1824 
1825 	/* Print out the zone ranges */
1826 	pr_info("Zone ranges:\n");
1827 	for (i = 0; i < MAX_NR_ZONES; i++) {
1828 		if (i == ZONE_MOVABLE)
1829 			continue;
1830 		pr_info("  %-8s ", zone_names[i]);
1831 		if (arch_zone_lowest_possible_pfn[i] ==
1832 				arch_zone_highest_possible_pfn[i])
1833 			pr_cont("empty\n");
1834 		else
1835 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1836 				(u64)arch_zone_lowest_possible_pfn[i]
1837 					<< PAGE_SHIFT,
1838 				((u64)arch_zone_highest_possible_pfn[i]
1839 					<< PAGE_SHIFT) - 1);
1840 	}
1841 
1842 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1843 	pr_info("Movable zone start for each node\n");
1844 	for (i = 0; i < MAX_NUMNODES; i++) {
1845 		if (zone_movable_pfn[i])
1846 			pr_info("  Node %d: %#018Lx\n", i,
1847 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1848 	}
1849 
1850 	/*
1851 	 * Print out the early node map, and initialize the
1852 	 * subsection-map relative to active online memory ranges to
1853 	 * enable future "sub-section" extensions of the memory map.
1854 	 */
1855 	pr_info("Early memory node ranges\n");
1856 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1857 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1858 			(u64)start_pfn << PAGE_SHIFT,
1859 			((u64)end_pfn << PAGE_SHIFT) - 1);
1860 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1861 	}
1862 
1863 	/* Initialise every node */
1864 	mminit_verify_pageflags_layout();
1865 	setup_nr_node_ids();
1866 	set_pageblock_order();
1867 
1868 	for_each_node(nid) {
1869 		pg_data_t *pgdat;
1870 
1871 		if (!node_online(nid)) {
1872 			/* Allocator not initialized yet */
1873 			pgdat = arch_alloc_nodedata(nid);
1874 			if (!pgdat)
1875 				panic("Cannot allocate %zuB for node %d.\n",
1876 				       sizeof(*pgdat), nid);
1877 			arch_refresh_nodedata(nid, pgdat);
1878 			free_area_init_node(nid);
1879 
1880 			/*
1881 			 * We do not want to confuse userspace by sysfs
1882 			 * files/directories for node without any memory
1883 			 * attached to it, so this node is not marked as
1884 			 * N_MEMORY and not marked online so that no sysfs
1885 			 * hierarchy will be created via register_one_node for
1886 			 * it. The pgdat will get fully initialized by
1887 			 * hotadd_init_pgdat() when memory is hotplugged into
1888 			 * this node.
1889 			 */
1890 			continue;
1891 		}
1892 
1893 		pgdat = NODE_DATA(nid);
1894 		free_area_init_node(nid);
1895 
1896 		/* Any memory on that node */
1897 		if (pgdat->node_present_pages)
1898 			node_set_state(nid, N_MEMORY);
1899 		check_for_memory(pgdat);
1900 	}
1901 
1902 	memmap_init();
1903 
1904 	/* disable hash distribution for systems with a single node */
1905 	fixup_hashdist();
1906 }
1907 
1908 /**
1909  * node_map_pfn_alignment - determine the maximum internode alignment
1910  *
1911  * This function should be called after node map is populated and sorted.
1912  * It calculates the maximum power of two alignment which can distinguish
1913  * all the nodes.
1914  *
1915  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1916  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1917  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1918  * shifted, 1GiB is enough and this function will indicate so.
1919  *
1920  * This is used to test whether pfn -> nid mapping of the chosen memory
1921  * model has fine enough granularity to avoid incorrect mapping for the
1922  * populated node map.
1923  *
1924  * Return: the determined alignment in pfn's.  0 if there is no alignment
1925  * requirement (single node).
1926  */
1927 unsigned long __init node_map_pfn_alignment(void)
1928 {
1929 	unsigned long accl_mask = 0, last_end = 0;
1930 	unsigned long start, end, mask;
1931 	int last_nid = NUMA_NO_NODE;
1932 	int i, nid;
1933 
1934 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1935 		if (!start || last_nid < 0 || last_nid == nid) {
1936 			last_nid = nid;
1937 			last_end = end;
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * Start with a mask granular enough to pin-point to the
1943 		 * start pfn and tick off bits one-by-one until it becomes
1944 		 * too coarse to separate the current node from the last.
1945 		 */
1946 		mask = ~((1 << __ffs(start)) - 1);
1947 		while (mask && last_end <= (start & (mask << 1)))
1948 			mask <<= 1;
1949 
1950 		/* accumulate all internode masks */
1951 		accl_mask |= mask;
1952 	}
1953 
1954 	/* convert mask to number of pages */
1955 	return ~accl_mask + 1;
1956 }
1957 
1958 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1959 static void __init deferred_free_range(unsigned long pfn,
1960 				       unsigned long nr_pages)
1961 {
1962 	struct page *page;
1963 	unsigned long i;
1964 
1965 	if (!nr_pages)
1966 		return;
1967 
1968 	page = pfn_to_page(pfn);
1969 
1970 	/* Free a large naturally-aligned chunk if possible */
1971 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1972 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1973 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1974 		__free_pages_core(page, MAX_PAGE_ORDER);
1975 		return;
1976 	}
1977 
1978 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1979 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1980 
1981 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1982 		if (pageblock_aligned(pfn))
1983 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1984 		__free_pages_core(page, 0);
1985 	}
1986 }
1987 
1988 /* Completion tracking for deferred_init_memmap() threads */
1989 static atomic_t pgdat_init_n_undone __initdata;
1990 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1991 
1992 static inline void __init pgdat_init_report_one_done(void)
1993 {
1994 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1995 		complete(&pgdat_init_all_done_comp);
1996 }
1997 
1998 /*
1999  * Returns true if page needs to be initialized or freed to buddy allocator.
2000  *
2001  * We check if a current MAX_PAGE_ORDER block is valid by only checking the
2002  * validity of the head pfn.
2003  */
2004 static inline bool __init deferred_pfn_valid(unsigned long pfn)
2005 {
2006 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
2007 		return false;
2008 	return true;
2009 }
2010 
2011 /*
2012  * Free pages to buddy allocator. Try to free aligned pages in
2013  * MAX_ORDER_NR_PAGES sizes.
2014  */
2015 static void __init deferred_free_pages(unsigned long pfn,
2016 				       unsigned long end_pfn)
2017 {
2018 	unsigned long nr_free = 0;
2019 
2020 	for (; pfn < end_pfn; pfn++) {
2021 		if (!deferred_pfn_valid(pfn)) {
2022 			deferred_free_range(pfn - nr_free, nr_free);
2023 			nr_free = 0;
2024 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2025 			deferred_free_range(pfn - nr_free, nr_free);
2026 			nr_free = 1;
2027 		} else {
2028 			nr_free++;
2029 		}
2030 	}
2031 	/* Free the last block of pages to allocator */
2032 	deferred_free_range(pfn - nr_free, nr_free);
2033 }
2034 
2035 /*
2036  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2037  * by performing it only once every MAX_ORDER_NR_PAGES.
2038  * Return number of pages initialized.
2039  */
2040 static unsigned long  __init deferred_init_pages(struct zone *zone,
2041 						 unsigned long pfn,
2042 						 unsigned long end_pfn)
2043 {
2044 	int nid = zone_to_nid(zone);
2045 	unsigned long nr_pages = 0;
2046 	int zid = zone_idx(zone);
2047 	struct page *page = NULL;
2048 
2049 	for (; pfn < end_pfn; pfn++) {
2050 		if (!deferred_pfn_valid(pfn)) {
2051 			page = NULL;
2052 			continue;
2053 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2054 			page = pfn_to_page(pfn);
2055 		} else {
2056 			page++;
2057 		}
2058 		__init_single_page(page, pfn, zid, nid);
2059 		nr_pages++;
2060 	}
2061 	return (nr_pages);
2062 }
2063 
2064 /*
2065  * This function is meant to pre-load the iterator for the zone init.
2066  * Specifically it walks through the ranges until we are caught up to the
2067  * first_init_pfn value and exits there. If we never encounter the value we
2068  * return false indicating there are no valid ranges left.
2069  */
2070 static bool __init
2071 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2072 				    unsigned long *spfn, unsigned long *epfn,
2073 				    unsigned long first_init_pfn)
2074 {
2075 	u64 j;
2076 
2077 	/*
2078 	 * Start out by walking through the ranges in this zone that have
2079 	 * already been initialized. We don't need to do anything with them
2080 	 * so we just need to flush them out of the system.
2081 	 */
2082 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2083 		if (*epfn <= first_init_pfn)
2084 			continue;
2085 		if (*spfn < first_init_pfn)
2086 			*spfn = first_init_pfn;
2087 		*i = j;
2088 		return true;
2089 	}
2090 
2091 	return false;
2092 }
2093 
2094 /*
2095  * Initialize and free pages. We do it in two loops: first we initialize
2096  * struct page, then free to buddy allocator, because while we are
2097  * freeing pages we can access pages that are ahead (computing buddy
2098  * page in __free_one_page()).
2099  *
2100  * In order to try and keep some memory in the cache we have the loop
2101  * broken along max page order boundaries. This way we will not cause
2102  * any issues with the buddy page computation.
2103  */
2104 static unsigned long __init
2105 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2106 		       unsigned long *end_pfn)
2107 {
2108 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2109 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2110 	unsigned long nr_pages = 0;
2111 	u64 j = *i;
2112 
2113 	/* First we loop through and initialize the page values */
2114 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2115 		unsigned long t;
2116 
2117 		if (mo_pfn <= *start_pfn)
2118 			break;
2119 
2120 		t = min(mo_pfn, *end_pfn);
2121 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2122 
2123 		if (mo_pfn < *end_pfn) {
2124 			*start_pfn = mo_pfn;
2125 			break;
2126 		}
2127 	}
2128 
2129 	/* Reset values and now loop through freeing pages as needed */
2130 	swap(j, *i);
2131 
2132 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2133 		unsigned long t;
2134 
2135 		if (mo_pfn <= spfn)
2136 			break;
2137 
2138 		t = min(mo_pfn, epfn);
2139 		deferred_free_pages(spfn, t);
2140 
2141 		if (mo_pfn <= epfn)
2142 			break;
2143 	}
2144 
2145 	return nr_pages;
2146 }
2147 
2148 static void __init
2149 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2150 			   void *arg)
2151 {
2152 	unsigned long spfn, epfn;
2153 	struct zone *zone = arg;
2154 	u64 i;
2155 
2156 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2157 
2158 	/*
2159 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2160 	 * we can avoid introducing any issues with the buddy allocator.
2161 	 */
2162 	while (spfn < end_pfn) {
2163 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2164 		cond_resched();
2165 	}
2166 }
2167 
2168 /* An arch may override for more concurrency. */
2169 __weak int __init
2170 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2171 {
2172 	return 1;
2173 }
2174 
2175 /* Initialise remaining memory on a node */
2176 static int __init deferred_init_memmap(void *data)
2177 {
2178 	pg_data_t *pgdat = data;
2179 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2180 	unsigned long spfn = 0, epfn = 0;
2181 	unsigned long first_init_pfn, flags;
2182 	unsigned long start = jiffies;
2183 	struct zone *zone;
2184 	int zid, max_threads;
2185 	u64 i;
2186 
2187 	/* Bind memory initialisation thread to a local node if possible */
2188 	if (!cpumask_empty(cpumask))
2189 		set_cpus_allowed_ptr(current, cpumask);
2190 
2191 	pgdat_resize_lock(pgdat, &flags);
2192 	first_init_pfn = pgdat->first_deferred_pfn;
2193 	if (first_init_pfn == ULONG_MAX) {
2194 		pgdat_resize_unlock(pgdat, &flags);
2195 		pgdat_init_report_one_done();
2196 		return 0;
2197 	}
2198 
2199 	/* Sanity check boundaries */
2200 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2201 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2202 	pgdat->first_deferred_pfn = ULONG_MAX;
2203 
2204 	/*
2205 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2206 	 * interrupt thread must allocate this early in boot, zone must be
2207 	 * pre-grown prior to start of deferred page initialization.
2208 	 */
2209 	pgdat_resize_unlock(pgdat, &flags);
2210 
2211 	/* Only the highest zone is deferred so find it */
2212 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2213 		zone = pgdat->node_zones + zid;
2214 		if (first_init_pfn < zone_end_pfn(zone))
2215 			break;
2216 	}
2217 
2218 	/* If the zone is empty somebody else may have cleared out the zone */
2219 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2220 						 first_init_pfn))
2221 		goto zone_empty;
2222 
2223 	max_threads = deferred_page_init_max_threads(cpumask);
2224 
2225 	while (spfn < epfn) {
2226 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2227 		struct padata_mt_job job = {
2228 			.thread_fn   = deferred_init_memmap_chunk,
2229 			.fn_arg      = zone,
2230 			.start       = spfn,
2231 			.size        = epfn_align - spfn,
2232 			.align       = PAGES_PER_SECTION,
2233 			.min_chunk   = PAGES_PER_SECTION,
2234 			.max_threads = max_threads,
2235 			.numa_aware  = false,
2236 		};
2237 
2238 		padata_do_multithreaded(&job);
2239 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2240 						    epfn_align);
2241 	}
2242 zone_empty:
2243 	/* Sanity check that the next zone really is unpopulated */
2244 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2245 
2246 	pr_info("node %d deferred pages initialised in %ums\n",
2247 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2248 
2249 	pgdat_init_report_one_done();
2250 	return 0;
2251 }
2252 
2253 /*
2254  * If this zone has deferred pages, try to grow it by initializing enough
2255  * deferred pages to satisfy the allocation specified by order, rounded up to
2256  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2257  * of SECTION_SIZE bytes by initializing struct pages in increments of
2258  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2259  *
2260  * Return true when zone was grown, otherwise return false. We return true even
2261  * when we grow less than requested, to let the caller decide if there are
2262  * enough pages to satisfy the allocation.
2263  *
2264  * Note: We use noinline because this function is needed only during boot, and
2265  * it is called from a __ref function _deferred_grow_zone. This way we are
2266  * making sure that it is not inlined into permanent text section.
2267  */
2268 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2269 {
2270 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2271 	pg_data_t *pgdat = zone->zone_pgdat;
2272 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2273 	unsigned long spfn, epfn, flags;
2274 	unsigned long nr_pages = 0;
2275 	u64 i;
2276 
2277 	/* Only the last zone may have deferred pages */
2278 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2279 		return false;
2280 
2281 	pgdat_resize_lock(pgdat, &flags);
2282 
2283 	/*
2284 	 * If someone grew this zone while we were waiting for spinlock, return
2285 	 * true, as there might be enough pages already.
2286 	 */
2287 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2288 		pgdat_resize_unlock(pgdat, &flags);
2289 		return true;
2290 	}
2291 
2292 	/* If the zone is empty somebody else may have cleared out the zone */
2293 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2294 						 first_deferred_pfn)) {
2295 		pgdat->first_deferred_pfn = ULONG_MAX;
2296 		pgdat_resize_unlock(pgdat, &flags);
2297 		/* Retry only once. */
2298 		return first_deferred_pfn != ULONG_MAX;
2299 	}
2300 
2301 	/*
2302 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2303 	 * that we can avoid introducing any issues with the buddy
2304 	 * allocator.
2305 	 */
2306 	while (spfn < epfn) {
2307 		/* update our first deferred PFN for this section */
2308 		first_deferred_pfn = spfn;
2309 
2310 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2311 		touch_nmi_watchdog();
2312 
2313 		/* We should only stop along section boundaries */
2314 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2315 			continue;
2316 
2317 		/* If our quota has been met we can stop here */
2318 		if (nr_pages >= nr_pages_needed)
2319 			break;
2320 	}
2321 
2322 	pgdat->first_deferred_pfn = spfn;
2323 	pgdat_resize_unlock(pgdat, &flags);
2324 
2325 	return nr_pages > 0;
2326 }
2327 
2328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2329 
2330 #ifdef CONFIG_CMA
2331 void __init init_cma_reserved_pageblock(struct page *page)
2332 {
2333 	unsigned i = pageblock_nr_pages;
2334 	struct page *p = page;
2335 
2336 	do {
2337 		__ClearPageReserved(p);
2338 		set_page_count(p, 0);
2339 	} while (++p, --i);
2340 
2341 	set_pageblock_migratetype(page, MIGRATE_CMA);
2342 	set_page_refcounted(page);
2343 	__free_pages(page, pageblock_order);
2344 
2345 	adjust_managed_page_count(page, pageblock_nr_pages);
2346 	page_zone(page)->cma_pages += pageblock_nr_pages;
2347 }
2348 #endif
2349 
2350 void set_zone_contiguous(struct zone *zone)
2351 {
2352 	unsigned long block_start_pfn = zone->zone_start_pfn;
2353 	unsigned long block_end_pfn;
2354 
2355 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2356 	for (; block_start_pfn < zone_end_pfn(zone);
2357 			block_start_pfn = block_end_pfn,
2358 			 block_end_pfn += pageblock_nr_pages) {
2359 
2360 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2361 
2362 		if (!__pageblock_pfn_to_page(block_start_pfn,
2363 					     block_end_pfn, zone))
2364 			return;
2365 		cond_resched();
2366 	}
2367 
2368 	/* We confirm that there is no hole */
2369 	zone->contiguous = true;
2370 }
2371 
2372 void __init page_alloc_init_late(void)
2373 {
2374 	struct zone *zone;
2375 	int nid;
2376 
2377 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2378 
2379 	/* There will be num_node_state(N_MEMORY) threads */
2380 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2381 	for_each_node_state(nid, N_MEMORY) {
2382 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2383 	}
2384 
2385 	/* Block until all are initialised */
2386 	wait_for_completion(&pgdat_init_all_done_comp);
2387 
2388 	/*
2389 	 * We initialized the rest of the deferred pages.  Permanently disable
2390 	 * on-demand struct page initialization.
2391 	 */
2392 	static_branch_disable(&deferred_pages);
2393 
2394 	/* Reinit limits that are based on free pages after the kernel is up */
2395 	files_maxfiles_init();
2396 #endif
2397 
2398 	buffer_init();
2399 
2400 	/* Discard memblock private memory */
2401 	memblock_discard();
2402 
2403 	for_each_node_state(nid, N_MEMORY)
2404 		shuffle_free_memory(NODE_DATA(nid));
2405 
2406 	for_each_populated_zone(zone)
2407 		set_zone_contiguous(zone);
2408 
2409 	/* Initialize page ext after all struct pages are initialized. */
2410 	if (deferred_struct_pages)
2411 		page_ext_init();
2412 
2413 	page_alloc_sysctl_init();
2414 }
2415 
2416 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2417 /*
2418  * Returns the number of pages that arch has reserved but
2419  * is not known to alloc_large_system_hash().
2420  */
2421 static unsigned long __init arch_reserved_kernel_pages(void)
2422 {
2423 	return 0;
2424 }
2425 #endif
2426 
2427 /*
2428  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2429  * machines. As memory size is increased the scale is also increased but at
2430  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2431  * quadruples the scale is increased by one, which means the size of hash table
2432  * only doubles, instead of quadrupling as well.
2433  * Because 32-bit systems cannot have large physical memory, where this scaling
2434  * makes sense, it is disabled on such platforms.
2435  */
2436 #if __BITS_PER_LONG > 32
2437 #define ADAPT_SCALE_BASE	(64ul << 30)
2438 #define ADAPT_SCALE_SHIFT	2
2439 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2440 #endif
2441 
2442 /*
2443  * allocate a large system hash table from bootmem
2444  * - it is assumed that the hash table must contain an exact power-of-2
2445  *   quantity of entries
2446  * - limit is the number of hash buckets, not the total allocation size
2447  */
2448 void *__init alloc_large_system_hash(const char *tablename,
2449 				     unsigned long bucketsize,
2450 				     unsigned long numentries,
2451 				     int scale,
2452 				     int flags,
2453 				     unsigned int *_hash_shift,
2454 				     unsigned int *_hash_mask,
2455 				     unsigned long low_limit,
2456 				     unsigned long high_limit)
2457 {
2458 	unsigned long long max = high_limit;
2459 	unsigned long log2qty, size;
2460 	void *table;
2461 	gfp_t gfp_flags;
2462 	bool virt;
2463 	bool huge;
2464 
2465 	/* allow the kernel cmdline to have a say */
2466 	if (!numentries) {
2467 		/* round applicable memory size up to nearest megabyte */
2468 		numentries = nr_kernel_pages;
2469 		numentries -= arch_reserved_kernel_pages();
2470 
2471 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2472 		if (PAGE_SIZE < SZ_1M)
2473 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2474 
2475 #if __BITS_PER_LONG > 32
2476 		if (!high_limit) {
2477 			unsigned long adapt;
2478 
2479 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2480 			     adapt <<= ADAPT_SCALE_SHIFT)
2481 				scale++;
2482 		}
2483 #endif
2484 
2485 		/* limit to 1 bucket per 2^scale bytes of low memory */
2486 		if (scale > PAGE_SHIFT)
2487 			numentries >>= (scale - PAGE_SHIFT);
2488 		else
2489 			numentries <<= (PAGE_SHIFT - scale);
2490 
2491 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2492 			numentries = PAGE_SIZE / bucketsize;
2493 	}
2494 	numentries = roundup_pow_of_two(numentries);
2495 
2496 	/* limit allocation size to 1/16 total memory by default */
2497 	if (max == 0) {
2498 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2499 		do_div(max, bucketsize);
2500 	}
2501 	max = min(max, 0x80000000ULL);
2502 
2503 	if (numentries < low_limit)
2504 		numentries = low_limit;
2505 	if (numentries > max)
2506 		numentries = max;
2507 
2508 	log2qty = ilog2(numentries);
2509 
2510 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2511 	do {
2512 		virt = false;
2513 		size = bucketsize << log2qty;
2514 		if (flags & HASH_EARLY) {
2515 			if (flags & HASH_ZERO)
2516 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2517 			else
2518 				table = memblock_alloc_raw(size,
2519 							   SMP_CACHE_BYTES);
2520 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2521 			table = vmalloc_huge(size, gfp_flags);
2522 			virt = true;
2523 			if (table)
2524 				huge = is_vm_area_hugepages(table);
2525 		} else {
2526 			/*
2527 			 * If bucketsize is not a power-of-two, we may free
2528 			 * some pages at the end of hash table which
2529 			 * alloc_pages_exact() automatically does
2530 			 */
2531 			table = alloc_pages_exact(size, gfp_flags);
2532 			kmemleak_alloc(table, size, 1, gfp_flags);
2533 		}
2534 	} while (!table && size > PAGE_SIZE && --log2qty);
2535 
2536 	if (!table)
2537 		panic("Failed to allocate %s hash table\n", tablename);
2538 
2539 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2540 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2541 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2542 
2543 	if (_hash_shift)
2544 		*_hash_shift = log2qty;
2545 	if (_hash_mask)
2546 		*_hash_mask = (1 << log2qty) - 1;
2547 
2548 	return table;
2549 }
2550 
2551 /**
2552  * set_dma_reserve - set the specified number of pages reserved in the first zone
2553  * @new_dma_reserve: The number of pages to mark reserved
2554  *
2555  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2556  * In the DMA zone, a significant percentage may be consumed by kernel image
2557  * and other unfreeable allocations which can skew the watermarks badly. This
2558  * function may optionally be used to account for unfreeable pages in the
2559  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2560  * smaller per-cpu batchsize.
2561  */
2562 void __init set_dma_reserve(unsigned long new_dma_reserve)
2563 {
2564 	dma_reserve = new_dma_reserve;
2565 }
2566 
2567 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2568 							unsigned int order)
2569 {
2570 
2571 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2572 		int nid = early_pfn_to_nid(pfn);
2573 
2574 		if (!early_page_initialised(pfn, nid))
2575 			return;
2576 	}
2577 
2578 	if (!kmsan_memblock_free_pages(page, order)) {
2579 		/* KMSAN will take care of these pages. */
2580 		return;
2581 	}
2582 	__free_pages_core(page, order);
2583 }
2584 
2585 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2586 EXPORT_SYMBOL(init_on_alloc);
2587 
2588 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2589 EXPORT_SYMBOL(init_on_free);
2590 
2591 static bool _init_on_alloc_enabled_early __read_mostly
2592 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2593 static int __init early_init_on_alloc(char *buf)
2594 {
2595 
2596 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2597 }
2598 early_param("init_on_alloc", early_init_on_alloc);
2599 
2600 static bool _init_on_free_enabled_early __read_mostly
2601 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2602 static int __init early_init_on_free(char *buf)
2603 {
2604 	return kstrtobool(buf, &_init_on_free_enabled_early);
2605 }
2606 early_param("init_on_free", early_init_on_free);
2607 
2608 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2609 
2610 /*
2611  * Enable static keys related to various memory debugging and hardening options.
2612  * Some override others, and depend on early params that are evaluated in the
2613  * order of appearance. So we need to first gather the full picture of what was
2614  * enabled, and then make decisions.
2615  */
2616 static void __init mem_debugging_and_hardening_init(void)
2617 {
2618 	bool page_poisoning_requested = false;
2619 	bool want_check_pages = false;
2620 
2621 #ifdef CONFIG_PAGE_POISONING
2622 	/*
2623 	 * Page poisoning is debug page alloc for some arches. If
2624 	 * either of those options are enabled, enable poisoning.
2625 	 */
2626 	if (page_poisoning_enabled() ||
2627 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2628 	      debug_pagealloc_enabled())) {
2629 		static_branch_enable(&_page_poisoning_enabled);
2630 		page_poisoning_requested = true;
2631 		want_check_pages = true;
2632 	}
2633 #endif
2634 
2635 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2636 	    page_poisoning_requested) {
2637 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2638 			"will take precedence over init_on_alloc and init_on_free\n");
2639 		_init_on_alloc_enabled_early = false;
2640 		_init_on_free_enabled_early = false;
2641 	}
2642 
2643 	if (_init_on_alloc_enabled_early) {
2644 		want_check_pages = true;
2645 		static_branch_enable(&init_on_alloc);
2646 	} else {
2647 		static_branch_disable(&init_on_alloc);
2648 	}
2649 
2650 	if (_init_on_free_enabled_early) {
2651 		want_check_pages = true;
2652 		static_branch_enable(&init_on_free);
2653 	} else {
2654 		static_branch_disable(&init_on_free);
2655 	}
2656 
2657 	if (IS_ENABLED(CONFIG_KMSAN) &&
2658 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2659 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2660 
2661 #ifdef CONFIG_DEBUG_PAGEALLOC
2662 	if (debug_pagealloc_enabled()) {
2663 		want_check_pages = true;
2664 		static_branch_enable(&_debug_pagealloc_enabled);
2665 
2666 		if (debug_guardpage_minorder())
2667 			static_branch_enable(&_debug_guardpage_enabled);
2668 	}
2669 #endif
2670 
2671 	/*
2672 	 * Any page debugging or hardening option also enables sanity checking
2673 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2674 	 * enabled already.
2675 	 */
2676 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2677 		static_branch_enable(&check_pages_enabled);
2678 }
2679 
2680 /* Report memory auto-initialization states for this boot. */
2681 static void __init report_meminit(void)
2682 {
2683 	const char *stack;
2684 
2685 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2686 		stack = "all(pattern)";
2687 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2688 		stack = "all(zero)";
2689 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2690 		stack = "byref_all(zero)";
2691 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2692 		stack = "byref(zero)";
2693 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2694 		stack = "__user(zero)";
2695 	else
2696 		stack = "off";
2697 
2698 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2699 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2700 		want_init_on_free() ? "on" : "off");
2701 	if (want_init_on_free())
2702 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2703 }
2704 
2705 static void __init mem_init_print_info(void)
2706 {
2707 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2708 	unsigned long init_code_size, init_data_size;
2709 
2710 	physpages = get_num_physpages();
2711 	codesize = _etext - _stext;
2712 	datasize = _edata - _sdata;
2713 	rosize = __end_rodata - __start_rodata;
2714 	bss_size = __bss_stop - __bss_start;
2715 	init_data_size = __init_end - __init_begin;
2716 	init_code_size = _einittext - _sinittext;
2717 
2718 	/*
2719 	 * Detect special cases and adjust section sizes accordingly:
2720 	 * 1) .init.* may be embedded into .data sections
2721 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2722 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2723 	 * 3) .rodata.* may be embedded into .text or .data sections.
2724 	 */
2725 #define adj_init_size(start, end, size, pos, adj) \
2726 	do { \
2727 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2728 			size -= adj; \
2729 	} while (0)
2730 
2731 	adj_init_size(__init_begin, __init_end, init_data_size,
2732 		     _sinittext, init_code_size);
2733 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2734 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2735 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2736 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2737 
2738 #undef	adj_init_size
2739 
2740 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2741 #ifdef	CONFIG_HIGHMEM
2742 		", %luK highmem"
2743 #endif
2744 		")\n",
2745 		K(nr_free_pages()), K(physpages),
2746 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2747 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2748 		K(physpages - totalram_pages() - totalcma_pages),
2749 		K(totalcma_pages)
2750 #ifdef	CONFIG_HIGHMEM
2751 		, K(totalhigh_pages())
2752 #endif
2753 		);
2754 }
2755 
2756 /*
2757  * Set up kernel memory allocators
2758  */
2759 void __init mm_core_init(void)
2760 {
2761 	/* Initializations relying on SMP setup */
2762 	build_all_zonelists(NULL);
2763 	page_alloc_init_cpuhp();
2764 
2765 	/*
2766 	 * page_ext requires contiguous pages,
2767 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2768 	 */
2769 	page_ext_init_flatmem();
2770 	mem_debugging_and_hardening_init();
2771 	kfence_alloc_pool_and_metadata();
2772 	report_meminit();
2773 	kmsan_init_shadow();
2774 	stack_depot_early_init();
2775 	mem_init();
2776 	mem_init_print_info();
2777 	kmem_cache_init();
2778 	/*
2779 	 * page_owner must be initialized after buddy is ready, and also after
2780 	 * slab is ready so that stack_depot_init() works properly
2781 	 */
2782 	page_ext_init_flatmem_late();
2783 	kmemleak_init();
2784 	ptlock_cache_init();
2785 	pgtable_cache_init();
2786 	debug_objects_mem_init();
2787 	vmalloc_init();
2788 	/* If no deferred init page_ext now, as vmap is fully initialized */
2789 	if (!deferred_struct_pages)
2790 		page_ext_init();
2791 	/* Should be run before the first non-init thread is created */
2792 	init_espfix_bsp();
2793 	/* Should be run after espfix64 is set up. */
2794 	pti_init();
2795 	kmsan_init_runtime();
2796 	mm_cache_init();
2797 }
2798